
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2017

Automating a 3D Point Matching System for
Human Faces
Priya Vashistha
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Vashistha, Priya, "Automating a 3D Point Matching System for Human Faces" (2017). Theses and Dissertations. 1548.
https://dc.uwm.edu/etd/1548

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1548?utm_source=dc.uwm.edu%2Fetd%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

AUTOMATING A 3D POINT MATCHING SYSTEM FOR HUMAN FACES

by

Priya Vashistha

A Thesis Submitted in

Partial Fulfillment of the

Requirements of the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin Milwaukee

May 2017

ii

ABSTRACT

AUTOMATING A 3D POINT MATCHING SYSTEM FOR HUMAN FACES

by

Priya Vashistha

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Zeyun Yu

3D point matching for human faces is opening new possibilities in the fields of face matching,

face recognition, face retrieval, biomedical, virtual reality, etc. and is overcoming the limitations

of 2D face matching. The purpose of this study is to research and implement an automated 3D

point matching system for human faces. This will be added to an existing system implemented

for 3D point matching on face models. The current implementation is a manual procedure to

find matching between the faces, where a set of landmarks are selected on both sources and

target meshes and the faces are registered using ICP and TPS techniques. The study aims to

eliminate the manual process by automating the initial landmark selections.

iii

© Copyright by Priya Vashistha, 2017
All Rights Reserved

iv

TABLE OF CONTENTS
PAGE

 List of Figures………v
 List of Tables………………………………………………………….…………………………….……………………….vii
 Acknowledgements…..………..……………………………………………………………………………………….viii

CHAPTER

1 Introduction……1
 1.1 Background and Literature………………………………………………………………………………….1
 1.2 System Setup………………………………………………………………………………………………………2
 1.3 Chapter Reviews…………………………………………………………………………………………………5

2 Dataset and Preprocessing……………………………………………………………………………………………..7
 2.1 Dataset…….7
 2.2 Preprocessing Data…………………………………………………………………………………………..12

3 Point Matching System for 3D Faces…………………………………………………………………………….15
 3.1 Detect Tip of the Nose………………………………………………………………………………………17
 3.2 Detect Top of Forehead…………………………………………………………………………………….18
 3.3 Detect Left and Right Ear………………………………………………………………………………….20
 3.4 MeshSIFT…….22
 3.5 TPS……26
 3.6 ICP…….27

4 Results and Discussion………………………………………………………………………………………………….29
 4.1 Initial Approaches…………………………………………………………………………………………….29
 4.1.1 Constraint K-Means………………………………………………………………………………29
 4.1.2 K-Means………………………………………………………………………………………………..30
 4.1.3 Modified K-Means………………………………………………………………………………...32
 4.2 Current Approach……………………………………………………………………………………………..33
 4.2.1 Tip of Nose……………………………………………………………………………………………33
 4.2.2 Top of Forehead…………………………….……………………………………………………..34
 4.2.3 Left and Right Ear………………………………………………………………………………….35
 4.2.4 MeshSIFT………………………………………………………………………………………………37
 4.2.5 TPS…………..……………………………………………………………………………………………39
 4.2.6 ICP……40
 4.3 Error Analysis……………………………………………………………………………………………………44
 4.4 Time Analysis..46

5 Conclusion….……..51
 5.1 Conclusion………………………………………………………………………………………………………..51
 5.2 Future Work……………………………………………………………………………………………………..52
References…….53

v

LIST OF FIGURES

Figure 2.1 Male and Female Faces from the database…………………………………………………………8

Figure 2.2 Mesh Triangulation…………………………………………………………………………………………..11

Figure 2.3 Noisy Faces……………………………………………………………………………………………………….11

Figure 2.4A Mesh Smoothing………………………………………………………………………………………………13

Figure 2.4B Mesh Smoothing……………………………………………………………………………………………...13

Figure 2.5 Point Matching Results with and without smoothing………………………………………..14

Figure 3.1 Tip of the Nose………………………………………………………………………………………………...18

Figure 3.2 Top of the Forehead…………………………………………………………………………………………20

Figure 3.3 Left and Right Ears……………………………………………………………………………………………22

Figure 3.4 Result from MeshSIFT ………………………………………………………………………………………25

Figure 3.5 Example of TPS…………………………………………………………………………………………………27

Figure 3.6 Iterative Closest Point Matching……………………………………………………………………….28

Figure 4.1A Result of Constraint KMeans Algorithm…………………………………………………………….29

Figure 4.1B Result of Constraint KMeans Algorithm…………………………………………………………….30

Figure 4.1C Result of Constraint KMeans Algorithm…………………………………………………………….30

Figure 4.2A Result of KMeans Clustering with 2 and 3 Clusters……………………………………………31

Figure 4.2B Result of KMeans Clustering with 4 and 5 Clusters……………………………………………31

Figure 4.3A Result of KMeans with higher weights assigned to Curvature and RGB…………….32

Figure 4.3B Result of KMeans with higher weights assigned to Normals and RGB……………….33

Figure 4.4 Tip of Nose detection……………………………………………………………………………………….34

Figure 4.5 Best matched neighbors from tip of nose to top of forehead……………………………35

Figure 4.6 Points detected on Left and Right Ear……………………………………………………………….36

Figure 4.7A Points matched by MeshSIFT…………………………………………………………………………….37

Figure 4.7B Points matched by MeshSIFT…………………………………………………………………………….38

Figure 4.7C Points matched by MeshSIFT…………………………………………………………………………….38

vi

Figure 4.8 TPS Results……………………………………………………………………………………………………….39

Figure 4.9A ICP Iterations with final results…………………………………………………………………………40

Figure 4.9B ICP Iterations with final results…………………………………………………………………………41

Figure 4.9C ICP Iterations with final results…………………………………………………………………………42

Figure 4.9D ICP Iterations with final results…………………………………………………………………………43

Figure 4.9E ICP Iterations with final results…………………………………………………………………………44

Figure 4.10 Error Analysis……………………………………………………………………………………………………46

Figure 4.11A No. of vertices in mesh before and after mesh simplification..............................48

Figure 4.11B No. of faces in mesh before and after mesh simplification..................................48

Figure 4.11C MeshSIFT processing times before and after mesh simplification.......................49

Figure 4.11D Point Matchings obtained from MeshSIFT before and after mesh

 simplification..50

vii

LIST OF TABLES

Table 1.1 Software Installations…………………………………………………………………………………………3

Table 4.1 Distance between source mesh and target mesh after each iteration of ICP…….45

Table 4.2A Number of mesh faces and vertices before and after mesh simplification..........47

Table 4.2B Processing times and point matchings obtained from MeshSIFT before and after

 mesh simplification...49

viii

ACKNOWLEDGEMENTS

Firstly, I would like to thank Dr. Zeyun Yu for recognizing my capabilities and giving me this

amazing opportunity to work with him on this project. His constant motivation and expert

guidance enabled me to successfully complete this study. I am especially indebted to Reihaneh

Rostami, who has enlightened me with her guidance and knowledge and was a strong support

system for this endeavor. This study wouldn’t have been possible without her continuous

involvement and considerable personal and professional counsel. I have always highly

appreciated her professionalism and knowledge of the topic of my study and have learned

many valuable skills during the process. This study has empowered me with confidence and has

shaped me into a better professional.

I am also very grateful to my friends and family who have always showered their love and

blessings in all my ventures.

1

Chapter 1- Introduction

1.1 Background and Literature

2D Facial recognition has been an active research area for many years and a significant progress

has been made to automate face recognition for 2D images. However, there are certain

limitations with 2D images, for the facial recognition to be applicable, it needs to deal with

variations in pose, color, lighting, background, resolution etc. With the recent development in

3D scanning, it has become more affordable and a complete new dimension for facial matching

has been uncovered. Unlike the 2 dimensional facial recognition, 3 dimensional format

overcomes the limitations of lighting, resolution, background, etc. 3D facial data is invariant to

setting conditions and has closer real life applications. 3D measurements are of same size as the

actual object which gives more accurate information about depth, foreground and background.

It also has numerous applications in the fields of facial recognition, face retrieval, face

reconstruction, biometrics and virtual reality.

The inspiration of this project came from an existing system of 3D point matching. Two 3

dimensional human face models are taken where one is the source mesh and the other one is

the target mesh. The aim is to deform the source mesh to make it look like the target mesh

while maintaining the source mesh topology. This is obtained by manually selecting landmarks

which are spread out throughout the face on both source and target meshes on the same

location and in the same order. The selected points are then used to deform the source mesh

and make it look more like the target mesh. This process would be a lot more user friendly if

2

the landmark detection was automatic rather than manual, this problem led to the current

study where an automatic system to generate landmarks have been implemented.

In this study, we approached to solve this problem of automatic point detection on both source

and target faces with different algorithms such as constraint kmeans, modified kmeans,

meshSIFT, etc, out of which meshSIFT has generated the most promising results so far. We will

discuss meshSIFT in details in Chapter 3. In the current implementation, the source and target

meshes are converted to OFF format (discussed in Chapter 2) and fed as input to meshSIFT.

MeshSIFT returns matching points for the meshes, these points are not very accurate and are

filtered before the source mesh is deformed.

In the current system implementation, we take two 3d face models, a source mesh and a target

mesh and deform the source mesh to the target. This is achieved by first detecting the tip of the

nose, top of the forehead, left ear and right ear which is implemented based on the basic

human face structure. Then, the points obtained from meshSIFT are filtered using a threshold

value to get rid of the wrong matchings. The points for nose, forehead, ears and those from

meshSIFT are then combined and used to transform the source face geometry and make it look

like the target.

1.2 System Setup

Various open source software and libraries have been used to implement this project. The base

code is written in C++ programming language and built over Microsoft Visual Studio. Additional

external libraries that have been used are VTK, OpenCV and Boost. Cmake has been used to

3

build binaries for external libraries. All the software being used is Open Source and freely

available online for download. Table 1.1 gives a detailed information on the software used.

S.No Software
Name

Purpose Version Download Source Install Guide
Resources

1 Microsoft
Visual
Studio

Coding
Interface

Express
2015

https://www.visualstudio.com/do
wnloads/

Executable
file available

2 Visualizati
on Toolkit-
VTK

Additional
External
Library –
for
Visualizatio
n of 3D
data

VTK 7.0 http://www.vtk.org/download/ http://www.v
tk.org/Wiki/V
TK/Building/
Windows

3 Open
Source
Computer
Vision-
OpenCV

Additional
External
Library

OpenCV
2.4.13

http://opencv.org/downloads.htm
l

Executable
file available

4 Boost C++
Libraries

Additional
External
Library

Boost
1.0

https://sourceforge.net/projects/b
oost/files/boost/1.62.0/

http://www.b
oost.org/doc/
libs/1_55_0/
more/getting
_started/win
dows.html

5 CMake Build
external
Libraries

CMake
3.7.0

https://cmake.org/download/ Executable
file available

Table 1.1: Software Installations

4

After each of the above mentioned software is installed:

1. Create a folder for the project and create two sub folders “src”, for source files and

“bin”, for the binaries.

2. Add the .cpp and .h files in the src folder and rename change the extension of .cpp files

to .cxx.

3. Create a new text file in the src folder and name it as “CMakeLists.txt”. Add the

following to the file:

 cmake_minimum_required(VERSION 2.6)

 project(Clustering)

 file(GLOB SRCS *.cxx *.h)

 find_package(VTK REQUIRED)

 include(${VTK_USE_FILE})

 add_executable(Clustering Clustering.cxx Functions.cxx)

 target_link_libraries(Clustering ${VTK_LIBRARIES})

4. Open Cmake, add src’s path in source and bin’s path in destination. Configure and

generate.

5. After this is done, open the bin folder, select an dopen the .sln file to open the project in

visual studio.

6. After the project is open in visual studio, in solution explorer, right click on the name of

the main project and set it as the first project. Build and Run.

5

1.3 Chapter Reviews

This thesis document has been divided into five different chapters, the first chapter being the

introduction. Following is a short summary of the remaining chapters:

Chapter 2 is Dataset and Preprocessing. In this chapter, the dataset used for the 3D point

matching has been discussed. We will talk about the different facial meshes we have, the data

organization and the challenges faced while dealing with the data. We also discuss the

preprocessing that is done before the mesh is worked on. For the preprocessing, we smoothen

the mesh in order to improve the mesh quality and make it ready to be worked on.

Chapter 3 is the Point matching system for 3D faces. In this chapter, the actual pipeline of the

current system has been described. This chapter has six sub sections, Tip of nose, Top of

forehead, Left and Right Ear, MeshSIFT, Thin Plate Spline and Iterative Closest Point, each

section being a vital component and are arranged in the order they are being used in the actual

implementation of the system. MeshSIFT, Thin Plate Spline and Iterative Closest Point are open

source algorithms which have been used to implement this system and are described in detail

in this chapter.

Chapter 4 is Results and Discussion. In this Chapter we show the results of all the approaches

that were experimented to implement this system. Subsection 4.1 shows the results of the

initial approaches which were considered and implemented. Subsection 4.2 shows the results

of the current system step by step, following the pipeline in the same order as in Chapter 3. In

subsection 4.3, we analyze the errors and discuss the outcomes of the current approach. In

subsection 4.4, we experiment the change in processing time and the number of point

6

matchings obtained by MeshSIFT before and after mesh simplification. The meshes are

simplified to one eighth of their original size using an open source software called MeshLab

[22].

Chapter 5 is the conclusion. In this chapter, the entire study has been summed up and the

outcomes have been discussed. We also discuss the future work and improvements which can

possibly eliminate the shortcomings of the current approach and make the system even better.

7

Chapter 2- Dataset and Preprocessing

2.1 Dataset

The BJUT-3D Large-Scale Chinese Face Database from Multimedia and Intelligent Software

Technology Beijing Municipal Key Laboratory, Beijing University of Technology [5] has been

used for this study, this face database is made available for research purpose only. A

CyberWare Laser Scanner has been used to obtain the 3D models. A lot of efforts have been put

into the scanning process so that the 3D face captured is of the best quality. The scanner is

positioned strategically so that it does not cast any shadows on the human faces. Illumination

has been taken into consideration, a consistent ambient illumination is maintained throughout

the scanning process.

The database consists of 500 3D face models of Chinese people, out of which 250 are males and

250 females. The people whose faces are scanned are between the age group of 16 and 49. All

faces pose a natural expression and without any glasses, dressing or accessories. All the

subjects were made to wear a hat to avoid having hair on the forehead, eyes and ears and

capture maximum amount of face information. Figure 2.1 shows a male and a female 3D face

from the database.

8

Figure 2.1 Male and Female face from the database

The database also follows a naming convention which is explained as follows:

x_xxxx_Ax_Ex_Cxxxx_Rx.ext

 Here the first x is of 1 bit and corresponds to the sex field where “M” is male and “F” is

female.

 xxxx corresponds to a 4 bit ID which is a number sequence unique to each person

scanned.

 Ax is of 2 bits and corresponds to age. Here, “A” represents age variation. Symbol 1

represents age group 10 to 19 year, 2 is for the age group of 20 to 29 years, 3 if for 30 to

39 years and 4 is for the ages of 40 to 49 years.

9

 Ex is of 3 bits and represents extression. “E” represents expression variation and the

seond bit id for different expressions. Symbol “n” stands for natural, “h” for happy, “p”

for surprise and “a” for anger. In current database, all the faces scanned have a natural

expression.

 Cxxxx is of 5 bit and for content. “C” represents content. The remaining 4 bits “xxxx” are

“trim” which indicated that the face is presented after removing the redundant parts of

the data.

 Rx is of 2 bits and represents publicity. “R” is for publicity and “x” is “0” if data is

unpublished and “1” if published.

 ext is a 3 bit extension name which indicates the file format.

Examples of this naming convention are “F0001A1EnCtrimR0”, “F0111A1EnCtrimR0”, and

“M0032A2EnCtrimR1” etc.

Each 3D face file consists of vertex information, i.e. the x, y and z coordinates, texture

information which is the R, G, B values and the Triangle or Face information which is the indices

of the 3 points with constitute a triangle for mesh formation. Unfortunately, the representation

of this data is not standard. Due to this we convert the data obtained by the database into OFF

format. OFF is an object file format used to represent the geometry of a model. It specifies the

polygons on the modal’s surface and the polygons can have any number of vertices. An OFF file

is ideal for storing a 2D or 3D object description for the object constructed from polygons and a

simple extension to it can handle objects in 4D as well. Following is an example of the OFF file

format:

10

OFF

No. of Vertices No of Faces No. of Edges

vx1 vy1 vz1

vx2 vy2 vz2

………..

vxn vyn vzn

//Triangles

3 v11 v12 v13

3 v21 v22 v23

………

3 vm1 vm2 vm3

In the above format “n” stands for the total number of vertices and “m” is for the total number

of faces in the mesh. Providing the “No. of Edges” is optional and the texture information can

be provided as RGB values along with each vertex, eg: vx1 vy1 vz1 r g b.

Figure 2.2 represents a zoomed in mesh where the mesh triangulation/faces of the mesh can be

seen.

11

Figure 2.2 Mesh Triangulation

There have also been a lot challenges while dealing with the data. In this database, the total

number of vertices are different for each face and there is no correspondence between the

modals which makes it difficult to work with. There is also a lot of error in in some faces. Some

faces have neck portion and some don’t and some faces have missing features and some have

very irregular surfaces. Figure 2.2 shows a few noisy faces.

Figure 2.3 Noisy Faces

12

Another issue with this database is that the scale of 3D faces is very limited. This database

features faces only of oriental origin. There is a considerable difference between the face

structure and features of western and oriental and may not provide all practical requirements

and enough 3D faces for a global application. However, there are other 3D face databases

which are based on western face structures.

2.2 Preprocessing Data

In order to obtain better results, all the meshes have been smoothened before any other

operation. Taubin mesh smoothening has been used to accomplish this operation. In this

system implementation, we use 10 iterations to smooth the surface of the mesh. We shrink the

mesh first using lambda and then inflate it using mu, where both lambda and mu are scaling

factors. This is done to avoid mesh shrinkage and loss of features during smoothing. The

pseudocode for mesh smoothing used in the system is as follows:

1) For each iteration (We are using 10 iterations).

2) For each point P in the mesh

3) Pi = Pi + λΔPi // for Shrinking

4) Pi = Pi + µΔPi // for inflation

5) Repeat Steps 2 to 4 for each point in the mesh.

For this system implementation, we have set lambda value to be 0.5 and mu value to be -0.51.

13

Figure 2.4A and 2.4B show the result of smoothing on the given mesh. Figure 2.5 represents the

difference between the results of point matching with and without smoothing. Clearly, the

results with smoothing are better.

Figure 2.4A: Mesh Smoothing

Figure 2.4B: Mesh Smoothing

14

Figure 2.5: Point Matching Results with and without Mesh Smoothing

15

Chapter 3- Point Matching System for 3D Faces

This chapter is the actual pipeline of the implementation of the point matching system in the

order of processing. Before proceeding to using meshSIFT, which is an open source algorithm

used to obtain the point matchings of the 3D faces, we detect some facial features including the

tip of the nose, the top of the forehead, the left ear and the right ear beforehand. This has

made the point matchings significantly better and have been a tremendous help in getting good

results.

Here is a flowchart of the Algorithm pipeline:

16

17

3.1 Tip of Nose

The first step to automatic point matching was to figure out a way to detect high feature points,

which could be eyes, nose, chin, forehead, ears, center of eyebrows, lips etc. Out of all these,

nose was the most straightforward detection. In general terms, nose is the most protruding

part of the human face. To leverage this fact, the center of the face is aligned on the origin for x

and y coordinates and the z coordinate is set to 50, this is done to orient the face modal

towards the viewer and set the viewing position such that the face faces towards positive z

direction. Following is the pseudocode used for the detection of the tip of the nose.

1. let maxZ be -1000;

2. let index be -1

3. for each point in the mesh.

4. If the z coordinate of the point on mesh is greater than maxZ, update maxZ to z and set

index to be the index of the point on the mesh.

5. Repeat step 3 an 4 until all the points on mesh have been traversed.

6. Set the final value of index to be the tip of the nose.

This algorithm selects the point in maximum z direction to be the tip of the nose. Figure 3.1

shows the detected tip of the nose.

18

Figure 3.1: Detected tip of Nose

3.2 Top of Forehead

To get better matchings, it is critical that there are points on the boundaries of the source mesh

and target mesh which can be matched to overlap the meshes better. The top of the forehead

is one of those critical points. Detecting the top of forehead was challenging. The approach

used to detect the forehead was to start from the tip of the nose and continue going in the

positive y direction until we reach the edge of the mesh, this will result in a point which is

collinear to the tip of the nose and lies on the topmost part of the forehead. This working of

this approach mainly depends on the mesh triangulation. If we start from nose and keep

selecting the point with minimum distance from the x coordinate of the tip of the nose and

maximum distance from the y coordinate of the tip of the nose, the result could be a point

19

which is too far from being at the central tip of the forehead. To overcome this issue, the search

area to choose for the best neighbor had to be minimized so that the search direction is

accurate, to accomplish this, an array of linked list of point neighbors is maintained and only the

points in the linked list are considered for the search and the best qualified neighbor is selected

Below is the pseudocode for the detection of the top of forehead.

1) Check if the tip of nose has been detected, it is critical to detect the tip nose before

proceeding to detect the forehead as it’s the starting point for the search. If not, return

with message explanation.

2) select the next neighbor of the tip of the nose

3) If the difference between selected neighbor’s x coordinate and tip of the nose’s x

coordinate is less than a threshold value (which is 1 in our case), and y coordinate is

greater than the y of the last qualified neighbor, set this point as the last qualified

neighbor.

4) Select the next neighbor of the last qualified neighbor and repeat step 3 until the

highest neighbor is reached.

Figure 3.2 white color represents the neighbors selected in the process of finding the top of

forehead, and yellow is final point set to be the top of forehead.

20

Figure 3.2: Top of Forehead

3.3 Left and Right Ear

Another set of critical points that needed to be detected for better boundary overlap of both

meshes were the points on left and right ear. Detecting these points was also a challenging task

because of some errors in the face data models. The initial approach to detect points on the left

and right ear was to find the bottom most points of the left and the right earlobes. This was

accomplished by detecting the leftmost and the rightmost point on the face with maximum z

value and a negative normal direction. Hence, the target was to detect points on earlobes

facing the earth. This approach didn’t work very successfully because of some nose in the

dataset. Some faces had a bulge right under an ear due to scanning, since we are targeting the

21

leftmost and rightmost points with highest z and negative normal direction, the point ended up

being detected on the bulge.

To avoid this, another approach was implemented. The tip of the nose needs to be detected

beforehand for this this approach to work. In this approach, we look for only those points

whose y coordinates are under a certain threshold distance from the origin, threshold range

considered here is 0.5 to -0.5, and this is because we set the center of the face at origin. We set

the initial left and right ear points at the top of the nose and then keep moving right and left

until the mesh boundary is encountered. Following is the pseudocode for this approach.

1. Let the leftEarIndex and rightEarIndex equal to the index of the tip of the nose.

2. For each point in the mesh

3. If y coordinate of the selected point is between the threshold range of 0.5 and -0.5,

continue to steps 4 and 5.

4. If x coordinate of selected point is less than x coordinate of leftEarIndex, set current

point as leftEarIndex.

5. If x coordinate of the selected pointed greater than the x coordinate of rightEarIndex,

set the current point as rightEarIndex.

6. Repeat steps 3 to 5 until all points on the face have been traversed.

Figure 3.3 represent the points considered in order to find the correct points on the left and

right ear. The final selected points are colored yellow.

22

Figure 3.3 Left and Right Ear

3.4 MeshSIFT

MeshSIFT is an open source algorithm [6] which detects salient points on 3 dimensional face

data based on the geometry of the face. This algorithm is an extension of the Scale Invariant

Feature Transform (SIFT) algorithm which works for 2D data, meshSIFT has the added ability to

deal with 3D data. MeshSIFT has four major components:

1. Key-point detection: It detects the salient points on the mesh. It constructs a scale

space which consists of the smoothed input Mesh MS. It is expressed as:

𝑀𝑠 = {
𝑀, 𝑠 = 0

𝐺𝜎𝑠
⊗ 𝑀, 𝑒𝑙𝑠𝑒

Here, M refers to the original mesh and 𝐺𝜎𝑠
 refers to the approximated Gaussian filter

with the scale 𝜎𝑠. Then mean curvature is computed for each vertex at each scale of the

scale space to detect the salient points.

23

2. Orientation assignment: Each key-point is assigned a canonical orientation to obtain an

orientation invariant descriptor. This makes the point detection independent of the

facial pose. To ensure a scale invariant descriptor, neighborhood size is expressed as a

function of scale 𝜎𝑠.This limits the consideration of vertices around a key points within a

spherical region of radius 9𝜎𝑠.

The normal vector for each vertex in consideration is computed and based on the fast

marching algorithm, a geodisc distance to the respective keypoint is determined. After

this, the normal vectors projected are then collected in 360 bin weighted histogram.

Gaussian weight with its geodisc distance to key point with a proportional bandwidth to

the scale assigned for each histogram entry is calculated. At last the highest peak and

every peak above 80% of the highest peak value in the histogram is selected to be the

canonical orientation. This canonical orientation is then calculated to sub-bin precision

by fitting a quadratic function to the histogram using the neighbor bins of a peak. This

leads to having a canonical orientation for multiple key points.

3. Local feature description: is basically the local neighborhood around a key point. Each

key point’s geodisc radius contains 9 small circular regions with respect to the canonical

orientation. Feature descriptor is created based on local neighborhood which provides a

feature vector around each key point.

Feature vector consists of concatenated histograms which are calculated over 9

neighborhood regions. For each of the 9 regions, two histograms 𝑝̂𝑠 and 𝑝̂𝜃 are

computed. Here, 𝑝̂𝑠 contains shape index which is calculated based on the curvature

and 𝑝̂𝜃 consists of slant angles which are the angles between every projected normal

24

and canonical orientations. The resultant histograms are weighted based on distance to

the center of the region. Additionally, shape index histograms are weighted on

curvature and slant angle histogram based on tilted angle, which is the angle between

the considered vertex and the normal in the keypoint. Every histogram is then

normalized to 1/sqrt(8) to reduce the influence of large histogram values. The resultant

histograms are concatenated to a single feature vector shown in the following equation.

𝑓𝑖 = [𝑝̂𝑠,1, 𝑝̂𝜃,1, … . , 𝑝̂𝑠,9, 𝑝̂𝜃,9]𝑇

This way a feature descriptor is computed for each keypoint, resulting in a set of feature

vectors per face. The following equation describes a feature descriptor F:

𝐹 = {𝑓1, 𝑓2, … . 𝑓𝑛}

Feature matching, the selected features of the source mesh and the target are then

compared using angle. This angle is defined as:

𝛼 = cos−1 (
< 𝑓𝑖 , 𝑓𝑗 >

||𝑓𝑖|| ||𝑓𝑗||
)

Angles for all candidates for each feature are ranked in the ascending order. If the ratio

between the angles is smaller than a threshold, the match is accepted, this is done for

both the meshes.

MeshSIFT code has been taken from online, it is open source and free to use. This code runs on

Matlab. In the current system implementation, the vertex and face information of both the

source and target mesh is loaded. MeshSIFT returns a matrix of matching points in both the

meshes. The number of matched points obtained can be different for different meshes.

Figure 3.4 represents an example result of the point matchings from meshSIFT.

25

Figure 3.4 Result from MeshSIFT

However, the points obtained by meshSIFT are not very accurate and not spread evenly

throughout the face. The matchings obtained are then filtered using a certain threshold value

which is different for different meshes as the number of point matching obtained are also

different. For this system, a threshold value of (10, 15 and 12 have been considered for

different meshes). Filtering using a threshold value gets rid of the incorrect point matchings.

The result from this filtering is then combined with the point matchings obtained from

detecting the tip of the nose, the top of the forehead and the left and right ear and fed as input

to TPS.

26

3.5 TPS

Thin Plate Spline is an open source interpolation method [7]. It results in a minimal bent surface

that passes through all the given control points. The actual algorithm is made for 2D data, but it

has been modified to work with three dimensional data. TPS can capture two affine and non-

affine transformations.

Formula used by TPS:

f(P) = Pd + Kw

Here, 𝑃 is the point coordinates on source mesh, 𝑑 represents affine transformations and w

represents non-affine transformations. 𝑑 and 𝑤are obtained by the following equation:

(
𝐾

𝑀0
𝑇

𝑀1

0
) (

𝑤

𝑑
) = (

𝑀2

0
)

Here, 𝐾 is a 𝑀×𝑀 matrix where M is the number of selected control points and 𝑀1 and 𝑀2

represent the coefficients of control points on source and target meshes, respectively.

Thin Plate Spline deforms and smoothen the source mesh to take the shape of target mesh.

This part of the pipeline has been taken from the pre-existing implementation of the system.

Running TPS on source mesh leads to the change in geometry of the source face so that it looks

like target while the topology is still the same.

For TPS to work correctly, the points selected to be control points need to be very accurate,

otherwise, the result can be a disaster. Figure 3.5 is an example to demonstrate how TPS is

applied to source mesh to change its geometry to the target.

27

Figure 3.5: Example of TPS

3.6 ICP

Iterative closest point also known as ICP is an open source algorithm [8] which is used to bring

two point clouds closer to each other and minimize the distance between them. In our system

implementation, the target is fixed and the source mesh is transformed so that it matches the

target mesh. We have deployed five iterations of ICP for each mapping. With each iteration, the

distance between source and target is reduced, hence minimizing the error. Following is the

equation used for ICP, our main goal here is to minimize the value of 𝐸𝑔 as much as possible:

𝐸𝑔 = ∑ 𝜔𝑖|𝑣̃𝑖 − 𝑔𝑖|
2

𝑛

𝑖=1

Where, 𝜔𝑖 is a weight for this system implementation, we have set its value to be 1/5. 𝑔𝑖 is the

intersection with the target mesh along point 𝑣̃𝑖′s normal. 𝑣̃𝑖 represents points of source mesh.

28

Figure 3.6 represents three iterations of Iterative closest point on source mesh. The final result

along with the target mesh is also displayed.

Figure 3.6: Iterative Closest Point Matching

29

Chapter 4 - Results and Discussion

4.1 Initial Approaches

4.1.1 Constraint K-Means Algorithm

For this approach, 122 best faces were selected from the entire database out of which, 85 faces

were categorized into training set and 37 as testing set.

For the faces in training set, landmarks of the top of forehead, center of eyebrows, chin, left ear

and right ear were selected manually and the position of each landmark selected was recorded.

The same landmarks were selected for all the faces. After that, the mean value of the positions

of all the landmarks were set as cluster seeds for the testing set.

After implementing this algorithm, it was found that the results were not as good as expected.

Figures 4.1A to 4.1C show the results obtained from the constraint K-Means. The center of eye,

ear and chin detection are not very accurate.

Figure 4.1A: Results- Constrained K-Means

30

Figure 4.1B: Results- Constraint KMeans Algorithm

Figure 4.1C: Results- Constraint KMeans Algorithm

4.1.2 KMeans

For this algorithm, the entire mesh was clustered totally unsupervised. The number of clusters

to be formed were input by the users and the cluster seeds were initially chosen at random. For

each point, its Euclidean distance with respect to each cluster seeds was calculated and the

point was assigned to the closest cluster. After the point had been assigned to the cluster, a

new mean of the cluster was calculated and the cluster seed value was updated. These steps

were repeated until all the points in the mesh had been traversed.

31

After implementing this algorithm and considering different number of clusters, the following

results were obtained. Again, the results were not good enough, we can see that the clusters

are not well defined. Figure 4.2A and 4.2B depict the results with different number of clusters.

Figure 4.2A: Results- KMeans Clustering with 2 and 3 Clusters

Figure 4.2B: Results- KMeans Clustering with 4 and 5 Clusters

32

4.1.3 Modified KMeans

The initial steps of this algorithm are the same as that of kmeans, the algorithm discussed in

section 4.1.3, the difference is that while determining the cluster of a point, additional weight is

given to certain features. The first experiment was done by increasing the weight of the

curvature to twice its value and RGB values were multiplied by 1.5. This was done in order to

cluster features with high curvature value. The second experiment was to give additional

weights to normals and RGB values, both were multiplied by 1.5. Hence, the Euclidean distance

of a point from the center of each cluster was calculated based on these modified values to

determine the cluster for the point. After the point is assigned to the cluster, the cluster’s mean

is calculated and assigned as the seed of that cluster.

The results obtained by this algorithm weren’t good enough either as there was not much

uniformity in the clusters. Figure 4.3A and 4.3B depict the results of this approach.

Figure 4.3A: Results- KMeans with higher weights assigned to Curvature and RGB

33

Figure 4.3B: Results- KMeans with higher weights assigned to Normals and RGB

4.2 Current Approach

The results obtained by previously discussed approaches weren’t acceptable because the

clusters obtained were not uniform. In order to obtain good results, accurate point matchings

need to be input for TPS, otherwise, the face geometry is not modified correctly. Also, the final

result from ICP depends on the deformed mesh obtained from TPS, hence, very accurate point

matchings are critical for good point matchings. To solve this problem, the current approach is

deployed.

Current approach is a pipeline of such algorithms as nose, forehead and ear detection,

meshSIFT, TPS and ICP.

4.2.1 Tip of Nose

Results obtained by detecting the tip of the nose are very accurate and the tip of the nose has

been detected correctly for all the faces. In order to detect the nose tip, the face needs to be

34

aligned, here, the mesh is centered at origin of the x and y plane and z plane is set as 50. Figure

4.4 represents the tip of the nose detected, highlighted in white color.

Figure 4.4: Tip of nose detection- represented by the white point

4.2.2 Top of Forehead

The top of forehead detection has also been accurate for all the faces. For this approach to

work, the tip of the nose should be detected and the neighbors for all the points need to be

calculated and stored in an array of linked list beforehand. During the search process, the

difference between the x coordinate of the candidate point and the x coordinate of the tip of

the nose should be under a threshold value of 1, so that the search direction remains vertical

from the tip of the nose. Figure 4.5 highlights the route from the tip of the nose to the top of

the forehead, the green line is formed by the best matched neighbor points.

35

Figure 4.5: Best Matched Neighbors from tip of nose to top of forehead

4.2.3 Left and Right Ear

In order to detect the left and right ear, the tip of the nose should be detected beforehand.

During the search process, the points have been filtered based of max and min x coordinated

for right and left ear respectively because the face is centered at the origin and the left most

point on left ear will have the lowest x value and right most point on the right ear will have the

highest x coordinate. Also, to make sure that the search remains parallel to the x axis, the

points have been filtered based on a threshold range of -0.5 to 0.5 for the y coordinate, i.e. the

point is considered to be a candidate only if its y coordinate value is between 0.5 and -0.5. The

36

current approach gives good results, but sometimes, if the face geometry of two faces is too

different, the points detected on the left and right ear on source can be a bit too far from that

of the target. Hence, a better approach can be devised. Figure 4.6 represents the points

detected on left and right ear, highlighted in yellow color.

Figure 4.6: Points detected on left and right ear

37

4.2.4 MeshSIFT

Figure 4.2.4.1 to 4.2.4.3 represent the points matched by meshSIFT. Figure 4.7A and 4.7B are

rear views of the faces and 4.7C is the front view. In these figures, all the point matchings

obtained are not correct, some matchings are mirror images and some are simply incorrect.

Due to this reason, the matchings obtained from meshSIFT are filtered based on a certain

threshold of Euclidian distance between the matched points. The threshold varies from mesh to

mesh because of difference in the number of points. For the current system implementation,

the thresholds taken are either 10, 15 or 12.

Figure 4.7A: Points matched by MeshSIFT

38

Figure 4.7B: Points matched by MeshSIFT

Figure 4.7C: Points matched by MeshSIFT

39

4.2.5 TPS

The accuracy of results generated from TPS depend on the point matchings, good results are

obtained from TPS only if the point matchings are absolutely correct. In the current system

implementations, filtering out the point matchings from meshSIFT and the points obtained

from the tip of the nose, the top of the forehead and the left and right ear ensure that the

resultant point matchings are accurate, hence, TPS results are accurate too. Figure 4.8

represents the TPS result generated from a single source face in order to deform to different

target faces.

Figure 4.8: TPS Results

40

4.2.6 ICP

ICP results are based on the accuracy of point matchings and TPS results. Since the system

pipeline is designed in a way such that it ensures that the point matchings are very accurate,

TPS results are good, and hence, ICP also gives good results. However, if the point matchings

are spread over the entire face evenly, the results would be much better. For example, in Figure

4.9B, ICP Iteration 3, the left eye of the mesh is distorted and deformed, this is because the

number of point matching in that area are either not sufficient or not there at all. Hence, evenly

spread point matching on the face mesh will yield better results. Figure 4.9A to 4.9E represent

the results of 3 Iterations of ICP and the final results for different faces.

Figure 4.9A ICP Iterations with final result

41

Figure 4.9B ICP Iterations with final result

42

Figure 4.9C ICP Iterations with final result

43

Figure 4.9D ICP Iterations with final result

44

Figure 4.9E ICP Iterations with final result

4.3 Error Analysis

This section, error analysis is done to validate and quantify the results obtained. I order to

quantify the results, distance between source and target mesh was recorded between 5

iterations of ICP. The result obtained indicated that the error reduces after each ICP iteration,

45

which is ideal. Table 4.1 represents the distance between source mesh and target mesh for five

faces after each iteration of ICP.

Face Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Face 1 2.484297771 1.951019575 1.554841732 1.255949831 1.020755918

Face 2 3.470889072 2.677743442 2.130306815 1.723881221 1.400963014

Face 3 3.097707207 2.440079687 1.956640203 1.580732645 1.284457881

Face 4 2.84853309 2.208021829 1.779142449 1.448630599 1.177881752

Face 5 4.319038311 3.361849877 2.676850687 2.172027515 1.775930094

Table 4.1: Distance (in mm) between source mesh and target mesh after each iteration of ICP

Figure 4.10 is the graphical representation of the data in table 4.1, it shows how the distance

between source mesh and target mesh is reducing after each iteration of ICP. The distance

between source and target mesh greatly depends on the number and location of the

landmarks. The more landmarks which are positioned strategically throughout the face, the

better the results will be.

46

Figure 4.10: Error reduction after each iteration of ICP

4.4 Time Analysis

In this system implementation, MeshSIFT has been used to obtain point matchings between

two meshes. The meshes obtained from the database are complex due to which the point

matchings from MeshSIFT are very time intensive. To avoid that, an experiment was done by

simplifying the meshes using MeshLab which is an open source software for editing 3D

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

D
is

ta
n

ce
 b

et
w

ee
n

 m
es

h
es

 in
 m

m

ICP Iterations

Distance Dropping after each Iteration of ICP

Face 1 Face2 Face 3 Face 4 Face 5

47

triangular meshes. For this experiment, meshes were simplified to one eighth of their actual

sizes, i.e, the number of vertices and faces in the mesh were reduced to one eighth of their

original size. Table 4.2A represents the difference between the number of vertices and faces

before and after mesh simplification, Figure 4.11A and Figure4.11B represent the change in the

number of vertices and faces respectively in the mesh before and after simplification, Table

4.2B depicts the difference between the processing times and the number of point matchings

obtained with the source mesh by MeshSIFT before and after the meshes were simplified and

Figure 4.11C and Figure 4.11D represent the change in the processing times and number of

point matchings respectively obtained from MeshSIFT before and after mesh simplification.

Mesh Original No. of

vertices

No. of vertices after

mesh simplification

Original No. of

faces

No. of faces after

mesh simplification

Source 67891 8597 134694 16836

Face 1 70890 8976 140604 17575

Face 2 69384 8786 137638 17204

Face 3 63131 7992 125204 15650

Face 4 65931 8332 130778 16347

Face 5 65852 8325 130575 16321

Table 4.2A Number of Mesh Faces and Vertices before and after Mesh Simplification

48

Figure 4.11A Number of vertices in mesh before and after mesh simplification

Figure 4.11B Number of faces in mesh before and after mesh simplification

0

10000

20000

30000

40000

50000

60000

70000

80000

Source Face1 Face2 Face3 Face4 Face5

N
u

m
b

er
 o

f
ve

rt
ic

es
 in

 M
es

h

3D Meshes

Change in No. of vertices after Mesh
Simplification

Original After Simplification

0

20000

40000

60000

80000

100000

120000

140000

160000

Source Face1 Face2 Face3 Face4 Face5

N
u

m
b

er
 o

f
Fa

ce
s

in
 M

es
h

3D Meshes

Change in No. of Faces after Mesh Simplification

Original After Simplification

49

Mesh MeshSIFT processing

time with Original

Mesh (in hours)

MeshSIFT processing

time with Simplified

Mesh (in hours)

MeshSIFT point

matchings with

Original Mesh

MeshSIFT point

matchings with

simplified Mesh

Face 1 6 0.333333333 31 7

Face 2 5.5 0.4 23 14

Face 3 5 0.333333333 26 4

Face 4 6.5 0.416666667 30 6

Face 5 5.1 0.383333333 23 12

Table 4.2B Processing times and point matchings obtained from MeshSIFT before and after

mesh simplification

Figure 4.11C MeshSIFT processing times before and after mesh simplification

0

1

2

3

4

5

6

7

Face1 Face2 Face3 Face4 Face5

Ti
m

e
in

 h
o

u
rs

3D Meshes

Change in Time taken after Mesh Simplification

Original After Simplification

50

Figure 4.11D Point Matchings obtained from MeshSIFT before and after mesh simplification

From the results of this experiment, it is clear that mesh simplification drastically reduces the

processing time of MeshSIFT, which is desirable, but, at the same time, the number of point

matchings obtained are also reduced. For the current system, the more point matchings

obtained, the better it is, hence, mesh simplification is a tradeoff between speed and the

number of point matchings obtained.

0

5

10

15

20

25

30

35

Face1 Face2 Face3 Face4 Face5

N
o

. o
f

P
o

in
ts

 M
at

ch
ed

3D Meshes

Change in the No of Point Matchings after Mesh
Simplification

Original After Simplification

51

Chapter 5 - Conclusion

5.1 Conclusion

The current system accomplishes the automation of 3D point matching for human faces by first

reading the meshes from the database and smoothing them using Taubin smoothing as

preprocessing to prepare the mesh for further operations. After the preprocessing is done, we

proceed with feature detection and detect the tip of the nose. Detecting the tip of the nose is

critical as the detection of the top of the forehead and left and right ears are based on it. While

these points are being detected, the vertices and faces of both the source and target meshes

are loaded in Matlab for MeshSIFT processing. MeshSIFT returns the point matching calculated.

The point matching obtained from meshSIFT are not very accurate, some points are mirror

images and some are inaccurate. Due to this reason, the point matchings are then filtered using

a certain threshold which varies from mesh to mesh. After the point matchings have been

filtered, they are combined with the point matchings obtained from the features detected

previously. This list of point matching are then input for TPS, which deforms the source mesh

based on the point matchings provided to make the source look like target. TPS changes the

geometry of the source mesh while the topology is still the same. After the mesh as been

transformed using TPS, we use Iterative closest point matching to bring the source and target

mesh closer. The closer the meshes are the better the result is. We perform five iterations of

ICP. After the fifth iteration, the texture of the target face is copied on the source and the final

result is obtained.

52

In the error analysis, we demonstrate that the results obtained by the pipeline of the current

system are reliable and can be used to automate the 3D point matching system for human

faces. In time analysis, we observed that mesh simplification drastically reduces the amount of

processing time taken by MeshSIFT, but the number of point matchings obtained are also

reduced substantially which is undesirable.

5.2 Future Work

This study has a lot of future scope as there are many potential improvements that can be

made. Work can be done to integrate the entire system and make the process more optimized

and faster. MeshSIFT results are not the best, we get a lot of inaccurate and mirror points,

better approaches can be researched in order to find an algorithm which result in better point

matchings that are spread throughout the facial mesh and are more accurate with better

feature detection capabilities. MeshSIFT is also very time intensive, either an ideal ratio to

down sample the mesh can be found which improves efficiency while maintaining the number

of point matchings obtained or some other algorithm can be researched and worked on to

overcome this issue.

53

References

[1] R. Rostami, Z. Yu, "3D Point Matching in Face Modeling", Poster Competition

2015, University of Wisconsin - Milwaukee, USA (2015) [On-line access http://

slideplayer.com/slide/7853997/]

[2] Yongli Hu, Mingquan Zhou, Zhongke Wu. An Automatic Dense Point Registration

Method for 3D Face Animation. 2nd International Congress on Image and Signal

Processing CISP (2009)

[3] Sugato Basu, Arindam Banerjee, Raymond Mooney. Semi-supervised Clustering

by Seeding. In the proceedings of the 19th International Conference on Machine

Learning, 19-26, Sydney, Australia (2002)

[4] J. Sun, M. Ovsjanikov , L. J. Guibas. A concise and provably informative multi-

scale signature based on heat diusion. Proceedings of the Symposium on Geometry

Processing (2009)

[5] Multimedia and Intelligent Software Technology Beijing Municipal Key Laboratory, Beijing

University of Technology, Beijing, China- The BJUT-3D Large-Scale Chinese Face Database (2005)

[6] Dirk Smeets, Johannes Keustermans, Dirk Vandermeulen, Paul Suetens. “meshSIFT: Local

Surface Features for 3D Face Recognition under Expression Variations and Partial Data,”

Computer Vision and Image Understanding (2012)

54

[7] Jarno Elonen. Thin Plate Spline editor- an example program in C++ (2003, 2004, 2005).

[Online access https://elonen.iki.fi/code/tpsdemo/]

[8] S. Rusinkiewicz, M. Levoy, "Efficient variants of the ICP algorithm", In Proc. Third

International Conference on 3D Digital Imaging and Modeling (3DIM), Quebec City, Canada.

IEEE Computer Society, 2001.

[9] S. Allaire, J. Kim, , S. Breen, D. Jaray, V. Pekar, "Full orientation invariance and improved

feature selectivity of 3d sift with application to medical image analysis", In IEEE Workshop on

Mathematical Methods in Biomedical Image Analysis, 2008.

[10] M. M. Manafzade, A. Harati, "Point Cloud Registration Using MSSIR: Maximally Stable

Shape Index Regions", 21st Iranian Conference on Electrical Engineering (ICEE), 2013.

[11] C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens, and D. Vandermeulen, "Feature

detection on 3D face surfaces for pose normalization and recogntion," in BTAS '10, IEEE Int.

Conf. on Biometrics: Theory, Applications and Systems, pp. 1-6, September 2010, Washington

D.C., USA.

[12] D. Smeets, J. Keustermans, J. Hermans, P. Claes, D. Vandermeulen, P. Suetens, "Symmetric

surface-feature based 3D face recognition for partial data," in IJCB '11: The International Joint

Conference on Biometrics, pp. 1-5, October 11-13, 2011, Washington D.C., USA.

[13] H. Wu, H. Zha, "Robust consistent correspondence between 3D non-rigid shapes based on

Dual Shape-DNA ", in IEEE International Conference on Computer Vision (ICCV), 2011.

55

[14] B. Gokberk, A. A. Salah, N. Alyuz, L, Akarun, "3D Face Recognition", pp. 263-295, Springer

London ,2009.

[15] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. 2003. Face recognition: A literature

survey. ACM Comput. Surv. 35, 4 (December 2003)

[16] B. Jian , B. Vemuri, "Robust Point Set Registration Using Gaussian Mixture Models", IEEE

Transaction on Pattern Analysis and Machine Intelligence , 2011.

[17] S. Allaire, J. Kim, S. Breen, D. Jaffray, V. Pekar, "Full orientation invariance and improved

feature selectivity of 3d sift with application to medical image analysis", In IEEE Workshop on

Mathematical Methods in Biomedical Image Analysis, 2008.

[18] Xiaoguang Lu, Anil K jaun, “Deformation modelling of Robust 3D Face Matching”, Dept. of

Computer Science & Engineering, Michigan State University.

[19] Y. Adini, Y. Moses and S. Ullman, “Face Recognition: The problem of Compensating for

Changes in Illumination Direction,” IEEE Trans on PAMI, Vol.19, pp. 721-732,1997.

[20] Fred L. Bookstein, “Principal Warps: Thin-Plate Splines and the Decomposition of

Deformations,”In IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No.

6. June 1989.

[21] Lena Maier-Hein, Alfred M. Franz, Thiago R. dos Santos, Mirko Schmidt, Markus Fangerau,

Hans-Peter Meinzer, and J. Michael Fitzpatrick, “Convergent Iterative Closest-PointAlgorithm to

Accomodate Anisotropicand Inhomogenous Localization Error,” In IEEE Transactions on Pattern

Analysis and machine Intelligence, Vol. 34, No. 8, August 2012.

56

[22] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia, MeshLab: an

Open-Source Mesh Processing Tool Sixth Eurographics Italian Chapter Conference, page 129-

136, 2008. [Online access: http://www.meshlab.net/]

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2017

	Automating a 3D Point Matching System for Human Faces
	Priya Vashistha
	Recommended Citation

	tmp.1499970246.pdf.SE0YW

