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abstract

Black-Scholes Model
An Analysis of the Influence of Volatility

by

Cornelia Krome

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Richard H. Stockbridge

In this thesis the influence of volatility in the Black-Scholes model is analyzed. The deduced

Black-Scholes formula estimates the price of European options. Contrary to the other parameters

of the formula, the future volatility of the underlying asset cannot be observed in the market. The

parameter needs to be assumed in order to calculate the option price. An inaccurate assumption

may lead to an erroneous volatility. It is studied how a falsely assumed volatility impacts on the

option price. Empirical simulations will be carried out to get an impression of possible errors in

the computations. Afterwards, those results will be discussed and linked with an evaluation of

potential risks.
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Chapter 1

Introduction

During the last several decades the trade of stocks and options has experienced an increasing

interest in both scientific work and everyday life. In 1973 the mathematicians Fischer Black and

Myron Scholes published a paper titled “The Pricing of Options and Corporate Liabilities” (Black

and Scholes 1973). In it, they illustrated how the pricing of stock options is uniquely determined by

their formula. They used a method of arbitrage reasoning, which was developed by Robert Merton,

to obtain their option-pricing formula. When Merton and Scholes discovered a new method to

determine the value of derivatives, they were awarded the Nobel Prize in Economic Sciences in

1997. Fischer, who had collaborated (Nobelprize.org 2017) in the development of that formula, did

not live to see the prize-giving, since he passed away two years prior to that. The Black-Scholes

model is used to calculate the theoretical price of European put and call options, where an option

is “a contract for the right to buy and sell shares at a later date or within a certain period at a

particular price” (Cambridge Online Dictionary 2017a).

Therefore they assumed some features of the financial market, including:

European-style options: The model supposes European-style options. Those can only be exer-

cised on the expiration date. With American-style options it is possible to exercise the option

at any time during the life of the option.

Efficient markets: It is assumed that the stock’s behavior is like a random walk. Meaning, at

any given moment in time, the price of the underlying stock can go up or down. The future

stock price is independent from the past. The market movements cannot be predicted.

No dividends: During the life of the option no dividends are paid out.

No transaction and commissions costs: It is presumed that there are no fees for buying or
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selling options and stocks in the Black-Scholes model. Additionally there are no barriers to

trading.

Returns are lognormally distributed: As normally done in the real world, the Black-Scholes

model assumes lognormal distributed profits of the stock.

Constant volatility and risk-free rate: The model’s most significant assumptions are that the

volatility of the underlying stock and the risk-free rate are known and constant (Bossu and

Henrotte 2012). In a short term it is possible to have a relatively constant volatility, whereas

it becomes variable in the long-term view. A risk-free rate is the best rate that does not

involve taking a risk. In theory it supposes a rate of return without any loss. This is not

feasible in reality. In real-life it is possible to use the U.S. Government Treasury Bills rate,

for instance. But these treasury rate can change in times of increased volatility.

As stated above, the Black-Scholes model considers the volatility of the underlying stock to

be constant. The broker assumes an estimated rate. It is believed, that it corresponds with

the real market behavior. But what would happen if the assumption does not match with the

development in real life? How much does a small variation in volatility affect the option price? To

which consequences would those variations lead? This thesis deals with finding answers to these

questions.

The outline of this thesis is as follows: Chapter 2 summarizes the Black-Scholes formula, in-

cluding the stochastic argument for it (see Section 2.1) and the verification of the formula itself by

a change of variables (see Section 2.2). Subsequently, the third chapter presents different simula-

tions for both, European and digital call and put options. Errors resulting in the use of inaccurate

volatility are displayed and analyzed. In a European option the payoff at maturity is the maximum

of the difference of the current stock price and the striking price or zero. The payoff of a digital

option is equal to one, if the underlying asset expires in the money at expiry and zero otherwise.

Following this, in Chapter 4 various risk measures are considered and evaluated. In Chapter 5

the hedged errors are weighted by the probability of choosing a volatility based on historical data.

Then they get evaluated with different risk measures. The final Chapter 6 provides the summary

and draws a conclusion on the object of investigation.
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Chapter 2

Black-Scholes Model

The Black-Scholes model is used to calculate the value of a stock option. The developers assumed

some features for the financial market. The following paragraph illustrates the Black-Scholes pricing

formula for European call and put options. In order to calculate the price some specific input

variables are used, which are:

s - Current stock price;

t - Current time;

K - Option striking price;

r - Risk-free rate; and

σ - Standard deviation.

The Black-Scholes pricing formula for the price of a European call or put option is

F (t, s) = ε · s · Φ(ε · d1(t, s))− ε ·Ke−r(T−t) · Φ(ε · d2(t, s)).

In this, Φ is the cumulative distribution function of N(0, 1),

d1(t, s) =
1

σ
√
T − t

·
[
ln
( s
K

)
+

(
r +

σ2

2

)
(T − t)

]
,

d2(t, s) = d1(t, s)− σ
√
T − t

=
1

σ
√
T − t

·
[
ln
( s
K

)
+

(
r − σ2

2

)
(T − t)

]
, and

ε =


+1 for a call,

−1 for a put.

3



The price of an option is calculated based on the current stock price s. Of course, this depends on

the current time t. For this formula, the stock price is modeled by a geometric Brownian motion.

The increment of a Brownian motion X(t+s)−X(s) is independent of the past. Consequently, the

price of a stock is not predictable. It behaves like a random walk, at any given moment in time,

the price of the underlying stock can go up or down.

Additionally, the option striking price is needed. An option is a type of insurance for investors

in the stock market. The investor has the right to buy or sell the underlying asset on the expiration

date. Normally, a call option will only be exercised, if the striking price is below the market value.

A put option will be exercised if the striking price is above the market value. The payoff at expiry

for European call options is the maximum of s−K and zero. An example of profit for a European

call option and a striking price of 30 can be seen in Figure 1.

Figure 1: Profit of a European call option

If the stock price at maturity is lower than the striking price (here K = 30), the profit will be

zero, because max(s− 30, 0) = 0. As soon as the stock price at maturity is higher than the striking

price, the profit will be positive by a value of s− 30.

Another input variable for the Black-Scholes formula is the risk-free rate. It is the best rate

that does not involve taking a risk. The return of the original capital as well as the payment of
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interest are completely guaranteed. Usually, the risk-free rate for a given period is taken to be the

return on government bonds.

Options depend on volatility, which is the annualized standard deviation of the asset’s return.

Intuitively, it is the amount the price swings around in a given time period. Relatively stable stocks

have a lower volatility, while unstable stocks with a higher level of uncertainty are more volatile.

Hence, it is more likely that the stock either has an extremely high or low value on the expiration

date. Whether the stock price is massively or just slightly below the striking price of a call option

is of no importance: In both cases the option will not be exercised. If the stock price is above the

striking price at maturity, the option will be exercised and the payoff will be s −K. This means

an option with high volatility will result in a higher profit, if the price rises.

The formula can be split into two parts: First, there is the expected benefit of a purchase of the

underlying. Secondly, the current value of paying the exercise price is taken into consideration.

Expected benefit of purchasing the underlying completely: If the underlying stock price

at maturity is above the striking price, the option will be exercised. One will get the prior

specified amount of stock’s units. This is worth whatever the stock price is in the market at

maturity. The expected value of this is proportional to the stock price. At a time t < T it

can be written as s ·Φ(d1(t, s)). It is equal to the final stock price for t = T . If the final stock

price is below the striking price, it will be zero.

Current value of paying the exercise price: If the option is exercised and the underlying

asset is above the striking price, one will pay the striking price. The probability at time t

that this is above the striking price at maturity is Φ(d2(t, s)). The expected value of paying

the striking price is KΦ(d2(t, s)). This is the value of cash flow at maturity. To get the value

of it at the specified date, it is necessary to discount it by the factor e−r(T−t). The value of

the cash to buy the option is Ke−r(T−t) · Φ(d2(t, s)).

To get the price of an option, the second part gets subtracted from the first part. For a put option

ε is negative. Thus, the Black-Scholes formula is

P (t, s) = −sΦ(d1(t, s)) +Ke−r(T−t) Φ(d2(t, s)).

An example in options pricing can be found in Ross 2010.
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2.1 Black-Scholes Equation

The Black-Scholes formula returns the price of an option. Its behavior over time is described by the

Black-Scholes equation. This is a partial differential equation and will be derived in the following

section.

2.1.1 Definitions

Suppose the current price of a stock is S(0) = S0, and let S(t) denote its price at time t. A stock

price process can be approximated by a geometric Brownian motion. The change of the stock price

over time is of interest. It can be written as:

dS(t) = µS(t) dt+ σS(t) dW (t),

where W is a Wiener process, µ is the drift, σ is the volatility and t is the time. Additionally, the

option price process F (t, S(t)) is necessary. The price dynamics of the derivative asset is given by

applying Itô’s formula:

dF (t, S(t)) =
∂F

∂t
(t, S(t)) dt+

∂F

∂s
(t, S(t)) dS(t) +

1

2
σ2S2(t)

∂2F

∂s2
(t, S(t)) dt

=

[
∂F

∂t
(t, S(t)) + µS(t)

∂F

∂s
(t, S(t))

]
dt+ σS(t)

∂F

∂s
(t, S(t)) dW (t)

+
1

2
σ2S2(t)

∂2F

∂s2
(t, S(t)) dt.

To get the price of the option, it is the final goal to find F (T, S(T )). A portfolio based on the stock

and the price function is considered.

2.1.2 Hedging Strategy

The following strategy gives a method to find the Black-Scholes partial differential equation. A

portfolio based on two assets, the underlying stock and the derivative asset, is given by:

P (t) = ϕ(t)S(t) + F (t, S(t)),
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where ϕ = ϕ(t), 0 ≤ t ≤ T , represents the shares of the stock and the units of the option F are

equal to 1. The change of the portfolio during time can be written as

dP (t) =

ϕ(t) dS(t) + dF (t, S(t)) + S(t) dϕ(t) + ϕ(t)σ2S2(t)
∂F

∂s
(t, S(t))︸ ︷︷ ︸

self-financing condition
= 0

 dt.

The self-financing condition provides, that there are no exogenous infusions or withdrawals of

money. The sale of an old asset should finance the purchase of a new one. This condition and the

requirement that the last part of the equation is zero lead to

dP (t) =

[
µϕ(t)S(t) +

∂F

∂t
(t, S(t)) + µS(t)

∂F

∂s
(t, S(t))

]
dt

+ σS(t)

[
ϕ(t) +

∂F

∂s
(t, S(t))

]
dW (t)

+
σ2

2
S2(t)

∂2F

∂s2
(t, S(t))dt.

By buying and selling the underlying asset in the right way, one can perfectly hedge the option and

eliminate risk. That is why it is desired to hold −∂F
∂s (t, S(t)) shares of the stock. So, ϕ(t) is set to

−∂F
∂s (t, S(t)):

dP (t) =

[
µ

(
−∂F
∂s

(t, S(t))

)
S(t) +

∂F

∂t
(t, S(t)) + µS(t)

∂F

∂s
(t, S(t))

]
dt

+ σS(t)

[
−∂F
∂s

(t, S(t)) +
∂F

∂s
(t, S(t))

]
dW (t)

+
σ2

2
S2(t)

∂2F

∂s2
(t, S(t))dt.

That implies the following equation:

dP (t) =

[
∂F

∂t
(t, S(t)) +

σ2

2
S2(t)

∂2F

∂s2
(t, S(t))

]
dt.

Additionally, dP (t) = rF (t, S(t))− rS(t)∂F∂s (t, S(t)) represents the bond.

As one can see, there is no randomness in the equation and with the notion of an arbitrage-

free market the equation needs to be equal to the bond. In an arbitrage-free there market are no

differences in profit depending on the asset. Whereas, arbitrage is the purchase and sale of an asset

at the same time to benefit from the differences in price. With this assumptions and substitutions
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the Black-Scholes equation is:

∂F

∂t
(t, s) +

σ2

2
s2∂

2F

∂s2
(t, s) + rs

∂F

∂s
(t, s)− rF (t, s)︸ ︷︷ ︸

bond

≡ 0, ∀ 0 < t < T , 0 < s (1)

F (T, s) = C(T, s) ∀ s > 0.

Consequently, there is only one right price for an option.

2.2 Verification of the Black-Scholes Formula

The right price for the option is returned by the Black-Scholes formula, which will be verified in the

following section. It is necessary to solve (1). The following changes of variables are considered:

s = Kex, (2a)

F (t, s) = K · f(τ, x), and (2b)

τ =
(T − t)σ2

2
. (2c)

The Black-Scholes equation is a linear parabolic equation of the form

∂f

∂τ
(τ, x) =

∂2f

∂x2
(τ, x) + a

∂f

∂x
(τ, x) + bf(τ, x). (3)

It can be reduced to a diffusion equation:

∂h

∂τ
(τ, x) =

∂2h

∂x2
(τ, x). (4)

8



2.2.1 Reduction to a Diffusion Equation

In the Black-Scholes model the interest rate r and the volatility σ are constant. With the change

of variables in (2) it is possible to rewrite the Black-Scholes equation in terms of f . The partial

derivatives of F (t, s) are:

∂F

∂t
(t, s)

2b
= K

∂f

∂τ
(τ, x)

∂τ

∂t

2c
= −Kσ2

2

∂f

∂τ
(τ, x), (5a)

∂F

∂s
(t, s)

2b
= K

∂f

∂x
(τ, x)

∂x

∂s

2a
= K

∂f

∂x
(τ, x)

∂

∂s
· ln
( s
K

)
=
K

s

∂f

∂x
(τ, x) = e−x

∂f

∂x
(τ, x), and (5b)

∂2F

∂s2
(t, s)

5b
=

∂

∂s

K

s

∂f

∂x
(τ, x) = −K

s2

∂f

∂x
(τ, x) +

K

s

∂

s

∂f

∂x
(τ, x)

= −K
s2

∂f

∂x
(τ, x) +

K

s

(
∂x

∂s

∂

∂x

)
∂f

∂x
(τ, x) = −e−2x∂f

∂x
(τ, x) + e−2x∂

2f

∂x2
(τ, x). (5c)

Inserting the partial derivatives of F (t, s) (see (5)) into the Black-Scholes equation (1) leads to:

∂f

∂τ
(τ, x) =

(
2r

σ2
− 1

)
∂f

∂x
(τ, x) +

∂2f

∂x2
(τ, x)− 2r

σ2
· f(τ, x), (6)

and so f(τ, x) satisfies (3) with

a =
2r

σ2
− 1, and b = −2r

σ2
= −(1 + a). (7)

The solution of an equation like (6) is of the form

f(τ, x) = w(τ) · g(x) · h(τ, x). (8)

To get f(τ, x) it is necessary to calculate the partial derivatives of f(τ, x). They are given by:

∂f

∂τ
(τ, x) =

∂w

∂τ
(τ) · g(x)h(τ, x) + w(τ)g(x) · ∂h

∂τ
(τ, x), (9a)

∂f

∂x
(τ, x) = w(τ) · ∂g

∂x
(x) · h(τ, x) + w(τ)g(x) · ∂h

∂x
(τ, x), and (9b)

∂2f

∂x2
(τ, x) = w(τ) · ∂

2g

∂x2
(x) · h(τ, x) + 2w(τ)

∂g

∂x
(x)

∂h

∂x
(τ, x) + w(τ)g(x) · ∂

2h

∂x2
(τ, x). (9c)
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Substituting (9) into (6) results in:

∂w

∂τ
(τ)g(x)h(τ, x) + w(τ)g(x)

∂h

∂τ
(τ, x) =w(τ) · ∂

2g

∂x2
(x) · h(τ, x) + 2w(τ)

∂g

∂x
(x)

∂h

∂x
(τ, x)

+ w(τ)g(x) · ∂
2h

∂x2
(τ, x)

+ a

[
w(τ) · ∂g

∂x
(x) · h(τ, x) + w(τ)g(x) · ∂h

∂x
(τ, x)

]
+ bw(τ)g(x)h(τ, x),

(10)

which can be satisfied, if w and g are of the form

w(τ) = c1 exp(ŵ(τ)), and (11a)

g(x) = c2 exp(ĝ(x)), (11b)

in which c1, c2 ∈ R are constant. They have the following derivatives:

∂w

∂τ
(τ) = w(τ)

∂ŵ

∂τ
(τ), (12a)

∂g

∂x
(x) = g(x)

∂ĝ

∂x
(x), and (12b)

∂2g

∂x2
(x) = g(x)

∂2ĝ

∂x2
(x) +

(
∂ĝ

∂x
(x)

)2

. (12c)

Substituting (11) and (12) into (10) leads to:

∂h

∂τ
(τ, x) =

∂2h

∂x2
(τ, x) +

∂h

∂x
(τ, x)

[
2
∂ĝ

∂x
(x) + a

]
+ h(τ, x)

[
−∂ŵ
∂τ

(τ) +
∂2ĝ

∂x2
(x) +

(
∂ĝ

∂x
(x)

)2

+ a
∂ĝ

∂x
(x) + b

]
.

(13)

10



In order for (13) to be of the form of the diffusion equation (4), it is required that 2 ∂ĝ∂x(x)+a = 0,

which implies ĝ(x) = −ax
2 + c1 for some c1 ∈ R and also that

− ∂ŵ

∂τ
(τ) +

∂2ĝ

∂x2
(x) +

(
∂ĝ

∂x
(x)

)2

+ a
∂ĝ

∂x
(x) + b = 0

⇔ − ∂ŵ

∂τ
(τ) +

a2

4
− a2

2
+ b = 0

⇔ ∂ŵ

∂τ
(τ) = −a

2

4
+ b

⇒ ŵ(τ) = −
(

4 + 4a+ a2

4

)
τ + c2

for some c2 ∈ R.

Putting that back into the solution in (8) and expressing ŵ(τ) in terms of a of (7) one gets:

f(τ, x) = ce
−
(
a2

4
+a+1

)
τ · e−

a
2
x · h(τ, x), c ∈ R.

In summary, the Black-Scholes equation has been reduced to a diffusion equation

∂h

∂τ
(τ, x) =

∂2h

∂x2
(τ, x), x ∈ R, τ ∈

[
0, σ

T

2

]
by the following change of variables:

S = Kex, and τ = (T − t) · σ2/2.

The price of an option is

F (τ, x) = K · ce−
(
a2

4
+a+1

)
τ · e−

a
2
x · h(τ, x), in which a = 2r/σ2 − 1. (14)

11



2.2.2 Solution of the Diffusion Equation

The next subsection deals with the solution of the diffusion equation with h(τ, x) (14). It can be

solved by using Fourier transforms. For a function f the Fourier transform with respect to variable

x is defined by

F(f(x))(k) = f̃(k) =
1√
2π

∫
R
e−ikxf(x) dx,

and the Fourier transform of its derivatives is given by

F(f (n)(x))(k) = f̃(k) = (ik)n · F(f(x))(k).

The Fourier transform of the diffusion equation can be written as follows:

∂h̃

∂τ
= −k2h̃,

which results in

h̃(τ, k) = h̃(0, k) · e−k2τ . (15)

h̃(0, x) is the Fourier transform of the initial condition of h, which corresponds to the terminal

condition at expiry t = T of the option, since τ = (T−t)σ2

2 .

To find the solution for h(τ, x) it is required to apply the inverse Fourier transform. By defining

F(h1) = h̃1 = e−k
2τ , and F(h2) = h̃2 = h̃(0, k) (16)

Equation (15) gives

h̃(τ, k) = h̃1(τ, k) ∗ h̃2(τ, k). (17)

A useful property of the Fourier transform is the convolution theorem: A Fourier transform of a

convolution product of two functions f and g is equal to the product of the Fourier transforms of

both:

F(f ∗ g) = F(f)F(g).

So, applying the convolution theorem to the inverse Fourier transform of (17) leads to

h(τ, x) = (h1 ∗ h2)(τ, x) =
1√
2π

∫
R
h1(τ, x− ξ)h2(τ, ξ) dξ. (18)

12



The inverse Fourier transforms of (16) are:

F−1(h̃1) = h1 =
1√
2π
e

−x2
4τ , and F−1(h̃2) = h2 = h(0, x). (19)

Inserting (19) into (18) gives:

h(τ, x) =
1√
4πτ

∫
R
e−

(x−ξ)2
4τ h(0, ξ) dξ. (20)

The general solution in (20) satisfies the diffusion equation (4) with initial condition h(0, x). That

implies the following partial derivatives:

∂h

∂τ
(τ, x) = − 1

2τ
h(τ, x) +

1√
4πτ

∫
R

(x− ξ)2

4τ2
e−

(x−ξ)2
4τ h0(ξ) dξ,

∂h

∂x
(τ, x) =

1√
4πτ

∫
R

−(x− ξ)
2τ

e−
(x−ξ)2

4τ h0(ξ) dξ, and

∂2h

∂x2
(τ, x) = − 1

2τ
h(τ, x) +

1√
4πτ

∫
R

(x− ξ)2

4τ2
e−

(x−ξ)2
4τ h0(ξ) dξ.

These equations satisfy the diffusion equation (4):

lim
τ→0

h(τ, x) = lim
τ→0

1√
4πτ

∫
R
e−

(x−ξ)2
4τ h(τ, ξ)dξ = h(0, x).

2.2.3 Application to European Options

Correspondent to the change of variables the payoff condition in (14) at τ = 0 is equivalent to the

payoff at expiry t = T . The payoff at expiry for European options is given by:

F (T, s) = max[ε(s−K), 0], (21)

where ε = 1 for a call option and ε = −1 for a put option. Equation (21) can be expressed in terms

of the new variables from (2) as:

h(0, x) =
1

K
e
a
2
xF (T,Kex)

=
1

K
e
a
2
x max[ε (Kex −K) , 0]

= max
[
ε
(
e(

a
2

+1)x − e
a
2
x
)
, 0
]
. (22)

13



Substituting (22) into the general solution (20) gives:

h(τ, x) =
1√
4πτ

∫
R
e−

(x−ξ)2
4τ max

[
ε
(
e(

a
2

+1)x − e
a
2
x
)
, 0
]
dξ.

Since e(
α
2

+1)x − e
α
2
x > 0 if and only if x > 0 for all α ∈ R the integration domain can be rewritten

as [0,∞). A change in the variables to η = ξ/ε and dη = dξ/ε leads to:

h(τ, x) = ε
1√
4πτ

∫
R
e−

(x−εη)2
4τ

[
eε(

a
2

+1)η − eε
a
2
η
]
dη

= ε
1√
4πτ

∫ ∞
0

e−
(x−εη)2

4τ · eε
a
2
η+εη dη −

∫ ∞
0

e−
(x−εη)2

4τ · eε
a
2
η dη

= εe(
a
2

+1)(x+a τ
2

+τ)Φ

(
ε
x+ aτ + 2τ√

2τ

)
− εe

a
2 (x+a τ

2 )Φ

(
ε
x+ aτ√

2τ

)
,

where Φ denotes the cumulative standard normal distribution function. After changing the variables

back to the initial ones (see Section 2.2.4), one will get the Black-Scholes formula.

2.2.4 Reversing the Change of Variables

Going back to the initial variables with (14) leads to

F (t, s) =Ke
−
(
a2

2
+a+1

)
τ
e−

a
2
x ∗
[
e(

a
2

+1)(x+a τ
2

+τ)Φ

(
ε
x+ aτ + 2τ√

2τ

)
− e

a
2 (x+a τ

2 )Φ

(
ε
x+ aτ√

2τ

)]

= εKexΦ

(
ε
x+ aτ + 2τ√

2τ

)
− εKe−aτ−τΦ

(
ε
x+ aτ√

2τ

)

= εsΦ

ε 1

σ
√
T − t

[
ln
( s
K

)
+ (T − t)

(
r +

σ2

2

)]
︸ ︷︷ ︸

≡d1(t,s)



− εKe−r(T−t)Φ

ε 1

σ
√
T − t

[
ln
( s
K

)
+ (T − t)

(
r − σ2

2

)]
︸ ︷︷ ︸

≡d2(t,s)


= εsΦ(εd1(t, s))− εKe−r(T−t)Φ(εd2(t, s)),

which is the Black-Scholes formula.
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Chapter 3

Effects of Incorrect Volatility

In this chapter some simulations for European and digital call and put options are presented. The

Black-Scholes model depends on volatility, which is assumed to be constant and should correspond

with the real behavior. Consequently, the same applies for the option price F (t, s). So, it is

reasonable to ask what impact a wrong assumed volatility might have on the option. This question

is analyzed within this chapter.

When the Black-Scholes model is correct, the option price F (t, s) satisfies

F (T, S(T )) = F (0, S0)︸ ︷︷ ︸
option value at t=0

− ϕ(0)S0︸ ︷︷ ︸
shares of stock with value S0 at t=0

+ ϕ(T )S(T )︸ ︷︷ ︸
shares of stock with value S(T ) at t=T

+

∫ T

0

[
∂F

∂t
(t, S(t)) + rS(t)

∂F

∂s
(t, S(t))− rF (t, S(t)) +

1

2
σ2S2(t)

∂2F

∂s2
(t, S(t))

]
dt

+

∫ T

0
σS(t)

(
∂F

∂s
(t, S(t)) + ϕ(t)

)
dW (t)︸ ︷︷ ︸

=0

.

By the choice of ϕ(t) = −∂F
∂s (t, S(t)), the integrand in the stochastic integral is zero and the

regular integral is zero as well, since F satisfies the Black-Scholes equation (1). Thus, the value of

the portfolio at the final time equals the value of the option.

A question naturally arises about the effect of using the wrong volatility parameter σ. In

the following analysis, let σ∗ denote the true volatility so the stock price process S satisfies the

stochastic differential equation dS(t) = µS(t) dt + σ∗S(t) dW (t). Also let σ denote the volatility

15



parameter used to determine the function F . Now Itô’s formula gives:

F

F (T, S(T )) =F (0, S0)− ϕ(0)S0 + ϕ(T )S(T )

+

∫ T

0

[
∂F

∂t
(t, S(t)) + rS(t)

∂F

∂s
(t, S(t))− rF (t, S(t)) +

1

2
σ2
∗S

2(t)
∂2F

∂s2
(t, S(t))

]
dt

+

∫ T

0
σ∗S(t)

(
∂F

∂s
(t, S(t)) + ϕ(t)

)
dW (t)︸ ︷︷ ︸

=0

=F (0, S0)− ϕ(0)S0 + ϕ(T )S(T )

+

∫ T

0

[
∂F

∂t
(t, S(t)) + rS(t)

∂F

∂s
(t, S(t))− rF (t, S(t)) +

1

2
σ2S2(t)

∂2F

∂s2
(t, S(t))

]
dt︸ ︷︷ ︸

=0

+

∫ T

0

1

2
(σ2
∗ − σ2)S2(t)

∂2F

∂s2
(t, S(t)) dt

+

∫ T

0
σ∗S(t)

(
∂F

∂s
(t, S(t)) + ϕ(t)

)
dW (t)︸ ︷︷ ︸

=0

. (23)

With this formula the hedging portfolio errors are calculated. By analyzing the effects of an

incorrect volatility in calculating option prices one might think about applying the Greeks Vega

to F . Vega measures how sensitive the option price is in respect to the volatility parameter σ. It

is given as

V =
∂F

∂σ
= s
√
T − tΦ′(d1)

= s
√
T − t 1√

2π
e−

d21
2 .

Vega is always positive and the option price increases as σ increases. In reality the volatility of a

stock price changes over time. “Vega is the rate of change of the value of the portfolio with respect

to the volatility of the underlying asset” (Hull 2000).

In the Black-Scholes model the volatility is assumed to be constant. There is no change over

time and a trader estimates the used parameter σ. While Vega analyzes the sensitivity of the option

price in respect to σ this thesis deals with the question of what impact an incorrect volatility might

have on the option price. It observes the accuracy of the hedging portfolio. These are two different

ways of analyzing.
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In all following simulations a risk-free rate of zero and a time interval from 0 to 2 with 200

timesteps are assumed. Moreover, the starting stock price S0 is 20 and the striking price K is

16. For a meaningful result 100 different exemplary stocks are used. Those are the same for all

simulations. In the simulations σ∗ and σ are equal to [0.1, 0.2, ..., 1.0].

In this chapter, the general approach for the simulations is discussed. Section 3.1 introduces

the formulas to calculate the option price for European options. It is followed by Section 3.2 which

covers the same calculations for digital options. Afterwards, the results of these simulations for call

and put options are displayed and analyzed.

3.1 European Option

The first simulations dissemble the errors of using σ∗ and σ for the option price of European call

and put options. Its payoff at expiry for call options is max(s−K, 0). The Black-Scholes formula,

which was verified in Section 2.2, is used for these simulations:

F (t, s) = ε · s · Φ(ε · d1(t, s))− ε ·Ke−r(T−t) · Φ(ε · d2(t, s)).

The integral to calculate the option value is∫ T

0

∂F

∂t
(t, S(t)) + rS(t)

∂F

∂s
(t, S(t))− rF (t, S(t)) +

1

2
σ2
∗S

2(t)
∂2F

∂s2
(t, S(t))dt,

with

∂F

∂t
(t, s) =

se−
d21(t,s)

2

√
2π

[
d1(t, s)

2(T − t)
− 1

σ
√
T − t

(
r +

σ2

2

)]
− εKre−r(T−t)Φ(εd2(t, s))

− Ke−r(T−t)e−
d22(t,s)

2

√
2π

[
d2(t, s)

2(T − t)
− 1

σ
√
T − t

(
r − σ2

2

)]
,

∂F

∂s
(t, s) = εΦ(εd1(t, s)) +

e−
d21(t,s)

2

√
2π

1

σ
√
T − t

− Ke−r(T−t)e−
d22(t,s)

2

√
2π

1

sσ
√
T − t

, and

∂2F

∂s2
(t, s) =

2

s2σ2

se− d21(t,s)2

√
2π

(
σ

2
√
T − t

− d1(t, s)

2(T − t)

)

+
Ke−r(T−t)e−

d22(t,s)

2

√
2π

(
σ

2
√
T − t

+
d2(t, s)

2(T − t)

) .
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3.1.1 Call Option

In Figure 2 (on two pages) one can see all errors for each σ∗ and σ for a European call option. If

the assumed volatility coincides with the real volatility (σ = σ∗), then the error is zero as expected.

For that case the same formula, as a broker utilizes, is used. But if σ is smaller than σ∗, the errors

are greater than zero. Those imply a shortfall, meaning that the option exceeds the amount of cash

that is available. If σ is greater than σ∗, then the errors are smaller than zero. Those errors do

not imply a shortfall but imply a surplus. As one can see in (23), deviations from zero result from∫ T
0

1
2(σ2
∗ − σ2)S2(t)∂

2F
∂s2

(t, S(t)) dt. For European call options ∂2F
∂s2

(t, S(t)) is positive. Hence, for σ∗

greater than σ, σ∗− σ is positive, and the integral as well is greater than zero. On the other hand,

for σ∗ less than σ, σ∗ − σ is negative, and the integral is, too.

(a) σ∗ = 0.1 (b) σ∗ = 0.2

(c) σ∗ = 0.3 (d) σ∗ = 0.4

18



(e) σ∗ = 0.5 (f) σ∗ = 0.6

(g) σ∗ = 0.7 (h) σ∗ = 0.8

(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 2: Hedged portfolio errors per σ for a European call option with different σ∗

19



Figure 3: Range of hedged errors per σ∗ for a European call option

The range of the errors for var-

ious σ∗ differs. In Figure 3 all er-

rors for each σ∗ are presented. As

a result of the error behavior for σ

smaller than σ∗ and greater than σ∗,

one can see a positive trend of the er-

rors. Additionally, the bigger the real

volatility gets, the greater is the range

of the errors. For the real volatility

σ∗ = 0.1 the errors lie within the in-

terval [−8.446, 0.0], for σ∗ = 0.5 they belong to [−6.325, 8.799], thus, a 1.8 time larger interval, and

for σ∗ = 1.0 the errors lie within [0.0, 23.151]. This is 2.7 times as big as the first one.

In the table below the minimal and maximal errors for each σ∗ and σ are displayed. For σ∗ = σ

these values are zero, as expected. The bigger the difference between σ and σ∗ is, the bigger the

errors are.

σ 0.1 0.2 0.3 0.4 0.5

σ∗ min max min max min max min max min max

0.1 −0.0 0.0 −1.26317 −0.20272 −2.29893 −0.62572 −3.29365 −1.21195 −4.24101 −1.91469

0.2 0.01725 1.74193 −0.0 0.0 −1.37948 −0.2881 −2.54286 −0.6728 −3.5895 −1.17719

0.3 0.03103 3.95978 0.10827 1.7183 −0.0 0.0 −1.41563 −0.32582 −2.68168 −0.70953

0.4 0.04576 6.43765 0.16839 3.82998 0.18028 1.71909 −0.0 0.0 −1.46822 −0.2521

0.5 0.06153 8.79896 0.21586 5.95566 0.28417 3.63902 0.15769 1.68743 −0.0 0.0

0.6 0.0786 13.68867 0.2632 9.16158 0.37344 5.87134 0.261 3.62161 0.13984 1.69377

0.7 0.09748 15.72432 0.3141 11.48889 0.46387 8.36547 0.34761 5.81608 0.2392 3.66835

0.8 0.11874 20.84193 0.36935 14.90892 0.55814 10.85935 0.43068 8.14752 0.32273 5.76965

0.9 0.14294 22.02865 0.42886 16.52301 0.65563 12.68412 0.51477 9.81151 0.4007 7.41496

1.0 0.17058 23.15056 0.49293 17.17745 0.75632 15.44842 0.60077 12.94376 0.47764 10.27263

σ 0.6 0.7 0.8 0.9 1.0

σ∗ min max min max min max min max min max

0.1 −5.16345 −2.6832 −6.04396 −3.48492 −6.88422 −4.29916 −7.68423 −5.11172 −8.44617 −5.91205

0.2 −4.61004 −1.78796 −5.5942 −2.47496 −6.52925 −3.20922 −7.40969 −3.96793 −8.2379 −4.73422

0.3 −3.84038 −1.17984 −4.92047 −1.73908 −5.92255 −2.36188 −6.85537 −2.89681 −7.72461 −3.42139

0.4 −2.77036 −0.56958 −3.94844 −0.93235 −5.05927 −1.32116 −6.12589 −1.72149 −7.11762 −2.12297

0.5 −1.47025 −0.19815 −2.82984 −0.43597 −4.08846 −0.70478 −5.2506 −0.9936 −6.32478 −1.29238

0.6 −0.0 0.0 −1.4998 −0.16272 −2.84257 −0.34831 −4.05612 −0.55281 −5.16187 −0.77021

0.7 0.12488 1.74405 −0.0 0.0 −1.57478 −0.13715 −3.00006 −0.28642 −4.29473 −0.44578

0.8 0.21878 3.63057 0.11191 1.71712 −0.0 0.0 −1.56533 −0.11748 −3.04521 −0.24018

0.9 0.29856 5.27866 0.19966 3.3392 0.10044 1.59774 −0.0 0.0 −1.51064 −0.10165

1.0 0.37215 7.75293 0.27515 5.47548 0.18177 3.44154 0.09016 1.62599 −0.0 0.0

Table 1: Minimum and maximum hedged errors for a European call option
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Figure 4 displays two probability plots. In Figure 4(a) one can see the approximated probability

density function. Each point in the plots denotes the relative probability, that an error occurs in

the interval xi and xi+1, where ∆x is 0.1. To get a better impression of all values, f(0) is not

plotted. With f(0) = 1.012 it is much higher than all other values. Furthermore, in Figure 4(b),

the approximated cumulative distribution function is shown. One can see the huge jump at zero,

resulting from the high probability for an error equals zero.

(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 4: Approximated probability density and cumulative distribution function for a European call option

By examining these plots, one could assume, that the errors might be normally distributed.

In Figure 5 the approximated probability plots of the calculated errors are compared to a normal

distribution with estimated parameters. There is a high coverage.

(a) PDF (b) CDF

Figure 5: Comparison of errors of a European call option to an estimated normal distribution
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Another possible distribution might be the Gumbel distribution (see comparisons in Figure 6).

(a) Gumbel distribution (b) Normal distribution

Figure 6: Comparison of errors of a European call option to an estimated Gumbel distribution

As seen for the Normal distribution, a Gumbel distribution with estimated parameters covers

the data, also. Usually a Gumbel distribution is used, for instance, in meteorology for weather

predictions. It is a typical distribution for annual scenarios.

Definition 1. A continuous random variable X is distributed by a Gumbel distribution with scale

parameter β > 0 and shape parameter µ ∈ R, if it has the probability density of

f(x) =
1

β
e
− 1
β

(x−µ)
e−e

− 1
β
(x−µ)

, x ∈ R,

and probability distribution function of

F (x) = ee
− 1
β
(x−µ)

, x ∈ R.

Letting γ = 0.5772 be the Euler–Mascheroni constant, the parameters β and µ satisfy

E[X] = µ+ βγ, and V ar[X] =
(πβ)2

6

A further analysis of possible distributions might bring clarity to these assumptions. Maybe, it

is possible to find an appropriate one for those errors.
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3.1.2 Put Option

The hedged errors for European put options with a risk-free rate r = 0 should be the same as

those for European call options. The errors are results of

∫ T

0

∂F

∂t
(t, S(t)) + rS(t)

∂F

∂s
(t, S(t))︸ ︷︷ ︸

=0

− rF (t, S(t))︸ ︷︷ ︸
=0

+
1

2
σ2
∗S

2(t)
∂2F

∂s2
(t, S(t))dt,

with

∂F

∂t
(t, s) =

se−
d21(t,s)

2

√
2π

[
d1(t, s)

2(T − t)
− 1

σ
√
T − t

(
r +

σ2

2

)]
− εKre−r(T−t)Φ(εd2(t, s))︸ ︷︷ ︸

=0

,

− Ke−r(T−t)e−
d22(t,s)

2

√
2π

[
d2(t, s)

2(T − t)
− 1

σ
√
T − t

(
r − σ2

2

)]
, and

∂2F

∂s2
(t, s) =

2

s2σ2

se− d21(t,s)2

√
2π

(
σ

2
√
T − t

− d1(t, s)

2(T − t)

)

+
Ke−r(T−t)e−

d22(t,s)

2

√
2π

(
σ

2
√
T − t

+
d2(t, s)

2(T − t)

) .
In ∂2F

∂s2
(t, S(t)) is no ε in place. Hence, the integral for a call option and the integral for a put

option are the same and there is no change in sign. The probability functions, shown in Figure 16

are covered by the normal and the Gumbel distribution as well (see Figure 17 and Figure 18). The

minimal and maximal errors do not differ from those of a call option. The tables can be seen in

Appendix B.1.
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3.2 Digital Option

As a further example, a digital option is considered. Its payoff at expiry is equal to 1 if the

underlying asset is in the money and zero otherwise. Let F (t, s) denote the price of a digital option

at time t when the underlying stock has value s. The terminal condition therefore is

F (T, s) =


Θ(s−K) for a call,

1−Θ(s−K) for a put,

where Θ(ξ) is the Heaviside distribution, which is defined as follows:

Θ(ξ) =


0 for ξ ≤ 0,

1 for ξ > 0.

With this change in the terminal condition the Black-Scholes formula can be written as

F (t, s) = e−r(T−t)Φ(εd2(t, s)),

where ε = 1 for a call option and ε = −1 for a put option. F (t, s) results in the discount risk that

the stock price s is above or below K at time T . The integrand for calculating the option value is∫ T

0

∂F

∂t
(t, S(t)) + rS(t)

∂F

∂S
(t, S(t))− rF (t, S(t)) +

1

2
σ2
∗S

2(t)
∂2F

∂S2
(t, S(t))dt,

with

∂F

∂t
(t, s) =re−r(T−t)Φ(εd2(t, s)) + e−r(T−t)

εe−
d22(t,s)

2

√
2π

[
d2(t, s)

2(T − t)
− 1

σ
√
T − t

(
r +

σ2

2

)]
,

∂F

∂s
(t, s) =

εe−r(T−t)√
T − t

e−
d22(t,s)

2

sσ
√
T − t

, and

∂2F

∂s2
(t, s) =− 2

s2σ2

εe−r(T−t)e−
d22(t,s)

2

2
√

2π

[
σ√
T − t

+
d2(t, s)

T − t

]
.
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3.2.1 Call Option

The subfigures of Figure 7 (on two pages) show the computed errors for a digital call option. As

for European call options, the errors are zero for σ = σ∗. In difference to it, one cannot say, that all

errors are positive for σ smaller than σ∗ or negative for σ greater than σ∗. For both cases the errors

are positive and negative. For digital call options ∂2F
∂s2

(t, s) is not always positive. Hence, the sign of

the hedged errors does not only depend on the sign of σ∗−σ. The greater the difference between σ

and σ∗ is, the bigger are the absolute errors. More precisely, for all σ and σ∗ occur positive errors

and for all combinations of σ and σ∗ except of σ = σ∗ it is possible to have a shortfall. That leads to

an excess in the amount of cash that is available. Whether there occurs a shortfall or not, depends

on the chosen stock, or in this case, on the chosen seed, with which the stock is simulated.

(a) σ∗ = 0.1 (b) σ∗ = 0.2

(c) σ∗ = 0.3 (d) σ∗ = 0.4
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(e) σ∗ = 0.5 (f) σ∗ = 0.6

(g) σ∗ = 0.7 (h) σ∗ = 0.8

(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 7: Hedged portfolio errors per σ for a digital call option with different σ∗
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Figure 8: Range of hedged errors per σ∗ for a Digital call option

The range of the errors for differ-

ent σ∗ differs. Figure 8 displays all

errors for each σ∗. Furthermore, the

range of the errors gets bigger for ris-

ing σ∗. For σ∗ = 0.1 the errors are

within [−0.409, 0.861], for σ∗ = 0.5

they belong to [−2.783, 4.053], and

for σ∗ = 1.0 the errors are in the inter-

val [−5.712, 4.064]. So, for σ∗ = 1.0

the interval is 7.8 times larger as for

σ = 0.1. The larger σ∗ is, the more unpredictable are the errors.

As expected, the minimum and maximum errors, which are shown in table 2, are exactly zero

for σ = σ∗. The table lists the minimum and maximum values for all combinations of σ and σ∗.

σ 0.1 0.2 0.3 0.4 0.5

σ∗ min max min max min max min max min max

0.1 −0.0 0.0 −0.33553 0.69596 −0.39598 0.81909 −0.4089 0.84093 −0.38057 0.86144

0.2 −0.93597 0.43874 −0.0 0.0 −0.28152 0.38146 −0.41608 0.56269 −0.4583 0.66098

0.3 −2.23362 1.14688 −0.75207 0.29879 −0.0 0.0 −0.14206 0.40826 −0.21797 0.60346

0.4 −3.85218 1.1118 −1.45442 0.60089 −0.56028 0.30849 −0.0 0.0 −0.17327 0.3554

0.5 −2.78322 4.05266 −1.53309 1.81307 −0.81913 0.58599 −0.32932 0.14907 −0.0 0.0

0.6 −4.57163 1.9838 −2.31187 1.11357 −1.38601 0.77661 −0.73243 0.55312 −0.29455 0.24524

0.7 −6.44623 2.22838 −3.7527 1.10072 −2.06799 0.60759 −1.18136 0.31489 −0.67626 0.17748

0.8 −5.57665 3.16849 −2.53266 2.02159 −1.68064 1.08427 −1.21509 0.5402 −0.79377 0.27258

0.9 −5.44333 3.97245 −3.4115 1.73042 −2.27686 1.10118 −1.64622 0.75955 −1.16224 0.5092

1.0 −5.7122 4.06376 −2.94918 2.02218 −1.63871 1.33377 −1.2812 0.86331 −1.03195 0.58233

σ 0.6 0.7 0.8 0.9 1.0

σ∗ min max min max min max min max min max

0.1 −0.33226 0.85372 −0.27671 0.83539 −0.22049 0.8148 −0.1666 0.82985 −0.14307 0.84713

0.2 −0.44978 0.74035 −0.41522 0.81845 −0.36862 0.87075 −0.31761 0.90729 −0.26625 0.93459

0.3 −0.25453 0.79246 −0.26901 0.91565 −0.27012 0.98766 −0.26181 1.02661 −0.24641 1.04503

0.4 −0.24387 0.554 −0.25682 0.6606 −0.24026 0.71692 −0.20948 0.75958 −0.17255 0.84994

0.5 −0.11137 0.21036 −0.19352 0.35326 −0.24473 0.45884 −0.27144 0.54089 −0.28106 0.60576

0.6 −0.0 0.0 −0.1606 0.20292 −0.26673 0.34652 −0.34257 0.46836 −0.38583 0.568

0.7 −0.28913 0.0741 −0.0 0.0 −0.05413 0.21727 −0.10043 0.38315 −0.13708 0.51204

0.8 −0.45694 0.12523 −0.21292 0.04726 −0.0 0.0 −0.03256 0.18678 −0.05582 0.34621

0.9 −0.75885 0.33829 −0.43591 0.19917 −0.18751 0.08753 −0.0 0.0 −0.06713 0.14186

1.0 −0.76856 0.39577 −0.57006 0.25057 −0.38601 0.13962 −0.18987 0.05787 −0.0 0.0

Table 2: Minimum and maximum hedged errors for a Digital call option
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In Figure 9 the approximated probability density function and the approximated cumulative

distribution function are posed. Each point in Figure 9(a) denotes the relative probability, that an

error occurs in the interval xi and xi+1, where ∆x is 0.1. To get a better impression of all errors,

f(0) = 3.068 is not plotted. This value is much higher than all other probabilities, as shown by the

huge jump at 0 in Figure 9(b).

(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 9: Approximated probability density and cumulative distribution function for a digital call option

As the function for European call options, those functions lead to the suspicion, that the errors

might be normal or Gumbel distributed. In Figure 10 the plots from above are compared to the

probability density function and the cumulative distribution function of a normal distribution with

estimated parameters. There is a high coverage.

(a) PDF (b) CDF

Figure 10: Comparison of errors of a digital call option to normal distribution
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This can be observed by comparing the plots to a Gumbel distribution, too.

(a) PDF (b) CDF

Figure 11: Comparison of errors of a digital call option to Gumbel distribution

Similarly, through further analyses it might be possible, to find an appropriate distribution for

those errors.

3.2.2 Put Option

Unlike the European options, the errors for digital put options are mirrored at the x-axis compared

to those of digital call options. There is no sign changing ε in the integral for European options.

For this calculations, however, there is an ε in the ∂2F
∂s2

(t, s)-term. So, the errors change their sign.

This can be seen in the plots in Appendix A.2. The errors behave similar to those of the call

option. Consequently, the probability functions shown in Figure 21 are covered by the normal and

the Gumbel distribution with estimated parameters as well (see Figure 22 and Figure 23).

The minimal and maximal errors per σ and σ∗ do not differ essential from those of the digital

call option, except of the sign, resulting from the above mentioned cause. The tables can be seen

in Appendix B.2.
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Chapter 4

Evaluation of Risks

In this chapter different ways of measuring risks are introduced. Risk is defined as a “hazard, a

chance of bad consequences, loss or exposure to mischance” (Concise Oxford English Dictionary

2011). It is the volatility of unexpected outcomes. There are different types of risks defined. This

thesis is dealing with model risks. They are associated with using a mis-specified model. Partic-

ularly, wrong inputs and feeds are a potential problem in modeling. Traders assume parameters

to calculate the option price. In this case the volatility of the stock is a potential problem for

the model. The value cannot be observed. Wrong assumed input parameters may lead to wrong

models (Cruz 2008). In financial markets it is important to know the risk of a shortfall, which is

“an amount that is less than the level that was expected or needed” (Cambridge Online Dictio-

nary 2017b). For measuring shortfalls downside risks should be minimized. In this case positive

variations of the first integral in (23) denote shortfalls of an option. For calculating the risk of a

shortfall different risk measures were defined. Such a risk measure has three desirable properties:

Definition 2. A risk measure ρ is defined to have the following properties for any two random

variables X and Y :

1. Translation invariance: If α ∈ R, then ρ(X + α) = ρ(X) + α

2. Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y )

3. Positive homogeneity: If α ∈ R, then ρ(αX) = αρ(X)

In this chapter three risk measures are introduced, Value at Risk (see Section 4.1), conditional

Value at Risk (see Section 4.2) and Lower Partial Moments (see Section 4.3). All are evaluated for

all hedged errors and for every single σ itself (see Section 4.4).
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4.1 Value at Risk - VaR

In the end of the last century one of the most popular ways for measuring risks has been Value at

Risk (VaR) (Jorion 1997). With that the risk of all the trading positions of a financial institution

were quantified. In regard to Choudhry and Wong VaR “is the maximum loss which can occur

with α% confidence over a holding period of t days.”

Definition 3. Assume the stochastic loss X. Suppose, X follows the distribution FX . Given a

confidence level α ∈ (0, 1), V aRα[X] is defined as the α-th quantile of FX :

V aRα[X] = inf{x ∈ R : P(X > x) ≤ 1− α}

= inf{x ∈ R : 1− FX(x) ≤ 1− α}

= inf{x ∈ R : FX(x) ≥ α}.

For the simulations the risk of a shortfall is of interest. The value of the option exceeds the

amount in the portfolio when the error is positive. Hence, the confidence level should be great.

Here α = 0.95 is chosen. The VaR with α = 0.95 for all simulations are:

European call option: V aR0.95 = 6.8 European put option: V aR0.95 = 6.8

digital call option: V aR0.95 = 0.5 digital put option: V aR0.95 = 0.7

According to these values, the maximum loss with confidence level α = 0.95 for all assumed σ

is 6.8 for European options, 0.5 for digital call options and 0.7 for digital put options.

4.2 Conditional Value at Risk - CVaR

VaR is a pretty fair risk measure that is really popular in financial institutions. However, in

1999 Artzner et al. criticized VaR in their article “Coherent Measures of Risk”. They delineated

the definitions of a coherent measure of risk. VaR does not satisfy a condition of subadditivity

(see Definition 4). Thus, using VaR could lead to excess risk taking, for example by suggesting

to decrease the diversification to reduce risk. That contradicts empirical tests and fundamental

financial theory.

Additionally, VaR at a specified probability level α does not provide any information about
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the fatness of the distribution’s upper tail. New ways of risk measuring have emerged. A very

important type are coherent risk measures (Acerbi and Tasche 2001). The properties further

include subadditivity, which is defined as follows:

Definition 4. A coherent risk measure ρ is defined to have the following property additional to

those in Definition 2 for any two random variables X and Y :

4. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

One coherent risk measure is the conditional Value at Risk (CVaR), also known as expected

shortfall (ES) or Tail Expected Loss. While VaR looks on what is likely to happen, CVaR considers

how bad things will go in the most pessimistic prediction. This is done by calculating the expected

loss given that the loss exceeds V aRα[X].

Definition 5. Assume the stochastic loss X. Suppose, X follows the distribution FX . Given a

confidence level α ∈ (0, 1), CV aRα[X] is defined as:

CV aRα[X] = E[X|X ≥ V aRα[X] ]

=
1

1− α

∫ 1

α
V aRp[X] dp.

To get the CVaR for a shortfall, a confidence level of α = 0.95 is used. Following are the CVaRs

for all simulations given:

European call option: CV aR0.95 = 9.776 European put option: CV aR0.95 = 9.776

digital call option: CV aR0.95 = 0.768 digital put option: CV aR0.95 = 1.393

The expected loss given that the loss exceeds V aRα[X] for all assumed σ is 9.776 for European

options, 0.768 for digital call options and 1.393 for digital put options.

4.3 Lower Partial Moments - LPM

Lower Partial Moments (LPM) are downside-risk measures which refer only to a part of the prob-

ability density. They gather just the negative deviations from a boundary b. Thereby, they take

all information of the probability distribution into account. The boundary b could be the expected

value E[X] or an arbitrary target amount.
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Definition 6. The general function for computing a LPM of order m, m ∈ R+ and boundary b is:

LPMm(b,X) = E[max(b−X, 0)m].

The order m determines in which way the bound is scored. If the risk aversion of the investor

is high, then the order m should be high, too.

In this thesis, a shortfall will arise, if the hedged error is positive. For the simulations instead

of an LPM an Upper Partial Moment (UPM) is developed. It calculates the positive deviations

from a boundary b. The definition for such an UPM is:

Definition 7. The general function for computing a UPM of order m, m ∈ R+ and boundary b is:

UPMm(b,X) = E[max(X − b, 0)m].

The order m determines in which way the bound is scored.

For m = 0 the UPM gives the probability, that the border b gets exceeded. This results in the

following values for all simulations:

European call option: UPM0 = 0.9999 European put option: UPM0 = 0.9999

digital call option: UPM0 = 0.9998 digital put option: UPM0 = 0.9999

The theoretical result of UPM0 is 1. Due to truncation errors the practical results are deviant.

The expected deviation from b (m = 1) for all simulations is:

European call option: UPM1 = 1.42613 European put option: UPM1 = 1.42613

digital call option: UPM1 = 0.14493 digital put option: UPM1 = 0.13698

For m = 2 the expected squared deviation from b is computed:

European call option: UPM2 = 8.52 European put option: UPM2 = 8.52

digital call option: UPM2 = 0.084 digital put option: UPM2 = 0.166
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4.4 Risks for Each σ

In the preceding sections different risk measures were introduced and evaluated for all hedged

errors. In real life a trader does not have knowledge about the volatility of the stock, instead it

gets estimated. For the purpose of usage the risks for each assumed σ is necessary. Giving that

the risks for all estimations are known, a broker can assess how high the risk of a shortfall for the

estimated volatility might be.

The hedged errors for all different parameters σ can be contemplated in Appendix C.1. Below

are the VaRs for the hedged errors which occur for σ = 0.1, for which VaR is the highest.

European call option: V aR0.95 = 11.92 European put option: V aR0.95 = 11.92

digital call option: V aR0.95 = 0.92 digital put option: V aR0.95 = 2.33

The expected loss given that the loss exceeds V aRα[X] for each σ is calculated by the conditional

value at risk. Below are the CVaRs for the errors which occur for σ = 0.1, for which CVaR is the

highest.

European call option: CV aR0.95 = 15.46 European put option: CV aR0.95 = 15.46

digital call option: CV aR0.95 = 1.753 digital put option: CV aR0.95 = 3.401

For all other σ the values for VaR are in Appendix C.2.1 and for CVaR they can be considered

in Appendix C.2.2. For European options and σ = 1.0 VaR and CVaR is negative. In this case σ∗

is smaller than or equal to σ. Hence, there does not exist a shortfall.

The upper partial moments for an assumed volatility σ = 0.1 are:

m = 0

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

m = 1

European call option: UPM1 = 3.73277 European put option: UPM1 = 3.73277

digital call option: UPM1 = 0.15507 digital put option: UPM1 = 0.56593

m = 2

European call option: UPM2 = 30.235 European put option: UPM2 = 30.235

digital call option: UPM2 = 0.21 digital put option: UPM2 = 1.062
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The UPM for all other σ decreases. They can be seen in Appendix C.2.3, C.2.4 and C.2.5. For

European options and σ = 1.0, UPM1 and UPM2 are zero. As seen before, σ∗ is smaller than or

equal to σ in this case and there does not exist a shortfall. Hence, max(X − b, 0)m = 0m = 0.
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Chapter 5

Risks for Weighted Errors

In the previous chapters one could see the hedged portfolio errors for European and digital call and

put options. Different risk measures were contemplated. For all options exists a risk of a shortfall.

It was assumed that there is no knowledge about a distribution of the volatility of the stocks. But

the stock price process behaves like a random walk. Future values are independent from the past.

So, it might be possible to estimate the used volatility for pricing an option based on historical

data. A first step for rating σ is presented in this chapter.

As seen before, the considered price process S satisfies

dS(t) = µS(t) dt+ σ∗S(t) dW (t), S(0) = S0,

and it can be shown that S is

S(t) = S0e
(µ−σ2/2)t+σ∗W (t), t ≥ 0.

Let X denote the logarithm of the ratios:

X(t) := ln

(
S(t+ 1)

S(t)

)
= µ− σ2

∗
2

+ σ∗(W (t+ 1)−W (t)). (25)

This random variable is normally distributed with mean µ− σ2
∗
2 and variance σ2

∗.

Considering the stock price random variables at times t = 0, 1, . . . ,m,m+1,m+2, . . . ,m+n+1

and using the logarithm of the ratios as in (25) one can break this into two collections:

{X(0), X(1), . . . , X(m− 1)} and {X(m), X(m+ 1), . . . , X(m+ n)} .

These collections are independent because the increments of the Brownian motion are indepen-
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dent. The first collection can be thought of as historical values and the second as the future. One

could use the first collection to estimate the value of σ2
∗ using the sample variance σ̂2. This gives

an unbiased estimator. It turns out, that σ̂2 is χ-squared distributed:

σ̂2 ∼ σ2
∗

n− 1
χ2
n−1.

Based on historical data a trader or broker might estimate the volatility for pricing an option.

This leads to an additional interpretation of the hedged errors. Resting on the previous observations

the distribution for the volatility can be calculated. The hedged portfolio errors from Chapter 3

can be weighted by the appropriate probability of using a particular σ. In this thesis it is assumed,

that eleven historical stock values (n = 11) are known.

In Figure 12 (on three pages) one can see the weighted errors for European call options and

those the other options are presented in Appendix D. The probability for a specific volatility is a

value between 0 and 1. The weighted errors get multiplied by the probability. So, they are smaller

than the hedged errors in Chapter 3. As seen there, the errors for σ less than σ∗ are positive and

for σ greater than σ∗ they are negative. While a negative divergence from zero implies a surplus,

positive discrepancies imply a shortfall. The risk for a shortfall is analyzed afterwards.

(a) σ∗ = 0.1 (b) σ∗ = 0.2
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(c) σ∗ = 0.3 (d) σ∗ = 0.4

(e) σ∗ = 0.5 (f) σ∗ = 0.6

(g) σ∗ = 0.7 (h) σ∗ = 0.8
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(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 12: Weighted errors per σ for a European call option with different σ∗

The approximated probability density and cumulative distribution functions are plotted in

Figure 13. The relative probability, that an error with value within xi and xi+1 with ∆x = 0.0001

occurs, is shown in Figure 13(a). In this graph f(0) = 5648 is not plotted. It is much higher than

all other values. The huge jump at 0 in Figure 13(b) expresses that behavior. About 50% of all

errors are zero.

(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 13: Approximated probability density and cumulative distribution function for weighted errors of a European
call option

Still there occur errors greater than zero. As explained previously, positive deviations from zero

imply a shortfall. Applying the risk measure from Section 4.1, 4.2, and 4.3 gives an appraisal of

how high the risks for shortfalls are.
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The Upper Partial Moment (UPM) with border b = 0 and order m = 0 is one for all options.

So, there are positive deviations from zero for all options and the probability that there might be

a shortfall is one.

European call option: UPM0 = 1.0 European put option: UPM0 = 1.0

digital call option: UPM0 = 1.0 digital put option: UPM0 = 1.0

How high the risks for different measurements are can be seen below.

European call option: V aR0.95 = 0.00483 European put option: V aR0.95 = 0.00483

digital call option: V aR0.95 = 0.00101 digital put option: V aR0.95 = 0.00027

European call option: CV aR0.95 = 0.01 European put option: CV aR0.95 = 0.01

digital call option: CV aR0.95 = 0.001 digital put option: CV aR0.95 = 0.001

European call option: UPM1 = 0.001 European put option: UPM1 = 0.001

digital call option: UPM1 = 0.0 digital put option: UPM1 = 0.0

European call option: UPM2 = 0.0 European put option: UPM2 = 0.0

digital call option: UPM2 = 0.0 digital put option: UPM2 = 0.0

With 95% confidence the maximum loss which can occur (VaR) is 0.00483 for European options,

0.00101 for digital call options and 0.00027 for digital put options. In the most pessimistic prediction

(CVaR) the risk for European options is 0.01 and 0.001 for digital options. The expected deviation

from zero (UPM1) is 0.001 for European options and zero for digital options. For all options the

expected squared deviation from zero (UPM2) is zero.

Knowing a distribution for the volatility of the underlying asset can narrow the risk for a

shortfall. Now, it might be interesting to analyze how much a higher amount of historical values

may affect the risk for shortfalls. Maybe it is possible to eliminate the risk by using enough data

points.
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Chapter 6

Conclusion

6.1 Summary

In this thesis the influence of volatility in the Black-Scholes model was analyzed. The model is used

to calculate the theoretical price of European options. There are a few assumptions. One of those is

a constant volatility. The real volatility of a stock or a portfolio is not predictable. For calculation

purposes, it is assumed by a broker. This approximation may not match with the development in

real life. Simulating different stocks and using an assumed volatility (σ) and the real one (σ∗), led

to the results, that there are risks for shortfalls.

For European call and put options the errors in the computation behave alike. In the case,

where σ = σ∗ the errors are zero. But if σ is smaller than σ∗, the errors are positive. Those imply

a shortfall. The option exceeds the amount of cash that is available. If σ is greater than σ∗, the

errors are negative and imply a surplus.

In difference to that, it is not possible to say, that all errors of digital call options are positive

for σ smaller than σ∗ or negative for σ greater than σ∗. For both cases the errors are positive and

negative. The greater the difference between σ and σ∗ is, the bigger are the absolute values. Hence,

for all σ and σ∗ occur positive errors and consequently, for all combinations of σ and σ∗ except

of σ = σ∗ it is possible to have a shortfall. The errors for digital put options are mirrored at the

x-axis compared to those of digital call options.

Additionally, the approximated probability density functions of all options were compared with

a normal and a Gumbel distribution with estimated parameters. Both covered the calculated

errors well. So, it might be possible to calculate the probability of a portfolio error with one of
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these distributions.

In Chapter 4 three different risk measures were discussed: the Value at Risk (VaR), the con-

ditional Value at Risk (CVaR) and the Lower or Upper Partial Moments (UPM). The risk of a

shortfall was of interest. VaR measures the worst expected loss. For a confidence level of α = 0.95

and for all assumed σ this was 6.8 for European options, 0.5 for digital call options and 0.7 for

digital put options. CVaR computes the expected loss, given that the loss exceeds VaR. In the

most pessimistic prediction CVaR considers how bad things will go. For a confidence level α = 0.95

CVaR was 9.776 for European options, 0.768 for a digital call option and 1.393 for a digital put

option. UPMs gather the deviations from a boundery b. The expected deviation from b = 0 for all

simulations is 1.426 for European options, 0.145 for digital call options and 0.137 for digital put

options.

Further the risks for individual assumed volatilities σ were computed. For σ = 0.1 the risks

are the highest. They decrease for all other σ. The broker does not have knowledge about the real

volatility of the stock. With this computations it is possible to get a notion of how high the risk of

a shortfall for the chosen estimated volatility is.

Based on historical data it is possible to estimate the volatility of the underlying asset. As

stated in Chapter 5 the estimator for σ2
∗ is χ-squared distributed. Weighting the hedged errors by

the probability of using a particular σ results in smaller errors and many errors equal zero. Hence,

the risk of getting a shortfall narrowed, but it might exist for all options. For European options

V aR0.95 is equal to 0.00483. The maximum loss that can occur is 0.00101 for digital call options and

0.00027 for digital put options. The CV aR0.95 for European options is 0.01 and 0.001 for digital

options. For European options the expected deviation from zero is 0.001 and for digital options it is

zero. The squared deviation from zero is zero for all options considered in this thesis. So, knowing

the distribution of the volatility of the underlying stock can reduce the risk for a shortfall.

In summary, calculating option prices with a wrong assumed volatility might end in a shortfall.

How high a risk is depends, among others, on the used σ and the real volatility. By estimating the

used σ from historical data the risk of a shortfall can be scaled-down.
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6.2 Further Investigations

The results in this thesis were for very special input values. A stock starting value of S0 = 20

and a striking price of K = 16 were assumed. Additionally, the risk-free rate was supposed to

be r = 0. For further improvements one could calculate the errors for different r and other input

values. Another option is to analyze more theoretically.

A further analysis might bring clarity to the assumptions of the probability distribution. Maybe,

it is possible to find an appropriate one for those errors.

As seen above, the risk of a shortfall can be minimized by estimating the assumed volatility.

The estimator σ̂2 is χ-squared distributed. Within further investigations one might find out in

what extent a change of the degrees of freedom affect the risk of a shortfall. In this thesis 10

historical stock values (n = 11) were assumed. Naturally the question arises, whether it is possible

to eliminate the risk of a shortfall by using enough historical values.
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Appendix A

Plots of Errors for σ of Different Simulations

A.1 European Put Option

(a) σ∗ = 0.1 (b) σ∗ = 0.2

(c) σ∗ = 0.3 (d) σ∗ = 0.4
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(e) σ∗ = 0.5 (f) σ∗ = 0.6

(g) σ∗ = 0.7 (h) σ∗ = 0.8

(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 14: Hedged portfolio errors per σ for a European put option with different σ∗

47



Figure 15: Range of hedged errors per σ∗ for a European put option

(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 16: Approximated probability density and cumulative distribution function for a European put option
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(a) PDF (b) CDF

Figure 17: Comparison of errors of a European put option to Normal distribution

(a) PDF (b) CDF

Figure 18: Comparison of errors of a European put option to Gumbel distribution
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A.2 Digital Put Option

(a) σ∗ = 0.1 (b) σ∗ = 0.2

(c) σ∗ = 0.3 (d) σ∗ = 0.4

(e) σ∗ = 0.5 (f) σ∗ = 0.6
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(g) σ∗ = 0.7 (h) σ∗ = 0.8

(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 19: Hedged portfolio errors per σ for a digital put option with different σ∗
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Figure 20: Range of hedged errors per σ∗ for a digital put option

(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 21: Approximated probability density and cumulative distribution function for a digital put option
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(a) PDF (b) CDF

Figure 22: Comparison of errors of a digital put option to Normal distribution

(a) PDF (b) CDF

Figure 23: Comparison of errors of a digital put option to Gumbel distribution
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Appendix B

Tables of Minimum and Maximum Errors for

σ of Different Simulations

B.1 European Put Option

σ 0.1 0.2 0.3 0.4 0.5

σ∗ min max min max min max min max min max

0.1 −0.0 0.0 −1.26317 −0.20272 −2.29893 −0.62572 −3.29365 −1.21195 −4.24101 −1.91469

0.2 0.01725 1.74193 −0.0 0.0 −1.37948 −0.2881 −2.54286 −0.6728 −3.5895 −1.17719

0.3 0.03103 3.95978 0.10827 1.7183 −0.0 0.0 −1.41563 −0.32582 −2.68168 −0.70953

0.4 0.04576 6.43765 0.16839 3.82998 0.18028 1.71909 −0.0 0.0 −1.46822 −0.2521

0.5 0.06153 8.79896 0.21586 5.95566 0.28417 3.63902 0.15769 1.68743 −0.0 0.0

0.6 0.0786 13.68867 0.2632 9.16158 0.37344 5.87134 0.261 3.62161 0.13984 1.69377

0.7 0.09748 15.72432 0.3141 11.48889 0.46387 8.36547 0.34761 5.81608 0.2392 3.66835

0.8 0.11874 20.84193 0.36935 14.90892 0.55814 10.85935 0.43068 8.14752 0.32273 5.76965

0.9 0.14294 22.02865 0.42886 16.52301 0.65563 12.68412 0.51477 9.81151 0.4007 7.41496

1.0 0.17058 23.15056 0.49293 17.17745 0.75632 15.44842 0.60077 12.94376 0.47764 10.27263

σ 0.6 0.7 0.8 0.9 1.0

σ∗ min max min max min max min max min max

0.1 −5.16345 −2.6832 −6.04396 −3.48492 −6.88422 −4.29916 −7.68423 −5.11172 −8.44617 −5.91205

0.2 −4.61004 −1.78796 −5.5942 −2.47496 −6.52925 −3.20922 −7.40969 −3.96793 −8.2379 −4.73422

0.3 −3.84038 −1.17984 −4.92047 −1.73908 −5.92255 −2.36188 −6.85537 −2.89681 −7.72461 −3.42139

0.4 −2.77036 −0.56958 −3.94844 −0.93235 −5.05927 −1.32116 −6.12589 −1.72149 −7.11762 −2.12297

0.5 −1.47025 −0.19815 −2.82984 −0.43597 −4.08846 −0.70478 −5.2506 −0.9936 −6.32478 −1.29238

0.6 −0.0 0.0 −1.4998 −0.16272 −2.84257 −0.34831 −4.05612 −0.55281 −5.16187 −0.77021

0.7 0.12488 1.74405 −0.0 0.0 −1.57478 −0.13715 −3.00006 −0.28642 −4.29473 −0.44578

0.8 0.21878 3.63057 0.11191 1.71712 −0.0 0.0 −1.56533 −0.11748 −3.04521 −0.24018

0.9 0.29856 5.27866 0.19966 3.3392 0.10044 1.59774 −0.0 0.0 −1.51064 −0.10165

1.0 0.37215 7.75293 0.27515 5.47548 0.18177 3.44154 0.09016 1.62599 −0.0 0.0

Table 3: Minimum and maximum hedged errors for a European put option

B.2 Digital Put Option

σ 0.1 0.2 0.3 0.4 0.5

σ∗ min max min max min max min max min max

0.1 −0.0 0.0 −0.69596 0.33553 −0.81909 0.39598 −0.84093 0.4089 −0.86144 0.38057

0.2 −0.43874 0.93597 −0.0 0.0 −0.38146 0.28152 −0.56269 0.41608 −0.66098 0.4583

0.3 −1.14688 2.23362 −0.29879 0.75207 −0.0 0.0 −0.40826 0.14206 −0.60346 0.21797

0.4 −1.1118 3.85218 −0.60089 1.45442 −0.30849 0.56028 −0.0 0.0 −0.3554 0.17327

0.5 −4.05266 2.78322 −1.81307 1.53309 −0.58599 0.81913 −0.14907 0.32932 −0.0 0.0

0.6 −1.9838 4.57163 −1.11357 2.31187 −0.77661 1.38601 −0.55312 0.73243 −0.24524 0.29455

0.7 −2.22838 6.44623 −1.10072 3.7527 −0.60759 2.06799 −0.31489 1.18136 −0.17748 0.67626

0.8 −3.16849 5.57665 −2.02159 2.53266 −1.08427 1.68064 −0.5402 1.21509 −0.27258 0.79377

0.9 −3.97245 5.44333 −1.73042 3.4115 −1.10118 2.27686 −0.75955 1.64622 −0.5092 1.16224

1.0 −4.06376 5.7122 −2.02218 2.94918 −1.33377 1.63871 −0.86331 1.2812 −0.58233 1.03195

σ 0.6 0.7 0.8 0.9 1.0

σ∗ min max min max min max min max min max

0.1 −0.85372 0.33226 −0.83539 0.27671 −0.8148 0.22049 −0.82985 0.1666 −0.84713 0.14307

0.2 −0.74035 0.44978 −0.81845 0.41522 −0.87075 0.36862 −0.90729 0.31761 −0.93459 0.26625

0.3 −0.79246 0.25453 −0.91565 0.26901 −0.98766 0.27012 −1.02661 0.26181 −1.04503 0.24641

0.4 −0.554 0.24387 −0.6606 0.25682 −0.71692 0.24026 −0.75958 0.20948 −0.84994 0.17255

0.5 −0.21036 0.11137 −0.35326 0.19352 −0.45884 0.24473 −0.54089 0.27144 −0.60576 0.28106

0.6 −0.0 0.0 −0.20292 0.1606 −0.34652 0.26673 −0.46836 0.34257 −0.568 0.38583

0.7 −0.0741 0.28913 −0.0 0.0 −0.21727 0.05413 −0.38315 0.10043 −0.51204 0.13708

0.8 −0.12523 0.45694 −0.04726 0.21292 −0.0 0.0 −0.18678 0.03256 −0.34621 0.05582

0.9 −0.33829 0.75885 −0.19917 0.43591 −0.08753 0.18751 −0.0 0.0 −0.14186 0.06713

1.0 −0.39577 0.76856 −0.25057 0.57006 −0.13962 0.38601 −0.05787 0.18987 −0.0 0.0

Table 4: Minimum and maximum hedged errors for a Digital put option
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Appendix C

Plots and Risk Measures for σ

C.1 Plots for σ

C.1.1 Plots for European call option

(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.4
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(e) σ = 0.5 (f) σ = 0.6

(g) σ = 0.7 (h) σ = 0.8

(i) σ = 0.9 (j) σ = 1.0

Figure 24: Hedged portfolio errors per σ∗ for a European call option with different σ
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C.1.2 Plots for European put option

(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.4

(e) σ = 0.5 (f) σ = 0.6
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(g) σ = 0.7 (h) σ = 0.8

(i) σ = 0.9 (j) σ = 1.0

Figure 25: Hedged portfolio errors per σ∗ for a European put option with different σ
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C.1.3 Plots for digital call option

(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.4

(e) σ = 0.5 (f) σ = 0.6
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(g) σ = 0.7 (h) σ = 0.8

(i) σ = 0.9 (j) σ = 1.0

Figure 26: Hedged portfolio errors per σ∗ for a digital call option with different σ
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C.1.4 Plots for digital put option

(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.4

(e) σ = 0.5 (f) σ = 0.6
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(g) σ = 0.7 (h) σ = 0.8

(i) σ = 0.9 (j) σ = 1.0

Figure 27: Hedged portfolio errors per σ∗ for a digital put option with different σ
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C.2 Risk Measures for all σ

C.2.1 Value at Risk for all σ

σ = 0.1

European call option: V aR0.95 = 11.92 European put option: V aR0.95 = 11.92

digital call option: V aR0.95 = 0.92 digital put option: V aR0.95 = 2.33

σ = 0.2

European call option: V aR0.95 = 10.61 European put option: V aR0.95 = 10.61

digital call option: V aR0.95 = 0.46 digital put option: V aR0.95 = 1.36

σ = 0.3

European call option: V aR0.95 = 8.54 European put option: V aR0.95 = 8.54

digital call option: V aR0.95 = 0.4 digital put option: V aR0.95 = 0.87

σ = 0.4

European call option: V aR0.95 = 6.85 European put option: V aR0.95 = 6.85

digital call option: V aR0.95 = 0.44 digital put option: V aR0.95 = 0.62

σ = 0.5

European call option: V aR0.95 = 5.21 European put option: V aR0.95 = 5.21

digital call option: V aR0.95 = 0.5 digital put option: V aR0.95 = 0.4

σ = 0.6

European call option: V aR0.95 = 3.82 European put option: V aR0.95 = 3.82

digital call option: V aR0.95 = 0.56 digital put option: V aR0.95 = 0.27

σ = 0.7

European call option: V aR0.95 = 2.7 European put option: V aR0.95 = 2.7

digital call option: V aR0.95 = 0.61 digital put option: V aR0.95 = 0.18

σ = 0.8

European call option: V aR0.95 = 1.55 European put option: V aR0.95 = 1.55

digital call option: V aR0.95 = 0.65 digital put option: V aR0.95 = 0.13

σ = 0.9

European call option: V aR0.95 = 0.74 European put option: V aR0.95 = 0.74

digital call option: V aR0.95 = 0.68 digital put option: V aR0.95 = 0.09

σ = 1.0

European call option: V aR0.95 = −0.01 European put option: V aR0.95 = −0.01

digital call option: V aR0.95 = 0.71 digital put option: V aR0.95 = 0.07
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C.2.2 Conditional Value at Risk for all σ

σ = 0.1

European call option: CV aR0.95 = 15.46 European put option: CV aR0.95 = 15.46

digital call option: CV aR0.95 = 1.753 digital put option: CV aR0.95 = 3.401

σ = 0.2

European call option: CV aR0.95 = 12.83 European put option: CV aR0.95 = 12.83

digital call option: CV aR0.95 = 0.947 digital put option: CV aR0.95 = 1.902

σ = 0.3

European call option: CV aR0.95 = 10.474 European put option: CV aR0.95 = 10.474

digital call option: CV aR0.95 = 0.667 digital put option: CV aR0.95 = 1.218

σ = 0.4

European call option: CV aR0.95 = 8.426 European put option: CV aR0.95 = 8.426

digital call option: CV aR0.95 = 0.565 digital put option: CV aR0.95 = 0.84

σ = 0.5

European call option: CV aR0.95 = 6.626 European put option: CV aR0.95 = 6.626

digital call option: CV aR0.95 = 0.578 digital put option: CV aR0.95 = 0.587

σ = 0.6

European call option: CV aR0.95 = 4.987 European put option: CV aR0.95 = 4.987

digital call option: CV aR0.95 = 0.634 digital put option: CV aR0.95 = 0.403

σ = 0.7

European call option: CV aR0.95 = 3.513 European put option: CV aR0.95 = 3.513

digital call option: CV aR0.95 = 0.68 digital put option: CV aR0.95 = 0.272

σ = 0.8

European call option: CV aR0.95 = 2.196 European put option: CV aR0.95 = 2.196

digital call option: CV aR0.95 = 0.717 digital put option: CV aR0.95 = 0.191

σ = 0.9

European call option: CV aR0.95 = 1.063 European put option: CV aR0.95 = 1.063

digital call option: CV aR0.95 = 0.75 digital put option: CV aR0.95 = 0.15

σ = 1.0

European call option: CV aR0.95 = −0.01 European put option: CV aR0.95 = −0.01

digital call option: CV aR0.95 = 0.777 digital put option: CV aR0.95 = 0.141
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C.2.3 Upper Partial Moments with m = 0 for all σ

σ = 0.1

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 0.2

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.998 digital put option: UPM0 = 0.999

σ = 0.3

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 0.4

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 0.5

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 0.6

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 0.7

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 0.8

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 0.9

European call option: UPM0 = 0.999 European put option: UPM0 = 0.999

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999

σ = 1.0

European call option: UPM0 = 0.9 European put option: UPM0 = 0.9

digital call option: UPM0 = 0.999 digital put option: UPM0 = 0.999
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C.2.4 Upper Partial Moments with m = 1 for all σ

σ = 0.1

European call option: UPM1 = 3.73277 European put option: UPM1 = 3.73277

digital call option: UPM1 = 0.15507 digital put option: UPM1 = 0.56593

σ = 0.2

European call option: UPM1 = 3.18296 European put option: UPM1 = 3.18296

digital call option: UPM1 = 0.0972 digital put option: UPM1 = 0.30466

σ = 0.3

European call option: UPM1 = 2.48589 European put option: UPM1 = 2.48589

digital call option: UPM1 = 0.09226 digital put option: UPM1 = 0.18028

σ = 0.4

European call option: UPM1 = 1.84293 European put option: UPM1 = 1.84293

digital call option: UPM1 = 0.09791 digital put option: UPM1 = 0.11359

σ = 0.5

European call option: UPM1 = 1.29313 European put option: UPM1 = 1.29313

digital call option: UPM1 = 0.11224 digital put option: UPM1 = 0.0745

σ = 0.6

European call option: UPM1 = 0.84354 European put option: UPM1 = 0.84354

digital call option: UPM1 = 0.13104 digital put option: UPM1 = 0.04872

σ = 0.7

European call option: UPM1 = 0.493 European put option: UPM1 = 0.493

digital call option: UPM1 = 0.15322 digital put option: UPM1 = 0.03156

σ = 0.8

European call option: UPM1 = 0.23898 European put option: UPM1 = 0.23898

digital call option: UPM1 = 0.17798 digital put option: UPM1 = 0.02068

σ = 0.9

European call option: UPM1 = 0.07666 European put option: UPM1 = 0.07666

digital call option: UPM1 = 0.20414 digital put option: UPM1 = 0.0144

σ = 1.0

European call option: UPM1 = 0.0 European put option: UPM1 = 0.0

digital call option: UPM1 = 0.23135 digital put option: UPM1 = 0.01146
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C.2.5 Upper Partial Moments with m = 2 for all σ

σ = 0.1

European call option: UPM2 = 30.235 European put option: UPM2 = 30.235

digital call option: UPM2 = 0.21 digital put option: UPM2 = 1.062

σ = 0.2

European call option: UPM2 = 21.887 European put option: UPM2 = 21.887

digital call option: UPM2 = 0.061 digital put option: UPM2 = 0.326

σ = 0.3

European call option: UPM2 = 14.268 European put option: UPM2 = 14.268

digital call option: UPM2 = 0.037 digital put option: UPM2 = 0.13

σ = 0.4

European call option: UPM2 = 8.752 European put option: UPM2 = 8.752

digital call option: UPM2 = 0.035 digital put option: UPM2 = 0.059

σ = 0.5

European call option: UPM2 = 4.997 European put option: UPM2 = 4.997

digital call option: UPM2 = 0.043 digital put option: UPM2 = 0.028

σ = 0.6

European call option: UPM2 = 2.575 European put option: UPM2 = 2.575

digital call option: UPM2 = 0.056 digital put option: UPM2 = 0.013

σ = 0.7

European call option: UPM2 = 1.133 European put option: UPM2 = 1.133

digital call option: UPM2 = 0.072 digital put option: UPM2 = 0.006

σ = 0.8

European call option: UPM2 = 0.38 European put option: UPM2 = 0.38

digital call option: UPM2 = 0.089 digital put option: UPM2 = 0.003

σ = 0.9

European call option: UPM2 = 0.071 European put option: UPM2 = 0.071

digital call option: UPM2 = 0.107 digital put option: UPM2 = 0.002

σ = 1.0

European call option: UPM2 = 0.0 European put option: UPM2 = 0.0

digital call option: UPM2 = 0.127 digital put option: UPM2 = 0.001
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Appendix D

Plots of Weighted Errors

D.1 European Put Option

(a) σ∗ = 0.1 (b) σ∗ = 0.2

(c) σ∗ = 0.3 (d) σ∗ = 0.4
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(e) σ∗ = 0.5 (f) σ∗ = 0.6

(g) σ∗ = 0.7 (h) σ∗ = 0.8

(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 28: Weighted errors per σ for a European put option with different σ∗
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(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 29: Approximated probability density and cumulative distribution function for weighted errors of a European
put option

D.2 Digital Call Option

(a) σ∗ = 0.1 (b) σ∗ = 0.2

(c) σ∗ = 0.3 (d) σ∗ = 0.4
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(e) σ∗ = 0.5 (f) σ∗ = 0.6

(g) σ∗ = 0.7 (h) σ∗ = 0.8

(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 30: Weighted errors per σ for a digital call option with different σ∗
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(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 31: Approximated probability density and cumulative distribution function for weighted errors of a digital
call option

D.3 Digital Put Option

(a) σ∗ = 0.1 (b) σ∗ = 0.2

(c) σ∗ = 0.3 (d) σ∗ = 0.4
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(e) σ∗ = 0.5 (f) σ∗ = 0.6

(g) σ∗ = 0.7 (h) σ∗ = 0.8

(i) σ∗ = 0.9 (j) σ∗ = 1.0

Figure 32: Weighted errors per σ for a digital put option with different σ∗
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(a) Approximated probability density function (b) Approximated cumulative distribution function

Figure 33: Approximated probability density and cumulative distribution function for weighted errors of a digital
put option
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