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ABSTRACT 
 

AUTOMATING A 3D POINT MATCHING SYSTEM FOR HUMAN FACES 
 

by 
 

Priya Vashistha 
 
 

The University of Wisconsin-Milwaukee, 2017 
Under the Supervision of Professor Zeyun Yu 

 
 

3D point matching for human faces is opening new possibilities in the fields of face matching, 

face recognition, face retrieval, biomedical, virtual reality, etc. and is overcoming the limitations 

of 2D face matching.  The purpose of this study is to research and implement an automated 3D 

point matching system for human faces. This will be added to an existing system implemented 

for 3D point matching on face models. The current implementation is a manual procedure to 

find matching between the faces, where a set of landmarks are selected on both sources and 

target meshes and the faces are registered using ICP and TPS techniques. The study aims to 

eliminate the manual process by automating the initial landmark selections. 
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Chapter 1- Introduction 

1.1 Background and Literature 

2D Facial recognition has been an active research area for many years and a significant progress 

has been made to automate face recognition for 2D images. However, there are certain 

limitations with 2D images, for the facial recognition to be applicable, it needs to deal with 

variations in pose, color, lighting, background, resolution etc. With the recent development in 

3D scanning, it has become more affordable and a complete new dimension for facial matching 

has been uncovered. Unlike the 2 dimensional facial recognition, 3 dimensional format 

overcomes the limitations of lighting, resolution, background, etc. 3D facial data is invariant to 

setting conditions and has closer real life applications. 3D measurements are of same size as the 

actual object which gives more accurate information about depth, foreground and background. 

It also has numerous applications in the fields of facial recognition, face retrieval, face 

reconstruction, biometrics and virtual reality. 

The inspiration of this project came from an existing system of 3D point matching. Two 3 

dimensional human face models are taken where one is the source mesh and the other one is 

the target mesh. The aim is to deform the source mesh to make it look like the target mesh 

while maintaining the source mesh topology. This is obtained by manually selecting landmarks 

which are spread out throughout the face on both source and target meshes on the same 

location and in the same order. The selected points are then used to deform the source mesh 

and make it look more like the target mesh. This process would be a lot more user friendly if 



2 
 

the landmark detection was automatic rather than manual, this problem led to the current 

study where an automatic system to generate landmarks have been implemented. 

In this study, we approached to solve this problem of automatic point detection on both source 

and target faces with different algorithms such as constraint kmeans, modified kmeans, 

meshSIFT, etc, out of which meshSIFT has generated the most promising results so far. We will 

discuss meshSIFT in details in Chapter 3. In the current implementation, the source and target 

meshes are converted to OFF format (discussed in Chapter 2) and fed as input to meshSIFT. 

MeshSIFT returns matching points for the meshes, these points are not very accurate and are 

filtered before the source mesh is deformed.  

In the current system implementation, we take two 3d face models, a source mesh and a target 

mesh and deform the source mesh to the target. This is achieved by first detecting the tip of the 

nose, top of the forehead, left ear and right ear which is implemented based on the basic 

human face structure. Then, the points obtained from meshSIFT are filtered using a threshold 

value to get rid of the wrong matchings. The points for nose, forehead, ears and those from 

meshSIFT are then combined and used to transform the source face geometry and make it look 

like the target. 

 
1.2 System Setup 
 

Various open source software and libraries have been used to implement this project. The base 

code is written in C++ programming language and built over Microsoft Visual Studio. Additional 

external libraries that have been used are VTK, OpenCV and Boost. Cmake has been used to  
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build binaries for external libraries. All the software being used is Open Source and freely 

available online for download. Table 1.1 gives a detailed information on the software used. 

 

S.No Software 
Name 

Purpose Version Download Source Install Guide 
Resources 

1 Microsoft 
Visual 
Studio 

Coding 
Interface 

Express 
2015 

https://www.visualstudio.com/do
wnloads/ 

Executable 
file available 

2 Visualizati
on Toolkit- 
VTK 

Additional 
External 
Library – 
for 
Visualizatio
n of 3D 
data 

VTK 7.0 http://www.vtk.org/download/ http://www.v
tk.org/Wiki/V
TK/Building/
Windows 

3 Open 
Source 
Computer 
Vision-
OpenCV 

Additional 
External 
Library 

OpenCV 
2.4.13 

http://opencv.org/downloads.htm
l 

Executable 
file available 

4 Boost C++ 
Libraries 

Additional 
External 
Library 

Boost 
1.0 

https://sourceforge.net/projects/b
oost/files/boost/1.62.0/ 

http://www.b
oost.org/doc/
libs/1_55_0/
more/getting
_started/win
dows.html 

5 CMake Build 
external 
Libraries 

CMake 
3.7.0 

https://cmake.org/download/ Executable 
file available 

 
Table 1.1: Software Installations 
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After each of the above mentioned software is installed: 

1. Create a folder for the project and create two sub folders “src”, for source files and 

“bin”, for the binaries. 

2. Add the .cpp and .h files in the src folder and rename change the extension of .cpp files 

to .cxx. 

3. Create a new text file in the src folder and name it as “CMakeLists.txt”.  Add the 

following to the file: 

  cmake_minimum_required(VERSION 2.6) 

  project(Clustering) 

  file( GLOB SRCS *.cxx *.h) 

  find_package(VTK REQUIRED) 

  include(${VTK_USE_FILE}) 

  add_executable(Clustering Clustering.cxx Functions.cxx) 

  target_link_libraries(Clustering ${VTK_LIBRARIES}) 

4. Open Cmake, add src’s path in source and bin’s path in destination. Configure and 

generate. 

5. After this is done, open the bin folder, select an dopen the .sln file to open the project in 

visual studio. 

6. After the project is open in visual studio, in solution explorer, right click on the name of 

the main project and set it as the first project. Build and Run. 
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1.3 Chapter Reviews 

This thesis document has been divided into five different chapters, the first chapter being the 

introduction. Following is a short summary of the remaining chapters: 

Chapter 2 is Dataset and Preprocessing. In this chapter, the dataset used for the 3D point 

matching has been discussed. We will talk about the different facial meshes we have, the data 

organization and the challenges faced while dealing with the data. We also discuss the 

preprocessing that is done before the mesh is worked on. For the preprocessing, we smoothen 

the mesh in order to improve the mesh quality and make it ready to be worked on. 

Chapter 3 is the Point matching system for 3D faces. In this chapter, the actual pipeline of the 

current system has been described. This chapter has six sub sections, Tip of nose, Top of 

forehead, Left and Right Ear, MeshSIFT, Thin Plate Spline and Iterative Closest Point, each 

section being a vital component and are arranged in the order they are being used in the actual 

implementation of the system. MeshSIFT, Thin Plate Spline and Iterative Closest Point are open 

source algorithms which have been used to implement this system and are described in detail 

in this chapter. 

Chapter 4 is Results and Discussion. In this Chapter we show the results of all the approaches 

that were experimented to implement this system. Subsection 4.1 shows the results of the 

initial approaches which were considered and implemented. Subsection 4.2 shows the results 

of the current system step by step, following the pipeline in the same order as in Chapter 3. In 

subsection 4.3, we analyze the errors and discuss the outcomes of the current approach. In 

subsection 4.4, we experiment the change in processing time and the number of point 
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matchings obtained by MeshSIFT before and after mesh simplification. The meshes are 

simplified to one eighth of their original size using an open source software called MeshLab 

[22]. 

Chapter 5 is the conclusion. In this chapter, the entire study has been summed up and the 

outcomes have been discussed. We also discuss the future work and improvements which can 

possibly eliminate the shortcomings of the current approach and make the system even better. 
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Chapter 2- Dataset and Preprocessing 
 

2.1 Dataset 
 

The BJUT-3D Large-Scale Chinese Face Database from Multimedia and Intelligent Software 

Technology Beijing Municipal Key Laboratory, Beijing University of Technology [5] has been 

used for this study, this face database is made available for research purpose only. A 

CyberWare Laser Scanner has been used to obtain the 3D models. A lot of efforts have been put 

into the scanning process so that the 3D face captured is of the best quality. The scanner is 

positioned strategically so that it does not cast any shadows on the human faces. Illumination 

has been taken into consideration, a consistent ambient illumination is maintained throughout 

the scanning process. 

The database consists of 500 3D face models of Chinese people, out of which 250 are males and 

250 females. The people whose faces are scanned are between the age group of 16 and 49. All 

faces pose a natural expression and without any glasses, dressing or accessories. All the 

subjects were made to wear a hat to avoid having hair on the forehead, eyes and ears and 

capture maximum amount of face information. Figure 2.1 shows a male and a female 3D face 

from the database. 
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Figure 2.1 Male and Female face from the database 

The database also follows a naming convention which is explained as follows: 

x_xxxx_Ax_Ex_Cxxxx_Rx.ext 

 Here the first x is of 1 bit and corresponds to the sex field where “M” is male and “F” is 

female. 

 xxxx corresponds to a 4 bit ID which is a number sequence unique to each person 

scanned. 

 Ax is of 2 bits and corresponds to age. Here, “A” represents age variation. Symbol 1 

represents age group 10 to 19 year, 2 is for the age group of 20 to 29 years, 3 if for 30 to 

39 years and 4 is for the ages of 40 to 49 years. 
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 Ex is of 3 bits and represents extression. “E” represents expression variation and the 

seond bit id for different expressions. Symbol “n” stands for natural, “h” for happy, “p” 

for surprise and “a” for anger. In current database, all the faces scanned have a natural 

expression. 

 Cxxxx is of 5 bit and for content. “C” represents content. The remaining 4 bits “xxxx” are 

“trim” which indicated that the face is presented after removing the redundant parts of 

the data. 

 Rx is of 2 bits and represents publicity. “R” is for publicity and “x” is “0” if data is 

unpublished and “1” if published. 

 ext is a 3 bit extension name which indicates the file format. 

Examples of this naming convention are “F0001A1EnCtrimR0”, “F0111A1EnCtrimR0”, and 

“M0032A2EnCtrimR1” etc. 

Each 3D face file consists of vertex information, i.e. the x, y and z coordinates, texture 

information which is the R, G, B values and the Triangle or Face information which is the indices 

of the 3 points with constitute a triangle for mesh formation. Unfortunately, the representation 

of this data is not standard. Due to this we convert the data obtained by the database into OFF 

format. OFF is an object file format used to represent the geometry of a model. It specifies the 

polygons on the modal’s surface and the polygons can have any number of vertices. An OFF file 

is ideal for storing a 2D or 3D object description for the object constructed from polygons and a 

simple extension to it can handle objects in 4D as well. Following is an example of the OFF file 

format: 
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OFF 

No. of Vertices No of Faces No. of Edges 

vx1 vy1 vz1  

vx2 vy2 vz2  

……….. 

vxn vyn vzn  

//Triangles 

3  v11 v12 v13 

3 v21 v22 v23 

……… 

3 vm1 vm2 vm3 

In the above format “n” stands for the total number of vertices and “m” is for the total number 

of faces in the mesh. Providing the “No. of Edges” is optional and the texture information can 

be provided as RGB values along with each vertex, eg: vx1 vy1 vz1 r g b. 

Figure 2.2 represents a zoomed in mesh where the mesh triangulation/faces of the mesh can be 

seen. 



11 
 

 

Figure 2.2 Mesh Triangulation 

There have also been a lot challenges while dealing with the data. In this database, the total 

number of vertices are different for each face and there is no correspondence between the 

modals which makes it difficult to work with. There is also a lot of error in in some faces. Some 

faces have neck portion and some don’t and some faces have missing features and some have 

very irregular surfaces. Figure 2.2 shows a few noisy faces. 

 

Figure 2.3 Noisy Faces 
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Another issue with this database is that the scale of 3D faces is very limited. This database 

features faces only of oriental origin. There is a considerable difference between the face 

structure and features of western and oriental and may not provide all practical requirements 

and enough 3D faces for a global application. However, there are other 3D face databases 

which are based on western face structures. 

 

2.2 Preprocessing Data 

In order to obtain better results, all the meshes have been smoothened before any other 

operation. Taubin mesh smoothening has been used to accomplish this operation. In this 

system implementation, we use 10 iterations to smooth the surface of the mesh. We shrink the 

mesh first using lambda and then inflate it using mu, where both lambda and mu are scaling 

factors. This is done to avoid mesh shrinkage and loss of features during smoothing. The 

pseudocode for mesh smoothing used in the system is as follows: 

1) For each iteration (We are using 10 iterations). 

2) For each point P in the mesh 

3) Pi = Pi + λΔPi    // for Shrinking 

4) Pi = Pi + µΔPi   // for inflation 

5) Repeat Steps 2 to 4 for each point in the mesh. 

For this system implementation, we have set lambda value to be 0.5 and mu value to be -0.51. 
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Figure 2.4A and 2.4B show the result of smoothing on the given mesh. Figure 2.5 represents the 

difference between the results of point matching with and without smoothing. Clearly, the 

results with smoothing are better.  

 
Figure 2.4A: Mesh Smoothing 

 

 

Figure 2.4B: Mesh Smoothing 
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Figure 2.5: Point Matching Results with and without Mesh Smoothing 
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Chapter 3- Point Matching System for 3D Faces 

 
This chapter is the actual pipeline of the implementation of the point matching system in the 

order of processing. Before proceeding to using meshSIFT, which is an open source algorithm 

used to obtain the point matchings of the 3D faces, we detect some facial features including the 

tip of the nose, the top of the forehead, the left ear and the right ear beforehand. This has 

made the point matchings significantly better and have been a tremendous help in getting good 

results.  

Here is a flowchart of the Algorithm pipeline: 
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17 
 

3.1 Tip of Nose  

 
The first step to automatic point matching was to figure out a way to detect high feature points, 

which could be eyes, nose, chin, forehead, ears, center of eyebrows, lips etc. Out of all these, 

nose was the most straightforward detection. In general terms, nose is the most protruding 

part of the human face. To leverage this fact, the center of the face is aligned on the origin for x 

and y coordinates and the z coordinate is set to 50, this is done to orient the face modal 

towards the viewer and set the viewing position such that the face faces towards positive z 

direction. Following is the pseudocode used for the detection of the tip of the nose. 

1. let maxZ be -1000; 

2. let index be -1 

3. for each point in the mesh. 

4. If the z coordinate of the point on mesh is greater than maxZ, update maxZ to z and set 

index to be the index of the point on the mesh. 

5. Repeat step 3 an 4 until all the points on mesh have been traversed. 

6. Set the final value of index to be the tip of the nose. 

This algorithm selects the point in maximum z direction to be the tip of the nose. Figure 3.1 

shows the detected tip of the nose. 
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Figure 3.1: Detected tip of Nose 

3.2 Top of Forehead 

To get better matchings, it is critical that there are points on the boundaries of the source mesh 

and target mesh which can be matched to overlap the meshes better. The top of the forehead 

is one of those critical points. Detecting the top of forehead was challenging. The approach 

used to detect the forehead was to start from the tip of the nose and continue going in the 

positive y direction until we reach the edge of the mesh, this will result in a point which is 

collinear to the tip of the nose and lies on the topmost part of the forehead. This working of 

this approach mainly depends on the mesh triangulation. If we start from nose and keep 

selecting the point with minimum distance from the x coordinate of the tip of the nose and 

maximum distance from the y coordinate of the tip of the nose, the result could be a point 
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which is too far from being at the central tip of the forehead. To overcome this issue, the search 

area to choose for the best neighbor had to be minimized so that the search direction is 

accurate, to accomplish this, an array of linked list of point neighbors is maintained and only the 

points in the linked list are considered for the search and the best qualified neighbor is selected 

Below is the pseudocode for the detection of the top of forehead. 

1) Check if the tip of nose has been detected, it is critical to detect the tip nose before 

proceeding to detect the forehead as it’s the starting point for the search. If not, return 

with message explanation. 

2) select the next neighbor of the tip of the nose  

3) If the difference between selected neighbor’s x coordinate and tip of the nose’s x 

coordinate is less than a threshold value (which is 1 in our case), and y coordinate is 

greater than the y of the last qualified neighbor, set this point as the last qualified 

neighbor. 

4) Select the next neighbor of the last qualified neighbor and repeat step 3 until the 

highest neighbor is reached. 

Figure 3.2 white color represents the neighbors selected in the process of finding the top of 

forehead, and yellow is final point set to be the top of forehead. 
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Figure 3.2: Top of Forehead 

 
 

3.3 Left and Right Ear 

Another set of critical points that needed to be detected for better boundary overlap of both 

meshes were the points on left and right ear. Detecting these points was also a challenging task 

because of some errors in the face data models. The initial approach to detect points on the left 

and right ear was to find the bottom most points of the left and the right earlobes. This was 

accomplished by detecting the leftmost and the rightmost point on the face with maximum z 

value and a negative normal direction. Hence, the target was to detect points on earlobes 

facing the earth. This approach didn’t work very successfully because of some nose in the 

dataset. Some faces had a bulge right under an ear due to scanning, since we are targeting the 
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leftmost and rightmost points with highest z and negative normal direction, the point ended up 

being detected on the bulge.  

To avoid this, another approach was implemented. The tip of the nose needs to be detected 

beforehand for this this approach to work. In this approach, we look for only those points 

whose y coordinates are under a certain threshold distance from the origin, threshold range 

considered here is 0.5 to -0.5, and this is because we set the center of the face at origin. We set 

the initial left and right ear points at the top of the nose and then keep moving right and left 

until the mesh boundary is encountered. Following is the pseudocode for this approach. 

1. Let the leftEarIndex and rightEarIndex equal to the index of the tip of the nose. 

2. For each point in the mesh 

3. If y coordinate of the selected point is between the threshold range of 0.5 and -0.5, 

continue to steps 4 and 5. 

4. If x coordinate of selected point is less than x coordinate of leftEarIndex, set current 

point as leftEarIndex. 

5. If x coordinate of the selected pointed greater than the x coordinate of rightEarIndex, 

set the current point as rightEarIndex. 

6. Repeat steps 3 to 5 until all points on the face have been traversed. 

Figure 3.3 represent the points considered in order to find the correct points on the left and 

right ear. The final selected points are colored yellow. 
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Figure 3.3 Left and Right Ear 

3.4 MeshSIFT 

MeshSIFT is an open source algorithm [6] which detects salient points on 3 dimensional face 

data based on the geometry of the face. This algorithm is an extension of the Scale Invariant 

Feature Transform (SIFT) algorithm which works for 2D data, meshSIFT has the added ability to 

deal with 3D data. MeshSIFT has four major components: 

1. Key-point detection: It detects the salient points on the mesh. It constructs a scale 

space which consists of the smoothed input Mesh MS. It is expressed as: 

𝑀𝑠 = {
𝑀, 𝑠 = 0

𝐺𝜎𝑠
⊗ 𝑀, 𝑒𝑙𝑠𝑒  

Here, M refers to the original mesh and 𝐺𝜎𝑠
 refers to the approximated Gaussian filter 

with the scale 𝜎𝑠. Then mean curvature is computed for each vertex at each scale of the 

scale space to detect the salient points. 
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2. Orientation assignment: Each key-point is assigned a canonical orientation to obtain an 

orientation invariant descriptor. This makes the point detection independent of the 

facial pose. To ensure a scale invariant descriptor, neighborhood size is expressed as a 

function of scale 𝜎𝑠.This limits the consideration of vertices around a key points within a 

spherical region of radius 9𝜎𝑠. 

The normal vector for each vertex in consideration is computed and based on the fast 

marching algorithm, a geodisc distance to the respective keypoint is determined. After 

this, the normal vectors projected are then collected in 360 bin weighted histogram. 

Gaussian weight with its geodisc distance to key point with a proportional bandwidth to 

the scale assigned for each histogram entry is calculated. At last the highest peak and 

every peak above 80% of the highest peak value in the histogram is selected to be the 

canonical orientation. This canonical orientation is then calculated to sub-bin precision 

by fitting a quadratic function to the histogram using the neighbor bins of a peak. This 

leads to having a canonical orientation for multiple key points. 

3. Local feature description: is basically the local neighborhood around a key point. Each 

key point’s geodisc radius contains 9 small circular regions with respect to the canonical 

orientation. Feature descriptor is created based on local neighborhood which provides a 

feature vector around each key point.  

Feature vector consists of concatenated histograms which are calculated over 9    

neighborhood regions.  For each of the 9 regions, two histograms 𝑝̂𝑠 and 𝑝̂𝜃 are 

computed. Here, 𝑝̂𝑠 contains shape index which is calculated based on the curvature 

and 𝑝̂𝜃 consists of slant angles which are the angles between every projected normal 
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and canonical orientations. The resultant histograms are weighted based on distance to 

the center of the region. Additionally, shape index histograms are weighted on 

curvature and slant angle histogram based on tilted angle, which is the angle between 

the considered vertex and the normal in the keypoint. Every histogram is then 

normalized to 1/sqrt(8) to reduce the influence of large histogram values. The resultant 

histograms are concatenated to a single feature vector shown in the following equation. 

𝑓𝑖 =  [𝑝̂𝑠,1, 𝑝̂𝜃,1, … . , 𝑝̂𝑠,9, 𝑝̂𝜃,9]𝑇 

This way a feature descriptor is computed for each keypoint, resulting in a set of feature 

vectors per face. The following equation describes a feature descriptor F: 

𝐹 = {𝑓1, 𝑓2, … . 𝑓𝑛} 

Feature matching, the selected features of the source mesh and the target are then 

compared using angle. This angle is defined as: 

𝛼 =  cos−1 (
< 𝑓𝑖 , 𝑓𝑗 >

||𝑓𝑖|| ||𝑓𝑗||
) 

Angles for all candidates for each feature are ranked in the ascending order. If the ratio 

between the angles is smaller than a threshold, the match is accepted, this is done for 

both the meshes. 

MeshSIFT code has been taken from online, it is open source and free to use. This code runs on 

Matlab. In the current system implementation, the vertex and face information of both the 

source and target mesh is loaded. MeshSIFT returns a matrix of matching points in both the 

meshes. The number of matched points obtained can be different for different meshes.  

Figure 3.4 represents an example result of the point matchings from meshSIFT. 
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Figure 3.4 Result from MeshSIFT 

However, the points obtained by meshSIFT are not very accurate and not spread evenly 

throughout the face. The matchings obtained are then filtered using a certain threshold value 

which is different for different meshes as the number of point matching obtained are also 

different. For this system, a threshold value of (10, 15 and 12 have been considered for 

different meshes). Filtering using a threshold value gets rid of the incorrect point matchings. 

The result from this filtering is then combined with the point matchings obtained from 

detecting the tip of the nose, the top of the forehead and the left and right ear and fed as input 

to TPS. 
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3.5 TPS 

Thin Plate Spline is an open source interpolation method [7]. It results in a minimal bent surface 

that passes through all the given control points. The actual algorithm is made for 2D data, but it 

has been modified to work with three dimensional data. TPS can capture two affine and non-

affine transformations.  

Formula used by TPS:  

f(P) = Pd + Kw 

Here, 𝑃 is the point coordinates on source mesh, 𝑑 represents affine transformations and w 

represents non-affine transformations. 𝑑 and 𝑤are obtained by the following equation: 

(
𝐾

𝑀0
𝑇

𝑀1

0
) (

𝑤

𝑑
) = (

𝑀2

0
) 

Here, 𝐾 is a 𝑀×𝑀 matrix where M is the number of selected control points and 𝑀1 and 𝑀2 

represent the coefficients of control points on source and target meshes, respectively. 

Thin Plate Spline deforms and smoothen the source mesh to take the shape of target mesh. 

This part of the pipeline has been taken from the pre-existing implementation of the system. 

Running TPS on source mesh leads to the change in geometry of the source face so that it looks 

like target while the topology is still the same. 

For TPS to work correctly, the points selected to be control points need to be very accurate, 

otherwise, the result can be a disaster. Figure 3.5 is an example to demonstrate how TPS is 

applied to source mesh to change its geometry to the target.  
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Figure 3.5: Example of TPS 

3.6 ICP 

Iterative closest point also known as ICP is an open source algorithm [8] which is used to bring 

two point clouds closer to each other and minimize the distance between them. In our system 

implementation, the target is fixed and the source mesh is transformed so that it matches the 

target mesh. We have deployed five iterations of ICP for each mapping. With each iteration, the 

distance between source and target is reduced, hence minimizing the error. Following is the 

equation used for ICP, our main goal here is to minimize the value of 𝐸𝑔 as much as possible: 

𝐸𝑔 =  ∑ 𝜔𝑖|𝑣̃𝑖 −  𝑔𝑖|
2

𝑛

𝑖=1

 

Where, 𝜔𝑖 is a weight for this system implementation, we have set its value to be 1/5.  𝑔𝑖 is the 

intersection with the target mesh along point 𝑣̃𝑖′s normal. 𝑣̃𝑖 represents points of source mesh. 
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Figure 3.6 represents three iterations of Iterative closest point on source mesh. The final result 

along with the target mesh is also displayed. 

 

Figure 3.6: Iterative Closest Point Matching 
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Chapter 4 - Results and Discussion 

4.1 Initial Approaches 

4.1.1 Constraint K-Means Algorithm 

For this approach, 122 best faces were selected from the entire database out of which, 85 faces 

were categorized into training set and 37 as testing set. 

For the faces in training set, landmarks of the top of forehead, center of eyebrows, chin, left ear 

and right ear were selected manually and the position of each landmark selected was recorded. 

The same landmarks were selected for all the faces. After that, the mean value of the positions 

of all the landmarks were set as cluster seeds for the testing set. 

After implementing this algorithm, it was found that the results were not as good as expected. 

Figures 4.1A to 4.1C show the results obtained from the constraint K-Means. The center of eye, 

ear and chin detection are not very accurate. 

 

 
Figure 4.1A: Results- Constrained K-Means 
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Figure 4.1B: Results- Constraint KMeans Algorithm 

 

 
Figure 4.1C: Results- Constraint KMeans Algorithm 

 
4.1.2 KMeans 

For this algorithm, the entire mesh was clustered totally unsupervised. The number of clusters 

to be formed were input by the users and the cluster seeds were initially chosen at random. For 

each point, its Euclidean distance with respect to each cluster seeds was calculated and the 

point was assigned to the closest cluster. After the point had been assigned to the cluster, a 

new mean of the cluster was calculated and the cluster seed value was updated. These steps 

were repeated until all the points in the mesh had been traversed. 
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After implementing this algorithm and considering different number of clusters, the following 

results were obtained. Again, the results were not good enough, we can see that the clusters 

are not well defined. Figure 4.2A and 4.2B depict the results with different number of clusters. 

 
Figure 4.2A: Results- KMeans Clustering with 2 and 3 Clusters 

 
 

 
Figure 4.2B: Results- KMeans Clustering with 4 and 5 Clusters 
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4.1.3 Modified KMeans 

The initial steps of this algorithm are the same as that of kmeans, the algorithm discussed in 

section 4.1.3, the difference is that while determining the cluster of a point, additional weight is 

given to certain features. The first experiment was done by increasing the weight of the 

curvature to twice its value and RGB values were multiplied by 1.5. This was done in order to 

cluster features with high curvature value. The second experiment was to give additional 

weights to normals and RGB values, both were multiplied by 1.5. Hence, the Euclidean distance 

of a point from the center of each cluster was calculated based on these modified values to 

determine the cluster for the point. After the point is assigned to the cluster, the cluster’s mean 

is calculated and assigned as the seed of that cluster.  

The results obtained by this algorithm weren’t good enough either as there was not much 

uniformity in the clusters. Figure 4.3A and 4.3B depict the results of this approach. 

 

Figure 4.3A: Results- KMeans with higher weights assigned to Curvature and RGB 
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Figure 4.3B: Results- KMeans with higher weights assigned to Normals and RGB 

4.2 Current Approach 

The results obtained by previously discussed approaches weren’t acceptable because the 

clusters obtained were not uniform. In order to obtain good results, accurate point matchings 

need to be input for TPS, otherwise, the face geometry is not modified correctly. Also, the final 

result from ICP depends on the deformed mesh obtained from TPS, hence, very accurate point 

matchings are critical for good point matchings. To solve this problem, the current approach is 

deployed.  

Current approach is a pipeline of such algorithms as nose, forehead and ear detection, 

meshSIFT, TPS and ICP. 

4.2.1 Tip of Nose 

Results obtained by detecting the tip of the nose are very accurate and the tip of the nose has 

been detected correctly for all the faces. In order to detect the nose tip, the face needs to be 



34 
 

aligned, here, the mesh is centered at origin of the x and y plane and z plane is set as 50. Figure 

4.4 represents the tip of the nose detected, highlighted in white color. 

 

Figure 4.4: Tip of nose detection- represented by the white point 

4.2.2 Top of Forehead 

The top of forehead detection has also been accurate for all the faces. For this approach to 

work, the tip of the nose should be detected and the neighbors for all the points need to be 

calculated and stored in an array of linked list beforehand. During the search process, the 

difference between the x coordinate of the candidate point and the x coordinate of the tip of 

the nose should be under a threshold value of 1, so that the search direction remains vertical 

from the tip of the nose. Figure 4.5 highlights the route from the tip of the nose to the top of 

the forehead, the green line is formed by the best matched neighbor points.  
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Figure 4.5: Best Matched Neighbors from tip of nose to top of forehead 

4.2.3 Left and Right Ear 

In order to detect the left and right ear, the tip of the nose should be detected beforehand. 

During the search process, the points have been filtered based of max and min x coordinated 

for right and left ear respectively because the face is centered at the origin and the left most 

point on left ear will have the lowest x value and right most point on the right ear will have the 

highest x coordinate. Also, to make sure that the search remains parallel to the x axis, the 

points have been filtered based on a threshold range of -0.5 to 0.5 for the y coordinate, i.e. the 

point is considered to be a candidate only if its y coordinate value is between 0.5 and -0.5. The 
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current approach gives good results, but sometimes, if the face geometry of two faces is too 

different, the points detected on the left and right ear on source can be a bit too far from that 

of the target. Hence, a better approach can be devised. Figure 4.6 represents the points 

detected on left and right ear, highlighted in yellow color. 

 

 

Figure 4.6: Points detected on left and right ear 
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4.2.4 MeshSIFT 

Figure 4.2.4.1 to 4.2.4.3 represent the points matched by meshSIFT. Figure 4.7A and 4.7B are 

rear views of the faces and 4.7C is the front view. In these figures, all the point matchings 

obtained are not correct, some matchings are mirror images and some are simply incorrect. 

Due to this reason, the matchings obtained from meshSIFT are filtered based on a certain 

threshold of Euclidian distance between the matched points. The threshold varies from mesh to 

mesh because of difference in the number of points. For the current system implementation, 

the thresholds taken are either 10, 15 or 12. 

 

 

Figure 4.7A: Points matched by MeshSIFT 
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Figure 4.7B: Points matched by MeshSIFT 

 

Figure 4.7C: Points matched by MeshSIFT 
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4.2.5 TPS 

The accuracy of results generated from TPS depend on the point matchings, good results are 

obtained from TPS only if the point matchings are absolutely correct. In the current system 

implementations, filtering out the point matchings from meshSIFT and the points obtained 

from the tip of the nose, the top of the forehead and the left and right ear ensure that the 

resultant point matchings are accurate, hence, TPS results are accurate too. Figure 4.8 

represents the TPS result generated from a single source face in order to deform to different 

target faces. 

 

Figure 4.8: TPS Results 
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4.2.6 ICP 

ICP results are based on the accuracy of point matchings and TPS results. Since the system 

pipeline is designed in a way such that it ensures that the point matchings are very accurate, 

TPS results are good, and hence, ICP also gives good results. However, if the point matchings 

are spread over the entire face evenly, the results would be much better. For example, in Figure 

4.9B, ICP Iteration 3, the left eye of the mesh is distorted and deformed, this is because the 

number of point matching in that area are either not sufficient or not there at all. Hence, evenly 

spread point matching on the face mesh will yield better results. Figure 4.9A to 4.9E represent 

the results of 3 Iterations of ICP and the final results for different faces. 

 

Figure 4.9A ICP Iterations with final result 
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Figure 4.9B ICP Iterations with final result 
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Figure 4.9C ICP Iterations with final result 
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Figure 4.9D ICP Iterations with final result 
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Figure 4.9E ICP Iterations with final result 

4.3 Error Analysis 

This section, error analysis is done to validate and quantify the results obtained. I order to 

quantify the results, distance between source and target mesh was recorded between 5 

iterations of ICP. The result obtained indicated that the error reduces after each ICP iteration, 
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which is ideal. Table 4.1 represents the distance between source mesh and target mesh for five 

faces after each iteration of ICP.  

Face Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Face 1 2.484297771 1.951019575 1.554841732 1.255949831 1.020755918 

Face 2 3.470889072 2.677743442 2.130306815 1.723881221 1.400963014 

Face 3 3.097707207 2.440079687 1.956640203 1.580732645 1.284457881 

Face 4 2.84853309 2.208021829 1.779142449 1.448630599 1.177881752 

Face 5 4.319038311 3.361849877 2.676850687 2.172027515 1.775930094 

Table 4.1: Distance (in mm) between source mesh and target mesh after each iteration of ICP 

Figure 4.10 is the graphical representation of the data in table 4.1, it shows how the distance 

between source mesh and target mesh is reducing after each iteration of ICP. The distance 

between source and target mesh greatly depends on the number and location of the 

landmarks. The more landmarks which are positioned strategically throughout the face, the 

better the results will be. 
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Figure 4.10: Error reduction after each iteration of ICP 

4.4 Time Analysis 

In this system implementation, MeshSIFT has been used to obtain point matchings between 

two meshes. The meshes obtained from the database are complex due to which the point 

matchings from MeshSIFT are very time intensive. To avoid that, an experiment was done by 

simplifying the meshes using MeshLab which is an open source software for editing 3D 
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triangular meshes. For this experiment, meshes were simplified to one eighth of their actual 

sizes, i.e, the number of vertices and faces in the mesh were reduced to one eighth of their 

original size. Table 4.2A represents the difference between the number of vertices and faces 

before and after mesh simplification, Figure 4.11A and Figure4.11B represent the change in the 

number of vertices and faces respectively in the mesh before and after simplification, Table 

4.2B depicts the difference between the processing times and the number of point matchings 

obtained with the source mesh by MeshSIFT before and after the meshes were simplified and 

Figure 4.11C and Figure 4.11D represent the change in the processing times and number of 

point matchings respectively obtained from MeshSIFT before and after mesh simplification. 

Mesh Original No. of 

vertices 

No. of vertices after 

mesh simplification 

Original No. of 

faces 

No. of faces after 

mesh simplification 

Source 67891 8597 134694 16836 

Face 1 70890 8976 140604 17575 

Face 2 69384 8786 137638 17204 

Face 3 63131 7992 125204 15650 

Face 4 65931 8332 130778 16347 

Face 5 65852 8325 130575 16321 

Table 4.2A Number of Mesh Faces and Vertices before and after Mesh Simplification 
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Figure 4.11A Number of vertices in mesh before and after mesh simplification 

 

 

Figure 4.11B Number of faces in mesh before and after mesh simplification 
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Mesh MeshSIFT processing 

time with Original 

Mesh (in hours) 

MeshSIFT processing 

time with Simplified 

Mesh (in hours) 

MeshSIFT point 

matchings with 

Original Mesh 

MeshSIFT point 

matchings with 

simplified Mesh 

Face 1 6 0.333333333 31 7 

Face 2 5.5 0.4 23 14 

Face 3 5 0.333333333 26 4 

Face 4 6.5 0.416666667 30 6 

Face 5 5.1 0.383333333 23 12 

Table 4.2B Processing times and point matchings obtained from MeshSIFT before and after 

mesh simplification 

 

 

Figure 4.11C MeshSIFT processing times before and after mesh simplification 
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Figure 4.11D Point Matchings obtained from MeshSIFT before and after mesh simplification 

From the results of this experiment, it is clear that mesh simplification drastically reduces the 

processing time of MeshSIFT, which is desirable, but, at the same time, the number of point 

matchings obtained are also reduced. For the current system, the more point matchings 

obtained, the better it is, hence, mesh simplification is a tradeoff between speed and the 

number of point matchings obtained. 
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Chapter 5 - Conclusion 

5.1 Conclusion 

The current system accomplishes the automation of 3D point matching for human faces by first 

reading the meshes from the database and smoothing them using Taubin smoothing as 

preprocessing to prepare the mesh for further operations. After the preprocessing is done, we 

proceed with feature detection and detect the tip of the nose. Detecting the tip of the nose is 

critical as the detection of the top of the forehead and left and right ears are based on it. While 

these points are being detected, the vertices and faces of both the source and target meshes 

are loaded in Matlab for MeshSIFT processing. MeshSIFT returns the point matching calculated. 

The point matching obtained from meshSIFT are not very accurate, some points are mirror 

images and some are inaccurate. Due to this reason, the point matchings are then filtered using 

a certain threshold which varies from mesh to mesh. After the point matchings have been 

filtered, they are combined with the point matchings obtained from the features detected 

previously. This list of point matching are then input for TPS, which deforms the source mesh 

based on the point matchings provided to make the source look like target. TPS changes the 

geometry of the source mesh while the topology is still the same. After the mesh as been 

transformed using TPS, we use Iterative closest point matching to bring the source and target 

mesh closer. The closer the meshes are the better the result is. We perform five iterations of 

ICP. After the fifth iteration, the texture of the target face is copied on the source and the final 

result is obtained. 
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In the error analysis, we demonstrate that the results obtained by the pipeline of the current 

system are reliable and can be used to automate the 3D point matching system for human 

faces. In time analysis, we observed that mesh simplification drastically reduces the amount of 

processing time taken by MeshSIFT, but the number of point matchings obtained are also 

reduced substantially which is undesirable. 

5.2 Future Work 

This study has a lot of future scope as there are many potential improvements that can be 

made. Work can be done to integrate the entire system and make the process more optimized 

and faster. MeshSIFT results are not the best, we get a lot of inaccurate and mirror points, 

better approaches can be researched in order to find an algorithm which result in better point 

matchings that are spread throughout the facial mesh and are more accurate with better 

feature detection capabilities. MeshSIFT is also very time intensive, either an ideal ratio to 

down sample the mesh can be found which improves efficiency while maintaining the number 

of point matchings obtained or some other algorithm can be researched and worked on to 

overcome this issue. 
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