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ABSTRACT

BLACK-SCHOLES MODEL
AN ANALYSIS OF THE INFLUENCE OF VOLATILITY

by

Cornelia Krome

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Richard H. Stockbridge

In this thesis the influence of volatility in the Black-Scholes model is analyzed. The deduced
Black-Scholes formula estimates the price of European options. Contrary to the other parameters
of the formula, the future volatility of the underlying asset cannot be observed in the market. The
parameter needs to be assumed in order to calculate the option price. An inaccurate assumption
may lead to an erroneous volatility. It is studied how a falsely assumed volatility impacts on the
option price. Empirical simulations will be carried out to get an impression of possible errors in
the computations. Afterwards, those results will be discussed and linked with an evaluation of

potential risks.
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Chapter 1

Introduction

During the last several decades the trade of stocks and options has experienced an increasing
interest in both scientific work and everyday life. In 1973 the mathematicians Fischer Black and
Myron Scholes published a paper titled “The Pricing of Options and Corporate Liabilities” (Black
and Scholes|1973). In it, they illustrated how the pricing of stock options is uniquely determined by
their formula. They used a method of arbitrage reasoning, which was developed by Robert Merton,
to obtain their option-pricing formula. When Merton and Scholes discovered a new method to
determine the value of derivatives, they were awarded the Nobel Prize in Economic Sciences in
1997. Fischer, who had collaborated (Nobelprize.org |2017) in the development of that formula, did
not live to see the prize-giving, since he passed away two years prior to that. The Black-Scholes
model is used to calculate the theoretical price of European put and call options, where an option
is “a contract for the right to buy and sell shares at a later date or within a certain period at a
particular price” (Cambridge Online Dictionary|2017a).

Therefore they assumed some features of the financial market, including;:

European-style options: The model supposes European-style options. Those can only be exer-
cised on the expiration date. With American-style options it is possible to exercise the option
at any time during the life of the option.

Efficient markets: It is assumed that the stock’s behavior is like a random walk. Meaning, at
any given moment in time, the price of the underlying stock can go up or down. The future
stock price is independent from the past. The market movements cannot be predicted.

No dividends: During the life of the option no dividends are paid out.

No transaction and commissions costs: It is presumed that there are no fees for buying or



selling options and stocks in the Black-Scholes model. Additionally there are no barriers to
trading.

Returns are lognormally distributed: As normally done in the real world, the Black-Scholes
model assumes lognormal distributed profits of the stock.

Constant volatility and risk-free rate: The model’s most significant assumptions are that the
volatility of the underlying stock and the risk-free rate are known and constant (Bossu and
Henrotte 2012). In a short term it is possible to have a relatively constant volatility, whereas
it becomes variable in the long-term view. A risk-free rate is the best rate that does not
involve taking a risk. In theory it supposes a rate of return without any loss. This is not
feasible in reality. In real-life it is possible to use the U.S. Government Treasury Bills rate,

for instance. But these treasury rate can change in times of increased volatility.

As stated above, the Black-Scholes model considers the volatility of the underlying stock to
be constant. The broker assumes an estimated rate. It is believed, that it corresponds with
the real market behavior. But what would happen if the assumption does not match with the
development in real life? How much does a small variation in volatility affect the option price? To
which consequences would those variations lead? This thesis deals with finding answers to these
questions.

The outline of this thesis is as follows: Chapter [2] summarizes the Black-Scholes formula, in-
cluding the stochastic argument for it (see Section and the verification of the formula itself by
a change of variables (see Section . Subsequently, the third chapter presents different simula-
tions for both, European and digital call and put options. Errors resulting in the use of inaccurate
volatility are displayed and analyzed. In a European option the payoff at maturity is the maximum
of the difference of the current stock price and the striking price or zero. The payoff of a digital
option is equal to one, if the underlying asset expires in the money at expiry and zero otherwise.
Following this, in Chapter [f] various risk measures are considered and evaluated. In Chapter
the hedged errors are weighted by the probability of choosing a volatility based on historical data.
Then they get evaluated with different risk measures. The final Chapter [6] provides the summary

and draws a conclusion on the object of investigation.



Chapter 2

Black-Scholes Model

The Black-Scholes model is used to calculate the value of a stock option. The developers assumed
some features for the financial market. The following paragraph illustrates the Black-Scholes pricing
formula for European call and put options. In order to calculate the price some specific input

variables are used, which are:

s - Current stock price;

t - Current time;

K - Option striking price;
r - Risk-free rate; and

o - Standard deviation.

The Black-Scholes pricing formula for the price of a European call or put option is

F(t,s)=¢-s-®(e-di(t,s)) —e- Ke 7T . d(e- dyt, s)).

In this, ® is the cumulative distribution function of N(0, 1),

dy(t,s) = U\/% : [ln (%) + (r—l— 0;) (T—t)] ,
do(t,s) = dyi(t,s) —oVT —t

_ ; ln ;>+<r—(72>(T—t)],and

oT —t
+1 for a call,
—1 for a put.



The price of an option is calculated based on the current stock price s. Of course, this depends on
the current time t. For this formula, the stock price is modeled by a geometric Brownian motion.
The increment of a Brownian motion X (t+ s) — X (s) is independent of the past. Consequently, the
price of a stock is not predictable. It behaves like a random walk, at any given moment in time,
the price of the underlying stock can go up or down.

Additionally, the option striking price is needed. An option is a type of insurance for investors
in the stock market. The investor has the right to buy or sell the underlying asset on the expiration
date. Normally, a call option will only be exercised, if the striking price is below the market value.
A put option will be exercised if the striking price is above the market value. The payoff at expiry
for European call options is the maximum of s — K and zero. An example of profit for a European

call option and a striking price of 30 can be seen in

40 European Call Option Payoff (Strike = 30)

30+

Profit

10 - 8

710 ! ! ! ! !
0 10 20 30 40 50 60
Stock price at maturity

Figure 1: Profit of a European call option

If the stock price at maturity is lower than the striking price (here K = 30), the profit will be
zero, because max(s —30,0) = 0. As soon as the stock price at maturity is higher than the striking
price, the profit will be positive by a value of s — 30.

Another input variable for the Black-Scholes formula is the risk-free rate. It is the best rate

that does not involve taking a risk. The return of the original capital as well as the payment of



interest are completely guaranteed. Usually, the risk-free rate for a given period is taken to be the
return on government bonds.

Options depend on volatility, which is the annualized standard deviation of the asset’s return.
Intuitively, it is the amount the price swings around in a given time period. Relatively stable stocks
have a lower volatility, while unstable stocks with a higher level of uncertainty are more volatile.
Hence, it is more likely that the stock either has an extremely high or low value on the expiration
date. Whether the stock price is massively or just slightly below the striking price of a call option
is of no importance: In both cases the option will not be exercised. If the stock price is above the
striking price at maturity, the option will be exercised and the payoff will be s — K. This means
an option with high volatility will result in a higher profit, if the price rises.

The formula can be split into two parts: First, there is the expected benefit of a purchase of the

underlying. Secondly, the current value of paying the exercise price is taken into consideration.

Expected benefit of purchasing the underlying completely: If the underlying stock price
at maturity is above the striking price, the option will be exercised. One will get the prior
specified amount of stock’s units. This is worth whatever the stock price is in the market at
maturity. The expected value of this is proportional to the stock price. At a time ¢ < T it
can be written as s- ®(d; (¢, s)). It is equal to the final stock price for ¢t = T'. If the final stock
price is below the striking price, it will be zero.

Current value of paying the exercise price: If the option is exercised and the underlying
asset is above the striking price, one will pay the striking price. The probability at time ¢
that this is above the striking price at maturity is ®(dz(t, s)). The expected value of paying
the striking price is K®(dz2(t, s)). This is the value of cash flow at maturity. To get the value

r(T—t)

of it at the specified date, it is necessary to discount it by the factor e~ . The value of

the cash to buy the option is Ke "It . ®(dy(t, 5)).

To get the price of an option, the second part gets subtracted from the first part. For a put option

€ is negative. Thus, the Black-Scholes formula is

P(t,s) = —s®(di(t,s)) + Ke " T &(dy(t, 5)).

An example in options pricing can be found in Ross [2010]



2.1 Black-Scholes Equation

The Black-Scholes formula returns the price of an option. Its behavior over time is described by the
Black-Scholes equation. This is a partial differential equation and will be derived in the following

section.

2.1.1 Definitions

Suppose the current price of a stock is S(0) = Sy, and let S(¢) denote its price at time t. A stock
price process can be approximated by a geometric Brownian motion. The change of the stock price

over time is of interest. It can be written as:
dS(t) = pS(t)dt +oS(t) dW(t),

where W is a Wiener process, p is the drift, o is the volatility and t is the time. Additionally, the
option price process F'(t,S(t)) is necessary. The price dynamics of the derivative asset is given by
applying It6’s formula:

O*F
0s2
F

dF(t, ) =L @ sy i + %Z(t, S(1)) dS(t) + ~a25%(t)

= . (t,S(t)) dt

O st) + us) 2L ¢, st dt + o5 t) 2L

ot 0s 0s (8, 5(t)) W (t)

1 22y 0°F
+ oS (1) S (1,5 (1))

To get the price of the option, it is the final goal to find F(7, S(T)). A portfolio based on the stock
and the price function is considered.
2.1.2 Hedging Strategy

The following strategy gives a method to find the Black-Scholes partial differential equation. A

portfolio based on two assets, the underlying stock and the derivative asset, is given by:

P(t) = @(t)S(t) + F(t,5(t)),



where ¢ = ¢(t),0 < t < T, represents the shares of the stock and the units of the option F are

equal to 1. The change of the portfolio during time can be written as

dP(t) = |p(t)dS(t) + dF(t,S(t)) + S(t) de(t) + p(t)o2S?(t )%F (t,S(t))| dt.

self-financing condition

The self-financing condition provides, that there are no exogenous infusions or withdrawals of
money. The sale of an old asset should finance the purchase of a new one. This condition and the

requirement that the last part of the equation is zero lead to

4P(0) = up(OS(0) + G (0,50) + w80 5 1.5(0)] at

+05(t) [gp(t) + %—Z(t, S(t))] dw (t)

Lz S )ﬁ(t S(t))dt
0s2 7 '

By buying and selling the underlying asset in the right way, one can perfectly hedge the option and

eliminate risk. That is why it is desired to hold —%—f(t, S(t)) shares of the stock. So, ¢(t) is set to
— G5 (t.5(t):

ap(t) = | (-5 (@.50)) 560+ 5 (0500 + 505 (05 at

+o5(1) {—%l:(t, S(t)) + ‘Z)Z(t, S(t))] W (t)

O*F

+ 52()(92

(t,5(t))dt.

That implies the following equation:

aP(t) = [%f(t S(6) + 5520 2 5 (1. ))] dt.

Additionally, dP(t) = rF(t,S(t)) — rS(t) % (t, S(t)) represents the bond.
As one can see, there is no randomness in the equation and with the notion of an arbitrage-
free market the equation needs to be equal to the bond. In an arbitrage-free there market are no
differences in profit depending on the asset. Whereas, arbitrage is the purchase and sale of an asset

at the same time to benefit from the differences in price. With this assumptions and substitutions



the Black-Scholes equation is:

oF 2 ,0'F oF
E(t, s) + %82@(75, s)+ rsg(t, s)—rF(t,s) =0, Vo<t<T,0<s

bond

F(T,s)=C(T,s) Vs> 0.

Consequently, there is only one right price for an option.

2.2 Verification of the Black-Scholes Formula

(1)

The right price for the option is returned by the Black-Scholes formula, which will be verified in the

following section. It is necessary to solve . The following changes of variables are considered:

s = Ke”,

F(t,s) =K - f(r,z), and

(T —t)o?
—

The Black-Scholes equation is a linear parabolic equation of the form

2
%(T,:ﬂ) = %(T,Cb) + a%(ﬂ x) +bf(r, ).
It can be reduced to a diffusion equation:
oh 0h

T, ).

E(va’?):@(

(2a)

(2b)

(2¢)



2.2.1 Reduction to a Diffusion Equation

In the Black-Scholes model the interest rate r and the volatility o are constant. With the change
of variables in it is possible to rewrite the Black-Scholes equation in terms of f. The partial

derivatives of F(t, s) are:

oF Of (o Orm_potof
) 2R ) B kT (), (50)
OF 4 BRI n0r@0f o 00 (2B oy 9]

g(t,s)—Kax(T,x)as—Kax(T,a;)as hl(K)_sE)m(T’x)_e ax<7',.’17), and  (5b)
O*F Bl 0 KOf _ Kof Koof
@( ,8) = %?%(Tﬁ) = —E%(Tﬂ) + ?g%(ﬂx)

Ko K (0x 0\ 0 0
L F o+ L (Gg) o ==L

Ko o)+ o
s2 Ox s ™ 0x? )

Inserting the partial derivatives of F'(¢,s) (see (5])) into the Black-Scholes equation leads to:

r 2 r
o) = (5 1) e+ Ao - % fira) )

or o2 oz

and so f(7,z) satisfies with

2 2
=21, and  b=-" =—(1+a). (7)

a
o2 o

The solution of an equation like @ is of the form
f(r @) =w(r) - g(x) - h(T,2). (8)

To get f(7,x) it is necessary to calculate the partial derivatives of f(7,x). They are given by:

O (r.0) = 22 (r) - gla)hir,2) + w(r)g(a) - o (7,2), (99)
of dg oh

%(T, x) =w(T) - 8—56(@ <h(r,x) +w(T)g(x) - £(T, x), and (9b)
0% f 0%g Og . .Oh 0%h

@(T, x) =w(T) - w(m) ~h(r,x) + 2w(7)8—x(a:)8—$(7', x) + w(T)g(x) 922 (1,2) (9¢)



Substituting @ into @ results in:

ow oh 0%g dg . .Oh
S )97, ) + w(r)g(@) 5 (7,) =w(r) - 5 G(@) - hlr,w) + 2u(r) S () S (. 2)
0’h
+w(7)g(z) - W(T,x)
8gx Oh (10)
afwlr) (@) b 2) +w(r)g@) - 5 ()
+ bw(T)g(x)h(T, 2),
which can be satisfied, if w and g are of the form
w(T) = ¢y exp(w(T)), and (11a)
9(x) = ez exp(§(x)), (11b)
in which ¢1, c2 € R are constant. They have the following derivatives:
ow ow
5, (1) = w(r)Z-(7), (12a)
dg, . o]
2 (2) = g(x) 5L (@), and (12b)
&g 09 99, .\’
S = s S+ (@) (12¢)
Substituting and into leads to:
oh 0h oh a9
E(T,x) —w(T,fL’) + 87{1;‘(7—’ x) |:2ax($) + a:| ( )
13

+ h(r, )

oI, 9% 95 . \* 89
—67(7)+ax§(x)+<az(x)> +aa—z(x)+b .

10



In order for to be of the form of the diffusion equation (4)), it is required that 2%(m)+a

which implies g(z) = =3* + ¢1 for some ¢; € R and also that

L0 P (D)) oDy b =0
or Ox? ox 3} B
ow a®>  a?

B T

ow a?

4+ 4a + a?
:>121(7')——< + Z+a>7+02

for some ¢ € R.

=0,

Putting that back into the solution in and expressing w(7) in terms of a of one gets:

a2 a
f(r,z) = ce_<7+a+1)7 ce 2% h(r,z), c€R.

In summary, the Black-Scholes equation has been reduced to a diffusion equation

oh 0%h T
E(T,.’L‘)—@(T,l’), reR, 7€ {0,02}

by the following change of variables:

S = Ke”, and = (T—-1t) 0%/2.

The price of an option is

a2 a
F(r,z) =K - ce_(TJraH)T e~ 2% . h(r,z), in which a = 2r/c® — 1.

11



2.2.2 Solution of the Diffusion Equation

The next subsection deals with the solution of the diffusion equation with h(7,x) . It can be
solved by using Fourier transforms. For a function f the Fourier transform with respect to variable

x is defined by ) . .
FU@)E) = ) = 7= [ e f(a)da,

and the Fourier transform of its derivatives is given by

F(f™ (@) (k) = f(k) = (ik)" - F(f (@) (k).
The Fourier transform of the diffusion equation can be written as follows:

oh

= —k%h
or ’

which results in
2

h(r, k) = h(0,k)-e %7, (15)

h(0,x) is the Fourier transform of the initial condition of h, which corresponds to the terminal

(T—t)o?

condition at expiry ¢ = T of the option, since 7 = *~—;

To find the solution for h(7, x) it is required to apply the inverse Fourier transform. By defining

2

f"(hl) = h~1 = e_k T, and ]'-(hg) = h~2 = iL(O, /{) (16)

Equation gives
h(r,k) = hi(7, k) * ha(T, k). (17)

A useful property of the Fourier transform is the convolution theorem: A Fourier transform of a
convolution product of two functions f and ¢ is equal to the product of the Fourier transforms of

both:

F(f xg) =F(f)F(g)
So, applying the convolution theorem to the inverse Fourier transform of leads to

hr,z) = (bt * ho) (7, 7) = \/12? /R b (7,2 — €)ha(r, €) dE. (18)

12



The inverse Fourier transforms of (16 are:

1 22 ~

N and  FYhy) = hy = h(0,z). (19)

F Y h)=h =

Inserting into gives:

G- 5)2
h(r,x)

F h(0,¢) d¢. (20)

The general solution in satisfies the diffusion equation with initial condition (0, z). That

implies the following partial derivatives:

oh 1
E(Tal‘) - *2

€)? _@-o?

hO (5) d&a

" \/ZW/ 472

oh 1 —(r—§) e’
%(T,SL‘) = 47TT/R S ho(§) d¢, and
d*h 1 1 )? _eo?
il =__—_h h d
Gra(ra) = —gohra)+ = | o(€) de.
These equations satisfy the diffusion equation (4]):
lim h(7,z) = lim (egs 7,€)d¢ = h(0, ).

7—0 ’ =0 /47T

2.2.3 Application to European Options
Correspondent to the change of variables the payoff condition in at 7 = 0 is equivalent to the
payoff at expiry ¢t = T'. The payoff at expiry for European options is given by:

F(T,s) = max[e(s — K),0], (21)

where € = 1 for a call option and ¢ = —1 for a put option. Equation can be expressed in terms

of the new variables from as:

1 a
h(O, $) = ?SEJ:F(T, Kex)
1 4
= ?eﬁx max[e (Ke® — K), 0]

= max [e (e(%ﬂ)m — e%x> ,0} . (22)
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Substituting into the general solution (20]) gives:

h(r,z) = \/417?/ 6_(3625)2 max {e <e(%+1)x - e%z> ,O] dg.
R

Since e(3+1)7 _ 3% > 0 if and only if x > 0 for all @ € R the integration domain can be rewritten

as [0,00). A change in the variables to n = {/e and dn = d¢/e leads to:

1 (z=en)® a a
h('r’ gj) = em /R e i |:eE(§+1)n — 66577] dn

1 X @—en)? a X @—en)? a
=¢ e A et gy e” a3l dp
VAarT Jo 0

_ () (etadin) g <€x +at + 2T> eeb(atad) g (Em + a7’> 7
V2T V2T

where ® denotes the cumulative standard normal distribution function. After changing the variables

back to the initial ones (see Section [2.2.4]), one will get the Black-Scholes formula.

2.2.4 Reversing the Change of Variables

Going back to the initial variables with leads to

a.2 " Y i ) )
F(t,s) :Ke*(7+a+1)fe—am * |:e(2+1)(x+a2+‘r)q> <6x+a7+27> o i(etad) g <6x + a7>]
var Var

=ecKe*d <6W> —eKe ™ TO <ex + a7'>
Var Var

—esP | €

U\/% [111 (%) + (T —t) <r+022>]

=di1(t,s)

S S )

=da(t,s)

= es®(edy (t,5) — eKe " T 0P (eds(t, 5)),

which is the Black-Scholes formula.
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Chapter 3

Effects of Incorrect Volatility

In this chapter some simulations for European and digital call and put options are presented. The
Black-Scholes model depends on volatility, which is assumed to be constant and should correspond
with the real behavior. Consequently, the same applies for the option price F(t,s). So, it is
reasonable to ask what impact a wrong assumed volatility might have on the option. This question
is analyzed within this chapter.

When the Black-Scholes model is correct, the option price F'(¢,s) satisfies

F(T,5(T) = FO,5%) - (0)So + p(T)S(T)
——— —— —_———
option value at t=0  shares of stock with value Sg at t=0  shares of stock with value S(T') at t=T

T 2
+/0 [%;(t,s(t))+rs(¢)%§(t,5(t))—rF(t,S(t))Jr20282(75)%;@75(15)) di

T oF
+ /O oS(t) (as“s(t” +s0<t>> dw (t).

=0

By the choice of ¢(t) = —2E(¢, S(t)), the integrand in the stochastic integral is zero and the
regular integral is zero as well, since I’ satisfies the Black-Scholes equation . Thus, the value of
the portfolio at the final time equals the value of the option.

A question naturally arises about the effect of using the wrong volatility parameter o. In
the following analysis, let o, denote the true volatility so the stock price process S satisfies the

stochastic differential equation dS(t) = uS(t)dt + 0.S(t) dW(t). Also let o denote the volatility

15



parameter used to determine the function F. Now Itd’s formula gives:

F(T,S(T)) = F(0,50) — ¢(0)So + (T)S(T)

T 2
+/0 [%f(t,S(t))+rS(t)aaZ(t,S(t))—TF(taS(t))JF;UESQ(t)as;(t’S(t)) dt
T
+ / o.S() (%f(t, S() + so<t>) dw (¢)
=0
=F(0,80) — ¢(0)So + ¢(T)S(T)
T 2
+/0 [(?;(t,b’(t)) +T5(t)aai(t’s(t)) —rE(t,S(t)) + 20—252(75)({;;;(@5(75)) dt
=0
T 2
+/O %((rf _02)52@)%;;(1575@))&

T oF
+ [ Lo (G wso)+ ) awe. (23)

=0

With this formula the hedging portfolio errors are calculated. By analyzing the effects of an
incorrect volatility in calculating option prices one might think about applying the Greeks Vega
to F. Vega measures how sensitive the option price is in respect to the volatility parameter o. It

is given as

y=9E _ T Tiw ()

- Jo
1 4

=svT —t e 2.
V2T

Vega is always positive and the option price increases as o increases. In reality the volatility of a
stock price changes over time. “Vega is the rate of change of the value of the portfolio with respect
to the volatility of the underlying asset” (Hull |2000).

In the Black-Scholes model the volatility is assumed to be constant. There is no change over
time and a trader estimates the used parameter o. While Vega analyzes the sensitivity of the option
price in respect to o this thesis deals with the question of what impact an incorrect volatility might
have on the option price. It observes the accuracy of the hedging portfolio. These are two different

ways of analyzing.
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In all following simulations a risk-free rate of zero and a time interval from 0 to 2 with 200
timesteps are assumed. Moreover, the starting stock price Sy is 20 and the striking price K is
16. For a meaningful result 100 different exemplary stocks are used. Those are the same for all
simulations. In the simulations o, and o are equal to [0.1,0.2, ..., 1.0].

In this chapter, the general approach for the simulations is discussed. Section [3.1] introduces
the formulas to calculate the option price for European options. It is followed by Section [3.2| which
covers the same calculations for digital options. Afterwards, the results of these simulations for call

and put options are displayed and analyzed.

3.1 European Option

The first simulations dissemble the errors of using o, and o for the option price of European call
and put options. Its payoff at expiry for call options is max(s — K,0). The Black-Scholes formula,
which was verified in Section [2.2] is used for these simulations:

F(t,s)=c-s-®(c-di(t,s)) —e- Ke 7T . d(c- dy(t, 5)).

The integral to calculate the option value is

Tor OF 1 5 9, 0?F
[ S8 50) + 505 (1. 5() — (e 5(0) + 3250 S L (1. SO
with
OF G - s) 1 2
se” 2 .S o o (T—
B =" sty s ()| ek et
2 S
Fe—r(T—t) — 2L [dg(t,s) 1 < 02>]
_ _ 2
Nors AT —t) ovT 1 2
OF e_d%(;s) 1 Ke*”(T*t)e_d%(;’S)

and

—(t,s) = eP(edy(t,5)) +

0s V2r oI —t a v 21 soT —t

_ d%(t,s)

0’F 2 |se 2 o di(t, s) >

0s? (t,8) = 5202 Vor WT -t 2T —1)

_d3(t,9)

N Ke T T=te==5 < o, da(t, s) >
Nors 0T —t  2(T—t)
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3.1.1 Call Option

In (on two pages) one can see all errors for each o, and o for a European call option. If
the assumed volatility coincides with the real volatility (¢ = o), then the error is zero as expected.
For that case the same formula, as a broker utilizes, is used. But if ¢ is smaller than o, the errors
are greater than zero. Those imply a shortfall, meaning that the option exceeds the amount of cash
that is available. If o is greater than o,, then the errors are smaller than zero. Those errors do
not imply a shortfall but imply a surplus. As one can see in , deviations from zero result from

OT 3(02— 02)52(t)%27};(t, S(t)) dt. For European call options %QTI;(t, S(t)) is positive. Hence, for o,

greater than o, o, — o is positive, and the integral as well is greater than zero. On the other hand,

for o, less than o, o, — o is negative, and the integral is, too.
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Figure 2: Hedged portfolio errors per o for a European call option with different o,
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The range of the errors for var- £ ‘ ‘ ‘ - "
ious o, differs. In all er- 20t : % gg .
rors for each o, are presented. As 5| ) 8 % : |
a result of the error behavior for o w0l : i |
smaller than o, and greater than oy, : sl |
one can see a positive trend of the er- 0 N | i
rors. Additionally, the bigger the real Sl |
volatility gets, the greater is the range

0 0.2 0.4 0.6 0.8 L0
of the errors. For the real volatility sigma’*

0« = 0.1 the errors lie within the in- Figure 3: Range of hedged errors per o. for a European call option
terval [—8.446,0.0], for o, = 0.5 they belong to [—6.325,8.799], thus, a 1.8 time larger interval, and
for o, = 1.0 the errors lie within [0.0,23.151]. This is 2.7 times as big as the first one.

In the table below the minimal and maximal errors for each o, and ¢ are displayed. For o, = o

these values are zero, as expected. The bigger the difference between o and o, is, the bigger the

€Irors are.
I 0.1 0.2 0.3 0.4 0.5
O % min ; max min ; max min ; max min ; max min ; max
0.1 —0.0 ! 0.0 —1.26317 | —0.20272 | —2.29893 | —0.62572 | —3.29365 | —1.21195 | —4.24101 | —1.91469
0.2 | 0.01725 : 1.74193 —0.0 : 0.0 —1.37948 : —0.2881 | —2.54286 : —0.6728 | —3.5895 : —1.17719
0.3 | 0.03103 | 3.95978 0.10827 | 1.7183 —0.0 | 0.0 —1.41563 | —0.32582 | —2.68168 | —0.70953
0.4 | 0.04576 | 6.43765 0.16839 | 3.82998 0.18028 | 1.71909 —0.0 ! 0.0 —1.46822 | —0.2521
0.5 | 0.06153 : 8.79896 0.21586 : 5.95566 0.28417 : 3.63902 0.15769 : 1.68743 —0.0 : 0.0
0.6 | 0.0786 | 13.68867 | 0.2632 | 9.16158 0.37344 | 5.87134 0.261 | 3.62161 0.13984 | 1.69377
0.7 | 0.09748 ' 15.72432 | 0.3141 ! 11.48889 | 0.46387 ! 8.36547 | 0.34761 | 5.81608 0.2392 ' 3.66835
0.8 | 0.11874 : 20.84193 | 0.36935 : 14.90892 | 0.55814 : 10.85935 | 0.43068 : 8.14752 0.32273 : 5.76965
0.9 | 0.14294 | 22.02865 | 0.42886 | 16.52301 | 0.65563 | 12.68412 | 0.51477 | 9.81151 0.4007 | 7.41496
1.0 | 017058 | 23.15056 | 0.49203 | 17.17745 | 0.75632 ! 15.44842 | 0.60077 ! 12.94376 | 0.47764 | 10.27263
I 0.6 0.7 0.8 0.9 1.0
O min ; mazx min ; max min ; mazx min ; max min ; max
0.1 | —5.16345 | —2.6832 | —6.04396 | —3.48492 | —6.88422 | —4.29916 | —7.68423 | —5.11172 | —8.44617 | —5.91205
0.2 | —4.61004 : —1.78796 | —5.5942 : —2.47496 | —6.52925 : —3.20922 | —7.40969 : —3.96793 | —8.2379 : —4.73422
0.3 | —3.84038 | —1.17984 | —4.92047 | —1.73908 | —5.92255 | —2.36188 | —6.85537 | —2.89681 | —7.72461 | —3.42139
0.4 | —2.77036 | —0.56958 | —3.94844 | —0.93235 | —5.05927 | —1.32116 | —6.12589 | —1.72149 | —7.11762 | —2.12297
0.5 | —1.47025 : —0.19815 | —2.82984 : —0.43597 | —4.08846 : —0.70478 | —5.2506 : —0.9936 | —6.32478 : —1.29238
0.6 —0.0 | 0.0 —1.4998 | —0.16272 | —2.84257 | —0.34831 | —4.05612 | —0.55281 | —5.16187 | —0.77021
0.7 | 0.12488 ' 1.74405 —0.0 ! 0.0 —1.57478 ' —0.13715 | —3.00006 ' —0.28642 | —4.29473 | —0.44578
0.8 | 0.21878 : 3.63057 0.11191 : 1.71712 —0.0 : 0.0 —1.56533 : —0.11748 | —3.04521 : —0.24018
0.9 | 0.29856 | 5.27866 0.19966 | 3.3392 0.10044 | 1.59774 —0.0 | 0.0 —1.51064 | —0.10165
10 | 037215 | 775203 | 0.27515 | 547548 | 018177 | 344154 | 0.09016 | 1.62599 -00 ' 00

Table 1: Minimum and maximum hedged errors for a European call option
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Figure displays two probability plots. In[Figure 4(a)lone can see the approximated probability

density function. Each point in the plots denotes the relative probability, that an error occurs in

the interval z; and z;11, where Az is 0.1. To get a better impression of all values, f(0) is not

plotted. With f(0) = 1.012 it is much higher than all other values. Furthermore, in [Figure 4(b)|

the approximated cumulative distribution function is shown. One can see the huge jump at zero,

resulting from the high probability for an error equals zero.
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Figure 4: Approximated probability density and cumulative distribution function for a European call option

By examining these plots, one could assume, that the errors might be normally distributed.

In the approximated probability plots of the calculated errors are compared to a normal

distribution with estimated parameters. There is a high coverage.
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Figure 5: Comparison of errors of a European call option to an estimated normal distribution



Another possible distribution might be the Gumbel distribution (see comparisons in [Figure 6)).
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(a) Gumbel distribution (b) Normal distribution

Figure 6: Comparison of errors of a European call option to an estimated Gumbel distribution

As seen for the Normal distribution, a Gumbel distribution with estimated parameters covers
the data, also. Usually a Gumbel distribution is used, for instance, in meteorology for weather

predictions. It is a typical distribution for annual scenarios.

Definition 1. A continuous random variable X is distributed by a Gumbel distribution with scale

parameter > 0 and shape parameter p € R, if it has the probability density of

1 1 D)
f(m):Ee g@=meme P #,l‘ER,
and probability distribution function of
—L@-p
F(z)=e® " ' ,x €R

Letting v = 0.5772 be the Euler—-Mascheroni constant, the parameters 8 and u satisfy

3)?

E[X] = p+ 57, and  Var[X]= ( 5

A further analysis of possible distributions might bring clarity to these assumptions. Maybe, it

is possible to find an appropriate one for those errors.
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3.1.2 Put Option

The hedged errors for European put options with a risk-free rate » = 0 should be the same as

those for European call options. The errors are results of

Tor oF 1 0*F
S S(0) + () S (1 S(0) — rF(t, S(1)) +507(0) 55 (1, S,
0 N S — $
' =0
=0
with
OF HED s s) 1 2
_se 7 [ dilts —r(T—1)
it - )| —eK i
T (t,s) W [2(T—t) T (r—l— ﬂ eKre (eda(t, s)),
=0
3(t.s)
K0 [dQ(t, 5 1 (T_ (ﬂﬂ -
Vo 20r—t) oVT —t 2 ’
0*F 2 se_d%(;s)

g dl(t,s)
o 9 =gm |~ (zm‘w—t))

d3(t,s)

Ke—r(T—t)e—

z o da(t, s)
" Ver (2\/T—t+2(Tt)>

In %(t, S(t)) is no € in place. Hence, the integral for a call option and the integral for a put

option are the same and there is no change in sign. The probability functions, shown in

are covered by the normal and the Gumbel distribution as well (see |[Figure 17 and [Figure 18|). The

minimal and maximal errors do not differ from those of a call option. The tables can be seen in

Appendix
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3.2 Digital Option

As a further example, a digital option is considered. Its payoff at expiry is equal to 1 if the
underlying asset is in the money and zero otherwise. Let F'(¢, s) denote the price of a digital option

at time ¢ when the underlying stock has value s. The terminal condition therefore is

O(s — K) for a call,
F(T,s) =

1—-06(s — K) for a put,

where ©(&) is the Heaviside distribution, which is defined as follows:

0 for £ <0,
0(¢) =
1 for & > 0.
With this change in the terminal condition the Black-Scholes formula can be written as
F(t,s) = e " T (edo(t, 5)),
where e = 1 for a call option and € = —1 for a put option. F'(t,s) results in the discount risk that

the stock price s is above or below K at time 7T'. The integrand for calculating the option value is

ToF OF 1 9.0, OF
[ G (S + 1S5 (1. 5(0) ~ rF(S(0) + 5025%(0) g (1 St
with
OF A 1 2
Z(t.5) =re Tt p t —r(T-t)€€¢ 2 2\t,$) 9
815(’8) re (edg(,s))+e /727_r Q(T—t) ov/T — 1 T+ 9 y
8£(t s) —66_T(T_t) eid%(zm and
ds VT —1t soT —t
2 S
827F(t )=— 2 e (T~ 25" °_ . da(t, s)
952\ T T 242 NG T—t T—t|
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3.2.1 Call Option

The subfigures of (on two pages) show the computed errors for a digital call option. As
for European call options, the errors are zero for ¢ = o,. In difference to it, one cannot say, that all
errors are positive for ¢ smaller than o, or negative for o greater than o,. For both cases the errors
are positive and negative. For digital call options %QTI;(t, s) is not always positive. Hence, the sign of
the hedged errors does not only depend on the sign of o, — 0. The greater the difference between o
and o, is, the bigger are the absolute errors. More precisely, for all ¢ and o, occur positive errors
and for all combinations of o and o, except of o = o, it is possible to have a shortfall. That leads to

an excess in the amount of cash that is available. Whether there occurs a shortfall or not, depends

on the chosen stock, or in this case, on the chosen seed, with which the stock is simulated.
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The range of the errors for differ-
ent o, differs. displays all
errors for each o,. Furthermore, the
range of the errors gets bigger for ris-
ing o,. For o, = 0.1 the errors are
within [—0.409,0.861], for o, = 0.5
they belong to [—2.783,4.053], and
for o, = 1.0 the errors are in the inter-
val [—5.712,4.064]. So, for o, = 1.0

the interval is 7.8 times larger as for
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Figure 8: Range of hedged errors per o, for a Digital call

option

As expected, the minimum and maximum errors, which are shown in table 2, are exactly zero

for 0 = o0,. The table lists the minimum and maximum values for all combinations of o and o,.

- 0.1 0.2 0.3 0.4 0.5
O« min ; max min ; max min ; mazx min ; max min ; max
0.1 ~0.0 : 0.0 | —0.33553 : 0.69596 | —0.39598 : 0.81909 | —0.4089 : 0.84093 | —0.38057 : 0.86144
0.2 | —0.93597 | 0.43874 —0.0 1 0.0 —0.28152 1 0.38146 | —0.41608 | 0.56269 | —0.4583 | 0.66098
0.3 | ~2.23362 | 114688 | —0.75207 | 029879 | —0.0 | 0.0 | —0.14206 | 0.40826 | —0.21797 | 0.60346
0.4 | —3.85218 | 1.1118 | —1.45442 | 0.60089 | —0.56028 | 0.30849 —0.0 1| 0.0 —0.17327 | 0.3554
0.5 | —2.78322 : 4.05266 | —1.53309 : 1.81307 | —0.81913 : 0.58599 | —0.32932 : 0.14907 —-0.0 : 0.0
0.6 | —4.57163 | 1.9838 | —2.31187 | 1.11357 | —1.38601 | 0.77661 | —0.73243 | 0.55312 | —0.29455 | 0.24524
0.7 | —6.44623 : 2.22838 | —3.7527 : 1.10072 | —2.06799 : 0.60759 | —1.18136 : 0.31489 | —0.67626 : 0.17748
0.8 | —5.57665 | 3.16849 | —2.53266 | 2.02159 | —1.68064 | 1.08427 | —1.21509 ! 0.5402 | —0.79377 ! 0.27258
0.9 | —5.44333 : 3.97245 | —3.4115 : 1.73042 | —2.27686 : 1.10118 | —1.64622 : 0.75955 | —1.16224 : 0.5092
1.0 | —5.7122 ‘ 4.06376 | —2.94918 ‘ 2.02218 | —1.63871 ‘ 1.33377 | —1.2812 ‘ 0.86331 | —1.03195 ‘ 0.58233
o 0.6 0.7 0.8 0.9 1.0

O« min ; max min ; max min ; max min ; max min ; max
0.1 | —0.33226 : 0.85372 | —0.27671 : 0.83539 | —0.22049 : 0.8148 | —0.1666 : 0.82985 | —0.14307 : 0.84713
0.2 | —0.44978 1| 0.74035 | —0.41522 | 0.81845 | —0.36862 | 0.87075 | —0.31761 I 0.90729 | —0.26625 | 0.93459
0.3 | —0.25453 : 0.79246 | —0.26901 : 0.91565 | —0.27012 : 0.98766 | —0.26181 : 1.02661 | —0.24641 : 1.04503
0.4 | —0.24387 | 0.554 | —0.25682 | 0.6606 | —0.24026 | 0.71692 | —0.20948 | 0.75958 | —0.17255 | 0.84994
0.5 | —0.11137 : 0.21036 | —0.19352 : 0.35326 | —0.24473 : 0.45884 | —0.27144 : 0.54089 | —0.28106 : 0.60576
0.6 —0.0 ! 0.0 —0.1606 | 0.20292 | —0.26673 | 0.34652 | —0.34257 | 0.46836 | —0.38583 | 0.568
0.7 | —0.28913 : 0.0741 —0.0 : 0.0 —0.05413 : 0.21727 | —0.10043 : 0.38315 | —0.13708 : 0.51204
0.8 | —0.45694 ! 0.12523 | —0.21292 | 0.04726 —00 ' 0.0 —0.03256 | 0.18678 | —0.05582 ! 0.34621
0.9 | —0.75885 : 0.33829 | —0.43591 : 0.19917 | —0.18751 : 0.08753 —-0.0 : 0.0 —0.06713 : 0.14186
1.0 | —0.76856 ] 0.39577 | —0.57006 ] 0.25057 | —0.38601 ] 0.13962 | —0.18987 ] 0.05787 —0.0 ] 0.0

Table 2: Minimum and maximum hedged errors for a Digital call option

27




In the approximated probability density function and the approximated cumulative
distribution function are posed. Each point in [Figure 9(a)| denotes the relative probability, that an

error occurs in the interval x; and z;y1, where Az is 0.1. To get a better impression of all errors,

f(0) = 3.068 is not plotted. This value is much higher than all other probabilities, as shown by the

huge jump at 0 in Figure [9(b)]
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Figure 9: Approximated probability density and cumulative distribution function for a digital call option

As the function for European call options, those functions lead to the suspicion, that the errors

might be normal or Gumbel distributed. In Figure [10| the plots from above are compared to the

probability density function and the cumulative distribution function of a normal distribution with

estimated parameters. There is a high coverage.
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Figure 10: Comparison of errors of a digital call option to normal distribution
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This can be observed by comparing the plots to a Gumbel distribution, too.
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Figure 11: Comparison of errors of a digital call option to Gumbel distribution

Similarly, through further analyses it might be possible, to find an appropriate distribution for

those errors.

3.2.2 Put Option

Unlike the European options, the errors for digital put options are mirrored at the x-axis compared

to those of digital call options. There is no sign changing € in the integral for European options.

For this calculations, however, there is an € in the %(t, s)-term. So, the errors change their sign.

This can be seen in the plots in Appendix The errors behave similar to those of the call

option. Consequently, the probability functions shown in [Figure 21| are covered by the normal and

the Gumbel distribution with estimated parameters as well (see [Figure 22| and |[Figure 23|).

The minimal and maximal errors per ¢ and o, do not differ essential from those of the digital

call option, except of the sign, resulting from the above mentioned cause. The tables can be seen

in Appendix
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Chapter 4

Evaluation of Risks

In this chapter different ways of measuring risks are introduced. Risk is defined as a “hazard, a
chance of bad consequences, loss or exposure to mischance” (Concise Ozford English Dictionary
2011)). Tt is the volatility of unexpected outcomes. There are different types of risks defined. This
thesis is dealing with model risks. They are associated with using a mis-specified model. Partic-
ularly, wrong inputs and feeds are a potential problem in modeling. Traders assume parameters
to calculate the option price. In this case the volatility of the stock is a potential problem for
the model. The value cannot be observed. Wrong assumed input parameters may lead to wrong
models (Cruz 2008). In financial markets it is important to know the risk of a shortfall, which is
“an amount that is less than the level that was expected or needed” (Cambridge Online Dictio-
nary 2017b). For measuring shortfalls downside risks should be minimized. In this case positive
variations of the first integral in denote shortfalls of an option. For calculating the risk of a

shortfall different risk measures were defined. Such a risk measure has three desirable properties:

Definition 2. A risk measure p is defined to have the following properties for any two random

variables X and Y:
1. Translation invariance: If « € R, then p(X 4+ a) = p(X) + «
2. Monotonicity: If X <Y, then p(X) > p(Y)
3. Positive homogeneity: If a € R, then p(aX) = ap(X)

In this chapter three risk measures are introduced, Value at Risk (see Section , conditional
Value at Risk (see Section and Lower Partial Moments (see Section . All are evaluated for
all hedged errors and for every single o itself (see Section .
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4.1 Value at Risk - VaR

In the end of the last century one of the most popular ways for measuring risks has been Value at
Risk (VaR) (Jorion (1997). With that the risk of all the trading positions of a financial institution
were quantified. In regard to Choudhry and Wong VaR “is the maximum loss which can occur

with a% confidence over a holding period of ¢ days.”

Definition 3. Assume the stochastic loss X. Suppose, X follows the distribution Fx. Given a
confidence level a € (0,1), VaR,[X] is defined as the a-th quantile of Fx:

VaRy[X] =inf{z e R:P(X >2) <1—a}
=inf{fr e R:1—- Fx(z) <1—a}

=inf{x e R: Fx(z) > a}.

For the simulations the risk of a shortfall is of interest. The value of the option exceeds the
amount in the portfolio when the error is positive. Hence, the confidence level should be great.

Here oo = 0.95 is chosen. The VaR with a = 0.95 for all simulations are:
European call option: VaRy g5 = 6.8 European put option: VaRggs; = 6.8
digital call option: VaRgy95 = 0.5 digital put option: VaRy g5 = 0.7

According to these values, the maximum loss with confidence level o« = 0.95 for all assumed o

is 6.8 for European options, 0.5 for digital call options and 0.7 for digital put options.

4.2 Conditional Value at Risk - CVaR

VaR is a pretty fair risk measure that is really popular in financial institutions. However, in
1999 Artzner et al. criticized VaR in their article “Coherent Measures of Risk”. They delineated
the definitions of a coherent measure of risk. VaR does not satisfy a condition of subadditivity
(see Definition [4)). Thus, using VaR could lead to excess risk taking, for example by suggesting
to decrease the diversification to reduce risk. That contradicts empirical tests and fundamental
financial theory.

Additionally, VaR at a specified probability level a does not provide any information about
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the fatness of the distribution’s upper tail. New ways of risk measuring have emerged. A very
important type are coherent risk measures (Acerbi and Tasche 2001). The properties further

include subadditivity, which is defined as follows:

Definition 4. A coherent risk measure p is defined to have the following property additional to

those in Definition[d for any two random variables X and Y :

4. Subadditivity: p(X +Y) < p(X) + p(Y).

One coherent risk measure is the conditional Value at Risk (CVaR), also known as expected
shortfall (ES) or Tail Expected Loss. While VaR looks on what is likely to happen, CVaR considers
how bad things will go in the most pessimistic prediction. This is done by calculating the expected

loss given that the loss exceeds VaR,[X].

Definition 5. Assume the stochastic loss X. Suppose, X follows the distribution Fx. Given a
confidence level a € (0,1), CVaRy[X] is defined as:

CVaRa[X] = E[X|X > VaR,[X]]

1 1

To get the CVaR for a shortfall, a confidence level of o = 0.95 is used. Following are the CVaRs
for all simulations given:
European call option: CVaRgg5 = 9.776 European put option: CVaRgg5 = 9.776
digital call option: CVaRyg95 = 0.768 digital put option: CVaRyg95 = 1.393

The expected loss given that the loss exceeds VaR,[X] for all assumed o is 9.776 for European

options, 0.768 for digital call options and 1.393 for digital put options.

4.3 Lower Partial Moments - LPM

Lower Partial Moments (LPM) are downside-risk measures which refer only to a part of the prob-
ability density. They gather just the negative deviations from a boundary b. Thereby, they take
all information of the probability distribution into account. The boundary b could be the expected

value E[X] or an arbitrary target amount.

32



Definition 6. The general function for computing a LPM of order m, m € R™ and boundary b is:

LPM,,(b, X) = E[max(b — X, 0)™].

The order m determines in which way the bound is scored. If the risk aversion of the investor
is high, then the order m should be high, too.

In this thesis, a shortfall will arise, if the hedged error is positive. For the simulations instead
of an LPM an Upper Partial Moment (UPM) is developed. It calculates the positive deviations

from a boundary b. The definition for such an UPM is:

Definition 7. The general function for computing a UPM of order m, m € R™ and boundary b is:

UPM,,(b, X) = E[max(X — b,0)"].

The order m determines in which way the bound is scored.
For m = 0 the UPM gives the probability, that the border b gets exceeded. This results in the

following values for all simulations:
European call option: UP My = 0.9999 European put option: UPMy = 0.9999
digital call option: UPMy = 0.9998 digital put option: UPMy = 0.9999
The theoretical result of UPMj is 1. Due to truncation errors the practical results are deviant.
The expected deviation from b (m = 1) for all simulations is:
European call option: UPM; = 1.42613 European put option: UPM; = 1.42613

digital call option: UPM; = 0.14493 digital put option: UPM; = 0.13698

For m = 2 the expected squared deviation from b is computed:
European call option: UP M, = 8.52 European put option: UP M, = 8.52

digital call option: UPM, = 0.084 digital put option: UP M, = 0.166
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4.4 Risks for Each o

In the preceding sections different risk measures were introduced and evaluated for all hedged
errors. In real life a trader does not have knowledge about the volatility of the stock, instead it
gets estimated. For the purpose of usage the risks for each assumed o is necessary. Giving that
the risks for all estimations are known, a broker can assess how high the risk of a shortfall for the
estimated volatility might be.

The hedged errors for all different parameters o can be contemplated in Appendix Below

are the VaRs for the hedged errors which occur for o = 0.1, for which VaR is the highest.
European call option: VaRgygs = 11.92 European put option: VaRgyos; = 11.92

digital call option: VaRy.95 = 0.92 digital put option: VaRyg5; = 2.33

The expected loss given that the loss exceeds VaR,[X] for each o is calculated by the conditional
value at risk. Below are the CVaRs for the errors which occur for ¢ = 0.1, for which CVaR is the
highest.

European call option: CVaRgg5; = 15.46 European put option: CVaRyg5 = 15.46
digital call option: CVaRgg5 = 1.753 digital put option: CVaRyg5; = 3.401

For all other o the values for VaR are in Appendix and for CVaR they can be considered
in Appendix For European options and o = 1.0 VaR and CVaR is negative. In this case o,
is smaller than or equal to . Hence, there does not exist a shortfall.

The upper partial moments for an assumed volatility o = 0.1 are:

m =0
European call option: UP My = 0.999 Furopean put option: UPMy = 0.999
digital call option: UP My = 0.999 digital put option: UP My = 0.999
m=1
European call option: UPM; = 3.73277 European put option: UPM = 3.73277
digital call option: UPM; = 0.15507 digital put option: UPM; = 0.56593
m = 2
European call option: UP M- = 30.235 European put option: UPM> = 30.235
digital call option: UPM> = 0.21 digital put option: UP M, = 1.062
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The UPM for all other o decreases. They can be seen in Appendix [C.2.3] [C.2.4 and [C.2.5] For

European options and o = 1.0, UPM; and UP M, are zero. As seen before, o, is smaller than or

equal to ¢ in this case and there does not exist a shortfall. Hence, max(X — b,0)™ = 0™ = 0.
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Chapter 5

Risks for Weighted Errors

In the previous chapters one could see the hedged portfolio errors for European and digital call and
put options. Different risk measures were contemplated. For all options exists a risk of a shortfall.
It was assumed that there is no knowledge about a distribution of the volatility of the stocks. But
the stock price process behaves like a random walk. Future values are independent from the past.
So, it might be possible to estimate the used volatility for pricing an option based on historical
data. A first step for rating o is presented in this chapter.

As seen before, the considered price process S satisfies
dS(t) = uS(t) dt + o S(t) dW(t), S(0) = So,
and it can be shown that S is
S(t) = Spelt=o"/Atta-WH) ¢ >,

Let X denote the logarithm of the ratios:

0.2
X(t) :=1In (5(;(;1)> —p— o (W(t+ 1) = W), (25)

2
This random variable is normally distributed with mean p — % and variance o2.

Considering the stock price random variables at timest =0,1,...,m,m+1,m+2,..., m+n+1

and using the logarithm of the ratios as in one can break this into two collections:
{X(0),X(1),...,X(m—1)} and {X(m),X(m+1),....,.X(m+n)}.

These collections are independent because the increments of the Brownian motion are indepen-
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dent. The first collection can be thought of as historical values and the second as the future. One
could use the first collection to estimate the value of o2 using the sample variance 62. This gives

an unbiased estimator. It turns out, that 62 is y-squared distributed:

n—1 Xn—1-

Based on historical data a trader or broker might estimate the volatility for pricing an option.
This leads to an additional interpretation of the hedged errors. Resting on the previous observations
the distribution for the volatility can be calculated. The hedged portfolio errors from Chapter
can be weighted by the appropriate probability of using a particular ¢. In this thesis it is assumed,
that eleven historical stock values (n = 11) are known.

In Figure (on three pages) one can see the weighted errors for European call options and
those the other options are presented in Appendix [D] The probability for a specific volatility is a
value between 0 and 1. The weighted errors get multiplied by the probability. So, they are smaller
than the hedged errors in Chapter [3] As seen there, the errors for o less than o, are positive and
for o greater than o, they are negative. While a negative divergence from zero implies a surplus,

positive discrepancies imply a shortfall. The risk for a shortfall is analyzed afterwards.
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Figure 12: Weighted errors per o for a European call option with different o

The approximated probability density and cumulative distribution functions are plotted in

Figure The relative probability, that an error with value within x; and x;4+1 with Az = 0.0001

occurs, is shown in Figure|[13(a)l In this graph f(0) = 5648 is not plotted. It is much higher than

all other values. The huge jump at 0 in Figure [13(b)| expresses that behavior. About 50% of all

CITors are zero.
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Figure 13: Approximated probability density and cumulative distribution function for weighted errors of a European

call option

Still there occur errors greater than zero. As explained previously, positive deviations from zero

imply a shortfall. Applying the risk measure from Section and gives an appraisal of

how high the risks for shortfalls are.



The Upper Partial Moment (UPM) with border b = 0 and order m = 0 is one for all options.
So, there are positive deviations from zero for all options and the probability that there might be

a shortfall is one.
European call option: UPMy = 1.0 FEuropean put option: UPMy = 1.0
digital call option: UPMy = 1.0 digital put option: UPMy = 1.0
How high the risks for different measurements are can be seen below.

European call option: VaRg g5 = 0.00483 European put option: VaRg g5 = 0.00483

digital call option: VaRgg5; = 0.00101 digital put option: VaRg.g5 = 0.00027
European call option: C'VaRgg5; = 0.01 European put option: CVaRgg5 = 0.01
digital call option: C'VaRy.g95 = 0.001 digital put option: CVaRy95 = 0.001

European call option: UPM; = 0.001 FEuropean put option: UPM; = 0.001
digital call option: UPM; = 0.0 digital put option: UPM; = 0.0
Furopean call option: UPM> = 0.0 Furopean put option: UPM, = 0.0
digital call option: UPM, = 0.0 digital put option: UPMs, = 0.0

With 95% confidence the maximum loss which can occur (VaR) is 0.00483 for European options,
0.00101 for digital call options and 0.00027 for digital put options. In the most pessimistic prediction
(CVaR) the risk for European options is 0.01 and 0.001 for digital options. The expected deviation
from zero (UPMj;) is 0.001 for European options and zero for digital options. For all options the
expected squared deviation from zero (UPMy) is zero.

Knowing a distribution for the volatility of the underlying asset can narrow the risk for a
shortfall. Now, it might be interesting to analyze how much a higher amount of historical values
may affect the risk for shortfalls. Maybe it is possible to eliminate the risk by using enough data

points.
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Chapter 6

Conclusion

6.1 Summary

In this thesis the influence of volatility in the Black-Scholes model was analyzed. The model is used
to calculate the theoretical price of European options. There are a few assumptions. One of those is
a constant volatility. The real volatility of a stock or a portfolio is not predictable. For calculation
purposes, it is assumed by a broker. This approximation may not match with the development in
real life. Simulating different stocks and using an assumed volatility (o) and the real one (o), led
to the results, that there are risks for shortfalls.

For European call and put options the errors in the computation behave alike. In the case,
where o = o, the errors are zero. But if ¢ is smaller than o, the errors are positive. Those imply
a shortfall. The option exceeds the amount of cash that is available. If o is greater than o, the
errors are negative and imply a surplus.

In difference to that, it is not possible to say, that all errors of digital call options are positive
for o smaller than o, or negative for o greater than o,. For both cases the errors are positive and
negative. The greater the difference between o and o, is, the bigger are the absolute values. Hence,
for all ¢ and o, occur positive errors and consequently, for all combinations of ¢ and o, except
of 0 = o, it is possible to have a shortfall. The errors for digital put options are mirrored at the
x-axis compared to those of digital call options.

Additionally, the approximated probability density functions of all options were compared with
a normal and a Gumbel distribution with estimated parameters. Both covered the calculated

errors well. So, it might be possible to calculate the probability of a portfolio error with one of
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these distributions.

In Chapter {4 three different risk measures were discussed: the Value at Risk (VaR), the con-
ditional Value at Risk (CVaR) and the Lower or Upper Partial Moments (UPM). The risk of a
shortfall was of interest. VaR measures the worst expected loss. For a confidence level of o = 0.95
and for all assumed o this was 6.8 for European options, 0.5 for digital call options and 0.7 for
digital put options. CVaR computes the expected loss, given that the loss exceeds VaR. In the
most pessimistic prediction CVaR considers how bad things will go. For a confidence level o = 0.95
CVaR was 9.776 for European options, 0.768 for a digital call option and 1.393 for a digital put
option. UPMs gather the deviations from a boundery b. The expected deviation from b = 0 for all
simulations is 1.426 for European options, 0.145 for digital call options and 0.137 for digital put
options.

Further the risks for individual assumed volatilities o were computed. For ¢ = 0.1 the risks
are the highest. They decrease for all other . The broker does not have knowledge about the real
volatility of the stock. With this computations it is possible to get a notion of how high the risk of
a shortfall for the chosen estimated volatility is.

Based on historical data it is possible to estimate the volatility of the underlying asset. As
stated in Chapter |5| the estimator for o2 is y-squared distributed. Weighting the hedged errors by
the probability of using a particular o results in smaller errors and many errors equal zero. Hence,
the risk of getting a shortfall narrowed, but it might exist for all options. For European options
VaRy.95 is equal to 0.00483. The maximum loss that can occur is 0.00101 for digital call options and
0.00027 for digital put options. The C'VaRy g5 for European options is 0.01 and 0.001 for digital
options. For European options the expected deviation from zero is 0.001 and for digital options it is
zero. The squared deviation from zero is zero for all options considered in this thesis. So, knowing
the distribution of the volatility of the underlying stock can reduce the risk for a shortfall.

In summary, calculating option prices with a wrong assumed volatility might end in a shortfall.
How high a risk is depends, among others, on the used ¢ and the real volatility. By estimating the

used o from historical data the risk of a shortfall can be scaled-down.
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6.2 Further Investigations

The results in this thesis were for very special input values. A stock starting value of Sy = 20
and a striking price of K = 16 were assumed. Additionally, the risk-free rate was supposed to
be r = 0. For further improvements one could calculate the errors for different r and other input
values. Another option is to analyze more theoretically.

A further analysis might bring clarity to the assumptions of the probability distribution. Maybe,
it is possible to find an appropriate one for those errors.

As seen above, the risk of a shortfall can be minimized by estimating the assumed volatility.
The estimator 62 is y-squared distributed. Within further investigations one might find out in
what extent a change of the degrees of freedom affect the risk of a shortfall. In this thesis 10
historical stock values (n = 11) were assumed. Naturally the question arises, whether it is possible

to eliminate the risk of a shortfall by using enough historical values.
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Appendix A

Plots of Errors for o of Different Simulations

European Put Option
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Figure 14: Hedged portfolio errors per o for a European put option with different o.
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Appendix B

Tables of Minimum and Maximum Errors for

o of Different Simulations

B.1

B.2

European Put Option

o 0.1 0.2 0.3 0.4 0.5
O x min max min max min max min max min max
0.1 —0.0 ! 0.0 —1.26317 | —0.20272 | —2.29893 ' —0.62572 | —3.29365 | —1.21195 | —4.24101 ' —1.91469
0.2 | 0.01725 | 1.74193 —0.0 | 0.0 —1.37948 | —0.2881 —2.54286 | —0.6728 —3.5895 | —1.17719
0.3 | 0.03103 | 3.95978 0.10827 | 1.7183 —0.0 | 0.0 —1.41563 | —0.32582 | —2.68168 | —0.70953
0.4 | 0.04576 | 6.43765 0.16839 | 3.82998 0.18028 | 1.71909 —0.0 0.0 —1.46822 | —0.2521
0.5 | 0.06153 = 8.79896 0.21586 5.95566 0.28417 3.63902 0.15769 1.68743 —0.0 0.0
0.6 | 0.0786 | 13.68867 0.2632 | 9.16158 0.37344 | 5.87134 0.261 | 3.62161 0.13984 | 1.69377
0.7 | 0.09748 | 15.72432 0.3141 | 11.48889 0.46387 | 8.36547 0.34761 | 5.81608 0.2392 | 3.66835
0.8 | 0.11874 | 20.84193 0.36935 | 14.90892 0.55814 | 10.85935 0.43068 | 8.14752 0.32273 | 5.76965
0.9 | 0.14294 | 22.02865 0.42886 | 16.52301 0.65563 | 12.68412 0.51477 | 9.81151 0.4007 | 7.41496
1.0 | 0.17058 , 23.15056 0.49293 | 17.17745 0.75632 | 15.44842 0.60077 , 12.94376 0.47764 | 10.27263
o 0.6 0. 0.8 0.9 1.
o min max min maz min ' max min maz min max
0.1 | —5.16345 | —2.6832 —6.04396 | —3.48492 | —6.88422 | —4.29916 | —7.68423 | —5.11172 | —8.44617 | —5.91205
0.2 | —4.61004 | —1.78796 —5.5942 | —2.47496 | —6.52925 | —3.20922 | —7.40969 | —3.96793 —8.2379 | —4.73422
0.3 | —3.84038 | —1.17984 | —4.92047 | —1.73908 | —5.92255 | —2.36188 | —6.85537 | —2.89681 | —7.72461 | —3.42139
0.4 | —2.77036 | —0.56958 | —3.94844 | —0.93235 | —5.05927 | —1.32116 | —6.12589 | —1.72149 | —7.11762 | —2.12297
0.5 | —1.47025 = —0.19815 | —2.82984 = —0.43597 | —4.08846  —0.70478 —5.2506 —0.9936 —6.32478  —1.29238
0.6 —0.0 ! 0.0 —1.4008 | —0.16272 | —2.84257 | —0.34831 | —4.05612 | —0.55281 | —5.16187 | —0.77021
0.7 0.12488 | 1.74405 —0.0 | 0.0 —1.57478 | —0.13715 | —3.00006 | —0.28642 | —4.20473 | —0.44578
0.8 0.21878 | 3.63057 0.11191 | 1.71712 —0.0 | 0.0 —1.56533 | —0.11748 | —3.04521 | —0.24018
0.9 0.209856 | 5.27866 0.19966 | 3.3392 0.10044 | 1.59774 -0.0 0.0 —1.51064 | —0.10165
1.0 0.37215 | 7.75293 0.27515 | 5.47548 0.18177 | 3.44154 0.09016 , 1.62599 -0.0 0.0
Table 3: Minimum and maximum hedged errors for a European put option

Digital Put Option

o 0.1 0.2 0.3 0.4 0.5

o min " maz min " mazx min max min " max min max

0.1 —0.0 ' 0.0 —0.69596 | 0.33553 | —0.81909 ' 0.39598 | —0.84093 ' 0.4089 —0.86144 | 0.38057

0.2 | —0.43874 | 0.93597 —0.0 | 0.0 —0.38146 | 0.28152 | —0.56269 | 0.41608 | —0.66098 | 0.4583

0.3 | —1.14688 | 2.23362 | —0.29879 | 0.75207 —-0.0 | 0.0 —0.40826 | 0.14206 | —0.60346 | 0.21797

0.4 —1.1118 | 3.85218 | —0.60089 | 1.45442 | —0.30849 | 0.56028 —0.0 | 0.0 —0.3554 | 0.17327

0.5 | —4.05266 2.78322 | —1.81307 = 1.53309 | —0.58599  0.81913 | —0.14907 = 0.32932 —0.0 0.0

0.6 | —1.9838 | a.57163 | —1.11357 | 2.31187 | —0.77661 | 1.38601 55312 | 0.73243 | —0.24524 | 0.20455

0.7 | —2.22838 | 6.44623 | —1.10072 | 3.7527 —0.60759 | 2.06799 | —0.31489 | 1.18136 | —0.17748 | 0.67626

0.8 | —3.16849 | 5.57665 | —2.02159 | 2.53266 | —1.08427 | 1.68064 —0.5402 | 1.21509 | —0.27258 | 0.79377

0.9 | —8.97245 | 5.44333 | —1.73042 | 3.4115 —1.10118 | 2.27686 | —0.75955 | 1.64622 —0.5092 | 1.16224

1.0 | —4.06376 | 5.7122 —2.02218 | 2.94918 | —1.33377 , 1.63871 | —0.86331 , 1.2812 —0.58233 | 1.03195

o 0.6 0.7 0.8 0.9 1.0

O % min T max min T max min T max min T max min T max

0.1 | —0.85372 ' 0.33226 | —0.83539 | 0.27671 —0.8148 | 0.22049 | —0.82985 ' 0.1666 —0.84713 | 0.14307

0.2 —0.74035 | 0.44978 —0.81845 | 0.41522 —0.87075 | 0.36862 —0.90729 | 0.31761 —0.93459 | 0.26625

0.3 | —0.79246 | 0.25453 | —0.91565 | 0.26901 | —0.98766 | 0.27012 | —1.02661 | 0.26181 | —1.04503 | 0.24641

0.4 —0.554 | 0.24387 —0.6606 | 0.25682 | —0.71692 | 0.24026 | —0.75958 | 0.20948 | —0.84994 | 0.17255

0.5 | —0.21036  0.11137 | —0.35326  0.19352 | —0.45884  0.24473 | —0.54089  0.27144 | —0.60576  0.28106

0.6 —00 ' o0 —0.20202 | 0.1606 —0.34652 | 0.26673 | —0.46836 | 0.34257 —0.568 | 0.38583

0.7 —0.0741 | 0.28913 —0.0 | 0.0 —0.21727 | 0.05413 | —0.38315 | 0.10043 | —0.51204 | 0.13708

0.8 | —0.12523 | 0.45694 | —0.04726 | 0.21292 —-0.0 | 0.0 —0.18678 | 0.03256 | —0.34621 | 0.05582

0.9 | —0.33829 | 0.75885 | —0.19917 | 0.43591 | —0.08753 | 0.18751 —0.0 | 0.0 —0.14186 | 0.06713

1.0 | —0.39577 | 0.76856 | —0.25057 , 0.57006 | —0.13962 , 0.38601 | —0.05787 , 0.18987 -0.0 0.0

Table 4: Minimum and maximum hedged errors for a Digital put option
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Appendix C

Plots and Risk Measures for o

C.1 Plots for o
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C.1.2 Plots for European put option
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C.1.3 Plots for digital call option

A R ORI OCK. 2

MHOOOOOC T RO D000

> ORETHHIBORERIOI A

MR EROMEROROK 00K

XX RSOOSR X X

K RO X KX X

X SRR K X

IGO0

X XN K

K

X

35 X

x

x

0.8 10

0.6
sigma*

(b) 0 =0.2

0.4

0.2

X

MRS OTRRIBEE XOX ORNK XX X K

XK R IO DX X

X SHETADRICOMOHOKK K X

XCEPCBDECOMACC K 0K X

X % 5

KK HHEEEOBSR RS KX

R <

SHHNMNE X

x

%

x

0.8 10

0.6
sigma*

(a) o0 =0.1

0.4

0.2

Boost oo X onem

*x RO

0000

X YO

ORI MR X

OORKCRCKEK JRIOK DI K

FEOREEORE HECHOR X X

DO FBOBH > XX

FIDORCORDOPOHOK

R

fumise <<

0.8 10

0.6
sigma*

(d) o =04

0.4

0.2

10

0.5
0.0

5
-1.01
-15

10113

FoX o R K O SREERDMEIOOIOBOK X 2K

KO 2000 BB IOCOBEORI 0 X

X BOOGEHEIICION HOOK XX

S XSO0 X KOO

X HOOOODBETOBIGR. > XX X

X TR YR K%

X OO X

SORBIOOK

S04 SHORMIRECC | 56X X

0.6 0.8 1.0
sigma*

0.4

0.2

10113

(¢) 0=0.3

10

10

X HRORMRORKIENRMIEK < K XA G
KX DOBOMKPI T DOPCICHEI K X X
T 18
RO
4@
=]
X4
XX MAMRECRORBENC O X 13
KR ORI MR X A X
X RO HDOBIOBEEOK JR0OONK X K X ‘M
X 0K MODODWEROGK X X X [X XK X
L L L <
@ © < ~ o ~ A © 0
J0112
KK RO K M X SBO0OC B KK K 1S
B B e %
o JOBKMERHCOOOREC XK X X B M
R S
©
% 1@
M =
- <
X x foc 1=
R . S
XK I
ARG SJEBON 0 X 4 M
X OO < K | XK
. . o
W =) 0 =) ne
© e T n D
J0112

sigma*

(f) 0 =0.6

sigma*

(e) 0=0.5

99



10

10

® waompoeR XK A4S
B
1=
o
0RO
RO KRR .M
X XA R KX X
X0 XIOEOOHOOMBEOME OK X YICHERIOR H0C X 13
HOR AOOMRMICBBONK X ORI XK X
XX K X R DK X PECHOK HOOC X X‘M
5560 HOCTRDIO XXX X
. . . o
< © = ~ < ~ i
10109
X O0REBIPIDOOBOIREN X xx‘m
3 HORBIOR KO X X
o
X BL]
mpom 2
1@
YOOI =3
X 3C0CHIOOBB K X
XX RO SN K X 13
XOOOH K MRS O X ORI 3O X
XK IR DO X R K K X ‘M
KRR RO NRERERE X X Ko7 X X
=
@ © < o = o < o
=] =] =] S = S S S
10119

sigma*

(h) 0 =038

sigma*

(g) o=0.7

1<
=
B =
X sosmmessoRs 18
g TR
SOGOX ORI 8 N
XX HOEOCHOCRECK X< OB X X X
XX XOUROOMBOBOOTEON X X INEBRN0K 13
B G
30C MM XX B0 X ‘M
ORI XXX X X
. . . . )
~ < Q) © < ~ o o~ <o
J0112
RMEORECK X S
oI 18
XX >ORORIEBEERE ¢
X X HOWEEOONPON 18
R HERIRS R R DO K )
B X XM HOBETOC X0<X SDOBOCC X X 13
x KOO ROROMIDIOEHN X XX BB H N
XX BRI YO < fpoae 500 13
DO MR X XX X K|
. . . . . . )
N e ® @ ¥ 0§ 9 o =9
— — o o o o o O_ o

Joud

sigma*

() o=1.0

sigma*

(i) 0 =09

Figure 26: Hedged portfolio errors per o. for a digital call option with different o

60



C.1.4 Plots for digital put option
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Figure 27: Hedged portfolio errors per o. for a digital put option with different o

62



C.2 Risk Measures for all o

C.2.1
oc=0.1
0c=0.2
o=0.3
oc=04
oc=0.5
o=0.6
oc=0.7
oc=0.38
oc=09
oc=1.0

Value at Risk for all o

European call option: VaRy 95 = 11.92
digital call option: VaRg.g5 = 0.92

European call option: VaRy g5 = 10.61
digital call option: VaRy 95 = 0.46

European call option: VaRy. g5 = 8.54
digital call option: VaRg g5 = 0.4

European call option: VaRy 95 = 6.85
digital call option: VaRy.g5 = 0.44

European call option: VaRgg5 = 5.21
digital call option: VaRg.95 = 0.5

European call option: VaRgy g5 = 3.82
digital call option: VaRy 95 = 0.56

European call option: VaRy 95 = 2.7
digital call option: VaRg5 = 0.61

European call option: VaRy.g5 = 1.55
digital call option: VaRg95 = 0.65

European call option: VaRg. g5 = 0.74
digital call option: VaRy 95 = 0.68

European call option: VaRg 95 = —0.01
digital call option: VaRg.g5 = 0.71
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European put option: VaRgg5 = 11.92
digital put option: VaRg.g5 = 2.33

European put option: VaRyg5 = 10.61
digital put option: VaRy.95 = 1.36

European put option: VaRg95 = 8.54
digital put option: VaRgy.95 = 0.87
European put option: VaRy 95 = 6.85
digital put option: VaRy.g5 = 0.62
European put option: VaRg g5 = 5.21

digital put option: VaRg.9; = 0.4

European put option: VaRgg5 = 3.82
digital put option: VaRy.95 = 0.27

European put option: VaRy 95 = 2.7
digital put option: VaRyg5 = 0.18

European put option: VaRy 95 = 1.55
digital put option: VaRy.g5; = 0.13

European put option: VaRg95 = 0.74
digital put option: VaRy.95 = 0.09

European put option: VaRy 95 = —0.01
digital put option: VaRg.95 = 0.07



C.2.2 Conditional Value at Risk for all o

c=0.1
European call option: CVaRg 95 = 15.46
digital call option: CVaRg.95 = 1.753

c=0.2
European call option: CVaRgg5 = 12.83
digital call option: CVaRy 95 = 0.947

c=0.3

c=04

European call option: CVaRg.g5 = 10.474
digital call option: CVaRg 95 = 0.667

European call option: CVaRgg5 = 8.426
digital call option: CVaRg 95 = 0.565

European call option: CVaRg g5 = 6.626
digital call option: CVaRy95 = 0.578

European call option: CVaRg g5 = 4.987
digital call option: CVaRg95 = 0.634

European call option: CVaRg 95 = 3.513
digital call option: CVaRy g5 = 0.68

European call option: CVaRg 95 = 2.196
digital call option: CVaRg95 = 0.717

European call option: CVaRg.95 = 1.063
digital call option: C'VaRy.95 = 0.75

European call option: CVaRgy.95 = —0.01
digital call option: CVaRgy.95 = 0.777
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European put option

digital put option

European put option

digital put option

: CVaR0,95 = 15.46
: CVG/RO‘Q5 = 3.401

: CVaR(),ggj =12.83
: CvaRo,gg, = 1.902

European put option: CVaRg.9; = 10.474
digital put option: CVaRgg5 = 1.218

European put option: CVaRy.95 = 8.426
digital put option: CVaRy 95 = 0.84

CvaRo,gg, = 6.626
CVCLR()_95 = 0.587

European put option:

digital put option:

CVCLR(),95 = 4.987
OVCLR()_95 = 0.403

FEuropean put option:

digital put option:

CVaR0_95 =3.513
CVCLR()_95 =0.272

European put option:

digital put option:

CVCLR()_95 = 2.196
OVCLR()_95 =0.191

European put option:

digital put option:

European put option: CVaRy.95 = 1.063
digital put option: CVaRy95 = 0.15

European put option: CVaRg.95 = —0.01
digital put option: CVaRy.95 = 0.141



C.2.3 Upper Partial Moments with m = 0 for all o

oc=0.1
o=02
o=0.3
oc=04
o=0.5
o=0.6
o=0.7
oc=0.38
oc=0.9
oc=1.0

European call option: UP My = 0.999
digital call option: UP My = 0.999

European call option: UP My = 0.999
digital call option: UPMy = 0.998

European call option: UP My = 0.999
digital call option: UP My = 0.999

European call option: UP My = 0.999
digital call option: UP My = 0.999

European call option: UP My = 0.999
digital call option: UPMy = 0.999

European call option: UPMy = 0.999
digital call option: UPMy = 0.999

European call option: UP My = 0.999
digital call option: UPMy = 0.999

European call option: UPMy = 0.999
digital call option: UPMy = 0.999

European call option: UPMy = 0.999
digital call option: UPMy = 0.999

European call option: UPM, = 0.9
digital call option: UPMy = 0.999
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European put option:

digital put option:

European put option:

digital put option:

European put option:

digital put option:

European put option:

digital put option:

European put option:

digital put option:

European put option:

digital put option:

FEuropean put option:

digital put option:

FEuropean put option:

digital put option:

European put option:

digital put option:

UPM, = 0.999
UPM; = 0.999
UPM, = 0.999
UPMy = 0.999
UPM; = 0.999
UPMy = 0.999
UPM, = 0.999
UPM, = 0.999
UPMy = 0.999
UPM; = 0.999
UPMy = 0.999
UPM, = 0.999
UPM, = 0.999
UPM, = 0.999
UPM; = 0.999
UPM, = 0.999
UPM, = 0.999
UPM; = 0.999

European put option: UPMy = 0.9
digital put option: UPMy = 0.999



C.2.4 Upper Partial Moments with m = 1 for all o

oc=0.1
o=02
o=0.3
c=04
o=0.5
o=0.6
o=0.7
oc=0.8
oc=0.9
oc=1.0

European call option: UPM; = 3.73277
digital call option: UPM; = 0.15507

European call option: UPM; = 3.18296
digital call option: UPM; = 0.0972

European call option: UPM; = 2.48589
digital call option: UPM; = 0.09226

European call option: UPM; = 1.84293
digital call option: UPM; = 0.09791

European call option: UPM; = 1.29313
digital call option: UPM; = 0.11224

European call option: UPM; = 0.84354
digital call option: UPM; = 0.13104

European call option: UPM; = 0.493
digital call option: UPM; = 0.15322

European call option: UPM; = 0.23898
digital call option: UPM; = 0.17798

FEuropean call option: UPM; = 0.07666
digital call option: UPM; = 0.20414

European call option: UPM; = 0.0
digital call option: UPM; = 0.23135
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UPM, = 3.73277
UPM; = 0.56593

European put option:

digital put option:

UPM,; = 3.18296
UPM,; = 0.30466

European put option:

digital put option:

UPM; = 2.48589
UPM,; = 0.18028

European put option:

digital put option:

UPM,;, = 1.84293
UPM,; = 0.11359

European put option:

digital put option:

European put option: UPM; = 1.29313
digital put option: UPM; = 0.0745

European put option: UPM; = 0.84354
digital put option: UPM; = 0.04872

European put option: UPM; = 0.493
digital put option: UPM; = 0.03156

European put option: UPM; = 0.23898
digital put option: UPM; = 0.02068

European put option: UPM; = 0.07666
digital put option: UPM; = 0.0144

European put option: UPM; = 0.0
digital put option: UPM; = 0.01146



oc=0.1
o=02
o=0.3
oc=04
o=0.5
o=0.6
o=0.7
oc=0.38
oc=0.9
oc=1.0

Upper Partial Moments with m = 2 for all o

European call option: UPMs = 30.235
digital call option: UPMy; = 0.21

European call option: UP My = 21.887
digital call option: UPM, = 0.061

European call option: UP My = 14.268
digital call option: UPM, = 0.037

European call option: UPMs = 8.752
digital call option: UPM,; = 0.035

European call option: UPMs = 4.997
digital call option: UPMs = 0.043

European call option: UPMs = 2.575
digital call option: UP M, = 0.056

European call option: UPMs, = 1.133
digital call option: UPM; = 0.072

European call option: UPMs = 0.38
digital call option: UP My = 0.089

European call option: UPMs = 0.071
digital call option: UPM> = 0.107

European call option: UPMs; = 0.0
digital call option: UP My = 0.127
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European put option: UP M, = 30.235
digital put option: UP M5 = 1.062

European put option: UP My = 21.887
digital put option: UPM; = 0.326

European put option: UP M, = 14.268
digital put option: UPM, = 0.13

European put option: UPM; = 8.752
digital put option: UP M, = 0.059
European put option: UPMs = 4.997
digital put option: UPM, = 0.028
European put option: UPM; = 2.575
digital put option: UPM, = 0.013
European put option: UPM>; = 1.133
digital put option: UP M, = 0.006

European put option: UPMsy = 0.38
digital put option: UP M, = 0.003

European put option: UPMs = 0.071
digital put option: UPM; = 0.002

European put option: UPMs = 0.0
digital put option: UP My = 0.001



Appendix D

Plots of Weighted Errors

D.1 European Put Option
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Figure 28: Weighted errors per o for a European put option with different o
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(a) Approximated probability density function

Figure 29: Approximated probability density and cumulative distribution function for weighted errors of a European

put option
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Figure 30: Weighted errors per o for a digital call option with different o.
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Figure 31: Approximated probability density and cumulative distribution function for weighted errors of a digital
call option
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Figure 32: Weighted errors per o for a digital put option with different o.
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Figure 33: Approximated probability density and cumulative distribution function for weighted errors of a digital
put option
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