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ABSTRACT 

TERROIR STUDIES IN WASHINGTON AND WISCONSIN AMERICAN VITICULTURAL 

AREAS 

by  

Snejana Karakis 

The University of Wisconsin-Milwaukee, 2017 
Under the Supervision of Professor Barry Cameron 

 
 

The concept of terroir has been evaluated since the 12th century, when Cistercian monks 

from Burgundy realized that the physical environment in which grapes are grown has a major 

influence on the character and quality of the resulting wine.  These environmental conditions 

affecting grape and wine quality are known as terroir in viticulture and have become increasingly 

important in the grape growing and wine industry.  In this dissertation, three studies investigating 

the terroir of vineyards located in Washington and Wisconsin American Viticultural Areas 

(AVAs), which are defined by the Alcohol and Tobacco Tax and Trade Bureau (TTB) as delimited 

grape-growing regions having distinguishing features and defined boundaries, are presented.  The 

research objective was to understand and evaluate the interplay of the environmental factors that 

influence the character and quality of grapes and wines produced in vineyards from Washington 

and Wisconsin AVAs.  These two AVAs have drastically different climates, with the Washington 

site hosting a xeric to aridic soil moisture regime, and the Wisconsin site having an udic soil 

moisture regime, allowing for the assessment of climate influence on the interrelated properties of 

the soil and vine.   

In Chapter 2, the terroir of historic Wollersheim Winery, the only winery within the 

confines of the Lake Wisconsin AVA, is examined to understand the interplay of environmental 



iii 

factors influencing the character and quality as well as the variability of Wollersheim wines.  Soil 

texture, chemistry, and mineralogy in conjunction with precision viticulture tools such as 

electromagnetic induction and electrical resistivity tomography surveys, are utilized in the 

Wollersheim Winery terroir characterization and observation of spatially variable terroir at the 

vineyard scale.  Establishing and comparing areas of variability at the plot level for two specific 

vineyard plots (Domaine Reserve and Lot 19) at Wollersheim Winery provides insight into the 

effects of soil properties and land characteristics on grape and wine production using precision 

viticulture tools.   

In Chapter 3, the source of water acquired by grapevines during the critical phenological 

stages of the 2015 growing season is evaluated using stable isotopes oxygen and hydrogen in water 

at Wollersheim Winery’s vineyard plot Lot 19.  The stable isotope analyses of source and vine 

water provide insight into seasonal water use, vine water uptake processes, and active rooting 

zones and the role of water in the vine ecological and physiological processes during the growing 

season to support development of efficient irrigation strategies while managing grape and wine 

quality.  The seasonal vine water use trend supports a variable functional rooting depth for water 

acquisition by the vines during the different phenological stages, with rain water as a preferential 

source during the spring months and a root system developed to reach for water progressively 

deeper as the growing season advances as greater storage of water is found in deeper soil in the 

autumn months.   

Chapter 4 presents a regional scale reconnaissance survey that examines the relationships 

between soil characteristics and the phenolic compound concentrations of Syrah grapes collected 

during the 2014 harvest from 11 vineyards planted across four different terroirs in the Walla Walla 

Valley AVA in an assessment of the useful application of the terroir construct at this scale.  Soil 
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properties, including drainage, depth, available water-holding capacity (AWC), texture, bulk and 

plant available chemistry, and mineralogy in conjunction with concentrations of grape phenolic 

compounds, including tannin, polymeric and total anthocyanins, quercetin glycosides, and catechin 

are assessed to explore the link between vineyard soil and grape chemistry.  The relationships 

between soil characteristics and phenolic compounds of Syrah grapes from the Walla Walla Valley 

AVA vineyards, generally indicate that although the four terroirs have distinctly different soil 

properties, the grape phenolic concentrations reveal only subtle variations; overall, these minor 

differences show higher concentrations of phenolics may be associated with vineyards that feature 

soils exhibiting the influence of basalt from weathered basalt bedrock or basalt-derived alluvium.  

The study demonstrates that large scale characterizations at the AVA level can be limited by the 

variability of soil properties at the vineyard level.   
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1.0   Chapter I: General Introduction 

1.1 Terroir Background 

The cultivation of grapes and production of wine have a long history.  Wine residue on 

7000-year-old pottery jars found in a Neolithic village in Iran is evidence that viticulture and 

winemaking date back as far as civilization itself (McGovern et al. 1996).  The term "terroir" has its 

origin in the vineyards of 12th century Burgundy, France, and can be defined as the unique 

characteristics of a vineyard imparting their essence into the character and quality of the grapes 

grown and wine produced in that vineyard.  This unique collection of physical attributes includes 

factors such as the geology, soils, landscape, and climate of a place.  In addition to these physical 

environment elements, the human factors involved in winemaking, such as vineyard management, 

viticultural practices, and vinification techniques also contribute to the character and quality of a 

wine.  Terroir is the result of the relationship and interaction of the physical elements and human 

factors involved in the making of a wine.  Simply stated, terroir is the distinct “taste of place”, the 

quality that gives a wine its unique character.   

The conceptual development of terroir is best exemplified by the simple occurrence of 

adjacent vineyards in the Burgundy region of France, examined since the 12th century by Cistercian 

monks who created the “Clos de Vougeot,” Burgundy's largest stonewall surrounded vineyard.  The 

French monks of Burgundy were the first to notice that different vineyard plots produced consistently 

different wines (Wilson 1998; Haynes 1999; White et al. 2009).  Through trial and error, they 

realized that certain grape varieties produce better wines if planted in certain areas.  The legacy of 

the French monks of Burgundy shaped the development of the Burgundy vineyards hierarchy of 

appellations, including the Grand Cru, Premier Cru, and Commune, which are indicative of relative 

quality. 
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In the Old World, which includes the European regions with a long documented history of 

wine making, the emphasis is placed on the vineyard site, allowing the natural components of terroir 

to be expressed in the wines.  The Old World wine regions have some of the most distinctive terroirs, 

each producing very diverse styles of wine even within their own boundaries.  In the Old World, the 

vineyard site is much more important than the winemaker, and the role of terroir dominates.  In the 

New World of wine, which includes wine regions such as the United States, Australia, South 

America, and South Africa, where the role of terroir is still developing, the emphasis is placed on 

applying the best viticultural management practices and wine technology to produce great wines 

(White et al. 2009).  These practices have significantly improved the quality of wines, although they 

have resulted in a more homogenized style of wines, often lacking the distinguishing characteristics 

or expressiveness of terroir.   

Although high quality wines are produced in various terroirs across the world’s grape-

growing regions, there are some generally-established factors for high terroir potential.  For example, 

vines grow best at latitudes within the world’s temperate climate belts, at elevations that allow full 

ripening at the end of the growing season; thus, cultivated varieties selected according to the 

appropriate climatic conditions (i.e., early ripening varieties in cool climates and late ripening 

varieties in warm climates) will produce the highest quality grapes.  Steep, south facing slopes (in 

the Northern hemisphere, north facing slopes in the Southern hemisphere) maximizing solar 

radiation; close proximity to bodies of water, moderating the climate; and well drained soils, 

inducing a moderate water deficit, are all recognized desirable terroir factors. 

Initially, the concept of terroir was evaluated simply based on empirical knowledge, as grape 

growers and winemakers observed the variation in the quality of grapes and wines produced in 

certain areas within and between vineyards.  Subsequently, terroir studies took a more scientific, 
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analytical approach in examining the interaction between the physical and environmental conditions 

of a vineyard site and the quality of grapes and wine.  The first scientific studies assessing the concept 

of terroir originated in France in the early 1970s with publications by Dr. Gerard Seguin of the 

University of Bordeaux.  Currently, terroir research studies are conducted in most wine regions of 

the world.  Many studies have been focused on the various aspects of terroir, such as climate 

(Winkler et al. 1974, Gladstones 1992, Jones 2006), soil (Seguin 1986, White, R. 2009), and 

cultivated varieties (van Leeuwen 2004), while more recent studies have been concentrated on wine 

chemistry, sensory attributes and wine composition, and fingerprinting and geographical origin 

identification of wines. 

Some of the most notable terroir publications include James Wilson’s textbook Terroir – The 

Role of Geology, Climate, and Culture in the Making of French Wines published in 1998, in which 

the role of vineyard geology is emphasized as the foundation of the soil and subsoil through which 

the vines grow and the defining factor for topography and landforms, which collectively influence 

the drainage and microclimate environment of vines.  Another publication, Fine Wine and Terroir, 

dedicated to Dr. Simon Haynes, who is regarded as the godfather of terroir studies in North America, 

is a collection of nineteen papers that highlight the significance and history of terroir, and evaluate 

particular aspects of terroir or terroir components.  These studies established a scientific approach 

and some of the first quantitative methods of studying terroir.   

Haynes (1999) established the scientific basis for terroir studies, noting that there are five 

fundamental groups of variables influencing terroir: meteorological, physiographic, pedological, 

geological, and viticultural.  The meteorological aspect consists of variables such as the temperature 

maxima and minima, hours of sunlight, wind conditions, and rainfall.  Factors such as the landform 

type, elevation, slope aspect and grade, and slope drainage define the physiographic element of 
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terroir.  The pedological aspect includes the soil type, composition, texture, grain size, and porosity, 

soil mineralogy and chemistry, and clay mineralogy.  The geological aspect of terroir consists of the 

bedrock geology type, geochemistry, petrology, and texture, and the surface water and ground water 

flow rates and chemistry.  The components of the viticultural aspect of terroir include the trellising 

methods, row spacing, grape-bunch thinning and allowable production, use of fertilizers, tile 

draining, irrigation, and addition of soil or rock material.   

Taylor et al. (2002), Greenough et al. (2005), and Eggers et al. (2005) established a 

methodology for the identification of wines by geographical origin through geochemistry.  Trace 

element abundances and isotope ratios of soils and wines and organic compounds of wines were 

used in the chemical fingerprinting of wines based on region.  The authors demonstrated the use of 

several trace elements to identify the geographical origin of wines, linking wines to soil and grape 

variety.  The natural pattern of trace element diffusion from parent material to soil and to grapes, 

allows for the differentiation of wines based on the provenance of their soils.  Similarly, traces of 

strontium in wine can be used to track its origin, as rubidium decays into strontium in soil over time, 

the ratio of strontium to rubidium will vary in the soil, grapes, and wine from region to region.   

Bowen et al. (2004) and Jones et al. (2005) used geographic information systems (GIS) 

methods to assess site suitability by mapping viticultural areas based on the most desirable terroir 

environments.  GIS tools were applied in modelling viticultural settings by combining spatial 

information, such as zoning, elevation, slope, aspect, soil, bedrock, and climate, into a viticultural 

suitability map.  A GIS analysis can help determine the best areas of land suitable for vineyards and 

wine production, the best layout for rows, and the extent of most suitable land to expand current 

vineyards.  Identifying areas with the most desirable viticultural conditions can assist with vineyard 

planning and management, which can result in improved grape and wine quality.   
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Hubbard et al. (2003) demonstrated the use of precision viticulture methodologies in 

mapping vineyard variability.  Geophysical methods (ground penetrating radar) were applied to 

assess the variations in soil characteristics such as soil texture and associated soil water distribution, 

which can vary significantly at the vineyard or plot level.  These techniques facilitate the delineation 

of areas with similar characteristics within a vineyard, allowing differently customized management 

strategies and processes such as pruning, fertilizing, and irrigation to be implemented separately for 

different areas within a vineyard, in the interest of increasing the quality of fruit production and 

ultimately the quality of wine.   

These studies investigating the concept of terroir, refined our understanding for how 

fundamental terroir variables influence the factors governing grape and wine quality.  The studies 

presented in this dissertation build from these earlier works by integrating multiple different types 

of data collection strategies in vineyards of two distinct climates, semi-arid (Washington) and humid 

(Wisconsin), to address research questions concerning the role of soil hydrology, climate, landform, 

and cultivar on grape quality.  These studies use terroir as a scientific method, provide readily 

applicable information for grape growers to better understand the specific influences on seasonal 

fluctuations in grape quality, and further our understanding of the external controls on secondary 

metabolite development in grapes.  Through refining the understanding of explicit terroir influences 

on grapes prior to fermentation, these studies provide scientific evidence to demonstrate how grape 

quality varies as a function of environmental factors (soil, topography, landscape age, physiology of 

grapevines) and climate (year-to-year deviations from a climate normal) in two distinct AVAs.  

These insights provide highly transferrable information for grape growers and have a direct impact 

on vineyard land and crop management practices in both warm and humid temperate latitude 

climates and Mediterranean climates.   
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1.2 Research Objectives and Significance 

The research objective was to understand and evaluate the interplay of the environmental 

factors that influence the character and quality of wines produced in vineyards from Washington and 

Wisconsin AVAs, which have drastically different climates.  The Washington study site has a xeric 

to aridic soil moisture regime, and the Wisconsin site has an udic soil moisture regime, allowing for 

the assessment of climate influence on the interrelated properties of the soil and grapevine.  

Terroir as a concept lends itself well to scientific study, as it is a state factor model, which 

expresses the state of a system as a function of a set of state factors or physical conditions, which are 

independent of the system under study and theoretically may vary independently.  This set of 

physical conditions concerning terroir are often auto-correlated and include the soil and all its 

properties, the grape variety, the climate (temperature, hours of sunlight, precipitation), the landscape 

(elevation, slope, aspect), the organisms (bacterial, fungal, plant, animal interactions), and the 

vitiviniculture (vineyard management, viticultural practices, and vinification techniques).  Thus, 

terroir is a function of the soil (S) grape variety (G), climate (C), landscape (L), organisms (O), and 

vitiviniculture (V).   

Terroir = f (S, O, G, C, L, V) 

This framework guided the development of hypotheses of these studies and influenced the 

set of tests applied to each hypothesis.  In this manner, the terroir for each study site was defined, 

and the explicit variables influencing grape and wine quality were identified.   

In Chapter 2, the terroir of historic Wollersheim Winery, the only winery within the confines 

of the Lake Wisconsin AVA, is examined to understand the interplay of environmental factors 

influencing the character and quality as well as the variability of Wollersheim wines.  In Chapter 3, 

a focused study on vineyard plot Lot 19 at Wollersheim Winery evaluates the source of water 
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acquired by grapevines during key phenological stages over the 2015 growing season using stable 

isotopes oxygen and hydrogen in water.  Chapter 4 presents a regional scale reconnaissance survey 

that examines the relationships between soil characteristics and the phenolic compound 

concentrations of Syrah grapes collected during the 2014 harvest from 11 vineyards planted across 

four different terroirs in the Walla Walla Valley AVA in an assessment of the useful application of 

the terroir construct at this scale.   
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2.0   Chapter II: Terroir of Historic Wollersheim Winery, Lake Wisconsin 

AVA, Prairie du Sac, Wisconsin 

Based on: Karakis, S., Cameron, B., and Kean, W., 2016. Geology and Wine 14. Terroir of 
Historic Wollersheim Winery, Lake Wisconsin American Viticultural Area. Geoscience Canada, 
43(4), 265-282. doi: https://doi.org/10.12789/geocanj.2016.43.107 
 

2.1 Abstract 

The viticultural history of Wisconsin started in the 1840s, with the very first vine plantings 

by Hungarian Agoston Haraszthy on the Wollersheim Winery property located in the Lake 

Wisconsin American Viticultural Area (AVA). This study examines the terroir of historic 

Wollersheim Winery, the only winery within the confines of the Lake Wisconsin AVA, to 

understand the interplay of environmental factors influencing the character and quality as well as 

the variability of Wollersheim wines. Soil texture, chemistry, and mineralogy in conjunction with 

precision viticulture tools such as electromagnetic induction and electrical resistivity tomography 

surveys, are utilized in the Wollersheim Winery terroir characterization and observation of 

spatially variable terroir at the vineyard scale. Establishing and comparing areas of variability at 

the plot level for two specific vineyard plots (Domaine Reserve and Lot 19) at Wollersheim 

Winery provides insight into the effects of soil properties and land characteristics on grape and 

wine production using precision viticulture tools. 

The viticultural future of Wisconsin looks quite favorable, as the number of wineries keeps 

rising to meet the demand for Wisconsin wine and local consumption. As climate change continues 

to affect the grape varieties cultivated across the world’s wine regions, more opportunities arise for 

Wisconsin to cultivate cool-climate European varieties, in addition to the American and French-

American hybrid varieties currently dominating grape production in this glacially influenced wine 

region. 
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2.2 Introduction 

The state of Wisconsin is perhaps best known for cheese and beer, invoking placid images 

of lush pastureland, clear lakes, and the north woods, but in the last decade, there has been a 

significant increase in the number of wineries established across this Midwestern state. Although 

Wisconsin has a long winemaking history, the Wisconsin grape growing and wine industry has 

experienced rapid growth in recent years. The viticultural history of the state of Wisconsin extends 

back to the 1840s, when the illustrious nobleman Agoston Haraszthy, a Hungarian-born immigrant 

who subsequently became a pioneer in California’s grape and wine industry, first settled in south-

central Wisconsin. Haraszthy planted the first vines in 1847 and 1848 and built a 40-foot cellar on 

the prairie bordering the Wisconsin River − the current location of Wollersheim Winery, which has 

become a National Historic Site. The traditional European vines planted by Haraszthy did not 

survive the harsh Wisconsin winters. At the end of 1848 he followed the gold rush to California, 

where he founded some of the first productive vineyards (including Buena Vista Winery in 

Sonoma), introduced over 300 varieties of imported European vines, and ultimately became known 

as the founder of the California wine industry (Pinney 1989). Agoston Haraszthy’s vine planting 

and cellar digging efforts on the hill of Wollersheim Winery in Prairie du Sac, Wisconsin, mark the 

humble beginning of the state’s viticultural history. 

Wine production in Wisconsin has always been minimal due to its climate, which is 

susceptible to extremes of temperature (the record low of –48.3°C, or –55°F, was reported in 

February 1996), making Wisconsin’s mesoclimates incompatible with the cultivation of most Vitis 

Vinifera varieties. Overall, average annual minimum temperatures in the state of Wisconsin range 

between –2°C and 3°C, and average annual maximum temperatures vary from 10°C to 14°C. Data 

from the Wisconsin State Climatology Office show that Wisconsin’s continental climate, 

moderated by Lake Michigan and Lake Superior, is characterized by a short growing season of 140 
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to 150 days in the east-central Lake Michigan coast and southwestern valleys and even shorter in 

the central portion of the state, as a result of inward cold air drainage. These cool-climate 

conditions commonly limit yield and quality of grapes because of occasional spring freezes, which 

can occur from early May in southern counties and Lake Michigan coastal areas to early June in 

northern counties, and fall frosts, which can occur from late August/early September in northern 

and central lowlands to mid-October along the Lake Michigan coastline. Based on a long-term 

climatological temperature average (calculated using the 1981−2010 U.S. Climate Normals), a 

total of 2264 Growing Degree Days (GDD, base 10°C or 50°F) were calculated for Wisconsin 

from April 1st to October 31st, which puts Wisconsin in Winkler’s Region I (2500 or less GDD). 

The Winkler scale, which is a method of classifying climate of grape growing regions based on 

heat summations (one degree day per degree Fahrenheit over 50°F), includes five climate regions: 

Region I (≤2500 GDD); Region II (2501–3000 GDD); Region III (3001–3500 GDD); Region IV 

(3501–4000 GDD); and Region V (>4000 GDD). Because Vinifera vines typically cannot survive 

the cold Wisconsin winters, mostly cold-resistant native American and French-American hybrid 

varieties, such as Marechal Foch, Leon Millot, Edelweiss, La Crosse, Frontenac, St. Peppin, Seyval 

Blanc, Marquette, and many other resilient varieties, are cultivated in Wisconsin. Many Wisconsin 

winemakers procure grapes from other areas of the USA (California, Washington, New York), and 

also make wine from other types of fruit, including cherries, strawberries, blueberries, raspberries, 

cranberries, peaches, apples, and pears. Most Wisconsin wineries make a combination of grape and 

fruit wines, and increasingly more producers make wine from locally grown cold-climate grapes. 

In spite of the Midwestern USA climatic challenges, the Wisconsin grape industry has 

expanded exponentially in the last decade, as most vineyards were planted between 2005 and 2010. 

The number of Wisconsin wineries keeps climbing, with over 100 wineries to date (2016) across 
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the state, according to the Wisconsin Winery Association. As global temperatures continue to 

increase, the current areal extent of grape growing regions will shift accordingly, allowing new 

varieties to be cultivated in certain regions, as well as limiting the production and affecting the 

quality of established cultivars in other regions. As climate change continues to affect the selection 

of grape varieties that can be cultivated in Wisconsin, some grape growers are starting to 

experiment with Vitis Vinifera varieties; cool-climate Riesling is the frontrunner. 

In 2012, Wisconsin grape growers and winery owners were surveyed regarding grape-

growing practices, winery operating practices, and sales and production performance in order to 

establish industry baselines and quantify economic contribution. The survey was conducted by 

Tuck and Gartner (2014) as part of the United States Department of Agriculture (USDA)-funded 

Northern Grapes Project. Based on the survey results, approximately 708 acres of vines were 

planted and approximately 1400 tons of grapes harvested in 2011. Of the 71,699 planted vines in 

the state, the majority (58,300) are cold hardy vines, comprising 34,400 red cultivars and 24,000 

white cultivars. The top three red cultivars are Marquette, Frontenac, and Marechal Foch, 

constituting 42%, 26%, and 9%, respectively, of the total planted cold-hardy red varieties. The top 

three white cultivars are Frontenac Gris, Brianna, and La Crescent, representing 27%, 19%, and 

15%, respectively, of the total planted cold-hardy white varieties (Tuck and Gartner 2014). As 

evidenced by these survey results, Wisconsin is a very small grape producer. For comparison, the 

top 13 United States grape producers are listed in Table 2-1, based on data from the Crop 

Production Report (ISSN: 1936-3737) released on August 12, 2015, by the National Agricultural 

Statistics Service (NASS), Agricultural Statistics Board, USDA. California leads the way with 

6,822,000 tons (89%), followed by Washington with 512,000 tons (5%), and New York with 

188,000 tons (2%) of total production in 2014.  
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State 
Total Grape 

Production (tons) 
California 6,822,000 
Washington 512,000 
New York 188,000 
Pennsylvania 91,000 
Michigan 63,300 
Oregon 58,000 
Texas 9,400 
Virginia 8,800 
North Carolina 6,000 
Missouri 4,030 
Georgia 4,000 
Ohio 3,810 
Arkansas 1,490 

 

Table 2-1: Summary of 2014 US Grape Production.  Source: Crop production report released 
August 12, 2015, by the National Agricultural Statistics Service, Agricultural Statistics 

Board, United States Department of Agriculture 

The state of Wisconsin is divided into five distinctive wine regions: the Northwoods 

Region, Fox Valley Region, Glacial Hills Region, Door County Region, and Driftless Region, and 

within these five wine regions, there are three established American Viticultural Areas (AVAs), 

including the Lake Wisconsin AVA, the Upper Mississippi River Valley (UMRV) AVA, and the 

Wisconsin Ledge AVA (Fig. 2-1). The Lake Wisconsin AVA, established on February 4, 1994, is 

situated in the south-central part of the state and encompasses approximately 130 square kilometers 

(km2) in two counties. It includes within its boundaries the location of the historic Wollersheim 

Winery. The UMRV AVA, established on June 22, 2009, is the largest designated appellation in 

the world, stretching approximately 78,000 km2 across southeastern Minnesota, southwest 

Wisconsin, northwest Illinois, and northeast Iowa, and it includes within its boundaries the Lake 

Wisconsin AVA. The Wisconsin Ledge AVA, established on March 22, 2012, is located in the 

northeastern part of the state, covering approximately 9800 km2 in 11 counties, and is part of the 

Niagara escarpment corridor, stretching along the Lake Michigan shores. This research study 
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examines the terroir of historic Wollersheim Winery, the only winery within the confines of the 

Lake Wisconsin AVA, to understand the interplay of environmental factors influencing the 

character, quality, and variability of Wollersheim wines. 

 

2.2.1 Overview of The Terroir of Lake Wisconsin AVA 

Lake Wisconsin AVA is situated in south-central Wisconsin, approximately 70% in 

Columbia County and 30% in Dane County. The AVA is bordered to the west and north by the 

Wisconsin River and Lake Wisconsin, respectively, to the east by Spring Creek and State Highway 

Figure 2-1. The five Wisconsin Wine Regions (Northwoods, Fox Valley, Glacial Hills, Door 
County, and Driftless) and the three AVAs (Lake Wisconsin, the Upper Mississippi River 

Valley, and the Wisconsin Ledge) 
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113, and to the south by Mack Road and State Highway Y (Fig. 2-2); its boundaries are defined by 

federal regulations (GPO Electronic Code of Federal Regulations 2015).  

 

The climate within the Lake Wisconsin AVA displays minor variability. The Wisconsin 

River and Lake Wisconsin moderate the temperatures, and average annual precipitation ranges 

from approximately 762 to 813 mm, which is lower than most of the state. The number of frost-

free days ranges from 125 to 170 across the AVA and represents the number of days in the interval 

between the last spring day and the first autumn day with freezing temperatures. Based on a 30-

year climatological temperature average using data from Columbia and Dane counties weather 

Figure 2-2. Map depicting the boundaries of the Lake Wisconsin AVA and the location of historic 
Wollersheim Winery, the only winery in the Lake Wisconsin AVA 
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stations, Lake Wisconsin AVA falls in the low range of the Winkler Region II (2501−3000 GDD), 

with an average of 2555 GDD.   

The geology of the Lake Wisconsin AVA comprises Precambrian bedrock units consisting 

of crystalline igneous and metamorphic rocks, overlain by lower Paleozoic (Cambrian and 

Ordovician) sedimentary rocks. Specifically, Cambrian sandstone interbedded with secondary 

dolostone and shale constitute the Elk Mound, Tunnel City, and Trempealeau groups, whereas 

Ordovician dolostone with secondary sandstone and shale is assigned to the Prairie du Chien 

Group (Oneota and Shakopee formations). The Lake Wisconsin AVA extends along the eastern 

margin of the Driftless Area or Paleozoic Plateau, which remained unglaciated during the last 

glacial advance. The USA upper Midwest region was covered by ice during three glacial stages: 

the Pre-Illinoian, Illinoian, and Wisconsinan. The most recent major glacial advance of the North 

American Laurentide Ice Sheet was the Wisconsinan, which lasted from approximately 25,000 to 

15,000 years ago (Attig et al. 2011). The glacial lobes of the Laurentide Ice Sheet extended down 

into the northern and eastern parts of the state, covering its terrain in glacial drift, but never reached 

the Driftless Area in the western and southern parts of the state. The Driftless Area is characterized 

by a lack of glacial drift and an erosional topography consisting of flat-topped hills, steep forested 

slopes, and a well-developed, dendritic drainage system. The landscape is dissected by a network 

of steeply-cut valleys developed by stream erosion during the roughly 420 million years between 

the Silurian and Quaternary periods. In contrast, to the east of the Driftless Area, the land was 

glaciated, and the topography consists of small, gently undulating hills, a less developed drainage 

system, and numerous lakes, wetlands, and marshes. Although glaciers never reached the Driftless 

Area during the Quaternary (Mickelson et al. 1982), the effects of glaciation are observed in its 
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peripheral deposits and landscapes, which were affected by periglacial processes (Stiles and 

Stensvold 2008). 

 

The Lake Wisconsin AVA is situated in the transitional zone between the glaciated 

topography to its east and the unglaciated, driftless topography to its west. Its landscapes are part 

of the glacially-derived Holy Hill Formation, comprising the Horicon and Mapleview members 

(Fig. 2-3). The deposits consist of terminal moraines − large ridges of glacial debris that 

accumulated at the glacial limit − and outwash deposits of stratified sand and gravel found in the 

Figure 2-3. Map depicting the glacial features of the state of Wisconsin in relation to the locations of 
the state’s three AVAs (from Syverson and Colgan 2004). 
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valleys of rivers that carried large volumes of glacial meltwater. Generally, postglacial deposits 

include sand, silt, clay, and organic materials deposited in stream valleys and lowlands, whereas 

glacial stream deposits include outwash and hummocky sand and gravel. Silt-sized loess, 

windblown from the floodplains of glacial meltwater rivers, was deposited on top of the land 

surface during the Wisconsinan Glaciation, but was subsequently eroded from many areas, and is 

now present as a thin discontinuous cover on uplands and slopes (Clayton and Attig 1997). Figure 

2-3 depicts the glacial features across the state of Wisconsin, including the extent of the Horicon 

and Mapleview members of the Holy Hill Formation, as well as the non-glaciated Driftless Area, 

in relation to the locations of the state’s three AVAs. 

The soils across the Lake Wisconsin AVA were developed on top of various types of 

parent materials, ranging from sandstone and dolostone bedrock to glacial till, outwash, and loess 

deposits. The parent materials covering the largest proportions of the AVA are calcareous sandy 

loam till, loess over glacial loamy till, silty sediments over stratified silts and sands, loess and/or 

silty slope alluvium, loess over calcareous sandy loam till, and loess over glacial till (USDA 

Natural Resources Conservation Service, Web Soil Survey data). Most cultivated soils in the 

region have developed in loess, making these windblown silt deposits the foundation of agriculture 

(Clayton and Attig 1997). 

2.2.2 Glacially Influenced Terroir in Other Vine-Growing Regions 

Worldwide, many wine regions located where soils developed on glacially transported 

parent materials are known for producing outstanding wines. Generally, ice and glacial meltwater 

are the primary agents of deposition of the soil parent material, generating glacial till and 

glaciofluvial/glaciolacustrine deposits, respectively. Windblown silt-sized loess deposits can also 

be generated from the floodplains of glacial meltwater rivers. 
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In New Zealand, vast portions of the North and South islands are covered by Quaternary 

glacial and fluvial sediments, and extensive outwash deposits are distributed across the lowlands. 

The majority of vineyards are planted on alluvium and outwash gravels. In the Central Otago 

region, nearly half of the planted vineyards are located on glacial gravels; in Hawkes Bay, which 

includes the Gimblett Gravels wine region, approximately 63% of vineyards are located on 

outwash deposits; and in the Marlborough and Waipara wine regions, most vineyards are planted 

on alluvium and outwash gravels (Imre and Mauk 2009). 

In Canada, the soils of the Niagara Peninsula wine region developed on glacial till resulting 

from the advance and retreat of ice during Quaternary continental glaciations, and on 

glaciolacustrine and glaciofluvial deposits formed during interglacial periods. The Niagara 

vineyards planted on these soils define two distinctive terroirs: the flat area of the Lake Iroquois (a 

prehistoric glacial lake) Plain extending between Lake Ontario and former lakeshore of Glacial 

Lake Iroquois, and the Escarpment, consisting of the Glacial Lake Iroquois bench terraces and the 

slopes above the Niagara Escarpment (Haynes 2000). In the Canadian Okanagan and Similkameen 

valleys of British Columbia, many glacial advances generated soil parent materials consisting of 

unconsolidated glacial deposits. In the Okanagan Valley, the thickness of Pleistocene glacial 

deposits is nearly 100 m, and glaciofluvial deposits cover the sides of the valley (Taylor et al. 

2002). Most vineyards in the Okanagan and Similkameen valleys are planted on soils derived from 

these glacial sediments, which include glaciofluvial, fluvial fan, and glaciolacustrine deposits 

(Bowen et al. 2005). 

In the USA, the Columbia Valley AVA, which encompasses several other AVAs in 

Washington and Oregon, has soils derived from Quaternary glacial sediment and aeolian deposits. 

Recurring Pleistocene glacial outburst flooding events, known as the Missoula floods, generated 
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glacial flood sediment deposits known as Touchet beds, which accumulated in river valleys and 

covered the landscape (Meinert and Bussaca 2000, 2002; Pogue 2009). Deposits of windblown 

loess of varying thickness overlie the Touchet beds. Most vineyards in the Columbia Basin are 

planted on soils derived from deposits of loess and glacial flood sediments (Pogue 2009). In the 

Finger Lakes AVA of New York state, vineyards are planted on soils consisting of varied 

accumulations of gravel, sand, silt, and clay produced by glacial processes (Swinchatt 2012). The 

Devonian bedrock, which is now covered by Pleistocene glacial deposits, was scoured repeatedly 

during glacial advances. The retreating glaciers generated the glacial meltwater that formed the 

Finger Lakes and carved a landscape of moraines, glacial till, and glacial outwash (Meinert and 

Curtin 2005). 

In France, the landscapes of the Rhone Valley and Bordeaux wine regions have abundant 

glacial sediments originating from the Alps. In the Rhone Valley, alpine glaciers descended from 

the Alps, scouring valleys and leaving behind an assortment of glacial till and moraine deposits. 

Meltwater and subsequent glacial floods re-sorted some of these deposits into extensive terraces 

and gravel plateaus where many vineyard sites are located (Wilson 1998). In the Bordeaux wine 

region, Medoc and Graves vineyards are located on gravel terrace mounds. The gravel-rich soils of 

these areas developed on the outwash deposits associated with the Garonne River interglacial 

floods and the moraine deposits generated during the Pleistocene glaciation (Wilson 1998). 

These glacially influenced wine regions produce exceptional wines in a unique terroir 

consisting of soils developed on transported, glacially derived parent materials. The glacial soils 

provide distinct vineyard sites and are characterized by good internal drainage and moderate 

fertility and water-holding capacity, controlling vine vigor and promoting grape ripening. 
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2.3 Terroir Characterization of Wollersheim Winery 

Wollersheim Winery is a National Historic Site, with a history extending back to the 1840s, 

when the legendary Hungarian nobleman Agoston Haraszthy first settled on the estate. One of 

Wisconsin's largest wineries, top wine producers, and a leader in the Midwestern wine industry, 

Wollersheim Winery produces approximately 240,000 gallons or 1.2 million bottles annually, 

which corresponds to approximately 1410 tons of grapes. Most are custom-grown grapes, 

including Sangiovese, Chardonnay, Riesling, Pinot Noir, Seyval Blanc, Carignan, and Muscat 

from Washington (335 tons), California (10 tons), and New York (783 tons); however, 

approximately 20% (282 tons) are Wisconsin-grown grapes, including 25 acres of vineyards 

located on site. Four winter-hardy hybrid grape varieties are cultivated on the Wollersheim Winery 

estate, including two French-American red hybrids (Marechal Foch and Leon Millot) and two 

Wisconsin-native American white hybrids (St. Pepin and LaCrosse), producing eight different 

estate wines made entirely from Wisconsin-grown grapes. Specifically, the grapes grown in the 

young, flat vineyards produce light-bodied wines (Prairie Blush, Eagle White, Prairie Sunburst 

Red, and Ice Wine); grapes from the medium-aged vines planted on medium-sloped vineyards 

produce medium-bodied wines (Ruby Nouveau, Bon Vivant, and Domaine du Sac); and grapes 

from the oldest and steepest-sloped vineyard produce the rich, full-bodied Domaine Reserve wine. 

Best known for its distinctive regional wines, Wollersheim Winery has received numerous 

medals and awards in national and international wine competitions. Some of the most recent 

Wollersheim Winery accolades include the 2012 Winery of the Year award at the San Diego 

International Wine Competition and the 2015 Small Winery of the Year award at the Riverside 

International Wine Competition. It has also won many awards for its estate wines, such as the 2015 

Prairie Blush, which most recently was awarded the Chairman's Trophy at the 2016 Ultimate Wine 

Competition in Hawthorne, New York, and gold medals at the 2016 New World International 
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Wine Competition in Ontario, Canada, the 2016 Winemaker Challenge International Wine 

Competition in San Diego, California, and the 2016 Dan Berger’s International Wine Competition 

in Sonoma County, California. Other estate wines, including Domaine Reserve, Domaine du Sac, 

Eagle White, and Prairie Sunburst Red, have consistently won awards at numerous competitions; a 

listing of the various awards can be found on the winery’s website (http://www.wollersheim.com). 

This research study provides a terroir characterization of the Wollersheim Winery 

vineyards, and utilizes analyses of soil type, texture, geochemistry, and mineralogy to understand 

the interaction of environmental factors influencing the character and quality of Wollersheim 

wines. The study further examines local-scale vineyard variability between two plots (Domaine 

Reserve and Lot 19) that are cultivated with the same grape variety (Marechal Foch) to determine 

the controls on small-scale variability in grape quality and Wollersheim wines. 

2.4 Materials, Methods, and Data Acquisition 

Total major and select minor and trace element compositions were determined on 

powdered rock samples and on the fine fraction of vineyard soil samples, which were powdered 

and fused for x-ray fluorescence (XRF) analysis. Loss on ignition (LOI) was determined by 

heating 1 gram of sample for 10 minutes in a muffle furnace at 1050°C and calculating the mass 

difference. The major element and select minor and trace element abundances were obtained from 

glass disks fused at 1050°C in a Claisse M4 fluxer and analyzed using a Bruker S4 Pioneer XRF in 

the Department of Geosciences, University of Wisconsin–Milwaukee. Plant-available soil 

chemistry analysis was conducted by the University of Wisconsin Soil Testing Laboratory in 

Madison, Wisconsin, to determine concentrations of phosphorus, potassium, calcium, magnesium, 

sulfur, zinc, manganese, and boron, as well as pH, cation exchange capacity, and organic matter. 

Soil texture was determined by grain size analysis using a Malvern Mastersizer 2000E laser 



22 

diffraction particle-size analyzer. In the laser diffraction method, a laser beam is passed through a 

sample to measure the angular variation in scattered light intensity, which is used to evaluate the 

particle size distribution within a sample. Soil and rock mineralogy were determined non-

quantitatively on a portion of each powdered sample by x-ray diffraction (XRD) analysis. Random 

mounts were prepared by gently smoothing the surface of a fine powder poured into a flat surface 

onto a cavity mount sample holder. Samples were analyzed in the Department of Geosciences at 

the University of Wisconsin–Milwaukee using a Bruker D8 Focus XRD system (Cu Ka radiation, 

1 s per 0.02° 2θ, 2°–60° range, scintillation detector). Minerals were identified by searching the 

International Centre for Diffraction Data (ICDD) PDF-2 database of standard X-ray powder 

diffraction patterns for a match with the pattern of the unknown, using Bruker's EVA software for 

peak matching. 

Vine trunk circumferences were measured at two plots, Lot 19 and Domaine Reserve, on 

September 14, 2014. Vine trunk circumference measurements can be used as an indicator of vine 

vigor variation (Imre and Mauk 2011). The measurements were collected from every vine at every 

other row, approximately 20 cm from the ground surface at the narrow part of the vine. 

Geophysical surveys, including electromagnetic induction (EM) and electrical resistivity 

tomography (ERT) were conducted at two plots, Lot 19 and Domaine Reserve, on May 18, 2014. 

The EM surveys were carried out with a Geonics EM-31-MK2 ground conductivity meter, which 

has a fixed coil spacing (3.66 m) and a single frequency (9.8 kHz) generating the primary magnetic 

field, with depths of exploration of approximately 3 m in the horizontal dipole mode and 

approximately 6 m in the vertical dipole mode. The Geonics EM-31-MK2 ground conductivity 

meter is calibrated for a standard operating height of 1 m above the ground, which is 

approximately waist height. The EM surveys were performed at walking speed, and apparent 
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electrical conductivity (ECa) measurements were collected from 104 locations at each plot along 

alternating transects between every other row of vines, for a total of 9 transects completed at each 

plot. ECa measurements in the horizontal and vertical dipole modes were read directly from the 

integrated data logger, and the measurement locations were georeferenced by means of a GPS 

receiver. The ECa datasets for both plots were downloaded with the Geonics DAT31W software 

program and interpolated using the ordinary kriging method with the Esri ArcGIS Desktop 

software program. 

The ERT survey was conducted using a GF Instruments ARES-G4 unit, with a standard 

survey line of 115 m consisting of three cables and a total of 24 electrodes. The electrodes were 

spaced 3 m apart in the Wenner array, attaining a maximum exploration depth of 14 m. The 

Wenner array consists of four electrodes spaced equally in a straight line at ground surface; current 

is applied to the two outer (current) electrodes and the potential difference measured at the two 

inner (potential) electrodes. The ERT method records the contrast in apparent electrical resistivity 

(ER) in soil, providing an estimate of the horizontal and vertical lithological variations. Two 

profiles were completed at each plot, one near the top row and one near the bottom row of vines. 

The profiles were used to determine lateral changes in resistivity, identifying the lateral continuity 

of layers. The ER data for all profiles were downloaded with the GF Instruments ARES v5.0 

program and exported into RES2DINV (Geotomo) inversion program for processing. A common 

logarithmic scale was applied to all profiles for appropriate comparison. 

2.5 Results and Discussion 

The Wollersheim Winery vineyards are located on a hill overlooking the Wisconsin River, 

at elevations between approximately 213 and 306 m, on south and southwest-facing gentle slopes. 

The vines are planted 2 m apart and the distance between rows is 3 m, which allows sufficient 
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space for farming equipment. The 25 acres of bearing vineyards consist of approximately 700 

vines per acre for a total of 17,500 vines on site. The landforms are streamlined hills and valleys 

shaped by glaciers and glacial stream deposits consisting of outwash and hummocky sand and 

gravel (Mickelson 2007). The glacial deposits are part of the Horicon Member of the Holy Hill 

Formation, which is characterized by glacial till comprising brown gravelly, clayey, silty sand, and 

dolomite derived from Ordovician formations; these glacial deposits are overlain by loess (Clayton 

and Attig 1997).   

The climate is moderated by the Wisconsin River, and air drainage in the river valley 

inhibits frost in the vineyards. In the Wollersheim Winery area, where the average growing season 

ranges from April 1st to October 31st, a total of 2382 (base 50°F) GDD were recorded in 2014. 

Based on a 30-year climatological temperature average (1981−2010), Wollersheim Winery falls in 

the low range of the Winkler Region II (2501−3000 GDD) with an average of 2652 GDD. In 

comparison, Napa, California falls in the middle range of the Winkler Region III (3001−3500 

GDD) with an average of 3297 GDD, and Walla Walla, Washington falls in the high range of the 

Winkler Region II (2501−3000 GDD) with an average of 2959 GDD. 

2.5.1 Vineyard Soil Properties 

To characterize the terroir and assess vineyard variability at Wollersheim Winery, a total of 

12 soil profiles were examined and sampled throughout the vineyards (Fig. 2-4). Two rock samples 

were also collected in the vicinity of the vineyards. The first was from a sandstone outcrop exposed 

along Highway 60, approximately two kilometers to the north-northeast of the Wollersheim 

vineyards; the second was from a representative dolostone boulder (approximately 2 x 4 x 2 m) at 

the top of the Domaine Reserve plot that was transported from the Ordovician Prairie du Chien 

Group dolostone bedrock bordering the east boundary of the vineyards.  The elevations of the soil 
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sample locations range from 236 to 286 m, and the maximum depths of the soil profiles range from 

50 to 70 cm below ground surface, across horizons A, E, and B.  

 

Based on the USDA taxonomic classification, the vineyard soils are Alfisols, which is a 

soil order characterized by moderately weathered and leached clay-rich soils having high to 

medium base saturation, relatively high native fertility, and abundant iron and aluminum. The soils 

are further classified as the subgroup Udalfs (Alfisols found in humid climates) and the great group 

Hapludalfs (Udalfs with minimum horizonation). Specifically, the soils are Typic and Mollic 

Hapludalfs in a mesic soil temperature regime and udic soil moisture regime, indicating that the 

Figure 2-4. Location map of Wollersheim Winery vineyards illustrating the distribution of soil types, 
and soil sample and resistivity profile locations. 
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soils are similar to other Alfisols (Typic) or have a darkened and organic-rich surface horizon 

(Mollic). 

Based on a water budget analysis using the National Oceanographic and Atmospheric 

Administration's National Climate Data Center climate normals and the USDA Official Soil Series 

descriptions (textures and profile thicknesses) to determine the water status of soils over the 

growing season, the soils are seasonally moist in normal years, and generally experience a surplus 

throughout the year. Recharge periods extend from April through October, when temperatures are 

generally above 5°C. Although droughts likely alter the water balance, drought years do not 

represent ‘normal years’ in this region. Based on the USDA Official Soil Series descriptions, the 

soils are part of the Gaphill−Rockbluff complex, and Boyer, Kegonsa, and Seaton Series, which 

are characterized by very deep, well-drained soils.  

Based on the grain size analysis, silt- and sand-sized grains dominate the soil samples 

collected throughout the vineyards, with average silt and sand compositions of 59% and 34%, 

respectively. The soils plot in the silty loam and sandy loam fields of the USDA soil texture 

triangle (Fig. 2-5), and these textures are in general agreement with the USDA taxonomic 

classification for these soils. Soil samples collected from the highest elevations in the northern and 

eastern parts of the property (DR-1, DR-2, and Lot 10A/B) contain the highest silt content 

(79-80%) and correspond to areas of steeper slope, thinner soil, and shallower depth to bedrock. 

Most of the vineyard soils are silty loams developed on parent materials consisting of windblown 

loess deposits; these soils are represented by 8 of the 12 soil samples collected and cover 

approximately 42% of the property.  

The vineyard soils in the northern and central parts of the property, represented by soil 

samples Lot 10A/B, Lot 14, and Lot 20, underlie approximately 27% of the property, and consist 
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of sandy loams derived from loamy outwash and glaciofluvial deposits underlain by outwash. 

Along the eastern property boundary, in a small area covering approximately 4% of the property 

and characterized by the highest elevations and steepest slope, soil sample DR-1 is a sandy loam 

developed on loamy colluvium and sandy deposits overlying sandstone bedrock. The remainder of 

the property (approximately 25%) consists mostly of a centrally located gravel pit developed in 

gravelly outwash. 

 

2.5.2 Vineyard Soil Chemistry and Mineralogy 

Soil chemical analyses were carried out for organic matter, cation exchange capacity, and 

pH, along with plant-available macronutrients (potassium, calcium, magnesium, phosphorus, and 

Figure 2-5. Ternary diagram showing the vineyard soil textures plotting in the silt 
loam and sandy loam fields of the USDA Soil Texture Triangle. 
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sulfur) and micronutrients (boron, manganese, and zinc) that are essential elements necessary for 

completion of the plant life cycle (Table 2-2). All these elements have important roles in the 

metabolic functions of vines and require that minimum levels be maintained. The physical and 

chemical characteristics of the vineyard soils, such as texture, pH, organic matter, and cation 

exchange capacity, affect the nutrient pool, availability, adsorption, and retention potential.  

Fine-grained, clayey soils can reduce the availability of potassium to vines, whereas coarse-

grained, sandy soils are prone to leaching and can drain nutrients from the soils (Lambert et al. 

2008). The silty loam and sandy loam vineyard soil samples are dominated by silt- and sand-sized 

grains, providing a good balance between drainage and water holding capacity.  

The pH values of the vineyard soil samples, ranging from 5.6 to 7.6, indicate moderately 

acidic to slightly alkaline conditions, which provide good nutrient availability and balance for the 

health of the vines. Soils rich in organic matter are generally high in available nutrients, as 

decomposition of organic matter adds nutrients to soil and improves water-holding capacity. 

Cation exchange capacity, which is influenced by the soil’s organic matter and clay content, affects 

the ability of soil to hold positively charged nutrients for plant uptake (Dami et al. 2005). The 

highest organic matter percentages and cation exchange capacities, ranging from 1.1−1.3% and 

12−13 cmol/kg, respectively, correspond to vineyard soil samples containing the highest silt 

content collected from the vineyards located in the northern and eastern parts of the property. 
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The concentrations of plant-available macronutrients potassium (24–112 ppm), calcium 

(278–1587 ppm), magnesium (62–658 ppm), phosphorus (7–49 ppm), and sulfur (1–5 ppm), and 

micronutrients boron (0.2–0.6 ppm), manganese (13–89 ppm), and zinc (0.4–2.1 ppm), indicate 

significant variability in the vineyard soils. Some of these nutrient concentrations are outside the 

ranges specified by Moyer et al. (2014) in their pre-plant soil fertility guidelines for establishing 

productive vineyards, and by Dami et al. (2005) in the Midwest Grape Production Guide. 

However, when assessing the nutrient requirements of established vineyards, analyzing vine tissue 

samples in conjunction with soil samples is critical for determining vine nutrient status and 

identifying potential deficiencies (Moyer et al. 2014).  

Overall, the plant-available soil chemistry shows the most variability for calcium, 

magnesium, and potassium; the highest concentrations of these elements are found in soils having 

the highest silt content in the northern and eastern parts of the property, i.e. in areas of steeper 

slope, thinner soil, and shallower depths to bedrock, where the vineyards producing the lowest 

yields and highest quality grapes are planted. 

XRF total elemental analysis conducted on the fine fraction (silt and clay) of the soil samples 

indicates some variation in the chemical composition of the vineyard soils (Table 2-3). These 

elemental abundances represent the total concentrations in the soil and are indicative of the general 

vineyard soil conditions, whereas plant-available essential elements (Table 2-2), which are necessary 

for the completion of the plant life cycle, must be dissolved in an ionized water solution to allow 

uptake into the metabolism of the vines.   
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Overall, the most variability in total concentrations is noted for SiO2 (45.16–78.73%), CaO 

(0.67–9.82%), MgO (0.5–6.94%), Al2O3 (8.13–13.30%), and Fe2O3 (2.36−7.22%). The vineyard 

soils contain average total concentrations of K2O, CaO, MgO, and P2O5 of 2.55%, 2.03%, 1.64%, 

and 0.14%, respectively; and Fe2O3, MnO, Ni, and Zn are present in the vineyard soils in average 

total concentrations of 3.87%, 0.12%, 1200 parts per million (ppm), 25.2 ppm, and 67.5 ppm, 

respectively. The dolostone rock sample consists primarily of CaO (32.77%), MgO (20.72%), and 

SiO2 (2.25%), whereas the sandstone sample is dominated by SiO2 (53.77%), CaO (14.12%), and 

MgO (9.51%). The variation in the chemical composition of the vineyard soils reflects the diversity 

of parent materials in which the soils have developed. 

The XRD analysis indicates that the soil mineralogy is dominated by quartz, plagioclase 

(albite/anorthite/laboradorite), orthoclase (microcline/sanidine/adularia), dolomite, and minor 

biotite, hornblende, and various clay minerals (vermiculite, montmorillonite). The dolostone 

consists primarily of dolomite, along with minor quartz and clay minerals, whereas the sandstone is 

composed of quartz and dolomite, and minor clay minerals, indicating that it is a dolomite-rich 

sandstone. Unpublished field notes from Road Materials Investigations Reports prepared by the 

Wisconsin Geological and Natural History Survey show that dolomite is the most common pebble 

lithotype in the Holy Hill Formation, based on analyses of rock types present in deposits of sand 

and gravel throughout Dane County. East of Sauk City (Fig. 2-2), more than 50% of the pebbles in 

glacial till consist of coarse-grained, mafic igneous rock to depths of at least 15 m (Clayton and 

Attig 1997). Consistent with chemical analyses indicating elevated MgO and CaO, soil samples 

DR-1, Lot-19-2, and Lot 20 contained dolomite, which may indicate the influence of weathered 

dolostone and dolomite-rich sandstone in the soils located in closest proximity to the bedrock 

outcrops. The relatively high Fe2O3 content in the soils relative to the rock samples may result 



33 

from the oxidation of ferromagnesian minerals such as hornblende and biotite from mafic igneous 

rocks.  The compositional variation of the soils is illustrated graphically on plots of major element 

oxides versus SiO2 (Fig. 2-6), and spatially on maps depicting interpolated concentrations across 

the study area (Fig. 2-7). The plots show that SiO2 has a strong inverse correlation with CaO and 

MgO; high coefficients of determination (R2) explain 80% of the variation. The soils are highly 

depleted in CaO and MgO relative to the dolostone sample and slightly depleted relative to the 

dolomite-rich sandstone sample. Fe2O3, P2O5, and MnO are also inversely correlated with SiO2, 

and have lower coefficients of determination that account for 40–60% of the variation. The soils 

are highly enriched in Fe2O3, slightly enriched in P2O5, and have similar MnO compositions 

relative to the dolostone and sandstone samples. TiO2 and SiO2 are positively correlated, with a 

coefficient of determination that accounts for 70% of the variation. The soils are significantly 

enriched in TiO2 relative to the bedrock samples. Additionally, SiO2 has a strong positive 

correlation with Zr and Ba; high coefficients of determination explain 80–90% of the variation (not 

shown). Again, these compositional differences reflect the diversity of parent materials, which 

include windblown loess, loamy outwash and glaciofluvial deposits underlain by outwash, and 

loamy colluvium and sandy deposits overlying sandstone bedrock. 
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Figure 2-6. Harker diagrams depicting the compositional variation of selected major elements in soils 
relative to bedrock samples, reflecting the diversity of soil parent materials and the influence from the 

dolostone and dolomite-rich sandstone bedrock. 
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Figure 2-7 depicts the spatial compositional variability in soils, based on interpolated 

concentrations across the study area. Overall, the soils with the highest SiO2 contents are found in 

the southern half, whereas the lowest SiO2 contents occur in the northwest corner of the study area. 

Conversely, the soils with the highest CaO and MgO contents are present in the northwest corner 

and the lowest CaO and MgO contents are in the southern half of the study area. The highest Fe2O3 

and Al2O3 compositions are found in soils from the west and north-central parts of the study area, 

and the highest P2O5 contents are located in the west and northwestern corner. Of note are soil 

samples DR-1, Lot-19-2, and Lot 20, which contain the lowest percentages of SiO2 (62.09−45.16%), 

the highest LOIs (7.95−19.09%), and elevated concentrations of MgO (1.27−6.94%) and CaO 

(1.14−9.82%) relative to the rest of the soil samples. These compositions reflect the dolostone and 

dolomite-rich sandstone bedrock influence on the soils of these vineyard plots, caused by dissolution 

of primary minerals during rock weathering. Forested ridges underlain by dolostone of the 

Ordovician Prairie du Chien Group border the east boundary of the vineyards, and weathered 

outcrops of dolomite-rich sandstone are observed approximately 2 km to the northeast, along 

Highway 60.  Wollersheim Winery winemaker, Philippe Coquard, states that the grapes from these 

vineyard plots (Lots 10A/B, 11 [not sampled], and Domaine Reserve) consistently produce the 

lowest yields and reach the highest sugar levels. With average Brix (estimated concentration of 

dissolved sugar) values of 21.5, average pH values of 3.31, and average yields of approximately 5 

to 6 tons per acre, these grapes consistently achieve a perfect balance of sugar and pH levels at 

harvest, and produce wines with robust fruit flavors and concentrated aromas (P. Coquard personal 

communication March 15, 2016).  
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In the southern part of the property, the vineyards are characterized by soils with higher 

sand content, intermediate elevations, and flatter slopes; these vineyards produce the highest grape 

yields (approximately 7 to 8 tons per acre) and softer wines with delicate, lighter flavors (P. 

Coquard personal communication March 15, 2016). Overall, these are typical economic crop 

yields for hybrid grapes that have been optimized and proven successful for Wollersheim Winery 

Figure 2-7. Spatial distribution of selected major elements in Wollersheim Winery vineyards (see 
Figs. 2-2, 2-4), reflecting the variety of parent materials in which the soils formed. 
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in terms of maintaining a balance between profitability and grape and wine quality, while meeting 

the demand for sensible local wines.  

2.5.3 Vineyard Variability Study at Domaine Reserve and Lot 19 

The 1.6-acre Domaine Reserve and 1.4-acre Lot 19 plots, both planted with Marechal Foch 

grapes, were selected for further investigation by means of geophysical methods and vine trunk 

circumference measurements. Both plots have a southwesterly aspect, with slopes of 21% at 

Domain Reserve and 10% at Lot 19. The geophysical surveys provide measurements of apparent 

ECa and its inverse, ER, which are correlated with soil moisture, clay content and mineralogy, rock 

fragments, bulk density, porosity, and other soil properties (André et al. 2012). Vine trunk 

circumference measurements can be used to assess subsurface variability at the plot level and as a 

proxy for vine vigor, which can be correlated with grape characteristics (Imre and Mauk 2011). 

2.5.4 Vine Trunk Circumferences 

Vine trunk circumferences were measured at Domaine Reserve and Lot 19 in September 

2014. The Domaine Reserve vines were planted in 1974, and the Lot 19 vines were planted in 

1987. Measurements were collected from every vine on every other row, for a total of nine rows at 

each plot. The number of measurements collected was 437 at Domaine Reserve and 477 at Lot 19. 

Generally, vine trunk circumferences were similar between the two plots: median circumferences 

were 170 mm at Domaine Reserve and 190 mm at Lot 19 (Fig. 2-8). The Domain Reserve vine 

circumference data displayed slightly more variation, with a range of 300 mm compared to a range 

of 260 mm for the Lot 19 data. 

Smaller vine trunk circumferences were observed at the uppermost three rows, at higher 

elevations near the top of the slope at Domaine Reserve. As uniform management practices are 

implemented at both plots, the variation in vine trunk circumferences between them reflects vine 
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age, soil conditions (type, texture, and drainage), and topographic conditions (slope, elevation); it 

is also observed in grape yields, which are approximately 5 tons per acre at Domaine Reserve and 

6 tons per acre at Lot 19. Wollersheim Winery’s Philippe Coquard considers the age of the vines to 

be the dominant factor in the variation of vine trunk circumferences, although he insists that it is 

the combination of these factors (vine age, soil conditions, and topographic conditions) that 

ultimately creates these differences (personal communication, March 15, 2016). Larger 

circumferences in older vines may be expected if vine age alone were a determining factor, but the 

actual average measurements indicate that the younger vines of Lot 19 have the larger 

circumferences; it is clear, therefore, that the effects of age, soil, and topographic conditions 

combined outweigh the effects of vine age by itself.  

 

Figure 2-8. Box and whisker plots showing the trunk circumference measurements collected from 
Domaine Reserve and Lot 19; variations between the plots are a result of different vine ages, soil 

conditions, and topographic conditions. 
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2.5.5 Geophysical Surveys 

EM and ERT surveys were 

completed at Domaine Reserve and 

Lot 19 in May 2014. The survey 

measurements were used to 

determine spatial variations in the 

subsurface that can be used to map 

soil variations within each plot. The 

soils were likely saturated by spring 

precipitation at the time of the 

survey. Figure 2-9 presents the 

horizontal (3 m) and vertical (6 m) 

soil ECa at 9.8 kHz measured in May 

2014. Overall, the ECa values were 

relatively low, ranging from 7 to 

68.75 millisiemens per meter (mS/m), and spatially correlated areas of similar ECa were noted at 

both plots. These areas generally coincide with the distribution of different soil types, as 

established by the USDA.   

The horizontal ECa measurements were generally similar between the two plots, ranging 

from 5 to 27.25 mS/m at Lot 19 and from 7 to 30.75 mS/m at Domaine Reserve, indicating 

relatively sandy surficial soils. Vertical ECa values ranged from 7.25 to 18 mS/m at Lot 19 and 

from 8 to 68.75 mS/m at Domaine Reserve. The highest vertical ECa values were encountered at 

Domain Reserve in the northeastern corner of the plot, which is underlain by the Gaphill − 

Rockbluff complex (well-drained sandy loams developed from loamy or sandy colluvium), and has 

Figure 2-9. Horizontal (3 m) and vertical (6 m) apparent 
electrical conductivity (ECa) measurements in soils at 

Domaine Reserve and Lot 19, demarcating areas of similar 
soil type at each plot. mS/m: millisiemens per metre 
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steeper slopes and shallower soil (Fig. 2-10). An inverse relationship between ECa and depth to 

bedrock is observed here because soils developed from the underlying bedrock are generally more 

conductive than the bedrock, and groundwater at or above the bedrock interface may also increase 

conductivity. Philippe Coquard of Wollersheim Winery confirms that the shallow depth to bedrock 

restricts rooting depth and limits grape yields in this northeast portion of the plot, which also 

coincides with smaller vine trunk circumference measurements in this area.  
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Figures 2-11 and 2-12 illustrate the two resistivity profiles completed at each plot: one 

profile near the top row, and one profile near the bottom row of vines. Overall, the ER 

measurements can be correlated with the ECa data of the plots, with areas of high conductivity 

corresponding to low resistivity and vice versa. At Lot 19, the ER values were generally similar 

between the top (53–7433 ohm-m) and bottom (51−3850 ohm-m) rows. Although the top row of 

the Domaine Reserve plot revealed ER measurements (26−2821 ohm-m) similar to those observed 

at Lot 19, much higher resistivity values (25−31,551 ohm-m) were noted for the bottom row of 

vines, indicating the presence of a more resistive layer at lower elevations, near the foot of the 

slope. This highly resistive layer is encountered at a depth of approximately 12 m near the bottom 

row of vines at Domaine Reserve, indicating an increase in coarser soil textures with depth.  
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Domaine Reserve Top Row 

Domaine Reserve Bottom Row 

 

Lot 19 Top Row 

 
Lot 19 Bottom Row 

 

Figure 2-11. Soil electrical resistivity measurements for the two resistivity profiles completed at 
Domaine Reserve. 

Figure 2-12. Soil electrical resistivity measurements for the two resistivity profiles completed at 
Lot 19. 
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These coarser textures at depth coincide with the centrally located gravel pit, consisting of 

stratified sand and gravel, and covering approximately 25% of the property. Based on well-log 

information from private wells drilled on the property, the stratified sand and gravel layer is 

laterally continuous and extends from 2 to 29 m below ground surface in the center of the property 

and from 9 to 15 m below ground surface in the northeast part of the property. Based on the ER 

data, Lot 19 has a more homogeneous subsurface, compared to the Domaine Reserve plot, which 

shows much more variability between the top and bottom rows. Overall, the ECa data corroborate 

the ER data at the Domaine Reserve plot, depicting more conductive/less resistive soils near the 

top row of vines, proximal to the Gaphill−Rockbluff complex, and more resistive/less conductive 

soils approximately 12 m deep near the bottom row of vines at Domaine Reserve. This indicates an 

increase in coarser soil textures with depth and coincides with the location of the stratified sand 

and gravel pit.  

In addition to the differences established by geoelectrical methods, other plot 

characteristics such as elevation, slope, and vine age variations further differentiate the two plots. 

Specifically, the Domaine Reserve plot is situated at elevations of 259−305 m, has an average 

slope of approximately 20%, more soil textural variability across the plot, higher average clay and 

silt content, and vines approximately 42 years old. The grapes from Domaine Reserve have 

consistently higher sugar levels, with average Brix values of 21.13, average pH values of 3.29, and 

average yields of approximately 5 tons per acre, producing the best wines with robust fruit flavors 

and bold, concentrated aromas. In contrast, Lot 19 is located at lower elevations (213−259 m), has 

a gentler average slope of ca. 10%, less soil textural variability across the plot, higher average sand 

content, and younger vines approximately 29 years old. The grapes from Lot 19 attain intermediate 

sugar levels, have average Brix values of 20.07, average pH values of 3.28, average yields of 
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approximately 6 tons per acre, and produce medium-bodied wines with pleasant fruit flavors and 

balanced aromas. 

2.6 Conclusions 

Wollersheim Winery is the birthplace of Wisconsin viticulture, a National Historic Site, 

and a leader in the Midwestern USA wine industry. Its location on a hill bordering the Wisconsin 

River marks the transition zone from glaciated terrain to the east to non-glaciated terrain to the 

west. The Wollersheim vineyards, with south and southwest-facing slopes and good air drainage, 

have well-drained soils dominated by silt- and sand-sized grains (silty loams and sandy loams). 

The vineyard soils are developed on parent materials consisting of windblown loess deposits, 

loamy outwash and glaciofluvial deposits underlain by outwash, and loamy colluvium and sandy 

deposits overlying sandstone bedrock.  

The plant-available chemistry of the vineyard soils shows that the most variability and 

highest concentrations of calcium, magnesium, and potassium correspond to vineyard soils having 

the highest silt content in the northern and eastern parts of the property. The XRF total elemental 

chemistry of the vineyard soils reveals the most variability in SiO2, CaO, MgO, Al2O3, and Fe2O3, 

reflecting the variety of parent materials in which the soils have developed. The soil mineralogy 

consists primarily of quartz, plagioclase, orthoclase, and dolomite, minor biotite and hornblende, 

and various clay minerals. The soil samples with the lowest SiO2 compositions and the highest 

LOIs have elevated MgO and CaO contents, indicating a contribution from the weathering of 

dolostone or dolomite-rich sandstone bedrock in the soils of these plots, which are located in 

closest proximity to the bedrock outcrops. Vineyard geophysical surveys at the Domaine Reserve 

and Lot 19 plots demonstrate spatial variations within the subsurface at the plot level, demarcating 

soil variations within each plot. The ECa data are consistent with the ER data, indicating more soil 
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textural variability and higher average clay and silt content for the Domaine Reserve plot, and less 

textural variability and higher average sand content for Lot 19. Additional characteristics, such as 

elevation, slope, and vine age variations further differentiate the two plots. Thus, the terroir of the 

Domaine Reserve plot, consisting of more heterogeneous soils, higher elevation, steeper slope, and 

older vines, produces the lowest yields, the best quality grapes, and the rich, full-bodied Domaine 

Reserve wine, whereas the terroir of Lot 19, comprising more homogeneous soils, lower elevation, 

gentler slope, and younger vines, produces slightly higher yields, good quality grapes, and the 

medium-bodied Domaine du Sac wine. 

With an increasing demand for wine and an expanding local consumption movement 

across the state, the future of viticulture in Wisconsin looks promising, with new wineries opening 

and larger acreage of grapes being cultivated throughout the state to meet the demand for 

Wisconsin wine. As climate change continues to affect the selection of cultivated grape varieties, 

Wisconsin holds a great potential for cultivating quality cool-climate European varieties, in 

addition to the American and French–American hybrids currently dominating the state’s grape 

production. Future work focused on selecting the proper hybrid not only for the appropriate 

climatic conditions, but also for the specific soil type, will aid in further refining our understanding 

of the optimal terroir conditions for cultivating quality cold-climate grapes. 
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3.0   Insight into Grapevine Source Water Acquisition during Key 

Phenological Stages Using Stable Isotope Analysis 

3.1 Abstract 

Stable isotope analyses of grapevine water provide insight into seasonal water use trends, 

soil depths of active water/nutrient uptake, and the role of water in the physiological processes of 

the grapevines during the growing season to support development of efficient irrigation strategies 

while managing grape and wine quality.  The water acquired by the grapevines of Lot 19 at 

Wollersheim Winery during the 2015 growing season originated from various soil depths and was 

derived from a combination of meteorological sources prior to recharging the soil water reservoir.  

The isotopic composition of grapevine water demonstrates that the functional rooting depth for 

water uptake is highly variable during the different phenological stages of the grapevines over the 

growing season.  The hydrogen stable isotope ratio (δD) values of vine water identify rain as the 

principal water source in the spring months during budbreak and flowering/fruit set, and various 

combinations of rain and groundwater in the summer and autumn months, with an increasing 

percentage of groundwater in the mixture, as the veraison/ripening stages continue and fruit 

maturity is achieved at harvest.  The seasonal vine water use trend demonstrates a variable 

functional rooting depth for grapevine water acquisition over time, with the shallow roots utilizing 

rain water as a main source in spring and a root system that can reach progressively deeper into the 

soil profile for water as the growing season advances.  The preferential vine water use over the 

growing season in this area allows irrigation recommendations to be made or forecasted to 

maximize water uptake efficiency from the soil and water conservation.  This study site is under an 

udic soil moisture regime, potentially providing insensitive isotopic variations due to the evenness 

of rainfall; thus, the success of this approach in an udic regime suggests that that deployment of 
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these methods will be highly effective in identifying seasonal water uptake patterns in ustic and 

xeric moisture regimes. 

3.2 Introduction 

Vineyard terroir is recognized as a critical component of assessing grape and wine quality 

(Wilson 1998; Haynes 1999; White et al. 2009).  Terroir, as a state factor model, incorporates the 

synergistic interaction of the unique physical characteristics of a vineyard, such as the geology, 

soils, geomorphology, biologic organisms, grape variety, and climate; in order to understand how 

the combination of these factors is imparted into the character and quality of the grapes produced 

in that vineyard.  In addition to the physical environment elements that influence the unique 

attributes of grapes and wine, human factors involved in viticulture and winemaking, such as 

vineyard management, viticultural practices, and vinification techniques, also contribute to the 

character and quality of the grapes and resulting wine.  Therefore, terroir is a function of the soil 

(S), organisms (O), grape variety (G), climate (C), landscape (L), and vitiviniculture (V), [Terroir = 

f (S, O, G, C, L, V)].  The vineyard soil, in particular, is one of the most influential terroir factors 

due to its critical role in the grapevines’ absorption of water and nutrients affecting the synthesis 

and accumulation of secondary metabolites in grapes (Bergqvist et al. 2001; Chone et al. 2001; 

Van Leeuwen et al. 2004; Cortell et al. 2005; Cortell and Kennedy 2006; Koundouras et al. 2006; 

Morlat and Bodin 2006; De Andrés-de Prado et al. 2007; Gómez-Míguez et al. 2007; Cohen and 

Kennedy 2010; Ubalde et al. 2010; Van Leeuwen 2010; Shange and Conradie 2012; Teixeira et al. 

2013; Tramontini et al. 2013); and soil heterogeneity at the vineyard level has been directly related 

to variability of grape quality, indicating that soil properties exert a substantial control on the 

availability of water and nutrients to the vines (Bramley et al. 2011; Scarlett et al. 2014).  In turn, 

soil water content is correlated to matric potential, which varies with soil texture.  Coarse textured 

soils have large pores and lose most pore water at low matric potentials, while finer textured soils 



49 

have a mixture of pore sizes and lose water more slowly reaching higher matric potentials 

(Chapman et al. 2012; Whalley et al. 2013).  Soil textural heterogeneity has an impact on the vine 

water source, as demonstrated by ecohydrologic separation of environmental water studies, which 

show partitioning of water in the soil, challenging the assumption that water is thoroughly mixed in 

the soil (Hewlett and Hibbert 1966).  These studies demonstrate that soil water separates into 

mobile and stationary water; mobile water filters through the soil and eventually reaches surface 

water bodies, while stationary water, which is stored in soil zones with high matric potential and 

remains tightly bound in small pores, thus limiting potential mixing with other water, is acquired 

by plants (Jackson et al. 1999; Meinzer et al. 1999; Brooks 2009; Philips 2010; Goldsmith et al. 

2011; Moreno Gutiérrez et al. 2012; McDonnell 2014; Brooks 2015; Evaristo et al. 2015). 

The source of vine water may include a mixture of water from precipitation and 

groundwater, and during a growing season, vine water use varies depending on factors such as 

precipitation inputs, temperature, humidity, and evapotranspiration.  The isotopic composition of 

the vine water reflects that of the source water (i.e., local precipitation inputs, groundwater, or a 

combination of these).  We hypothesize that the location of soil water accessed by a plant 

fluctuates over the growing season according to weather variations, soil moisture status, and 

physiologic demand of the plant.  Approximately 60% of grapevine roots are encountered in the 

top 60 cm of soil (Smart et al. 2006); as the growing season progresses, grapevines extract water 

from shallow soil depths where the highest root densities exist, and if moisture becomes depleted 

in the shallow soil, vine water extraction proceeds to different soil depths, where higher water 

availability and lower root densities are present (Prichard et al. 2004).   

The stable isotope analyses of source and vine water can provide insight into seasonal 

water use, vine water uptake processes, active rooting zones, and the role of water in the vine 
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ecological and physiological processes during the growing season (Wershaw et al. 1966; 

Ehleringer and Dawson 1992; Brunel et al. 1995).  Soil water includes a mixture of waters from 

precipitation (rain, snowmelt) and groundwater; in addition, water in soils used for agriculture may 

include irrigation water as an additional component of the soil water mixture.  In viticulture, 

however, irrigation must be carefully managed in accordance to the needs of the vines during its 

critical phenological stages to maintain an optimal balance between mild water stress, which is 

known to influence grape quality via the phenylpropanoid metabolic pathway, and vine 

development (Jones and Davis 2000; Deluc et al. 2009; Van Leeuwen et al. 2009; Chaves et al. 

2010; Martínez-Lüscher et al. 2016).  Irrigation may be necessary from budbreak to flowering and 

fruit set, whereas during the ripening period from veraison through harvest, limited water supply 

stimulates the vines to direct more energy into fruit development versus excess vegetative growth 

(Moyer et al. 2013).  In regions with seasonal drought, deficit irrigation strategies are implemented 

to maximize efficiency of vine water use while conserving water resources.  Deficit irrigation is 

recognized as an effective approach in refining vine water use while controlling grape quality, 

allowing vines to tolerate mild water stress with a positive impact on grape quality (Wample and 

Smithyman 2002; Prichard et al. 2004; Chaves et al. 2010).   

The stable isotopic composition of water extracted from suberized plant tissue, prior to 

reaching leaves, has been shown to be a faithful record of the source of water uptake by a plant 

(Ehleringer and Dawson 1992).  Thus, the stable isotopes of water in precipitation, soil, and vines 

can be utilized in evaluating the variation in the water source selected by vines over the growing 

season.  The stable isotopes of oxygen and hydrogen in precipitation covary in a predictable 

fashion, being controlled by temperature, the extent of evaporation, the amount of rainout, etc., 

indicating that the stable isotopes of water are an excellent reference for the geographic place of 
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origin of a given parcel of water (Gat 1996).  Because plants take up water from soil quantitatively, 

there is no net isotopic fractionation in the isotopic composition of water during plant uptake and 

transport through roots and stems.  Therefore, plant water in suberized tissue that has not 

undergone evapotranspiration and exchange with biosynthetic compounds in leaves, should reflect 

the isotopic composition of the water source (Wershaw 1966; Zimmerman et al. 1967; Dawson and 

Ehleringer 1991; Dawson 1993; Dawson et al. 2002).  Thus, given appreciable differences in 

isotopic compositions of rainwater during a growing season, variable residence times of water in a 

soil (Buhay and Edwards 1995), and distinct isotopic compositions of groundwater relative to 

ambient precipitation, it is possible to determine the source(s) of water acquired by vines during 

the growing season.  This is in contrast to the well-studied isotope effects on plant water during 

evapotranspiration and biosynthesis, which impart significant fractionations of oxygen and 

hydrogen isotopes (Barbour et al. 2001; Roden et al. 2002), but these are processes that occur at the 

leaf-level, in non-suberized tissues.   

Studies using the variation of natural abundance of water-stable isotopes in soil water and 

suberized tissue plant water demonstrated that the piston flow model or the concept of translatory 

flow is imperfect, as reservoirs of water (with distinct isotope compositions) remained in discrete 

pockets of soil with high matric potential despite percolation of rainwater (Brooks et al. 2009; 

Goldsmith et al. 2011; McDonnell 2014; Evaristo et al. 2015).  In a soil with textural contrasts, the 

high and low matric potential regions influence where vines access water in the soil and, in turn, 

provide considerable heterogeneity in isotope composition, reflecting a mixture of waters from 

precipitation (rain, snowmelt) from different seasons and storm tracks, groundwater, and/or 

irrigation, as well as different residence times for soil water components.  Although the 

mechanism(s) controlling isotopic heterogeneity in soil water is poorly understood, the potential 
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isotopic stratification of soil water could be leveraged to test the depth regions of soil accessed by 

vines for water uptake during the growing season.   

As soil water contains a combination of waters, each with their unique isotopic signature, 

the isotopic composition of the grapevines will reflect that of the source water utilized.  This study 

examines the source of the water acquired by grapevines during the critical phenological stages of 

the 2015 growing season using stable isotopes oxygen and hydrogen in water at Wollersheim 

Winery, one of Wisconsin's best-known wine producers.   

3.3 Materials and Methods 

3.3.1 Study Site 

The only winery in the Lake Wisconsin America Viticultural Area (AVA), Wollersheim 

Winery is a national historic site located in Prairie du Sac, Dane County, Wisconsin.  The studied 

vineyard plot, Lot 19, is located on a hill overlooking the Wisconsin River (Fig. 3-1).  Situated at 

elevations between approximately 213-259 meters, Lot 19 is a 0.6-hectare plot planted in 1987 

with 18 rows of Marechal Foch vines trending northwest-southeast on a southwesterly aspect slope 

of approximately 10% grade.  The vines are planted 2 meters apart with a distance of 3 meters 

between the rows, allowing sufficient space for farming equipment, and typical yields for Lot 19 

are approximately 11 tons per hectare.   
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3.3.2 Rain Water, Soil Water, and Root/Stem Water 

The precipitation isotopic signatures were assessed in relation to the critical phenological 

stages of the grapevines over the growing season (Coombe 2004), spring precipitation representing 

the budbreak, flowering, and fruit set stages; summer precipitation characterizing veraison and 

ripening; and autumn precipitation representing the fruit maturity and harvest phenological stages.  

The 2015 growing season dataset represents an average range of isotopic compositions for spring, 

summer, and autumn season precipitation.   

Figure 3-1. Map of Wollersheim Winery, illustrating the location of study vineyard Lot 19 and the 
distribution of soil types based on USDA Official Soil Series. 
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During the months of May through September 2015, rain water was collected in a 

precipitation collector designed for obtaining a monthly cumulative stable isotope sample.  The 

precipitation collector, consisting of a 13-liter high-density polyethylene (HDPE) bucket with an o 

ring sealed lid and a HDPE funnel glued in the bucket lid, containing a 1-centimeter thick layer of 

light mineral oil to prevent evaporation, was utilized to collect cumulative monthly rain water 

samples from May through September 2015.  Rain water samples were collected utilizing a 30-

milliliter syringe to draw up a sample of water from below the oil layer in the precipitation 

collector, wiping off the oil from the outside of the syringe, ejecting the water sample through a 

funnel lined with several coarse paper filters into a 20-milliliter glass sample vial, with minimum 

head space, and sealed with a screw-cap.  The precipitation collector was emptied following each 

sampling event, and the rain water samples were refrigerated until isotopically analyzed.  In 

addition, a groundwater sample was collected from the winery’s water supply well, which is 

approximately 56 meters deep, has a static water level of approximately 26 meters below ground 

surface, and is the source of irrigation water for the vines.  Groundwater samples were collected at 

the beginning (May) and end (September) of the growing season. 

Soil and stem/root samples were collected concurrently with the monthly rain water 

samples.  Smart et al. (2006) reviewed grapevine root distributions reported by various researchers, 

and found that generally, 60% of grapevine roots are encountered in the top 60 cm of soil, and 

more than 80% of roots are found in the top 120 cm of soil, or less, depending on the presence of 

root limiting horizons.  Thus, during each sampling event, a 50-cm deep soil pit was dug near the 

selected study vine, and soil samples were collected from depths of 10, 30, and 50 cm below 

ground surface.  Soil samples were collected into 20-mL glass vials, and were stored in a freezer 

pending water extraction and isotope analysis.  Stem samples were collected in May and June from 
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shoots located closest to the trunk of the selected study vine, and in order to prevent damage to the 

vine, root samples encountered during the advancement of the soil pit were collected in July, 

August, and September.  The stem/root samples were placed into 20-mL glass vials, and sealed 

with a screw cap.  The vials containing the soil and stem samples were placed in zipped plastic 

bags and transferred to a freezer for storage pending water extraction and analysis. 

3.3.3 Cryogenic Vacuum Water Extraction and Isotopic Analysis 

The water from soil and stem/root samples was extracted using a cryogenic vacuum 

extraction line (Ehleringer and Osmond 1989) at the University of Wisconsin Madison’s Stable 

Isotope Laboratory.  A small portion of each sample was placed into a glass tube (27 mm outside 

diameter, 178 mm long) compatible with the cryogenic vacuum line.  Samples were extracted for 1 

hour (West et al. 2006), after which the extracted water was immediately transferred into a 2-mL 

screw top glass vial and stored in a refrigerator until analyzed.   

The rain water and extracted soil and stem/root water samples were analyzed at the 

University of Wisconsin Milwaukee School of Freshwater Sciences using a Picarro L2130-I 

δD/δ18O Ultra High-Precision Isotopic Water Analyzer with a precision of 0.100 ‰ for hydrogen 

stable isotope ratios (δD) and 0.025 ‰ for oxygen stable isotope ratios (δ18O).  Soil moisture was 

quantified on the remaining soil and stem/root samples, which were weighed, dried at 105 °C over 

48 hours, and re-weighed to calculate percent moisture content.  All isotopic ratios are reported in 

the conventional delta notation (δ) relating the isotopic composition of the samples to that of an 

internationally accepted reference standard (Vienna Standard Mean Ocean Water, V-SMOW) on a 

per mil (‰) basis: δ = (Rsample/Rstandard -1) X 1000, where R is the molar ratio of heavy to light 

isotopes (Gat 2005). 



56 

3.4 Results 

3.4.1 Terroir Overview 

Wollersheim Winery’s Lot 19 is located within a landscape that is part of the streamlined 

hills and valleys shaped by glaciers and glacial stream deposits consisting of outwash and 

hummocky sand and gravel (Mickelson et al. 1982; Mickelson 2007).  The glacial deposits are part 

of the Horicon Member of the Holy Hill Formation (Syverson and Colgan 2004), which is 

characterized by glacial till comprising brown gravelly, clayey, silty sand, and dolomite derived 

from Ordovician formations, and are overlain by loess (Clayton and Attig 1997; Stiles and 

Stensvold 2008; Attig et al. 2011).  Based on the United States Department of Agriculture (USDA) 

Official Soil Series description, the soils are silt loams, part of the Kegonsa Series (type locality) 

characterized by very deep, well drained Alfisols.  Specifically, the soils are Mollic Hapludalfs in 

a mesic soil temperature regime and udic soil moisture regime, indicating the soils have a darkened 

and organic-rich surface horizon, and a high base status clay-rich subsurface horizon.  Locally, the 

soil texture observed within the sampled profiles became consistently coarser with depth, from silt 

and clayey silt in the surficial depths to progressively more sandy textures encountered toward the 

terminal depth of the soil pit (50-cm). 

The climate is moderated by the Wisconsin River, and air drainage in the river valley 

inhibits frost in the vineyards.  In the Wollersheim Winery area, where the average growing season 

ranges from April 1st to October 31st, a total of 2382 (base 50°F) GDD were recorded in 2014.  

Based on a 30-year climatological temperature average (1981-2010), Wollersheim Winery falls in 

the low range of the Winkler Region II (2501-3000 GDD) with an average of 2652 GDD.  In 

comparison, Napa, California falls in the middle range of the Winkler Region III (3001-3500 

GDD) with an average of 3297 GDD, and Walla Walla, Washington falls in the high range of the 

Winkler Region II (2501-3000 GDD) with an average of 2959 GDD.   
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Based on a water budget analysis using the National Oceanographic and Atmospheric 

Administration’s (NOAA) National Climate Data Center climate normals and the USDA Official 

Soil Series descriptions (textures and profile thicknesses) to determine the water status of soils 

over the growing season, the soils are seasonally moist in normal years, largely experiencing a 

surplus throughout the year, with recharge periods from April through October, when 

temperatures are generally above 5º C (Fig. 3-2).  Although droughts likely alter the water 

balance, drought years do not represent “normal years” in this region. 

 

Figure 3-2. Water budget graph illustrating potential evapotranspiration, precipitation, and 
temperatures calculated using climate normals and the USDA Official Soil Series descriptions. 
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3.4.2 Grapevine Phenological Stages 

The typical timing and duration of the critical phenological stages for the vines of Lot 19 

include budbreak in late April/early May as temperatures increase; flowering in mid-to-late June, 

after which the flowers set and the berries begin to grow during the fruit set stage in late June; 

veraison, marking the beginning of coloration in mid-to-late July with complete color change by 

early August; and fruit maturity and harvest in early-to-mid September.  Depending on the local 

weather variations of the growing season, the timetable of the vines’ phenological stages can 

fluctuate by as long as two to three weeks; however, the time interval between the flowering and 

harvest stages has been consistently 85 to 90 days (Philippe Coquard personal communication 

January 9, 2017).  After fruit maturity/harvest and leaf fall, the vines prepare for dormancy from 

November/December to March/April, when there is no active photosynthesis and the vines store 

carbohydrates in the trunk and roots. 

3.4.3 Rain Volumes and Soil Moisture 

Over the 2015 growing season, a total rain volume of 412 mm was recorded, which is in 

the mid-range of water requirements (250 to 750 mm) for a mature vineyard grown on medium 

to heavy textured soils (Goldammer 2015).  Monthly rain volumes over the five sampling events 

(May through September) of the 2015 growing season ranged from 158 to 42 mm, decreased 

progressively from May to July, then increased slightly in August and September (Table 3-1, 

Fig. 3-3).   

Autumn

May June July August September

Budbreak
Flowering &

Fruit Set

Veraison/

Ripening

Veraison/

Ripening

Fruit Maturity/

Harvest

Rain (mm) 158 99 42 53 59 82 ± 47

 Soil Moisture 10 cm 12.4 11.5 9.02 7.43 9.57 10 ± 2.0

 Soil Moisture 30 cm 10.3 10.9 10.3 7.29 8.72 9.5 ± 1.5

 Soil Moisture 50 cm 6.95 8.03 7.55 5.24 3.90 6.3 ± 1.7

Soil Moisture Mean ± SD 9.9 ± 2.7 10 ± 1.9 9.0 ± 1.4 6.7 ± 1.2 7.4 ± 3.1

Sample

Spring Summer

Table 3-1. Monthly rain and percent soil moisture at the 10, 30, and 50-cm depths over five monthly sampling events 

representing the phenological stages of the 2015 growing season.

Mean ± SD
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The highest monthly rain volume (158 mm) occurred in May and corresponds to the 

highest soil moisture value (12.4%) identified in the shallow (10-cm) soil sampling depth.  

Generally, the mean soil moisture of the soil profile across the three soil sampling depths was 

highest in May and June (9.9 and 10.2%) and lowest in August and September (6.7% and 7.4%).  

Similarly, mean soil moisture for each sampling depth over the growing season was highest 

(10.0%) in the shallow (10-cm) soil and lowest (6.3%) in the deep (50-cm) soil.  Across the five 

monthly sampling events, soil moisture typically decreased with depth, with the exception of the 

July sampling event, which coincides with the lowest monthly rain volume (42 mm) of the 

growing season, when the soil moisture at the intermediate sampling depth of 30-cm was higher 

Figure 3-3. Graph of percent soil moisture at 10, 30, and 30-cm depths and monthly rain over the 
growing season. 
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than at the shallow sampling depth of 10-cm.  Although soil moisture can be influenced by severe 

events (i.e., heavy rains, flooding), generally the soil moisture values, which were obtained from 

soil samples collected at the end of each month, correlate with the monthly rain volumes recorded 

at the end of each month over the growing season. 

3.4.4 δD Results of Groundwater, Rain, Soil, and Vine Water 

Monthly rain δD values ranging from -21.5 to -51.9 ‰ over the five monthly sampling 

events, the most negative δD values occur in June and most positive δD occur in July; 

concomitantly, vine water δD values ranging from -29.3 to -51.0 ‰ reflect a parallel trend for 

these months, being most negative in June and most positive in July (Table 3-2, Fig. 3-4).   

 

In contrast to the variability observed in δD values of rain and vine water, a progressively 

enriched trend is noted for mean δD values of soil water across the three sampling depths, 

becoming consistently more positive (δD enriched) over the growing season, with mean δD 

values ranging from -60.2 ‰ in June and -38.9 ‰ in September.  Generally, the δD values of the 

soil water from the shallow 10-cm depth interval correspond most closely to the δD of the rain 

water during the five monthly sampling events, while the δD values of the deeper soil water from 

the spring sampling months (May and June) are more similar to the δD value of the groundwater 

or potentially a combination of groundwater and more depleted snowmelt.   

Autumn

May June July August September

Budbreak
Flowering &

Fruit Set

Veraison/

Ripening

Veraison/

Ripening

Fruit Maturity/

Harvest

Groundwater  δD (‰)

Rain Water  δD (‰) -40.97 -51.87 -21.54 -27.56 -31.96 -34.8 ± 11.9

Vine Water  δD (‰) -38.52 -51.01 -29.32 -45.09 -42.78 -41.3 ± 8.1

Soil Water 10-cm  δD (‰) -31.08 -56.31 -40.96 -39.95 -35.24 -40.7 ± 9.6

Soil Water 30-cm  δD (‰) -59.30 -64.42 -53.34 -46.53 -39.98 -52.7 ± 9.8

Soil Water 50-cm  δD (‰) -63.90 -59.89 -47.99 -47.97 -41.60 -52.3 ± 9.3

Soil Water δD (‰) Mean ± SD -51.4 ± 17.8 -60.2 ± 4.1 -47.4 ± 6.2 -44.8 ± 4.3 -38.9 ± 3.3

-56.65

Spring Summer

Sample

Table 2.  δD (‰) values for groundwater, monthly rain, soil water from 10, 30, and 50-cm depths, and vine water over five 

monthly sampling events representing the phenological stages of the 2015 growing season.

Mean ± SD
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The deeper soil water from the summer and autumn sampling months (July, August, and 

September) reflect a combination of rain and groundwater, with an increasing proportion of the 

groundwater component over time.  Although, the soil water samples show systematic isotopic 

changes relative to the monthly rain water samples, with consistently more δD depleted values than 

the rain, an inconsistency is noted for the soil water samples from 10-cm collected during the May 

2015 sampling event, which is significantly δD enriched (-31.1 ‰) relative to the May rain (-41.0 

‰) (Table 3-2, Fig. 3-5). 

 

Figure 3-4. Graph of δD values for rain, soil, and vine water over the growing season. 
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3.5 Discussion 

During the 2015 growing season, the vines obtained water from different soil depths 

(Table 3-2, Fig. 3-4).  Despite similarity in the range of δD values of vine water and soil water 

over the growing season, vine water δD values are variable when compared between individual 

sampling time points, indicating water uptake from various sources and combination of sources.  

In the spring months (May and June) during the budbreak and flowering/fruit set phenological 

stages, the δD signature of vine water is similar to that of the corresponding rain water (with δD 

values within 94% and 98% of the rain δD values, respectively).  This indicates that the water 

source of the vines was primarily rain water during these spring months, which correspond to the 

Figure 3-5. Graph showing δD values of soil versus depth along with δD values of groundwater and 
monthly rain. 
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highest rain volumes (158 and 99 mm, respectively) of the growing season; consequently, with 

rain water readily available in the root zone, the vines do not reach deep into the soil profile in 

search of water and preferentially utilize rain water.  During these incipient phenological stages, 

water uptake by the roots is necessary for plant development via nutrient solubility facilitating 

nutrient transport from the soil to the vines. 

In the summer months of veraison and ripening stages, the δD signature of vine water 

reflects a combination of rain and shallow soil water from the 10-cm depth in July, while in 

August the δD signature of vine water reflects the intermediate soil water from the 30-cm depth, 

indicating that the vine water source is a combination of rain water and groundwater, with nearly 

equal proportions of each component in early summer, and groundwater as the dominant 

component in the mixture in late summer.  This indicates that as the growing season advances, 

temperatures increase and rain volumes decrease during the summer months, and the availability 

of rain water to vines is limited, which prompts the vine roots to search deeper into the soil 

profile for their water source.  These summer months correspond to the lowest rain volumes (42 

and 53 mm, respectively) of the growing season, which is optimal, as excess water during these 

stages can result in berry splitting or dilution of sugars and flavors. 

In autumn (September) at fruit maturity/harvest, the δD signature of vine water is more 

depleted than the rain and soil water from all sampling depths, indicating that the vine obtained 

its water from even deeper in the soil profile (Fig. 3-4), where the source is a combination of rain 

water and groundwater, with groundwater as the dominant component in the mixture.  This trend 

further suggests that in the later stages of vine phenological development, increasingly warmer 

temperatures resulting in increased evapotranspiration, as soil water is lost to the atmosphere via 

evaporation from the ground surface and from the vines’ leaves, along with gradually decreasing 
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and limited precipitation supply during the summer months, stimulate the vines to reach 

progressively deeper for their water source. 

Generally, rain water is consistently more δD enriched than the soil water, which 

demonstrates a depth dependent trend, with shallow soil water (10-cm) being most δD enriched 

across the growing season; intermediate soil water (30-cm) being most δD depleted in the spring 

and early summer months; followed by a transition to most δD depleted deep soil water (50-cm) 

in the late summer and autumn months.  The sources of water acquired by the vines include rain 

water in spring and combinations of rain and groundwater in the summer and autumn months, 

with an increasing percentage of groundwater in the mixture over time.  These trends indicate 

that among the soil water components, the spring rain water is likely stored in small pores in 

areas of high matric potential in the soil and doesn’t mix with other water components, having 

the longest residence time in the soil.  This is corroborated by the observed soil textures within 

the sampled profile, which became consistently coarser with depth; from a zone of high matric 

potential in the near surface (10 to 20-cm) characterized by silt and clayey silt to lower matric 

potential zones toward the terminal depth of the soil pit (50-cm) characterized by progressively 

sandier textures.  Accordingly, episodes of rainfall over the growing season would likely be 

reflected in the shallow soil water (10-cm) isotope data.   

Overall, soil water samples show systematic isotopic changes relative to the rain water 

samples, with the exception of the May 2015 sampling event, when the soil water sample at the 

10-cm depth was significantly δD enriched (-31.1 ‰) relative to the May rain (-41.0 ‰).  This 

inconsistency points to the presence of an additional water source with a significantly enriched 

isotopic signature in the shallow soil water mixture.  According to the NOAA Storm Data Report 

for May 2015, a hail storm occurred on May 3, 2015, in Dane and surrounding counties.  The 
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isotopic signature of the hail may have contributed to the isotopic enrichment the 10-cm soil 

water collected during the May 2015 sampling event via equilibrium fractionation that 

accompanies chemical reactions and phase changes.  Although no apparent physical damage to 

the vines was observed, hail is an example of a climatic extreme detrimental to agricultural 

crops.  Hail forms during thunderstorms when upward motion of air carries water droplets above 

the freezing level forming hailstones, and as additional water freezes onto them, the hailstones 

grow until they become too heavy for the updrafts to support them, dropping to the ground. 

Generally, as air masses move across continents and lose water by rainout, they become 

depleted in the heavy isotope species because the liquid phase is enriched in the heavy isotopes 

relative to the vapor phase during equilibrium fractionation (Gat 2005; Clark 2015).  Similarly, 

the solid phase is enriched in the heavy isotopes relative to the liquid phase during equilibrium 

fractionation; thus, during the hail forming phase change (i.e., liquid to solid), the heavier 

isotopes are preferentially removed from the air mass as liquid water, and then once more in the 

phase change to solid water.  During this process, as water freezes and hail forms, the heavier 

isotopes (18O and 2H) become enriched in the hail.  Additionally, unlike the liquid phases, the 

solid phases do not participate in isotope exchange with atmospheric moisture, preserving the 

isotopic signature as originally developed in the cloud (Gat 1996).   

The fractionation associated with the equilibrium exchange reaction of the ice-water 

phase transition can be expressed using the isotope fractionation factor alpha (α), which is 

equivalent to the ratio of the heavy to light isotope ratio (i.e., 2H/1H, 18O/16O) in ice and water.  

Another relationship using isotope fractionation δ values is given by the equation:  

α ice-liquid = (1000 + (δD ice) / (1000 + (δD liquid).   
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Since 1955, several authors have determined theoretical and experimental values for the 

fractionation factor α of D between ice and water ranging from 1.0171±0.0005 to 1.0211±0.0007 

(Weston 1955; Posey and Smith 1957; O’Neil 1958; Craig and Horn 1968; Arnason 1969); 

Lehmann and Siegenthaler’s (1991) published experimental value for the fractionation factor α 

of D for the ice-water transition is 1.0212±0.0004.  To evaluate the premise that hail contributed 

to the isotopic enrichment the 10-cm soil water collected during the May 2015 sampling event 

and that the soil water is a mixture of rain water and hail meltwater, an apparent fractionation 

factor was calculated using the rain and 10-cm soil water isotopic data, 

α ice-liquid = (1000 + (-31.0778)) / (1000 + (-40.9746)) = 1.01032. 

The calculated α value of 1.01032 is lower than the published values for equilibrium 

fractionation factors, which is consistent with the premise that the 10-cm soil water isotopic 

composition is a mixture of meltwater from hail and rain, and not simply related to meltwater 

derived from hailstones, nor solely derived from rainfall.  An α ice-liquid value greater than 1 

indicates that the first phase (ice) is more enriched than the second phase (liquid); thus, for an 

apparent αice-liquid calculated value of 1.01032, the δD of hail is +10.32‰ higher than the δD 

value of hail meltwater at equilibrium.  Using the measured δD values of rain and soil water 

from the 10-cm depth, a δD value of -9.90 ‰ was calculated for the hail meltwater, which 

indicates that the δD value of hail is 0.42 ‰.  A binary mixing model was utilized to calculate 

the relative proportions of each component (rain and hail meltwater) of the soil water mixture 

isotopic composition in the 10-cm soil depth, indicating a 76% contribution from rain and a 24% 

contribution from hail meltwater in the soil water mixture.  Thus, only water with an isotopic 

composition of -9.90 ‰ would be able to shift the δD value of the soil water by this value, and 
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given the hail storm event that occurred in May 2015, hail is the most likely component in the 

soil water. 

Over the 2015 growing season, the grapevines obtained water from various sources and 

combination of sources, reaching progressively deeper for their water source as the growing 

season advanced.  Specifically, in spring during budbreak and flowering/fruit set, the vines used 

primarily rain water, in early summer at the beginning of veraison/ripening, the vines used a 

combination of rain and shallow soil water (10-cm), in late summer at the end of 

veraison/ripening, the vines used intermediate soil water (30-cm depth), and in autumn at fruit 

maturity/harvest, the vines used water from even deeper (>50-cm) in the soil profile.   

Vine water management is an important consideration for vineyards, and vine water use 

can be manipulated to control vegetative and reproductive growth and focus on enhanced fruit 

quality.  Typically, over a growing season, vineyards planted in silt and clay rich soils require 

250 to 750 mm of rainfall, whereas vineyards planted in sandy soils require 900 to 1200 mm of 

rainfall (or its equivalent in irrigation); and during grapevine development, water consumption is 

highest from fruit set to harvest and from fruit set to veraison, with 35% and 36%, respectively, 

and lowest from budbreak to flowering and from flowering to fruit set, with 9% and 6% 

respectively, of the season’s total (Goldammer 2015).  However, as vines utilize water for 

different physiological processes, water use can be controlled during certain phenological stages 

to improve grape quality.  Specifically, although water requirements are low between budbreak 

and flowering/fruit set, the vines undergo critical developmental changes that are sensitive to 

water levels.  Between flowering/fruit set and veraison water levels can be manipulated as vine 

and grape development progresses and excessive canopy growth can sometimes result in shading 

of the developing grape clusters; and after veraison, grape development is unaffected by water 
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levels, and excess water can cause dilution of flavors or sugars (Moyer et al. 2013).  Deficit 

irrigation is utilized to control grape quality by limiting water after fruit set to promote smaller 

grape berries and a greater skin to pulp ratio, and after veraison to increase sugar and phenolic 

concentrations; however, vineyard irrigation strategies are highly variable, as the effects of 

deficit irrigation on grape quality depend on climatic variables (i.e., amount of rainfall, 

evaporative demand), cultivar, soil types and textures, cover crops, rooting zones, and grapevine 

phenological stages (Winkler et al. 1974; Gladstones 1992; Deloire et al. 2004; Prichard et al. 

2004; Cohen and Kennedy 2010).  The results of this study show that in an udic/mesic climate, a 

vineyard planted with Marechal Foch grapevines in silt loam soils has a relatively shallow 

effective root zone depth, and in drought conditions, irrigation would be focused in the surficial 

upper 10-cm of soil in spring and the upper 30-cm of soil in summer, and progressively deeper 

into the soil profile into the late summer and autumn months, as evidenced by the preferential 

vine water uptake over the growing season.  In arid, semi-arid, and Mediterranean climates, 

where grape growing areas have an increased risk of water deficit, such as in ustic, aridic, and 

xeric moisture regimes in which the available water capacity is limited, irrigation strategies will 

be affected by increased evapotranspiration, greater effective root zone depths, as well as soil 

texture variations, which affect soil hydrology and rooting depths via factors such as limited 

infiltration in the dry, coarse-textured, shallow soils of aridic climates, rapid infiltration in the 

freely drained soils with typical calcic horizons of ustic climates, and root restricting horizons in 

the intensely leached soils of xeric climates that often exhibit silica cemented duripans. 

3.6 Conclusions 

The observed trends of vine water uptake from the soil over the growing season can be 

utilized in developing irrigation strategies to maximize efficiency of vine water use as well as 

water conservation.  The findings of this study suggest that the water acquired by vines during 
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grape development originated from various sources and combination of sources.  The isotopic 

composition of vine water demonstrates that the functional rooting depth for water acquisition by 

the vines is highly variable during the different phenological stages of the vines over the 2015 

growing season.  The vine water δD values indicate rain is the main water source in the spring 

months during budbreak and flowering/fruit set, and as the growing season advances, 

progressively deeper water sources within the soil profile are sought by the vines as ripening 

ensues and fruit maturity is achieved.  Over the summer months during the veraison/ripening 

stages, the δD signature of vine water reflects a combination of rain and shallow soil water in 

July, and intermediate soil water in August.  In September at the fruit maturation/harvest stage, 

the most depleted vine water δD value points to a deeper source of water for the vines beyond 

the deepest soil depth interval sampled (50-cm).   

The seasonal vine water use trend supports a variable functional rooting depth for water 

acquisition by the vines during the different phenological stages, with the shallow roots utilizing 

rain water as a preferential source during the spring months and a root system developed to reach 

for water progressively deeper as the growing season advances as greater storage of water is 

found in deeper soil in the autumn months.  The preferential vine water uptake performance over 

the growing season indicates that in drought conditions, the top 10-cm and 30-cm of soil would 

require irrigation in spring and summer, respectively, followed by progressively deeper intervals 

in the soil profile requiring to be wetted over the growing season. 

Future research focused on sampling deeper into the soil profile (beyond the 50-cm depth 

interval sampled) would provide more precise insights on functional rooting depth for these 

vines.  The variation in water availability and its effects on the phenological stages of the vines 

are important in determining a grape growing region’s potential for production of quality grapes 
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and wines within the limits of its climatic regime.  Thus, in a changing climate affecting 

precipitation patterns and water availability, consistent production of quality grapes is 

challenged, as vine phenology and grape ripening are highly dependent on the vine water status, 

and maintaining an optimal water balance for grapevines is imperative. 



71 

4.0   Chapter III: Effects of Vineyard Soil Properties on Phenolic Compounds 

in Syrah Grapes from the Walla Walla Valley AVA, Washington 

4.1 Abstract 

The phenolic compounds that develop in grapes over the growing season are sensitive 

markers of differences between vineyards and associated variations in grape and wine quality, 

and vineyard soils affect the phenolic composition of grapes via their control on the uptake of 

vine nutrients and water.  This study is a regional scale reconnaissance survey that examines the 

relationships between soil characteristics and the phenolic compound concentrations of Syrah 

grapes collected during the 2014 harvest from 11 vineyards planted across four different terroirs 

in the Walla Walla Valley American Viticultural Area (AVA) in an assessment of the useful 

application of the terroir construct at this scale.  Soil properties, including drainage, depth, 

available water-holding capacity (AWC), texture, bulk and plant available chemistry, and 

mineralogy in conjunction with concentrations of grape phenolic compounds, including tannin, 

polymeric and total anthocyanins, quercetin glycosides, and catechin are assessed to explore the 

link between vineyard soil and grape chemistry across the Walla Walla Valley AVA’s four 

terroirs.  No significant differences were noted at this regional scale, and the relationships 

between soil characteristics and phenolic compounds, generally indicate that although the four 

terroirs have distinctly different soil properties, the grape phenolic concentrations reveal only 

subtle variations.  Overall, the minor differences discerned indicate that higher concentrations of 

phenolics may be associated with coarser-textured, well to somewhat excessively drained soils of 

limited depth and lower AWC, and within the Walla Walla Valley AVA, these characteristics are 

most common in vineyards that feature soils exhibiting the influence of basalt from weathered 

basalt bedrock or basalt-derived alluvium.  The study demonstrates that large scale 
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characterizations at the AVA level can be limited by the variability of soil properties at the 

vineyard level.   

4.2 Introduction 

Vineyard terroir has been viewed as a critical component of wine quality since the 12th 

century, when the Cistercian monks of Burgundy realized that the physical environment in which 

grapes are grown has a major influence on the character and quality of grapes and resulting wine.  

The unique characteristics of a vineyard, including factors such as the geology, soil, landscape, 

and climate contribute collectively to the quality of the grapes and sensory attributes of the wine 

produced in that vineyard (Wilson 1998; Haynes 1999; White et al. 2009).  Grape phenolic 

compounds, which are secondary metabolites that develop in the skin and seeds of grapes during 

ripening are one measure of grape and wine quality.  The transformations that occur in the skin 

and seed phenolics during grape berry maturation have a fundamental influence on wine quality 

because the phenolic composition of grapes ultimately influences the balance, taste, color, 

consistency, and aroma of wines.  The biosynthesis of phenolic compounds proceeds from the 

essential amino acid, phenylalanine, following the phenylpropanoid biosynthetic pathway, and 

the functional roles of phenolics include pigmentation, attraction of pollinator and seed dispersal 

organisms, UV-light protection, and pathogen protection (Cortell et al. 2007; Imre et al. 2012; 

Teixeira et al. 2013).  Phenolics are also known to provide various human health benefits due to 

their antioxidant and anti-inflammatory properties (Cortell and Kennedy 2006; Koundouras et al. 

2006; Di Majo et al. 2008; Kennedy 2008; Teixeira et al. 2013; Anesi et al. 2015).  Grape 

phenolic compounds are classified into non-flavonoids and flavonoids.  The two most well-

known non-flavonoid classes are the hydroxycinnamates (e.g., caftaric acid) and stilbenes (e.g., 

resveratrol); and the three main classes of flavonoids include the anthocyanins, flavonols, and 

flavan-3-ols.  The principal flavonols in grapes are present as glycosides of quercetin, 
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kaempferol, myricetin, and isorhamnetin; and the flavan-3-ols include monomeric (catechins) 

and polymeric (proanthocyanidins or condensed tannins) structures (Kennedy et al. 2002; Cortell 

et al. 2005; Cortell and Kennedy 2006; Teixeira et al. 2013).   

The phenolic synthesis and accumulation in grapes and therefore grape berry 

composition, including phenolic content, are influenced by terroir factors.  The processes that 

control the synthesis and accumulation of grape phenolic compounds and the effects of the 

vineyard environment and viticultural practices on these processes have been the subjects of 

considerable research.  These studies generally conducted at the vineyard level have concluded 

that the most influential factors in the synthesis of grape phenolic compounds are solar radiation 

and sunlight exposure, temperature, cultivated variety, as well as environment conditions that 

affect absorption of water and nutrients (Bergqvist et al. 2001; Cortell and Kennedy 2006; 

Gómez-Míguez et al. 2007; Koundouras et al. 2006; Cohen and Kennedy 2010; Ubalde et al. 

2010; Van Leeuwen 2010; Teixeira et al. 2013).  In particular, variability of grape quality at the 

vineyard level has been directly related to soil heterogeneity, indicating that soil properties exert 

a substantial control on the availability of water and nutrients (Bramley et al. 2011; Scarlett et al. 

2014).   

Although some phenolic compounds in wine arise from microbial activity and oak used 

in the vinification process, most are derived from grapes and their concentrations are controlled 

by grape variety, vineyard physical environment, vineyard management, and vinification 

techniques (Kennedy 2008).  Koundouras et al. (2006) compared the phenolic composition of 

grapes and associated wines produced using the same vinification techniques over two vintages, 

and found that grapes with high concentrations of phenolic compounds produce wines with high 

phenolic content.  As wine quality is driven by the phenolic content of grapes, the concentrations 
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of phenolics that can be extracted into wines are dependent on the concentrations of phenolics 

available in the grapes (Cortell et al. 2005); and maximizing the grape phenolic content promotes 

enhanced organoleptic properties and overall quality of wines.  Thus, harvest and wine making 

decisions are governed by the synthesis and accumulation of phenolics in grapes, which in turn 

depend on the availability of water and nutrients from the vineyard soil. 

4.2.1 The Role of Soil in the Development of Grape Phenolics 

The transfer of water through the grapevine, by absorption through the roots and 

evapotranspiration through leaves, influences grape berry quality.  In a study investigating the 

concurrent effects of climate, soil, and cultivated variety, Van Leeuwen et al. (2004) found that 

the grape berry composition depends significantly on the soil, which in turn affects the vine 

water status through its texture, water holding capacity, and depth.  Generally, mild water stress 

results in lower vine vigor through reduced foliage production and lower fruit yield through 

decreased berry number and size, and is associated with higher grape phenolic content (Smart, 

2014).  As soil is the foundation of the grapevine, supplying water and nutrients required for 

plant growth, its properties strongly influence vine vigor, grape berry yield, and the attendant 

grape phenolic composition.   

4.2.2 Soil Properties Influencing Phenolics 

Studies largely conducted at the vineyard scale determined that soil properties, including 

parent materials, fertility, texture, rooting depth, and water holding capacity are important 

components of terroir that govern water stress and associated vine vigor and grape berry size via 

their influence on nutrient and water absorption, ultimately influencing the development of 

phenolics in grapes and wines.   
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Parent materials influence grape phenolic content by contributing different mineral 

compositions, textures, and degrees of weathering to the soil; thus affecting the available 

nutrients and water holding capacity of the soil.  Shange and Conradie (2012) evaluated 

grapevine function relative to different soil parent materials and found that soils originating from 

shale have significantly more fine sand than granite-derived soils, which have a higher 

proportion of gravel and coarse sand, highlighting the textural differences resulting from diverse 

parent materials.  Shale-derived soils were found to have higher water holding capacity, higher 

total potassium content, as well as higher nitrogen content in the grape juice.  Morlat and Bodin 

(2006) studied the composition and quality of Chenin Blanc and Cabernet Franc grape berries 

based on soil depth, clay content, and degree of weathering of the parent rock, and found that 

grapes cultivated in weakly-weathered rock (associated with lower water holding capacity) were 

significantly smaller in size, had higher sugar and anthocyanin content, lower titratable acidity, 

and a higher Total Phenolic Index than grapes cultivated in strongly-weathered rock, which had 

higher water holding capacity. 

Soil fertility influences the vigor and productivity of grapevines and therefore the quality 

of the resulting wine.  Vineyard soils have low agricultural requirements, and generally, lower 

soil fertility has been associated with higher grape quality.  Soil fertility is typically evaluated 

based on the concentrations of soil organic matter, carbon, nitrogen, phosphorus, and potassium.  

Although these elements are essential in the development of the vines, high soil fertility can lead 

to higher vigor and yields, reducing grape quality.  In a study by de Andrés-de Prado et al. 

(2007), Grenache planted in more fertile soils (higher organic matter, organic carbon, and 

potassium composition), with higher water-holding capacity produced wines with considerably 

lower total phenolic content and lower color intensity.  Chone et al. (2001) investigated vine 
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nitrogen status on four vineyard blocks planted with Cabernet Sauvignon in the Medoc area of 

Bordeaux, by conducting weekly estimates of vine nitrogen uptake from veraison through 

harvest, and found that reduced vine vigor, smallest grape berries, and highest phenolic content 

for must and wine were produced under nitrogen deficiency. 

Soil texture, which is determined through grain size analysis and expressed as 

percentages of clay, silt, sand, and/or gravel, is used to classify soils and estimate soil water 

holding capacity, which is lower for soils with coarser textures.  Generally, coarse textured soils 

with lower water holding capacity have been associated with higher concentrations of grape and 

wine phenolics (van Leeuwen et al. 2004, de Andrés-de Prado et al. 2007, Ubalde et al. 2010, 

Imre et al. 2012).  De Andrés-de Prado et al. (2007) assessed the effects of soil on the quality of 

wine at two vineyards planted with Grenache over two vintages and determined that loam-clayey 

soils, with finer texture/less coarse fraction and higher fertility and water holding capacity, 

yielded wines with lower color intensity and lower total phenolic composition.  Ubalde et al. 

(2010) found that coarser-textured soils abundant in sand and gravel, somewhat excessively 

drained, and with a low water holding capacity inhibited vine root development and produced 

smaller grape berries with higher sugar content and wines with higher color intensity, total 

polyphenols, tannins, and anthocyanins.  Similarly, a study by Imre et al. (2012) comparing three 

vineyards with varying proportions of gravel in their soils determined that under the same 

irrigation stress regime, the soils with the finer texture and lower proportion of gravel produced 

wines with lower color intensity, fewer total red pigments and monomeric pigments than the 

soils with coarser texture and a higher proportion of gravel.  Van Leeuwen et al. (2004) 

evaluated vine development and grape berry composition in soils with different textures, 

including a gravelly soil with low water holding capacity associated with high water deficit 
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potential, a soil with a heavy clay subsoil associated with moderate water stress potential, and a 

sandy soil with no water stress potential due to vine roots within reach of the water table.  

Although a sandy soil texture can provide good drainage, the presence of a shallow water table 

can preclude the vines from undergoing beneficial mild water deficit.  The authors determined 

that the gravelly and clayey soils produced grapes with higher anthocyanin concentrations than 

the sandy soils.  Furthermore, grape berry weight and yield were highest for the sandy soils as a 

result of the unrestricted water availability from the shallow water table in the sandy soils.   

Soil depth is generally evaluated in terms of vine rooting depth.  Limiting the soil depth 

reduces soil water holding capacity, which in turn can increase phenolic content and ultimately 

enhance wine quality.  Overall, on most substrates, shallow soils enhance terroir expression.  

Generally, a negative correlation has been found between grape or wine phenolics and effective 

soil depth, which is the depth from the soil surface to the hardpan or restrictive layer (Choné et 

al. 2001, Cortell et al. 2005, Koundouras et al. 2006).  Choné et al. (2001) studied four vineyard 

blocks with different soil types in the Medoc area of Bordeaux, and, in spite of a rainy vintage, 

observed mild water deficits associated with a shallow root depth gravelly soil, as well as slight 

negative correlations for finer textured soils (between root zone depths of 0.7, 1.0, 1.5, and 2 

meters) and concentrations of anthocyanins and tannin in must and wine.  Cortell et al. (2005) 

evaluated the spatial variations of vine growth parameters in a Pinot Noir vineyard as a function 

of grape berry and wine phenolic composition using precision viticulture techniques, and found a 

strong correlation between soil depth, water-holding capacity, and vine vigor.  Specifically, the 

study showed that areas of shallow soil depth, lower soil water-holding capacity, and lower vine 

vigor corresponded to areas of higher skin proanthocyanidin in grape berries at harvest.  Shallow 

soil depth and associated low water-holding capacity resulted in reduced vine vigor and canopy 
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structure, increasing sunlight exposure and temperature, which enhanced the accumulation and 

synthesis of grape phenolic compounds and the resulting wine quality.  Another study by 

Koundouras et al. (2006) in southern Greece at three non-irrigated vineyards over two vintages 

found significantly lower yield and vine vigor in the vineyard plot where vine water uptake was 

limited due to shallow soil depth and vine rooting.  Overall, this vineyard plot yielded grape 

berries with the highest anthocyanin content and total phenolics index through ripening, had the 

highest must sugar content, and produced wines with consistently higher total phenolics than the 

other two vineyards with deeper soils. 

This study provides an appraisal of the useful application of the terroir concept at the 

regional scale via a reconnaissance survey that evaluates the relationships between soil 

characteristics (parent material, depth, texture, chemistry, mineralogy, and water holding 

capacity) and the classes and concentrations of phenolic compounds (catechin, tannin, quercetin 

glycosides, polymeric anthocyanins, total anthocyanins, as well as soluble solids) developed in 

Syrah grapes at harvest from 11 vineyards located in the Walla Walla Valley AVA, where soils 

can be categorized into four distinctive terroirs.   

4.3 Geologic Setting and Overview of Walla Walla Valley AVA 

The study area is located in the Walla Walla Valley American Viticultural Area (AVA), 

which encompasses approximately 1,300 km2.  Straddling the border of southeastern Washington 

and northeastern Oregon, the Walla Walla Valley AVA includes within its boundaries the newly 

approved Rocks District of Milton–Freewater AVA (The Rocks AVA), which is located entirely 

in Oregon (Fig. 1).  A detailed study of the Walla Walla Valley AVA highlighting the variability 

of its terroirs has been carried out by Meinert and Busacca (2000).   
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The terroir of the Walla Walla Valley AVA is influenced by the rain shadow effect of the 

Cascade Mountains and a warm, semi-arid climate.  Elevations across the Walla Walla Valley 

AVA range from 122 meters (400 feet) to 610 meters (2000 feet) and annual rainfall varies from 

178 millimeters (mm) (7 inches) at the western end of the AVA to 559 mm (22 inches) along the 

foothills of the Blue Mountains to the east.  With an average growing season ranging from April 

1st to October 31st, a total of 3,444 Growing Degree Days (GDD, base 50°F) were recorded in 

2015 for the Walla Walla Valley AVA (based on data from the Walla Walla airport weather 

station).  Based on a long-term (24-year) climatological temperature average, the Walla Walla 

Valley AVA fits in the middle range of the Winkler Region II (2500-3000 GDD) with an average 

of 2835 GDD (50°F). 

The tumultuous geological history of the Walla Walla Valley comprises extensive 

basaltic lava eruptions, vast glacial outburst floods, and wind-blown loess deposits of various 

thicknesses.  The entire Walla Walla River basin is underlain by massive flood basalts known as 

the Columbia River Basalt Group mostly erupted during the Miocene (17-15 Ma), covering an 

area of approximately 163,700 km2 and having an estimated volume of 174,300 km3 (Carson and 

Pogue 1996; Meinert and Bussaca 2000).  Recurring Pleistocene glacial outburst flooding events 

(Missoula floods) that occurred between 15,300 and 12,700 years ago deposited sediment at 

elevations below 366 meters (1200 feet) throughout the area (Meinert and Bussaca 2000; Pogue 

2009).  The glacial flood events deposited a sequence of graded beds, known as the Touchet 

beds.  Subsequent fluvial and aeolian processes have altered the deposits of glacial flood 

sediments in many parts of the valley.  The silt fraction of the flood sediment deposits generated 

by each Missoula flood was eroded by the prevailing southwesterly winds, which carried the silt 

to the northeast, covering the landscape with deposits of windblown loess of varying thicknesses.  
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Most vineyards in the Columbia Basin are planted on soils derived from deposits of loess and 

glacial flood sediments (Pogue 2009).  Across the valley floor (below 366 meters or 1200 feet) 

cobblestone river gravels, flood sediments, and loess deposits mantle the landscape and overlie 

the basalt bedrock, and in the foothills (above 366 meters or 1,200 feet) the bedrock is overlain 

by loess.   

According to the Washington State Wine Commission, the Walla Walla Valley AVA has 

experienced tremendous expansion in the last fifteen years, having the largest number of 

wineries in Washington, with over 100 wineries and over 800 hectares of vineyards.  The leading 

grape variety planted is Cabernet Sauvignon, with Merlot, Chardonnay, and Syrah as the other 

predominant varieties.  Gewurztraminer, Cabernet Franc, Sangiovese, Grenache, Malbec, Petit 

Verdot, Tempranillo, Pinot Gris, Riesling, Sauvignon Blanc, Semillion, and Viognier are also 

cultivated.   

4.3.1 Study Area 

The study area encompasses approximately 194 km2 in the southeast quadrant of the 

Walla Walla Valley AVA, with 57% of the study area in Washington and 43% of the study area 

in Oregon (including The Rocks AVA).  The study was focused on 11 vineyards planted with 

Syrah grapes across different terroirs (Fig. 4-1).  Four distinctive terroirs are defined within the 

study area (Fig. 4-2).  Terroir 1 is restricted to elevations below 366 meters (1200 feet) and 

consists of 0.6 to 1.2 meters (2 to 4 feet) of loess over Missoula flood sediments.  In Terroir 1, 

represented by Pepperbridge, Seven Hills, and VaPiano vineyards, grapevine roots typically 

penetrate loess into underlying Missoula flood deposits.  Terroir 2 is restricted to elevations 

above 366 meters (1200 feet), consists of thick loess (≥3 meters) overlying basalt bedrock, and is 

represented by Les Collines, Leonetti Loess, and Dwelley vineyards.  Terroir 3 is situated on 
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steeper slopes in the foothills and canyons of the Blue Mountains and consists of thin loess (<1 

meter) over weathered basalt bedrock.  In Terroir 3, represented by Ferguson and South Wind 

vineyards, grapevine roots penetrate the thin loess and encounter basalt bedrock.  Terroir 4 lies 

within the alluvial fans of the Walla Walla River, and consists of basalt cobblestone river gravels 

in a sand and silt matrix.  This terroir is enclosed by the boundaries of The Rocks AVA, and is 

represented by Cayuse, SJR, and Old Stones vineyards. 

 

 

Figure 4-1. Map showing the study area in the southeast quadrant of the Walla Walla Valley 
AVA, and the study vineyards planted with Syrah grapes across different terroirs 
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Terroir 1: Loess over Missoula Flood 
sediments (Pepperbridge, Seven Hills, Va 

Piano) 

Terroir 2: Thick loess (>3m) over basalt 
bedrock (Les Collines, Leonetti Loess, 

Dwelley) 

Terroir 4: Basalt cobblestone river gravels in 
a sand and silt matrix (Cayuse, SJR, Old 

Stones) 

Terroir 3: Thin loess (<1 m) over 
weathered basalt bedrock (Ferguson, South 

Wind) 

Figure 4-2.  Four distinctive soil terroir categories in the Walla Walla Valley AVA 



83 

4.4 Materials and Methods 

4.4.1 Soil Assessment 

To minimize flattening of microscale variation, collocated soil and grape samples were 

collected from the study vineyards in each of the four terroirs in September 2014.  Soil profiles 

were examined to maximum depths of 50 centimeters below ground surface, across horizons A, 

E, and B, and soil samples were collected from the bottom of each pit.  Soil texture was 

determined through grain size analysis via a Malvern Mastersizer 2000E laser diffraction 

particle-size analyzer.   

Total major and select minor and trace element compositions were determined on the fine 

fraction of the vineyard soil samples, which were powdered and fused for x-ray fluorescence 

(XRF) analysis.  Loss on ignition (LOI) was determined by heating 1 gram of sample for 10 

minutes in a muffle furnace at 1050 °C and calculating the mass difference.  The major element 

and select minor and trace element compositions were obtained from glass disks fused at 1050°C 

in a Claisse M4 fluxer and analyzed using a Bruker S4 Pioneer XRF in the Department of 

Geosciences, at University of Wisconsin – Milwaukee (UWM).  Plant-available soil chemistry 

analysis was conducted by the University of Wisconsin Soil Testing Laboratory in Madison, 

Wisconsin, and includes concentrations of phosphorus, potassium, calcium, magnesium, sulfur, 

zinc, manganese, and boron, as well as pH, cation exchange capacity (CEC), and organic matter 

(OM).   

Soil mineralogy was determined non-quantitatively on a portion of each powdered 

sample by x-ray diffraction (XRD) analysis.  Random mounts were prepared by gently 

smoothing the surface of a fine powder poured into a flat surface onto a cavity mount sample 

holder. Samples were analyzed in the Department of Geosciences at the University of 

Wisconsin–Milwaukee using a Bruker D8 Focus XRD system (Cu Ka radiation, 1 s per 0.02° 2θ, 
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2°–60° range, scintillation detector). Minerals were identified by searching the International 

Centre for Diffraction Data (ICDD) PDF-2 database database of standard X-ray powder 

diffraction patterns for a match with the pattern of the unknown, using Bruker's EVA software 

for peak matching.   

4.4.2 Grape Phenolic Panel 

Grape samples were collected from the east side of the row at each study vineyard during 

the September 2014 harvest.  Two to three grape clusters were collected from each vineyard, and 

approximately 250 grams of loose berries were weighed, placed in sealable plastic bags, and 

frozen prior to being submitted to the laboratory for analysis.  Grape phenolic profile analyses 

were performed by ETS Laboratory in Saint Helena, California by high performance liquid 

chromatography on a one-day turnaround time.  The grape phenolic panel analysis entailed a 

wine-like extraction of whole grape berries and an analysis of major grape phenolic compounds 

associated with wine color and tannin development, including catechin, tannin, quercetin 

glycosides, polymeric anthocyanins, total anthocyanins, as well as degrees Brix (°Brix), which 

provide estimated concentrations of the dissolved sugar in the resulting extract.   

4.4.3 Data and Maps 

Vineyard-specific data collected during the September 2014 harvest, as well as data from 

the United States Department of Agriculture (USDA) Natural Resources Conservation Service 

(NRCS), Web Soil Survey (WSS) (http://websoilsurvey.nrcs.usda.gov/) were incorporated in this 

study.  Data were plotted using the geographic information system software program Esri 

ArcGIS Desktop to geospatially characterize the study area vineyards.  WSS soil properties were 

assessed utilizing the USDA NRCS Soil Data Viewer tool built as an extension to ArcMap, 

which facilitates spatial mapping of soil properties from the WSS attribute database.  The maps 

were generated using the Washington State Plane South Coordinates FIPS 4602 (meters), in the 
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North American Data system of 1983 (NAD 1983); and ordinary kriging, which allows statistical 

interpolation of spatial data, generating predictions about the spatial extent of the evaluated 

variable. 

4.5 Results and Discussion 

4.5.1 Study Area Soils 

The spatial distribution of the WSS soil properties, including parent material, surface 

texture, soil depth, drainage class, available water holding capacity (AWC), and frost action are 

depicted on Figures 4-3a through 4-3f.  The vineyard soils across the study area developed from 

various glacially-derived parent materials, including loess, silty loess over calcareous lacustrine, 

and glacio-fluvial deposits (Terroir 1), loess deposits (Terroir 2), loess mixed with colluvium 

from basalt deposits (Terroir 3) and mixed, very gravelly alluvium deposits (Terroir 4) 

(Fig. 4-3a).  The surface textures of the vineyard soils consist of silt loam across Terroirs 1 and 

2, very stony loam in Terroir 3, and very cobbly loam in Terroir 4 (Fig. 4-3b).  The soil depths 

range from 46 to 201 cm, with the best vine conditions represented by the shallower soil of 

vineyards located in Terroir 3 (Fig. 4-3c), and the soil drainage classes indicate overall good 

conditions for the vines in the study area, with well drained soils across Terroirs 1, 2, and 3, and 

somewhat excessively drained soils in Terroir 4 (Fig. 4-3d).  The soil AWC values, ranging from 

0.1 to 0.2 cm H2O per cm soil, are lower in Terroirs 3 and 4 (Fig. 4-3e); and the soil frost action 

is low to moderate for Terroirs 3 and 4 and high for Terroirs 1 and 2 (Fig. 4-3f).  The pre-

agricultural vegetation in southeast Washington consisted of native grasslands, ranging from 

sagebrush-steppe, to meadow steppe, to coniferous forest distributed according to the 

precipitation gradient across the area, and consisting of xerophytic and mesophitic shrubs, 

perennial grasses, conifers, and various annual and perennial grasses and forbs (Meinert and 

Busacca 2000).   
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Based on the USDA taxonomic classification, the soils across the study area are 

Mollisols, which is a soil order characterized by a deep, high organic matter, nutrient-enriched 

surface horizon (mollic epipedon) resulting from the long-term addition of organic materials 

derived from plant roots, and typically have soft, granular, soil structure.  Mollic epipedons 

typically form where the natural vegetation produces more below-ground biomass than above-

ground biomass, such as grasslands in temperate climates (Buol et al. 2003).  The transition to 

vineyards from native grasslands likely changed the organic matter cycling in these soils, as 

Figure 4-3a-f. Map depicting the spatial distribution of soil properties, including parent material, 
surface texture, soil depth, drainage class, available water holding capacity, and frost action 

Source: http://websoilsurvey.nrcs.usda.gov. 

b a 

d c 

e f 
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biomass production shifted from being predominantly in the subsurface grass roots to above-

ground biomass production in leaves and fruit, and this transition is evidenced by the general 

absence of high organic matter mollic epipedons in the sampled vineyard soils across the study 

area.  Based on a water budget analysis using the National Oceanic and Atmospheric 

Administration (NOAA) National Climatic Data Center (NCDC) climate normals and the USDA 

Soil Series descriptions (textures and profile thicknesses) to determine the water status of soils 

over growing seasons under normal year conditions, the soils are prone to intense leaching.  This 

type of soil hydrology creates a drought-sensitive environment, with the soils generally 

experiencing a period of utilization in the month of June, followed by a deficit during the months 

of July through September, and a recharge period during October through December.  The water 

deficit allows for controlled irrigation, which in turn controls vine vigor. 

The sampled vineyard soils are mapped as Terrace Escarpments, Ellisforde, Walla Walla, 

Lickskillet, and Freewater Series, which are characterized by well drained to overly drained 

soils, although soil series maps are notably coarse in resolution and dependent upon the accuracy 

of model-generated predictions of soil properties from landforms.  The Terrace Escarpments 

consist of very steep or severely eroded banks or escarpments, and are represented by Terroir 1 

vineyard Va Piano.  The soils of the Ellisforde series are generally found on terraces and consist 

of very deep soils developed in loess overlain by lacustrine sediments, and are represented by 

Terroir 1 vineyard Seven Hills.  The Walla Walla series soils are generally found on hills, 

consisting of deep and very deep soils developed in loess, and are characterized by vineyards of 

Terroir 2 and Terroir 1 vineyard Pepperbridge.  The Lickskillet series soils, represented by the 

vineyards of Terroir 3, are found on plateaus and uplands and are shallow soils developed in 

stony colluvium, consisting of weathered fragments of basalt and rhyolite mixed with loess.  The 
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soils of the Freewater series, characterized by the vineyards Terroir 4, are deep soils developed 

on high stream terraces in gravelly alluvium that is combined with loess in the upper portion.  

These diverse soils have different dominant processes that can impart distinct controls on grape 

quality as a result of texture-induced differences in water holding capacity, exchangeable cations, 

and nutrient status.   

4.5.2 Vineyard Soil Texture, Mineralogy, and Chemistry 

4.5.2.1 Soil Texture 

Based on the grain size analysis, silt sized grains dominate the textures of the soil 

samples, with a silt content ranging from 60% to 81%, sand content ranging from 10% to 35%, 

and clay content ranging from 6% to 10%. (Table 4-1).  The soils plot in the silt loam (Terroirs 1, 

3, and 4) and silt (Terroir 2) fields of the USDA soil texture triangle (Fig. 4-4), and these textures 

are in general agreement with the USDA taxonomic classification for these soils. 

Among the four terroirs, the vineyard soil samples containing the highest average clay 

content (9%) were collected from Terroir 3, where soils developed from loess mixed with 

colluvium from basalt, and correspond to the highest mean elevations.  The vineyard soil 

samples containing the highest average sand content (22%) were collected from Terroir 4, where 

soils developed from mixed, very gravelly alluvium. 

4.5.2.2 Soil Mineralogy and Chemistry 

The XRD analysis indicates a primarily uniform soil mineralogy dominated by quartz, 

plagioclase (albite/anorthite/laboradorite), and/or orthoclase (microcline/sanidine), with minor 

muscovite, biotite, amphibole, apatite, and clay minerals (vermiculite, montmorillonite) (Table 

4-2).  Although overall the mineralogy of the vineyard soils is indicative of a mixture of minerals 

typical of glacially derived materials, generally, the mafic minerals biotite and amphibole are 

predominantly present in the vineyard soils from Terroir 3 and Terroir 4.  As basalt is composed 
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predominantly of ferromagnesian minerals and with lesser amounts of calcium-rich plagioclase 

feldspar, the mineralogy of the vineyard soils from Terroir 3 and 4 may represent the influence 

of the weathered basalt bedrock underlying the thin loess and the basalt cobblestone river 

gravels, respectively, that characterize these terroirs, in addition to the influence of loess and 

glacial sediments, as evidenced by the abundant quartz. 

 

Figure 4-4. Ternary diagram showing the vineyard soil textures plotting in the silt 
loam and silt fields of the USDA Soil Texture Triangle.   
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The XRF analysis of total major and select trace elements conducted on the fine fraction 

(silt and clay) of the soil samples indicates some variation in the chemical composition of the 

vineyard soils (Table 4-1).  These bulk elemental abundances represent the total concentrations in 

the soil and are indicative of the general vineyard soil composition in terms of the chemical 

evolution of the soils over their developmental history.  The variation in the chemical composition 

of the vineyard soils reflects the diversity of parent materials in which the soils have developed.  

Overall, the most variability in total concentrations is noted for the following major oxides: SiO2 

(55.4 – 64.7%), Fe2O3 (5.48 – 10.17%), and CaO (2.27 – 5.29%).   

The compositional variation of the vineyard soils is illustrated graphically on plots of major 

element oxides versus SiO2 content (Figures 4-5a and 4-5b) and compared to the loess, glacial 

Terroir

Vineyard Pepperbridge Seven Hills Va Piano Les Collines
Leonetti 

Loess
Dwelley Ferguson Southwind Cayuse SJR Old Stones

Parent 

Material

(USDA WSS)

Loess

Silty loess 

over 

calcareous, 

lacustrine 

deposits

Glacio-fluvial 

deposits
Loess Loess Loess

Loess mixed 

with 

colluvium 

from basalt

Loess mixed 

with 

colluvium 

from basalt

Mixed, very 

gravelly 

alluvium

Mixed, very 

gravelly 

alluvium

Mixed, very 

gravelly 

alluvium

Soil Type WIB 24B Tc 8B WaD WaD 114B 48E 29A 29A 29A

Quartz xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx xxx

Plagioclase
1

xx xx - xx xx xx xx xx xx xx xx

Orthoclase
2

- - xx - - - - - - - -

Biotite - - - - - - x x x x x

Muscovite x x x x x x - - - - -

Amphibole - x - - - x x x x x

Apatite - - x - x - - - x x -

Clay
3

x x x x x x x x x x x

Notes:

WIB - Walla Walla silt loam, lacustrine substratum, 0 to 8 percent slopes

24B - Ellisforde silt loam, 1 to 7 percent slopes 

Tc - Terrace Escarpments

8B - Athena silt loam, 1 to 7 percent slopes

WaD - Walla Walla silt loam, 8 to 30 percent slopes

29A - Freewater very cobbly loam, 0 to 3 percent slopes 

114B - Walla Walla silt loam, 1 to 7 percent slopes

48E - Lickskillet very stony loam, 7 to 40 percent slopes

USDA WSS - United States Deprtment of Agriculture Web Soil Survey (http://websoilsurvey.nrcs.usda.gov)

Relative mineral abundance based on visual evaluation of peak height and intensity (xxx = most abundant; x = least abundant; - = absent)
1
Plagioclase - Albite, Anorthite, Labradorite

2
Orthoclase - Microcline, Sanidine

3
Clay - Vermiculite, Montmorillonite

Mineralogy

TABLE 4-2 - Summary of Soil Parent Material, Type, and Mineralogy

1 2 3 4
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flood sediment (Touchet), as well as the basalt and granite chemical composition data from 

Meinert and Busacca (2000).  All vineyard soil compositions are generally similar to the Meinert 

and Busacca (2000) loess (loess regular, loess calcic, and loess soil) and shallow glacial flood 

sediment (Touchet 2m) data, plotting between the basalt and granite end-members.  The soils are 

depleted in K2O and CaO, enriched in TiO2, FeO, and MgO, and have similar P2O5 and MnO 

compositions relative to the granite erratic sample; and are highly depleted in TiO2, P2O5, MnO, 

FeO, K2O, CaO, and MgO compositions relative to the basalt sample.  The plots show strong 

negative correlations with SiO2 for CaO, MgO, and FeO in the soil samples, with high coefficients 

of determination (R2) explaining 80% of the variation (Fig. 4-5a). Conversely, soil K2O (Fig. 4-5b) 

has a positive correlation with SiO2 with a coefficient of determination that accounts for 80% of 

the variation.   
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Figure 4-5a – Variation diagram depicting the FeO, CaO, and MgO versus SiO2 composition of soils 
relative to loess, glacial flood sediment, basalt, and granite chemical composition data from Meinert 
and Busacca (2000), reflecting the diversity of soil parent materials and the influence from the basalt 
bedrock.  Linear regression analysis indicates major oxides vary linearly with SiO2 (R2=0.84, 0.78, 

and 0.79).   
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Figure 4-5b – Variation diagram depicting the K2O versus SiO2 composition of soils exemplifying the 
mixing trend between the basalt and granite end members and the influence soil forming processes 
that alter the inherited geochemistry.  Linear regression analysis indicates K2O varies linearly with 

SiO2 (R2=0.84).   
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Overall, the soil chemical compositions are indicative of a mixing trend between the basalt 

and granite end members, and Figure 4-5b exemplifies this trend, illustrating the K2O composition 

of the soils across the four terroirs relative to the basalt, granite, loess, and flood sediment K2O 

compositions.  Specifically, the Terroir 3 and Terroir 4 soil K2O compositions exhibit a mixing 

trend between basalt and loess, whereas the Terroir 1 and Terroir 2 soil K2O compositions 

demonstrate mixing between granite and shallow flood sediment/loess.  Overall, these 

compositional differences reflect the diversity of parent materials from which the soils developed, 

including loess, silty loess over calcareous lacustrine, and glacio-fluvial deposits (Terroir 1), loess 

(Terroir 2), loess mixed with colluvium from basalt (Terroir 3) and mixed, very gravelly alluvium 

(Terroir 4), and the compositional influence of the end members basalt and granite across the 

different terroirs.   

The compositional variation of the soils is illustrated spatially on maps depicting 

interpolated concentrations across the study area (Fig. 4-6).  Overall, the soils with the highest 

SiO2, K2O, and Al2O3 (not shown) and lowest TiO2, Fe2O3, CaO, and MgO compositions 

correspond to the vineyards of Terroir 2.  Conversely, the soils with the lowest SiO2 and K2O and 

highest TiO2 and Fe2O3 content are present near the southwest part of the study area in Terroir 4.  

These soils also coincide with the highest Na2O, P2O5, and MnO content.  The soils with the 

highest CaO and MgO compositions also coincide with Terroir 4, and extend further into the lower 

half of the study area into Terroir 3, where vineyard soils have the lowest Al2O3 content among the 

four terroirs.  Although the soils are derived primarily from glacial materials, the high TiO2, MgO, 

and Fe2O3 compositions in the vineyard soils from Terroirs 3 and 4 are indicative of the influence 

of basalt, and result from ferromagnesian minerals such as pyroxene, amphibole, and biotite from 
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mafic igneous rocks like the basalt cobblestone gravels and the weathered basalt bedrock that 

characterize these areas.   

The total concentrations of trace elements in the vineyard soils show the most variability 

for V (94-241 ppm), Zr (201-341 ppm), and Ba (531-684 ppm).  The compositions indicate the 

highest mean concentrations of Ni and Cr in Terroir 2 soils, Zr, Ce, and Ba in Terroir 3 soils, and 

V, Zn, and Sr in Terroir 4 soils.  In general, the trace element compositions of Terroir 1 and 2 soils 

are similar to the granite and Touchet data from Meinert and Busacca (2000), while the trace 

element compositions of Terroir 3 and 4 soils are more comparable to the Meinert and Busacca 

(2000) basalt chemical composition data.  The mineralogy and chemistry data indicate that the 

soils of the study vineyards have preserved a signal of the inherited geochemical fingerprint of 

parent materials despite transformations resulting from weathering and pedogenesis factors, which 

can alter the inherited geochemistry and the resulting concentrations of plant-available nutritive 

elements, emphasizing the dynamic relationship between geology and biology.   

For example, Figure 4-5b illustrates a decreasing shift in K2O composition from the rock 

end members to the vineyard soil samples, demonstrating the effects of soil weathering and 

pedogenesis processes, which result in the partitioning of K2O from parent material to the bulk soil 

and subsequently in the distribution of the bulk soil K2O between the soil potassium form used in 

mineral-forming structures (potassium-bearing minerals such as biotite, muscovite, orthoclase, and 

microcline) and the soil potassium in the form of ionized solution, exchangeable, and 

nonexchangeable (fixed).  Specifically, across the four terroirs, mean bulk soil K2O concentrations 

are lower in Terroirs 3 and 4; however, a higher percentage of soil potassium is distributed in 

ionized solution form (plant available) in these soils.  This is indicative of distinct sinks for 

potassium in soil-formed minerals, which differ unsystematically for the soils of the four terroirs.  
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The soils of Terroirs 1 and 2, which developed from various glacially-derived parent materials, 

including loess, silty loess over calcareous lacustrine, and glacio-fluvial deposits representing the 

granitic end member influence on the soils, have higher mean bulk soil K2O concentrations and a 

lower percentage of soil potassium distributed in ionized solution form, thus having a lower 

fraction of potassium available to the vines.  This is the result of potentially more sinks for 

potassium in soil-formed minerals in these soils, such as solid state transformations of muscovite to 

vermiculite, which occur during weak chemical weathering conditions, as noted in the mineralogy 

of these soils.  
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Conversely, soils of Terroirs 3 and 4, which developed from loess mixed with colluvium 

from basalt and mixed, very gravelly alluvium representing the basaltic end member influence on 

the soils, have lower mean bulk soil K2O concentrations and a higher fraction of potassium 

available to the vines as a result of potentially fewer sinks for potassium in the chemical 

weathering products, such as alteration of muscovite or vermiculite to a smectite-group clay 

(montmorillonite), which is corroborated by the mineralogy of these soils. 

Figure 4-6. Map showing the spatial distribution of selected major elements, reflecting the variety of 
parent materials in which the soils formed. 
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4.5.2.3 Soil Nutrient Chemistry 

The plant-available essential elements are necessary for the completion of the plant life 

cycle, and must be dissolved in an ionized water solution to allow absorption into the metabolism 

of the vines.  In addition to the 

geochemical contribution of parent 

materials and various pedogenesis 

factors, the plant available soil 

chemistry depends on soil parameters 

such as texture, organic matter 

content, pH, and microbe activity, and 

can be indicative of the individual 

vineyard’s fertilization practices.  Soil 

OM, CEC, and pH, along with 

concentrations of plant-available 

macronutrients (potassium, calcium, 

magnesium, phosphorus, and sulfur), 

and micronutrients (boron, 

manganese, and zinc), which are 

essential elements necessary for 

completion of the plant life cycle are 

presented in Table 4-1 and Figure 4-7.  

All these elements have important 

roles in the metabolic functions of 

vines and require minimum levels 

Figure 4-7. Graphs depicting the concentrations of plant-
available macronutrients (K, Ca, Mg, P, and S depicted 

on a log scale) and micronutrients (B, Mn, and Zn) along 
with OM, CEC, and pH in the vineyard soils for each 

terroir. 
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maintained.  The physical and chemical characteristics of the vineyard soils such as the texture, 

pH, percent OM, and CEC affect the nutrient pool, availability, adsorption, and retention potential.  

For example, fine textured, clayey soils can reduce the availability of potassium to vines, whereas 

coarse textured, sandy soils are prone to leaching and can drain nutrients from soils (Lambert et al. 

2008).  The textures of the vineyard soil samples, consisting of silt loams in Terroirs 1 and 2, and 

very stony/cobbly loams in Terroirs 3 and 4, are primarily dominated by silt sized grains (76.6% 

average silt content), providing a good balance between drainage and water holding capacity.  The 

pH values of the vineyard soil samples, ranging from 6.5 to 8.5 pH units, indicate mostly neutral 

conditions with some slightly acidic, slightly alkaline, and strongly alkaline conditions, which 

provide good nutrient availability and balance for the health of the vines.  Mean pH values indicate 

neutral conditions for the vineyard soils from Terroir 2 and Terroir 4, and moderately and slightly 

alkaline conditions for the soils from Terroir 1 and Terroir 3.  Soils rich in OM are generally high 

in available nutrients, as decomposition of OM adds nutrients to soil and improves water holding 

capacity, while CEC affects the ability of soil to hold positively charged nutrients for plant uptake.  

Mean OM percentages and CEC measurements, ranging from 1.5 – 2.3 % and 15 – 24.5 cmol/kg, 

respectively, are representative of appropriate ranges for vineyard soils, with the highest mean OM 

and CEC values corresponding to the soil samples collected from the vineyards located in Terroir 3 

and Terroir 4.   

The concentrations of plant-available macronutrients potassium (191 – 276 ppm), calcium 

(1,359 – 4,940 ppm), magnesium (208 – 564 ppm), phosphorus (12 – 55 ppm), and sulfur (3.5 – 

11.5 ppm), and micronutrients boron (0.4 – 1.8 ppm), manganese (1 – 7 ppm), and zinc (1.2 – 8.1 

ppm) indicate wide ranges across the vineyard soils.  Overall, the nutrient concentrations of the 

vineyard soil samples are largely within the ranges specified by Moyer et al. (2014), as pre-plant 
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soil fertility guidelines for establishing productive vineyards; however, when assessing the nutrient 

requirements of established vineyards, analyzing vine tissue samples in conjunction with soil 

samples is critical in determining vine nutrient status and identifying potential deficiencies (Moyer 

et al. 2014).  Generally, the plant-available soil chemistry shows the most variability for 

phosphorus, potassium, calcium, and magnesium, with the highest phosphorus and calcium 

corresponding to vineyards located in Terroir 3 and 4, and the highest potassium and magnesium 

corresponding to vineyards located in Terroir 2 and 4.   

4.5.3 Grape Phenolic Panel Analysis 

Grape phenolic compounds are present in the grape seeds and skins, and during maturation, 

the concentrations of seed and skin phenolics shift as a result of their physiological roles in these 

two different plant tissues (i.e., seed phenolics decrease while skin phenolics increase).  Overall 

increases in the concentrations of total phenolics are associated with grape maturity and ripeness, 

which are monitored for harvest planning.  Increases in sugar content (i.e., °Brix) occur during 

grape maturation as a result of sugar transfer from the leaves to the grapes and during the final 

stages of grape development as a result of grape dehydration.  As phenolic compounds are the 

source of color, flavor, and mouth-feel in wines, phenolic ripeness, which is an indicator of 

physiological ripeness, is a more reliable indicator than the traditional sugar content (°Brix) 

measurements in evaluating grape ripeness (Bisson 2001; Hellman 2004; Ferrer-Gallego et al. 

2012).   

The grape phenolic analytical results, including concentrations of quercetin glycosides, 

total anthocyanins, polymeric anthocyanins, tannin, catechin, and °Brix, along with the 

catechin/tannin and polymeric anthocyanins/tannin indices are presented in Table 4-3 and Figure 

4-8.  Quercetin glycosides are flavonols produced in the grape skins in response to sun exposure, 
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and their increasing concentrations over the growing season can be used as indicators of sunlight 

available to the developing grapes.  Quercetin has a color-enhancing role and participates in co-

pigmentation reactions with anthocyanins supporting the color stability of wines (Teixeira et al. 

2013).  Anthocyanins and tannins are vital grape quality elements influencing the color and taste of 

red wines.  Anthocyanins are the primary phenolic compounds responsible for the color of red 

wines; and tannins, which are found in the grape skins and seeds, are responsible for the 

astringency of wines and for the pigmented polymers they form with anthocyanins, which provide 

stable pigments for long-term color stability of wines (Cortell et al. 2007; Kennedy et al. 2007).   

The accumulation of anthocyanins in grapes is light and temperature dependent (Bergqvist 

et al. 2001; Cortell et al. 2007), starting at veraison and reaching a maximum in the latest phases of 

fruit maturation (Teixeira et al. 2013).  Total anthocyanins include all monomeric and polymeric 

anthocyanins.  The formation of polymeric anthocyanins, which are pigment complexes that 

develop through the chemical binding of anthocyanins and tannin, advances progressively during 

ripening (Kennedy 2008; Teixeira et al. 2013).  The polymeric anthocyanins/tannin ratio increases 

as a result of anthocyanin-tannin polymerization and can be utilized as an indicator of tannin 

modifications and phenolic ripening.  Tannins are naturally found in grape skins and seeds and 

have a great influence on the body and astringency of red wines.  Total extractable tannin includes 

both skin and seed tannin, and during ripening, the skin tannin concentrations remain relatively 

stable or increase slightly, whereas the seed tannin concentrations decrease while becoming 

incorporated into the grape seed coat over time.  Tannin maturation results in gradually reduced 

extractability, which is associated with perceived softening and ripening of tannins.  Similarly, 

catechins, which are found primarily in the grape seeds, impart a bitterness and potential 

astringency to wines, and have a structural role in the formation of the grape seed coat.  As 



103 

catechin becomes incorporated into the seed coat, its concentration decreases as grapes ripen and 

can be utilized as an indicator of seed maturity and ripeness.  As the seed phenolics catechin and 

tannin become incorporated into the seed coat, they are consequently more difficult to extract, 

resulting in decreasing concentrations of extractable catechin and tannin over time.  The ratio of 

catechin (found only in seeds) to total tannin (found in seeds and skins) concentrations can be used 

to assess grape ripening, separately from the total tannin variations, as the catechin/tannin ratio 

reflects the decline of seed phenolic contributions to the total extractable phenolics during grape 

maturation.   

The mean phenolic concentrations associated with each of the four terroirs are presented in 

Table 4-3.  An analysis of variance reveals no statistically significant differences (p > 0.05) in the 

phenolic data among the four terroirs, given the small sample size for this regional scale study; and 

although only subtle differences are discerned, overall the most variability in mean grape phenolic 

concentrations is noted for total anthocyanins (1152 – 1551 mg/L), tannin (633 – 862 mg/L), and 

quercetin glycosides (99 – 131 mg/L).   

 

Terroir Vineyard
Brix

(degrees)

Catechin

(mg/L)

Quercetin 

Glycosides 

(mg/L)

Tannin 

(mg/L)

Polymeric 

Anthocyanins 

(mg/L)

Total 

Anthocyanins 

(mg/L)

Catechin/

Tannin Index

Polymeric 

Anthocyanins/

Tannin Index

Pepperbridge 29.6 16 106 1101 41 1606 0.015 0.037

Seven Hills 29.1 28 111 593 34 1694 0.047 0.057

Va Piano 27.1 17 80 671 26 1136 0.025 0.039

Les Collines 30 20 189 1176 37 1840 0.017 0.031

Leonetti Loess 31.8 15 131 950 40 1774 0.016 0.042

Dwelley 27.8 13 50 392 21 1009 0.033 0.054

Ferguson 27.5 8 176 950 49 1497 0.008 0.052

Southwind 29 14 74 773 39 1605 0.018 0.05

Cayuse 30.1 27 144 648 47 1120 0.042 0.073

SJR 28.7 28 107 676 48 1275 0.041 0.071

Old Stones 27.9 23 143 574 48 1060 0.04 0.084

Terroir 1 Mean ± SD 28.6 ± 1.32 20 ± 6.66 99 ± 16.6 788 ± 274 34 ± 7.51 1479 ± 300 0.029 ± 0.016 0.044 ± 0.011

Terroir 2 Mean ± SD 29.9 ± 2.00 16 ± 3.61 123 ± 69.8 839 ± 404 33 ± 10.2 1541 ± 462 0.022 ± 0.010 0.042 ± 0.012

Terroir 3 Mean ± SD 28.3 ± 1.06 11 ± 4.24 125 ± 72.1 862 ± 125 44 ± 7.07 1551 ± 76.4 0.013 ± 0.007 0.051 ± 0.001

Terroir 4 Mean ± SD 28.9 ± 1.11 26 ± 2.65 131 ± 21.1 633 ± 52.7 48 ± 0.577 1152 ± 111 0.041 ± 0.001 0.076 ± 0.007

TABLE 4-3 - Grape Phenolic Profile Analysis

1

2

3

4
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In the context of these minor variations, generally, the higher mean concentrations of grape 

phenolic compounds correspond to the vineyards of Terroir 3 and Terroir 4, and the higher 

mean °Brix value corresponds to the vineyards of Terroir 2.  Specifically, the grapes of Terroir 3 

have higher mean total anthocyanin (1551 mg/L) and tannin (861.5 mg/L) along with lower 

catechin (11 mg/L) concentrations and catechin/tannin index (0.041); and the vineyards of Terroir 

3 (Ferguson and South Wind) are characterized by thin loess over weathered basalt and correspond 

to the highest mean elevations potentially benefiting from more solar radiation and enhanced 

ripening.  Similarly, the low catechin/tannin ratio is indicative of increased seed maturity and 

tannin development, reaching a higher level of ripening as a result of decreasing extractable 

catechin and increasing extractable skin tannin over time.  The grapes of Terroir 4 have higher 

mean concentrations of quercetin glycosides (131 mg/L) and polymeric anthocyanins (48 mg/L) 

along with a higher polymeric anthocyanins/tannin index (0.076).  The vineyards of Terroir 4 

(Cayuse, SJR, and Old Stones) are characterized by basalt cobblestone river gravels, which absorb 

and retain solar energy during the day increasing soil temperatures and radiate the retained heat 

after sunset.  This temperature cycling enhances grape ripening and may contribute to a reduced 

risk of spring and fall freezes.  Quercetin glycosides are indicative of sunlight available to the 

grapes and contribute to color stability in wine along with polymeric anthocyanins, which increase 

progressively during ripening.  The polymeric anthocyanins/tannin ratio is an indicator of tannin 

modifications, as it increases with anthocyanin-tannin polymerization, which starts as red grapes 

ripen.  The grapes of Terroir 2 have the highest mean °Brix value of 29.9, and the vineyards of 

Terroir 2 (Les Collines, Leonetti Loess, Dwelley) are characterized by thick loess overlying basalt 

bedrock.  °Brix values provide an estimated concentration of the dissolved sugar, representing the 

degree of ripeness for grapes (in terms of sugar level) at harvest, and can generally be used to 
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predict potential alcohol percentage in wines using an average conversion rate of fermenting sugar 

into alcohol.  Typically, the vineyards of Terroir 2 generally have the highest number of GDDs in 

the valley.   

 

Overall, the minor variations discerned among the four terroirs indicate that higher mean 

concentrations of grape phenolic compounds are associated with Terroir 3 and Terroir 4, and a 

higher mean °Brix value with Terroir 2; however, the results of this regional scale study indicate 

that generally, the soil variability observed among the four terroirs in the Walla Walla Valley AVA 

does not impart a major control on the magnitude of phenolic variation for the phenolic compounds 

Figure 4-8. Graph depicting the concentrations grape phenolic compounds (quercetin glycosides, total 
anthocyanins, polymeric anthocyanins, tannin, catechin) and °Brix in grapes by vineyard and terroir. 
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analyzed.  Other organic flavor compounds, such as rotundone (linked to the pepper flavor in 

Syrah), which has been shown to be spatially related to variability in vineyard characteristics 

(Bramley et al, 2017), or other grape-derived flavor and aroma compounds, may have different 

concentrations in the four terroirs. 

4.6 Conclusions 

Grape phenolic compounds are sensitive indicators of differences between vineyards and 

variations in grape and wine quality, and are directly related various terroir factors, including the 

vineyard soils, which affect the phenolic composition of grapes through variations in the 

availability of water and nutrients.  Water and nutrient availability is, in turn, a function of soil 

properties including parent material, mineralogy, texture, rooting depth, drainage, chemistry, 

fertility, and water holding capacity.  Although the distinct differences among the four terroirs, 

represented by the 11 study vineyards of the Walla Walla Valley AVA, are apparent in terms of 

soil characteristics, the phenolic concentrations of the Syrah grapes collected during the 2014 

harvest reveal no statistically significant differences with only subtle variations among the four 

terroirs.  However, considering these minor variations, overall, higher grape phenolic 

concentrations are associated with coarser-textured, well to somewhat excessively drained, limited 

depth, and reduced AWC soils; these physical soil characteristics promote mild water deficit 

enhancing phenolic concentrations in grapes.  From a geological perspective, the bulk soil 

chemistry of the study vineyards is indicative of variation corresponding to the diversity of parent 

materials from which the soils formed.  Although weathering and pedogenesis factors can alter the 

inherited geochemical background of parent materials, the soils of the study vineyards have 

preserved a signal of this fingerprint.  Notably, the vineyard soils with elevated Fe2O3 and MgO 

content, resulting from the weathering of ferromagnesian minerals in mafic igneous rocks like the 

basalt cobblestone gravels and the weathered basalt bedrock that characterize them, highlight the 
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basalt influence and are generally associated with higher grape phenolic concentrations.  

Consistent with the soil chemistry, the mineralogy of the vineyard soils reflects minerals typical of 

glacially-derived materials, with mafic minerals biotite and amphibole predominantly present in 

the vineyard soils demonstrating the influence of basalt.  From a plant physiology perspective, soil 

fertility indicators are generally within suitable ranges for all vineyard soils, with the highest plant-

available calcium, phosphorus, and zinc corresponding to the vineyard soils representing the basalt 

effect.   

In this regional scale reconnaissance study, many observations support the hypothesis that 

physical soil properties are fundamental variables in geologic studies of terroir because of their role 

in water and nutrient availability affecting grape phenolic composition; additionally, the 

geochemical influence from parent material on the vineyard soil is demonstrated to be a 

contributing factor and variable that warrants evaluation.  However, overall, the variation in soil 

properties among the four distinctive terroirs in the Walla Walla Valley AVA does not correspond 

to significant variability in the concentrations of grape phenolic compounds at this scale; although 

the observed subtle differences in grape phenolic concentrations among the four terroirs appear to 

indicate a potential connection between higher grape phenolic concentrations and soils exhibiting 

the influence of basalt.   

The results of this study indicate that mesoscale studies and large scale characterizations 

can be limited by the microscale variability of soil properties, given their geospatial diversity and 

sharp spatial variations that can be observed at the vineyard level.  Thus, taking into consideration 

the heterogeneity of soils and the degree of variability in soil properties, broader scale, regional 

characterizations may obscure microscale variability and become ambiguous, while studies at the 

vineyard level with discernable variability at the local scale may provide precision in the 
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assessment of the relationships and controls of soil properties on grape sensory and chemical 

properties.  Nonetheless, regardless of its undefined scale, soil is the foundation of the grapevine, 

and the controls of its properties are essential terroir factors to be considered when evaluating 

grape phenolic concentrations, which are vital for harvest timing, wine making decisions, and 

ultimately wine quality.   

Further studies should take into consideration a larger sample size for a more robust 

mesoscale (regional) characterization to determine if statistically significant differences can be 

observed in the phenolic content of the grapes at this scale; along with toposcale (vineyard) studies 

that consider variations in vine age, clone, and rootstock; as well as viticultural practices, such as 

pruning habit, irrigation, canopy vigor control measures, fertilization, and spraying patterns. 
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