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ABSTRACT

ACCELERATED QUANTUM DYNAMICS

by

Morgan H. Lynch

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Valerică Raicu

In this dissertation we develop a formalism for the computation of observables due to

acceleration-induced particle physics processes. By using the spacetime structure produced

by acceleration, we examine the properties of accelerated particle detectors as well as accel-

erated fields. General expressions for the transition rate, multiplicity, power, spectra, and

displacement law of particles undergoing time-dependent acceleration and transitioning into

a final state of arbitrary particle number are obtained. The transition rate, power, and spec-

tra are characterized by unique polynomials of multiplicity and thermal distributions of both

bosonic and fermionic statistics. The acceleration-dependent multiplicities are computed in

terms of the branching fractions of the associated inertial processes. The displacement law

of the spectra predicts that the energy of the emitted particles is directly proportional to

the accelerated temperature.
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mµ

. . . . . . . . 44

5.4 The electron lifetime τe = 1/Γe as a function of ã = a
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Chapter 1

Introduction

The formalism of quantum field theory in curved spacetime [1, 2, 3] (QFTCST) is used to

describe particle dynamics in the geometric backgrounds of general relativity. The combi-

nation of these resoundingly successful theories produces the current, and most complete,

description of nature we have. The chief accomplishment of this theory is the fact that

the three pillars of physics (quantum mechanics, gravitation, and thermodynamics) are all

incorporated into one unified framework. In fact, in QFTCST, thermodynamics is not even

present in the initial formulation but emerges as a by-product of extending quantum theory

to incorporate curved spacetimes. What makes this even more incredible is how the thermo-

dynamics emerges by a process involving the incredibly exotic phenomena of event horizons

and vacuum fluctuations. Event horizons such as those found around black holes are able

to create particles using vacuum fluctuations that occur near the horizon. Incredibly, the

particles produced via this process have a thermal distribution determined by a temperature

that is determined by the surface gravity of the event horizon. Moreover, there is even an en-

tropy associated with the area of the event horizon. The emergence of these thermodynamic

phenomena was surprising in that rather than unifying the forces of physics, it ”unified the

fields” by bringing gravitation, quantum mechanics, and thermodynamics under the same

theoretical structure. Of all the possible spacetimes that can be analyzed using QFTCST,
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there are three that are of particular importance: FRW cosmologies which model the ex-

panding universe, Schwarzschild spacetimes which model black holes, and Rindler spacetime

which model uniform accelerated motion.

In his PhD thesis, Leonard Parker established the formalism within QFTCST for analyz-

ing particle creation and applied it to the expanding universe [4]. By using the Bogoliubov

transformation he developed the technique to compute, among many other things, the num-

ber of particles produced by changing between two spacetimes [5]. Then, he applied this

formalism to compute the number of particles created by starting with an initial vacuum

Minkowski space, allowing it to expand, and ending with a final Minkowski space, see Figure

1.1 below. The thermal particles produced in this way are now a leading candidate for the

cause of density perturbations seen in the cosmic microwave background and the techniques

to analyze them are used routinely in probing the properties of inflationary cosmology [6, 7].

Experimentally, cosmology currently provides an active area to investigate these cosmologi-

cal aspects of QFTCST. There is even an active search for ”smoking gun” evidence for this

particle production mechanism currently underway [8, 9]. The fact that there is an ongo-

ing, very active, and fully funded research program devoted to studying the application of

QFTCST to cosmology shows how it can be used to probe fundamental physics.

vacuum

Figure 1.1: Cosmological particle creation.

The Bogoliubov transformation again found a particular important application in analyz-

ing the formation of black holes. By comparing the spacetimes before and after a distribution
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of matter collapses into a black hole, Stephen Hawking was able to show that black holes

radiate thermal particles [10], see Figure 1.2 below. Even more interesting is the fact that

the temperature of these particles is given by the surface gravity at the horizon. Using ther-

modynamics, this temperature was then used to compute the associated entropy predicted

by Jacob Bekenstein [11]. The presence of this entropy, and the fact that it decreases, while

a black hole evaporates has lead to the famous information loss paradox. The resolution of

this paradox has been at the forefront of theoretical physics since its discovery. It is currently

possible to study the classical properties of astrophysical black holes [12, 13], and there are

analogue systems that can study quantum mechanical aspects of black holes in both ana-

logue water experiments and condensed matter systems using Bose-Einstein condensation

[14, 15]. Quantum properties of black holes, including thermal particle emission, have been

experimentally verified in these analogue systems and appear to be in complete agreement

with Hawkings prediction.

Figure 1.2: Black hole radiation.

In an attempt to understand the nature of black hole evaporation, Bill Unruh exploited a

similarity in the spacetime structure near the black hole horizon and the spacetime structure

seen by an observer in vacuum and under constant acceleration [16, 17, 18]. Then, by

computing the number of particles after moving into an accelerated reference frame he found

that even there a thermal distribution of particles is created. This time the temperature is
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determined by the acceleration. In order to verify this effect, one needs to impart on particles

an incredibly high acceleration. This is technologically difficult but there are many candidate

systems which may have the ability to reach the necessary acceleration scales in the near

future [19, 20, 21]. As such, this situation is different from the others in that there are still

no experimental settings capable of probing this effect. It is in anticipation of experiments

that are capable of probing the Unruh effect that I have written this dissertation. In short,

my dissertation is devoted to developing the ”particle physics” that one would expect to see

in the presence of the Unruh effect.

X

T

Figure 1.3: Radiation due to acceleration.

Since the discoveries of Parker [4], Hawking [10], and Unruh [16], namely cosmological

particle creation, black hole evaporation, and accelerated radiation, respectively, a general

notion has emerged that the particle content of spacetime is an observer-dependent quantity.

For example, with the Unruh effect an observer undergoing uniform acceleration a will find

the Minkowski vacuum state to be a thermalized bath of particles at temperature t = a/2π.

Directly measuring this, or related phenomena, has remained outside the reach of our cur-

rent experimental capabilities. Indirect measurements, such as the acceleration-dependent

lifetime of particles, could provide a better avenue for verifying these effects. Muller [22]

first calculated how acceleration affects the decay rates of muons, pions, and protons using

scalar fields. A more detailed calculation of the accelerated decay of protons and neutrons,

and related processes, using fermions coupled to semiclassical vector currents was carried
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out by Matsas and Vanzella [23, 24, 25]. Here, we utilize scalar fields to develop a for-

malism which encompasses transitions with arbitrary final state multiplicity and compute

both the power and the spectra. We also import certain relevant inertial quantities, such as

the branching fractions of various decays, into the formalism and compute the acceleration

scale to select the relevant decay pathway, i.e. multiplicity. We carry out the branching

fraction analysis for the electron-muon system and also gives a first estimate for the lifetime

of an accelerated electron using a scalar field approximation. Moreover, with the Planckian

spectra obtained, we compute the peak energy of the emitted particles via a generalization

of Wien’s displacement law. This establishes that the most probable energy of the emitted

particles is peaked about the accelerated temperature. These results are punctuated by the

entire analysis being carried out using a newly developed time-dependent formalism which

agrees with the previous developments of Obadia and Milgrom [26], Kothawala and Pad-

manabhan [27], and Barbado and Visser [28]. The time-dependence and ability to compute

a wide class of observables developed in this dissertation establish a basic foundation for

an acceleration-induced particle physics phenomenology with applications to highly accel-

erated systems. The matter contained in this dissertation is based off of the following two

publications [29, 30]. All calculations are performed using the natural units ~ = c = kB = 1.
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Chapter 2

Transition Rate of Accelerated Fields

In this chapter we determine the probability per unit time that a massive scalar particle will

decay into nM massless scalar particles using the method of field operators. Denoting the

massive initial state by Ψ and the massless final states by φi, the process we are concerned

with is given by

Ψ→a φ1φ2φ3 · · ·φnM . (2.1)

It should be noted that there may be symmetry factors associated with the final state

products if there are more than one of the same particle species in the final state. For the

current considerations we ignore any symmetry factors which may arise since we will have

an arbitrary coupling constant which may be rescaled to take into account any degeneracy,

statistical, or color factors. In order to describe this decay process, we work in the interaction

picture and consider the following action [31, 32],

ŜI =

∫
d4x
√
−g
√

2

σκ
GΨ̂

nM∏
`=1

φ̂`. (2.2)

The coupling constant G will be determined by the specific interaction and, for the

eventual concern of this paper, will be related to the Fermi coupling Gf . The additional

6



factor of
√

2
σκ

will be used for the later convenience of absorbing the Jacobian of a proper

time reparametrization σ and normalization constant κ. Note that we are modeling decay

processes at tree level and provided the energy scale, i.e. the proper acceleration, remains

below the W± and Z boson masses we need not worry about the nonrenormalizability of this

effective Fermi interaction. All fields under consideration are assumed to be real and thus so

is the interaction action. Note, all interactions, fields, trajectories, and thus the transition

rate will eventually be evaluated in the Rindler coordinate chart. The probability amplitude

for the acceleration induced decay of our massive initial state into nM massless particles is

given by

A = 〈
nM∏
m=1

km| ⊗ 〈0| ŜI |Ψi〉 ⊗ |0〉 . (2.3)

That is, the initial fock state |Ψi〉 of our massive field Ψ decays into the nM -particle

momentum eigenstate |
∏nM

i=1 ki〉 of our massless fields φi under the influence of the interaction

ŜI . Note we have used the shorthand notation |
∏nM

i=1 ki〉 = |k1,k2, . . . ,knM 〉 to denote our

final state. Defining
∏nM

j=1 d
3kj = D3

nM
k, we can set up the differential probability, i.e. the

magnitude squared of the probability amplitude per unit final state momenta, via

7



dP
D3
nM
k

= |A|2

=

∣∣∣∣∣〈
nM∏
m=1

km| ⊗ 〈0| ŜI |Ψi〉 ⊗ |0〉

∣∣∣∣∣
2

= G2 2

σκ

∫
d4x
√
−g
∫
d4x′

√
−g′ ×∣∣∣∣∣〈

nM∏
m=1

km| ⊗ 〈0| Ψ̂(x)

nM∏
`=1

φ̂`(x) |Ψi〉 ⊗ |0〉

∣∣∣∣∣
2

= G2 2

σκ

∫
d4x
√
−g
∫
d4x′

√
−g′ ×

∣∣∣〈0| Ψ̂(x) |Ψi〉
∣∣∣2 ∣∣∣∣∣〈

nM∏
m=1

km|
nM∏
`=1

φ̂`(x) |0〉

∣∣∣∣∣
2

. (2.4)

The above inner product containing our massless fields φ`, its complex conjugate, and

the product of momentum integrations in Eq. (2.4) allow us to factor out nM complete sets

of momentum eigenstates, e.g.
∫
d3k |k〉 〈k| = 1. The total transition probability is then

given by

P = G2 2

σκ

∫
d4x
√
−g
∫
d4x′

√
−g′ ×

∣∣∣〈0| Ψ̂(x) |Ψi〉
∣∣∣2 nM∏
j=1

∫
d3kj

∣∣∣∣∣〈
nM∏
m=1

km|
nM∏
`=1

φ̂`(x) |0〉

∣∣∣∣∣
2

= G2 2

σκ

∫
d4x
√
−g
∫
d4x′

√
−g′ ×∣∣∣〈0| Ψ̂(x) |Ψi〉

∣∣∣2 nM∏
`=1

〈0| φ̂`(x′)φ̂`(x) |0〉 . (2.5)

In examining the above equation, it serves to recall the expression 〈0| Ψ̂(x) |Ψi〉 selects

the positive frequency mode function uk(x, τ) of the initial state Ψ. These positive frequency

mode functions are eigenfunctions of the Rindler coordinate proper time τ such that ∂τuk =

8



−iωuk. In the accelerated frame this particle is at rest and its energy is only the rest mass

m. Letting fΨi(x) denote the spatial variation of the particle, we find

〈0| Ψ̂(x) |Ψi〉 = 〈0|
∫
d3k′[âk′uk′(x) + h.c] |Ψi〉

=

∫
d3k′δ(k′ − k)uk′(x)

= uk(x)

= fΨi [x(τ)]e−imτ . (2.6)

Furthermore, each of the two-point functions 〈0| φ̂`(x′)φ̂`(x) |0〉 in Eq. (2.5) characterizes

the probability amplitude for a field quanta to be created at the spacetime point x and

propagate within the lightcone to the spacetime point x′. If t′ > t then the particle is

traveling forward through time and has a postive frequency. This defines the appropriately

named positive frequency Wightman function denoted G+(x′, x). Similarly if t > t′ then

this defines the negative frequency Wightman function, denoted G−(x′, x), and describes

a particle of negative frequency propagating backwards through time. The time ordered

sum of the positive and negative frequency Wightman functions make up the more common

Feynman propagator [33]. Denoting the general two point function G±(x′, x), our probability

can now be simplified to the following form:

P = G2 2

σκ

∫
d4x
√
−g
∫
d4x′

√
−g′

∣∣∣〈0| Ψ̂(x) |Ψi〉
∣∣∣2 nM∏

`=1

〈0| φ̂`(x′)φ̂`(x) |0〉

= G2 2

σκ

∫
d4x
√
−g
∫
d4x′

√
−g′fΨi(x)f ∗Ψi(x

′)eim(τ ′−τ)[G±(x′, x)]nM . (2.7)

The Wightman functions for the massless scalar field can be evaluated analytically

by inserting the canonically normalized mode decomposition of our field operator φ̂ =∫
d3k

(2π)3/2
√

2ω
[âke

i(k·x−ωt) + â†ke
−i(k·x−ωt)]. Thus,

9



G±(x′, x) = 〈0`| φ̂`(x′)φ̂`(x) |0`〉

=
1

2(2π)3

∫∫
d3k′d3k√
ω′ω

×

〈0`|
[
âk′e

i(k′·x′−ω′t′) + â†k′e
−i(k′·x′−ω′t′)

] [
âke

i(k·x−ωt) + â†ke
−i(k·x−ωt)

]
|0`〉

=
1

2(2π)3

∫∫
d3k′d3k√
ω′ω

〈0`| âk′ â†ke
i(k′·x′−k·x−ω′t′+ωt) |0`〉

=
1

2(2π)3

∫∫
d3k′d3k√
ω′ω

ei(k
′·x′−k·x−ω′t′+ωt)δ(k′ − k)

=
1

2(2π)3

∫
d3k

ω
ei(k·∆x−ω∆t). (2.8)

To facilitate the resultant integral we move into momentum space spherical coordinates

and rotate until our momentum is aligned along the z axis. Recall that in the massless limit

ω = k the integration simplifies further to

G±(x′, x) =
1

2(2π)3

∫
d3k

ω
ei(k·∆x−ω∆t)

=
1

2(2π)3

∫ ∞
0

∫ π

0

∫ 2π

0

dkdθdφ k sin θei(k∆x cos θ−k∆t)

=
1

2(2π)2

∫ ∞
0

∫ 1

−1

dkd(cos θ) kei(k∆x cos θ−k∆t)

=
1

2(2π)2

i

∆x

∫ ∞
0

dk
[
e−ik(∆x+∆t) − e−ik(−∆x+∆t)

]
. (2.9)

In order for the above integration to be well defined we must damp the oscillation at

infinity via the introduction of a complex regulator to our time interval, e.g. ∆t→ ∆t− iε

with ε > 0. Hence,

10



G±(x′, x) =
1

2(2π)2

i

∆x

∫ ∞
0

dk
[
e−ik(∆x+∆t) − e−ik(−∆x+∆t)

]
=

1

2(2π)2

i

∆x

∫ ∞
0

dk
[
e−ik(∆x+(∆t−iε)) − e−ik(−∆x+(∆t−iε))]

=
1

2(2π)2

i

∆x

[
1

i(∆x+ (∆t− iε))
− 1

i(−∆x+ (∆t− iε))

]
=

1

(2π)2

1

∆x2 − (∆t− iε)2
. (2.10)

Having determined the functional form of our massless Wightman function we return to

the integrations over the spatial coordinates in our decay probability, Eq. (2.7). These can

be dealt with by examining the covariant 4-volume element of Rindler space. The proper

coordinates [34] (τ, ξ,x⊥) seen by a particle undergoing uniform proper acceleration a along

the z axis are given by

τ(t, z) =
1

2a
ln
z + t

z − t

ξ(t, z) = −1

a
+
√
z2 − t2. (2.11)

The perpendicular coordinates x⊥ do not change in Rindler space. Note, the coordinate

ξ parametrizes distances seen by the accelerated observer along the axis of acceleration and

the point ξ = 0 labels the origin of this axis and is defined to be the location of the uniformly

accelerated particle. For an inertial observer, this point will then characterize the trajectory

of the accelerated particle. In this coordinate chart, the metric takes the form

ds2 = (1 + aξ)2dτ 2 − dξ2 − dx2
⊥. (2.12)

The corresponding metric determinant of this spacetime used to covariantly scale our

4-volume of integration is |g| = 1 + aξ. Inverting our proper coordinate chart, Eq. (2.11),

11



and translating until ξ = 0 and x⊥ = 0 yields the trajectory of our particle,

t =
1

a
sinh aτ

z =
1

a
cosh aτ

x⊥ = 0. (2.13)

It should be noted that under this trajectory our Wightman function, Eq. (2.10), depends

only on the proper time τ and is therefore not affected by the spatial integrations. Returning

to the decay probability, Eq. (2.7), we can handle the spatial components of the integration

via

P = G2 2

σκ

∫
d4x
√
−g
∫
d4x′

√
−g′fΨ(x)f ∗Ψ(x′)eim(τ ′−τ)[G±(x′, x)]nM

= G2 2

σκ

∫
d3x
√

1 + aξ

∫
d3x′

√
1 + aξ′fΨ(x)f ∗Ψ(x′)

∫∫
dτdτ ′eim(τ ′−τ)[G±(x′, x)]nM

= G2 2

σκ
κ

∫∫
dτdτ ′eim(τ ′−τ)

[
G±(x′, x)

]nM
= G2 2

σ
FnM (m). (2.14)

The mode functions have the form fΨ(x) ∼ Kiω/a(
m
a
eaξ)g(x⊥) where g(x⊥) is an en-

velope function or wave packet describing the spatial distribution of our accelerated field

in the directions perpendicular to the acceleration [22]. With the mode functions properly

normalized [35], the expression κ =
∣∣∫ d3x

√
1 + aξfΨ(x)

∣∣2 will be of order unity. We see the

probability of an acceleration induced transition is then given by the Fourier transform of the

product of the nM final state Wightman functions. This is known as the response function

FnM (m). The effective coupling constant G2 for the process being considered will be deter-

mined by taking the limit a → 0 and matching the coefficient to the known inertial decay

process. Note this compact form of the transition probability is valid for a more general

12



class of trajectories provided their parametrization only depends on the proper time. Using

the trajectories from Eq. (2.13), the coordinate transformations u = τ ′−τ
ρ

and s = τ ′+τ
σ

, and

the inversion τ ′ = ρu+σs
2

and τ = σs−ρu
2

with arbitrary σ and ρ, we find the explicit form of

the spacetime intervals in the massless Wightman function to be

∆x2 − (∆t− iε)2 =
1

a2

{
[cosh (aτ ′)− cosh (aτ)]2 − [sinh (aτ ′)− sinh (aτ)− iε]2

}
=

1

a2

{
[2 sinh

(aρu
2

)
sinh

(aσs
2

)
]2 − [2 sinh

(aρu
2

)
cosh

(aσs
2

)
− iε]2

}
=

1

a2
[4 sinh2

(aρu
2

)
sinh2

(aσs
2

)
− 4 sinh2

(aρu
2

)
cosh2

(aσs
2

)
+

4iε sinh
(aρu

2

)
cosh

(aσs
2

)
]

=
1

a2
[4 sinh2

(aρu
2

)
sinh2

(aσs
2

)
− 4 sinh2

(aρu
2

)
cosh2

(aσs
2

)
+8iε sinh

(aρu
2

)
cosh

(aρu
2

)
]

=
−4

a2
sinh2

(aρu
2
− iε

)
. (2.15)

Note we have rescaled ε by the positive definite factor 2 cosh
(
aρu

2

)
/ cosh

(
aσs
2

)
and used

the Taylor expansion of sinh2(x− iε) to combine the arguments. Thus we obtain

G±(x′, x) = − 1

(2π)2

a2

4 sinh2
(
aρu

2
− iε

) . (2.16)

In changing the proper time integration variables we pick up the Jacobian σρ
2

and our

transition probability induced by the uniformly accelerated trajectory then becomes
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P = G2 2

σ
FnM (m)

= G2 2

σ

∫∫
dτdτ ′eim(τ ′−τ)

[
G±(x′, x)

]nM
= G2 2

σ

∫∫
dτdτ ′eim(τ ′−τ)

[
1

(2π)2

1

∆x2 − (∆t− iε)2

]nM
= G2 2

σ

∫∫
dτdτ ′eim(τ ′−τ)

[
− 1

(2π)2

a2

4 sinh2
(
aρu

2
− iε

)]nM
= G2(−1)nMρ

( a
4π

)2nM
∫∫

dsdu
eimρu

[sinh
(
aρu

2
− iε

)
]2nM

. (2.17)

By dividing out the infinite proper time interval
∫
ds we obtain the probability of tran-

sition per unit proper time ΓnM (m, a) = P
∆s

. After rescaling u → ρu we see that the result

is independent of the parametrization of u. The parametrization of s yielded a factor of σ
2

which we absorbed by the initial rescaling of our coupling constant. The probability per unit

time is thus given by

ΓnM (m, a) = G2

(
ia

4π

)2nM ∫
du

eimu

[sinh
(
au
2
− iε

)
]2nM

. (2.18)

Focusing on the integration, we note that in the absence of the iε prescription there will

be poles of order 2nM when u = 2απi/a with α being any integer. To integrate over the real

axis in the presence of the pole at u = 0 we will close our contour in the upper half plane

to damp the oscillation at infinity. In doing so we also pick up the additional tower of poles

along the imaginary axis. Furthermore, with the negative iε prescription we will also capture

the pole at α = 0. We will now remove the regulator ε → 0 now that we understand the

appropriate pole structure. The integrand can be cast into a simpler form via the change of

variables w = eau. Hence,
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∫
du

eimu

[sinh
(
au
2

)
]2nM

= 22nM

∫ ∞
−∞

du
eimu[

e
au
2 − e−au2

]2nM
= 22nM

∫ ∞
−∞

du
eimu+aunM

[eau − 1]2nM

=
22nM

a

∫ ∞
0

dw
wim/a+nM−1

[w − 1]2nM
. (2.19)

We see that there are poles when w = 1, i.e. w = ei2πα where we keep the integer α ≥ 0.

Evaluation of this integral may be accomplished via the residue theorem. Thus

22nM

a

∫ ∞
0

dw
wim/a+nM−1

[w − 1]2nM
=

22nM

a

2πi

(2nM − 1)!

∞∑
α=0

d2nM−1

dw2nM−1

[
[w − 1]2nM

wim/a+nM−1

[w − 1]2nM

]
w=ei2πα

=
22nM

a

2πi

(2nM − 1)!

∞∑
α=0

[
wim/a−nMΓ(im/a+ nM)

Γ(im/a+ 1− nM)

]
w=ei2πα

=
22nM

a

2πi

(2nM − 1)!

Γ(im/a+ nM)

Γ(im/a+ 1− nM)

∞∑
α=0

e−2πm
a
α−2πinMα

=
22nM

a

2πi

(2nM − 1)!

Γ(im/a+ nM)

Γ(im/a+ 1− nM)

1

1− e−2πm/a
. (2.20)

The presence of the factor of [1 − e−2πm/a]−1 is indicative of the thermal nature of the

vacuum associated with the Unruh effect. From our total rate, Eq. (2.18), for a uniformly

accelerated particle of mass m to decay into nM massless particles under the influence of a

uniform acceleration is then found to be

ΓnM (m, a) = G2

(
ia

2π

)2nM 1

a

2πi

(2nM − 1)!

Γ(im/a+ nM)

Γ(im/a+ 1− nM)

1

1− e−2πm/a
. (2.21)

We can normalize the above expression by defining Γ̃ = Γ/Γ0, with Γ0 = G2, to better

analyze the normalized decay rate for an arbitrary nM particle multiplicity final state. The
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normalized decay rates Γ̃nM for the first few integer values of nM are given by

Γ̃1(m, a) =
m

2π

1

1− e−2πm/a

Γ̃2(m, a) =
m3

48π3

1 +
(
a
m

)2

1− e−2πm/a

Γ̃3(m, a) =
m5

3840π5

1 + 5
(
a
m

)2
+ 4

(
a
m

)4

1− e−2πm/a

Γ̃4(m, a) =
m7

645120π7

1 + 14
(
a
m

)2
+ 49

(
a
m

)4
+ 36

(
a
m

)6

1− e−2πm/a

Γ̃5(m, a) =
m9

185794560π9

1 + 30
(
a
m

)2
+ 273

(
a
m

)4
+ 820

(
a
m

)6
+ 576

(
a
m

)8

1− e−2πm/a
. (2.22)

Below, in Figs. 2.1 and 2.2, we plot both the normalized decay rates and lifetimes τ̃ = 1/Γ̃

for a particle of mass m = 1 to decay into nM massless particle states as a function of the

proper acceleration. It is clear from both Eq. (2.22) and the plots below that there exists

a crossover scale of acceleration where the accelerated particle will preferentially choose the

decay chain with the most final state products. This implies that an inertially decaying

particle chooses the decay chain which contains the least allowable amount of end products

and by imparting a sufficiently high acceleration on an unstable particle it will chose the

decay chain which contains the most allowable final state products.
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Figure 2.1: The normalized decay rates, Eq. (2.22), with ã = a/m and m = 1.
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Figure 2.2: The normalized lifetimes, τ̃ , with ã = a/m and m = 1.

The prescription for this method of calculation can be seen by inspecting (2.14). In

general, for nM final state products, the response function is computed by taking the Fourier

transform of the product of each of the Wightman functions of the nM massless final states.
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The number of final states determines the number of derivatives taken in calculating the

residues of Eq. (2.20), which yields the gamma functions, and thus the number of terms in

the decay rate polynomial as can be seen by Eq. (2.22). In the next chapter we will analyze

the same situation utilizing an Unruh-DeWitt detector.
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Chapter 3

Transition Rate of an Unruh-DeWitt

Detector

In this chapter we utilize the formalism of Unruh-DeWitt detectors; see Ref. [16, 36]. As

such, we form a two-level system consisting of two particles of arbitrary mass and determine

the associated decay and excitation rates, accompanied by the simultaneous emission of nM

massless particles, of the system under uniform acceleration. These processes are illustrated

schematically as

Ψ1 →a Ψ2φ1φ2 · · ·φnM . (3.1)

The utility of this method is that it allows the inclusion of a massive final state in a

rather uncomplicated fashion and, more importantly, allows for a description of acceleration

induced excitation rather than just decay. To accomplish this, we will now promote the

massive scalar fields Ψi to a two-level system, e.g. an Unruh-DeWitt detector. These fields,

and their transitions, will now be characterized by the time evolved monopole moment

operator [31],

m̂(τ) = eiĤτm̂0e
−iĤτ . (3.2)
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The monopole moment operator m̂0 is assumed to be Hermitian. The operator Ĥ denotes

the detectors or fields proper Hamiltonian with the property

Ĥ |Ψi〉 = mi |Ψi〉 , i = 1, 2 (3.3)

since, in the proper frame, the total energy will be that of the rest mass of our field mi.

Utilizing this formalism, we define the interaction action as [31, 32],

ŜI =

∫
dτ

√
2

σ
m̂(τ)

nM∏
`=1

φ̂`. (3.4)

Again we have pulled out the additional factor of
√

2
σ

to absorb the Jacobian of a proper

time reparametrization. Furthermore, this action is only integrated over the detector proper

time and not the full spatial extent of the accelerated field as in the previous section, Eq.

(2.2), since we are considering the fields as a time-dependent two-level system with no spatial

extent. In calculating matrix elements of the form 〈Ψf | m̂(τ) |Ψi〉 we define the effective

coupling constant to be

G = 〈Ψf | m̂0 |Ψi〉 . (3.5)

It is this effective coupling constant that encodes the physical characteristics of the par-

ticular transition under consideration. The probability amplitude for the process induced by

the interaction, Eq. (3.4), is given by

A = 〈
nM∏
j=1

kj| ⊗ 〈Ψf | ŜI |Ψi〉 ⊗ |0〉 . (3.6)

We again use the same notation for our Fock states and accommodate any complications

due to the statistics or degeneracies of the final state products by rescaling our effective

coupling. Utilizing the shorthand notation
∏nM

j=1 d
3kj = D3

nM
k, the differential probability

for the two-level system to undergo a transition and be accompanied by the emission of nM
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massless particles per unit momentum is given by

dP
D3
nM
k

= |A|2

= 〈0| ⊗ 〈Ψi| ŜI |Ψf〉 ⊗ |
nM∏
j′=1

kj′〉 〈
nM∏
j=1

kj| ⊗ 〈Ψf | ŜI |Ψi〉 ⊗ |0〉

=
2

σ

∫∫
dτ ′dτ 〈0| ⊗ 〈Ψi| m̂(τ ′)

nM∏
`′=1

φ̂`′(x
′) |Ψf〉 ⊗ |

nM∏
j′=1

kj′〉 ×

〈
nM∏
j=1

kj| ⊗ 〈Ψf | m̂(τ)

nM∏
`=1

φ̂`(x) |Ψi〉 ⊗ |0〉 . (3.7)

Operation of the time evolved monopole moment in the relevant inner product and re-

calling the definition of our effective coupling, Eq. (3.5), yields

〈Ψf | m̂(τ) |Ψi〉 = 〈Ψf | eiĤτm̂0e
−iĤτ |Ψi〉

= ei(mf−mi)τ 〈Ψf | m̂0 |Ψi〉

= Gei∆mτ . (3.8)

Then our differential probability, Eq. (3.7), becomes

dP
D3
nM
k

=
2

σ

∫∫
dτ ′dτ 〈0| ⊗ 〈Ψi| m̂(τ ′)

nM∏
`′=1

φ̂`′(x
′) |Ψf〉 ⊗ |

nM∏
j′=1

kj′〉 ×

〈
nM∏
j=1

kj| ⊗ 〈Ψf | m̂(τ)

nM∏
`=1

φ̂`(x) |Ψi〉 ⊗ |0〉

= G2 2

σ

∫∫
dτ ′dτ e−i∆m(τ ′−τ)

∣∣∣∣∣〈
nM∏
j=1

kj|
nM∏
`=1

φ̂`(x) |0〉

∣∣∣∣∣
2

. (3.9)

In this chapter we will endeavor to evaluate the above integral in a different way than in
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the previous chapter. Originally we factored out the complete set of momentum eigenstates

to yield the Wightman functions. We then showed that each massless Wightman function

was, up to a constant, the inverse of the spacetime interval traversed along an arbitrary

trajectory. The interval was then evaluated along the hyperbolic trajectory associated with

uniform acceleration. Here, we evaluate the inner product without factoring out the complete

set of momentum eigenstates. This allows us to insert the hyperbolic trajectory into the

resultant mode functions then perform the integrations over momentum. In doing so, we

gain insight into the physical properties of the emitted decay products. We also find, as

expected, the end result to be identical to that of the previous section. Evaluation of the

decay rate using these two different methods lends a greater understanding to the underlying

character of these processes.

Operation on the vacuum with our massless fields in Eq. (3.9) will yield nM momentum

integrals of the negative frequency mode functions over their momentum. Hence the above

inner product will reduce to

〈
nM∏
j=1

kj|
nM∏
`=1

φ̂`(x) |0〉 = 〈
nM∏
j=1

kj|
nM∏
`=1

1

(2π)
3nM

2

1

2
nM

2

∫
d3k`√
ω`

[
â†k`e

−i(k`·x−ωk` t) + h.c.
]
|0〉

=
1

(2π)
3nM

2

1

2
nM

2

nM∏
`=1

∫
d3k`√
ω`
e−i(k`·x−ωk` t) 〈

nM∏
j=1

kj|k`〉

=
1

(2π)
3nM

2

1

2
nM

2

nM∏
`=1

∫
d3k`√
ω`
e−i(k`·x−ωk` t)

nM∏
j=1

δ(kj − k`)

=
1

(2π)
3nM

2

1

2
nM

2

e−i
∑nM
j=1(kj ·x−ωkj t)√∏nM

j′=1 ωj′
. (3.10)

Utilizing the above expression, our differential probability becomes
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dP
D3
nM
k

= G2 2

σ

∫∫
dτ ′dτ e−i∆m(τ ′−τ)

∣∣∣∣∣〈
nM∏
j=1

kj|
nM∏
`=1

φ̂`(x) |0〉

∣∣∣∣∣
2

= G2 2

σ

1

(2π)3nM

1

2nM

∫∫
dτ ′dτ e−i∆m(τ ′−τ) e

i
∑nM
j=1(kj ·(x′−x)−ωkj (t′−t))∏nM

j′=1 ωj′
. (3.11)

It should be noted that we are integrating over the accelerated particles proper time.

As such, the position and time intervals in the above exponential need to be recast along

the trajectory and expressed in terms of the proper time of the accelerated frame. Then,

recalling the trajectory from the previous chapter, Eq. (2.13), we have

dP
D3
nM
k

= G2 2

σ

1

(2π)3nM

1

2nM

∫∫
dτ ′dτ e−i∆m(τ ′−τ) e

i
∑nM
j=1(kj ·(x′−x)−ωkj (t′−t))∏nM

j′=1 ωj′

= G2 2

σ

1

(2π)3nM

1

2nM

∫∫
dτ ′dτ e−i∆m(τ ′−τ) ×

e
i
a

∑nM
j=1(kzj [cosh (aτ ′)−cosh (aτ)]−ωkj [sinh (aτ ′)−sinh (aτ)])∏nM

j′=1 ωj′
. (3.12)

Again, utilizing the change of variables, u = (τ ′ − τ)/ρ and s = (τ + τ ′)/σ, we recall

cosh (aτ ′)− cosh (aτ) = 2 sinh
(aρu

2

)
sinh

(aσs
2

)
sinh (aτ ′)− sinh (aτ) = 2 sinh

(aρu
2

)
cosh

(aσs
2

)
. (3.13)

In changing variables we will again pick up the factor of ρσ
2

due to the Jacobian. Using

these proper time parametrizations the differential probability becomes
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dP
D3
nM
k

= G2 2

σ

1

(2π)3nM

1

2nM

∫∫
dτ ′dτ e−i∆m(τ ′−τ) ×

e
i
a

∑nM
j=1(kzj [cosh (aτ ′)−cosh (aτ)]−ωkj [sinh (aτ ′)−sinh (aτ)])∏nM

j′=1 ωj′

=
G2

(2π)3nM

ρ

2nM

∫∫
dsdu e−i∆mρu ×

e
2i
a

∑nM
j=1[kzj sinh (aσs

2
)−ωkj cosh (aσs

2
)] sinh (aρu

2
)∏nM

j′=1 ωj′
. (3.14)

Noting that our acceleration is along the z axis only, we can examine the 4-velocity of

the accelerated particle using the new affine proper time parametrization s̃ = σs
2

. Hence

uµ(s̃) =
dxµ

ds̃

= (cosh (as̃), 0, 0, sinh (as̃)). (3.15)

We can then read off the relativistic factors associated with this motion, γ = cosh (as̃)

and βγ = sinh (as̃). Then, restricting our analysis to the 2-D subspace along the hyperbolic

trajectory, we find that given a 2-momentum kµ we can boost to the frame instantaneously

at rest with the accelerated motion to find
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k̃ν = Λν
µk

µ

=

 γ −βγ

−βγ γ


ω

kz


=

 cosh (as̃) − sinh (as̃)

− sinh (as̃) cosh (as̃)


ω

kz


 ω̃

k̃z

 =

 ω cosh (as̃)− kz sinh (as̃)

−ω sinh (as̃) + kz cosh (as̃)

 . (3.16)

Upon inspection of the exponential in Eq. (3.14), we see the argument in the sum is

merely the frequency of the emitted particles as seen in the boosted frame instantaneously

at rest with accelerated field, i.e. ω̃. As such we may rewrite the exponential in terms of the

boosted frequencies yielding

dP
D3
nM
k

=
G2

(2π)3nM

ρ

2nM

∫∫
dsdu e−i∆mρu ×

e
2i
a

∑nM
j=1[kzj sinh (aσs

2
)−ωkj cosh (aσs

2
)] sinh (aρu

2
)∏nM

j′=1 ωj′

=
G2

(2π)3nM

ρ

2nM

∫∫
duds e−i∆mρu

e−
2i
a

[
∑nM
j=1 ω̃kj ] sinh (aρu

2
)∏nM

j′=1 ωj′
. (3.17)

Note the integrand of our differential probability is now independent of the proper time

parameter s. Therefore we can now divide out the total proper time interval
∫
ds = ∆s to

obtain the transition probability per unit proper time, ΓnM (∆m, a) = P/∆s. Furthermore,

since we have the proper quantity ω̃ in the exponent we will need to change the remaining

momentum variables to the boosted frame as well. Upon inversion of the Lorentz transforma-

tions in Eq. (3.16) we obtain kz = ω̃ sinh (as̃)+k̃z cosh (as̃) and ω = ω̃ cosh (as̃)+k̃z sinh (as̃).
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Recalling first that k̃⊥ = k⊥, we then examine the quantity dkz/ω. Hence

dkz
ω

=
dkz

dk̃z

dk̃z
ω

=
d

dk̃z
[ω̃ sinh (as̃) + k̃z cosh (as̃)]

dk̃z
ω

= [
k̃z
ω̃

sinh (as̃) + cosh (as̃)]
dk̃z
ω

=
k̃z sinh (as̃) + ω̃ cosh (as̃)

ω̃

dk̃z
ω

=
dk̃z
ω̃
. (3.18)

The recasting of our transition rate in terms of proper frame variables, accompanied by

the rescaling of our proper time via u→ ρu, yields the following more convenient expression:

ΓnM (∆m, a) =
P
∆s

=
G2

(2π)3nM

1

2nM

∫∫
duD3

nM
k e−i∆mu

e−
2i
a

[
∑nM
j=1 ω̃kj ] sinh (au

2
)∏nM

j′=1 ωj′

=
G2

(2π)3nM

1

2nM

∫∫
du

nM∏
`=1

d3k` e
−i∆mu e

− 2i
a

[
∑nM
j=1 ω̃kj ] sinh (au

2
)∏nM

j′=1 ωj′

=
G2

(2π)3nM

1

2nM

∫∫
du

nM∏
`=1

d3k̃` e
−i∆mu e

− 2i
a

[
∑nM
j=1 ω̃kj ] sinh (au

2
)∏nM

j′=1 ω̃j′
. (3.19)

The isotropy of the momentum of the emitted particles in the proper frame is apparent

from the above expression. To further facilitate the calculation, we exploit this spherical

symmetry by moving our momentum integrations into spherical coordinates. Thus
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ΓnM (∆m, a) =
G2

(2π)3nM

1

2nM

∫∫
du

nM∏
`=1

d3k̃` e
−i∆mu e

− 2i
a

[
∑nM
j=1 ω̃kj ] sinh (au

2
)∏nM

j′=1 ω̃j′

=
G2

(2π)3nM

1

2nM

∫∫
du

nM∏
`=1

k̃2
` sin (θ̃`)dk̃`dθ̃`dφ̃` e

−i∆mu e
− 2i
a

[
∑nM
j=1 ω̃kj ] sinh (au

2
)∏nM

j′=1 ω̃j′

=
(4π)nMG2

(2π)3nM

1

2nM

∫∫
du

nM∏
`=1

k̃2
`dk̃` e

−i∆mu e
− 2i
a

[
∑nM
j=1 ω̃kj ] sinh (au

2
)∏nM

j′=1 ω̃j′
. (3.20)

Then, for the final state massless fields φi, we have ω̃i = k̃i and we may further simplify

the above integrations to

ΓnM (∆m, a) =
(4π)nMG2

(2π)3nM

1

2nM

∫∫
du

nM∏
`=1

k̃2
`dk̃` e

−i∆mu e
− 2i
a

[
∑nM
j=1 ω̃kj ] sinh (au

2
)∏nM

j′=1 ω̃j′

= G2 1

(2π)2nM

∫∫
du

nM∏
`=1

k̃2
`dk̃` e

−i∆mu e
− 2i
a

[
∑nM
j=1 k̃j ] sinh (au

2
)∏nM

j′=1 k̃j′

= G2 1

(2π)2nM

∫∫
du

nM∏
`=1

k̃`dk̃` e
−i∆mue−

2i
a

[
∑nM
j=1 k̃j ] sinh (au

2
)

= G2 1

(2π)2nM

∫
du e−i∆mu

[∫
dk̃ k̃e−

2i
a
k̃ sinh (au

2
)

]nM
. (3.21)

The integral over k̃ will require the use of a regulator to the ensure convergence of the

integral. In order to damp the oscillation at infinity, we let sinh (au
2

) → sinh (au
2

) − iε ≈

sinh (au
2
− iε) with ε > 0. As such, the momentum integration yields

∫
dk̃ k̃e−

2i
a
k̃ sinh (au

2
) =

∫ ∞
0

dk̃ k̃e−
2i
a
k̃(sinh (au

2
)−iε)

=

[
e−

2i
a
k̃(sinh (au

2
)−iε) (1 + 2

a
k̃(sinh (au

2
)− iε))

( 2
a
(sinh (au

2
)− iε))2

]∞
0

= −a
2

4

1

sinh2 (au
2
− iε)

. (3.22)
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It should be noted that, up to a multiplicative constant, we have reproduced the Wight-

man function for a massless scalar field in Rindler space, Eq. (2.16). We arrived at this

expression by inserting the hyperbolic trajectory into the mode functions prior to evaluating

the two point function rather than evaluating the two point function first and then inserting

the trajectory as we did in the previous section. The fact that we obtained the same result

serves as a self-consistency check. This method also served to shed light on the physics of

the emission process in the proper frame. For a more comprehensive analysis of the physics

of the proper frame we refer the reader to Ref. [24]. Our acceleration induced transition

rate, Eq. (3.21), then takes the form

ΓnM (∆m, a) = G2 1

(2π)2nM

∫
du e−i∆mu

[∫
dk̃ k̃e−

2i
a
k̃ sinh (au

2
)

]nM
= G2 1

(2π)2nM

∫
du e−i∆mu

[
−a

2

4

1

sinh2 (au
2
− iε)

]nM
= G2

(
ia

4π

)2nM ∫
du

e−i∆mu

[sinh (au
2
− iε)]2nM

. (3.23)

A similar integral, Eq. (2.18), was encountered in the previous chapter. By making the

replacement in the integrand m→ −∆m we can quote the result by inspection. Hence,

ΓnM (∆m, a) = G2

(
ia

2π

)2nM 1

a

2πi

(2nM − 1)!

Γ(−i∆m/a+ nM)

Γ(−i∆m/a+ 1− nM)

1

1− e2π∆m/a
. (3.24)

To recast the above gamma functions into the same form as the previous chapter we

recall the identity Γ(z)Γ(1− z) = π
sin (πz)

to find

Γ(−i∆m/a+ nM)

Γ(−i∆m/a+ 1− nM)
= − Γ(i∆m/a+ nM)

Γ(i∆m/a+ 1− nM)
. (3.25)
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Thus, our total rate, Eq. (3.24), of our two-level system to undergo an acceleration

induced transition and simultaneously emit nM massless scalar fields is given by

ΓnM (∆m, a) = G2

(
ia

2π

)2nM 1

a

2πi

(2nM − 1)!

Γ(i∆m/a+ nM)

Γ(i∆m/a+ 1− nM)

1

e2π∆m/a − 1
. (3.26)

As expected, we have reproduced the same expression as in the previous chapter provided

we made the appropriate identifications for m. The use of an Unruh-DeWitt detector has

provided us with a relatively simple procedure for including a massive particle in the final

state but at the expense of keeping it confined to Rindler space. This is due to one of the

final state particles being locked in the detector. Again, normalizing the transition rate via

Γ̃ = Γ/Γ0 with Γ0 = G2, we write out the first few normalized decay rates Γ̃nM . Hence,

Γ̃1(∆m, a) =
∆m

2π

1

e2π∆m/a − 1

Γ̃2(∆m, a) =
(∆m)3

48π3

1 +
(

a
∆m

)2

e2π∆m
a − 1

Γ̃3(∆m, a) =
(∆m)5

3840π5

1 + 5
(

a
∆m

)2
+ 4

(
a

∆m

)4

e2π∆m/a − 1

Γ̃4(∆m, a) =
(∆m)7

645120π7

1 + 14
(

a
∆m

)2
+ 49

(
a

∆m

)4
+ 36

(
a

∆m

)6

e2π∆m/a − 1

Γ̃5(∆m, a) =
(∆m)9

185794560π9
×

1 + 30
(

a
∆m

)2
+ 273

(
a

∆m

)4
+ 820

(
a

∆m

)6
+ 576

(
a

∆m

)8

e2π∆m/a − 1
. (3.27)

Comparing with the previous rates from Eq. (2.22), the use of an Unruh-DeWitt detector

to model particle decays produces a similar form for the decay rate but with a more general

mass transition. This is due to the fact that the particle that is coupled into the two-level

system with the initial accelerated particle remains in Rindler space. In the previous chapter

all final state particles were emitted into Minkowski space and it was the Wightman functions
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of these particles which contributed to the polynomial. Therefore one must take care when

analyzing a system to ensure that the final state particles, i.e. fields, are expressed in terms

of the mode functions of the appropriate spacetime.

By using the Unruh-DeWitt detector we can analyze not only acceleration induced decays

but also excitations. By letting ∆m = −1 we can reproduce the results of the previous

chapter. Rather we set ∆m = 1 to analyze an initially accelerated particle that excites into

a more massive state. We can now look at normalized Γ̃nM detector excitation rates with the

simultaneous emission of nM massless particles into Minkowski space. We focus this analysis

for a ≥ ∆m since the relevant plots rapidly diverge at low acceleration to reflect the infinite

lifetimes for stable particles in inertial frames (see Figs. 3.1 and 3.2).

a
~

 

2 4 6 8 10 12 14 16 18 20

Γ∼
 

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

­4
10

­3
10

­2
10

­1
10

1

10

 = 1
M

n

 = 2
M

n

 = 3
M

n

 = 4
M

n

 = 5
M

n

Figure 3.1: The normalized excitation rates, Eq. (3.27), with ã = a/∆m and ∆m = 1.
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Figure 3.2: The normalized excitation lifetimes τ̃ = 1/Γ̃ with ã = a/∆m and ∆m = 1.

We have found in this chapter that the use of an Unruh-DeWitt detector allows for a more

general mass transition when examining the effect of acceleration on unstable particles. This

is due to the coupling of one of the final state products into the accelerated detector which

effectively keeps this particle in Rindler space. This situation arises, for example, when the

acceleration mechanism is an electric field and an initial charged particle undergoes a tran-

sition into another charged particle with the simultaneous emission of two neutral particles.

The final state charged particle remains in Rindler space on account of the acceleration due

to the electric field while the neutral particles are unaffected by the electric field and are thus

effectively in Minkowski space. A muon accelerated by an electric field and decaying into an

electron and two neutrinos is an example of this type of process. This and the reverse process

of electron excitation will be analyzed in a later chapter. In the next chapter we generalize

the accelerated field transition process to arbitrary final state multiplicities in both Rindler

and Minkowski spacetimes.
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Chapter 4

Generalized N-Particle Transition

Rates

In the previous chapters we evaluated the acceleration induced transition rate using two

different methods. We now demonstrate the equivalence between the two methods and also

show how to correctly interpret and make use of the overall formalism considering an initial

particle in Rindler spacetime and allowing it to decay into nR particles in Rindler space and

nM particles into Minkowski space. Schematically we are examining the process

Ψi →a Ψ1Ψ2 · · ·ΨnRφ1φ2 · · ·φnM (4.1)

We denote the initial accelerated massive field by Ψi, the final state Rindler particles of

arbitrary mass by Ψj, and the massless final state Minkowski particles by φk. In order to

analyze this process we consider the following more general interaction action [31, 32]:

ŜI =

∫
d4x
√
−g
√

2

σκ
GΨ̂i

nR∏
r=1

Ψ̂r

nM∏
m=1

φ̂m. (4.2)

As before, the coupling constant G will be determined by the inertial limit of the specific
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interaction in question and the additional factor
√

2
σκ

is defined for later convenience. The

probability amplitude for the acceleration induced transition of our massive initial state into

n total particles is given by

A = 〈
nM∏
`=1

k`| ⊗ 〈
nR∏
j=1

Ψj| ŜI |Ψi〉 ⊗ |0〉 . (4.3)

The Rindler states |Ψj〉 are labeled by the index j while the Minkowski states |k`〉 are

labeled by their momenta. We again use the same notation for our Fock states and accom-

modate any complications due to the statistics or degeneracies of the final state products by

rescaling our effective coupling. With the same notation
∏nM

n=1 d
3knM = D3

nM
k the differential

probability for the accelerated field to decay and emit nR particles into Rindler space and

nM particles into Minkowski space is given by

dP
D3
nM
k

= |A|2

= G2 2

σκ

∣∣∣∣∣
∫
d4x
√
−g 〈

nM∏
`=1

k`| ⊗ 〈
nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x)

nM∏
m=1

φ̂m(x) |Ψi〉 ⊗ |0〉

∣∣∣∣∣
2

= G2 2

σκ

∣∣∣∣∣
∫
d4x
√
−g 〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉 〈
nM∏
`=1

k`|
nM∏
m=1

φ̂m(x) |0〉

∣∣∣∣∣
2

= G2 2

σκ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 ∣∣∣∣∣〈

nM∏
`=1

k`|
nM∏
m=1

φ̂m(x) |0〉

∣∣∣∣∣
2

. (4.4)

We can now factor out the nM complete set of momentum eigenstates. The result will

give the product of Wightman functions of the massless Minkowski fields,
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P = G2 2

σκ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 nM∏
n=1

∫
d3knM

∣∣∣∣∣〈
nM∏
`=1

k`|
nM∏
m=1

φ̂m(x) |0〉

∣∣∣∣∣
2

= G2 2

σκ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 nM∏
m=1

〈0| φ̂m(x′)φ̂m(x) |0〉

= G2 2

σκ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2

[G±(x′, x)]nM . (4.5)

We now examine the remaining Rindler space inner products. As before, we have seen

that each field operator serves to extract the appropriate mode function of each Rindler

particle. The Rindler coordinate proper time of the initial field will again serve as our time

coordinate. As such we can examine the above inner products. Hence

〈
nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉 = fΨi [x(τ)]e−imiτ
nR∏
r=1

f ∗Ψr [x(τ)]eiωrτ

=

[
fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

]
ei∆ERτ . (4.6)

The Rindler mode frequencies ωr correspond to the energies of final state Rindler particles

which may not necessarily be the appropriate rest masses. Also we have defined ∆ER =∑
ωr −mi to be the total energy difference between the final and initial Rindler space field

configuration. Our total transition probability, Eq. (4.5), then becomes
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P = G2 2

σκ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2

[G±(x′, x)]nM

= G2 2

σκ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣

[
fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

]
ei∆ERτ

∣∣∣∣∣
2

[G±(x′, x)]nM

= G2 2

σκ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

∣∣∣∣∣
2

e−i∆ER(τ ′−τ)[G±(x′, x)]nM . (4.7)

We again define κ to be the overall normalization of the product of envelope functions

fΨ, i.e.

κ =

∫∫
d3xd3x′

√
−g
√
−g′

∣∣∣∣∣fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

∣∣∣∣∣
2

. (4.8)

As such the total probability for our transition becomes

P = G2 2

σ

∫∫
dτdτ ′e−i∆ER(τ ′−τ)[G±(x′, x)]nM . (4.9)

In carrying out this analysis we see that one can consider having a transition involving

an arbitrary number of final state particles in Rindler space to be equivalent to having an

Unruh-DeWitt detector with the energy levels being the initial and final state energies of the

Rindler space field configuration as seen in the proper frame of the initially accelerated field.

Having evaluated this expression before we know the remaining procedures are to formulate
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the transition rate and evaluate the Fourier transform of the product of the Minkowski final

state Wightman functions evaluated along the accelerated trajectory of the initial Rindler

particle state. We now quote the final form of the transition probability. Thus

ΓnM (∆ER, a) = G2

(
ia

2π

)2nM 1

a

2πi

(2nM − 1)!
×

Γ(i∆ER/a+ nM)

Γ(i∆ER/a+ 1− nM)

1

e2π∆ER/a − 1
. (4.10)

This is the same form of the expression that we have arrived at previously but now we

have a clearer understanding of the role each of the Rindler and Minkowski space fields

plays in the transition rate. For the sake of completeness, we list the normalized decay rates

Γ̃nM (∆ER, a), for the first few multiplicities. Hence,

Γ̃1(∆ER, a) =
∆ER
2π

1

e2π∆ER/a − 1

Γ̃2(∆ER, a) =
∆E3

R

48π3

1 +
(

a
∆ER

)2

e2π∆ER/a − 1

Γ̃3(∆ER, a) =
∆E5

R

3840π5

1 + 5
(

a
∆ER

)2

+ 4
(

a
∆ER

)4

e2π∆ER/a − 1

Γ̃4(∆ER, a) =
∆E7

R

645120π7

1 + 14
(

a
∆ER

)2

+ 49
(

a
∆ER

)4

+ 36
(

a
∆ER

)6

e2π∆ER/a − 1

Γ̃5(∆ER, a) =
∆E9

R

185794560π9
×

1 + 30
(

a
∆ER

)2

+ 273
(

a
∆ER

)4

+ 820
(

a
∆ER

)6

+ 576
(

a
∆ER

)8

e2π∆ER/a − 1
. (4.11)

The difficulty in measuring these effects is that the acceleration scale currently accessible

in laboratory settings is significantly smaller than the energy scale of the transition. If,

through some mechanism, we could not only control the acceleration but also the transition
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energy scale we could bring the effects closer to our experimental reach. A mathematical

analysis of the energy spectra of Rindler particles which have decay products in both Rindler

and Minkowski spacetime has yet to be carried out but would provide a much clearer insight

into the how any Rindler particle energies would be perceived in the proper frame of the

accelerated field. With this in mind we plot, in Figs. 4.1 and 4.2, the normalized decay rates

and lifetimes for a constant acceleration a = 1 while varying the energy scale ∆ER.
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Figure 4.1: The normalized transition rates, Eq. (4.11), with ∆ẼR = ∆ẼR/a and a = 1.
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Figure 4.2: The normalized transition lifetimes τ̃ = 1/Γ̃ with ∆ẼR = ∆ẼR/a and a = 1.

To better understand the role each spacetime field configuration has in the transition

rate, we define the polynomial of multiplicity MnM (∆ER, a) as follows:

MnM (∆ER, a) =

(
ia

2π

)2nM 1

a

2πi

(2nM − 1)!

Γ(i∆ER/a+ nM)

Γ(i∆ER/a+ 1− nM)
. (4.12)

We then find the general form for the decay rate to be

ΓnM (∆ER, a) = G2MnM (∆ER, a)f(∆ER, a). (4.13)

We see that the rate factors into the inertial interaction specific coupling, the polynomial

of multiplicity, and the thermal distribution f(∆ER, a) associated with the Unruh effect. The

final state multiplicity in Minkowski space governs the number of terms in the polynomial

while the total change of the energy in Rindler space sets the acceleration scale of the

transition rate. The inertial interaction coupling constant sets the overall normalization of

the transition rate.
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In this chapter we generalized the analysis of acceleration induced field transitions to

that of arbitrary Rindler and Minkowski space particle multiplicities. We determined the

roles that each spacetime field configuration plays in the transition rate and examined how

the rates evolve with the total energy change of Rindler space at constant acceleration. The

next chapter focuses on the application of the above formalism to that of the electron and

muon system.
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Chapter 5

The Accelerated Electron and Muon

System

The weak decay of muons into electrons could possibly provide a robust setting to investigate

the effects of acceleration on certain aspects of the physics of unstable particles. We will

apply the results of the previous section to model both muon decay as well as the reverse

process of electron excitation utilizing the scalar field approximation. In addition to the

standard decay/excitation rates, we will also compute the branching fractions of the muon

decay chains as a function of proper acceleration. To model the muon and electron transitions

we will assume the acceleration mechanism is something like an electric field so that both the

muon and the electron are effectively in Rindler space, due to their charge, while the neutral

neutrinos are emitted into Minkowski space. This setup more closely resembles an actual

experimental setting which could, in principle, investigate this phenomena. Schematically

we will analyze the following processes:

µ± →a e
± + ν̄e + νµ, e± →a µ

± + ν̄µ + νe. (5.1)

The transition rate which describes both of these processes is given by the nM = 2 case
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from Eq. (4.11),

Γµ↔e(∆ER, a) = G2 (∆ER)3

48π3

1 +
(

a
∆ER

)2

e2π∆ER/a − 1
. (5.2)

To determine the coupling constant G we compare the inertial limit of the above accel-

erated decay rate to that of the known inertial muon decay rate. The known decay rate of

inertial muons, to lowest order in perturbation theory [37], is given by

Γµi =
G2
fm

5
µ

192π3
, (5.3)

where Gf is the Fermi coupling constant. Note we have disregarded higher order terms

which contain powers of me/mµ. As such, in our analysis of muon decay we may consider the

electron, and of course the neutrinos, to be massless. In addition to considering the electron

to be massless, we will also assume that the total energy of the electron emitted into Rindler

space will be insignificant when compared to the muon mass. The spectra of the final state

Minkowski particles has been calculated in Ref. [24] and indicates that each particle will

have an energy distribution, as measured in the inertial frame instantaneously at rest with

the initial accelerated particle, peaked about the proper acceleration. A computation of the

energy spectra with the appropriate particles emitted into Rindler space has yet to be carried

out. This would help more accurately determine the final state electron energy associated

with the decay of accelerated muons. Recalling that ∆ER =
∑
ωR −mi, we will then have

∆ER = −mµ for the current analysis. By taking the limit a→ 0 of the acceleration induced

decay rate, Eq. (5.2), and equating it with the known inertial decay rate, Eq. (5.3), we can

determine our effective coupling constant. Thus,

41



lim
a→0

Γµ→e(∆ER, a) = Γµi

lim
a→0

G2
m3
µ

48π3

1 +
(

a
mµ

)2

1− e−2πmµ/a
=

G2
fm

5
µ

192π3

G2m3
µ

48π3
=

G2
fm

5
µ

192π3

G =
1

2
mµGf . (5.4)

As such, the properly normalized muon decay rate under the influence of acceleration is

given by

Γµ→e(a) =
G2
fm

5
µ

192π3

1 +
(

a
mµ

)2

1− e−2πmµ/a
. (5.5)

Our result differs from that of Mueller [22] by having a lower order polynomial due

to our assumption of keeping the final state electron in Rindler space. Had we allowed

the electron to be created in Minkowski space we would have recovered the same result as

Mueller. Furthermore, the inclusion of fermions in the analysis would also yield a higher order

polynomial due to the additional factors of frequency in the standard fermionic normalization

[23, 24, 25]. This yields higher powers of frequency to be integrated over when summing over

the final state momentum of the Minkowski particles. In either case, the resultant expressions

are equivalent at low accelerations but also illustrate the fact that at high accelerations one

needs to be precise in describing such processes. By recalling that Gf = 1.166× 10−5 GeV−2

and mµ = 105.7 MeV, we can evaluate the canonical inertial muon lifetime 192π3

G2
fm

5
µ

= τµ =

2.184 µs which sets the overall scale of our transition rate. We need to also mention that

the energy scale of the interaction is set by the acceleration. In this analysis we are using

a scalar approximation of an effective Fermi interaction. The nonrenormalizability of this

approximation necessitates the interaction energy to be less than the rest masses of the weak

gauge bosons. With masses mW ,mZ ∼ 1000 GeV we have carried out all our analysis with
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accelerations from 0 to 20 in muon mass units. With the muon system under consideration

we have 20mµ
mW ,mZ

∼ .01� 1 and therefore our analysis remains valid. Plots of the acceleration-

dependent muon decay rate and lifetime are shown below (see Figs. 5.1 and 5.2).
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Figure 5.1: The muon decay rate, Eq. (5.5), as a function of ã = a
mµ

.
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Figure 5.2: The muon lifetime τµ = 1/Γµ as a function of ã = a
mµ

.
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We now apply the transition rate, Eq. (5.2), to the case of electron excitation. To do

so, we use the detailed balance between the transitions Γe→µ = e−2π∆ER/aΓµ→e at thermal

equilibrium [35]. This is affected by merely reversing the sign ∆ER → −∆ER or rather we

take mµ → −mµ in Eq. (5.5). This also enables us to keep the overall coupling constant

from the muon decay by using the symmetry between the two thermalized processes. Fur-

thermore, this implies that the Rindler space energy of the created muon comprises mainly

the mass with no appreciable momentum. Again we note that a better understanding of

the energy spectra of all particles in all spacetimes is necessary to more accurately model

these processes. With these considerations we can now estimate the acceleration induced

excitation of electrons back into muons to be

Γe→µ(a) =
G2
fm

5
µ

192π3

1 +
(

a
mµ

)2

e2πmµ/a − 1
. (5.6)

We can now plot, in Figs. 5.3 and 3.2, the excitation rate as well as the lifetime. Note

the fact that the decay rate rapidly approaches zero as a → 0, and thus causes the lifetime

to diverge. This reflects the stability of inertial electrons.
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Figure 5.3: The electron excitation rate, Eq. (5.6), as a function of ã = a
mµ

.
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Figure 5.4: The electron lifetime τe = 1/Γe as a function of ã = a
mµ

.

This is a first estimate of the electron lifetime under the presence of uniform acceleration.

A more accurate calculation would necessitate the inclusion of fermion fields as well as a weak

or Fermi interaction Lagrangian. The use of fermions in the mathematically similar process

of acceleration induced proton decay [24] yields a higher order polynomial of multiplicity in

the decay rate due to additional factors of frequency in the fermionic normalization. This

will not affect our result in the limit of low acceleration a < mµ. For higher accelerations, the

difference between the scalar and fermionic description would be a higher order polynomial

of multiplicity.

This analysis can be further utilized to investigate the various decay chains of acceler-

ated muons. In this investigation we will assume all final state products to be massless and

are emitted into Minkowski space, i.e. ∆ER = −mµ. This will allow us to get a better

understanding of the overall conceptual properties of how the branching fractions of unsta-

ble particles change as a function of acceleration. Excluding any exotic or lepton number

violating modes [38], there are three known decay channels for muons. These decay chains

and their associated branching fractions are listed below:
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Γ1[µ→ eν̄eνµ] : Br1 = 0.98599966

Γ2[µ→ eν̄eνµγ] : Br2 = 0.014

Γ3[µ→ eν̄eνµeē] : Br3 = 0.000034. (5.7)

We have seen in the previous chapters that the high acceleration limit favors the decay

chain with the most final state products. Below we include the decay rate and lifetime plots

of each decay channel, appropriately normalized to the inertial muon limit, for nM = 3, 4, 5

final states from Eq. (4.11) weighted by their associated branching fractions (see Figs. 5.5

and 5.6). The crossover from the primary channel to the secondary and then tertiary takes

place at approximately a ∼ 4mµ ∼ 400 MeV. We also include, for completeness, the various

branching fractions as a function of proper acceleration given by

Bri(a) =
BriΓi(a)∑
j BrjΓj(a)

. (5.8)

Rather than looking for direct evidence of acceleration induced decays it may be more

experimentally tenable to measure these processes through the branching fractions of the

decay chains and their dependence on proper acceleration (see Fig. 5.7). This may provide

an easier method of discovering this or related phenomena.
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Figure 5.5: The muon decay rates for the three known branching ratios, Eq. (5.7), as a

function of ã = a
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Chapter 6

The Time-Dependent Response

Function

In this chapter we set up a formalism capable of computing a wide class of particle transitions

regardless of the number of final state products [22, 23, 24, 25, 29]. To facilitate the analysis,

we consider all particles to be scalars. Consider an initial Rindler particle moving along an

arbitrary time-dependent accelerated trajectory and decaying into a final state containing

nR Rindler particles and n Minkowksi particles. This process is schematically written as

Ψi →a Ψ1 + Ψ2 + · · ·+ ΨnR + φ1 + φ2 + · · ·+ φn. (6.1)

The initial and final Rindler particles are denoted by Ψj and are used to describe any

particle under acceleration. We consider the initial Rindler particle to be massive while the

final state Rindler particles can be massless or massive in any combination. The massless

Minkowski particles in the final state are denoted by φk and are used to describe any parti-

cles propagating along inertial trajectories. To describe these transitions, we consider their

coupling to be described by the following general interaction action [29, 31, 32],
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ŜI =
Gn√
κ

∫
d4x
√
−gΨ̂i

nR∏
r=1

Ψ̂r

n∏
m=1

φ̂m. (6.2)

The coupling constant Gn is labeled by the multiplicity and can be determined by fixing

it to a known process in the inertial limit. We note that the coupling may be dimensionful

depending on the transition in question. The 1√
κ

term is included to absorb the overall

normalization of our Rindler states. The domain of integration is confined to the right Rindler

wedge where the modes of our accelerated fields are defined. We denote the Fock states of our

Rindler particles |Ψj〉 with the index j characterizing their energies. As usual, we label our

Minkowski states |k`〉 by their momenta. We use the notation |
∏n

i ki〉 = |k1,k2, · · ·kn〉 for

the Fock states of both the Rindler and Minkowski fields. Note that we leave off subscripts

denoting the Rindler and Minkowski Fock states and let the field operators imply the label,

i.e. |Ψj〉R → |Ψj〉 and |ki〉M → |ki〉. Working in the interaction picture, the acceleration-

induced probability amplitude for our massive initial state to transition into N = nR + n

final state particles is given by,

A = 〈
n∏
`=1

k`| ⊗ 〈
nR∏
j=1

Ψj| ŜI |Ψi〉 ⊗ |0〉 . (6.3)

The magnitude squared of the transition amplitude gives the differential probability per

unit momenta of each Minkowski particle, i.e. dP
D3
nk

= |A|2. Note that we are using the more

compact notation
∏n

j=1 d
3kj = D3

nk. Moreover, since we are taking the magnitude squared of

a complex integral, we remind the reader that there are two dummy variables in expressions

such as |
∫
f(x)dx|2 =

∫∫
dxdx′|f(x)|2, where |f(x)|2 ≡ f(x)f ∗(x′). Thus the differential

probability of our N -particle acceleration-induced transition is given by
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dP
D3
nk

=
G2
n

κ

∣∣∣∣∣
∫
d4x
√
−g 〈

n∏
`=1

k`| ⊗ 〈
nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x)
n∏

m=1

φ̂m(x) |Ψi〉 ⊗ |0〉

∣∣∣∣∣
2

=
G2
n

κ

∣∣∣∣∣
∫
d4x
√
−g 〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉 〈
n∏
`=1

k`|
n∏

m=1

φ̂m(x) |0〉

∣∣∣∣∣
2

=
G2
n

κ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 ∣∣∣∣∣〈

n∏
`=1

k`|
n∏

m=1

φ̂m(x) |0〉

∣∣∣∣∣
2

. (6.4)

By factoring out the n complete sets of momentum eigenstates we can further simplify the

above expression. The resultant two-point functions, i.e. Wightman functions, characterize

the probability for each Minkowski particle to propagate along the accelerated trajectory.

The product of the n Wightman functions then characterizes the total probability that all

of the n Minkowski particles simultaneously propagate together. Moreover, we will endow

each Wightman function with the index m to label each of the Minkowski particles and also

the relevant observables computed. Hence

P =
G2
n

κ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣〈

nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 n∏
n=1

∫
d3kn

∣∣∣∣∣〈
n∏
`=1

k`|
n∏

m=1

φ̂m(x) |0〉

∣∣∣∣∣
2

=
G2
n

κ

∫∫
d4xd4x′

√
−g
√
−g′

∣∣∣∣∣〈
nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 n∏
m=1

〈0| φ̂m(x′)φ̂m(x) |0〉

=
G2
n

κ

∫∫
d4xd4x′

√
−g
√
−g′

∣∣∣∣∣〈
nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 n∏
m=1

G±m[x′, x]. (6.5)

The inner products over our Rindler fields in the above expression select the appropriate

mode function of each particle. For Rindler particles [39], these mode functions can be
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written as fΨ[x(τ)]e−iωτ . Analyzing the transition process in a frame comoving with the

initial accelerated particle allows us to parametrize the system with its proper time. This

implies that its energy is just its rest mass, i.e. ωi = mi, while the final particles have an

arbitrary energy ωr. The inner products then imply

〈
nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉 = fΨi [x(τ)]e−imiτ
nR∏
r=1

f ∗Ψr [x(τ)]eiωrτ

=

[
fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

]
ei∆Eτ . (6.6)

Note that we have defined the Rindler space transition energy ∆E =
∑nR

r=1 ωr −mi to

be the total energy difference between the final and initial Rindler states. We then find our

acceleration-induced transition probability, Eq. (6.5), to be

P =
G2
n

κ

∫∫
d4xd4x′

√
−g
√
−g′

∣∣∣∣∣〈
nR∏
j=1

Ψj| Ψ̂i(x)

nR∏
r=1

Ψ̂r(x) |Ψi〉

∣∣∣∣∣
2 n∏
m=1

G±m[x′, x]

=
G2
n

κ

∫∫
d4xd4x′

√
−g
√
−g′

∣∣∣∣∣
[
fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

]
ei∆Eτ

∣∣∣∣∣
2 n∏
m=1

G±m[x′, x]

=
G2
n

κ

∫∫
d4xd4x′

√
−g
√
−g′ ×∣∣∣∣∣fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

∣∣∣∣∣
2

e−i∆E(τ ′−τ)

n∏
m=1

G±m[x′, x]. (6.7)

We can now use the overall normalization associated with the overlap of the spatial

waveforms κ [22, 29] to simplify the above expression. In experimental settings the initial

accelerated particle will be described by a wave packet with mode functions of the form

fΨ(x) ∼ Kiω/a(
m
a
eaξ)g(x⊥). The spatial distribution of the initial particle, in the directions

perpendicular to the acceleration, is assumed to be finite, e.g. Gaussian, and is given by

g(x⊥). With the mode functions properly normalized [35], κ will be of order unity. Hence
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κ =

∫∫
d3xd3x′

√
−g
√
−g′

∣∣∣∣∣fΨi [x(τ)]

nR∏
r=1

f ∗Ψr [x(τ)]

∣∣∣∣∣
2

. (6.8)

Having integrated over the spatial coordinates of the right Rindler wedge and noting that

we still have to integrate over the proper times, it should be mentioned that the trajectories

which characterize the Wightman functions must only depend on the proper time and have

no spatial dependence. With this in mind, our transition probability becomes

P = G2
n

∫∫
dτdτ ′e−i∆E(τ ′−τ)

n∏
m=1

G±m[x′, x]. (6.9)

Upon inspection of the above transition probability we find that we have now effectively

reproduced the formalism the would be obtained if we had used an Unruh-DeWitt detector

provided we identify the energy gap of the detector with the initial and final state Rindler

energies ∆E. To better incorporate the time dependence of our current analysis we will

make the following change of variables to the rapidity variables u′ and u defined by u(τ) =∫ τ
a(τ̃)dτ̃ . Hence

dτdτ ′ = dudu′
dτ

du

dτ ′

du′

= dudu′
1

a

1

a′
. (6.10)

We dropped the proper time dependencies in terms of the more compact notation a′ =

a(τ ′) which we also apply for all other variables. In terms of the rapidity, the transition

probability then takes the following form
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P = G2
n

∫∫
dτdτ ′e−i∆E(τ ′−τ)

n∏
m=1

G±m[x′, x]

= G2
n

∫∫
dudu′

1

a

1

a′
e−i∆E(τ ′−τ)

n∏
m=1

G±m[x′, x]. (6.11)

Finally we decouple the integrals by formulating the new variables in terms of the dif-

ference ξ = u′ − u and average η = u′+u
2

rapidities. The inversions of these transformations

are given by u′ = ξ/2 + η and u = −ξ/2 + η. With this new rapidity parametrization, the

transition probability takes the similar form

P = G2
n

∫∫
dηdξ

1

a′
1

a
e−i∆E(τ ′−τ)

n∏
m=1

G±m[x′, x]. (6.12)

For the sake of clarity we note that under this parametrization the primed and unprimed

variables will all have dependencies such as a′ = a(ξ/2 + η) and a = a(−ξ/2 + η). All

components of the integrand depend on these variables in this manner. Moreover, we will

eventually want to determine the transition rate, i.e. the probability per unit time Γ = dP
dτ

.

We shall choose the proper time parametrization τη that characterizes the rapidity variable

η via the definition dη = a(τη)dτη for this purpose. Finally, using the notation a(τη) = aη

we find the transition rate to be

P = G2
n

∫∫
dηdξ

1

a′a
e−i∆E(τ ′−τ)

n∏
m=1

G±m[x′, x]

⇒ Γ = G2
n

∫
dξ
aη
a′a

e−i∆E(τ ′−τ)

n∏
m=1

G±m[x′, x]. (6.13)

We mention as well the ability to compute the differential transition probability per unit

rapidity Γη = dP
dη

that follows along with this derivation as well. To develop the integrand

into a more useful form, we Taylor expand the proper time interval about the point ξ = 0.
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Recalling the form of the coordinate transformations used above, we find

τ ′ − τ ∼ τ0 +
dτ ′

du′
du′

dξ

∣∣∣∣
ξ=0

ξ −

(
τ0 +

dτ

du

du

dξ

∣∣∣∣
ξ=0

ξ

)
=

1

aη

1

2
ξ +

1

aη

1

2
ξ

=
ξ

aη
. (6.14)

Similarly, we expand the proper accelerations about the same point but we also disregard

terms of order jη/a
2
η and higher. Hence

a′(ξ/2 + η) ∼ aη +
da′

dτ ′
dτ ′

du′
du′

dξ

∣∣∣∣
ξ=0

ξ

= aη + J ′
1

a′
1

2

∣∣∣∣
ξ=0

ξ

= aη +
Jη
aη

1

2
ξ

= aη[1 +
Jη
a2
η

1

2
ξ]

∼ aη. (6.15)

Similarly, we obtain a(−ξ/2 + η) ∼ aη as well. We must also recall that all other

components of the integrand must be expanded to the appropriate order. As such, we

employ the notation G±m[x′, x]η to imply the necessary Taylor expansion of the Wightman

function. Moreover, now that acceleration is a function of one variable only, we will drop

the η subscript and define aη = a(τη) ≡ a. Thus our generalized response function takes the

following form
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Γ = G2
n

1

a

∫
dξe−i∆Eξ/a

n∏
m=1

G±m[x′, x]η. (6.16)

This expression determines the transition rate for a Rindler, i.e. accelerated, particle to

decay into nR Rindler, i.e. accelerated, particles accompanied by the simultaneous emission

of n Minkowski, i.e. inertial, particles. This is the process that is expressed schematically in

Eq. (6.1). A conceptual depiction of the above acceleration-induced process is also illustrated

in Fig. 6.1 for clarity. To finalize this section we comment on the relationship between the

method of field operators, used in this manuscript, with the alternative method of detectors

[29]. The method of fields enables a more general analysis via the inclusion of an arbitrary

number of Rindler particles of varying energy in the final state. The energy difference, as

measured in the proper frame of the initial accelerated particle, is given by ∆E =
∑nR

r=1 ωr−

mi; see e.g. Eq. (6.6) and the subsequent discussion. That is, the difference between the

sum of all final state Rindler particle energies and the initial accelerated particle’s mass.

To map the analysis to the method of detectors, all one needs to do is identify this energy

difference with the energy gap of the detector, i.e. a two-level system. In short, the initial

and final state energies of the Rindler particles, as measured in the proper frame of the

initial accelerated particle, define the two energy levels of the detector. For a more in-depth

discussion of this correspondence we refer the reader to Ref. [29]. In the next chapter we

develop the time-dependent formalism that will be used to compute the Wightman functions

and their subsequent Taylor expansion used in Eq. (6.16) above.
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Figure 6.1: A pictorial representation of the acceleration-induced transition from Eq. (6.16).
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Chapter 7

Time-Dependent Spacetime

Trajectories

Prior to evaluating the Wightman functions we will need the time-dependent spacetime tra-

jectories the Minkowski fields propagate along. For the time-dependent proper acceleration

a(τ), we recall the rapidity is defined by u(α) =
∫ α

a(τ)dτ . Using the Rindler chart to

characterize the resultant accelerated motion, see e.g. [34], we have

x(τ) =

∫ τ

dα sinh [u(α)] + x0

t(τ) =

∫ τ

dα cosh [u(α)] + t0. (7.1)

In order to compute these, and related, integrals we shall make use of a simple variant

of the method of steepest descent. Here, we will maintain the appropriate expansion and

again disregard terms of order j/a2. As such, the method utilized can accommodate general

acceleration profiles quite easily but depending on the system additional care must be taken

if the acceleration goes to zero within the interval. Thus we consider the following change

of variables and integration by parts [40],
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I =

∫ τ ′

τ

dαe±u(α)

=

∫ τ ′

τ

1

±a(α)

d

dα
(e±u(α))dα

=

[
1

±a(α)
e±u(α)

]τ ′
τ

±
∫ τ ′

τ

j(α)

a2(α)
e±u(α)dα

≈
[

1

±a(α)
e±u(α)

]τ ′
τ

. (7.2)

Note that we used the fact that u′(τ) = a(τ) and u′′(τ) = j(τ). Moreover we see that we

obtained a solution to the integral to zeroth order in j/a2 as required to be consistent with

the development of the generalized response function in the previous chapter. We then have

the general form of the integral to be applied to our spacetime intervals. Hence

∫ τ ′

τ

dαe±u(α) =
1

±a(τ ′)
e±u(τ ′) − 1

±a(τ)
e±u(τ). (7.3)

We now apply the above formula to compute all necessary spacetime quantities associated

with our generalized hyperbolic trajectory. Considering first the spacelike interval ∆x =

x′ − x, we find

∆x =

∫ τ ′

dα sinh [u(α)] + x0 −
(∫ τ

dα sinh [u(α)] + x0

)
=

∫ τ ′

τ

dα sinh [u(α)]

=
1

2

∫ τ ′

τ

dα[eu(α) − e−u(α)]

=
1

a(τ ′)
cosh [u(τ ′)]− 1

a(τ)
cosh [u(τ)]. (7.4)

Utilizing the same coordinate transformation, i.e. u, u′ → ξ, η and Taylor expansion, i.e.
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a′(ξ, η), a(ξ, η)→ aη = a as in Chp. 6, the above spacelike interval becomes

∆x =
1

a(τ ′)
cosh [u(τ ′)]− 1

a(τ)
cosh [u(τ)]

=
1

a′(η, ξ)
cosh [ξ/2 + η]− 1

a(η, ξ)
cosh [−ξ/2 + η]

=
1

a
(cosh [ξ/2 + η]− cosh [−ξ/2 + η])

=
2

a
sinh [ξ/2] sinh [η]. (7.5)

Note the use of the hyperbolic double angle formula to obtain the last line. Similarly, for

the timelike interval ∆t = t′ − t we find

∆t =

∫ τ ′

dα cosh [u(α)] + t0 −
(∫ τ

dα cosh [u(α)] + t0

)
=

∫ τ ′

τ

dα cosh [u(α)]

=
1

2

∫ τ ′

τ

dα[eu(α) + e−u(α)]

=
1

a(τ ′)
sinh [u(τ ′)]− 1

a(τ)
sinh [u(τ)]. (7.6)

The subsequent Taylor expansion to zeroth order in j/a2 then yields

∆t =
1

a(τ ′)
sinh [u(τ ′)]− 1

a(τ)
sinh [u(τ)]

=
1

a′(η, ξ)
sinh [ξ/2 + η]− 1

a(η, ξ)
sinh [−ξ/2 + η]

=
1

a
(sinh [ξ/2 + η]− sinh [−ξ/2 + η])

=
2

a
sinh [ξ/2] cosh [η]. (7.7)
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It should be noted that the addition of the complex regulator to the timelike interval can

be added in without changing the computation. Next we compute the complex regulated

square of the spacetime interval, ∆x2 − (∆t − iε)2, more commonly found in Wightman

functions. We can evaluate this quantity by substitution of the previously computed spacelike

and timelike intervals; however, in the interest of further developing the time-dependent

formalism, we shall first carry out a few more manipulations to obtain a more general form.

Thus

∆x2 − (∆t− iε)2 = [x(τ ′)− x(τ)]
2 − [t(τ ′)− t(τ)− iε]2

=

[∫ τ ′

dα sinh [u(α)]−
∫ τ

dα sinh [u(α)]

]2

−[∫ τ ′

dα cosh [u(α)]−
∫ τ

dα cosh [u(α)]− iε

]2

=

[∫ τ ′

τ

dα sinh [u(α)]

]2

−

[∫ τ ′

τ

dα cosh [u(α)]− iε

]2

=

∫∫ τ ′

τ

dαdβ (sinh [u(α)] sinh [u(β)]− cosh [u(α)] cosh [u(β)]) +

2iε

∫ τ ′

τ

dα cosh [u(α)]

= −
∫∫ τ ′

τ

dαdβ cosh [u(α)− u(β)] + 2iε∆t. (7.8)

Note in the last line that we used the hyperbolic double angle formula and rewrote the

term on the complex regulator as ∆t. Focusing on the integral, we break up the hyperbolic

argument into exponentials to obtain a more convenient form. Hence
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∫∫ τ ′

τ

dαdβ cosh (u(α)− u(β)) =
1

2

∫∫ τ ′

τ

dαdβeu(α)−u(β) + e−(u(α)−u(β))

=
1

2

∫ τ ′

τ

dαeu(α)

∫ τ ′

τ

dβe−u(β) +
1

2

∫ τ ′

τ

dαe−u(α)

∫ τ ′

τ

dβeu(β)

=

∫ τ ′

τ

dαeu(α)

∫ τ ′

τ

dβe−u(β). (7.9)

Note in the last line that we interchanged indices α ↔ β to combine the exponentials

into one expression. We should also note a similar expression was obtained in [27]. Thus the

square of the spacetime interval, along with its complex regulator, can be expressed in the

following more compact form:

∆x2 − (∆t− iε)2 =

∫ τ ′

τ

dαeu(α)

∫ τ ′

τ

dβe−u(β) + 2iε∆t. (7.10)

In turning our task to evaluating the above integrals, we find

∫ τ ′

τ

dαeu(α)

∫ τ ′

τ

dβe−u(β) = −
[

1

a(τ ′)
eu(τ ′) − 1

a(τ)
eu(τ)

] [
− 1

a(τ ′)
e−u(τ ′) +

1

a(τ)
e−u(τ)

]
=

−2

a(τ ′)a(τ)
cosh [u(τ ′)− u(τ)] +

1

a2(τ ′)
+

1

a2(τ)

=
−4

a(τ ′)a(τ)
sinh2 [

1

2
(u(τ ′)− u(τ))]− 2

a(τ ′)a(τ)
+

1

a2(τ ′)
+

1

a2(τ)

=
1

a2(τ ′)a2(τ)
×[

(a(τ ′)− a(τ))2 − 4a(τ ′)a(τ) sinh2 [
1

2
(u(τ ′)− u(τ))]

]
. (7.11)

Finally, performing the necessary change of variables and Taylor expanding the acceler-

ation we obtain the final form of the iε regularized square of the spacetime interval. Hence
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∆x2 − (∆t− iε)2 =
1

a2(τ ′)a2(τ)
×[

(a(τ ′)− a(τ))2 − 4a(τ ′)a(τ) sinh2 [
1

2
(u(τ ′)− u(τ))]

]
+ 2iε∆t

=
1

a′2(η, ξ)a2(η, ξ)
×[

(a′(η, ξ)− a(η, ξ))2 − 4a′(η, ξ)a(η, ξ) sinh2 [ξ/2]
]

+ 2iε∆t

= − 4

a2
sinh2 [ξ/2] + iε

4

a
sinh [ξ/2] cosh [η]

= − 4

a2
sinh2 [ξ/2] + iε

8a

a2
sinh [ξ/2] cosh [ξ/2]

= − 4

a2
sinh2 [ξ/2− iaε]

= − 4

a2
sinh2 [ξ/2− sgn (a)iε]. (7.12)

Note that, in the third to last line, we pulled the positive definite factor 2 cosh [ξ/2]
cosh [η]

out of

the ε and in the last line we absorbed the magnitude of the acceleration into the regulator.

We keep the overall sign of the acceleration so as to not change the direction of the shift

along the imaginary axis by changing the sign of ε. To finalize the development of the

components necessary to compute each of our Wightman functions, we also require the use

of a Lorentz gamma to boost forward and backward between the proper and inertial lab

frames. The Lorentz gamma can be computed by taking the derivative of the inertial time.

We also parametrize our proper time here using the variable τη such that u(τη) = η as in the

previous chapter. Recalling dt = γdτ we have

d

dτη
t =

d

dτη

∫ τη

dα cosh [u(α)] + t0

⇒ γ = cosh [η]. (7.13)

In the next chapter we will utilize the above dictionary of formulas to evaluate the
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Wightman functions and its variants. The Wightman functions will then be used to compute

the acceleration-induced transition rate, power emitted, and spectra of emitted particles.
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Chapter 8

The Wightman Function and its

Variants

In this chapter we compute the variants of the Wightman functions used for the computation

of various observables. We will be working under the assumption that all Minkowski fields are

massless. To evaluate the vacuum to vacuum two-point function [33], we use the canonically

normalized field operator φ̂ =
∫

d3k
(2π)3/2

√
2ω

[âke
i(k·x−ωt) + â†ke

−i(k·x−ωt)]. Thus,

G±m[x′, x] = 〈0| φ̂m(x′)φ̂m(x) |0〉

=
1

2(2π)3

∫∫
d3k′d3k√
ω′ω

〈0| âk′ â†ke
i(k′·x′−k·x−ω′t′+ωt) |0〉

=
1

2(2π)3

∫∫
d3k′d3k√
ω′ω

ei(k
′·x′−k·x−ω′t′+ωt)δ(k′ − k)

=
1

2(2π)3

∫
d3k

ω
ei(k·∆x−ω∆t)

=
1

2(2π)3

∫
d3k

ω
e−ik

µ∆xµ . (8.1)

Since we are dealing with the emission of Minkowski particles by an accelerated field,

it is advantageous to boost the momenta into the frame that is instantaneously at rest

65



with the accelerated field. The integration measure is Lorentz invariant, i.e. d3k
ω

= d3k̃
ω̃

.

When boosting the momenta forward into the accelerated fields’ instantaneous rest frame

via kµ → Λµ
νk

ν = k̃µ , the Lorentz scalar nature of the exponent necessitates the boosting

of the spacetime interval back via ∆xµ → (Λ−1)µν∆xν = ∆x̃µ. It should be noted that each

∆x̃µ is a proper quantity that has just been boosted to the same velocity but in the opposite

direction and therefore all of the relativistic effects, e.g. length contraction, remain the same.

Also, here and throughout, we will denote all proper quantities with a tilde. Therefore, our

Wightman function, evaluated in the proper frame, is given by

G±m[x′, x] ≡ 1

2(2π)3

∫
d3k̃

ω̃
ei(k̃·∆x̃−ω̃∆t̃). (8.2)

Integrals of this form are best evaluated in spherical coordinates. Without loss of gen-

erality we rotate the coordinate system until the momentum lies along the z-axis and then

we enforce the condition that our Minkowski fields are massless, i.e. ω̃ = k̃. As such, the

integral reduces to

G±m[x′, x] =
1

2(2π)3

∫
d3k̃

ω̃
ei(k̃·∆x̃−ω̃∆t̃)

=
1

2(2π)3

∫ ∞
0

∫ π

0

∫ 2π

0

dω̃dθ̃dφ̃ ω̃ sin θ̃ei(ω̃∆x̃ cos θ̃−ω̃∆t̃)

=
1

2(2π)2

∫ ∞
0

∫ 1

−1

dω̃d(cos θ̃) ω̃ei(ω̃∆x̃ cos θ̃−ω̃∆t̃)

=
1

2(2π)2

1

i∆x̃

∫ ∞
0

dω̃
[
eiω̃(∆x̃−∆t̃) − e−iω̃(∆x̃+∆t̃)

]
. (8.3)

The above Wightman function will be used to compute the acceleration-induced tran-

sition rate. To properly evaluate the integral we require an infinitesimal shift along the

imaginary time axis to regulate the oscillations at infinity. This is accomplished by letting

∆t̃→ ∆t̃− iε where ε > 0. Thus,
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G±m[x′, x] =
1

2(2π)2

1

i∆x̃

∫ ∞
0

dω̃
[
eiω̃(∆x̃−(∆t̃−iε)) − e−iω̃(∆x̃+(∆t̃−iε))

]
= − 1

2(2π)2

1

i∆x̃

[
1

i(∆x̃− (∆t̃− iε))
+

1

i(∆x̃+ (∆t̃− iε))

]
=

1

(2π)2

1

∆x̃2 − (∆t̃− iε)2

= − 1

(2π)2

1

∆x̃µ∆x̃µ

= − 1

(2π)2

1

∆xµ∆xµ
. (8.4)

Note in the last line we used the Lorentz invariance of the scalar product to boost the

spacetime interval forward into the lab frame. This will facilitate later computations and also

highlights the appropriate Lorentz invariance of the Wightman functions. It serves to also

remember the presence of the complex regulator within the time component of the interval.

Using the appropriately Taylor expanded spacetime interval derived in Eq. (7.12) of the

previous chapter, we find the Taylor expanded Wightman function G±m[x′, x]η to be

G±m[x′, x]η = − 1

(2π)2

1

∆xµ∆xµ

= − 1

(2π)2

1
4
a2 sinh2 [ξ/2− sgn (a)iε]

= − a2

(4π)2

1

sinh2 [ξ/2− sgn (a)iε]
. (8.5)

The Wightman function characterizes the probability for a particle to propagate along a

given trajectory and is summed over all energies, i.e. integrated. Thus, by multiplying each

probability by the energy (see e.g. [24]), and then integrating, we can effectively compute

the average energy carried by the particle during the transition process, i.e. the power

radiated. Denoting this energy weighted Wightman function as G±m[x′, x]η, we then carry out

its computation in a similar manner. Beginning with Eq. (8.3), we find
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G±m[x′, x] =
1

2(2π)2

1

i∆x̃

∫ ∞
0

dω̃ω̃
[
eiω̃(∆x̃−(∆t̃−iε)) − e−iω̃(∆x̃+(∆t̃−iε))

]
=

1

2(2π)2

1

i∆x̃

[
1

[i(∆x̃− (∆t̃− iε))]2
− 1

[i(∆x̃+ (∆t̃− iε))]2

]
= − 1

2iπ2

∆t̃− iε
[∆x̃2 − (∆t̃− iε)2]2

= − 1

2iπ2

∆t̃− iε
[∆x̃µ∆x̃µ]2

= − 1

2iπ2

∆t/γ − iε
[∆xµ∆xµ]2

. (8.6)

Note that the presence of the proper frame timelike interval in the above quantity neces-

sitated the use of the Lorentz gamma to boost it back to the lab frame via ∆t̃ = ∆τ = ∆t/γ.

Evaluation of this energy weighted Wightman function along the Taylor expanded hyperbolic

trajectory yields

G±m[x′, x]η = − 1

2iπ2

∆t̃− iε
[∆xµ∆xµ]2

= − 1

2iπ2

2
a

sinh [ξ/2]− iε
[− 4

a2 sinh2 [ξ/2− sgn (a)iε]]2

= − a4

i(4π)2

sinh [ξ/2]− ia
2
ε

sinh4 [ξ/2− sgn (a)iε]

= − a3

i(4π)2

sinh [ξ/2]− i sgn (a)ε cosh [ξ/2]

sinh4 [ξ/2− sgn (a)iε]

= − a3

i(4π)2

1

sinh3 [ξ/2− sgn (a)iε]
. (8.7)

Again we pulled a positive definite factor 2 cosh [ξ/2] out of the ε. We also absorbed the

magnitude of the acceleration into the regulator and then recombined the numerator into

the hyperbolic sine since it was the Taylor expansion about small ε. Finally, examining how

the propagation, and thus emission probability, changes as we vary the energy enables us to

compute the spectra. Taking the derivative of the Wightman function, Eq. (8.3), yields
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d

dω̃
G±m[x′, x] =

1

2(2π)2

1

i∆x̃

[
eiω̃(∆x̃−∆t̃) − e−iω̃(∆x̃+∆t̃)

]
. (8.8)

Substitution of the relevant trajectories, along with the appropriate expansion, yields

d

dω̃
G±m[x′, x]η =

1

2(2π)2

1

i∆x̃

[
eiω̃(∆x̃−∆t̃) − e−iω̃(∆x̃+∆t̃)

]
=

1

(2π)2

e−iω̃∆t̃

∆x̃
sin (ω̃∆x̃)

=
1

(2π)2

e−iω̃∆t/γ

γ∆x
sin (ω̃γ∆x)

=
a

(2π)2

e−iω̃
2
a

sinh (ξ/2)

sinh (ξ/2) sinh (2η)
sin

(
ω̃

a
sinh (ξ/2) sinh (2η)

)
≈ ω̃

(2π)2
e−iω̃ξ/a. (8.9)

In the last line we expanded the arguments about small ξ. Note that we have kept, to

first order, a dependence in the phase so we still encode the dynamics. Now that we have

our catalog of the Wightman function and its variants, the next chapter will be devoted to

the computation of the relevant observables of the theory.
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Chapter 9

The Observables of Accelerated

Quantum Dynamics

9.1 Transition Rate

The generalized response function developed previously will now be used to compute the

acceleration-induced transition rate. This will enable us to analyze the decay of unstable

particles as well as the excitation of stable particles into states of higher energy. We begin

by recalling the functional form of the response function, Eq. (6.16),

Γ = G2
n

1

a

∫
dξe−i∆Eξ/a

n∏
m=1

G±m[x′, x]η. (9.1)

To compute the transition rate we use all n of the Wightman functions in the above

product over our final state particles. Recalling the form of the Wightman functions, Eq.

(8.5), we find that the transition rate of n-particle multiplicity simplifies to
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Γ = G2
n

1

a

∫
dξe−i∆Eξ/a

n∏
m=1

G±m[x′, x]η

= G2
n

1

a

∫
dξe−i∆Eξ/a

[
− a2

(4π)2

1

sinh2 [ξ/2− sgn (a)iε]

]n
= G2

n

(
ia

4π

)2n
sgn (a)

|a|

∫
dξ

e−i∆Eξ/a

sinh2n [ξ/2− sgn (a)iε]
. (9.2)

At this point we must focus the integral. Specifically we must note how the integration

depends on the sign of the acceleration. By letting ξ → sgn (a)ξ we see the integration is

independent of the sign of the acceleration. As such we set sgn (a) = 1, leaving the transition

rate dependent only on the magnitude of the acceleration |a|. Hence,

Γ = G2
n

(
ia

4π

)2n
1

|a|

∫
dξ

e−i∆Eξ/|a|

sinh2n [ξ/2− iε]
. (9.3)

We now see that the removal of the iε yields a singularity structure with poles of order 2n

at ξ = 2πiσ with the integer σ ≥ 0. Now that we know the pole structure, we rid ourselves

of the complex regulator. Rewriting the denominator of the integrand in exponential form

will yield a more useful form. Hence,

Γ = G2
n

(
ia

4π

)2n
1

|a|

∫
dξ

e−i∆Eξ/|a|

sinh2n [ξ/2− iε]

= G2
n

(
ia

2π

)2n
1

|a|

∫
dξ

e−i∆Eξ/|a|

[eξ/2 − e−ξ/2]2n
. (9.4)

Employing the more convenient change of variables w = eξ we find
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Γ = G2
n

(
ia

2π

)2n
1

|a|

∫
dξ

e−i∆Eξ/|a|

[eξ/2 − e−ξ/2]2n

= G2
n

(
ia

2π

)2n
1

|a|

∫
dw

w−i∆Eξ/|a|+n−1

[w − 1]2n
. (9.5)

The above expression can be integrated using the residue theorem. The integral is of

the form w−iβ+γ

[w−1]δ
with the appropriate identification for β, γ, and δ. Also note the added

conditions that γ is an integer and δ is an even integer. Evaluation of this generalized

integral yields

∫
dw

w−iβ+γ

[w − 1]δ
=

2πi

(δ − 1)!

∞∑
σ=0

dδ−1

dwδ−1

[
[w − 1]δ

w−iβ+γ

[w − 1]δ

]
w=ei2πσ

=
2πi

(δ − 1)!

Γ(1− iβ + γ)

Γ(−iβ + γ − δ + 2)

∞∑
σ=0

[
w−iβ+γ−δ+1

]
w=ei2πσ

=
2πi

(δ − 1)!

Γ(1− iβ + γ)

Γ(−iβ + γ − δ + 2)

∞∑
σ=0

e2πσβ+i2πσ(γ−δ)

=
2πi

(δ − 1)!

Γ(1− iβ + γ)

Γ(−iβ + γ − δ + 2)

1

1− e2πβ

=
2πi

(δ − 1)!

Γ(iβ − γ + δ − 1)

Γ(iβ − γ)

1

e2πβ − 1
. (9.6)

Note that we used the identity Γ(z)Γ(1− z) = π/ sin(πz), along with the properties of γ

and δ, in the last line. The sum in the above equation converges for e2πβ < 1 which is true

for negative β. This corresponds to ∆E < 0, i.e. decays. In order to evaluate the sum we

may assume β to be negative to yield the closed form expression of the convergent sum. We

can then relax the condition for ∆E > 0 and we note that, in the zero acceleration limit,

the transition rate appropriately diverges. This merely illustrates the fact that inertially

stable particles have an infinite lifetime. Utilizing the above derived formula, we evaluate

the integral in Eq. (9.5) to be
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∫
dw

w−i∆Eξ/|a|+n−1

[w − 1]2n
=

2πi

(2n− 1)!

Γ(i∆E/|a|+ n)

Γ(i∆E/|a|+ 1− n)

1

e2π∆E/|a| − 1
. (9.7)

The transition rate is then given by

Γ(∆E, η) = G2
n

(
ia

2π

)2n
1

a

2πi

(2n− 1)!

Γ(i∆E/|a|+ n)

Γ(i∆E/|a|+ 1− n)

1

e2π∆E/|a| − 1
. (9.8)

We will take one final step in simplifying the above gamma functions using the Pochham-

mer symbol for rising factorials (x)a = Γ(x+a)
Γ(x)

=
∏a−1

j=0(x + j). This serves to better present

the resultant polynomials of multiplicity. Applying the Pochhammer identity to the above

expression, along with the identifications x = i∆E/|a|+ 1− n and a = 2n− 1, yields

Γ(i∆E/|a|+ n)

Γ(i∆E/|a|+ 1− n)
=

2n−2∏
j=0

(i∆E/|a|+ 1− n+ j)

=
n−1∏

k=−(n−1)

(i∆E/|a|+ k)

=
|a|
i∆E

n−1∏
k=0

(i∆E/|a|+ k)(i∆E/|a| − k)

= (−1)n
|a|
i∆E

n−1∏
k=0

[
(∆E/a)2 + k2

]
=

(
i∆E

|a|

)2n−1 n−1∏
k=0

[
1 + k2

( a

∆E

)2
]
. (9.9)

Utilizing the above expression, along with the double factorial identity (2x)!! = 2x(x)!,

we finalize the computation of the acceleration-induced transition rate. Thus

Γ(∆E, η) = G2
n

(
∆E

π

)2n−1
1

(4n− 2)!!

n−1∏
k=0

[
1 + k2

( a

∆E

)2
]

1

e2π∆E/|a| − 1
. (9.10)

73



The above transition rates are characterized by a bosonic distribution along with the inte-

ger indexed polynomial of multiplicity. Normalizing the rates to the multiplicity-dependent

coupling via Γ̃ = Γ/G2
n, we explicitly compute the normalized rates for the first five multi-

plicities. Hence

Γ̃1(∆E, a) =
∆E

2π

1

e2π∆E/|a| − 1

Γ̃2(∆E, a) =
∆E3

48π3

1 +
(

a
∆E

)2

e2π∆E/|a| − 1

Γ̃3(∆E, a) =
∆E5

3840π5

1 + 5
(

a
∆E

)2
+ 4

(
a

∆E

)4

e2π∆E/|a| − 1

Γ̃4(∆E, a) =
∆E7

645120π7

1 + 14
(

a
∆E

)2
+ 49

(
a

∆E

)4
+ 36

(
a

∆E

)6

e2π∆E/|a| − 1

Γ̃5(∆E, a) =
∆E9

185794560π9
×

1 + 30
(

a
∆E

)2
+ 273

(
a

∆E

)4
+ 820

(
a

∆E

)6
+ 576

(
a

∆E

)8

e2π∆E/|a| − 1
. (9.11)

The n = 1 case is the standard result for computing the transition rate of an Unruh-

DeWitt detector. We should also mention that the acceleration-dependent lifetime is easily

computed via τ = 1/Γ. We plot (see Figs. 9.1 and 9.2) the transition rates for acceleration-

induced decay and excitation respectively. The fact that the excitation rate rapidly goes

to zero, in the inertial limit, reflects the infinite lifetime for such processes. Moreover, it

should be noted that there is an acceleration-dependent crossover scale where one multiplicity

dominates the transition process. The next section deals specifically with these crossovers.

74



a
~

 

0 2 4 6 8 10 12 14 16 18 20

Γ∼
 

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

­4
10

­3
10

­2
10

­1
10

1

10

n = 1

n = 2

n = 3

n = 4

n = 5

Figure 9.1: The normalized transition rates, Eq. (9.11), with ã = |a|/∆E and ∆E = −1.
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Figure 9.2: The normalized transition rates, Eq. (9.11), with ã = |a|/∆E and ∆E = 1.
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9.2 Multiplicity

In this section we compute the dominant multiplicity as a function of acceleration. Specif-

ically, for final states which contain either n or m Minkowski particles, we ask when the

transition rate for an n-particle final state is greater than an m-particle final state. This will

enable us to characterize the acceleration scale which selects a specific transition when there

are multiple decay pathways. Let us begin by computing the inertial limit of the decay rates.

This enables us to fix the couplings G2
n to that of the inertial decay rate λn. For decays we

have ∆E < 0 and taking the limit a→ 0 of the transition rate, Eq. (9.10), yields

λn = G2
n

(
∆E

π

)2n−1
1

(4n− 2)!!

⇒ G2
n = λn

( π

∆E

)2n−1

(4n− 2)!!. (9.12)

In terms of the dimensionless acceleration ã = |a|/∆E, the crossover scale, i.e. when

Γn = Γm, can then be computed in terms of the inertial rates. Hence

Γn = Γm

λn

n−1∏
k=0

[
1 + k2ã2

]
= λm

m−1∏
j=0

[
1 + j2ã2

]
. (9.13)

The ratio of the inertial decay rates λm/λn is equivalent to the ratio of the branching

fractions Brm/Brn ≡ g of each decay pathway [38]. Assuming n > m we find
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λn

n−1∏
k=0

[
1 + k2ã2

]
= λm

m−1∏
j=0

[
1 + j2ã2

]
n−1∏
k=0

[
1 + k2ã2

]
= g

m−1∏
j=0

[
1 + j2ã2

]
n−1∏
k=m

[
1 + k2ã2

]
= g. (9.14)

The above equation defines the acceleration scale at which an n-particle multiplicity final

state will dominate the m-particle multiplicity final state. We now examine in more detail

the cases when ãk � 1, ãk � 1, n = m+1, and n = m+2. For the case of large acceleration,

i.e. ãk � 1, we find

g =
n−1∏
k=m

[
1 + k2ã2

]
g = ã2(n−m)

n−1∏
k=m

k2

g = ã2(n−m)

[
(n− 1)!

(m− 1)!

]2

⇒ ã↑ =

[
g

[
(m− 1)!

(n− 1)!

]2
]1/(2(n−m))

. (9.15)

In the case of small acceleration, i.e. ãk � 1, we make use of the properties of logarithms

to simplify the computation. Hence
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g =
n−1∏
k=m

[
1 + k2ã2

]
ln (g) = ln

(
n−1∏
k=m

[
1 + k2ã2

])

ln (g) =
n−1∑
k=m

ln
[
1 + k2ã2

]
ln (g) =

n−1∑
k=m

k2ã2

g = 1 + ã2

n−1∑
k=m

k2 (9.16)

The last line followed from Taylor expanding the resultant exponential. The sum of

squares evaluates to
∑n−1

k=m k
2 = 1

6
(n−m)− 1

2
(n2−m2) + 1

3
(n3−m3). Thus the acceleration

scale for multiplicity transitions at low acceleration is given by

ã↓ =

√
g − 1

1
6
(n−m)− 1

2
(n2 −m2) + 1

3
(n3 −m3)

. (9.17)

It should be noted that the above formula is most applicable for two decay pathways

with nearly identical branching fractions, i.e. g ∼ 1. The case when n−m = 1 can be used

to characterize the emission of an extra photon in the decay process. We can trivially solve

for the acceleration in this case. Hence

ã1 =

√
g − 1

(n− 1)2
. (9.18)

The case when n − m = 2 can characterize the emission of an additional particle-

antiparticle pair during the decay process. This case can also be solved exactly. Hence
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g =
n∏

k=n−2

[
1 + k2ã2

]
g =

[
1 + (n− 1)2ã2

] [
1 + (n− 2)2ã2

]
⇒ ã2 =

[√
[(n− 1)2 + (n− 2)2]2 + 4(g − 1)(n− 1)2(n− 2)2 − [(n− 1)2 + (n− 2)2]

2(n− 1)2(n− 2)2

]1/2

.(9.19)

The above acceleration scales can be used to fine-tune a system to select a preferred decay

pathway and also, if the acceleration of the system is known, predict the relevant branching

fractions of the system under study. In the next section we shall analyze the power radiated

away by an accelerated particle.

9.3 Power Radiated

In order to compute the power emitted by the ith particle Si we use the energy weighted

Wightman function G± for that particle in the generalized transition rate from Eq. (6.16).

Thus

Γ = G2
n

1

a

∫
dξe−i∆Eξ/a

n∏
m=1

G±m[x′, x]η

⇒ Si = G2
n

1

a

∫
dξe−i∆Eξ/aG±i [x′, x]η

n−1∏
m 6=i

G±m[x′, x]η. (9.20)

Note that we separated out the energy weighted Wightman function of the ith particle.

Recalling the explicit forms of the appropriate Wightman functions, Eqs. (8.5) and (8.7),

the power radiated away by the ith particle simplifies to
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Si = G2
n

1

a

∫
dξe−i∆Eξ/aG±i [x′, x]η

n−1∏
m 6=i

G±m[x′, x]η

= G2
n

1

a

∫
dξe−i∆Eξ/a

[
− a3

i(4π)2

1

sinh3 [ξ/2− sgn (a)iε]

]
×[

− a2

(4π)2

1

sinh2 [ξ/2− sgn (a)iε]

]n−1

= −G2
n4π

(
ia

4π

)2n+1
1

a

∫
dξ

e−i∆Eξ/a

sinh2n+1 [ξ/2− sgn (a)iε]
. (9.21)

Again, with the same rescaling ξ → sgn (a)ξ, the integral is invariant under the change

of sign of the acceleration. Thus we let sgn (a) = 1 as before. Hence

Si = −G2
n4π

(
i|a|
4π

)2n+1
1

|a|

∫
dξ

e−i∆Eξ/|a|

sinh2n+1 [ξ/2− iε]
. (9.22)

Note that we find a pole structure similar to the transition rate in the absence of the

regulator, this time with poles of order 2n + 1 at ξ = 2πiσ with integer σ ≥ 0. Using the

same computational machinery as before, we employ the change of variables as the previous

section, w = eξ. Thus

Si = −G2
n4π

(
i|a|
4π

)2n+1
1

|a|

∫
dξ

e−i∆Eξ/|a|

sinh2n+1 [ξ/2− iε]

= −G2
n4π

(
i|a|
2π

)2n+1
1

|a|

∫
dξ

e−i∆Eξ/|a|

[eξ/2 − e−ξ/2]2n+1

= −G2
n4π

(
i|a|
2π

)2n+1
1

|a|

∫
dw

w−i∆E/|a|+n−1/2

[w − 1]2n+1
. (9.23)

Examining the above integral in a similar manner as in the last section we note that it

is still of the form w−iβ+γ

[w−1]δ
but with odd integer δ and with γ being an odd integer multiple

of 1/2. Let us also note that γ − δ will also be an odd integer multiple of 1/2. The effect
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of this will be an alternating sign in the sum over the residues leading to a different thermal

distribution. Hence

∫
dw

w−iβ+γ

[w − 1]δ
=

2πi

(δ − 1)!

∞∑
σ=0

dδ−1

dwδ−1

[
[w − 1]δ

w−iβ+γ

[w − 1]δ

]
w=ei2πσ

=
2πi

(δ − 1)!

Γ(1− iβ + γ)

Γ(−iβ + γ − δ + 2)

∞∑
σ=0

[
w−iβ+γ−δ+1

]
w=ei2πσ

=
2πi

(δ − 1)!

Γ(1− iβ + γ)

Γ(−iβ + γ − δ + 2)

∞∑
σ=0

e2πσβ+i2πσ(γ−δ)

=
2πi

(δ − 1)!

Γ(1− iβ + γ)

Γ(−iβ + γ − δ + 2)

1

e2πβ + 1

=
2πi

(δ − 1)!

Γ(iβ − γ + δ − 1)

Γ(iβ − γ)

1

e2πβ + 1
. (9.24)

Again we used the properties of δ and γ to manipulate the gamma functions in the last

line. Then, utilizing the above formula, the integral in Eq. (9.23) yields

∫
dw

w−i∆E/|a|+n−1/2

[w − 1]2n+1
=

2πi

(2n)!

Γ(i∆E/|a|+ n+ 1/2)

Γ(i∆E/|a|+ 1/2− n)

1

e2π∆E/|a| + 1
(9.25)

The expression for the power radiated by the ith particle is then given by

Si = −G2
n4π

(
i|a|
2π

)2n+1
1

|a|
2πi

(2n)!

Γ(i∆E/|a|+ n+ 1/2)

Γ(i∆E/|a|+ 1/2− n)

1

e2π∆E/|a| + 1
. (9.26)

We again use the Pochhammer identity Γ(x+a)
Γ(x)

=
∏a−1

j=0(x + j) with the identifications

x = i∆E/|a| + 1/2 − n and a = 2n. As such, the above gamma functions yield a cleaner

expression. Thus
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Γ(i∆E/|a|+ n+ 1/2)

Γ(i∆E/|a|+ 1/2− n)
=

2n−1∏
j=0

(i∆E/|a|+ 1/2− n+ j)

=
2n−1∏

`odd=−(2n−1)

(i∆E/|a|+ `/2)

=
2n−1∏
`odd=1

(i∆E/|a|+ `/2)(i∆E/|a| − `/2)

=

(
i∆E

|a|

)2n 2n−1∏
`odd=1

[
1 + (`/2)2

( a

∆E

)2
]

=

(
i∆E

|a|

)2n n−1∏
k=0

[
1 +

(
2k + 1

2

)2 ( a

∆E

)2
]
. (9.27)

Using the same double factorial identity (2x)!! = 2x(x)!, we find that the power radiated

by the ith particle is given by

Si = G2
n4π

(
∆E

π

)2n
1

(4n)!!

n−1∏
k=0

[
1 +

(
2k + 1

2

)2 ( a

∆E

)2
]

1

e2π∆E/|a| + 1
. (9.28)

We see that the above power radiated is characterized by a fermionic distribution as

well as the half-integer indexed polynomial of multiplicity. The root cause of this change in

statistics is the fact that we had poles of odd integer order rather than even integer order as

in the transition rate. The first few normalized power functions, S̃ = S/G2
n, are then given

by
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S̃1(∆E, a) =
∆E2

2π

1 + 1
4

(
a

∆E

)2

e2π∆E/|a| + 1

S̃2(∆E, a) =
∆E4

96π3

1 + 5
2

(
a

∆E

)2
+ 9

16

(
a

∆E

)4

e2π∆E/|a| + 1

S̃3(∆E, a) =
∆E6

11520π5

1 + 35
4

(
a

∆E

)2
+ 259

16

(
a

∆E

)4
+ 225

64

(
a

∆E

)6

e2π∆E/|a| + 1

S̃4(∆E, a) =
∆E8

2580480π7
×

1 + 21
(

a
∆E

)2
+ 987

8

(
a

∆E

)4
+ 3229

16

(
a

∆E

)6
+ 11025

256

(
a

∆E

)8

e2π∆E/|a| + 1
. (9.29)

We note that the n = 1 case, along with ∆E = 0 as determined in [41], reproduces the

known a2 dependence for the power emitted by bremsstrahlung. The plots of the power

radiated for both transitions downn and up in Rindler energy can be found in Figs. 9.3

and 9.4 respectively. Note that the power radiated diverges in the case of a positive energy

transitions. This reflects that inertially stable particles do not transition up in energy and

radiate energy away.
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Figure 9.3: The normalized power radiated, Eq. (9.29), with ã = a/∆E and ∆E = −1.
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Figure 9.4: The normalized power radiated, Eq. (9.29), with ã = a/∆E and ∆E = 1.

9.4 Energy Spectra

Utilizing the same prescription, we now endeavor to compute the energy spectrum of the ith

Minkowski particle emitted in the transition process. The transition rate from Eq. (6.16)

characterizes the probability per unit time that a transition will occur. The differential

transition per unit energy then characterizes how the probability of emission changes with

energy, i.e. the spectra. Therefore we begin by taking the derivative with respect to the ith

particle’s proper energy. Hence

dΓ

dω̃i
=

d

dω̃i
G2
n

1

a

∫
dξe−i∆Eξ/a

n∏
m=1

G±m[x′, x]η

= G2
n

1

a

∫
dξe−i∆Eξ/a

d

dω̃i
G±i [x′, x]η

n∏
m 6=i

G±m[x′, x]η. (9.30)

Again, we have separated out the relevant variant of the Wightman function for the
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observable we are calculating. Referring to Eqs. (8.5) and (8.9) for the Wightman function

and its derivative respectively, the above energy spectra reduce to a more convenient form.

Hence

dΓ

dω̃i
= G2

n

1

a

∫
dξe−i∆Eξ/a

d

dω̃i
G±i [x′, x]η

n∏
m6=i

G±m[x′, x]η

= G2
n

1

a

∫
dξe−i∆Eξ/a

ω̃

(2π)2
e−iω̃aξ

[
− a2

(4π)2

1

sinh2 [ξ/2− sgn (a)iε]

]n−1

= G2
n

ω̃

(2π)2

(
ia

4π

)2(n−1)
1

|a|

∫
dξ

e−i(∆E+ω̃)ξ/|a|

sinh2(n−1) [ξ/2− iε]
. (9.31)

Note in the last line that we enforced the invariance of the above integral under a change

in sign of the acceleration. We have encountered similar integrals for both the transition rate

and the power radiated. It is worth noting that the difference is that the frequency variable

which we are Fourier transforming with respect to has shifted via ∆E → ∆E + ω̃. We can

evaluate the n = 1 case quite easily at this point. Hence

(
dΓ

dω̃

)
n=1

= G2
1

ω̃

(2π)2

1

|a|

∫
dξe−i(∆E+ω̃)ξ/|a|

= G2
1

ω̃

2π
δ(∆E + ω̃). (9.32)

The above expression is merely a statement analogous to Fermi’s golden rule. Note that

the presence of the delta function serves to enforce conservation of energy in the case of

one particle emission. This implies that when there is only one Minkowski particle emitted

that the radiated particle, as measured in an inertial frame instantaneously at rest with

the accelerated particle, carries away the total change in the Rindler space energy. For the

higher multiplicity cases we rid ourselves of the regulator and note the similar pole structure

of order 2(n − 1) when ξ = 2πiσ with integer σ ≥ 1. Finally, we make the same change of
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variables w = eiξ to obtain

dΓ

dω̃
= G2

n

ω̃

(2π)2

(
ia

4π

)2(n−1)
1

|a|

∫
dξ

e−i(∆E+ω̃)ξ/|a|

sinh2(n−1) [ξ/2− iε]

= G2
n

ω̃

(2π)2

(
ia

2π

)2(n−1)
1

|a|

∫
dξ

e−i(∆E+ω̃)ξ/|a|

[eξ/2 − e−ξ/2]
2(n−1)

= G2
n

ω̃

(2π)2

(
ia

2π

)2(n−1)
1

|a|

∫
dw

w−i(∆E+ω̃)/|a|+n−2

[w − 1]2(n−1)
. (9.33)

The above integral can be evaluated using the integration formula from Eq. (44) provided

we make the relevant identification of the indices β, γ, and δ. Moreover, since the γ is an

integer and δ is an even integer, the Pochhammer identity holds as well. Thus, by making

the identification of n→ n− 1 from the transition rate, we may merely quote the final form

of the spectra. Hence

dΓ

dω̃
=

G2
nω̃

(2π)2

(
∆E + ω̃

π

)2n−3
1

(4n− 6)!!
×

n−2∏
k=0

[
1 + k2

(
a

∆E + ω̃

)2
]

1

e2π(∆E+ω̃)/|a| − 1
. (9.34)

Here we find a bosonic thermal distribution with a chemical potential and a polynomial

of multiplicity characterized by an integer index. It is interesting to note that the total

change in Rindler space energy is identified as the chemical potential of the thermal bath.

Recalling the above spectra gives the probability of emission per unit energy per unit time,

we note that it needs to be normalized via 1
Γ
dΓ
dω̃

= N . This serves to scale the overall spectra

and remove the effective differential time averaging. Below we write out the first few spectra

normalized to the coupling via 1
G2
n

dΓ
dω̃

= Ñ as in the previous sections. Hence
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Ñ1(∆E, a, ω̃) =
ω̃

2π
δ(∆E + ω̃)

Ñ2(∆E, a, ω̃) =
ω̃(∆E + ω̃)

8π3

1

e2π(∆E+ω̃)/|a| − 1

Ñ3(∆E, a, ω̃) =
ω̃(∆E + ω̃)3

192π5

1 +
(

a
∆E+ω̃

)2

e2π(∆E+ω̃)/|a| − 1

Ñ4(∆E, a, ω̃) =
ω̃(∆E + ω̃)5

15360π7

1 + 5
(

a
∆E+ω̃

)2
+ 4

(
a

∆E+ω̃

)4

e2π(∆E+ω̃)/|a| − 1

Ñ5(∆E, a, ω̃) =
ω̃(∆E + ω̃)7

2580480π9

1 + 14
(

a
∆E+ω̃

)2
+ 49

(
a

∆E+ω̃

)4
+ 36

(
a

∆E+ω̃

)6

e2π(∆E+ω̃)/|a| − 1
. (9.35)

In Figs. 9.5 and 9.6 we show the spectra normalized by the transition rate, i.e. Ni, of

the ith particle emitted for both transitions down and up in Rindler energy respectively. It

is interesting to note that regardless of the sign of the transition energy, we find Planck-like

spectra for all multiplicities greater than 1.
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Figure 9.5: The normalized spectra, Ni = 1
Γ
dΓ
dω̃i

, with a = 1 and ∆E = −1.
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Figure 9.6: The normalized spectra, Ni = 1
Γ
dΓ
dω̃i

, with a = 1 and ∆E = 1.

9.5 Displacement Law

To better characterize the spectra, we can also look at the peak energy of the emitted

Minkowski particle for each multiplicity greater than 1. In the interest of determining the

maximum of each peak via setting the derivative equal to zero, we can drop all prefactors

and focus only on the energy dependence. Labeling the spectra polynomial of multiplicity

Mn =
∏n−2

k=0

[
1 + k2

(
a

∆E+ω̃

)2
]

we have

Ñ ∼ ω̃(∆E + ω̃)2n−3Mn

e2π(∆E+ω̃)/|ãη | − 1
. (9.36)

Then, by taking the derivative with respect to ω̃ and setting it equal to zero, we find

88



[
(∆E + ω̃) + ω̃(2n− 3) + ω̃(∆E + ω̃)

M′
n

Mn

] (
e2π(∆E+ω̃)/|ãη | − 1

)
−ω̃(∆E + ω̃)

2π

|a|
e2π(∆E+ω̃)/|ãη | = 0

xex

ex − 1
−

[
1

1− 2π∆E
|a|x

+ (2n− 3) +
|a|x
2π

M′
n

Mn

]
= 0. (9.37)

Note in the last line that we defined the dimensionless parameter x = 2π
|a|(∆E + ω̃). Now

we must evaluate the logarithmic derivative of the polynomial of multiplicity. Hence

M′
n

Mn

=
d

dω̃
lnMn

=
d

dω̃
ln

n−2∏
k=0

[
1 + k2

(
a

∆E + ω̃

)2
]

=
d

dω̃

n−2∑
k=0

ln

[
1 + k2

(
a

∆E + ω̃

)2
]

= − 2a2

(∆E + ω̃)3

n−2∑
k=0

k2

1 + k2
(

a
∆E+ω̃

)2

= − 2

|a|

(
2π

x

)3 n−2∑
k=0

k2

1 + k2
(

2π
x

)2 . (9.38)

Then, combining the logarithmic derivative with the Eq. (9.37), we obtain our numeri-

cally solvable displacement law which allows us to determine the peak energy of the emitted

Minkowski particles. Hence

xex

ex − 1
−

[
1

1− 2π∆E
|a|x

+ (2n− 3)− 2

(
2π

x

)2 n−2∑
k=0

k2

1 + k2
(

2π
x

)2

]
= 0. (9.39)

Then, in terms of the numerically solved x, we find that the peak energy is given by
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ω̃ = x
|a|
2π
−∆E. (9.40)

Thus we have shown that the emitted particle’s energy, in the limit of high acceleration

or zero change in the Rindler space energy, is directly proportional to the accelerated tem-

perature, i.e. ω̃ = xta. This is in agreement with Wien’s displacement law but now with

a more general transcendental equation to determine the displacement constant. Moreover,

this establishes the fact that acceleration has an energy associated with it that is quantum

mechanical in nature. By reinserting all relevant physical constants, we find the energy of

acceleration Ea is given by

Ea =
xa~
2πc

. (9.41)

The acceleration dependence of the energy of the emitted particles would have a clear

signature at sufficiently high accelerations. Advanced experimental systems could be coming

online in the coming years that may be able to verify these effects [35].
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Chapter 10

Conclusions

In this dissertation we have established a computational framework capable of computing

various observables of a wide range of acceleration-induced particle physics processes. We

utilized methods of field operators and Unruh-DeWitt detectors to carry out the analysis.

Generalized analytic results of n-particle multiplicities into both Rindler and Minkowski

spacetimes were obtained. To better analyze physically realistic settings, a time-dependent

formalism was developed to compute the spacetime quantities that go into the Wightman

functions and its variants. These were then used to compute the transition rate, multiplicity,

power radiated, energy spectra, and displacement law for accelerated decays and excitations

of arbitrary final state multiplicity. We found the transition rate, power, and spectra are

characterized by integer and half-integer indexed polynomials and thermal distributions of

both bosonic and fermionic statistics. The multiplicity showed that high accelerations favor

the decay chain with the most amount of Minkowski space final state products and was

applied to the electron-muon system. In computing the power, we were also able to recover

the Larmor formula in the appropriate limit. For the spectra, we found the total change

in Rindler space energy plays the role of a chemical potential of the thermal bath. The

displacement law for the spectra predicts the peak energy of the emitted Minkowski particles

have a proper energy proportional to the accelerated temperature; in direct analogy with
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Wein’s displacement law. To finalize, the combination of results presented here strengthens

the idea that highly accelerated systems are inherently thermal and we have developed a

framework to compute a wide range of experimental observables in anticipation of upcoming

experiments.
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