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ABSTRACT 

INTEGRATION OF MASSIVE PLUG-IN HYBRID ELECTRIC VEHICLES INTO POWER 

DISTRIBUTION SYSTEMS: MODELING, OPTIMIZATION, AND IMPACT ANALYSIS 

 

by 

Jun Tan 

 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Lingfeng Wang 

 

With the development of vehicle-to-grid (V2G) technology, it is highly promising to use 

plug-in hybrid electric vehicles (PHEVs) as a new form of distributed energy resources. 

However, the uncertainties in the power market and the conflicts among different stakeholders 

make the integration of PHEVs a highly challenging task. Moreover, the integration of PHEVs 

may lead to negative effects on the power grid performance if the PHEV fleets are not properly 

managed. 

This dissertation studies various aspects of the integration of PHEVs into power distribution 

systems, including the PHEV load demand modeling, smart charging algorithms, frequency 

regulation, reliability-differentiated service, charging navigation, and adequacy assessment of 

power distribution systems. This dissertation presents a comprehensive methodology for 

modeling the load demand of PHEVs. Based on this stochastic model of PHEV, a two-layer 

evolution strategy particle swarm optimization (ESPSO) algorithm is proposed to integrate 

PHEVs into a residential distribution grid. This dissertation also develops an innovative load 

frequency control system, and proposes a hierarchical game framework for PHEVs to optimize 
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their charging process and participate in frequency regulation simultaneously. The potential of 

using PHEVs to enable reliability-differentiated service in residential distribution grids has been 

investigated in this dissertation. Further, an integrated electric vehicle (EV) charging navigation 

framework has been proposed in this dissertation which takes into consideration the impacts 

from both the power system and transportation system. Finally, this dissertation proposes a 

comprehensive framework for adequacy evaluation of power distribution networks with PHEVs 

penetration. 

This dissertation provides innovative, viable business models for enabling the integration of 

massive PHEVs into the power grid. It helps evolve the current power grid into a more reliable 

and efficient system. 
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1. Introduction 

 Motivations 1.1

With the development of vehicle-to-grid (V2G) technology as well as the growth of wind 

power generation, PHEVs are viewed as a vital technology to modern power systems as they 

may enable a higher penetration of renewable resources by providing extra energy storage 

capacity. With the V2G technology, PHEVs are able to serve as distributed energy resources by 

feeding power back to the grid when needed. Much research has investigated the benefits of 

integrating PHEVs into power systems, such as frequency regulation and vehicle-to-building 

(V2B) [1], [2]. 

The trend of developing the power grid towards a more sustainable and cleaner system 

makes the renewable resources such as wind and solar power a non-negligible and fast growing 

contributors to the overall generation portfolio. High penetration of wind power will inevitably 

reduce system inertia as the wind speed is difficult to be accurately predicted. Moreover, 

customers are encouraged by governments and regulatory authorities to sell excess power 

generated by distributed resources back to the utilities in the environment of smart grid.  The 

dynamics of power grid nowadays are affected by more factors as the uncertainties increase on 

both generation and load sides. These uncertainties will increase the load prediction error which 

leads to an increase in active power imbalances. As a result, a large amount of regulation 

capacity is needed in the power system, and various generation units are participating in 

frequency regulation by contracting with the transmission system operator (TSO) [3]. 

Traditional generation units have very slow response time and limited ramp rate, thus their 
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performance in frequency regulation is not quite satisfactory. Basic load frequency control (LFC) 

systems and algorithms are studied in [4]-[7]. Much research has been conducted for developing 

Battery Energy Storage Systems (BESS) for frequency regulation [8]. However, due to the high 

cost of BESS, it is hard to use this technology widely. Fortunately, with the V2G technology in 

the future smart grid, PHEVs can serve as distributed resources and they are able to provide 

frequency regulation capacities to the power system through V2G aggregators. With the 

emerging smart grid technologies, aggregators are envisioned to be able to coordinate the 

charging process of PHEVs and provide frequency regulation service by contracting a regulation 

capacity with the TSO [9]. However, the uncertainty of the market prices for electricity and 

frequency regulation service coupled with the conflict of interests among PHEV owners and the 

power system make the V2G frequency regulation a very challenging problem. Thus, an 

effective business model is highly needed for PHEVs providing frequency regulation service in a 

competitive electricity market. Although the widespread deployment of PHEVs is promising to 

serve as distributed energy storage which could provide ancillary services for power systems, it 

may lead to negative effects on the power grid if the PHEV fleets are not well coordinated. High 

penetration of PHEV fleets in the distribution networks will increase the peak load demand, 

which will result in transformer overload, voltage deviation, transmission line losses increase and 

harmonic distortion. Thus, it is highly important to formulate the control of PHEVs and the 

bidding of frequency regulation capacity as an integrated problem in a competitive electricity 

market. 

Due to the various characteristics of electrical loads and the different requirements of utility 

customers, it is inefficient to serve all customers at the same reliability level. And the customers 

should be given additional flexibility to opt for the service reliability that suits them. The 
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reliability-differentiated pricing can reduce the system cost by reducing the service reliability of 

those customers who have low requirements on reliability and make additional system income by 

providing highly reliable service to those customers with high reliability requirements. From this 

point of view, the reliability-differentiated service is promising to reduce the reserve equipment 

and peak load. The majority of existing research was focused on the generation and transmission 

level [10]-[14]. Its basic principle is to divide customers into different classes, and these classes 

are served with different reliability levels by providing additional generation and transmission 

reserve capacity or through the operation of power system. The possibility and difficulties of 

implementing reliability-differentiated services are discussed in [10], where an approach is 

proposed to differentiate electricity prices based on the customers’ priority of service during 

power generation shortage. A reliability-differentiated pricing policy based on outage cost is 

proposed in [11] which is a combination of priority pricing and real-time pricing. A 

differentiated pricing scheme is proposed in [12] for spinning reserve capacity purchase from a 

societal welfare point of view. The reliability index of loss of load probability (LOLP) is used to 

generate differentiated nodal pricing in [13]. In [14] a method is proposed to differentiate the 

electricity price by allocating grid cost between customer groups with different reliability 

categories.  

Although the reliability-differentiated pricing appears very beneficial to realizing flexible 

demand side management (DSM), several critical issues need to be addressed in its real-world 

implementation. In particular, it is hard to differentiate the delivering of electricity in terms of 

reliability due to the intrinsic limitations of current power system [15]. As a result, this research 

field has not received sufficient attention in the recent decades. Historically, the difficulties for 

implementing reliability-differentiated services primarily lie in the following two aspects. 1) The 
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common reliability indices were developed to evaluate the performance of the overall system, 

and they are not fully capable of indicating the service quality of a specific customer. 2) In the 

traditional power grid, the power system cannot be operated to deliver the actual reliability 

service stipulated by the customers.  

However, with smart grid technologies and the emergence of PHEVs, it is possible to 

implement the reliability-differentiated service in the distribution power grid and evolve it into a 

more reliable and efficient system. With the development of V2G technology, the PHEVs are 

able to serve as distributed energy storage resources and participate in ancillary services such as 

frequency regulation and spinning reserve. With real-time monitoring and advanced sensing 

technologies in smart grid, the power supply conditions of the customers can be obtained by the 

power grid, so the frequency, duration and magnitude of outages for a specific customer is 

known to the power system. Smart grid is also able to solve the dilemma of the second problem 

by controlling the power supply to the customers and distributed resources. So when a power 

outage occurs, the smart grid will cut off the power supply to customers with lower subscription 

of reliability, and use distributed resources such as PHEVs as spinning reserve to provide power 

for those customers with higher subscription of reliability. More recently it is becoming more 

viable to implement reliability-differentiated services with wider deployment of smart grid 

technologies 

With the increasing penetration of electric vehicles (EVs) and the development of charging 

infrastructure, the electric vehicle charging stations (EVCS’s) are becoming a vital recharging 

source for EVs. Home charging at a house garage may be more convenient for the EV owners. 

For people living in urban areas with high population density, the accessibility of personal 

garages is limited and public charging stations are needed to recharge their EVs. Moreover, 



 

5 

 

EVCSs can offer lower charging prices for EVs compared with home charging, as power can be 

purchased at a lower rate from the wholesale power market [16]. Also, EVCSs are a much 

needed recharging infrastructure for long-distance travelers who may run out of their batteries 

before returning home. These merits make the EVCS a promising charging infrastructure. 

However, as the penetration level of EVs grows, the intermittent charging loads may place 

additional stress on the power system by overloading the distribution transformers and 

transmission lines. Thus, a charging navigation system is needed to provide a novel business 

model for the EVs and the EVCSs by considering the traffic flow and the competition between 

the EVCSs. 

 

 Dissertation Objectives 1.2

The primary research objective of this dissertation is to develop an integrated framework to 

study impact of PHEVs on the power distribution system and develop effective control methods 

to coordinate the charging process of PHEVs. The major contributions of this dissertation are 

concluded as follows: 

 Build the stochastic model of PHEVs’ load demand;  

 Propose a new intelligent hybrid algorithm. 

 Design an LFC system with PHEVs.  

 Propose a viable business model for PHEVs to participate in frequency regulation in a 

competitive electricity market. 

 Propose a reliability-differentiated framework to enable reliability-differentiated service 

in a residential distribution network. Thus, the customers can be served at different 

reliability levels. 
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 Developed a reliability-differentiated pricing mechanism which is able to improve the 

reliability of the residential distribution system as well as provide differentiated power 

prices to the customers according to their different requirements on reliability. 

 Proposed an integrated charging navigation framework to link the power system with 

transportation system. Thus, an optimal charging navigation strategy can be achieved to 

benefit both the power system and transportation system. 

 Developed a traffic flow simulation method for EVs considering the real-world usage 

data of EVs. 

 Proposed a novel business model for EVCSs based on game theory. Thus, the 

competition between charging stations can be modeled.  

 Proposes a comprehensive framework for adequacy evaluation of power distribution 

network with large-scale PHEV penetrations. 

 

 Organization of Dissertation 1.3

This dissertation is organized as follows. In Chapter 1, the major issues in integrating 

PHEVs into power distribution system and the research objectives are introduced. Chapter 2 

proposes a load profile modeling framework (LPMF) for PHEVs, which takes both the 

characteristics of driving pattern and vehicle parameters into consideration. In Chapter 3, a two-

Layer intelligent optimization algorithm has been proposed to integrate PHEVs into residential 

distribution grids. A hierarchical game framework has been proposed in Chapter 4 to coordinate 

the charging process of PHEVs and enable PHEVs to participate in frequency regulation at the 

same time. Chapter 5 proposes a framework for implementing reliability-differentiated services 

in a residential distribution with PHEVs. Chapter 6 proposes an integrated framework for real-
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time EV navigation, which considers both the impact from the transportation system and power 

system. Chapter 7 systematically investigated the impact of large scale penetration of PHEVs on 

power distribution system adequacy. The conclusions and the future works are presented in 

Chapter 8. 
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2. Stochastic Modeling of PHEV Load Demand 

 Introduction 2.1

For the modeling of driving pattern, different assumptions are made by researchers to 

simplify the study. In [17] it is assumed that the PHEVs have pre-specified arrival time, which is 

6 pm, 9 pm and 10 am. References [18]-[21] use probabilistic methodology to model the arrival 

time, departure time and daily mileage. Copula functions are used to study the correlation of 

arrival time, departure time and daily mileage in [22]. A method based on the Markov chain is 

proposed in [23], [24] to find the correlation. These studies have shown to be effective in 

modeling driving patterns, but further analysis of vehicle characteristics is still needed. 

To date, few studies have been carried out considering both the stochastic nature of driving 

pattern and vehicle characteristics. This chapter hereby proposes a load profile modeling 

framework (LPMF) for PHEVs, which takes both the characteristics of driving pattern and 

vehicle parameters into consideration. Moreover, to analyze the relationship between the arrival 

time, departure time and daily mileage of PHEVs, the authors propose a Stochastic Fuzzy Model 

to synthetize the driving pattern.  

 Studying NHTS Data 2.2

National Household Travel Survey (NHTS) 2009 [25] is the most comprehensive 

transportation report in United States thus far. It contains 1048575 single trips and each trip has 

150 attributes. As a person may have several trips in a day, all the trips in a day should be 

considered to generate the daily driving pattern of PHEVs. Here we define the departure time as 

the first trip start time, and arrival time as the finial trip end time. The daily mileage driven is 

defined as the sum of the trip mileages in a day. According to NHTS 2009, the percentage of 
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vehicle versus the departure time is shown in Fig. 2.1, and the percentage of vehicle versus the 

arrival time is shown in Fig. 2.2. It is assumed that the driving habits of people will not change in 

the near future, so the travel survey data are used to predict the driving pattern. The PDFs of the 

arrival time, departure time and daily mileage can be fitted from their observed data. The quality 

of the curve fits is evaluated through the goodness-of-fit statistic: the sum of squares due to error 

(SSE). 

SSE = ∑ ωi
n
i=1 (yi − ŷi)

2                                              (2.1) 

where yi  is the observed data and ŷi  is the predicted value from the fit, ωi  is the weighting 

coefficient and set ωi = 1. 

As shown in Fig. 2.1, the departure time of vehicles follows a normal distribution which can 

be expressed as follows: 

𝐹𝑑𝑒𝑝(𝑡) =
1

𝜎√2𝜋
𝑒−(𝑡−𝜇)

2 2𝜎2⁄ , 0 < 𝑡 < 24                                (2.2) 

where µ=9.97, σ = 2.2 and SSE=0.0034. 

Also, the PDF of the arrival time of vehicles is a normal distribution and can be expressed 

as follows: 

 𝐹𝑎𝑟𝑟(𝑡) =
1

𝜎√2𝜋
𝑒−(𝑡−𝜇)

2 2𝜎2⁄ , 0 < 𝑡 < 24                                 (2.3) 

where µ=17.01, σ = 3.2 and SSE=0.0026. 

According to NHTS, the distribution of daily mileage can be described by a lognormal 

distribution as shown in Fig. 2.3. The PDF of the daily vehicle travel distance can be expressed 

as follows: 

𝐹𝑑(𝑑) =
1

𝑑𝜎√2𝜋
𝑒−(𝑙𝑛𝑑−𝜇)

2 2𝜎2⁄ , 𝑑 > 0                                    (2.4) 

where d is the travel distance, µ is the mean of lnd, and σ is the standard deviation of the 

lognormal distribution. In this case, µ=3.2, σ = 0.9 and SSE=0.0036 
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Figure 2. 1 Percentage of vehicles versus their departure time 
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Figure 2. 2 Percentage of vehicles versus their arrival time. 
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Figure 2. 3 Percentage of vehicles versus daily miles driven. 
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Fig. 2.4 is derived from the NHTS 2009 database. It describes the relationship between the 

arrival time and departure time of PHEVs. As shown in the figure, the PDF of departure time 

features a quite same shape in each time window of arrival time, which implies the two PDFs of 

departure time and arrival time are independent of each other. So the arrival time and departure 

time of a PHEV are two independent events.  However, the daily mileage is correlated with the 

arrival time and departure time. It will cause inaccuracy if simply using the PDFs of arrival time, 

departure time and daily mileage to generate the driving pattern. 

 

Figure 2. 4 PDF of departure time at different time windows of arrival time. 
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By analyzing the travel data, it is found that the arrival time and departure time of a PHEV 
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dependent on the arrival time and departure time [22]-[24]. For different combinations of arrival 

time and departure time, the probability density of the daily mileage may be different. 

Here a fuzzy logic based stochastic model is proposed to generate driving patterns of 

PHEVs. As mentioned earlier, the major task of modeling the charging demand of PHEVs is to 

identify the time when PHEVs are plugged in and plugged out, coupled with the initial State of 

Charge (SOC) of the PHEVs. These three elements can be handled very well using the concept 

of fuzzy logic. As the control of PHEV charging is based on a sequence of time slots [17]-[24], 

[26]-[31] the plug-in and plug-out times are not necessary to be accurate values. Also, it is not 

necessary to know the accurate value of the SOC. The SOC can be classified into different stages, 

and it varies from one stage to another after charging during each time slot. Different stages of 

SOC can be converted into different ranges of the daily mileage. Fuzzy logic is used as a tool for 

pattern classification in this problem. The departure time, arrival time and daily mileage are 

divided into different ranges by membership functions, and their relationships are defined by 

fuzzy rules. 

As shown in Fig. 2.5, symmetric 5-segment triangular membership functions are used as 

input and output variables. Fig. 2.5(a), (b) shows the input variables for the departure time and 

the arrival time, and their membership functions are defined as very early (VE), little early (LE), 

normal (N), little late (LL), and very late (VL). The output variable for daily mileage is shown in 

Fig. 2.5(c), and its membership functions are defined as small (S), small-medium (SM), medium 

(M), medium-large (ML), and large (L). The parameters of the maximum limit, the minimum 

limit and the mean value of each variable can be generated from its PDF, and these parameters 

shown in Fig. 2.5 are Mindep = 4, μdep = 9.97,  Maxdep = 21,  Minarr = 7, μarr = 17.01,  

 Maxarr = 29,Mind = 0, μd = 35.64,Maxd = 100. 
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Figure 2. 5 Fuzzy membership functions. (a) Departure time pattern. (b) Arrival time pattern. (c) Daily travel 

mileage pattern. 

In the proposed Stochastic Fuzzy Model, the mapping from input space to the output space 

is a probabilistic distribution over the fuzzy rules. To indicate this stochastic process, a 

probability matrix P is defined as follows: 

P =

[
 
 
 
 
 
 
pVE,VE
d pVE,LE

d

pLE,VE
d pLE,LE

d

pVE,N
d pVE,LL

d pVE,VL
d

pLE,N
d pLE,LL

d pLE,VL
d

pN,VE
d pN,LE

d

pLL,VE
d pLL,LE

d

pVL,VE
d pVL,LE

d

pN,N
d pN,LL

d pN,VL
d

pLL,N
d pLL,LL

d pLL,VL
d

pVL,N
d pVL,LL

d pVL,VL
d

]
 
 
 
 
 
 

                                   (2.5) 

⩝ dϵ[S, SM,M,ML, L] 

where each entry of P is a row vector which is a probability distribution over the membership 

functions of daily mileage base on a combination of membership functions of arrival time and 



 

14 

 

departure time. 

For instance, one entry of P is defined as follows: 

pVE,LE
d = [pVE,LE

S , pVE,LE
SM , pVE,LE

M , pVE,LE
ML , pVE,LE

L ]                                (2.6) 

where pVE,LE
d  indicate the probability distribution vector over membership functions of daily 

mileage when arrival time is VE and departure time is LE. Its entries are the probabilities of 

choosing a certain membership function of daily mileage. 

The proposed stochastic fuzzy rules can be expressed in the form of IF-THEN statements 

such as: 

IF DT (departure time) is LE and AT (arrival time) is LL, THEN DM (daily mileage) is M 

with probability of pLE,LL
M . 

Once the parameters of membership functions as shown in Fig. 2.5 are chosen, the 

probability matrix P can be obtained by statistical method according to NHTS 2009. Then 

according to the stochastic fuzzy rules, the daily mileages can be generated. The quality of 

fitness of the generated daily mileages can be evaluated through SSE as defined in (2.1). To 

ensure that the Stochastic Fuzzy Model predicts the driving pattern correctly, the parameters of 

the membership functions should be appropriately chosen. Here a Particle Swarm Optimization 

(PSO) algorithm is used to find the optimal parameters of the membership functions. 

PSO was developed based on the collective behaviors exhibited in bird flocking and fish 

schooling [32]. In PSO, a population of particles flies in a search space and every particle has its 

own location and velocity. The possible solution of a problem is mapped to a search space, and 

the location of each particle in the search space is a potential solution to the target problem. The 

fitness of each potential solution is evaluated by an objective function. The best position of the 

ith particle is stored as pBesti (personal best position) and the best position of all the particles is 
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stored as gBest (global best position). These particles can learn from their own and others’ 

experiences. The position and velocity of each particle are continuously adjusted according to 

(2.7)-(2.9). When the iterative procedure is finished, the best value position gBest can be used to 

optimize the objective function. 

vid
k+1 = wvid

k + C1 ∙ rand1 · (pBesti − xid
k ) + C2 ∙ rand2 ·  (gBest − xid

k )               (2.7) 

   xid
k+1 = xid

k + vid
k+1                                                        (2.8) 

w = wmax − k ∙
wmax−wmin

kmax
                                                 (2.9) 

where vid  is the velocity of particle i  at dimension d ; xid  is the position of particle i  along 

dimension d; w is the inertia weight; and k is the iteration number. 

In this parameters-tuning problem, there are 6 parameters adep, bdep, aarr , barr, ad, bd  as 

shown in Fig. 2.5, which need to be optimized. Each parameter can be defined as a dimension of 

the search space, and the range of the specific parameter can be encoded as the coordinates in the 

specified dimension. The objective is to minimize the SSE of the generated daily mileages. 

Solving the problem is equivalent to finding the optimal location in the search space. After 

certain iterations the PSO algorithm converges as shown in Fig. 2.6. The global best value is 

SSE=0.0095 and the optimized parameters of the membership functions are shown in Table 2.1. 

 

Figure 2. 6 Convergence curve of the PSO algorithm. 
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Table 2. 1 Optimal Values of Membership Function Parameters 

adep bdep aarr barr ad bd 

9.13 13.27 11.93 19.22 13.68 87.74 

Based on these the Stochastic Fuzzy Model is able to predict the driving pattern of PHEVs. 

The computational procedure of the driving pattern of PHEVs can be illustrated as follows: 

Step 1:  Generate the departure time and the arrival time for a specified number of PHEVs 

according to the PDFs (2.2) and (2.3). 

Step 2: Map the crisp input values generated in Step 1 to linguistic values using the 

fuzzification method. 

Step 3: Generate probability matrix P according to NHTS data and parameters in Table 2.1. 

Step 4: Generate linguistic output values according to the stochastic fuzzy rules obtained 

from probability matrix P and convert them to crisp values. 

Step 5: Output the value of driving distance together with its related departure time and 

arrival time for each PHEV. 

 

 Vehicle Type Analysis 2.4

PHEVs are classified by its all electrical range (AER) and the percentage of PHEV-x is 

shown is Table 2.2 [33]. For instance, PHEV-30 indicates it has an AER of 30 miles. Different 

types of PHEV-x have different energy consumption per mile (ECPM) and battery capacities, 

and they are shown in Table 2.3 [20]. Assume the four types of vehicles have equal percentage 

of distribution. To render this study closer to real world scenarios, the proposed PHEV LPMF 

will randomly select the AERs and vehicle types of PHEVs based on their percentage of 

distribution. 
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Table 2. 2 Percentage of PHEVs With Different AERs 

 PHEV-30 PHEV-40 PHEV-60 

Percentage 21% 59% 20% 

 

Table 2. 3 Battery Capacity for Different Types of PHEV (kWh) 

Vehicle Type PHEV-30 PHEV-40 PHEV-60 

Compact 

sedan 

7.8 10.4 15.6 

Mid-size 

sedan 

9 12 18 

Mid-size 

SUV 

11.4 15.2 22.8 

Full-size SUV 13.8 18.4 27.6 

 

 Charging Level and Initial SOC 2.5

The charging level of PHEVs could be very different due to various charging facilities. For 

instance, in [17] it is assumed that the charging level is 4 kW based on a 230 V/4.6 kW outlet in 

Belgium. In [34] a charging level of 240 V/30A is used, and in [20] outlets of 120V/15 A and 

240/50 A are considered. As this study is focused on residential level impact of PHEVs, the AC 

Level 1 (1.8 kW) and AC Level 2 (3.6 kW) are considered and the charging rate is randomly 

selected from these two charging levels with equal probability for each PHEV. 

SOC is defined as the percentage of energy remaining in the battery. Minimum SOC is set 

to 20% to extend the battery life. PHEV can operate in charge-depleting mode, which implies all 

or part of its energy is provided by its battery. Here we define a factor λ as the percentage of 

mileage driven in all electrical mode. Assume the PHEV has an AER of dR, and the energy 

consumption of the PHEV is proportional to the travel distance d. The initial SOC of a PHEV 
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with a daily travel distance d is: 

SOCinitial = {
(1 −

λ·d

dR
) × 100%, 0 < λd < 0.8dR

20%, λd ≥ 0.8dR 
                             (2.10) 

The energy required to fulfill the battery is: 

Ereq =
(1−SOCinitial)·C

η
                                                       (2.11) 

where C is the battery capacity and η is the charging efficiency factor. 

 

 Obtaining PHEV Load Profile 2.6

The load profile of PHEVs is obtained from the proposed LPMF as shown in Fig. 2.7. First, 

the driving pattern is generated by the proposed Stochastic Fuzzy Model as mentioned in this 

section. Then the daily mileage is combined with vehicle parameters to generate the required 

energy according to (2.10) and (2.11). Finally, the load profile is obtained through the required 

energy and its driving pattern based on a charging algorithm. 
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Figure 2. 7 The PHEV load profile modeling framework. 
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3. Two-Layer Intelligent Optimization for integration 

of PHEVs into Residential Distribution Grid 

 Introduction 3.1

The development of vehicle-to-grid (V2G) technology in the smart grid context is reshaping 

the traditional view of power grid. With the increasing penetration of intermittent generation 

units and loads, energy storage devices are highly needed in nowadays’ power grid, and PHEVs 

may be a promising solution to this problem. V2G can benefit the power grid by shaving the 

peak load and providing ancillary services such as frequency regulation and spinning reserves. 

Although V2G is a promising technology, its real-world implementation demands an effective 

business model coupled with a more advanced battery technology. Some research has been 

conducted for reducing the impacts of PHEVs on power systems based on various optimization 

criteria and algorithms [26]-[28]. Also, some studies have been carried out in investigating the 

V2G benefits and feasibility [29]-[31]. However, little work has been done to combine these two 

technologies together for formulating an integrated problem.  

Based on the proposed Stochastic Fuzzy Model of PHEV in Chapter 2, this chapter has 

developed a novel business model for PHEVs to provide frequency regulation service as well as 

participate in peak load shaving in a residential distribution grid. This chapter proposes a virtual 

time-of-use (vTOU) rate based on the load demand to encourage the PHEV owners to participate 

in peak load shaving by providing economic incentives. In this chapter, an aggregator is designed 

to coordinate the charging process of PHEVs in a residential distribution grid to achieve four 

goals by flattening the load demand, improving power quality, providing frequency regulation 

service, and minimizing the total cost. To solve the formulated problem, an evolution strategy 
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particle swarm optimization (ESPSO) algorithm is proposed which is achieved by hybridizing 

the evolution strategy (ES) and particle swarm optimization (PSO). The simulation results show 

that the ESPSO approach is a very effective algorithm in solving the target problem.  

 

 System Model 3.2

 Battery Degradation Cost 3.2.1

Battery Degradation is one of the major challenges of V2G technology [35]. The extra 

battery degradation cost due to V2G activities can be expressed as follows [36]: 

 𝐶𝑜𝑠𝑡𝑏𝑎𝑡 =
𝑐𝑏𝐸𝑏+𝑐𝐿

𝐿𝐶𝐸𝑏𝐷𝑂𝐷
𝐸𝑑𝑖𝑠                                                       (3.1) 

where cb  is the battery cost per kWh, cL  is the labor cost for battery replacement, 𝐸𝑏  is the 

battery capacity, 𝐿𝐶  is the battery life cycle at a determined depth of discharge, 𝐸𝑑𝑖𝑠  is the 

discharge energy by PHEVs, and 𝐷𝑂𝐷 is the depth of discharging. In this study, 𝑐𝑏=$300/kWh, 

𝑐𝐿 =$240  and 𝐿𝐶=5000 at 80% discharge [35]. 

 Smart Pricing Policy 3.2.2

In order to reduce peak load of the system, a vTOU rate policy is developed based on 

system load demand to regulate the charging process of PHEVs. The price is defined as follows: 

𝑟(𝑡) = 𝛽1 + 𝛽2 ∙ 𝛼

𝑃𝑠𝑦𝑠
𝑡 −𝑃𝑎𝑣𝑔

𝑃𝑎𝑣𝑔                                                     (3.2) 

where 𝛽1, 𝛽2, α are price parameters, 𝑃𝑠𝑦𝑠
𝑡 is the load demand of the system at time slot 𝑡 and 𝑃𝑎𝑣𝑔 

is the average load demand of the system. In the studied system, we set 𝛽1=$0.1/kWh, 𝛽2=0.2 

$/kWh and α=10. 

    This virtual dynamic electricity market price is sensitive to the load demand, and it 
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increases very quickly with the increase of load demand especially at peak load time. 

 Frequency Regulation 3.2.3

V2G technology enables PHEVs to provide frequency regulation service for the power 

system. The PHEVs are contracted with TSO through aggregators, and TSO provides economic 

incentives for PHEVs participating in the regulation service. When a PHEV provides the 

regulation service, the net energy exchange tends to be zero over a long time [35]. Thus, the 

PHEVs are paid by the power capacity provided for frequency regulation. In this study, PHEVs 

are utilized to provide regulation service when they are in idle state. 

 

 Mathematical Modeling of PHEVs 3.3

The charging time horizon for a day can be represented as a vector 𝐓 = [1,···, t,···, T] which 

includes T equal time slots. The PHEVs also can be described as a vector 𝐍 = [1,···, d,···, N]. For 

the dth PHEV, the plug-in time tin,d, plug-out time tout,d and required charging energy Ereq,d 

can be generated by the procedure described in Fig. 2.7. In this study, we use boldface letters to 

denote vectors. 

    As demonstrated in [27], it is more cost effective to let PHEVs charge at the rated 

charging power so that more revenues can be earned by providing frequency regulation service. 

Thus, PHEVs can be controlled at three states: charging, discharging and idle. The charging 

strategy can be expressed as a vector k as follows: 

𝐤𝐝 = [kd
tin,d ,···, kd

t ,···, k
d

tout,d] ,⩝ dϵ𝐍                                         (3.3) 

where kd
t = 1 means the dth PHEV is in charging state at time slot t, kd

t = −1 implies the dth 

PHEV is in discharging state at time slot t and kd
t = 0 indicates the PHEV is in idle state at time 
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slot t. 

    The required energy constraint is described in (3.4): 

Ereq,d = ∑ kd
t · Prate

d ,⩝ dϵ𝐍
tout,d
t=tin,d

                                           (3.4) 

where Prate
d  is the rated charging power of the dth PHEV. 

It is assume that only the PHEVs in idle state can respond to the frequency regulation 

service call. We defined three vectors 𝐂 = [C1 ···, Cd,···, CN], 𝐃 = [D1 ···, Dd,···, DN] and 𝐈 = [I1 ··

·, Id,···, IN] to indicate the charging, discharging and idle state of PHEVs at each time slot as 

shown in (3.5)-(3.10).  

Cd = [C
d

tin,d ,···, Cd
t ,···, C

d

tout,d] ,⩝ dϵ𝐍                                        (3.5) 

Cd
t = {

1,          if kd
t = 1 

0,         otherwise
, ⩝ tϵ𝐓; ⩝ dϵ𝐍                                    (3.6) 

Dd = [D
d

tin,d ,···, Dd
t ,···, D

d

tout,d] ,⩝ dϵ𝐍                                      (3.7) 

Dd
t = {

1,          if kd
t = −1 

0,           otherwise
, ⩝ tϵ𝐓; ⩝ dϵ𝐍                                 (3.8) 

Id = [Id
tin,d ,···, Id

t ,···, I
d

tout,d] ,⩝ dϵ𝐍                                          (3.9) 

Id
t = {

1,          if kd
t = 0 

0,         otherwise
, ⩝ tϵ𝐓; ⩝ dϵ𝐍                                   (3.10) 

where d means the dth PHEV and t indicate the tth time slot. 

Thus, the frequency regulation capacity of the system can be calculated as (3.11): 

PReg
t = ∑ Id

t · Prate
d ,⩝ tϵ𝐓N

d=1                                            (3.11) 

The total charging power of PHEVs is illustrated as (3.12) and the average load demand of 

the system is represented in (3.13): 

PEV
t = ∑ kd

t · Prate
d ,⩝ tϵ𝐓N

d=1                                            (3.12) 
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Pavg =
1

T
∑ (PBase

tT
t=1 + PEV

t )                                           (3.13) 

where PBase
t is the non-PHEV load of the system. 

The total discharging energy provided by PHEVs is: 

Edis = ∑ ∑ Dd
t · Prate

dtout,d
t=tin,d

N
d=1                                         (3.14) 

    So a feasible control strategy of PHEVs can be described as follows: 

𝐊 = {𝐤𝐝|s. t. (3.4)},⩝ dϵ𝐍                                            (3.15) 

    The objective function is designed to minimize the total cost of the system consisting of 

three parts: the charging cost, the battery cost due to V2G, and the profit earned by providing 

frequency regulation service. 

The charging cost accounts for both the cost for charging and the revenue earned by 

discharging as shown below: 

Costchg = ∑ PEV
t · r(t)T

t=1                                             (3.16) 

The battery cost is defined as (3.1), and the revenue earned by regulation service is as 

follows: 

Earnreg = ∑ PReg
t · reg(t)T

t=1                                         (3.17) 

where reg(t) is the regulation service price at time slot t. The total cost should be: 

 Cost = Costchg + Costbat − Earnreg                                (3.18) 

So the objective function can be represented as follows: 

min {Cost|s. t. (3.15)}                                            (3.19) 

 

 The Two-Layer Intelligent Optimization Algorithm 3.4

 Dominant Solution Matrix 3.4.1
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The feasible solutions for the formulated problem constitute a very large search space. To 

simplify the problem, it is crucial to find dominant solutions from the feasible solutions. As 

frequent switching between charging and discharging modes will greatly expedite the 

degradation progress of batteries [27], the charging and discharging time slots should be wisely 

arranged to avoid PHEV’s frequent switching between different control states. 

The charging sequence of PHEVs can be classified into different patterns based on various 

V2G strategies. We defined a strategy vector 𝒔 to indicate the V2G strategy of each PHEV as 

follows: 

𝒔 = [𝑠1,···, 𝑠𝑑 ,···, 𝑠𝑁]                                                    (3.20) 

where 𝑠𝑑 is the possible V2G strategy of the 𝑑𝑡ℎPHEV. 

1  1  1  1  0  0  0  0  0  0

1  1  1  1  1 -1  0  0  0  0

1  1  1  1  1  0 -1  0  0  0

1  1  1  1  1  0  0 -1  0  0

1  1  1  1  1  0  0  0 -1  0

1  1  1  1  1  0  0  0  0 -1

1  1  1  1  1  1 -1 -1  0  0

1  1  1  1  1  1  0  0 -1 -1 

1  1  1  1  1  1  1 -1 -1 -1

 1  1  0 -1 -1  0  1  1  1  1

=8,       =5

dint , doutt ,

ds
dsx

1  1  1  1  1  1  0 -1 -1  0
ds

dsx

dkvector

 

Figure 3. 1 The principle of dominant solution matrix. 

Based on the above two principles, the dominant solution matrix of the 𝑑𝑡ℎ PHEV 𝐷𝑆𝑑 is 

shown in Fig. 3.1. The dominant charging sequence can be generated from this matrix by 

selecting different V2G strategies 𝑠𝑑 and the sequence starting point 𝑥𝑠𝑑 . As shown in Fig. 3.1, 

the row of this matrix indicates different possible V2G strategy patterns. Once a sequence pattern 

is selected, the possible charging solutions of this specific PHEV can be obtained by shifting the 

sequence. For instance, as shown in Fig. 3.1 the V2G strategy 𝑠𝑑 = 8 and the sequence starting 
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point 𝑥𝑠𝑑 = 5, so the 8th row is selected and the sequence is started from the 5th column of this 

row. 

For all the PHEVs, the dominant solution matrix is represented as follows: 

𝑫𝑺 = [𝐷𝑆1 ··· 𝐷𝑆𝑑 ··· 𝐷𝑆𝑁], ⩝ 𝑑𝜖𝑵                                      (3.21) 

 Evolution Strategy Particle Swarm Optimization 3.4.2

In this section, an evolution strategy particle swarm optimization algorithm (ESPSO) is 

designed to solve the formulated problem. ESPSO is essentially a two-layer intelligent space 

search algorithm. In the upper layer, an evolution strategy is used to find an optimal V2G 

strategy; and based on this V2G strategy, a PSO algorithm is proposed to find the optimal 

charging sequence in the lower layer. The existing methods such as PSO or genetic algorithm 

(GA) are not able to effectively solve the three states charging process of PHEVs, as they usually 

suffer from the curse of dimensionality due to the huge search space. The proposed ESPSO 

approach solves this complex problem by dividing it into two layers, which drastically narrows 

the search space. 

In this algorithm, the dominant solution matrix DS is mapped to a search space. Each PHEV 

is viewed as a dimension in the search space, and the sequence starting point 𝑥𝑠𝑑  is the 

coordinate in this specific dimension. The V2G strategy is evolved based on (3.22), (3.23). Then 

both the original and evolved particles keep updating their flying trajectories according to (3.24)-

(3.26). 

𝑒𝑠𝑖𝑑
𝑘 = 𝑠𝑖𝑑

𝑘 + 𝑤 ∙ 𝑁(0, 𝜎𝑑)                                                 (3.22) 

𝑠𝑖𝑑
𝑘+1 = {

𝑒𝑠𝑖𝑑
𝑘 ,        𝑖𝑓 𝐶𝑜𝑠𝑡𝑖 < 𝑝𝐵𝑒𝑠𝑡𝑖
𝑠𝑖𝑑
𝑘 ,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                        (3.23) 
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𝑣
𝑖𝑠𝑖𝑑
𝑘+1

𝑘+1 = 𝑤𝑣
𝑖𝑠𝑖𝑑
𝑘

𝑘 + 𝐶1 ∙ 𝑟𝑎𝑛𝑑1 · (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖𝑠𝑖𝑑
𝑘

𝑘 ) + 𝐶2 ∙ 𝑟𝑎𝑛𝑑2 ·  (𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑖𝑠𝑖𝑑
𝑘

𝑘 )       (3.24) 

   𝑥
𝑖𝑠𝑖𝑑
𝑘+1

𝑘+1 = 𝑥
𝑖𝑠𝑖𝑑
𝑘

𝑘 + 𝑣
𝑖𝑠𝑖𝑑
𝑘+1

𝑘+1                                                    (3.25) 

𝑤 = 𝑤𝑚𝑎𝑥 − 𝑘 ∙
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
                                               (3.26) 

where 𝑠𝑖𝑑
𝑘  is the original V2G strategy of particle, 𝑒𝑠𝑖𝑑

𝑘 is the evolved V2G strategy, 𝑣
𝑖𝑠𝑖𝑑
𝑘

𝑘  is the 

velocity of the particle, 𝑥
𝑖𝑠𝑖𝑑
𝑘

𝑘  is the position of particle, 𝑤 is the inertia weight, 𝑘 is the iteration 

number, 𝑖 is the particle number, and 𝑑 is the dimension number.  

The computational procedure of the ESPSO algorithm can be elaborated as follows: 

 Step 1: Initialize all the particles in the search space. Particle positions and velocities 

are set randomly to be within the feasible search space. 

 Step 2: Evolve the particles according to (3.22). 

 Step 3: Evaluate the fitness of each original particle and its corresponding evolved 

particle with respect to the objective function.  

 Step 4: Compute the fitness value of each original particle; and if it is a better solution 

for this particle, then store its position as a 𝑝𝐵𝑒𝑠𝑡 position for this specific particle. 

 Step 5: Compute the fitness value of each evolved particle; and if it is better than the 

current 𝑝𝐵𝑒𝑠𝑡 value, then update the corresponding original particle with the evolved 

particle and store its position as a new 𝑝𝐵𝑒𝑠𝑡  position for this specific particle; 

otherwise, keep the original particle unchanged. 

 Step 6: Check the fitness value of each particle. If it is the best solution for all particles, 

then store the particle’s position as 𝑔𝐵𝑒𝑠𝑡 position. 

 Step 7: Update the position and velocity of each particle according to (3.24)-(3.26). 

 Step 8: If 𝑣
𝑖𝑠𝑖𝑑
𝑘

𝑘 > 𝑉𝑚𝑎𝑥 , then 𝑣
𝑖𝑠𝑖𝑑
𝑘

𝑘 = 𝑉𝑚𝑎𝑥 ; If 𝑣
𝑖𝑠𝑖𝑑
𝑘

𝑘 < 𝑉𝑚𝑖𝑛 , then 𝑣
𝑖𝑠𝑖𝑑

𝑘 = 𝑉𝑚𝑖𝑛;  If 
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𝑥
𝑖𝑠𝑖𝑑
𝑘

𝑘 > 𝑋𝑚𝑎𝑥, then 𝑥
𝑖𝑠𝑖𝑑
𝑘

𝑘 = 𝑋𝑚𝑎𝑥; If 𝑥
𝑖𝑠𝑖𝑑
𝑘

𝑘 < 𝑋𝑚𝑖𝑛, then 𝑥
𝑖𝑠𝑖𝑑
𝑘

𝑘 = 𝑋𝑚𝑖𝑛. 

 Step 9: If the stopping criterion is satisfied, then go to Step 10; otherwise, go to Step 2. 

 Step 10: Output the optimal solution. 

 

 Case Studies 3.5

The residential distribution grid studied here is based on the topology of an IEEE 34-node 

test feeder [37] as shown in Fig. 3.2. In the test system, load point 1 is connected to the grid, and 

there are 198 houses randomly allocated at other 33 load points. The non-PHEV load profile of a 

house in winter is scaled from [38]. It is assumed that each house has two vehicles, and the 

penetration level of the PHEVs is defined as the ratio between the numbers of PHEVs and all 

vehicles. The power flow is based on a backward-forward sweep method [39]. 
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Figure 3. 2 The topology of the studied residential distribution grid. 

The simulation is carried out in a residential distribution grid based on different PHEV 

modeling methods. The charging process of PHEVs based on uncontrolled charging, PSO based 

smart charging and the proposed ESPSO approach respectively. The total load demand of the 

system is compared based on three different cases.  

 Case 1: The load demand of PHEVs is modelled by the proposed Stochastic Fuzzy 
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Model and LPMF. 

 Case 2: The PHEV model only takes the driving patterns into consideration, without 

considering the vehicle parameters. 

 Case 3: The PHEV model only takes the vehicle parameters into consideration, without 

considering the driven pattern. 

(a) Uncontrolled charging

(b) PSO based smart charging

(c) ESPSO approach
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Figure 3. 3 Load demand curves of the tested system with different PHEV modeling methods and control 

strategies. 
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The simulation results are shown in Fig. 3.3. The load demands of the three cases are quite 

different as can be seen from the figure. According to the load demand curves for Case 2 and 

Case 3, it can be concluded that inaccurate modeling of driving pattern will bring error to the 

load profile prediction of PHEVs. The proposed Stochastic Fuzzy Model and LPMF result in 

more accurate predictions. 

In this section, various simulations are carried out to demonstrate the effectiveness of the 

proposed ESPSO approach. Two control strategies, uncontrolled charging and PSO algorithm 

based smart charging are used as benchmarking control strategies. The simulations are carried 

out based on these three control strategies at different PHEV penetration levels of 10%, 20%, 50% 

and 100%.  

Fig. 3.4 shows the final battery SOCs and battery SOC variance profiles with ESPSO 

approach at 10% PHEV penetration level. It is clear that the proposed ESPSO approach is 

effective in charging the PHEVs into desired SOCs. The vTOU rate for different control 

strategies is shown in Fig. 3.5. It is clear that the vTOU rate is increasing very quickly with peak 

load. So the PHEVs will automatically avoid charging at peak load hours of high electricity rates. 

The proposed ESPSO approach is able to optimally allocate available V2G capacity for both 

peak load shaving and frequency regulation to achieve the maximum profit. Fig. 3.6 shows the 

percentage of V2G capacity used for peak load shaving at different PHEV penetration levels. As 

shown in the figure, ESPSO approach allocates less V2G capacity for peak load shaving at 

higher penetration level. This is because at the high PHEV penetration level, the load demand 

can be flatten by just shifting the charging load to valley hours, and it is more profitable to use 

more V2G capacity for frequency regulation. Fig. 3.7 shows the load demand of the system 

based on the three control strategies. The proposed ESPSO approach reduces the peak load, and 



 

30 

 

the load demand curve becomes more flattened. Fig. 3.8 shows voltage curves of the load point 

34 of the tested system with different control strategies. As shown in the figure, the proposed 

algorithm can reduce the voltage deviation effectively. 
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Figure 3. 4 Final battery SOCs and battery SOC variance profiles with ESPSO approach at 10% PHEV 

penetration level. 

 

Figure 3. 5 Virtual time-of-use rate for different control strategies at 20% PHEV penetration level. 
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Figure 3. 6 Percentage of V2G capacity used for peak load shaving. 

a. Load demand curves at 10% PHEV penetration b. Load demand curves at 20% PHEV penetration

d. Load demand curves at 100% PHEV penetrationc. Load demand curves at 50% PHEV penetration
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Figure 3. 7 Load demand curves of the studied system for different charging algorithms at different PHEV 

penetration levels. 
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a. Load voltage curves at 10% PHEV penetration b. Load voltage curves at 20% PHEV penetration

d. Load voltage curves at 100% PHEV penetrationc. Load voltage curves at 50% PHEV penetration
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Figure 3. 8 Voltage curves of node 34 for different charging algorithms at different PHEV penetration levels. 

Table 3.1 gives the total cost of the system with different control strategies. While incurring 

additional battery cost and somewhat reducing frequency regulation earnings, the proposed 

ESPSO approach results in the lowest charging cost by feeding power back to the grid at peak 

load hours. It turns out that the ESPSO approach is able to achieve the lowest total cost. 

Table 3. 1 Cost of Different Control Strategies for 20% PHEV Penetration Level 

 

Charging 

Cost ($) 

Battery Cost 

due to V2G ($) 

Regulation 

Earnings ($) 

Total 

Cost ($) 

Uncontrolled Charging 884.85 N/A 61.34 823.51 

PSO Smart Charging 157.84 N/A 61.34 96.50 

ESPSO Approach 113.61 16.49 40.41 89.69 
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Table 3.2 gives the peak load of the system with different control strategies and penetration 

level. It shows that the ESPSO approach can effectively reduce the peak load. So for a fixed 

transformer power capacity in a residential distribution system, the proposed ESPSO approach 

can integrate more PHEVs into the system without overloading the transformer. 

Table 3. 2 Peak Load of Different Control Strategies at Different PHEV Penetration Level (kW) 

 10% 20% 50% 100% 

Uncontrolled Charging 395 432 524 686 

PSO Smart Charging 372 372 394 452 

ESPSO Approach 351 355 381 446 
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4. A Game-theoretic Framework for Vehicle-to-Grid 

Frequency Regulation 

 Introduction 4.1

Various frameworks and algorithms have been proposed to apply V2G in frequency 

regulation [40]-[49]. In [40], the possibility for PHEVs to serve as primary frequency response 

unit is studied. PHEVs are used as supplementary LFC devices in [41]-[43]. Reference [44] 

applies particle swarm optimization and robust control to optimize the battery state of charge 

(SOC) of PHEVs during frequency regulation. Model predictive control (MPC) has been used by 

[45] to coordinate the control of PHEVs and wind turbine blade pitch angle to reduce the 

frequency fluctuation. Fuzzy control has been used to deal with the uncertainties of insolation 

and load variations in frequency regulation by [46]. The bidding of ancillary services has been 

studied in [47]-[49]. Reference [47] adopts fuzzy optimization to predict uncertainties of the 

electricity market. Reference [48] models the charging process of an EV as a Markov decision 

process (MDP) with uncertain electricity market prices. Differential game has been used by [49] 

to model the competitions between different control areas in a competitive ancillary service 

market. Smart charging algorithms are also studied by researchers to alleviate the impacts of 

PHEVs on power systems [26], [28]. However, few studies have taken both the frequency 

regulation and negative effects of PHEVs into consideration. 

To date, little research has been performed to formulate the control of PHEVs and the 

bidding of frequency regulation capacity as an integrated problem in a competitive electricity 

market. This chapter designs an LFC system with PHEVs and proposes a hierarchical game 

framework for PHEVs to optimize their charging process and participate in frequency regulation 
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simultaneously. In the proposed game framework, a non-cooperative game is proposed to guide 

the frequency regulation capacity bids of aggregators in the upper level and a Markov game is 

adopted at the lower level to coordinate the charging of PHEVs based on the regulation price 

from the upper level game. The games at the two levels cooperate with one another, and will 

finally evolve to an optimal state where the performance for both the frequency regulation and 

the charging process are optimized. 

 LFC System with PHEVs 4.2

Generally speaking, frequency control in power systems consists of primary frequency 

control, secondary frequency control and tertiary frequency control [42]. Secondary control is 

also known as LFC, which is contracted by TSO. In a synchronous area of power system, the 

frequency fluctuation is caused by imbalance of active power generation and consumption. 

Although there are various excellent load prediction methods available, the imbalance always 

exists due to the prediction error coupled with short-term load and wind power variations. The 

TSO dispatches Automatic Generation Control (AGC) signals to the generation units to regulate 

frequency in the system based on Area Control Error (ACE). ACE should be driven to zero for 

maintaining the balance of active power. Equation (4.1) depicts the calculation of ACE [42]:  

                   𝐴𝐶𝐸 = 𝐵∆𝑓 + ∆𝑃𝑡𝑖𝑒                                                   (4.1) 

The difference of the actual tie-line power and the scheduled tie-line power which can be 

expressed as follows: 

             ∆𝑃𝑡𝑖𝑒 = ∑(𝑃𝑡𝑖𝑒,𝑎𝑐𝑡 − 𝑃𝑡𝑖𝑒,𝑠𝑐ℎ )                                          (4.2) 

Usually LFC is provided by thermal power plants. For a controlled area of the power system, 

it is connected with other areas through tie lines. The imbalance of active power in the area can 

be compensated for by the power from other areas through tie lines. However, due to the limited 
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transmission capacity of tie lines, usually the imbalance can only be partially compensated for 

through the tie lines. The power plants will have to make continuous adjustments to keep the 

active power balanced. When the control system in these power plants detects the frequency 

deviation in the area, it will adjust the mechanical power input of generators to drive the 

frequency back to the normal value. 

We obtain the proposed LFC model by adding PHEV aggregators into a generalized LFC 

model [50], [51] as shown in Fig. 4.1.  Fig. 4.1 shows the block diagram of a control area with 𝑛 

conventional generator units and 𝐽 PHEV aggregators. The communication delay of the control 

system for the aggregators are model by a first order transfer function with time constant 𝑇𝐸𝑉. 
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Figure 4. 1 LFC model with PHEV aggregators. 

The dynamic relationship between the active power imbalance and frequency deviation is 

described in (4.3)-(4.5).  

∆𝑓(𝑠) =
1

2𝐻𝑠𝑦𝑠𝑠+𝐷𝑠𝑦𝑠
(∑ ∆𝑃𝑀,𝑖(𝑠)

𝑛
𝑖=1 + ∆𝑃𝐸𝑉(𝑠) − ∆𝑃𝑅𝐸𝑆(𝑠) − ∆𝑃𝐿(𝑠))          (4.3) 

∆𝑃𝑀,𝑖(𝑠) = 𝑀𝑖(𝑠) ∙ (∆𝑃𝐶,𝑖(𝑠) − ∆𝑃𝑃,𝑖(𝑠))                              (4.4) 
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∆𝑃𝑃,𝑖(𝑠) =
∆𝑓(𝑠)

𝑅𝑖
                                                    (4.5) 

Ramping rates of the generating units are affected by many factors such as generating unit 

type and capacity. The ramping rates of the conventional generating units are quite small 

compared with EVs.  The fossil-fired steam turbine units can respond to AGC signals at 3% per 

minute for a 30% excursion. Nuclear plants typically can respond at 3% per minute for about 10 

minutes within their regulation range. Hydro units have better response capabilities which can be 

regulated over their entire operating range within a minute [52]. However, EVs can cycle over 

their output range within a second. Thus, EVs are valuable resources for frequency regulation. 

The PHEV control system is shown in Fig. 4.2. In the diagram, every transformer is 

connected to a residential distribution network, and PHEVs are connected to each residential 

distribution network. PHEVs are contracted with aggregators in each distribution network. Based 

on the contract with PHEV owners, the aggregator builds another contract with TSO. After the 

contract is established, the aggregator performs its own algorithm as long as it can respond to the 

frequency regulation signal from the TSO. That is, the aggregator can control the PHEVs in its 

residential distribution network to flatten the load demand of the system in the lower layer, and it 

can respond to the signal from TSO to participate in the frequency regulation in the upper layer. 

The aggregators can act as players in the electricity market who aim at maximizing their own 

profits. For example, the aggregators can request PHEVs to charge when the electricity price is 

low, and contract a higher regulation capacity with TSO when the regulation price is high. The 

aggregators can act as both sellers and customers in the electricity market. When a PHEV 

provides the regulation service, the net energy exchange tends to be zero over a long time period 

and the cost related with the net energy exchange can be ignored compared with the profits 

obtained from providing frequency regulation [35].  Thus, when a PHEV participates in 
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frequency regulation, its state of charge (SOC) will not be affected too much over time. This is 

why regulation suppliers should be paid based on their regulation capacity rather than the net 

energy output. 

PHEV PHEV PHEV

PHEV PHEV PHEV

PHEV PHEV PHEV

TSO

Aggregator

Aggregator

Aggregator

               Control signal

               Information on PHEV
 

Figure 4. 2 Information flow of the LFC system with PHEVs. 

 

 Hierarchical Game Formulation 4.3

 System Architecture 4.3.1

It is noteworthy that most existing game theory based studies only consider the competition 

on one side, i.e., either the competition between aggregators in bidding frequency regulation 

capacity or the competition between the PHEVs in maximizing their personal profits. The 

proposed hierarchical game framework carries out optimization on both sides, and the frequency 

regulation capacity bids are associated with the control process of PHEVs in this holistic 

framework. The architecture of the proposed hierarchical game is shown in Fig. 4.3. At the upper 

level, the aggregators use the current available regulation capacities of their PHEVs to bid for 
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frequency regulation prices through a non-cooperative game. Then the Markov game at the lower 

level will coordinate the charging process of PHEVs and update the available regulation capacity 

of PHEVs to enable the aggregator to bid a more favorable regulation price. A more favorable 

regulation price will help the Markov game evolve to a better control strategy which in turn 

facilitates the aggregator in bidding for an even higher regulation price. The games in the two 

levels will keep evolving and finally reach an optimal point where the performances for both 

sides are optimized. 

Let 𝑨𝒈 = {1, 2, … , 𝑗, … , 𝐽} denote the set of aggregators in a control area and the set of 

PHEVs under the control of aggregator j is expressed as 𝑬𝒋 = {1, 2, … , 𝑖𝑗 , … , 𝐼𝑗}, 𝑗 ∈ 𝑨𝒈. In the 

competitive electricity market, the energy price and ancillary service prices are updated every 

hour. Thus, the system is optimized on an hourly basis and the planning time horizon is 

expressed as 𝑫 = {1, 2, … , ℎ, … ,𝐻}. 

TSO

Announced Price                 

and Available Regulation 

Capacity

Contracted Capacity

Aggregator 1 Aggregator j Aggregator J

PHEV 1 PHEV PHEV 1 PHEV PHEV 1 PHEV 

Non-Cooperative Game

Markov Game

Regulation 
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Available 

 Capacity

Regulation 
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Available 
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1
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j
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Figure 4. 3 Architecture of the proposed hierarchical game. 
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 Markov Game among PHEVs 4.3.2

In this subsection, we formulate the interaction among multiple PHEVs as a Markov game. 

Markov game [53] extends MDP to the multi-agent case. Each player in a Markov game can be 

modeled as an MDP. We assume that once a PHEV is plugged in the power grid, it will provide 

the aggregator with the information on the plug-in time ℎ𝑖𝑛,𝑖, the estimated plug-out time ℎ𝑜𝑢𝑡,𝑖 

and the required time to charge its battery to the desired SOC 𝑆𝑂𝐶𝑟,𝜋(ℎ). We also assume that 

the PHEV owners agree not to unplug the PHEVs before their scheduled plug-out time, or else 

they will face financial penalty.   

Theorem 4.1: In the proposed model, it is more cost effective to let PHEVs charge at the 

rated charging power.  

Proof: see the Appendix. 

Thus, PHEVs are controlled at three states: charging, discharging and idle. Then, we can 

define the charging process of a PHEV as a T-stage MDP Г𝑇𝑖 (𝑇𝑖 = ℎ𝑜𝑢𝑡,𝑖 − ℎ𝑖𝑛,𝑖). 

The state space of the MDP is naturally defined by the PHEV’s current state as: 

𝑆ℎ: = {𝑆𝑂𝐶𝑟,𝜋(ℎ), 𝑇𝑟(ℎ), 𝑝𝑒,ℎ, 𝑝𝐸𝑉𝑟,ℎ 
𝑗

 }                                    (4.6) 

where 𝑆𝑂𝐶𝑟,𝜋(𝑡) is the required time to charge its battery to the desired SOC at time step h under 

action strategy 𝜋 , 𝑇𝑟(ℎ)  is the remaining plug-in time at time step h, 𝑝𝑒,ℎ  is the real time 

electricity price and 𝑝𝐸𝑉𝑟,ℎ 
𝑗

 is the real time frequency regulation price for PHEVs controlled by 

aggregator j. 

We defined the action space of a PHEV as 𝑨 = {1, 0, −1}. Let 𝑎𝑠ℎ ∈ 𝐴
𝑠ℎ  denote the action 

of a PHEV at state 𝑠ℎ and 𝐴𝑠ℎ is the action space of state 𝑠ℎ. 𝑎𝑠ℎ = 1,0, −1 denotes actions of 

charging, idle and discharging respectively. To ensure that the PHEVs are charged to the desired 
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SOC at the time of departure, the action space is defined as follows: 

𝐴𝑆ℎ: = {

{1},                                      𝑖𝑓 𝑇𝑟(ℎ) ≤ 𝑆𝑂𝐶𝑟,𝜋(ℎ)

{1, 0}, 𝑖𝑓 𝑆𝑂𝐶𝑟,𝜋(ℎ) < 𝑇𝑟(ℎ) ≤ 𝑆𝑂𝐶𝑟,𝜋(ℎ) + 2

{1, 0, −1},                  𝑖𝑓 𝑇𝑟(ℎ) ≥ 𝑆𝑂𝐶𝑟,𝜋(ℎ) + 2

                       (4.7) 

The dynamics of the states is defined as follows: 

   𝑆𝑂𝐶𝑟,𝜋(ℎ + 1) = {

𝑆𝑂𝐶𝑟,𝜋(ℎ) − 1, 𝑖𝑓 𝑎𝑠ℎ = 1 

𝑆𝑂𝐶𝑟,𝜋(ℎ),      𝑖𝑓 𝑎𝑠ℎ = 0

𝑆𝑂𝐶𝑟,𝜋(ℎ) + 1, 𝑖𝑓 𝑎𝑠ℎ = −1

                             (4.8) 

𝑇𝑟(ℎ + 1) = 𝑇𝑟(ℎ) − 1                                             (4.9) 

In order to reduce peak load of the residential distribution network where the PHEV 

aggregator is located, a real time electricity price policy is developed based on system load 

demand to regulate the charging process of PHEVs. The price is defined as follows:  

𝑝𝑒,ℎ = 𝛼𝑒 ∙ 𝑃ℎ
𝑠𝑦𝑠

                                                (4.10) 

where 𝛼𝑒 is a price parameter, and 𝑃ℎ
𝑠𝑦𝑠

 is the load demand of the system at time slot ℎ. 

The load demand of the system 𝑃ℎ
𝑠𝑦𝑠

 is the total load of the residential distribution system 

which consists of both the base load and PHEV load. It can be expressed as follows: 

𝑃ℎ
𝑠𝑦𝑠

= 𝑃𝑏𝑎𝑠𝑒,ℎ + ∑ 𝑃𝑖,ℎ
𝐸𝑉𝐼𝑗

𝑖=1
                                    (4.11) 

where 𝑃𝑏𝑎𝑠𝑒,ℎ is the base load of the system at time slot h, 𝑃𝑖,ℎ
𝐸𝑉 is the charging power of the 𝑖𝑡ℎ 

PHEV at time slot h. 

The frequency regulation price 𝑝𝐸𝑉𝑟,ℎ 
𝑗

is provided by the upper level non-cooperative game 

of aggregators, and it will keep fixed during the iterations of the Markov game. 

Considering the battery degradation cost [31] due to V2G activities, the immediate reward 

is defined as: 
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𝑟ℎ(𝑠ℎ, 𝑎𝑠ℎ) =

{
 
 

 
 (𝑝𝑒,ℎ −

𝑐𝑏𝐸𝑏+𝑐𝐿

𝐿𝐶𝐸𝑏𝐷𝑂𝐷
)𝑃𝑟𝑎𝑡𝑒 , 𝑖𝑓 𝑎𝑠ℎ = −1

(𝑝𝐸𝑉𝑟,ℎ 
𝑗

−
𝑐𝑏𝐸𝑏+𝑐𝐿

𝐿𝐶𝐸𝑏𝐷𝑂𝐷
)𝑃𝑟𝑎𝑡𝑒 , 𝑖𝑓 𝑎𝑠ℎ = 0

−𝑝𝑒,ℎ𝑃𝑟𝑎𝑡𝑒 ,           𝑖𝑓 𝑎𝑠ℎ = 1

                         (4.12) 

where 𝑃𝑟𝑎𝑡𝑒 is the rated charging power. 

For a given policy 𝜋𝑖 = (𝑎𝑠0 , 𝑎𝑠1 , 𝑎𝑠2 , ⋯ , 𝑎𝑠𝑇−1), ∀𝑎𝑠ℎ ∈ 𝐴
𝑠ℎ , the total reward over the T 

stages is:  

𝑈𝑖,𝑠0
𝜋 ≔ ∑ 𝔼𝑠,𝜋[𝑟ℎ]

𝑇−1
ℎ=0                                               (4.13) 

To coordinate the set of 𝐼𝐽 (𝐼𝐽 = {1, 2, … , 𝑖𝑗 , … , 𝐼𝑗}) PHEVs controlled by aggregator j, we 

defined a Markov game 𝔾m as: 

 Players: The set of all 𝐼𝑗 PHEVs. 

 Strategies: For each PHEV, choose an action strategy 𝜋𝑖.  

 Payoffs: PHEV 𝑖 receives payment 𝑈𝑖(𝜋𝑖 , 𝜋−𝑖) as shown in (4.13). 

We adopt Nash equilibrium as the solution for the proposed Markov game. Nash 

equilibrium is the most important concept in game theory, which is a static stable strategy vector 

that no player has any incentive to unilaterally change its strategy from it. The definition of Nash 

equilibrium can be described as follows: 

Definition 4.1: For the proposed Markov game 𝔾m = {Ij, {πi}i∈Ij , {Ui,s0
π }

i∈Ij
}, a strategy 

tuple Ψ = {πi
∗}i∈Ij  constitutes a Nash equilibrium when no player can improve its utility by 

unilaterally deviating from its current strategy. It can be expressed as a set of inequalities [54]: 

𝑈𝑖,𝑠0
𝜋 (𝜋𝑖

∗, 𝜋−𝑖
∗ ) ≥ 𝑈𝑖,𝑠0

𝜋 (𝜋𝑖, 𝜋−𝑖
∗ ), ∀𝑖 ∈ 𝑬𝒋                                 (4.14) 

We can find the approximate Nash equilibrium (4.15) by using the best response strategy 

[55]: 

𝑈𝑖,𝑠0
𝜋 (𝜋𝑖

∗, 𝜋−𝑖
∗ ) ≥ 𝑈𝑖,𝑠0

𝜋 (𝜋𝑖, 𝜋−𝑖
∗ ) − 휀1, ∀𝑖 ∈ 𝑬𝒋                            (4.15) 
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where ε1 is a small positive constant which is set as ε1 = 0.05. 

Ultimately, the best response strategy is an iterative algorithm in which the players take 

turns to make decisions in a sequential manner. While having the knowledge of other players’ 

strategies 𝜋−𝑖, the best response strategy 𝜋𝑖
′ for the player i is: 

𝜋𝑖
′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑖{𝑈𝑖,𝑠0

𝜋 (𝜋𝑖, 𝜋−𝑖)}, ∀𝑖 ∈ 𝑬𝒋                                  (4.16) 

The best response strategy for a player 𝜋𝑖
′  can be obtained by applying the backward 

recursion algorithm [56], which is elaborated as follows: 

1) Set  𝑉−1(𝑠) = 0.  

  𝑎𝑠𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑠𝑇{𝑟𝑇(𝑠𝑇 , 𝑎𝑠𝑇) + ∑ 𝑝𝑇(𝑠𝑇−1|𝑠𝑇 , 𝑎𝑠𝑇)𝑉−1(𝑠𝑇−1)}𝑠𝑇−1          (4.17) 

𝑉0(𝑠𝑇) ≔ 𝑟𝑇(𝑠𝑇 , 𝑎𝑠𝑇) = 𝑚𝑎𝑥𝐴𝑠𝑇{𝑟𝑇(𝑠𝑇 , 𝑎𝑠𝑇) + 0}                     (4.18) 

2) For each time step n ( 𝑛 = 0,1,2,⋯ , 𝑇 − 1 ), the current best action strategy 𝜋 =

(𝑎𝑠0 , 𝑎𝑠1 , 𝑎𝑠2 ,⋯ , 𝑎𝑠𝑇−1) can be found by: 

𝑎𝑠𝑇−𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑠𝑇−𝑛{𝑟𝑇−𝑛(𝑠𝑇−𝑛, 𝑎𝑠𝑇−𝑛) +∑ 𝑝𝑇−𝑛(𝑠𝑇−𝑛−1|𝑠𝑇−𝑛, 𝑎𝑠𝑇−𝑛)𝑉𝑛−1(𝑠𝑇−𝑛−1)}
𝑠𝑇−𝑛−1

 

(4.19) 

𝑉𝑛(𝑠𝑇−𝑛) = 𝑟(𝑠𝑇−𝑛, 𝑎𝑠
𝑇−𝑛) + ∑ 𝑝𝑇−𝑛(𝑠𝑇−𝑛−1|𝑠𝑇−𝑛, 𝑎𝑠𝑇−𝑛)𝑉𝑛−1(𝑠𝑇−𝑛−1)𝑠𝑇−𝑛−1        (4.20) 

where 𝑝𝑇(𝑠
′|𝑠, 𝑎𝑠) is the transition probability from state 𝑠 to state 𝑠′ with action 𝑎𝑠. 

3) Output the best response strategy 𝜋𝑖
′ = (𝑎𝑠0 , 𝑎𝑠1 , 𝑎𝑠2 ,⋯, 𝑎𝑠𝑇−1). 

Once the Markov game reaches its equilibrium, the strategies of PHEVs are obtained and 

the frequency regulation capacity is calculated as follows: 

1) Define a vector 𝑰 = [𝑰𝟏 ···, 𝑰𝒊,···, 𝑰𝑰𝒋] to indicate idle states of PHEVs at each time slot as 

shown below: 

𝑰𝒊 = [𝐼𝑖
ℎ𝑖𝑛,𝑖 ,···, 𝐼𝑖

ℎ,···, 𝐼𝑖
ℎ𝑜𝑢𝑡,𝑖] ,⩝ 𝑖𝜖𝑬𝒋                                      (4.21) 
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where 

𝐼𝑖
ℎ = {

1,    𝑖𝑓𝑃𝐻𝐸𝑉 𝑖 𝑖𝑠 𝑖𝑛 𝑖𝑑𝑙𝑒 𝑠𝑡𝑎𝑡𝑒
0,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,⩝ ℎ𝜖𝑫; ⩝ 𝑖𝜖𝑬𝒋                     (4.22) 

2) Calculate the frequency regulation capacity as follows: 

𝐶𝑒𝑣,ℎ
𝑗

= ∑ 𝐼𝑖
ℎ · 𝑃𝑟𝑎𝑡𝑒 ,⩝ ℎ𝜖𝑫

𝑰𝒋
𝑖=1

                                     (4.23) 

The proposed best response algorithm is summarized in Algorithm 4.1 as follows: 

Algorithm 4.1 Best response algorithm for Markov game 

1: Input random initial strategies for all players and send the strategy information 

to the aggregator; 

2:  repeat 

3:       for i=1,…, IJ do  

4:          1) The aggregator selects a PHEV i and provides the PHEV with the 

current strategies of other PHEVs 𝜋−𝑖; 

 5:        2) The PHEV finds its current best response strategy 𝜋𝑖
′ based on (4.16). 

Then the player provides the aggregator with its current best response strategy 𝜋𝑖
′; 

 6:              3) The aggregator moves to the next player; 

 7:      end for 

 8: until the approximate Nash equilibrium (4.15) is reached. 

 9: Calculate the frequency regulation capacity 𝐶𝑒𝑣,ℎ
𝑗

 at each time step and send it 

to the aggregator for frequency regulation capacity bids; 

10: Output control strategies and stop. 
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 Non-Cooperative Game of Aggregators 4.3.3

The aggregators bid with each other to sell regulation capacity to the TSO. They aim at 

selling the regulation capacity at a higher price to maximize their own welfare. Thus, we can 

formulate the competition of aggregators as a non-cooperative game as follows: 

 Players: The set of all J aggregators. 

 Strategies: For each aggregator, choose frequency regulation price 𝑝𝐴𝑟,ℎ
𝑗

 at any time slot. 

 Payoffs: The aggregator j receives payment 𝑈𝐴,ℎ 
𝑗
(𝑝𝐴𝑟,ℎ

𝑗
, 𝑝𝐴𝑟,ℎ
−𝑗

) as shown in (4.24). 

The utility function of an aggregator can be expressed as follows: 

𝑈𝐴,ℎ 
𝑗

= {
𝑝𝐴𝑟,ℎ
𝑗

𝐶𝑐𝑜𝑛,ℎ
𝑗

− 𝛽(𝐶𝑐𝑜𝑛,ℎ
𝑗

− 𝐶𝑒𝑣,ℎ
𝑗
)
2
, 𝑟ℎ
𝑗
≤ 1

𝑝𝐴𝑟,ℎ
𝑗

𝐶𝑐𝑜𝑛,ℎ
𝑗

,                                         𝑟ℎ
𝑗
> 1

                         (4.24) 

where 𝐶𝑒𝑣,ℎ
𝑗

 is the regulation capacity provided by PHEVs, 𝐶𝑐𝑜𝑛,ℎ
𝑗

 is the regulation capacity 

contracted with TSO, 𝑝𝐴𝑟,ℎ
𝑗

is the frequency regulation price bids by the aggregator and 𝛽 is the 

parameter of the penalty function. 

The capacity-to-contract ratio is defined in (4.25). It indicates how attractive the 

aggregator’s price would be: 

𝑟ℎ
𝑗
= 𝐶𝑒𝑣,ℎ

𝑗
𝐶𝑐𝑜𝑛,ℎ
𝑗

⁄                                                   (4.25) 

After the bidding process, the aggregator will provide a frequency regulation price for 

PHEVs by: 

𝑝𝐸𝑉𝑟,ℎ 
𝑗

=
𝑈𝐴,ℎ 
𝑗

𝐶𝑒𝑣,ℎ
𝑗 =

{
 
 

 
 𝑝𝐴𝑟,ℎ

𝑗
𝐶𝑐𝑜𝑛,ℎ
𝑗

−𝛽(𝐶𝑐𝑜𝑛,ℎ
𝑗

−𝐶𝑒𝑣,ℎ
𝑗

)
2

𝐶𝑒𝑣,ℎ
𝑗 ,  𝑟ℎ

𝑗
≤ 1

𝑝𝐴𝑟,ℎ
𝑗

𝐶𝑐𝑜𝑛,ℎ
𝑗

𝐶𝑒𝑣,ℎ
𝑗   ,                            𝑟ℎ

𝑗
> 1

                         (4.26) 

The strategy of TSO is to contract regulation capacities with PHEV aggregators. In a 
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competitive frequency regulation market, the TSO may assign regulation capacities to 

aggregators at each controlled time slot based on the frequency regulation prices provided by 

aggregators. Assume the total regulation capacity contracted with all the 𝐽  aggregators in a 

control area is 𝑥ℎ , the contracted regulation capacity of the aggregator 𝑗  at time ℎ  can be 

expressed as: 

𝐶𝑐𝑜𝑛,ℎ
𝑗

= 𝑦ℎ
𝑗
𝑥ℎ, ∀𝑗 ∈ 𝑨𝒈, ∀ℎ ∈ 𝑫                                      (4.27) 

where 𝑦ℎ
𝑗
 is the percentage of regulation capacity contracted with aggregator 𝑗 at time step h, 

0 ≤ 𝑦ℎ
𝑗
≤ 1 and ∑ 𝑦ℎ

𝑗𝐽
𝑗=1 = 1. 

Thus, we can denote the strategy of TSO as: 

𝑌ℎ = [𝑦ℎ
1, 𝑦ℎ

2, … , 𝑦ℎ
𝑗
, … , 𝑦ℎ

𝐽], ∀𝑗 ∈ 𝑨𝒈, ∀ℎ ∈ 𝑫                            (4.28) 

The welfare for TSO buying frequency regulation capacity from the aggregator 𝑗 can be 

described as: 

𝑈𝑇𝑆𝑂,ℎ
𝑗

= {
𝑅𝑗𝐶𝑐𝑜𝑛,ℎ

𝑗
− 𝛼(𝐶𝑐𝑜𝑛,ℎ

𝑗
− 𝐶𝑒𝑣,ℎ

𝑗
)
2
− 𝑝𝐴𝑟,ℎ

𝑗
𝐶𝑐𝑜𝑛,ℎ
𝑗

, 𝑟ℎ
𝑗
≤ 1

𝑅𝑗𝐶𝑐𝑜𝑛,ℎ
𝑗

− 𝑝𝐴𝑟,ℎ
𝑗

𝐶𝑐𝑜𝑛,ℎ
𝑗

,                                        𝑟ℎ
𝑗
> 1

               (4.29) 

where 𝑅𝑗  is a positive parameter for the welfare of the TSO in buying frequency regulation 

capacity from the aggregator 𝑗 , 𝛼, 𝛾 and 𝛽  are positive parameters for frequency regulation 

performance penalty, 𝛼 = 𝛾 − 𝛽, 𝛽 < 𝛾, 𝑅𝑗 > 𝑝𝐴𝑟,ℎ
𝑗

. 

Based on the concept of replicator dynamics in evolutionary games [57], we propose a 

strategy dynamics to guide the strategy evolution of the TSO as follows:                                 

𝜕𝑦ℎ
𝑗

𝜕𝑡
= 𝛿𝑦ℎ

𝑗
(𝑈𝑇𝑆𝑂,ℎ

𝑗
𝐶𝑐𝑜𝑛,ℎ
𝑗

⁄ − �̅�𝑇𝑆𝑂,ℎ), ∀𝑗 ∈ 𝑨𝒈, ∀ℎ ∈ 𝑫                   (4.30) 

where 𝛿  is the learning rate and �̅�𝑇𝑆𝑂,ℎ  is the average utility per unit contracted regulation 

capacity of the TSO as shown below: 
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�̅�𝑇𝑆𝑂,ℎ = ∑ 𝑦ℎ
𝑗𝐽

𝑗=1 𝑈𝑇𝑆𝑂,ℎ
𝑗

𝐶𝑐𝑜𝑛,ℎ
𝑗

⁄                                           (4.31) 

The optimal strategy 𝑌ℎ
∗ = [𝑦ℎ

1∗, 𝑦ℎ
2∗, … , 𝑦ℎ

𝑗∗
, … , 𝑦ℎ

𝐽∗] of the TSO can be obtained when the 

strategy evolves to a stable state described as follows: 

𝜕𝑦ℎ
𝑗

𝜕𝑡
= 0, ∀𝑗 ∈ 𝑨𝒈                                                     (4.32) 

As the system is controlled at discrete time slots, the continuous strategy dynamics is 

approximated using a discrete strategy dynamics as follows: 

𝑦ℎ
𝑗(𝑛 + 1) = 𝑦ℎ

𝑗(𝑛) + 𝛿𝑦ℎ
𝑗(𝑛) (𝑈𝑇𝑆𝑂,ℎ

𝑗
(𝑛) 𝐶𝑐𝑜𝑛,ℎ

𝑗
(𝑛)⁄ − �̅�𝑇𝑆𝑂,ℎ(𝑛))        (4.33) 

The stopping criterion for the strategy dynamics is: 

|𝑈𝑇𝑆𝑂,ℎ
𝑗

(𝑛) 𝐶𝑐𝑜𝑛,ℎ
𝑗

(𝑛)⁄ − �̅�𝑇𝑆𝑂,ℎ(𝑛)| < 휀2                                (4.34) 

where ε2 is a small positive constant which is set as ε2 = 2.0. 

Algorithm 4.2 The iterative algorithm for the TSO 

1: Input the frequency regulation price 𝑝𝐴𝑟,ℎ
𝑗

 and the available capacity 𝐶𝑒𝑣,ℎ
𝑗

 provided 

by aggregators; 

2:   n=1; 

3:     repeat 

4:         for j=1,…, J do 

5:            Calculate the utility of 𝑈𝑇𝑆𝑂,ℎ
𝑗 (𝑛) by (4.29);  

6:        end for 

7:           Calculate the average utility �̅�𝑇𝑆𝑂,ℎ(𝑛) by (4.31); 

8:        for j=1,…, J do 

9:            Update the strategy according to (4.33) 
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10:      end for 

11:      n=n+1. 

12:   until (4.34) is satisfied. 

13: Calculate the contracted capacities 𝐶𝑐𝑜𝑛,ℎ
𝑗

 and contract with aggregators. 

14: Output control strategies and stop. 

It is assumed that TSO knows the dynamic range of the regulation capacity of all the 

aggregators in a control area, thus it can assign a reasonable amount of regulation capacity 𝑥ℎ 

among aggregators and leave the rest regulation capacity demand to other generation units. This 

assumption guarantees that the contracted regulation capacities for aggregators will converge to 

the optimal point which maximizes the utility of TSO. Thus, during the convergence process of 

the non-cooperative game, we can assume that the TSO will contract a power capacity with the 

aggregator which will maximize the utility of the TSO as shown in (4.35). This assumption will 

not influence the convergence of the game as the game will finally converge to a point where the 

utility of TSO is maximized. 

𝐶𝑐𝑜𝑛,ℎ
𝑗∗

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝐶𝑐𝑜𝑛,ℎ
𝑗 (𝑈𝑇𝑆𝑂,ℎ

𝑗
) = 𝐶𝑒𝑣,ℎ

𝑗
+
𝑅𝑗−𝑝𝐴𝑟,ℎ

𝑗

2𝛼
                     (4.35) 

Substituting 𝐶𝑒𝑣,ℎ
𝑗

= 𝐶𝑐𝑜𝑛,ℎ
𝑗

−
𝑅𝑗−𝑝𝐴𝑟,ℎ

𝑗

2𝛼
 into (4.24), we can get 

𝑈𝐴,ℎ 
𝑗

= 𝑝𝐴𝑟,ℎ
𝑗

𝐶𝑐𝑜𝑛,ℎ
𝑗

−
𝛽

4𝛼2
(𝑅𝑗 − 𝑝𝐴𝑟,ℎ

𝑗
)2, 𝑟ℎ

𝑗
≤ 1                         (4.36) 

𝑑𝑈𝐴,ℎ 
𝑗

𝑑𝑝
𝐴𝑟,ℎ
𝑗 = 𝐶𝑐𝑜𝑛,ℎ

𝑗
+ 𝑝𝐴𝑟,ℎ

𝑗 𝑑𝐶𝑐𝑜𝑛,ℎ
𝑗

𝑑𝑝
𝐴𝑟,ℎ
𝑗 +

𝛽

2𝛼2
(𝑅𝑗 − 𝑝𝐴𝑟,ℎ

𝑗
), 𝑟ℎ

𝑗
≤ 1                (4.37) 

Apply 𝑑𝑈𝐴,ℎ 
𝑗

𝑑𝑝𝐴𝑟,ℎ
𝑗

⁄ = 0 , we can obtain 𝐶𝑐𝑜𝑛,ℎ
𝑗

=
(𝛼+𝛽)𝑝𝐴𝑟,ℎ

𝑗
−𝛽𝑅𝑗

2𝛼2
 and 𝑟ℎ

𝑗∗
=

𝐶𝑒𝑣,ℎ
𝑗

𝐶𝑐𝑜𝑛,ℎ
𝑗 =

(2𝛼+𝛽)𝑝𝐴𝑟,ℎ
𝑗

−(𝛼+𝛽)𝑅𝑗

(𝛼+𝛽)𝑝𝐴𝑟,ℎ
𝑗

−𝛽𝑅𝑗
. Thus, we can obtain the following expression:  
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𝑑𝑈𝐴,ℎ 
𝑗

𝑑𝑝𝐴𝑟,ℎ
𝑗 {

< 0,  𝑟ℎ
𝑗
> 𝑟ℎ

𝑗∗
 

> 0,   𝑟ℎ
𝑗
< 𝑟ℎ

𝑗∗
 
                                                 (4.38) 

According to (4.38), aggregator j will increase the regulation price when 𝑟ℎ
𝑗
< 𝑟ℎ

𝑗∗
 and will 

decrease the regulation price when 𝑟ℎ
𝑗
> 𝑟ℎ

𝑗∗
. Thus, we can design an iterative algorithm to find 

the Nash equilibrium as follows: 

𝑝𝐴𝑟,ℎ
𝑗 (𝑚 + 1) = 𝑝𝐴𝑟,ℎ

𝑗 (𝑚) + 𝜎(𝑟ℎ
𝑗∗
−  𝑟ℎ

𝑗
(𝑚))                           (4.39) 

where σ is the learning rate. 

The algorithm stops when (4.40) is satisfied: 

| 𝑟ℎ
𝑗(𝑚) − 𝑟ℎ

𝑗∗
| < 휀3                                                 (4.40) 

where 휀3 is a small positive constant which is set as ε3 = 0.01. 

After the Nash equilibrium for the non-cooperative game is reached, the frequency 

regulation price for PHEVs is updated according to (4.26). Then the Markov game will 

coordinate the changing process of PHEVs and update the available frequency regulation 

capacity 𝐶𝑒𝑣,ℎ
𝑗

 for aggregators. This iterative process will continue until (4.41) is satisfied. 

|𝑝𝐸𝑉𝑟,ℎ 
𝑗 (𝑘 + 1) − 𝑝𝐸𝑉𝑟,ℎ 

𝑗 (𝑘)| < 휀4                                       (4.41) 

where 휀4 is a small positive constant which is set as ε4 = 0.2. 

Algorithm 4.3 The iterative algorithm for the proposed hierarchical game. 

1: Input random initial frequency regulation prices 𝑝𝐴𝑟,ℎ
𝑗

 announced by 

aggregators; 

2: k=1 

3:   repeat 

4:     Execute Algorithm 4.1; 
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5:     Provide aggregators with available regulation capacity 𝐶𝑒𝑣,ℎ
𝑗

 at each time 

slot; 

6:       for h=1,…, H do 

7:       m=1; 

8:             repeat 

9:                   for j=1,…, J do 

10:               1) Aggregator j provides TSO with announced frequency regulation 

price 𝑝𝐴𝑟,ℎ
𝑗

 and available regulation capacity 𝐶𝑒𝑣,ℎ
𝑗

; 

11:                  2) Calculate  𝑟ℎ
𝑗
 according to (4.25); 

12:                  3) Update regulation price according to (4.39); 

 13:                end for 

14:                 Execute Algorithm 4.2; 

15:                TSO provides contracted regulation capacities 𝐶𝑐𝑜𝑛,ℎ
𝑗

 to aggregators; 

16:                  m=m+1; 

17:             until (4.40) is satisfied; 

18:        end for 

19:    Calculate frequency regulation price for PHEVs based on (4.26); 

20:        k=k+1; 

21: until (4.41) is satisfied; 

22: Output control strategies and stop. 

 

 Case Studies 4.4



 

51 

 

Simulations are carried out to validate the proposed hierarchical game framework and the 

effectiveness of the proposed algorithms. As shown in Fig. 4.4, we adopt the well-known IEEE 

39-bus test system to simulate the frequency control performance. The test system consists of 10 

generators, 34 transmission lines, 12 transformers and 19 loads. The test system is divided into 

three control areas. The total generation includes 842 MW conventional power and 69 MW wind 

power. The total amounts of load in Area 1, Area 2 and Area 3 are 265.5, 233 and 125 MW, 

respectively. In the test system, we use G1 in Area 1, G9 in Area 2 and G4 in Area 3 as LFC 

units. The parameters for the generators, transformers, lines and loads of the test system are 

obtained from [58]. 
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Figure 4. 4 Single line diagram of 39-bus test system. 

In this simulation study, the test system is updated by four V2G residential distribution 

networks and one wind farm in Area 1, three V2G residential distribution networks and one wind 
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farm in Area 2, two V2G residential distribution networks and one wind farm in Area 3. As the 

three control areas are almost identical and have the same control system, we choose control area 

3 as a demonstration of the performance of the proposed hierarchical game approach. There are 

two V2G residential distribution networks in the control area 3. Each V2G residential area has 

one PHEV aggregator to manage the PHEVs located in this residential area. Assume V2G 

residential area 1 and V2G residential area 2 has 1200 households and 2400 households 

respectively. Assume each house has two vehicles and the PHEV penetration level is 10%. 

Therefore, aggregator 1 controls 240 PHEVs and aggregator 2 serves 480 PHEVs. The non-

PHEV load profile of a house in winter is scaled from [38]. In the simulation study, all the 

PHEVs are assumed to be the Chevrolet Volt with the battery capacity of 16 kWh. The charging 

level of PHEVs is set as AC Level 2 with 3.6 kW. The control time horizon is 24 hours. 

Uncontrolled charging and particle swarm optimization (PSO) based smart charging are used as 

the benchmarking control strategies. The driving pattern and the SOC of PHEVs are generated 

based on the model in Chapter 2.  

Fig. 4.5 (a) shows the convergence process of the TSO’s strategy with algorithm 4.2. It is 

clear that the strategy of TSO will evolve to a stable state after receiving the announced 

frequency regulation prices from the aggregators. The convergence process of the non-

cooperative game is shown in Fig. 4.5 (b). The game converges after several iterations and the 

capacity-to-contract ratio reaches a stable state as described in (4.40).  
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Figure 4. 5 The convergence process of the hierarchical game. 

Fig. 4.6 shows the fluctuations of load demand and wind power in the test system. 

Simulations are carried out for four case studies. Case 1: system without PHEVs; Case 2: system 

with uncontrolled PHEVs; Case 3: PHEVs in the system with PSO smart charging; and Case 4: 

PHEVs in the system with the proposed hierarchical game approach. The RMS value of 

frequency deviation calculated by (4.42) is used as an index to illustrate the performance of the 

frequency regulation:  

∆𝑓𝑅𝑀𝑆 = √
1

𝑁
∑ ∆𝑓𝑖

2𝑁
𝑖=1                                                 (4.42) 

where 𝑁 is the number of samples and ∆𝑓 is the frequency deviation.  
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Figure 4. 6 (a) Daily load fluctuation in the control area; (b) Daily wind power fluctuation in the control area. 

The simulation results are shown in Figs. 4.7-4.9. Fig. 4.7 shows the frequency fluctuation 

of the system in four case studies. As can be seen from Fig. 4.7(a), when there is no PHEV in the 

system, the frequency fluctuation is large. When there are PHEVs in the system, the frequency 

fluctuation is smaller and the proposed hierarchical game approach exhibits the best performance 

as shown in Fig. 4.7(b),(c),(d). Fig. 4.8 shows the RMS value of frequency deviation in every 

three hours. In the figure,  ∆𝑓𝑅𝑀𝑆  for Case 1 and Case 4 is about 0.028 Hz and 0.009 Hz 

respectively for the entire time span of 24 hours. For Case 2, ∆𝑓𝑅𝑀𝑆 is quite the same as Case 4 

except for the time period between 12 pm and 9 pm. In this time span, Case 2 shows an inferior 

performance which is also reflected in Fig. 4.7(b). The performance of Case 3 is better than Case 
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2 but is still inferior as compared with Case 4. This result can be explained by the availability of 

regulation capacity as shown in Fig. 4.9. In Case 2, the charging process of PHEVs is not 

controlled. PHEVs are charged immediately when they arrive home, so most PHEVs are in the 

charging state in the afternoon and evening which makes the regulation capacity quite small. In 

Case 3, the PSO based smart charging is able to shift some charging load to off-peak hours and 

increase the regulation capacity during the peak hours from 3 pm to 9 pm. Its performance is still 

inferior as compared with the proposed approach in Case 4 because it does not have an optimal 

regulation capacity bidding mechanism. As shown in Fig. 4.9, the regulation capacity decreases 

below 0.5 MW from 12 pm to 9 pm under uncontrolled charging. Therefore, the regulation 

capacity is not adequate in the time span between 12 pm and 9 pm in Case 2. Also, the regulation 

capacity is not adequate for Case 3 between 12 pm to 3 pm. When the hierarchical game 

approach is used, the charging sequences of PHEVs are optimally scheduled according to the 

regulation capacity bidding mechanism. With the hierarchical game approach, aggregators can 

attract more PHEVs to provide frequency regulation when the regulation capacity is inadequate 

by bidding higher regulation prices for the PHEVs.  As shown in Fig. 4.9, the regulation capacity 

is larger than 0.5 MW for the entire time span in Case 4. It can be concluded that the proposed 

hierarchical game approach leads to the best performance in frequency regulation. The V2G 

power for frequency regulation of Case 4 is shown in Fig. 4.10. 
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Figure 4. 7 Frequency fluctuation of the control area. 

 

Figure 4. 8 RMS value of frequency deviation in every three hours. 
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(a) Frequency fluctuation with no PHEV in the system
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(b) Frequency fluctuation with PHEV penetration under uncontrolled charging
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(c) Frequency fluctuation with PHEV penetration under PSO smart charging
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(d) Frequency fluctuation with PHEV penetration under hierarchical game approach
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Figure 4. 9 Regulation capacity of PHEVs in the control area. 

 

Figure 4. 10 V2G power of the aggregated PHEV for frequency regulation. 

The load demand and the real-time electricity price of the residential area 1 in the control 

area are shown in Fig. 4.11 and Fig. 4.12, respectively. It can be seen that the proposed approach 

is able to flatten the load demand curve. Also, the proposed approach can lower the electricity 

price by reducing the peak load demand. Table 4.1 shows the cost of all PHEVs using different 

control strategies during a 24-hour time horizon. The proposed hierarchical game approach leads 

to a lower cost by charging at off-peak hours and bidding higher frequency regulation prices.  
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Figure 4. 11 Load demand of the residential area 1. 

 

Figure 4. 12 Electricity price curves for PHEVs in residential area 1. 

Table 4. 1 Costs of All the PHEVs in the Control Area 

         Criteria 

Approaches    

Charging 

Cost ($) 

Regulation 

Earnings ($) 

Total Cost 

($) 

Uncontrolled Charging 1178.34 154.25 1024.09 

PSO Smart Charging 804.36 215.32 589.04 

Hierarchical Game  655.43 241.56 413.87 
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5. Enabling Reliability-Differentiated Service in 

Residential Distribution Networks with PHEVs 

 Introduction  5.1

With the increasing deployment of PHEV fleets in the distribution system, their impact on 

the distribution system reliability cannot be neglected. The intermittent charging load of PHEVs 

may overload the transformers and transmission lines, which will increase the power system risk 

if it is not properly controlled. Various studies have been conducted on the optimal management 

of PHEVs [26]-[28], [59]-[66]. Among these methodologies, game-theoretic approaches [64]-[66] 

received much attention from researchers recently due to their capability in decentralized 

modeling and control. Instead of maximizing the total utility of the system, the game-theoretic 

approach ensures that the utility of each player is maximized. As a result, the game-theoretic 

approach based business model is more suitable for real-world implementations. This chapter 

proposed a hierarchical game approach to coordinate the charging process of PHEVs in a 

reliability-differentiated system. The proposed hierarchical game features a two-level structure. 

At the higher level, the management of V2G capacity of PHEVs is formulated as an evolutionary 

game [67]. Thus, each PHEV can find a balance of using the V2G capacity for peak load shaving 

and ancillary services when the evolutionary equilibrium is reached. At the lower level, a non-

cooperative game is proposed to coordinate the charging process of PHEVs.  

 

 System Modeling 5.2

 Reliability-Differentiated System Modeling 5.2.1
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1) The framework for implementing reliability- differentiated service into residential 

distribution network 

The structure of the proposed reliability-differentiated service is illustrated in Fig. 5.1. The 

household customers in a residential distribution grid are viewed as a class of customers 

subscribed to a certain level of reliability. In the wholesale market, the control center provides 

the information on the reliability level and total load demand of the residential area to the 

Independent System Operator (ISO), and this residential area is assigned with a locational 

marginal price (LMP) which can be derived according to reference [10]. This LMP will be 

further differentiated based on the different reliability requirements from the customers in the 

residential area. In the retail market, the households provide their desired priority indexes and 

load demand to the control center, and the control center will assign the reliability differentiated 

electricity prices to each household and provide a spinning reserve price for the distributed 

resources in this area. 
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Figure 5. 1 Reliability-differentiated service framework. 



 

61 

 

In the proposed framework, households can subscribe to different reliability levels by 

selecting a value of priority index R. Households with higher values of R will have priority in 

continuing to be supplied by spinning reserves during a power outage. To evaluate the reliability 

service quality of households, this study develops multiple reliability indices at the household 

level. Three reliability indices for household are defined according to the interruption frequency, 

duration and magnitude, which are household interruption frequency index (HIFI), household 

interruption duration index (HIDI), and household interruption magnitude index (HIMI). HIFI 

indicates the average instances of interruption per year with the unit of interruptions/year. HIDI 

is the outage duration of the household suffered each year with the unit of hours/year. HIMI is 

the maximum interrupted power magnitude for each household with the unit of kW. 

2) Reliability-differentiated pricing 

The proposed reliability-differentiated pricing is designed based on the paid-for-

performance mechanism [68], which implies the household with higher reliability request pays a 

higher electricity price. Also the proposed reliability-differentiated pricing is intended to 

encourage the customers to consume electricity wisely so as to enhance the system reliability by 

incorporating the risk of the residential distribution system into the pricing mechanism. 

We formulate the operational reliability of the residential network by considering the real-

time outage rate of the distribution transformer. According to reference [69], the transformer 

aging failure under various load conditions can be expressed as (5.1).  

Paf = 1 − e
(
TLOI,total

Ce

15000
θ0+273

)

β

−(
TLOI,total+∆te

Ce

15000
θ0+273

)

β

                                  (5.1) 

where TLOI,total is the loss of insulation life during a period, 𝜃0is the reference temperature of 

transformer, 𝐶 and 𝛽 are constant values depending on the end-of-life failure of transformer. 
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Assuming the random failure probability is Prand, the hybrid transformer failure probability 

model can be expressed as follows: 

Pf = 1 − (1 − Prand) × (1 − Paf)                                   (5.2) 

where Prand is the transformer random failure rate, Paf is the transformer aging failure rate. 

The mathematical model for calculating the current-dependent overload protection outage 

rate can be obtained through (5.3)-(5.5) [69]: 

Ppt(I) =

{
 
 

 
 

Punreq,                if I < Ipe(1 − εI)

Preq ∫ f(Ipk)dIpk + Punreq ∫   
Ipe(1+εI)

I

I

Ipe(1−εI)

f(Ipk)dIpk, if Ipe(1 − εI) < I < Ipe(1 + εI)

Preq,                  if I > Ipe(1 + εI)

                   (5.3) 

f(Ipk) = {

0,    if Ipk < Ipe(1 − εI) or Ipk > Ipe(1 + εI)

e
(−( Ipk−Ipe)

2
2σ2⁄ )

αIσ√2π
, ifIpe(1 − εI) < Ipk < Ipe(1 + εI)

                (5.4) 

αI = ϕ(
εIIpe

σ
) − ϕ (

−εIIpe

σ
)                                     (5.5) 

where 𝑃𝑝𝑡  is the overload protection outage rate, 𝑃𝑢𝑛𝑟𝑒𝑞  is the outage rate when the overload 

protection is not required, 𝑃𝑟𝑒𝑞 is the outage rate when the overload protection is required, 𝐼𝑝𝑘 is 

the pick-up current for the protection relay, 𝐼𝑝𝑒  is the expectation value of 𝐼𝑝𝑘 , and ϕ is the 

cumulative distribution function of the standard normal distribution. 

Then, the real-time transformer outage rate can be built by integrating the failure rate and 

overload protection rate as follows: 

Ptrans
t = 1 − (1 − Pf(t)) × (1 − Ppt(It))                               (5.6) 

    We define the real-time potential interruption cost PICt as shown in (5.7), which is a 

scaled value of the expected loss of load.  

PICt = γPtrans
t (Psys

t − PAnci
t )                                             (5.7) 
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where 𝑃𝑡𝑟𝑎𝑛𝑠
𝑡  is the real-time transformer outage rate,𝑃𝑠𝑦𝑠

𝑡  is the load demand of the system at 

time slot 𝑡 , and 𝑃𝐴𝑛𝑐𝑖
𝑡  is the real-time ancillary service capacity. 

The total cost of electricity can be expressed as follows: 

∑ pi,tqi,t
n
i=1 = qTot,t ∙ LMPt + PICt,    ∀i ∈ N, ∀t ∈ T                        (5.8) 

where 𝑝𝑖,𝑡  is the reliability-differentiated price for household i,  𝑞𝑖,𝑡  is the load demand of 

household i, 𝑞𝑇𝑜𝑡,𝑡 is the load demand of all households, and 𝐿𝑀𝑃𝑡  is the real-time locational 

marginal price. 

Considering the different priority indexes of households, the reliability-differentiated 

pricing for a residential distribution network with n household is described as follows: 

pi,tqi,t = qi,tLMPtRi + ∑ qj,tLMPt
1−Rj

n−1

n
j=1
j≠i

+
qi,t

qTot,t
PICt, ∀i ∈ N, ∀t ∈ T          (5.9) 

where Ri is the priority index for household i. 

The reliability-differentiated pricing scheme for the households can be derived by solving 

(5.9). The household with a higher priority index will be assigned with a higher electricity price. 

When there is a shortage of generation capacity, those with lower priority indexes will be shed or 

cut off. When an interruption occurs in the distribution system (e.g., due to a transformer failure), 

part of the households under this transformer can still be supplied by distributed spinning 

reserves such as PHEVs. Similarly, only those with higher priority indexes can be continuously 

supplied. The marginal spinning reserve (MSR) price can be calculated as follows: 

MSRt =
PICt

PAnci
t                                                       (5.10) 

The proposed reliability-differentiated pricing model is shown in Fig. 5.2. As depicted in 

the figure, the reliability-differentiated prices for households are affected by their priority 

indexes, the LMP and the current potential interruption cost (PIC). PHEVs can affect the 
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reliability of the distribution system by its charging and discharging activities. As mentioned 

previously, the load demand will affect the failure rate of the transformer in the system, so the 

PHEVs’ load demand profile will inevitably impact the current PIC. Then, the reliability-

differentiated electricity price and marginal spinning reserve price are affected accordingly, and 

these changes in electricity price will in turn affect the optimal management of PHEVs. It is 

evident that achieving the optimal management of PHEVs demands a lower charging cost which 

is equivalent to having a lower PIC, and a lower PIC indicates a more reliable system. So it can 

be concluded that under the proposed reliability-differentiated pricing theory, achieving optimal 

management of the PHEVs is equivalent to optimizing the system reliability. 
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Figure 5. 2 The proposed reliability-differentiated pricing model. 

 Mathematical Modeling of PHEVs 5.2.2

1) Modeling the charging process of PHEVs 

We use vectors 𝐓 = [1,···, t,···, T]  and 𝐌 = [1,···, d,···, M]  to indicate the charging time 

horizon and the numbering of PHEVs. In this study, vectors are denoted with boldface letters. 

The driving pattern and load demand of PHEVs are obtained from the results in Chapter 2. Then 
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we can generate the plug-in time tin,d, plug-out time tout,d and the required energy Ereq,d of each 

PHEV in the system. It is more cost-effective to let PHEVs charge at the rated charging power so 

that more revenues can be earned by the V2G activities [27]. Thus, PHEVs can be controlled at 

three states: charging, discharging and idle. In this study, PHEVs are utilized to provide the 

ancillary services when they are in idle state. 

V2G technology enables PHEVs to sell the energy back to the grid when needed. So 

PHEVs can use their V2G capacities to either perform peak load shaving or provide ancillary 

services (e.g., frequency regulation and spinning reserve) to the power system.   

The V2G capacity of the  dth PHEV can be expressed as: 

VCapd = (tout,d − tin,d)Prate
d − Ereq,d,⩝ dϵM                         (5.11) 

Then the total V2G capacity of all the PHEVs is: 

    VCaptot = ∑ VCapd
M
d=1                                           (5.12) 

The charging strategy can be expressed as a vector k: 

𝐤𝐝 = [kd
tin,d ,···, kd

t ,···, k
d

tout,d] ,⩝ dϵ𝐌                                 (5.13) 

where kd
t = 1 means the dth PHEV is in charging state at time slot t, kd

t = −1 implies the dth 

PHEV is in discharging state at time slot t, and kd
t = 0 indicates the PHEV is in idle state at time 

slot t. 

The required charging energy constraint is described in (5.14): 

Ereq,d = ∑ kd
t · Prate

d ,⩝ dϵ𝐌
tout,d
t=tin,d

                                 (5.14) 

The real-time state of charge (SOC) of a PHEV is indicated in (5.15): 

SOC
d

tx,d = SOC
d

tin,d + ∑
kd
t ·Prate

d

Capd
,⩝ dϵ𝐌, tx,d ≤

tx,d
t=tin,d

tout,d                (5.15) 

To protect battery from early degradation, the battery SOC should be bounded as follows: 
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SOCmin,d < SOCd
t < SOCmax,d,⩝ dϵ𝐌                               (5.16) 

It is assumed that only the PHEVs in idle state can respond to the ancillary service calls. We 

defined three vectors 𝐂 = [C1 ···, Cd,···, CN] , 𝐃 = [D1 ···, Dd,···, DN]  and 𝐈 = [I1 ···, Id,···, IN]  to 

indicate the charging, discharging and idle states of PHEVs at each time slot as shown in (5.17)-

(5.22).  

Cd = [C
d

tin,d ,···, Cd
t ,···, C

d

tout,d] ,⩝ dϵ𝐌                            (5.17) 

Cd
t = {

1,          if kd
t = 1 

0,         otherwise
, ⩝ tϵT; ⩝ dϵ𝐌                           (5.18) 

Dd = [D
d

tin,d ,···, Dd
t ,···, D

d

tout,d] ,⩝ dϵ𝐌                          (5.19) 

Dd
t = {

1,          if kd
t = −1 

0,           otherwise
, ⩝ tϵ𝐓; ⩝ dϵ𝐌                       (5.20) 

Id = [Id
tin,d ,···, Id

t ,···, I
d

tout,d] ,⩝ dϵ𝐌                              (5.21) 

Id
t = {

1,          if kd
t = 0 

0,         otherwise
, ⩝ tϵ𝐓; ⩝ dϵ𝐌                          (5.22) 

Thus, the V2G capacity used for ancillary services of the system at time slot t can be 

calculated as (5.23): 

PAnci
t = ∑ Id

t · Prate
d ,⩝ tϵ𝐓M

d=1                                   (5.23) 

where 𝑃𝑟𝑎𝑡𝑒
𝑑  is the rated power for PHEV d. 

The total charging power of PHEVs is illustrated as (5.24): 

PEV
t = ∑ Cd

t · Prate
d ,⩝ tϵ𝐓M

d=1                                   (5.24) 

The total discharging energy provided by PHEVs is: 

Edis = ∑ ∑ Dd
t · Prate

dtout,d
t=tin,d

M
d=1                                 (5.25) 

  So a feasible control strategy of PHEVs can be described as follows: 
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𝐊 = {𝐤𝐝|s. t. (5.14) − (5.16)},⩝ dϵ𝐌                                 (5.26) 

2) Dominant Solution Matrix 

The feasible control strategy of PHEVs described in (5.26) involves a huge solution space. 

We can simplify the problem by finding the dominant solutions from the feasible solutions. To 

slow down the degradation progress of batteries, we should avoid frequent switching between 

charging and discharging modes [31]. Thus, we should wisely arrange the charging and 

discharging time slots to reduce the switching frequency between different control states. Based 

on the above principle, the dominant solution matrix of the dth PHEV 𝐃𝐒𝐝 is shown in Fig. 5.3. 

1  1  1  0  0  0  0  0  0  0  0

1  1  1  1  0  0  0 -1  0  0  0

1  1  1  1  1  0  0 -1 -1  0  0

 1  1  1  1  1  1  1 -1 -1 -1 -1

 1  0  -1 -1 -1  0  1  1  1  1  1

=25%,    =6

dint , doutt ,

1  1  1  1  1  1  0 -1 -1 -1  0
dy

dkvector

dv

dy
dv

 

Figure 5. 3 Dominant solution matrix and percentage of V2G capacity. 

The charging sequence of PHEVs can be classified into different patterns based on various 

V2G strategies. As the PHEVs can use their V2G capacity to either perform peak load shaving or 

provide ancillary services at each time slot, the V2G strategy is defined as the percentage of V2G 

capacity used for ancillary services as follows: 

yd =
∑ Id

t ·Prate
dtout,d

t=tin,d

VCapd
, ⩝ dϵM                                            (5.27) 

As shown in Fig. 5.3, the dominant charging sequence for a PHEV can be generated from 

the dominate matrix 𝐃𝐒𝐝 by selecting different V2G strategies yd and the sequence starting point 
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vd. Once a V2G strategy is selected, the possible charging solution of this specific PHEV can be 

obtained by shifting the sequence. For instance, as shown in Fig. 5.3 the V2G strategy yd = 25% 

and the sequence starting point vd = 6. 

The dominant solution matrices for all the PHEVs can be represented as follows: 

𝐃𝐒 = [DS1 ··· DSd ··· DSM], ⩝ 𝐝ϵM                                  (5.28) 

 

 Hierarchical Game Formulation 5.3

The proposed hierarchical game framework consists of two levels of games. At the lower 

level, a non-cooperative game is formulated to coordinate the charging schedules of the PHEVs 

based on a specific V2G strategy. At the upper level, an evolutionary game is proposed to evolve 

the PHEVs’ V2G strategies. During each evolving step of the evolutionary game, a new Nash 

equilibrium will be found in the non-cooperative game. Once the evolutionary equilibrium is 

reached, the games at the two levels will both reach their equilibriums. Then the solution to the 

formulated problem is found. 

 Non-cooperative Game Formulation 5.3.1

In this subsection, we formulate the charging scheduling process of multiple PHEVs 

through a non-cooperative PHEV interaction game 𝔾1 in the residential network as follows: 

 Players: The set of all M PHEVs. 

 Strategies: For each PHEV, choose an strategy vector 𝐤𝐝, ∀𝐤𝐝 ∈ 𝐊. 

 Payoffs: The dth PHEV receives payment Ud(kd, k−d). 

The payoff function of the dth PHEV can be expressed as: 
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Ud(kd, k−d) = −(CostChar
d + CostBat

d − Earnanci
d ) = −∑ Cd

t ∙ Prate
d ∙ rd,t

tout,d
t=tin,d

−

cb∙Capd+cL

LC∙Capd∙DOD
∙ ∑ Dd

t · Prate
dtout,d

t=tin,d
+ ∑ Id

t · Prate
dtout,d

t=tin,d
· (regt +MSRt)               (5.29) 

where 𝐶𝑜𝑠𝑡𝐶ℎ𝑎𝑟
𝑑  is the charging cost of player d, 𝐶𝑜𝑠𝑡𝐵𝑎𝑡

𝑑  is the cost of battery degradation of 

player d, 𝐸𝑎𝑟𝑛𝑎𝑛𝑐𝑖
𝑑  is the revenues earned by providing ancillary services of player d, 𝑟𝑒𝑔𝑡 is the 

real-time frequency regulation price. 

We use Nash equilibrium as the solution of this game and it is defined as follows: 

Definition 5.1: For the proposed non-cooperative game 𝔾1 = {M, {kd}d∈M, {Ud}d∈M} , a 

strategy tuple Ψ = {kd
∗ }d∈M  constitutes a Nash equilibrium when no player can improve its 

utility by unilaterally deviating from its current strategy. It is formulated as a set of inequalities: 

Ud(kd
∗ , k−d

∗ ) ≥ Ud(kd, k−d
∗ ), ∀kd ∈ 𝐊,∀d ∈ 𝐌                         (5.30) 

To find the Nash equilibrium for the proposed game 𝔾1 , we applied a dynamic best 

response strategy which is defined as follows: 

Definition 5.2: For each player d ∈ M, while other players have a fixed strategy tuple  k−d, 

the best response strategy kd
′  for the dth player is: 

kd
′ = argmaxkd∈K{Ud(kd,  k−d)}, ∀d ∈ 𝐌                           (5.31) 

That is, the players will update their strategies in an iterative and sequential manner. For 

instance, for any player d ∈ 𝐌, after receiving other players’ strategies  k−d from the aggregator, 

the best response strategy kd
′  is the one which gives the largest payoff to the player at the current 

state. Then other players will take turns to find their best response strategies. This iterative 

process continues until the Nash equilibrium is reached.  

However, as the formulated utility function is discrete in strategies, the Nash Equilibrium 

may be lost due to the discretization of strategy variables [70]. To obtain a possibly missing 
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Nash equilibrium, we include a small positive parameter ε1 in (5.30) to get an approximate Nash 

equilibrium as described in (5.32) [71]. As the approximate Nash equilibrium results in a similar 

performance and requires less computational time, it is used as the solution of the proposed non-

cooperative game. 

 Ud(kd
∗ , k−d

∗ ) ≥ Ud(kd, k−d
∗ ) − ε1, ∀kd ∈ K, ∀d ∈ M                          (5.32) 

Lemma 5.1: At least one Nash equilibrium exist in every game if the game has a finite 

number of players and action profiles [72]. 

Theorem 5.1: The proposed non-cooperative game will converge to the approximated Nash 

equilibrium (5.32). 

Proof: see the Appendix. 

The proposed best response algorithm is summarized in Algorithm 1 as follows: 

Algorithm 5.1 The best response algorithm for the non-cooperative game 

1: Input random initial strategies for all players and send the strategy information to the 

aggregator. 

2:  repeat 

3:       for d=1,…, M do 

4:             1) The aggregator selects a player d and provides the player with the current 

strategies of other players  k−d 

5:         2) The player finds its current best response strategy kd
′  based on (5.31). Then the 

player provides the aggregator with its current best response strategy kd
′ . 

6:              3) The aggregator moves to the next player. 

7:      end for 

8: until the approximate Nash equilibrium (5.32) is reached. 
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9: Output control strategies and stop. 

 

 Evolutionary Game Formulation 5.3.2

1) Formulation of an evolutionary game 

In this subsection, we formulate the V2G activities of PHEVs as an evolutionary game. The 

evolutionary game extends the formulation of non-cooperative game by including the concepts 

of replicator dynamics and population [73]. In the context of evolutionary games, the population 

refers to a set of players with the same strategy and the replicator dynamics controls the 

reproduction speed of the population according to the payoff of the population’s strategy [73]-

[75].  

For the proposed problem, the evolutionary game 𝔾2 can be naturally defined as follows: 

 Players: The set of all M PHEVs. 

 Strategy: The strategy of each player is a selection of a level of V2G capacity used for 

ancillary services and it can be denoted as S = {l1, … , lj, … , lJ}. 

 Population: The set of players which have the same strategy lj. 

 Population share: Denote the number of players selecting strategy lj  as mj , then 

xj = mj M⁄  is the population share. 

 Payoffs: The dth PHEV receives utility πd
anci(yd, y−d) which is the per unit ancillary 

service revenue. 

To simplify the problem, we define a continuous strategy state as Y = [y1, … , yd, … , yM] 

where the strategy for the dth player yd is defined as the percentage of V2G capacity used for 

ancillary services. Note that yd = ∑ xj
J
j=1 lj, so the new strategy embodied the dynamics of the 
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population share. Instead of controlling the dynamic process of population share, the replicator 

dynamics now is used for guiding the evolving direction of the strategy state. 

2) The evolution of strategy state and replicator dynamics 

The revenue of the V2G activities for a PHEV can be expressed as the sum of earnings by 

offering ancillary services and performing peak load shaving as shown in (5.33): 

EarnV2G
d = Earnanci

d + Earnpls
d ,   ∀d ∈ 𝐌                                 (5.33) 

where 𝐸𝑎𝑟𝑛𝑎𝑛𝑐𝑖
𝑑  is the revenues earned by providing ancillary services of player d, 𝐸𝑎𝑟𝑛𝑝𝑙𝑠

𝑑  is 

the revenues earned by performing peak load shaving of player d. 

Then the per unit ancillary service revenue for a PHEV is defined as follows: 

πd
anci =

Earnanci
d

yd∙VCapd
, ∀d ∈ 𝐌                                              (5.34) 

where Earnanci
d = ∑ Id

t · Prate
dtout,d

t=tin,d
· (regt +MSRt). 

The per unit V2G revenue for a PHEV is defined as: 

πd
V2G =

EarnV2G
d

VCapd
, ∀d ∈ 𝐌                                              (5.35) 

The average per unit V2G revenue of all the players is as follows: 

π̅V2G =
∑ EarnV2G

dM
d=1

VCaptot
                                                  (5.36) 

 Theorem 5.2: EarnV2G
d  is a concave function of yd and there exists a yd

∗  for maximizing 

the value of πd
V2G. 

Proof: see the Appendix. 

Accordingly, the replicator dynamics can be defined as follows: 

∂yd

∂t
= δyd(πd

anci − π̅V2G), ∀d ∈ 𝐌                                    (5.37) 
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According to the proposed replicator dynamics (5.37), the percentage of V2G capacity used 

for ancillary services yd will increase when the per unit ancillary service revenue for the PHEV 

πd
anci is larger than the average per unit V2G revenue of all the PHEVs, and vice versa. This 

scenario coincides with our common sense of maximizing the profit. 

3) Evolutionary equilibrium and the proposed iterative algorithm 

The evolutionary equilibrium is the solution of evolutionary game which is a stable 

condition that the strategy state stops evolving. For the formulated problem, the evolutionary 

equilibrium is reached when the replicator dynamics (5.38) stops evolving. That is: 

∂yd

∂t
= ẏd = 0, ∀d ∈ M                                            (5.38) 

πd
anci = π̅V2G, ∀d ∈ M                                            (5.39) 

The evolutionary equilibrium is denoted by Y∗ = [y1
∗, y2

∗ , … , yd
∗ , … , yM

∗ ]. The convergence of 

the proposed evolutionary game to the evolutionary equilibrium (5.38) can be proved by 

Lyapunov method [76]. 

Lemma 5.2: For a scalar function V of state x with continuous first order derivatives. If it 

satisfies the conditions: 

 V(x) is positive definite 

 V̇(x) is negative definite 

 V(x) → ∞ when ‖x‖ → ∞ 

then there exists a globally asymptotically stable equilibrium at the origin. 

Theorem 5.3: The evolutionary game will converge to the evolutionary equilibrium (5.38). 

Proof: see the Appendix. 

We use a discrete replicator to approximate the time continuous replicator dynamics as 

follows: 
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yd(h + 1) = yd(h) + δyd(h) (πd
anci(h) − π̅V2G(h)) , ∀d ∈ M                   (5.41) 

The iterative algorithm for solving the proposed evolutionary game is summarized in 

Algorithm 5.2, and it converges when (5.42) is satisfied.  

|πd
anci(h) − π̅V2G(h)| < ε2, ∀d ∈ M                                       (5.42) 

Algorithm 5.2 The iterative algorithm for the evolutionary game 

1: Input random initial V2G strategies for all players and send the strategy information to the 

aggregator. 

2: h=1. 

3:   repeat 

4:        for d=1,…, M do 

5:      Calculate the per unit ancillary service revenue πd
anci of player d according to (5.34).  

6:        end for 

7:       Calculate the average per unit V2G revenue π̅V2G of all the players according to (5.36). 

8:        for d=1,…, M do 

9:          Update the percentage of using V2G capacity for ancillary services of player d 

according to (5.41). 

10:        end for 

11:      Execute Algorithm 5.1. 

12:      h=h+1. 

13:   until (5.42) is satisfied. 

14: Output control strategies and stop. 
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 Case Studies 5.4

 Residential Distribution System Under Test 5.4.1

As shown in Fig. 5.4, the topology of the residential distribution system is determined based 

on an IEEE 34-node test feeder [37].  In the test system, load point 1 is connected to the grid 

through a distribution transformer and each of other load points has a house connected to each 

phase transformer for a total of 99 houses. The non-PHEV load profile of a house in winter is 

scaled from [38]. Assume each house has two vehicles. Then there is a total of 40 PHEVs in the 

test system for a 20% PHEV penetration level. The detailed procedures for reliability analysis 

can be found in our previous work [77]. The power flow analysis is performed based on a 

backward-forward sweep method [39]. To demonstrate the effectiveness of the proposed 

hierarchical game approach, uncontrolled charging and particle swarm optimization (PSO) 

algorithm [32] based smart charging are used as benchmarking control strategies. 
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Figure 5. 4 The topology of the studied residential distribution grid. 

 Convergence and Effectiveness of the Hierarchical Game 5.4.2

Approach 
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In this subsection, we will study the convergence behavior and the effectiveness of the 

proposed hierarchical game approach. Fig. 5.5 shows the convergence behavior of the non-

cooperative game using Algorithm 5.1. As shown in the figure, the payoffs of all the players 

converge to a stable state after several iterations. The convergence behavior of the evolutionary 

game is shown in Fig. 5.6. In Fig. 5.6 (a), the per unit ancillary service revenue for each player 

converges to the average per unit V2G revenue for all the players as described in (5.39). In Fig. 

5.6 (b), the per unit V2G revenue of each player converges to the average per unit V2G revenue 

of all the players, and the average per unit V2G revenue increases during the converging process 

until it reaches the maximum point. The results in Fig. 5.6 agree very well with the theoretical 

analysis in the previous Section. The effectiveness of the proposed hierarchical game approach 

for charging the PHEVs to the desired SOC is illustrated in Fig. 5.7. It shows that the final SOCs 

of PHEVs at the time when they are plugged out. As shown in the figure, all the PHEVs have 

been adequately charged at the end of the charging process. 

 

Figure 5. 5 Convergence curves of non-cooperative game using algorithm 5.1. 
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Figure 5. 6 Convergence curves of evolutionary game using algorithm 5.2. (a) Convergence curve of ancillary 

service revenue per unit capacity. (b) Convergence curve of V2G revenue per unit capacity. 
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Figure 5. 7 Final battery SOCs of PHEVs with the hierarchical game approach. 
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  Economic and Power Quality Benefits of the Hierarchical Game 5.4.3

Approach 

Fig. 5.8 shows the load demand of the system based on the three control strategies. The 

proposed hierarchical approach reduces the peak load, and the load demand curve becomes more 

flattened. Fig. 5.9 shows voltage curves of the load point 34 of the test system with different 

control strategies. As shown in the figure, the proposed algorithm is able to reduce the voltage 

deviation effectively. Table 5.1 shows the costs of all PHEVs based on different control 

strategies. The hierarchical game approach is capable of significantly reducing the total cost 

through intelligent management of the V2G capacity. 

 

Figure 5. 8 Load demand of the system with different control strategies. 

Table 5. 1 Costs of Different Control Strategies 
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Figure 5. 9 Voltage curves of node 34 with different control strategies 

 Reliability Benefits of Reliability-Differentiated Service with the 5.4.4

Proposed Hierarchical Game Approach 

 In this subsection, the reliability benefits of the reliability-differentiated service and the 

proposed hierarchical game approach are illustrated. Table 5.2 shows the reliability indices of the 

residential distribution system under different control strategies. According to the results, it can 

be found that the proposed hierarchical game approach has a positive impact on the reliability 

indices. The values of SAIFI, SAIDI and CAIDI are considerably decreased, which indicates that 

customers experienced less frequent interruptions and shorter outage duration each year; while 

the increase of ASAI implies that customers suffered from fewer time periods without power 

service. Fig. 5.10 shows the electricity price curves of three households with different priority 

indexes. It is clear that the household with higher priority index pays a higher electricity price. 

The values of corresponding reliability indices for these three households are shown in Table 5.3. 

According to the simulation results, the values of HIFI and HIDI are decreased with the 

increased priority index. This indicates that the household experienced less frequent interruptions 

and shorter outage duration each year. It can be concluded that while being responsible for 
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paying higher electricity prices those households with higher priority indexes received a higher 

quality of service. 

 

Figure 5. 10 Reliability-differentiated electricity prices for different households. 

Table 5. 2 Reliability Indices for the Residential Distribution System Under Different Control Strategies 

 SAIFI SAIDI CAIDI ASAI 

Uncontrolled  46.42 732.56 15.78 0.9163 

PSO Algorithm 1.315 6.762 5.142 0.9992 

Hierarchical 

Game Approach 

1.062 5.125 4.826 0.9994 

 

Table 5. 3 Reliability Indices for Different Households with Different Priority Indexes 

 HIFI HIDI HIMI 

Household 1 with  R1 = 0.678 1.457 6.963 2.4 

Household 2 with  R2 = 0.859 1.123 5.867 2.2 

Household 3 with  R3 = 1.340 0.698 3.156 2.0 
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6. Real-Time Charging Navigation of Electric Vehicles 

to Fast Charging Stations 

 Introduction 6.1

Various studies have been conducted for investigating EVs’ impacts on the power system 

[16], [26]-[28], [63], [65] [78]-83]. Most of them assumed that EVs are charged at home, which 

are focused on controlling the charging process of EVs in order to shave the peak load or 

improve the power quality [26]-[28],[63],[65]. For the charging station, the charging duration is 

much shorter than the home charging. With fast charging, EVs can be charged to full SOC within 

half an hour [16], [78]-[79], while the home charging needs 6 to 8 hours. Thus, mitigating the 

negative impact of EVs on power systems through controlling the charging duration and 

charging rate of EVs is not applicable for the scenario of charging stations. One promising 

solution is to attract EVs to charge at appropriate times so as to optimize the charging load of 

EVCSs. In this case, the impact from the transportation system is not negligible for the 

management and coordination of multiple EVCSs. Reference [78] proposed a rapid charging 

navigation system for EVs based on the power system coupled with the traffic data accounting 

for the impact due to traffic flow. The power market is also a factor that should be considered in 

managing EVCSs. Multiple EVCSs in the same area may belong to different owners, so 

competitions between different EVCSs can be caused. This type of competition has been 

modeled by game-theoretic approaches in [16], [78], [80]-[81]. A supermodular game is 

proposed in [80] to study the competition among EVCSs with renewable power generators. A 

large fleet of EVs is studied in a mean-field game model to minimize their charging cost in [81]. 

Reference [82] proposed an optimal EV route model based on a learnable partheno-genetic 
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algorithm to minimize the total distribution costs of the EV route. A decentralized policy is 

studied in [83] to assign electric vehicles to a network of charging stations with the goal of 

minimizing the queueing time. However, little work has been done to formulate both the traffic 

flow and the competition of EVCSs into an integrated problem. 

This chapter proposes an integrated charging navigation framework, which is made up of 

the power system, transportation system, navigation system, EVCSs and EVs. Based on this 

framework, a hierarchical game approach is proposed to optimize the strategies of both EVCSs 

and EVs at two levels. At the upper level of the hierarchical game, a non-cooperative game is 

proposed to model the competition between EVCSs and manage them in a decentralized fashion. 

Evolutionary games are formulated at the lower level to evolve the EVs’ strategies in choosing 

EVCSs. To solve the non-cooperative game, a particle swarm optimization (PSO) learning based 

best response algorithm is developed, which is able to improve the economic benefits and reduce 

the peak load of the power grid at the same time. 

 

 System Modeling 6.2

 System Architecture 6.2.1

To study the impacts from both the power system and transportation system in the EV 

charging process, we proposed an integrated EV charging navigation framework as shown in Fig. 

6.1. The integrated EV charging navigation framework comprises four major parts: power 

system operation center (PSOC), EVCSs, electric vehicle navigation system (EVNS), and EV 

terminals. 
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Figure 6. 1 The integrated electric vehicles charging navigation framework. 

EVNS is responsible for collecting information and building connections between EVs and 

EVCSs. EVNS receives information from the EVCSs including the charging price and the 

estimated waiting time. It also collects current traffic information. Then the EVNS will broadcast 

the information to EVs. Upon receiving the information, EVs will decide if there is a need to 

charge and which EVCS should be selected (with the help of EVNS), as well as arrange the 

related charging activities. PSOC provides time of use (TOU) electricity prices to EVCSs based 

on the current load demand. Also it controls the maximum charging capacity of EVCSs to reduce 

the risk imposed on the power system. 

 Traffic Flow Model 6.2.2

The time horizon of the proposed control system is discretized into k time slots. During 

each time slot t ∈ [k ∙ ∆T, (k + 1) ∙ ∆T] , (k=0, 1, 2,…, K), the traffic flow is calculated to 

provide necessary traffic information to the EVNS. In a destination-oriented traffic system, the 

EVNS needs the information on the lengths of the routes and traffic speeds to navigate vehicles. 
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Thus, we are focused on obtaining the traffic speeds of the lanes between neighboring traffic 

nodes. Three key variables in this traffic flow model are defined as follows: Traffic density 

ρm(k) (veh/mile/lane) which is the number of vehicles in lane m during time slot k; traffic speed 

vm(k) (mile/h) which is the average speed of the vehicles in lane m during time slot k; and 

traffic flow qm(k) (veh/h) which is the number of vehicles leaving lane m during time slot k. 

The traffic density of a lane is affected by the traffic flow as well as the start and end 

statuses of trips in this lane. The traffic density at time (k + 1)∆T is the sum of traffic density at 

time k∆T and the increment of traffic density during time slot k. The traffic flows into the lane m 

can be expressed as  ∑ βμ,m(k) ∙ qμ(k)μ∈Im  and the traffic flows out of the lane m  is 

∑ βm,φ(k) ∙ qφ(k)φ∈Om , then the traffic density increment of lane m contribute by the traffic 

flow is 
∆T

Lm
(∑ βμ,m(k) ∙ qμ(k)μ∈Im − ∑ βm,φ(k) ∙ qφ(k)φ∈Om ). The traffic density increment of 

lane m due to the start and end statuses of trips can be expressed as 
1

Lm
(Nm

s (k) − Nm
E (k)). 

Thus, the traffic density can be expressed as follows: 

ρm(k + 1) = ρm(k) +
∆T

Lm
(∑ βμ,m(k) ∙ qμ(k)μ∈Im − ∑ βm,φ(k) ∙ qφ(k)φ∈Om ) +

1

Lm
(Nm

s (k) − Nm
E (k))                                                                 (6.1) 

where Im is the set of lanes entering lane m, βμ,m is the turning rate of vehicles from lane μ into 

lane m, Om  is the set of lanes leaving lane m, Lm is the length of the lane m, Nm
s (k) is the 

number of vehicles starting trips at lane m during time slot k, and Nm
E (k) is the number of 

vehicles ending trips at lane m during time slot k. 

The traffic speed can be calculated as follows [84]: 

vm(k) = vm
f ∙ exp [−

1

am
(
ρm(k)

ρcr,m
)
am

]                                        (6.2) 
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where vm
f  is free-flow speed of lane m, ρcr,m is the critical traffic density of lane m, and am is a 

statistical parameter. In the test system, we set ρcr,m = 57.49 (veh/mile/lane) and am = 2.34. 

Based on the definition of traffic density qm(k), traffic flow qm(k) and traffic speed vm(k), 

the traffic flow can be naturally represented as (6.3): 

qm(k) = ρm(k) ∙ vm(k)                                                (6.3) 

To ensure that the traffic simulation is close to the real-world scenarios, we adopted the 

National Household Travel Survey (NHTS) 2009 [25] database to model the travel pattern of 

EVs. NHTS 2009 is the most comprehensive travel survey in US available to date. It contains 

trip attributes such as trip start time, trip end time and travel distance which can be used to 

generate the travel pattern. However, to simulate the traffic flow, spatial data should be added to 

the vehicle dataset. The spatial data contains the places where the vehicle starts and stops 

coupled with the travel route. The procedure for simulating the traffic flow can be elaborated as 

follows: 

 Step 1: Initialize all the vehicles in the simulated traffic system. The initial start places 

of vehicles are set randomly to be within the simulated area. 

 Step 2: Generate the start time, end time and travel distance of each trip according to 

NHTS. 

 Step 3: Set the destination of each trip according to its travel distance and estimate the 

detailed driving route. 

 Step 4: Randomly select some vehicles as EVs from the simulated vehicles based on 

the EVs penetration level. 

 Step 5: Analyze the traffic flow of each lane in the transportation system using (6.1)-

(6.3).  
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The detailed procedure for the traffic simulation of EVs is shown in Fig. 6.2. The EVs 

evaluate their current statuses at the beginning of each trip and make recharging decisions. If an 

EV finishes the charging process, it will continue the remaining trips of the day. 

EV i departs from 

location Lj at time tj

EV i finish trip j,

j=j+1

Select a destination 

based on the travel 

distance of trip j

Need charge?

Car use statistics from 

NHTS data 

EV i finish 

charging process 

All trips are 

finished?

All the EVs 

are simulated?

End

Traffic Network

i=i+1

Y

N

Y

N

Y

N

 

Figure 6. 2 Traffic simulation with real-time EV driving pattern. 

 Electric Vehicle Strategy 6.2.3

Multiple factors may affect the decisions of EVs, such as the state of charge (SOC), 

charging price, the distance to the charging station and the waiting time. When an EV receives 

the information from EVNS, it will make the decision on whether charge is needed or not. The 

charging probability is defined as follows: 
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pj(k) = {

1,                                 if SOCj,k < 20%

exp [
SOCj,k−20%

SOCj,k−100%
∙
ap∙∑ ri,k

I
i=1

I∙rmax
] , if 20% ≤ SOCj,k < 100% 

                (6.4) 

where SOCj,k is the SOC of EV j at time slot k, ri,k is the charging price of charging station i, 

rmax is the maximal limit of the charging price, I is the total number of charging stations, and ap 

is vehicle charging probability parameters. We set ap = 0.8 in this study. 

  When the SOC of an EV is less than 20%, the charging probability will be 1 to avoid the 

depletion of battery during travel. Otherwise, the charging probability will be affected by the 

current SOC and the charging prices of EVCSs. As shown in (6.4), the charging probability of an 

EV will increase with the decrease of SOC and the decrease of average charging price. When 

SOC of an EV is close to 100%, the charging probability will be approximately 0%. 

EVCSs can buy electricity at a relatively lower rate compared to the rate of home charging 

[80]. However, as the EVCS needs to make profit, the charging price may be higher for the EV 

owner compared to charging at home. Thus the EVs may not be fully charged through rapid 

charging at EVCSs, and we propose a model to optimally determine the energy needs to be 

purchased for an EV based on its current SOC and the charging price. We use quadratic utility 

function [85]-[87] to quantify the utility that an EV receives when charging at an EVCS as it is 

widely used in the literature. Without loss of generality, we design the quadratic utility function 

as: 

 uj,k(Ej,k) = vj ∙ Ej,k −
θj

2
Ej,k

2, Ej,k min ≤ Ej,k ≤ Ej,k max                     (6.5) 

where vj and θj are constant parameters for each EV, Ej,k min and Ej,k max denote the minimal and 

maximal charging energy for the EV. 

  Clearly, the minimal and maximal charging energy of an EV is related with its current 

SOC and they are defined as follows: 
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Ej,k min = Max{SOCj,min ∙ Capj + Eres,j − SOCj,k ∙ Capj, 0}                     (6.6) 

Ej,k max = (1 − SOCj,k) ∙ Capj                                          (6.7) 

where SOCj,min is the minimal limit of the SOC of EV j, Capj is the battery capacity of EV j, 

Eres,j is the estimated energy needed for the rest trips of EV j during the day, and SOCj,k is the 

current SOC of EV j. 

As EVs need to pay for the energy purchased at the EVCSs, the welfare function of an EV 

when charging at an EVCS can be described as: 

wj,k(Ej,k) = uj,k(Ej,k) − ri,k
j
∙ Ej,k                                       (6.8) 

where ri,k
j

 is the charging price.  

  Thus, the optimal energy purchased of an EV j charging at EVCS i can be obtained as 

follows: 

Ej,k
∗ = argmaxEj,kwj,k(Ej,k) =

{
  
 

  
 Ej,k min ,                          if 

vj−ri,k
j

θj
< Ej,k min

vj−ri,k
j

θj
,       if Ej,k min ≤

vj−ri,k
j

θj
≤ Ej,k max

Ej,k max ,                      if     Ej,k max < 
vj−ri,k

j

θj

          (6.9) 

Once an EV responds to the charging navigation signal, it has to choose a charging station 

and the charging station will hold the current charging price for the EV. An EV selects an EVCS 

based on its economic and time costs. The economic cost comprises the charging cost and the 

fuel cost. The time cost consists of the travel time and the waiting time. The travel time is the 

time used by the EV for traveling to the charging station which is certainly affected by the traffic 

flow. Thus, the cost of EV j selecting EVCS i can be expressed as follows: 

costi,j = λti,j
total + (Ej,k

∗ + di,j ∙ Etravel)ri,k
j

                               (6.10) 
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ti,j
total = ti,j

travel + E[WQ]                                                  (6.11) 

where ti,j
travel is the travel time of EV j to charging station i, E[WQ] is the estimated waiting time 

of EV j at charging station i,  ri,j is the charging price, di,j is the travel distance from the EV to 

the charging station, Etravel is the energy consumption per miles for EV, and λ is the weighting 

factor of the time cost. 

 Charging Station Strategy 6.2.4

We assume that the charging stations belong to different owners, and their only goal is to 

maximize their own profits. The EVCSs will compete with each other for attracting EVs to 

charge at their charging poles. Each EVCS has a limited number of charging poles si, i ∈ I. And 

if the number of EVs at an EVCS is more than the available charging poles, the EVs will wait in 

the queue. The number of available charging poles is dependent on the current state of the power 

distribution system. The charging capacity of the EVCSs is limited by the PSOC at the peak load 

time in order to reduce the risk of the power system as shown in Fig. 6.1. The EVCSs buy power 

from the power grid at a lower price and sell power to EVs at a higher price in order to make 

profits. 

In order to reduce the peak load of the system, a vTOU rate policy is developed based on 

the system load demand for encouraging EVCSs to attract EVs to charge at off-peak times. The 

electricity price is defined as: 

ρk = α ∙ Psys
t                                                            (6.12) 

where α is price parameters, and Psys
t  is the load demand of the system at time slot t. 

According to (6.12), the electricity price is higher at the peak-load hours. Thus, the EVCSs 

will offer higher charging prices and there is a lower probability for EVs to charge during these 
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time periods. As a result, the charge load can be shifted to off-peak hours based on this pricing 

policy. 

EVCSs’ strategies are the charging prices at each time slot which are denoted as: 

 πi = [ri,0, ri,1, … , ri,k, … , ri,K], ∀i ∈ I                                     (6.13) 

The revenue of an EVCS can be expressed as:  

Ui = ∑ (∑ Ej,k
i∗ ∙ ri,k

Ni,k
j=1

− Pk
i  ∙ ρk)

K
k=1                                     (6.14) 

where Ni,k is the total number of EVs choosing EVCS i at time slot k, and Pk
i is the total charging 

load of EVCS i at time slot k. 

 EVs’ Queueing Model 6.2.5

In the proposed integrated EV navigation system, EVs will wait in a queue if all the 

charging poles are occupied at an EVCS and the EVCS will announce its estimated waiting time 

to EVs which need to make charging decisions. 

  In this subsection, we model the queueing process of EVs at a charging station as an 

M/M/s/c queue [88], [89]. The queueing model is shown in Fig. 6.3. The proposed M/M/s/c 

queue is a multi-server queue with s identical servers and a maximum queueing length of c. In 

the queueing model, each charging pole can be viewed as a server and the customers are the EVs. 

As shown in the figure, the EVs are served based on a first-come-first-serve (FCFS) rule. The 

waiting time is estimated based on the queueing model and it is broadcasted to EVs through 

EVNS to help the EVs make charging decisions. 

     In this chapter, EVs’ strategies in choosing EVCSs are affected by the pricing strategies 

of the charging stations. We will formulate an evolutionary game to evolve the EV’s strategies in 

choosing EVCSs in the next Section and the arrival rate of EVs at a certain EVCS λk is derived 
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accordingly. As service rate of the charging poles is not affected by the strategies of EVCSs, it is 

assumed to follow an exponential distribution. At each time slot, the queue will evolve to a stable 

state and the waiting time can be estimated. 
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Figure 6. 3 EVs’ queueing model at a charging station. 

The evolving process of the proposed queueing model is based on a birth-death process and 

its state transition diagram is shown in Fig. 6.4. As shown in the figure, the states indicate the 

number of EVs in the queue. If the number of EVs in the charging station n is less than the 

number of charging poles s, then the departure rate of EVs is nμk; if s < n ≤ c, the departure 

rate is sμk as there are only s servers in the queueing system. 
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Figure 6. 4 State transition diagram of the queueing model. 
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The infinitesimal generator matrix of the queueing system 𝐏𝑘 is shown in (6.15).  

𝐏𝑘 =

[
 
 
 
 
 
 
 
 
 
−𝜆𝑘 𝜆𝑘 0

𝜇𝑘 −(𝜇𝑘+𝜆𝑘) 𝜆𝑘
0 2𝜇𝑘 −(2𝜇𝑘+𝜆𝑘)

0          0             0
0          0              0
𝜆𝑘          0              0

    

  ∙          ⋯        ∙
∙         ⋯        ∙
∙         ⋯        ∙

0             0                3𝜇𝑘
∙            ⋯                ∙
∙            ⋯                ∙

     
−(3𝜇𝑘+𝜆𝑘) 𝜆𝑘 0

⋱ ⋱ ⋱
⋯ 𝑠𝜇𝑘 −(𝑠𝜇𝑘+𝜆𝑘)

    

∙        ⋯       ∙
∙         ⋯       ∙
𝜆𝑘          ⋯       ∙

∙             ⋯                   ∙
∙             ⋯                   ∙
∙             ⋯                   ∙

         
⋯             ∙            𝑠𝜇𝑘
⋯             ∙           ⋯
⋯             ∙           ⋯

−(𝑠𝜇𝑘+𝜆𝑘) 𝜆𝑘 ⋯
⋱ ∙ ⋯
… 𝑠𝜇𝑘 −𝑠𝜇𝑘]

 
 
 
 
 
 
 
 
 

 

(6.15) 

Let Π̅ = [Π1, Π2, ⋯Πs, ⋯ ] denote the stationary distribution vector. Then, the stationary 

condition of the queueing system can be expressed as: 

Π̅ ∙ Pk = 0                                                       (6.16) 

Let A = λk μk⁄ . We can obtain the following steady-state equations based on (6.16): 

For state 1: Π1 = AΠ0. 

For state 2: Π2 = AΠ1/2 = A
2Π0/2! 

For state 3: Π3 = AΠ2/3 = A
3Π0/3! 

For state s: Πs = AΠs−1/s = AsΠ0/s! 

For state s + 1: Πs+1 = AΠs/s = A
s+1Π0/(s! s)  

For state s + 2: Πs+2 = AΠs+1/s = As+2Π0/(s! s
2)  

For state c: Πc = AΠc−1/s = AcΠ0/(s! s
c−s)  

Then we can conclude the stationary distribution as follows: 

Πn = {

AnΠ0

n!
, if 0 ≤ n ≤ s

As

s!
(
A

s
)
n−s

Π0, if s < n ≤ c
                                  (6.17) 

Consider the constraint of the stationary distribution in (6.18): 

∑ Πn = 1c
n=0                                                    (6.18) 
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We can obtain: 

Π0 = (∑
An

n!
+
As

s!
∑ (

A

s
)
n−s

c
n=s

s−1
n=0 )

−1

                                   (6.19) 

The mean queue length is derived as follows [18]: 

E[NQ] = ∑ (n − s)c
n=s+1 Πn                                             (6.20) 

The waiting time can be derived by Little’s formula [18] as: 

E[WQ] =
E[NQ]

λk(1−Πc)
                                                     (6.21) 

 EVs’ Impact on Distribution System Reliability 6.2.6

EVs can affect the reliability of a distribution system by overloading the transformers and 

transmission lines at peak load hours. Thus, a real-time transformer outage rate is needed to 

evaluate the impact of EVs on distribution system reliability. Instead of using a constant outage 

rate, we formulate the operational reliability of the distribution network by considering the real-

time outage rate of the distribution transformer. The hybrid transformer failure probability model 

can be expressed as follows based on [69]: 

Pf = 1 − (1 − Prand) × (1 − Paf)                                      (6.22) 

where Prand  is the random failure probability and Paf  is the transformer aging failure under 

various load conditions . 

The current-dependent overload protection outage rate can be obtained through (6.23)-(6.25) 

[69]: 

Ppt(I) =

{
 
 

 
 

Punreq,                if I < Ipe(1 − εI)

Preq ∫ f(Ipk)dIpk + Punreq ∫   
Ipe(1+εI)

I

I

Ipe(1−εI)

f(Ipk)dIpk, if Ipe(1 − εI) < I < Ipe(1 + εI)

Preq,                  if I > Ipe(1 + εI)

                       (6.23) 
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f(Ipk) = {

0,    if Ipk < Ipe(1 − εI) or Ipk > Ipe(1 + εI)

e
(−( Ipk−Ipe)

2
2σ2⁄ )

αIσ√2π
, ifIpe(1 − εI) < Ipk < Ipe(1 + εI)

                  (6.24) 

αI = ϕ(
εIIpe

σ
) − ϕ (

−εIIpe

σ
)                                             (6.25) 

where ϕ is the cumulative distribution function of the standard normal distribution, Punreq is the 

outage rate when the overload protection is not required, Preq  is the outage rate when the 

overload protection is required, Ipk is pick-up current for the protection relay, Ipe  is the expected 

value of Ipk, σ is standard variance of Ipk, εI is the percentage error of current mismatch. 

Thus, the real-time transformer outage rate can be built by considering both the failure rate 

and overload protection rate as follows: 

Ptrans
t = 1 − (1 − Pf(t)) × (1 − Ppt(It))                                    (6.26) 

 

 Hierarchical Game Formulation 6.3

The proposed hierarchical game framework consists of two levels of games. At the upper 

level, a non-cooperative game is formulated to coordinate the pricing strategies of EVCSs to 

maximize their personal profits. Based on the pricing strategies of EVCSs, multiple evolutionary 

games are formulated at the lower level for different groups of EVs to evolve their strategies in 

choosing EVCSs. During each step of the non-cooperative game, an evolutionary equilibrium 

will be reached for each evolutionary game at the lower level and the EVs’ strategies in choosing 

EVCSs are optimized. Once the Nash equilibrium is reached for the non-cooperative game, the 

games at the two levels will both reach their equilibriums. Then the strategies for both EVs and 

EVCSs are optimized and the solution to the formulated problem is found. 

 Evolutionary Games of EVs 6.3.1
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Currently, EVs are considered as price takers by researchers in the charging navigation 

problem as the charging decision of one EV does not have enough power to affect pricing 

strategies of the charging stations [80]-[82]. However, with the development of the connected 

vehicle technology, EVs may be able to cooperate with each other and bid charging prices as a 

group. Thus, EVs can work together as a group to negotiate charging prices with charging 

stations. In the proposed integrated charging navigation framework, EVs can cooperate with their 

neighboring EVs to bargain charging prices with EVCSs as a group. We assign the EVs at the 

same lane into one group as they have similar travel distance to different EVCSs. The strategy 

evolving of each EV group is guided by an evolutionary game. 

Two important concepts in evolutionary games are replicator dynamics and population [57]. 

In the context of evolutionary games, the population refers to a set of players with the same 

strategy and the population share is the percentage of the population with a certain strategy. The 

replicator dynamics controls the reproduction speed of the population according to the payoff of 

the population’s strategy. In the proposed evolutionary game, each EV has to choose a charging 

station to recharge its battery and it can gradually evolve its strategy based on the current pricing 

strategies of EVCSs. Thus, the population share is defined as the probability distribution of an 

EV choosing different EVCSs. Based on evolution strategy, we propose a replicator dynamics to 

guide the evolution of the population share. 

Based on the traffic simulation model, we can obtain the number EVs at time slot k in lane 

m which is denoted as Nm,k
T . Then the number of players in the mth evolutionary game is: 

Nm,k = Nm,k
T ∙ pj(k)                                                    (6.27) 

where pj(k) is the charging probability of EVs at time slot k. 
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Let ym,k
i  denote the probability of an EV choosing to charge at EVCS i at time slot k, where 

0 ≤ ym,k
i ≤ 1  and ∑ ym,k

iI
i=1 = 1 . Thus, we can denote the population share as Yk =

[ym,k
1 , ym,k

2 , … , ym,k
i , … , ym,k

I ]. Then we can define the accumulated EVs’ utility choosing EVCS i 

as: 

Ui,m
EV = −∑ [λti,j

total + (Ej,k
∗ + di,j ∙ Etravel)ri,k

j
]

Nm,k
j=1

                            (6.28) 

where ti,j
total = ti,j

travel + E[WQ,i]. 

The average utility of choosing different EVCSs is denoted as: 

U̅m
EV = ∑ ym,k

i Ui,m
EVI

i=1                                                      (6.29) 

Accordingly, the replicator dynamics can be defined as:  

∂ym,k
i

∂t
= δym,k

i (Ui,m
EV − U̅m

EV), ∀i ∈ I                                         (6.30) 

where δ is the learning rate of the replicator dynamics. 

Note that the probability of an EV choosing EVCS i will increase when the utility for 

choosing EVCS i is larger than the average utility, and vice versa. Thus, the proposed replicator 

dynamics can maximize the utility of the EVs.  

The evolutionary equilibrium is the solution of evolutionary game which is a stable 

condition that the strategy state stops evolving. For the formulated problem, the evolutionary 

equilibrium is reached when: 

∂ym,k
i

∂t
= ẏm,k

i = 0, ∀i ∈ I                                                  (6.31) 

 Πi
EV = Π̅EV,     ∀i ∈ I                                                     (6.32) 

The evolutionary equilibrium is denoted by Ym,k
∗ = [ym,k

1∗ , ym,k
2∗  , … , ym,k

i∗  , … , ym,k
I∗ ].  

When the evolutionary equilibriums of all the evolutionary games are reached, the optimal 

strategies of all the EVs are obtained and arrival rate of EVs can be calculated. 
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The arrival rate of EVs at EVCS i can be expressed as: 

 λi,k = ∑ Nm,k ∙ ym,k
i∗M

m=1                                               (6.33) 

 Non-Cooperative Game of EVCSs 6.3.2

1) Non-cooperative Game Formulation 

In this subsection, we formulate a price adjustment game for multiple EVCSs. To 

coordinate the set of I(I = [1,2,⋯ , I]) EVCSs, a non-cooperative EVCS interaction game 𝔾 is 

defined as follows: 

 Players: The set of all I EVCSs. 

 Strategies: For each EVCS, choose a charging price strategy πi, ∀πi ∈ Fi. 

 Payoffs: The ith EVCS receives payment Ui(πi, π−i) as shown in (6.14). 

The most common solution for a non-cooperative game is the Nash equilibrium which is 

defined as follows: 

Definition 6.1: For the proposed non-cooperative game 𝔾 = {I, {πi}i∈I, {Ui}i∈I}, a strategy 

tupleΨ = {πi
∗}i∈I  constitutes a Nash equilibrium when no player can improve its utility by 

unilaterally deviating from its current strategy. It is formulated as a set of inequalities: 

Ui(πi
∗, π−i

∗ ) ≥ Ui(πi, π−i
∗ ), ∀πi ∈ Fi, ∀i ∈ I                                   (6.34) 

The existence of a unique Nash equilibrium is uncertain in a general non-cooperative game 

[34]. We hereby included a small positive variable ε1 to get an approximate Nash equilibrium as 

described in (6.35) [90]. As the approximate Nash equilibrium results in a similar performance 

and it can reduce the computational time of the best response strategy [90], it can be used as the 

solution of the proposed non-cooperative game. 

Ui(πi
∗, π−i

∗ ) ≥ Ui(πi, π−i
∗ ) − ε1, ∀πi ∈ Fi, ∀i ∈ I                              (6.35) 
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2) The Proposed Algorithm 

To find the Nash equilibrium for the proposed game 𝔾, we applied a dynamic best response 

strategy which is defined as follows: 

Definition 6.2: For each player i ∈ ℳ, while other players have a fixed strategy tuple  π−i, 

the best response strategy πi
′ for the ith player is: 

πi
′ = argmaxπi∈Fi{Ui(πi,  π−i)}                                             (6.36) 

Thus, the players will continue to update their strategies based on the strategies of other 

players in a sequential and iterative fashion. This dynamic response process continues until the 

approximated Nash equilibrium is reached. 

As the payoff function of the proposed game is nonlinear, analytical methods such as 

dynamic programing is not applicable. The strategies described in (6.13) constitute a very large 

search space, so enumeration method is also not applicable. Thus, computational intelligence 

methods have been used by researchers to search the Nash equilibrium [91].  To solve the 

formulated game, we applied two artificial intelligence based algorithms, namely particle swarm 

optimization (PSO) [32] and evolution strategy (ES), to find the best response strategy for each 

player. The performances of these two algorithms are studied and compared in the simulation 

studies.  

The reason of using PSO is because it is very suitable for this problem. In this problem, the 

control variable is the charging prices of the EVCSs. The charging price vector of an EVCS can 

be mapped into a search space and the charging prices at each time slot can be naturally viewed 

as different dimensions in the search space. The value of the charging price can be encoded as 

the coordinates in the specified dimension. Another suitable algorithm for this problem is ES, as 

the data structure of ES corresponds to real-valued vectors. 
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The proposed best response algorithm is summarized in Algorithm 6.1 as follows: 

Algorithm 6.1 The best response algorithm for the non-cooperative game 

1: Input randomly initialize strategies for all players. 

2:  repeat 

3:     for i=1,…, I do 

4:        The player i finds its current best response strategy πi
′ based on PSO 

algorithm. Then the player provides other players with its current best response 

strategy πi
′. 

5:     end for 

6: until the approximate Nash equilibrium (6.35) is reached. 

7: Output control strategies and stop. 

In Algorithm 6.1, each player is required to provide its current best response strategy to 

other players. Thus, it is possible that the player may cheat other players by injecting untruthful 

information if cheating can increase its utility. However, we will show that all the players will 

provide truthful information about their best response strategies in theorem 6.1. 

Theorem 6.1: In the algorithm 6.1, no player can benefit by misreporting its best response 

strategy. That is, the players are self-enforced to provide their truthful strategy information. 

Proof: see the Appendix. 

 

 Case Studies 6.4

 Simulation Environment 6.4.1
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Simulation studies are performed based on the transportation network of Milwaukee, 

Wisconsin. Fig. 6.5 shows the transportation network and its topological graph. Four EVCSs are 

located at traffic nodes 20, 23, 25 and 28. The free-flow traffic speed is 30 miles/h. The traffic 

flow simulation considers 50,000 vehicles and 5% of them are EVs. The topology of the studied 

distribution system is based on the IEEE 34-node test feeder [37] as shown in Fig. 6.6. Four 

EVCSs are connected to four load points which are labeled from EVCS1 to EVCS4 in the figure. 

Assume a transformer is located at node 1 and 2,500 houses are randomly located at other nodes. 

The load profile of a single household is shown in Fig. 6.7 and the base load in the distribution 

system consists of the load of 2500 households. Assume the interruption rates for the main feeder 

and lateral feeder are 0.1 interruptions /year and 0.2 interruptions /year respectively; the average 

times to repair for the main feeder and lateral feeder are 2.5 hours and 1 hour respectively. The 

procedure for reliability analysis is based on Monte Carlo simulation and can be found in our 

previous work [77]. The shortest route navigation approach is used as a benchmarking control 

strategy. In this strategy, EVs are guided to the nearest EVCS for recharging their batteries when 

their SOCs are below 40%. 
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Figure 6. 5 Topology of the transportation network under test. 
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Figure 6. 6 The topology of the studied residential distribution grid. 

 

Figure 6. 7 Annual load profile for a single household 

 Simulation Results 6.4.2

Fig. 6.8 shows the simulation results of the average traffic speed of the transportation 

system during a day. The traffic conditions vary during the day time. The traffic is most 

congested during 8:00-10:00 and 17:00-19:00 when most people commute to/from the working 

places. Fig. 6.9 shows the convergence curves of the PSO algorithm and evolution strategy 

during an iteration of the best response algorithm. The response algorithms search the best 

response strategy for the player after other players choose their strategies. It ensures the 

effectiveness of the proposed best response algorithm in finding the Nash equilibrium. As shown 
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in Fig. 6.9, PSO algorithm converges faster and results in higher revenues compared with the 

evolution strategy. 

 

Figure 6. 8 Average traffic speed of the test system. 
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Figure 6. 9 Convergence curves of different response algorithms in a best response iteration. (a) PSO algorithm, 

(b) Evolution strategy. 
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The response time of PSO algorithm is also shorter than evolution strategy as shown in Fig. 

6.10. Thus, the PSO algorithm is used for searching the best response strategies in the proposed 

non-cooperative game. The convergence behavior of the proposed non-cooperative game 

approach is shown in Fig. 6.11. As shown in the figure, the payoffs of all the players converge to 

a stable state after several iterations. Thus, the approximate Nash equilibrium has been reached, 

and the EVCSs will not deviate from their current price strategies. Their revenues reach a stable 

state after competing with each other 

 

Figure 6. 10 Response time of different response algorithms during the iterations of the non-cooperative game. 

 

Figure 6. 11 Convergence of the non-cooperative game. 
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Fig. 6.12 shows the load demand of the system. The charging load incurred by EVCSs 

increases the peak load of the system. Compared with the shortest route navigation approach, the 

proposed integrated navigation approach reduced the burden of the peak load by attracting more 

EVs to charge at off-peak hours when the electricity price is lower. Fig. 6.13 gives the average 

time consumed by EVs to recharge their batteries. The time consumed by EVs comprises the 

travel time to EVCSs and the waiting time at the EVCSs. As shown in the figure, the proposed 

integrated navigation approach results in less average time consumed. As the proposed approach 

provides the EVs with the information on the traffic conditions and the estimated waiting time at 

different EVCSs, the EVs will not only save travel time by avoiding congested routes but also 

reduce waiting time by selecting a less crowded EVCS. The reliability indices of the residential 

distribution system under different navigation approaches are shown in Table 6.1. The reliability 

metrics used in Table 6.1 are system average interruption frequency index (SAIFI), system 

average interruption duration index (SAIDI), customer average interruption duration index 

(CAIDI), and average service availability index (ASAI) [92]. SAIFI is the average instances of 

interruption per customer experienced per year due to the failure of the system components. 

SAIDI is the average outage duration per customer suffered per year. The unit of SAIDI is 

hour/system customer/year. CAIDI is the average outage duration of those customer 

interruptions, and its unit is hour/customer interruption. ASAI is the ratio of customer hours of 

available service and the customer hours demanded per year and the unit is 100%. Base on the 

results in Table 6.1, it can be concluded that the proposed approach has a positive impact on the 

reliability indices. The values of SAIFI, SAIDI and CAIDI are considerably decreased compared 

with the shortest route approach.  
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Figure 6. 12 Load demand curves of the system with different EV navigation strategies. 

 

Figure 6. 13 The average time consumed by EVs with different navigation strategies at different time windows. 

Table 6. 1 Reliability Indices for the Distribution System Under Different Navigation Approaches 

 SAIFI SAIDI CAIDI ASAI 

Shortest Route Approach 51.23 808.64 15.78 0.9077 

Proposed Approach 1.079 5.364 4.971 0.9994 
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7. Adequacy Assessment of Power Distribution 

Network with Large Fleets of PHEVs Considering 

Condition-Dependent Transformer Faults 

 Introduction 7.1

Plug-in hybrid electric vehicles (PHEVs) are expected to have a bright future, which are 

seen as a potential solution to alleviating environmental problems and energy crisis. Compared 

with traditional cars, PHEV has an extra electrical motor, a battery storage system, and a 

charging and V2G system [93]. Its battery capacity can reach up to 10 KWh or more, and it has a 

driving range of at least 30 miles at all electric mode [94]. The design of different driving modes 

makes PHEV more flexible as compared with common electric vehicles (EVs) since it is able to 

satisfy customer requirements with longer driving range. Therefore, PHEV is facing a great 

opportunity to become more popular in the near future. The proliferation of PHEVs in our 

society will shift the burden on environment and crude oil demand to the power grid. On the one 

hand, the environmental problem such as global warming and air pollution can be alleviated and 

crude oil demand can be reduced; on the other hand, the charging activity of PHEVs will 

increase the peak load demand and cause power quality problems.  

In recent years, PHEV penetration level is rapidly increasing worldwide. According to the 

Electric Power Research Institute (EPRI) the penetration level of PHEV may increase to about 

60% in U.S. by the year of 2050 [95]. In the future, high penetration level of PHEVs will pose a 

great challenge to the distribution grid due to their intermittent charging load. The charging load 

of large fleets of PHEVs may seriously increase the peak load, overloading the transformers and 
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transmission lines if it is not properly controlled. The high penetration of PHEVs will thus 

definitely affect the power system reliability and increase the system risk. On the other hand, 

with the development of vehicle-to-grid (V2G) technology, the PHEVs are able to serve as 

distributed energy storage resources. Through V2G, PHEVs can provide power to its owner’s 

household and its neighboring households during system outages. 

To date, various studies have been conducted on the optimal management of PHEVs to 

maximize its economic profits. For instance, smart charging algorithms have been studied in [17] 

to reduce the charging cost and improve the power quality. Reference [42] studied the ancillary 

services provided by PHEVs through the vehicle-to-grid (V2G) technology. Chang, et al. applied 

Markov Decision Processes (MDPs) to model the uncertainty of customers’ behaviors in demand 

side management (DSM) [96]. Reference [66] applied the game theory to integrate PHEVs as 

demand side resources for DSM in the building energy control. Also there is a number of 

literature studying the impact of distributed generation (DG) on the reliability of distribution 

networks [97]-[100]. However, very limited work has been done to quantify the impact of 

massive PHEVs on the distribution grid reliability in a smart grid environment from the 

perspective of power system adequacy. 

This chapter proposes a comprehensive framework for adequacy evaluation of power 

distribution network with large-scale PHEV penetrations. A condition-dependent outage model 

is used in this study to obtain the time sequential failure rate of the transformer. Also, a business 

model for the PHEVs is developed to incentivize the PHEV owners to charge their PHEVs in a 

way that could enhance the distribution system adequacy. Based on this model, a smart charging 

algorithm is proposed for the PHEVs to minimize their charging cost and enhance the adequacy 

of the distribution network at the same time.  
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 System Model 7.2

 Mathematical modeling of PHEVs 7.2.1

The PHEV driving pattern and load demand used in this chapter are obtained from Chapter 

2. In this chapter, we use vectors T = [1,···, t,···, T]  and M = [1,···, d,···, M]  to indicate the 

charging time horizon and the numbering of PHEVs. PHEVs serve as electricity consumers, 

providers and holders. It is assumed that PHEV owners will provide the expected departure time 

and the desired SOC to the aggregator when plugged in. Then we can generate the plug-in time 

tin,d , plug-out time tout,d  and the required energy Ereq,d  of each PHEV in the system. The 

PHEVs can be controlled at two states: charging and idle. 

We use a vector k to express the charging strategy of a PHEV as follows: 

kd = [kd
tin,d ,···, kd

t ,···, k
d

tout,d] ,⩝ dϵ𝐌                                 (7.1) 

The required charging energy constraint is: 

Ereq,d = ∑ kd
t · Prate

d ∙ ∆t,⩝ dϵ𝐌
tout,d
t=tin,d

                                 (7.2) 

where Prate
d  is the rated charging power of the dth PHEV and ∆t is time duration of each time slot. 

The SOC of a PHEV at a certain time slot tx can be expressed as: 

SOCd
tx = SOC

d

tin,d + ∑
kd
t ·Prate

d ∙∆t

Capd
, ∀dϵM, tin,d  ≤ tx ≤

tx
t=tin,d

tout,d        (7.3) 

where  SOC
d

tin,d is the SOC of the dth PHEV at its plug-in time slot tin,d and Capd is capacity of 

the dth PHEV. 

To protect the battery from early degradation, the battery SOC should be bounded as 

follows: 

SOCmin < SOCd
t < SOCmax,⩝ dϵM                                 (7.4) 
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where SOCmin is the minimal limit of SOC and SOCmax is SOCmax is the maximal limit of SOC. 

The total charging power is calculated as: 

PEV
t = ∑ kd

t · Prate
d ,⩝ tϵTN

d=1                                               (7.5) 

 Thus, the average charging power of the system can be expressed as: 

Pavg =
1

T
∑ (PBase

tT
t=1 + PEV

t )                                              (7.6) 

where PBase
t  is the base load demand of the studied system. 

In this study, the power grid motivates the PHEVs owners to participate in the proposed 

reliability support program by offering economic benefits. Also, this kind of program between 

PHEV owners and the power grid will give power grid the right to operate them as distributed 

generators during system interruptions. PHEV owners will receive economic compensation for 

providing energy capacity to improve the reliability of the system. They will also be paid by 

feeding the power back to the grid during the system interruptions. To ensure that the PHEVs 

can be charged to their desired SOCs after an interruption, only those PHEVs with extra plug-in 

time and high SOCs are allowed to export energy to the grid during the interruption.  

If an interruption occurs at time slot tx and the repair time is tr, the energy needed to charge 

the PHEV to the desired SOC can be expressed as: 

Ereq,d
tx = (SOCd

des − SOCd
tx)Capd                                        (7.7) 

where SOCd
des is the desired state of charge of dth PHEV.  

The available energy can be charged by the PHEV after the interruption is expressed as: 

Eavail,d
tx,tr = (tout,d − tx − tr)Prate

d                                          (7.8) 
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The PHEV is allowed to supply power to the grid during the interruption only when 

Eavail,d
tx,tr > Ereq,d

tx  . The energy can be exported to the grid during the interruption is constrained 

by: 

EV2G,d
tx,tr ≤ max {Eavail,d

tx,tr − Ereq,d
tx , 0}                                      (7.9) 

Another constraint for the V2G energy is the minimal SOC limit. That is the minimal SOC 

of the PHEV during the interruption, which can be expressed as: 

EV2G,d
tx,tr ≤ (SOCd

tx − SOCmin)Capd                                    (7.10) 

Thus, the energy that can be exported to the grid during the interruption is calculated as: 

EV2G,d
tx,tr = min {max (Eavail,d

tx,tr − Ereq,d
tx , 0), (SOCd

tx − SOCmin)Capd}       (7.11) 

To ensure the load recovery ability of the PHEVs, the PHEVs are encouraged to maintain a 

high level of SOCs at the early stage of their plug-in time duration. Thus, they are paid to 

maintain this kind of potential load recovery ability. As we do not know the repair time before an 

interruption occurs, we ignore the impact of the repair time when considering the potential load 

recovery ability of PHEVs. At a specific time slot tx, the energy that can be charged by the 

PHEV during the remaining plug-in time is: 

Erem,d
tx = (tout,d − tx)Prate

d                                           (7.12) 

So the potential energy that can be used for load recovery is calculated as: 

EPot,d
tx = min {Erem,d

tx − Ereq,d
tx , (SOCd

tx − SOCmin)Capd}                 (7.13) 

where  Erem,d
tx ≥ Ereq,d

tx , ∀d ∈ M. 

Thus, the PHEVs are paid by their potential load recovery ability at each plug-in time slot 

as follows: 

Earnd
rel = μ ∙ ∑ EPot,d

txtout,d
tin,d

                                          (7.14) 



 

111 

 

where μ is the pricing factor for PHEVs providing reliability support. 

The objective function is to minimize the total cost of the PHEV owners. The total cost 

consists of two parts including the charging cost, and the profit earned by providing reliability 

support. 

The charging cost is described as: 

Coschg = ∑ PEV
t · ρt

T
t=1                                                 (7.15) 

The profit earned by providing reliability support is: 

Earnrel = μ ∙ ∑ Earnd
relM

d=1 = μ∑ ∑ E
Pot,d

tx,dtout,d
tin,d

M
d=1                         (7.16) 

The total cost is: 

Cost = Coschg − Earnrel                                               (7.17) 

So the objective function can be expressed as: 

min {Cost, s. t. (7.2) − (7.4)}                                             (7.18) 

 Smart charging algorithm 7.2.2

As the formulated problem has a nonlinear objective function and the strategy space is very 

large, analytical methods and enumerative method are both not applicable. Thus, particle swarm 

optimization (PSO) [32] is adopted as it is suitable for solving nonlinear problems and is rather 

effective when dealing with a large search space.  

PSO originates from the collective behaviors exhibited in bird flocking and fish schooling. 

In PSO, the possible solution of a target problem is mapped into to search space and the locations 

of the particle in the search are the potential solutions to the problem. Solving the problem is 

equivalent to finding the optimal location in the search space. In this specific problem, we need 

to find the optimal charging strategies of PHEVs. The charging strategy vector of each PHEV 
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can be defined as a dimension of the search space, and the charging strategy vector can be 

encoded as the coordinates in the specific dimension. The particles continuously update their 

locations and velocities in the search space according to (7.19)-(7.21). The fitness of each 

potential solution is evaluated by the objective function (7.18). If an optimum value is achieved 

by a specific particle, the position of the particle will be stored as a personal best position pBest. 

And if an optimum value is achieved among all the particles, the position of this particle will be 

saved as a global best position gBest. When the iteration is over, the best value position gBest 

can be found to optimize the objective function and the best location of the particle is the optimal 

strategy. 

vid
k+1 = wvid

k + C1 ∙ rand1 · (pBesti − xid
k ) + C2 ∙ rand2 ·  (gBest − xid

k )               (7.19) 

   xid
k+1 = xid

k + vid
k+1                                                        (7.20) 

w = wmax − k ∙
wmax−wmin

kmax
                                                 (7.21) 

where vij is the velocity of particle i at dimension j, xij is the position of particle i at dimension j, 

w is the inertia weight, k is the iteration number, and C1 and C2 are the learning factors. 

In this specific problem, we need to find the optimal charging strategy of PHEVs. The 

charging strategy vector of each PHEV can be defined as a dimension of the search space, and 

the charging strategy vector can be encoded as the coordinates in the specific dimension. 

 

 Simulation Model Description  7.3

In a distribution system with large fleet of PHEVs, various charging loads can easily change 

the load profile of the system and affect the artificial operation history for components such 

transformers and feeders. Thus, the conventional adequacy assessment of distribution systems 

with statistically constant failure rates are not suitable for this application, and a more 
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comprehensive model is needed for the reliability evaluation of the distribution system with 

PHEV penetrations. A condition-dependent outage model [69], [101] for the transformer is 

deployed in this study to obtain its time sequential failure rate. This condition-dependent 

transformer failure rate is able to take the impact from the various charging strategies of PHEVs 

into consideration in the reliability evaluation of the distribution network, and can more truly 

reflect the impact of various PHEV charging patterns on the adequacy of the distribution network. 

 Condition-Dependent Transformer Failure Model 7.3.1

The hybrid transformer failure model considers both the random failure and the aging 

failure of the transformer. Random failures can be caused by multiple random events such as 

animal damages, human errors, lightning flashes and storms. Their failure rates can be obtained 

from the historical data. However, the aging failure mode is much more complicated, which is 

related to the actual operation conditions of the transformer. According to the model in [69], the 

transformer aging failure under various load conditions can be represented as follows: 

Paf = 1 − e
(
TLOI,total

Ce

15000
θ0+273

)β−(
TLOI,total+∆te

Ce

15000
θ0+273

)β

                                      (7.22) 

where TLOI,total is the loss of insulation life during a time period N, C and β are constant values 

based on the end-of-life failure,  θO  is the reference temperature, and ∆te  is the equivalent 

operation time. 

As the mechanisms of random failures and aging failures of transformers are different, they 

are independent events. Assuming the random failure probability is Prandom , the hybrid 

transformer failure probability model can be expressed as follows: 

Ptrans = 1 − (1 − Prandom) × (1 − Paf)                                     (7.23) 
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Thus, the proposed hybrid transformer failure model is condition-dependent and the failure 

rate of the transformer is affected by its loading conditions. 

 Transformer Protection Outage Model 7.3.2

Transformer overheating is mainly caused by overload operation. Therefore, overload 

protection is important in preventing transformers from overheating. When transformers are 

overloaded, they can be disconnected by opening the current-controlled overload relays. 

According to IEEE C57.92 [102], uncertainties may exist when the current is close to the relay 

pickup current due to current mismatch. Current mismatch can be caused by multiple factors 

such as measurement errors and over excitation. The mathematical model for calculating the 

current-dependent overload protection outage rate can be obtained as follows [69]: 

Pprotection(I) = Punrequire, if I < Ipe(1 − εI)                                 (7.24) 

Pprotection(I) = Prequire ∫ f(Ipick)dIpick
I

Ipe(1−εI)
+ Punrequire ∫ f(Ipick)dIpick

Ipe(1+εI)

I
,

if Ipe(1 − εI) < I < Ipe(1 + εI)                               (7.25) 

Pprotection(I) = Prequire(I),  if I > Ipe(1 + εI)                             (7.26) 

where Punrequire is the outage rate for transformer when the overload protection is not required, 

Prequire is the outage rate for transformer when the overload protection is required,    Ipick is the 

pick-up current value, Ipe is the expectation value of Ipick, εI is the percentage error of current 

mismatch, and f(Ipick) is the probability density function for Ipick which can be expressed as 

follows: 

f(Ipick) = {

0,    if Ipick < Ipe(1 − εI) or Ipick > Ipe(1 + εI)

e
(−( Ipick−Ipe)

2
2σ2⁄ )

αIσ√2π
, ifIpe(1 − εI) < Ipick < Ipe(1 + εI)

        (7.27) 
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αI = ϕ(
εIIpe

σ
) − ϕ (

−εIIpe

σ
)                                                 (7.28) 

where σ2 is the variance of Ipick, and ϕ is the cumulative distribution function of the standard 

normal distribution. 

 Feeder Protection Outage Model 7.3.3

A probabilistic feeder protection model [103] is adopted in this study. We assume that each 

feeder has a trigger value of Iop  for overcurrent protection. The trigger value is assumed to 

follow a normal distribution as follows: 

g(Iop) =
1

√2πδ
exp [−

(Iop−Iset)
2

2δ2
]                                            (7.29) 

where Iop is the trigger current for feeder overcurrent protection, Iset is the expected value of Iop 

and δ2 is the variance of Iop. 

The virtual setting value Iset is the expected value of Iop. Iset is defined based on the feeder 

properties and its values is set as the operating limits of the feeder. For a given value of the 

feeder current I, the protection operation probability is defined as: 

Pfeed(I) = Pr(I ≥ Iop) = ∫ g(Iop)dIop
I

0
                                       (7.30) 

Iset is set as 8 kA for main feeder and 2 kA for lateral feeder in the test system. 

 

 Adequacy Assessment  of Active Residential Distribution 7.4

Network with PHEVs 

 Load Restoration Mechanism  7.4.1
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 When an interruption occurs in the system, the affected load points are determined by 

evaluating their minimal path. The minimal path for a load point is defined as the path between 

the load point and the source. If the path has been taken out, the connection between the load 

point and the source will be lost.  The V2G topology at a load point is shown in Fig. 7.1. During 

an interruption, PHEVs will first supply power to their own households. Those households with 

excess power will act as virtual power plant (VPP) and supply power to the households suffering 

from the power deficiency. Based on the SOCs of PHEVs and the load demand of households, 

the excess power and the load demand can be calculated. If the excess power cannot satisfy the 

load demand, load will be curtailed. In order to minimize the number of households affected by 

the interruption, the households with less load demand will have a higher priority in the 

restoration sequence.  

 

Figure 7. 1  V2G topology at a certain load point. 

The restoration process can be elaborated as follows: 

Step 1) Once a failure event has been detected in the system, record the time of this event as 

tx. 

Step 2) Check the minimal paths of all the load points and determine the blackout area. 

Step 3) Calculate the available V2G energy EV2G,d
tx,tr  for each PHEV in the blackout area.  

Step 4) Based on the load demand of the households and the available V2G energy in the 

blackout area, determine each household is whether a customer or a VPP.  
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Step 5) For the households operated as customers, queueing them from the lowest load 

demand to the highest load demand. Those households with lower load demands will be restored 

first. Trim the households which have lower priority in the restoration sequence. 

Step 6) Those households operated as VPPs supply power to other households operated as 

customers based on the restoration sequence. Update the available SOCs of the PHEVs for the 

next time step. 

Step 7) Check if the fault has been cleared. If the fault has not been cleared, go to Step 3, 

otherwise go to Step 8. 

Step 8) End the restoration process, and generate the loss of load duration for each 

household. 

 Basic Simulation Procedure Using Monte Carlo Method 7.4.2

Analytical approaches and Monte Carlo simulation are two basic methods for adequacy 

evaluation of distribution system. The load point adequacy indices and system level adequacy 

indices can be calculated by analytical methods [104]. While analytical methods are able to 

calculate the mean and average values for the system adequacy indices including SAIFI, SAIDI, 

CAIDI, etc., Monte Carlo simulation can be used to obtain the probability distribution of these 

system adequacy indices [105]. The state duration probability distributions of components can be 

simulated by Monte Carlo simulation and the adequacy index probability distributions can also 

be calculated by Monte Carlo simulation. 

In Monte Carlo simulation, the artificial history can be applied to identify the occurrence of 

contingencies and their impact on the distribution system by generating an artificial history of 

faults for each component [106], [107]. The artificial history can be derived based on a two-state 

model. In the two-state model, the component is either in the up state or in the down state. The 
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up state indicates the normal condition of the component, and the down state represents the 

faulty condition of the component due to the failure. In a simulated up and down state history, 

time to failure (TTF) indicates the time during which the component remains in the up state and 

time to replace (TTR) means the time during which the component is in the down state. For each 

component n, TTF and TTR are obtain by generating random numbers between [0, 1], as shown 

in (7.31) and (7.32) [106]-[108]. 

          TTFn = −
ln (Un)

λn
× 8760                                          (7.31) 

    TTRn = −ln (Un) × MTTRn                                     (7.32) 

where Un is a uniformly distributed random number between [0, 1]; λn is the failure rate; and 

MTTRn is the mean time to repair. 

When a component failure occurs in the system, the affected load points will be located and 

the impact of the failure will be analyzed. The operation/restoration history of a load point can be 

generated through determining the load point failures. 

 Adequacy Assessment Procedure 7.4.3

The detailed procedure for evaluating system adequacy using Monte Carlo simulation is 

described as follows: 

Step 1) Generate the driving pattern of PHEVs. Determine the plug-in time, plug-out time 

and required energy for each PHEV. 

Step 2) Determine the optimal charging sequence of each PHEV based on the smart 

charging algorithm. 

Step 3) Generate an artificial hourly history of each component.  

Step 4) Detect the failure event in the system.  
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Determine the load restoration sequence 

and trim the households with low priority

Apply smart charging algorithm

Is there a failure 

event detected?

Generate the driving pattern of PHEVs

(determine the plug-in time, plug-out time 

and required energy for each PHEV)

Start

End

Determine the influenced households and 

the available power from PHEVs

Identify the states of households

(operated as customers or VPPs)

Update the load demand of the households 

and the available power from PHEVs

Has the fault been cleared?

Restore the load demand of the households 

for the current time slot

Predefined years 
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Determine the outage duration of each 
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Calculate reliability indices of the system 

and each load point

Yes

No

Yes

No

Yes

No

 

Figure 7. 2 Simulation procedures for integrated distribution and PHEV systems. 
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Step 5) Determine the influenced households and the available V2G energy of the PHEVs. 

Step 6) Execute the load restoration procedures. 

Step 7) Update the load demand of the households and available V2G energy of the PHEVs 

for the next time step. 

Step 8)  Repeat steps 5)-7) until the fault has been cleared. 

Step 9) Determine the outage duration of each household. 

Step 10) Repeat steps 1)-9) until the predefined number of simulation years has been 

achieved. 

Step 11) Calculate the adequacy indices such as SAIFI and SAIDI according to the 

operation/restoration history of all households.   

Step 12) Aggregate the adequacy indices to produce the probability distribution. 

The flow chart in Fig. 7.2 illustrates the complete simulation procedure for evaluating the 

impact of PHEVs penetration on the distribution system reliability using Monte Carlo simulation. 

Notice that the TTFs for transformer and transformer protection are obtained based on (7.23) and 

(7.24)-(7.28), respectively.  

 

 Case Studies and Simulation Results 7.5

 Residential Distribution Network Under Test 7.5.1

IEEE 34-node test feeder [37] shown in Fig. 7.3 is used as a representative residential radial 

network. The node number is marked in the figure. In the system, load point 1 is connected to the 

grid, and each of other load points has 2 households connected to each phase transformer for a 

total of 198 households. Assume each household has two vehicles and the penetration level of 
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PHEVs is defined as the percentage of PHEVs among all the vehicles in these households. For 

the main feeder and the lateral feeder, the interruption rates are 0.1 interruptions/year and 0.25 

interruptions/year, and the average times to repair are 3 hours and 1 hour, respectively. The 

availability of the charging/discharging equipment also has impacts on the system adequacy. 

The voltage level in this distribution system has been scaled down to 120 V for residential 

use. The daily load profiles for a single household in different seasons [38] are illustrated in Fig. 

7.4. To add more randomness to the system, other two load profiles in each season are generated 

by shifting ±1 hours of Fig. 7.4. The load profile of each house is randomly chosen from the 

three load profiles in each season, and peak loads of the households are randomly scaled from 3 

kW to 5 kW. The PHEVs are assumed to be the Chevrolet Volt with 16 kWh battery capacity. In 

addition, SOCmin is set as 20% and SOCmax is set as 90%. A 1,000 kVA transformer located 

between node 1 and node 2 is chosen for simulation studies based on the total demands of the 

customers in this residential distribution system. The charging level of PHEVs is set as AC Level 

1 (1.8 kW) and the charging/discharging efficiency factor is set as η = 0.92. 
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Figure 7. 3 The topology of the studied residential distribution system. 
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Figure 7. 4 Typical daily load profiles for a single household in different seasons. 

 The performance of the proposed smart charging algorithm 7.5.2

In this section, various simulations are carried out to demonstrate the effectiveness of the 

proposed smart charging algorithm. Uncontrolled charging is used as the benchmarking control 

strategy. PHEVs are assumed to start charging immediately when they arrived home when 

uncontrolled charging is applied. The proposed smart charging will arrange the charging 

sequence wisely to reduce the charging cost under the demand reponse program. Four different 

PHEV penetration levels of 10%, 20%, 50% and 100% are tested in this study to validate the 

advantages for the proposed smart charging algorithm.  

The convergence curve of the PSO-based smart charging algorithm is shown in Fig. 7.5. 

Table 7.1 shows the peak load of the system with different control strategies and penetration 

levels. It shows that the smart charging can effectively reduce the peak load of the system. The 

charging cost in winter is shown in Table 7.2. The uncontrolled charging has a higher earning 

from providing reliability support as it charges the PHEVs immediately when they arrive home. 

Thus, PHEVs will have higher SOCs at the early stage of their plug-in duration. However, this 

kind of aggressive charging strategy will increase the peak load of the system dramatically and 
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put the system at risk. While making less earnings by providing reliability support, the proposed 

smart charging strategy results in lower total cost by shifting the charging load from peak load 

hours to off-peak load hours.  

 

Figure 7. 5 The convergence curve of the smart charging algorithm. 

 

Table 7. 1 Peak Load of Different Control Strategies and PHEV Penetration Levels (kW) 

 10%  20% 50% 100% 

Uncontrolled Charging 765 798 866 1041 

Smart Charging 751 772 815 894 

 

Table 7. 2 Costs of Different Control Strategies at 50% PHEV Penetration Level in Winter 

 Charging Cost ($) 

Reliability Support 

Earning($) 

Total Cost ($) 

Uncontrolled 699.39 97.45 601.94 

Smart Charging 465.88 75.31 390.57 
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 Adequacy Evaluation  7.5.3

The adequacy metrics used in this chapter are system average interruption frequency index 

(SAIFI), system average interruption duration index (SAIDI), customer average interruption 

duration index (CAIDI), average service availability index (ASAI) and expected energy not 

supplied (EENS) [92]. SAIFI is the average instances of interruption per customer experienced 

per year due to the failure of the system components. The unit of SAIFI is interruptions/system 

customer/year. SAIDI is the average outage duration per customer suffered per year. The unit of 

SAIDI is hour/system customer/year. CAIDI is the average outage duration of those customer 

interruptions, and its unit is hour/customer interruption. ASAI is the ratio of customer hours of 

available service and the customer hours demanded per year. 

In this section, the impact of charging behavior of PHEVs on the overall system adequacy is 

investigated. The adequacy of the integrated residential distribution and PHEVs system are 

assessed at different PHEV penetration levels. The adequacy evaluation takes the impact from 

different seasons into consideration. The daily load demand profiles for the households are 

generated based on the two load profiles from the summer and winter at different seasons. Also, 

the ambient temperature for the transformer is set differently for summer and winter. The 

simulation is carried out using different household demand profiles and the ambient temperatures 

in different seasons. 

Given an interruption occurs at the main feeder (repair time is 3-h) between load point 1 and 

load point 2 at a given hour, the recovered load demand is shown in Fig. 7.6. As shown in the 

figure, the V2G energy capacity from PHEVs varies during the day. The low V2G energy 

capacity period is from 7 am to 3 pm as most of the PHEVs are on the road. The V2G energy 

capacity reaches its peak at 7 pm to 11 pm as most PHEVs are arrived home and start charging. 
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It can also be found from Fig. 7.6 that the uncontrolled charging reaches a higher V2G energy 

capacity as it charges the PHEVs immediately when they arrive home. This uncontrolled 

charging strategy also puts the system at risk as it increases the system peak load. 

(a) Smart charging

(a) Uncontrolled charging
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Figure 7. 6 Demand recovered for the system in winter during an interruption at 50% PHEV penetration level. 

The transformer parameters used in this case study are obtained from [18] and [21]. Table 

7.3 and Table 7.4 show the simulation results of reliability indices under the uncontrolled 

charging strategy and smart charging strategy, respectively. According to the results, it can be 

found that the adequacy indices have been significantly impacted in a negative manner if a high 

penetration level of PHEVs is integrated into the distribution system for charging without proper 
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control. The values of SAIFI, SAIDI and CAIDI are considerably increased, which indicates that 

customers experienced more frequent interruptions and longer outage durations each year; while 

the decrease of ASAI implies that customers suffered from more time periods without power 

service.  

Table 7. 3 Adequacy indices of the distribution system with uncontrolled charging. 

Indices 

Penetration 

SAIFI SAIDI CAIDI ASAI 

EENS 

(MWh/year) 

10% PHEVs 1.2809 5.1927 4.0538 0.9954 0.9684 

20% PHEVs 1.2596 5.0089 3.9767 0.9934 0.6256 

50% PHEVs 6.0358 79.826 13.225 0.9849 14.367 

100% PHEVs 324.31 5030.6 15.511 0.4237 1253.3 

 

Table 7. 4 Adequacy indices of the distribution system with smart charging. 

Indices 

Penetration 

SAIFI SAIDI CAIDI ASAI 

EENS 

(MWh/year) 

10% PHEVs 1.2436 6.1499 4.9451 0.9918 1.1239 

20% PHEVs 1.2731 7.1469 5.6136 0.9957 0.8249 

50% PHEVs 1.2381 5.5182 4.4570 0.9934 4.7991 

100% PHEVs 12.918 187.35 14.503 0.9746 43.540 

 

Comparing different penetration levels of PHEVs, it can be found that for a very low 

penetration level of PHEV (less than 20%), the increase of PHEV penetration level will benefit 

the system adequacy as more V2G energy capacity can be used in the system. However, as the 

PHEV penetration level increases to a very high level, the charging demand of PHEVs will 

increase the peak load of the system. Its negative impact on the system adequacy will overweigh 

its benefits in providing load restoration service. This is because a higher penetration level of 
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PHEVs inevitably increases the load demand. The increased load has a higher probability of 

producing large currents which may trigger the transformer protection more frequently, causing 

more failure periods in the distribution grid operations.  

It can be observed that most negative impacts can be eliminated at a lower PHEVs 

penetration level through the proposed smart charging method. This validates the effectiveness 

of the proposed smart charging scheme from the perspective of maintaining system adequacy. 

However, if the PHEV penetration grows too high (100% penetration level), the negative 

impacts can only be reduced to some extent but cannot be eliminated after applying the proposed 

smart charging scheme. This is because a high penetration level of PHEVs incurs a very large 

load that cannot be handled. The proposed smart charging is able to reduce the pick-up current 

for the transformer, which is however still much larger than the expected one because of the 

large PHEV charging load. 

 Sensitivity Studies 7.5.4

Two kinds of sensitivity studies are carried out in this section to quantify the impacts of the 

PHEV penetration level, the transformer capacity, PHEV charging level and battery capacity on 

the power system adequacy. 

1) The impact of PHEV penetration level on the distribution system adequacy 

 As we have analyzed in Table 7.3-7.4, the penetration level of PHEVs has a significant 

impact on the adequacy indices. The high penetration level of PHEV has a negative impact on 

the system adequacy. Thus, the penetration level of PHEV cannot exceed a certain limit to 

ensure the system adequacy. The main focus of this case study is to identify the maximum 

number of PHEVs that can be connected to the system without affecting the system adequacy. 

Fig. 7.7 shows the system EENS with different control strategies at different PHEV penetration 
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levels. It can be seen from the figure that the EENS increases dramatically with the increase of 

PHEV penetration level for both control strategies. For a requirement of EENS being less than 

10 MWh/year, the maximum PHEV penetration levels for the smart charging and uncontrolled 

charging are 71% and 44%, respectively. Compared with the uncontrolled charging strategy, the 

proposed smart charging strategy can increase the penetration level of PHEVs by 27%. 

 

Figure 7. 7 EENS of the system with different control strategies at different PHEV penetration levels 

2) The impact of transformer capacity factor, PHEV’s charging level and battery capacity on 

the distribution system adequacy 

It is clear from the analysis in Section 7.3 that the increase of transformer capacity will have 

a positive impact on the system adequacy. Also the PHEV’s charging level and battery capacity 

will affect its ability in load restoration during an interruption. To analyze their impacts on the 

system adequacy, we build three scenarios in this case study. 

 Scenario 1: The base case. It is the same as the system setup in Section 7.5.1. 

 Scenario 2: Increasing the transformer capacity from 1000 kVA to 1200 kVA. 

 Scenario 3: Increasing the charging level from AC level I (1.8 kW) to AC level II (3.6 

kW). Also increasing the battery capacity from 16 kWh to 24 kWh. 
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Figure 7. 8 Comparison of the impacts of different scenarios on the system EENS. 

Fig. 7.8 compares the impacts of different scenarios on the system’s EENS. It can be seen 

from the figure that increasing the charging level and battery capacity results in a better 

performance than increasing the transformer capacity in reducing the EENS at low PHEV 

penetration levels. However, with high PHEV penetration levels, the increase of the charging 

level and battery capacity has a negative impact on the EENS as it inevitably increases the 

charging load demand of the PHEVs and overloads the transformer. The increase of transformer 

capacity can effectively reduce the EENS with high penetration levels of PHEVs. 
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8. Conclusions and Outlook 

This chapter draws the conclusions of this dissertation. Also, the possible future research 

directions in this research field will be presented. 

 Conclusions 8.1

This dissertation studies various aspects of the integration of PHEVs into power distribution 

systems. The detailed summaries of the research conducted in this dissertation are listed as 

follows: 

 Chapter 2 proposes a load profile modeling framework (LPMF) for PHEVs, which takes 

both the characteristics of driving pattern and vehicle parameters into consideration. 

Moreover, to analyze the relationship between the arrival time, departure time and daily 

mileage of PHEVs, the author proposes a Stochastic Fuzzy Model to synthetize the driving 

pattern. 

 A two-layer intelligent optimization algorithm to optimize the charging process of PHEVs is 

presented in Chapter 3. The proposed algorithm is able to achieve four goals by flattening 

the load demand, improving power quality, providing frequency regulation service, and 

minimizing the total charging cost. 

 Chapter 4 designs an LFC system with PHEVs and proposes a hierarchical game framework 

for PHEVs to optimize their charging process and participate in frequency regulation 

simultaneously. In the proposed game framework, a non-cooperative game is proposed to 

guide the frequency regulation capacity bids of aggregators in the upper level and a Markov 

game is adopted at the lower level to coordinate the charging of PHEVs based on the 

regulation price from the upper level game. The games at the two levels cooperate with one 
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another, and will finally evolve to an optimal state where the performance for both the 

frequency regulation and the charging process are optimized. 

 A reliability-differentiated framework to enable reliability-differentiated service in a 

residential distribution network with PHEVs has been proposed in Chapter 5. Thus, the 

customers can be served at different reliability levels. This chapter also develops a 

reliability-differentiated pricing mechanism which is able to improve the reliability of the 

residential distribution system as well as provide differentiated power prices to the 

customers according to their different requirements on reliability. Finally, a hierarchical 

game approach will be proposed in this chapter to coordinate the charging process of PHEVs. 

While traditional non-cooperative game may have multiple Nash equilibriums, the proposed 

hierarchical game gives a refined solution which will not end with suboptimal solutions. 

 Chapter 6 proposes an integrated charging navigation framework will be proposed. This 

charging navigation framework is made up of the power system, transportation system, 

navigation system, electric vehicle charging stations (EVCSs) and EVs. Based on this 

framework, a hierarchical game approach is proposed to optimize the strategies of both 

EVCSs and EVs at two levels. At the upper level of the hierarchical game, a non-cooperative 

game is proposed to model the competition between EVCSs and manage them in a 

decentralized fashion. Evolutionary games are formulated at the lower level to evolve the 

EVs’ strategies in choosing EVCSs. 

 Chapter 7 systematically investigated the impact of large scale penetration of PHEVs on 

power distribution system adequacy. An integrated, stochastic adequacy model is developed 

by combining the stochastic factors in both the PHEVs penetration part and distribution 

network part. A detailed hybrid transformer failure model has been presented, which is able 
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to more truly reflect the changing failure rate due to increased loads by PHEVs charging. 

Monte Carlo simulation has been applied to obtain the adequacy indices. Simulation results 

confirmed that the proposed smart charging strategy is able to effectively reduce the 

negative impacts of PHEVs on system adequacy at the high penetration level of PHEVs 

 Outlook 8.2

To extend the research work presented in this dissertation, the possible research directions 

may include: 

 Charging station planning for integrated power distribution and transportation system. The 

placement of charging stations in a city area may have impacts on both the traffic flow and 

power system reliability. Future study may consider both the optimal location and optimal 

control strategies of charging stations to make it an integrated problem. Currently, the 

research on charging station planning is not mature. Many detailed models are still needed to 

be incorporated in the planning of charging stations such as the EV navigation model, the 

charging station operational model and the interconnections between the power distribution 

network and transportation network. The planning of charging stations should consider the 

impacts from both the power distribution network and transportation network such as the 

layout of the city traffic network, the power distribution network topology, the EV travel 

pattern, the electricity market, power system reliability, EV owners’ convenience and the 

traffic flow efficiency, etc. Inappropriate placement of charging stations could lead to 

negative effects on both the power system and transportation system. Without considering 

the operational model of charging station in the electricity market and the business model for 

EV charging navigation, the planning results will not be accurate, leading to uninformed 

decisions. Thus, it is of great importance to build an integrative, comprehensive charging 
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station planning model, which considers the planning and operation of the charging stations 

as an integrated problem. 

 Consider the impact of renewable resources’ impact on the control strategies of the charging 

stations. Charging stations can have their own renewable resources such as wind turbines 

and solar panels. It is beneficial for both the power grid and charging stations to integrate 

renewable resources in charging stations. On the one hand, the charging load of the charging 

stations could buffer the intermittency of the renewable resources and enable higher 

penetration of the renewable energy in the power grid. On the other hand, the charging 

stations can earn revenues by selling the power generated by the renewable resources to the 

EVs or the power grid. 

 Cooperative game based EV charging navigation. Currently, most studies treat EVs as price 

takers in the electricity market as a single EV has a very small charging demand, which does 

not have enough effect on the charging stations’ pricing strategies. However, with the 

evolving concept of connected vehicles, EVs will be able to communicate with each other 

when choosing their charging stations. For instance, several EVs may cooperate with each 

other and form a group to compete with other EVs in choosing charging stations. Different 

from the centralized optimization, game theory gives a more reasonable business model by 

maximizing the utility of each player instead of the total utility of all the players. In game 

theory, we assume that the players are rational and selfish profit making entities which is 

true in the real-world market. However, the non-cooperative game may reach a smaller total 

utility as it lacks the mechanism of cooperation. This motivates us to apply the cooperative 

game model for the EVs. The utilities of EVs may not always conflict with each other, and 

some of the EVs can make more profits by cooperating with other EVs to bid a more 
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favorable charging price. The charging stations may also be willing to lower its charging 

price for attracting large groups of EVs. 
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Appendix: Proof of the Theorems 

Proof of Theorem 4.1 

Proof: To prove it is more cost effective to let PHEVs charge at the rated charging power, 

we need to find out the cost of a PHEV during the plug-in time horizon, including the charging 

cost, the earning from peak load shaving and the earning from frequency regulation. 

For a baseline charging power 𝑃𝐸𝑉,ℎ and a frequency regulation capacity 𝐶ℎ  at a specific 

time slot h, the instantaneous charging power 𝑃𝐸𝑉,𝑡 is constrained by: 

 𝑃𝐸𝑉,ℎ − 𝐶ℎ ≤ 𝑃𝐸𝑉,𝑡 ≤ 𝑃𝐸𝑉,ℎ + 𝐶ℎ                                    (A.1) 

Also, the charging and discharging power of the PHEV is constrained by its rated charging 

and discharging power 𝑃𝑟𝑎𝑡𝑒. Thus, during the plug-in time span ℎ ∈ [ℎ𝑖𝑛  ℎ𝑜𝑢𝑡], its frequency 

regulation capacity is dynamic according to the charging power as follows: 

𝐶ℎ = {
𝑃𝑟𝑎𝑡𝑒 − 𝑃𝐸𝑉,ℎ , 𝑖𝑓 𝑃𝐸𝑉,ℎ > 0

𝑃𝑟𝑎𝑡𝑒 + 𝑃𝐸𝑉,ℎ , 𝑖𝑓 𝑃𝐸𝑉,ℎ < 0
                                    (A.2) 

The required charging energy constraint is: 

𝐸𝑟𝑒𝑞 = ∑ 𝑃𝐸𝑉,ℎ
ℎ𝑜𝑢𝑡
ℎ=ℎ𝑖𝑛

∙ ∆ℎ                                         (A.3) 

where ∆ℎ is the duration of the time step. 

The total V2G energy capacity of the PHEV can be expressed as: 

𝑉𝑐𝑎𝑝 =  (ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛)𝑃𝑟𝑎𝑡𝑒 − 𝐸𝑟𝑒𝑞                                  (A.4) 

Define the V2G strategy 𝜅 as the percentage of V2G capacity used for frequency regulation 

as follows: 

𝜅 =
𝑉𝑐𝑎𝑝−2𝐸𝑑𝑖𝑠

𝑉𝑐𝑎𝑝
                                                   (A.5) 

where  𝐸𝑑𝑖𝑠 is the discharged energy of the PHEV for peak load shaving during the plug-in time 

span. 
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To satisfy the required charging energy constraint, the charged energy is: 

𝐸𝑐ℎ𝑔 = 𝐸𝑟𝑒𝑞 + 𝐸𝑑𝑖𝑠                                                   (A.6) 

To prove Theorem 4.1, it is equivalent to proving that for any V2G strategy 𝜅, it is more 

cost effective to let the PHEV charge and discharge at its rated power.  

For a certain V2G strategy 𝜅, the total frequency regulation capacity over the plug-in time 

span is: 

𝐶𝑡𝑜𝑡 = ∑ 𝐶ℎ
ℎ𝑜𝑢𝑡
ℎ=ℎ𝑖𝑛

= 𝑁 ∙ ∆ℎ ∙ 𝑃𝑟𝑎𝑡𝑒 − (𝐸𝑐ℎ𝑔 + 2𝐸𝑑𝑖𝑠) = 𝑁 ∙ ∆ℎ ∙ 𝑃𝑟𝑎𝑡𝑒 − (𝐸𝑟𝑒𝑞 + 2𝐸𝑑𝑖𝑠)                            

(A.7) 

Thus, for a certain V2G strategy 𝜅, the total frequency regulation capacity is a constant 

value. 

The frequency regulation earning for the PHEV can be expressed as: 

𝐸𝑎𝑟𝑛𝑟𝑒𝑔 = ∑ 𝐶ℎ ∙ 𝑟ℎ
𝑟𝑒𝑔

=
ℎ𝑜𝑢𝑡
ℎ=ℎ𝑖𝑛

𝐶𝑡𝑜𝑡 ∙ 𝑟𝑎𝑣𝑔
𝑟𝑒𝑔

                              (A.8) 

where 𝑟ℎ
𝑟𝑒𝑔

 is the frequency regulation price at time slot h and 𝑟𝑎𝑣𝑔
𝑟𝑒𝑔

 is the average frequency 

regulation price. 

As proved in Section 4.3.3, when the optimal frequency regulation price has been reached, 

we have the contracted regulation capacity as 𝐶𝑐𝑜𝑛,ℎ
𝑗

=
(𝛼+𝛽)𝑝𝐴𝑟,ℎ

𝑗
−𝛽𝑅𝑗

2𝛼2
. As we have: 

𝐶𝑐𝑜𝑛,ℎ
𝑗∗

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝐶𝑐𝑜𝑛,ℎ
𝑗 (𝑈𝑇𝑆𝑂,ℎ

𝑗
) = 𝐶𝑒𝑣,ℎ

𝑗
+
𝑅𝑗−𝑝𝐴𝑟,ℎ

𝑗

2𝛼
                      (A.9) 

Then we have 

𝑝𝐴𝑟,ℎ
𝑗

=
2𝛼2𝐶𝑒𝑣,ℎ

𝑗
+(𝛼+𝛽)𝑅𝑗

2𝛼+𝛽
                                              (A.10) 

As 
𝜕𝑝𝐴𝑟,ℎ

𝑗

𝜕𝐶𝑒𝑣,ℎ
𝑗 =

2𝛼2

2𝛼+𝛽
> 0, the frequency regulation price increases with the regulation capacity. 

The total regulation capacity for the aggregator will increase at certain hours if charging power is 
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increased. Then the average frequency regulation price 𝑟𝑎𝑣𝑔
𝑟𝑒𝑔

 will increase. So 𝐸𝑎𝑟𝑛𝑟𝑒𝑔 increases 

with the increasing charging power. 

Notice that the Markov game will automatically assign the discharging time slots to peak 

price hours and charging time slots to off-peak price hours to maximize the PHEV’s revenue. 

The charging cost considering the peak load shaving can be expressed as: 

𝛩 =  𝑟𝜅
𝑐ℎ𝑔(𝑥)𝐸𝑑𝑖𝑠 − 𝑟𝜅

𝑑𝑖𝑠(𝑥)𝐸𝑐ℎ𝑔                                            (A.11) 

where 𝑟𝜅
𝑑𝑖𝑠(𝑥)  is the average discharging price, 𝑟𝜅

𝑐ℎ𝑔(𝑥)  is the average charging price, and 

𝑥 = 𝑃𝐸𝑉 𝑃𝑟𝑎𝑡𝑒⁄ . 

Clearly, for any value of 𝑥 the peak price hours are used for discharging and off-peak price 

hours are used for charging. If the value of 𝑥 increases, more power can be discharged at higher 

electricity rates and also more power can be charged at lower electricity rates. Thus, 𝑟𝜅
𝑑𝑖𝑠 

increases with the increase of x and 𝑟𝜅
𝑐ℎ𝑔

 decreases with the increase of x. As Edis is constant for 

a certain V2G strategy 𝜅, 𝛩 will also decrease with the increase of x. Thus, the charging cost will 

be minimized if the PHEV is charged at its rated power. 

Thus, the cost of the PHEV 𝐶𝑜𝑠𝑡 = 𝛩 − 𝐸𝑎𝑟𝑛𝑟𝑒𝑔 will be minimized if the PHEV charges 

and discharges at its rated power. Therefore, it is the more cost effect to let PHEVs charge at 

their rated charging power.         □ 

 

Proof of Theorem 5.1 

Proof: Notice that the proposed non-cooperative game has a finite number of players and 

action profiles. According to Lemma 5.1, at least one Nash equilibrium exist in the game. It is 

clear that every best response dynamics converges to a pure Nash equilibrium if the number of 

iterations is infinitely great [109]. The proposed approximate Nash equilibrium can guarantee a 
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reasonable convergence time by appropriately setting the parameter ε1 [90]. Finally, the possible 

missing Nash equilibrium will be captured in the approximated Nash equilibrium [71]. Therefore, 

the proposed non-cooperative game will converge to the approximated Nash equilibrium (5.32) 

under best response strategy.                                                   □ 

 

Proof of Theorem 5.2 

Proof: According to the definition of Earnanci
d , we have 

∂Earnanci
d (yd)

∂yd
= VCapd(regt +

MSRt(yd)) . According to (5.23), the ancillary services capacity of the system PAnci
t  will increase 

with yd. Based on (5.7) and (5.10), the marginal spinning reserve price MSRt(yd)will decrease 

with the increase of  PAnci
t . As VCapd and regt are constants, so 

∂Earnanci
d (yd)

∂yd
 will decrease with 

the increase of yd  and 
∂Earnanci

d (yd+∆yd)

∂yd
<

∂Earnanci
d (yd)

∂yd
 when ∆yd > 0 . So we can obtain 

∂2Earnanci
d (yd)

∂yd
2 = lim∆yd→0

∂Earnanci
d (yd+∆yd)

∂yd
−
∂Earnanci

d (yd)

∂yd

∆yd
< 0 . 

Notice that the best response strategy in the non-cooperative game will automatically assign 

the discharging time slots to peak price hours and charging time slots to off-peak price hours to 

maximize the revenue. Based on the definition of dominant solution matrix in Section 5.2.2, we 

have 
∂Earnpls

d (yd)

∂yd
= −VCapd (∆rd

pls(yd) −
cb∙Capd+cL

LC∙Capd∙DOD
) , where ∆rd

pls(yd) = rd
dis(yd) − rd

chg(yd) 

is the discharging and charging price difference for using the V2G capacity for peak load 

shaving at yd. Clearly, for any value of yd, the peak price hours are used for discharging and off-

peak price hours are used for charging. If the value of yd increases, the peak load shaving 

capacity decreases and the remaining discharging and charging time slots will be allocated to 

peak price and off-peak price hours respectively. Therefore, the discharging capacity at relatively 
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lower peak price hour and the charging capacity at the relatively higher off-peak price hour are 

used for ancillary service, which indicates rd
dis(yd + ∆yd) > rd

dis(yd)  and rd
chg(yd + ∆yd) <

rd
chg(yd) when ∆yd > 0 . Thus, ∆rd

pls(yd + ∆yd) > ∆rd
pls(yd) . Therefore, 

∂Earnpls
d (yd)

∂yd
 will 

decrease with the increase of yd  and 
∂Earnpls

d (yd+∆yd)

∂yd
<

∂Earnpls
d (yd)

∂yd
 when ∆yd > 0. So we can 

draw the conclusion that 
∂2Earnpls

d (yd)

∂yd
2 = lim∆yd→0

∂Earnpls
d (yd+∆yd)

∂yd
−
∂Earnpls

d (yd)

∂yd

∆yd
< 0. 

Therefore, we have 
∂2EarnV2G

d

∂yd
2 =

∂2Earnanci
d

∂yd
2 +

∂2Earnpls
d

∂yd
2 < 0 . So EarnV2G

d  is a concave 

function of yd  and there exists a yd
∗  for maximizing the value of πd

V2G =
EarnV2G

d

VCapd
.                         

□ 

 

Proof of Theorem 5.3 

Proof: Define a tracking error function ed = yd
∗ − yd  and a Lyapunov function Vd(t) =

(ed)
2. Since Vd(t) ≥ 0, the Lyapunov function is positive definite. Vd(t) → ∞ when t → ∞. 

The first order derivative of Vd(t)can be expressed as: 

V̇d(t) =
∂(ed)

2

∂t
= 2ed

∂ed

∂t
= −2ed

∂yd

∂t
= −2δyd(yd

∗ − yd)(πd
anci − π̅V2G)       (A.12) 

Notice that  
∂Earnanci

d (yd)

∂yd
 is a decreasing function of yd. So the ancillary service earning for 

per unit capacity decreases with the increase of yd, which indicates the per unit ancillary service 

revenue πd
anci =

Earnanci
d

yd∙VCapd
 is a decreasing function of yd. If πd

anci > π̅V2G, according to (5.37), we 

can obtain 
∂yd

∂t
> 0. Clearly, we have  yd

∗ > yd. Therefore V̇d(t) < 0. Similarly, if πd
anci < π̅V2G, 
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we have yd
∗ < yd  and V̇d(t) < 0 . According to Lemma 5.3, the system is stable and the 

evolutionary game will converge to the proposed evolutionary equilibrium.               □ 

 

Proof of Theorem 6.1 

Proof: To prove the theorem, it suffices to show that a player’s best choice is to provide its 

true strategy information when other players reveal their true strategy information. 

  Let π1
∗ , . . , πi

∗, … , πI
∗ denote the Nash equilibrium of the non-cooperative game when all the 

players provide truthful information. Denote π1
∗ , . . , π̅i, … , πI

∗  as the Nash equilibrium reached 

when player i provides untruthful information about its strategy π̅i . We denote the utility of 

player i when providing truthful and untruthful information as Ui
∗ and U̅i respectively. 

Based on the definition of best response strategy we have 

πi
∗ = πi

′ = argmaxπi∈Fi{Ui(πi, π−i
∗ )} which means ∀πi ∈ Fi, ∀i ∈ I, Ui

∗ ≥ U̅i. That is, the player 

i cannot benefit by misreporting its best response strategy. Therefore, we can conclude that all 

the players in algorithm 6.1 will provide their truthful best response strategy.                                                   

□ 
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