
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2016

Solid State Protective Device Topological Trade-
offs for Mvdc Systems
Vikas Singh
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Electrical and Electronics Commons, and the Other International and Area Studies

Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Singh, Vikas, "Solid State Protective Device Topological Trade-offs for Mvdc Systems" (2016). Theses and Dissertations. 1416.
https://dc.uwm.edu/etd/1416

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=dc.uwm.edu%2Fetd%2F1416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/365?utm_source=dc.uwm.edu%2Fetd%2F1416&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/365?utm_source=dc.uwm.edu%2Fetd%2F1416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1416?utm_source=dc.uwm.edu%2Fetd%2F1416&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 

SOLID STATE PROTECTIVE DEVICE TOPOLOGICAL TRADE-OFFS FOR MVDC 

SYSTEMS 

 

 

 

 

 

by 

Vikas Singh 

 

A Thesis Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

 

Master of Science 

in Engineering 

 

at 

The University of Wisconsin-Milwaukee 

December 2016 

  



ii 

 

ABSTRACT 

 

SOLID STATE PROTECTIVE DEVICE TOPOLOGICAL TRADE-OFFS FOR MVDC 

SYSTEMS 

 

by 

Vikas Singh 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Robert M. Cuzner 

 

Presently accepted approaches to protection are “Unit-Based” which means the power converter(s) 

feeding the bus coordinate with no-load electromechanical switches to isolate faulted portions of 

the bus.  However, “Breaker-Based” approaches, which rely upon solid state circuit breakers for 

fault mitigation can result in higher reliability of power and potentially higher survivability. The 

inherent speed of operation of solid state protective devices will also play a role in fault isolation, 

hence reducing stress level on all system components. A comparison study is performed of 

protective device topologies that are suitable for shipboard distribution systems rated between 

4kVdc and 20kVdc from the perspectives of size and number of passive components required to 

manage the commutation energy during sudden fault events and packaging scalability to higher 

current and voltage systems. The implementation assumes a multi-chip Silicon Carbide 10kV, 

240A MOSFET/JBS diode module. A static fault simulator device is proposed to characterize DC 

faults. 
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Chapter 1 Introduction 

The main focus of this thesis is to assess the protection topologies for next generation “breaker” 

based DC distribution system. Increase in large scale integration of distributed energy resources 

and their bidirectional power flow requirements leads to application of DC or AC/DC hybrid micro 

grid, but instead of many advantages of dc systems there are still some issues which need attention 

for efficient and reliable performance of the system. Unavailability of zero crossing phenomenon 

in dc current has made the protection more challenging. Conventional approach of fault detection 

and protection may not work because of their dependence on voltage droop to ensure tripping of 

closest relay to trip of first. Also the fault current in upstream and downstream will same so it’s 

not suitable for convention relay coordination scheme. Current DC system still employ 

conventional devices such as AC side circuit breakers which are relatively slow and may result in 

interruption of power in major part of the grid.  In present scenario there is a need of fast acting, 

high rated and smart protective devices in medium voltage DC (MVDC) protection system.  

1.1 Background and motivation 

Conventional AC distribution protection relies upon the fact the further away a short circuit occurs 

from the utility feed, the higher the impedance and thus the lower the inherent short circuit fault 

impedance. This concept is aided by the fact that AC distribution systems consist of transformer 

feeds that look like a reactive impedance to upstream feeds. As a result, electromechanical 

protective devices can utilize time-trip settings to localize the effect of a fault. This is the principle 

of protective device coordination between upstream and downstream protective devices where the 

goal is to isolate a fault closest to the fault location with minimal impact to the surrounding un-

faulted portions of the system.  
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Both AC and DC Micro grids present a special challenge for protection. Distributed energy 

resources (DERs) distributed along the grid can operated while connected to the main utility or in 

disconnected (islanded) configurations. Fault protection within the micro grid when it is islanded 

is particularly problematic because of the changing status of the DERs connected into the micro 

grid [1][2]. When the number of connected DER units change the fault current available to the grid 

changes as well as the potential fault current flow paths.  Also, the micro grid topology may be 

looped, meshed, radial, or a mixture of multiple networks of different topologies.  So, ensuring 

reliable fault protection in a micro grid is much more complex than conventional systems and most 

approaches must rely heavily upon both inter-device and central communications. These 

complications are further compounded by the fact that DERs interface to the micro grid through 

power converters that have capacitive filters on their outputs and that must current limit in order 

to self-protect. As a result, two problematic issues arise: (1) when a fault is suddenly applied the 

first few milliseconds of the fault characteristic are dictated by the total capacitance connected into 

the grid and the equivalent cable inductance and resistance to the fault. This fault characteristic 

will have a very high peak which will tend to trip the electromechanical devices on peak 

instantaneous trip functions that are in the path of the fault. There is no guarantee that the protective 

device closest to the fault will trip, especially because everything that is connected into the grid 

with a capacitive filter contributes to the fault current. (2) Once the initial capacitor discharge event 

is over, the power converter(s) will hard limit the output current to a level that may not be sufficient 

to provide margin between upstream and downstream protective devices for autonomous trip level 

based coordination or the converters may trip off altogether. The opposite problem may also occur: 

as more DERs are connected to the grid the available fault current increases. As a result, any 

protective scheme using conventional relaying approaches must be widely adaptable to changing 
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conditions. AC micro grid can build upon existing protective infrastructure but the above problems 

result in a high dependence upon inter-device communications and a difficult trade-off between 

system safety, cost and power continuity. 

The approaches to protection in micro grids may be divided into two categories: “Unit-Based” and 

“Breaker-Based”. “Unit-Based” approaches apply to DC or hybrid AC/DC micro grids whereas 

AC micro grids almost without exception utilize “Non-Unit-Based” protective relaying, as is the 

standard practice for AC distribution.  Still, “Non-Unit-Based” protection has some advantages for 

DC systems if it can be made to work. With “Unit-Based” protection, the power converter “Units” 

that interface DERs and energy sources to the grid are solely responsible for protective functions 

and may communicate with isolating no load switches for the purpose of isolating faults from the 

system.  For “Breaker-Based” protection, the power converter “Units” play no role in protection 

and all protection is allocated to external current limiting and galvanic isolating devices. “Unit-

Based” approaches [3] rely exclusively upon the fault-feeding power converters to limit fault 

currents when a fault occurs while, “Breaker-Based” approaches, rely exclusively upon circuit 

breakers, fuses, Solid State Protective Devices (SSPDs) or hybrid SSPDs (i.e. SSPDs with 

electromechanical bypass contactors for non-faulted conditions) to isolate the fault without 

participation of the power converters. “Breaker-Based” approaches acknowledge that power 

converter(s) feeding the fault must current limit in order to self-protect, so the breaker current 

limiting mechanism must act quickly enough mitigate fault effects or else widespread system loss 

of power occurs[4]-[6].  Therefore, only SSPDs, as opposed to electromechanical devices or hybrid 

SSPDs will have sufficient time response to mitigate current limiting of upstream converters if 

power interruption mitigation hardware is to be avoided.  “Unit-Based” approaches deliberately 

utilize current limiting capabilities of the bus-feeding Power Generator Modules (PGM) to drive 
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the voltage to zero on the affected bus in order to eliminate fault current so that no load 

electromechanical DC disconnect switches can isolate the fault and work best when the power 

converter isolates faults in a branch it is feeding from a main distribution bus[7]. 

Chapter 2 DC Fault characterization (standards and experimental 

validation) 

2.1 Types of faults in DC 

In this thesis the term “fault” refers to a short circuit within the system, unless qualified in another 

way (i.e. high impedance fault refers to the unintended electrical connection between two points 

within the system through some non-zero impedance). A short circuit fault is considered a true 

short circuit. The analysis will usually specify the cable impedance between the two points where 

the fault is occurring.   

In order to have better analysis, a different point of view for faults is suggested. In two-line AC 

systems, faults are typically divided into three categories: LL, LG and two Line to Ground (LLG).  

For the purposes of this study new definitions of these faults are developed for DC systems in the 

following sub-sections. 

2.1.1 Line to Line faults 

LL fault is represented in Figure 2-1.  This figure shows also that a LL fault can occur from Positive 

to Negative (PN) or Negative to Positive (NP). This substitution will be more essential, when the 

DC distribution line includes diodes. Diodes prevent negative current; therefore, PN or NP faults 

that span positive and negative lines at different parts of the system have the potential of 

significantly increasing DC voltage stresses in the system. Figure 2-2 depicts faults where PN 
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faults occur in two separate branches.  In these scenarios, the diode would not make any difference 

and the faults have the same effect as the faults depicted in Figure 2-1.  

On the other hand, Figure 2-3 shows scenarios where the diode plays a role and faults in the worst 

case scenario can double the voltages between negative and positive lines [25].  If the PN fault in 

Figure 2-3 occurs between two lines on the anode sides of auctioneering diodes in the positive leg, 

this results in a voltage doubling effect and is hereafter referred to as a Positive Negative Double 

(PND) fault.  PND faults need specific detection and very fast galvanic fault isolation means in 

order to mitigate potential damage to system components due to over-voltage (unless those 

components are significantly de-rated, which results in size/weight increases).  The current change 

due to the PND fault likely will not be high enough to be detected as a fault.  

A variation on the PND fault may occur in non-isolated systems where the path that the fault 

current follows includes at least one actively switching power semiconductor and a diode.  If the 

power semiconductor and diode are arranged so that fault current builds up in the path connected 

to the diode anode when the switch is on and then discharges into the capacitor connected to diode 

cathode when the switch turns off, the capacitor voltage will build up.  This will be referred to as 

a Positive Negative Charge Pump (PNCP) fault.  This scenario is also undetectable until the voltage 

builds up to a point when the associate power converter shuts down on an over-voltage.  At this 

point the capacitor voltage stops building up, but such scenarios can result in large portions of the 

system unaffected by the fault shutting down because their associated power converters are fed by 

the part of the same DC bus that is being pumped up by the PNCP fault. 

 

Figure 2-1 LL(PN or NP) faults in DC 

LL

Line

Line

PN
Positive Line

Negative Line

NP=
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Figure 2-2 Multiple ground faults scenarios two branches without diode 

 

Figure 2-3 Multiple ground fault scenarios: two branches with diode 

A similar response to the PNCP fault occurs when either the positive or negative leg has a LG fault 

and then a second LG fault occurs on an AC line (or vice versa) within the power system if the AC 

and DC parts of the system are not galvanically isolated from each other.  These faults will also 

cause the affected AC power converter stage to fault off on an internal DC overvoltage, with a loss 

of power to all of its down-stream loads. This fault will be referred to as a Positive Negative AC 

(PNAC) fault.   

2.1.2Line to ground faults 

LG faults are either between the positive line to ground (PG) or the negative line to ground (NG) 

as shown in Figure 2-4. In non-isolated DC systems, a NG fault will shift the PG voltage by one 

half of the PN voltage where the fault occurs.  Alternatively, a PG fault will shift the NG voltage 

by one half the PN voltage.PN and NG faults occurring simultaneously, where a diode 

auctioneering circuitry having cathodes facing inward from the points where the faults occur will 

result in the PND scenario described by Figure 2-3 

PN

Positive Line (Branch A)

Negative Line(Branch A)

Positive Line (Branch B)

Negative Line(Branch B)

NP
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2.1.3 Line to line with ground fault 

Fault characterization studies typically also include LLG faults. What is of particular interest in 

floating power systems is a sub-set of LLG faults where either two PG or two NG faults exist on 

either side of a protective device.  These fault conditions are referred to as Positive-Positive 

Ground (PPG) or Negative-Negative Ground (NNG). In these scenarios the double ground fault 

condition is undetectable and, when a second LL fault or opposite bus NG or PG fault occurs the 

protective device is short circuited by the prior PPG or NNG fault and is therefore rendered 

ineffective.  In conventional electromechanical circuit breaker implementations applied to LVDC 

systems, PPG and NNG faults is typically dealt with by adding circuit breaker poles in series in 

order to avoid the potential of arching, non-clearing faults[26].This results in higher size/weight, 

over-designed systems.   

 

 

Figure 2-4 LG (PG and NG) faults 

 

2.2 Mathematical Expression for short-circuit currents in DC-systems 

IEC 61660-1 [8] is the only available standard document for the calculation of short-circuit 

currents in DC-systems. It has been developed to address the issue of calculating both the peak 

and steady state short-circuit currents in low voltage DC auxiliary installations in power plants and 

substations, thus proposing approximated analytical formulas. Nevertheless, the validation of the 

obtained results has not been done yet, through neither simulation nor testbed. In [30] authors have 

come up with theoretical approach to calculate DC transient short-circuit currents. 

PG

Positive Line

Negative Line

NG

Positive Line

Negative Line
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A six-pulse diode rectifier directly fed by a synchronous generator as shown in Figure 2-5 

composes the power system configuration considered analysis. This case is typical of a DC 

distribution system equipping a ship, a car, a diesel-electric train or a truck. These particular 

applications are characterized by some peculiarities: first, there is no additional electric equipment 

interposed between generator and rectifier (such as transformers); second, the distance between 

generator and rectifier are short. Due to these facts, it is possible to consider only the parameters 

of the synchronous generator (rd and xd) when defining the source system parameters. In fact, 

being the resistance in an electrical machine usually much smaller than the reactance it will be 

neglected in order to simplify the calculations. Obviously, this will lead to short-circuit currents 

higher than real ones. It is relevant to notice that the discussion presented hereafter is valid also in 

case of generator far from the rectifier, or in case of interposed impedances. Indeed, it is possible 

to include the additional impedances into the generator ones, without impairing the validity of the 

formulae provided in the following. The other hypotheses applied are the same as before, but in 

this case, the per-unit system will be used. This in order to simplify the generator parameters 

identification. It is relevant to notice that the analysis focuses on the first section of the short-circuit 

transient, which is the one mostly influenced by the generator’s internal reactance variation. The 

dynamic evolution of such a transient is fast (tens of supply AC periods), due to the low 

longitudinal impedances of onboard power systems. This led to the possibility of ignoring both the 

prime mover internal dynamic (due to its inertia) and the control system’s action (which respond 

with a higher time constant due to their common settings). 
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Figure 2-5 DC system fed by synchronous generator 

The short-circuit currents transient can be expressed in DQ reference as follows, considering the 

well-known equations of synchronous generator dynamics [28][29]: 
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 𝐼𝑑̅𝑞 = 𝑆𝑑𝑞𝐼𝑑𝑐 ;  𝑆𝑑𝑞 = 2√3

𝜋
       (3) 

where 𝑣𝑜 is the constant internal emf rms value, set equal to 1 p.u., and 𝑇𝑎𝑐 = 𝑥𝑑
′′/(𝜔 ∙ 𝑟𝑑)  is the 

synchronous generator armature short-circuit time constant. Using equation (3) in equation (1), 

𝑖𝑑𝑐 =
1
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−
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𝑇𝑎𝑐 ∙ 𝑐𝑜𝑠(𝜔𝑡) ] (4) 

2.3 Experimental validation of Expression for short-circuit currents in DC-systems 

With the aim of experimental validation of equations discussed above and in [30], a three-phase, 

480V, 75kVA synchronous generator with passive rectifier output has been used. The generator 

was driven by a variable frequency drive and a NEMA size 8 three-phase circuit breaker was 

configured as shown in Figure 2-6 in order to apply the three-phase fault to the generator output. 

The circuit breaker poles were connected in series so that if the circuit breaker were opened 

inadvertently with the dc short-circuit applied there would be sufficient arc voltage built up to 

drive short-circuit current to zero without causing damage. A constant DC voltage supply was 
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applied to the exciter field of the generator for the tests. Before performing the DC short-circuit 

tests, transient short-circuit tests were performed by applying a three-phase bolted fault to the 

generator without the diode rectifier in the circuit and parameters were extracted according to the 

procedures in IEEE Std. 115-2009. The synchronous machine parameters are given in Table 1. 

 

C1Rd

Rd

Rd

Ld

Ld

Ld

VFD

C1

DC 
Supply

idc

ife

Induction 
Motor

 

 

Figure 2-6 Short-circuit test set-up schematic and experimental setup 
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Table 1 Synchronous generator parameters 

Parameter Symbol Value 

Rated Volt-Amperes Srated 75 kVA 

RMS Rated Voltage/Base Voltage Vrated/Vb 480 V / 277 V 

RMS Rated Current/Base Current Irated/Ib 90.2 A / 90.2 A 

Operating frequency of tests f 60 Hz 

Base Impedance Zbase 3.07 W 

Stator resistance rd 0.026 p.u. 

Unsaturated d-axis reactance xd (unsat) 1.656 p.u. 

d-axis reactance at 408 Vrms xd 1.38 p.u. 

d-axis transient reactance x'd 0.18 p.u. 

d-axis sub-transient reactance x"d 0.072 p.u. 

q-axis reactance xq 1.328 p.u. 

q-axis sub-transient reactance x"q 0.072 p.u. 

Armature short-circuit time constant Tac 0.00736 s 

d-axis transient time constant T’d 0.088 s 

d-axis sub-transient time constant T”d 0.016 

q-axis sub-transient time constant T”q 0.0002 

 

Figure 2-7 shows the experimental results for the 570V DC short circuit tests. Figure 2-8 shows a 

comparison between the measured DC short-circuit current transient and the calculated current 

using (4). The correlation is very good. As the initial voltage is increased, the sudden short-circuit 

application provides a higher torque load to the induction motor prime mover that causes the rotor 

speed to slow down. This introduces a variable that is not accounted for in (4). The comparison 

between the measured results and calculated results of (4) for this condition is shown in Figure 

2-8. There is a small discrepancy attributable to the slowing down of frequency. As expected, the 

unsaturated d-axis reactance is required to achieve accurate results since xd in (4) represents the 

resultant steady state short-circuit current which corresponds to low flux in the machine. Therefore, 

xd(unsat.) in Table 1 is used to calculate the transient short-circuit current characteristic using (4). 
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Figure 2-7 Test results with initial RMS dc output voltage of 570V (v0=0.855 p.u.) 

 

 

Figure 2-8 Comparison of test results with DC DQ transformation model for the RMS dc output voltage of 570V (v0=0.855 p.u.) 

Chapter 3 Review of state of the art  

This chapter discusses the options for Protective Devices (PD) to be applied to the various MVDC 

and MVAC/DC architectures. PD is a general term that refers to both electromechanical and solid 

state devices that are used to separately from power conversion to isolate faults from the system.  

Solid State Protective Device (SSPD) refers to any component, sub-component or group of sub-

components that plays a role in short circuit, low impedance and high impedance fault isolation 
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which uses solid state power semiconductor(s) to drive the fault current to zero so that the fault 

can be isolated.  For the purpose of this study, SSPD, whose one-line diagram symbol is shown in 

Figure 3-1, provides both current limiting and air gap isolation capability, in addition to any control 

and communications capability associated with successful operation of the switch in a given 

architecture. The SSPD in Figure 3-1 can only block current in one direction.  The SSPD in Figure 

3-2 can block current in both directions.  The air gap isolation will be accomplished with a 

Galvanic Isolating Switch (GIS).  The GIS one-line diagram symbol is shown in Figure 3-3,  The 

GIS is a set of purely electromechanically actuated no load contactors connected is series with the 

solid state part of the SSPD in both the positive and negative legs.  A SSPD that is purely solid 

state, with no air gap isolation capability is represented in the one line diagrams by the symbol in 

Figure 3-4.  This is generally referred to as the previously described SSCL but its function may be 

as simple as one or more series and paralleled power semiconductors that are commutated off when 

a fault occurs or as complex as utilizing Pulse Width Modulation (PWM) to actively limit the 

current.  An additional symbol that is used in the one line diagrams of this study is the conventional 

AC circuit breaker.  This symbol is shown in Figure 3-5.  It is generally only applied to the AC 

parts of the system with exception of LVDC systems because conventional electromechanical AC 

circuit breakers can be configured so that they operate safely in LVDC systems. 

 

Figure 3-1 Unidirectional SSPD one-line diagram 

 

Figure 3-2 Bi directional SSPD one-line diagram 

 

Figure 3-3 no load GIS one-line diagram 
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Figure 3-4 Solid state switch one-line diagram 

 

Figure 3-5 Electromechanical circuit breaker one-line diagram 

3.1 Solid state switch 

In current DC systems where most of the part connects together through a common bus, if a fault 

occurs in any part of the system, the whole system will see the effects of fault inception. Significant 

power is lost for a large part of the system because of absence of well-coordinated protective 

devices which could detect and isolate faulted areas in a very fast and intelligent manner. Also, the 

uncontrolled amount of current flowing through the system can lead to equipment damage. 

Furthermore, the MVDC distribution will consist of active power electronic sources and leads, 

each having their own input and output filters. If a LL fault suddenly occurs the capacitors within 

these converters act as current sources discharging very high currents into the fault. These current 

surges will rise to very high peaks in a very short period of time.  The AC distribution equivalent 

to this type of behavior is the discharge of surge current from connected induction motors into the 

fault.  However, under the AC protective paradigm, the protective devices act slowly (over 10’s of 

milliseconds), and the aim of the protective system design is to ride through the surges from 

connected induction motor loads.  On the other hand, the new DC protective paradigm must 

actually coordinate its protective devices on the capacitor discharge current surges.  These surges 

have potentially much higher peaks than the equivalent AC system surges and much shorter time 

constants.  The requirement for SSPD is very fast detection and very fast current interruption. The 

early interruption of fault current will minimize the maximum fault current magnitude and 

allowing the current breaking capacity of the high speed circuit breakers to be reduced. 
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What is needed is a fast acting switch to isolate faults, one that inserts minimum loss into the 

distribution system, has reliability that would be requisite of a protective device within the context 

of the rest of the system and one that fits within ship spaces—at least in comparison with 

conventional AC switchgear but preferably even more power dense in order to make room for the 

power conversion equipment inherent to MVDC.  If a system is designed by defining zones and 

providing some sort of fast and reliable protection mechanism which at occurrence of fault could 

immediately detect and isolate the faulty part of the system, power interruptions to non-faulted 

portions of the system can be minimized. A solid state protective device is a perfect proposal for 

this situation. SSPDs because of their fast action can limit faults in very short duration of time 

which may lead to less stresses on components of the system. The advent of SiC power 

semiconductors, with their inherent low loss and high speed of commutation, potentially addresses 

the attendant issues of efficiency and space claim. 

SSPDs that are bidirectional and that are inserted in series with both the positive and negative legs 

of the bus add an additional compelling capability to mitigate PND, PNAC and PNCMP faults that 

occur in floating ground systems with a high power converter insertion level. It is possible that 

SSPDs, in coordination with other actively controlled power electronic systems, can detect and 

limit faults in specified zones with uninterrupted operation of other healthy parts of the system. 

Survivability of the system in case of fault is a major factor for designing of a SSPD. 

Aauctioneering diodes can also be included in the design of dc system to make it more reliable. 

The current is the same upstream and downstream from the fault location. Therefore, conventional 

approaches to fault protection and coordination—which rely on voltage droop to ensure that 

protective devices closest to the fault trip off first—will not work. Because the solid state protective 

device(SSPD) limits the fault current to safe levels, which allows isolation in a time response on 
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the order of tens of microseconds (as opposed to several hundred milliseconds if the PCR limits 

the fault current). 

3.2 Research status of available SSPD topologies 

A study was performed to identify the options for SSPD topologies that are currently in the 

literature. The SSPD topologies identified fall into one of four categories: (1) Current Interrupting; 

(2) Current Limiting, (3) Dissipating, or (4) Resonant. The main difference between an SSPD that 

falls into one of these categories is how it handles the stored inductive stored energy that inevitably 

exists in the system when the fault is being interrupted which, if not handled correctly, will destroy 

the power semiconductors within the SSPD by causing high L*di/dt voltage stresses in excess of 

the device rating.  A Current Interrupting SSPD will simply act as a switch to stop the flow of 

current into the fault and will rely upon a combination of significant device voltage de-rating, 

external snubber and surge arrester or Metal-Oxide Varistor (MOV) to handle the voltage stress.  

The design of Current Interrupting SSPD and external circuitry requires careful consideration of 

the switch turn-off commutation characteristic and addition of di/dt limiting inductance. A Current 

Limiting SSPD will actively current limit the fault current using PWM to predefined level (usually 

zero current) and requires a combination of additional diodes to provide a freewheeling path for 

inductive energy and capacitive voltage clamping to provide a relatively stiff voltage against which 

the power semiconductors can switch. A Dissipating SSPD utilizes additional active devices to 

divert energy into dissipative components.  The Dissipating SSPD requires a pre-charged capacitor 

in parallel with the commutating devices and sufficient resistance to dissipate the energy under all 

potential scenarios. A Dissipating SSPD can be implemented without external inductance. 

Resonant SSPDs utilize resonant LC circuitry to force a zero crossing condition in the current 

directed into the fault, which can then accommodate either zero current turn-off of active switches 
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or turn-off of a load commutated switch, such as a Thyristor or SCR.  Promising SSPD solutions 

representing all of the above categories are described in the following sub-sections. The following 

topologies are investigated:  

• Solid state interrupter (Current Interrupting) 

• Solid state limiter (Current Limiting) 

• Dissipative AC/DC Switch (Dissipating) 

• Z Source breaker (Resonant) 

• Hybrid solid state/electromechanical circuit breaker (Current Interrupting) 

• Hybrid HVDC circuit breaker (Current Interrupting) 

In order to reliably mitigate fault behaviors in the system the “ideal” SSPD would embody three 

levels of protection: 

1) Active current limit 

2) Active current interruption at the switch level with minimal delay 

3) Ability to fail to an open condition, for some reason, the power semiconductor itself fails 

Levels (1) and (2) of protection can be accomplished with Current Limiting topologies.  Only level 

(1) is accomplished with Current Interrupting topologies. A Current Interrupting topology could 

obtain some degree of Level (2) protection by pulsing energy into its external snubber and MOV. 

The Current Limiting topology will likely have an advantage in implementing protective 

coordination because cascaded topologies can actively limit the initial fault inrush event to 

different set points. Dissipating topologies accomplish (1) and (2) and, with can potentially 

accomplish level (3) of protection. More work is needed to demonstrate/verify this capability. 

Resonant topologies only accomplish Level (1) of protection. 
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3.2.1  Solid State Interrupter 

The basic structure for a Solid State Interrupter is shown in Figure 3-7. The main active power 

circuit components to the Solid State Interrupter are first an actively controlled power 

semiconductor switch in each leg of the system that requires protection, second current limiting 

inductor and third snubber circuitry to dissipate the inductive stored energy between the source 

and the fault. If the system had a common reference (i.e. the negative leg was grounded) then only 

the top switch would be required and the SSPD would only be required to mitigate LL faults.  

However, in a floating system, switches are required in both the positive and negative legs in order 

to mitigate the possibility of two LG faults, or PND fault, as would occur at the LG fault positions 

in Figure 3-7.  The single differential mode current sensor and common mode current sensor would 

probably be the best implementation for detecting the different types of faults.  An alternative 

would be to sense current independently in the positive and negative currents but usually, in 

multiple LG fault scenarios, it is better to look for a small difference between the currents in the 

positive and negative legs in order to stop the fault before voltage stress builds up in a capacitor 

somewhere in the system.  It will be more accurate to use a common mode sensor for this purpose 

because the overall continuous current rating of the differential mode sensors is high and the 

current that must be detected in, say, a PND fault, is at a level that is within the sensor error of the 

device.  Energy into the fault during switch commutation is handled by the inductor (for the reasons 

explained in the introductory section), an RCD snubber across each active device to divert energy 

away from the device and keep device voltage within a safe region during off commutation and 

varistor to dissipate remaining inductive stored energy in the system while protecting the power 

semiconductor from over-voltage.  The electromechanical contactors shown in Figure 3-7 are 
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opened only after it has been verified that the current through the inductor(s) in the associated 

faulted leg(s) is at zero. 

This topology is based on series and parallel combination of IGBT switches to increase the current 

and voltage rating of the breaker. We can use an array of switches with careful synchronization of 

gate signals and snubbing of stray energy. Series and parallel combination of the switches can be 

used to meet the voltage and current requirements of the interrupter respectively[9]. 

Diversified Technologies Inc. (DTI) has introduced an 8MW IGBT-based solid state interrupter 

[9] as a potentially suitable SSPD for shipboard applications. This topology is based on series and 

parallel combination of IGBT switches to scale the SSPD to the voltage and current requirements 

of the system. An array of series/parallel IGBT are commutated off through careful 

synchronization of gate signals and snubbing of stray energy. The required voltage and current 

requirements for the SSPD can be met through the appropriate series and parallel combination of 

the IGBTs. 

In the design described in[9], a unidirectional SSPD implementation is implemented with 6 series 

IGBT switches, each of 4.5kV rating, which would be sufficient for a 10kVdc system. An 

important characteristic of this type of SSPD implementation is the combination of a large inductor 

in series with the SSPD active devices to limit the di/dt voltages that will occur across the device 

during turn-off and slowing down the rate of device turn-off through with gate drive resistors in 

order to manage the inductive stored energy in the system. Even with these measures, it is still 

necessary to significantly de-rate the device voltage withstand capability. A suggested 

implementation of this topology, for a 20kVdc system, would utilize 4 of the 10kVdc SiC IGBTs 

of [27] in series in a bi-directional implementation, shown in Figure 3-9. Note also that the bi-

directional SSPD is included in both the positive and negative legs.  If bi-directional capability is 
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not required (this depends upon the placement of the SSPD in the system and the MVDC 

architecture as will be shown later) then the unidirectional implementation shown in Figure 3-7 is 

sufficient, which requires only half of the devices. As stated earlier, the symmetry of current 

interruption capability in the positive and negative legs is necessary due to the ungrounded nature 

of the MVDC bus. This also gives the SSPD the capability of independently interrupting current 

in the positive and negative legs and thus addresses the issues associated with PND, PNAC and 

PNCP faults.  The implementations of Figure 3-9 and Figure 3-10 should have sufficient voltage 

de-rating to address di/dt voltage stresses when the devices commutate off during a fault (4:1 

voltage margin).   

One main challenge for any SSPD is in achieving sufficient continuous current carrying and 

current surge capacity.  Given the current rating of present SiC devices, the multiple modules must 

be paralleled, each with associated snubber circuitry to mitigate the effects of interconnecting 

inductances.  Also it should be ensured that all the gate drives perform in synchronized manner for 

opening of breaker in fault condition. The implementation seems impractical to parallel due to 

proliferation of hardware associated with each paralleled module. The complexity of such an 

implementation demonstrates the need for development of higher current SiC modules. 

Proposed controller provides the gate drive signal for the switches in the interrupter which 

synchronously open and close. The fast inverse time controller receives commands from either a 

manual input, from other breakers in the network, or from fast sensors that detect local fault 

currents. The inverse-time controller provides inverse trip time control for over current states, and 

a fast instantaneous trip if the over current limit is reached. Basic control scheme of the interrupter 

is shown in Figure 3-6. 
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Figure 3-6 Control scheme for the proposed interrupter 

 

 

Figure 3-7 Basic unidirectional Solid State Interrupter implementation for notional floating system showing fault scenarios 
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Figure 3-8 Basic bi-directional Solid State Interrupter implementation for notional floating system showing fault scenarios 

 

Figure 3-9 IGBT based Bidirectional SSPD for 20kv system 
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Figure 3-10 20kVdc SiC MOSFET based bidirectional SSPD implementation 

3.2.2   Solid State Fault Isolation Device (SSFID) [10] 

An alternative approach to a Solid State Interrupter is the Solid State Current Limiter shown in 

Figure 3-12. This topology has been proposed by various researchers for solid state protection and 

the topology of Figure 3-12 most closely matches that of [10].The main active power circuit 

components to the Solid State Current Limiter are first an actively controlled power semiconductor 

switch in each leg of the system that requires protection, second current limiting inductor, third a 

freewheeling diode to provide a path for stored inductive energy when the power semiconductors 

are turned off, fourth a line to line RCD voltage clamp to provide “stiff” voltage to work against 

and fourth snubber circuitry to dissipate the inductive stored energy in the circuit interconnects.  

Again, if the system had a common reference (i.e. the negative leg was grounded) then only the 

top active switch would be required and the SSPD would only be required to mitigate LL faults 

and in the floating system, switches are required in both the positive and negative legs. 

SSPD

+
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In [10] authors have proposed a prototype as shown in Figure 3-11 for 400V dc SSCB. It serves 

as basic design scheme of fast fault interruption and extended concept for 6.5kV silicon (Si) and 

10kV silicon carbide (SiC) devices as solid state fault isolation devices (SSFID) 

The main advantages can be listed as 

• Low cost /size 

• Simpler power circuit construction. 

• Flexibility due to easy reprogramming capabilities. 

• Fast interruption into tens of microseconds 

The Solid State Current Limiter acts as in the same way as a simple DC-DC buck converter.  When 

the fault occurs, active power semiconductors are operated in a PWM fashion to regulate the 

current in the inductor to zero or to some other pre-set limit.  When the power semiconductor(s) 

are off, the downstream fault current freewheels through the freewheeling diode.  The upstream 

RCD voltage clamp has its capacitor charged up to the bus voltage before the fault occurs.  RCD 

diode blocks the flow of capacitor current into the fault.  In this way, the Solid State Current 

Limiter works against a stiff voltage source.  The advantages of the Solid State Current Limiter 

over the Solid State Current Interrupter are that current surges in the system can be completely 

controlled, the fault current limit is instantaneously controllable (within the timing latencies of the 

control circuit) and the snubbers and varistors only handle the interconnecting parasitic 

inductances between the RCD voltage clamp, the power semiconductors and the diode.  Energy 

into the fault during switch commutation is handled in a controlled fashion through the 

freewheeling path and does not need to be absorbed by the power semiconductor(s) and associated 

snubbers and varistors.   
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Figure 3-11 Typical scheme for application of SSFID 

 

Figure 3-12 Basic unidirectional Solid State Limiter implementation for floating system 

Inductor is proposed to limit di/dt of fault current and additional freewheeling path is provided at 

the time of interruption to limit the voltage stress on the semiconductor switch. 
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There is a tradeoff between the switch current rating and amount of inductance required to be put 

in power circuitry to limit di/dt of fault current. If a switch can interrupt fault current extremely 

fast, the fault current is not able to rise as high as it would otherwise. As a result, a faster switch 

allows to reduce size of external inductor. Any parasitic inductance in power circuit would only 

help to reduce di/dt of fault current 

3.2.3  Z Source breaker  

In absence of zero crossing SCRs cannot be used directly in dc bus protection. So a design is 

proposed for application of SCRs in DC protection. As SCRs have lesser on state conduction losses 

it can be better option for SSPD. An SCR device cannot turn off unless the current in the device is 

at zero. Recognizing this limitation, Corzine invented the Z-Source Circuit Breaker, shown in 

Figure 3-13, which enables the use of SCR type devices in an SSPD [11][12].  Referring to Figure 

3-13, the Z-Source Circuit Breaker utilizes an additional LC resonant interaction to naturally force 

SCR current to zero in response to application of a LL fault.  If a LL fault is suddenly applied to 

the system, the fault current follows the paths shown through capacitors C into the fault and back 

through the supplying SCR.  The inductor maintains the current value hence fault current through 

capacitor goes back to SCR and source. At a particular point of time capacitor current equalize the 

SCR current and net current going through SCR becomes zero, at this time gate can be removed 

from the SCR and therefore inhibit current from the upstream converter into the fault. 

The z-source breaker as shown in Figure 3-13 has the advantage of automatically switching off in 

response to a local fault and without the need for fault detection. Furthermore, the z-source breaker 

isolates the generation source from the fault current. 
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Figure 3-13 Z source breaker 

This feature is adopted for fault handling in dc power systems. When the fault occurs in this 

system, there is no direct short of the z-source capacitor voltages, because of the inductors in the 

z-source circuit. The breaker components act together to quickly mitigate faults in a dc system. A 

portion of the fault current will come from the z-source breaker capacitances. In the transient state, 

the inductor keeps the current constant; the conduction path is then through the Z source capacitors 

and back to the source. At particular time cap current will match with inductor current making 

SCR current zero, at this time SCR will commutate off and gate voltage can be removed. 

In this design we need to analyze the sizing of inductors and capacitors used. Proposed system 

specifications of the breaker are 6MW, 6kV with a 20mΩ fault ramped at a rate of   K=5×10 /Ωs. 

C=125µF and L=200µH for the commutation time of 100µs.The inductor current circulates in the 

diode and decays to zero in about 5ms (with a 100 resistor). Because of this large ratio of peak to 

nominal inductor current, an air-core inductor is recommended. Physically, the inductor would be 

a cylinder of 30cm diameter and approximately 30cm in length. For the capacitance, based on 

series combination of off-the shelf capacitors, a capacitance of 125 μF at 6kV with a peak current 

of 4.5kA is estimated to have dimensions of 21cm by 42cm by 19cm. 

The Z-Source topology as shown in Figure 3-13 has several limitations.  These include the 

following: 
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1. Fault mitigation requires sudden application of a LL short circuit fault or slow LL fault current 

inception only if the resultant current is 11 times the normal condition[13]. 

2.  The Z-source circuit breaker cannot be commutated off at will, so, as a result, this topology is 

impractical for application to ring bus architectures 

3. If radial bus architectures utilize the Z-source circuit breaker for coordination between upstream 

and downstream breakers, the LRC components will have to be different between them in order to 

achieve coordination 

4. The topology can only handle LL faults and not the PND, PNAC and PNCP faults of the floating 

electrical system 

5. The capacitance required is quite large, which will be an issue in 20kV systems.  For example, 

for a 6MW, 6kV rated switch C=125µF and L=200µH. 

3.2.4  SGTO based Implementation [14][15] 

Sic devices can be another area for selection of SSPD, due to increase in availability of high rating 

Sic devices, many topologies can be proposed based on different available Sic devices. Based on 

Sic mosfet SSFID has already been discussed in this thesis. Another topology is proposed in [14] 

based on combination of SGTO and Sic diode. 

The higher band-gap leads to negligible junction leakage current at temperatures up to 600 °C, 

which allows for high temperature operation, which simplifies cooling system requirements. The 

higher electric field breakdown also yields higher voltage rated devices, which reduces the number 

of series connected devices in voltage blocking stacks. The higher breakdown electric field allows 

for the design of thinner and faster devices, which translates to 100 times improvement in the 

switching speed. 
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One of the limitations of SiC devices is that the chip sizes are small when compared to Silicon 

devices.  This is due to the low wafer yield that is currently achievable.  This small chip size is 

compensated for by the fact that the devices can operate at much higher temperatures—which is a 

reasonable strategy for power conversion—however this approach may not be advantageous for 

SSPDs.  The main requirement for SSPDs is reliability, which would be enhanced with larger size 

chips or chips with higher current handling capability. Bipolar Junction Transistor (BJT) 

Alternatives to the unipolar MOSFET structure, such as SiC IGBT, SiC Emitter Turn-Off (SiC 

ETO), SiC GTO and SiC Super GTO (SGTO), can achieve higher current ratings at the cost of 

higher switching loss [16]. Since switching speed is not as significant of a requirement for SSPD 

than it is for power conversion, perhaps these alternative devices are a better alternative.  Given 

the advantages of increased i2t capability and larger chip volume associated with thyristor type 

devices, the SiC GTO and SGTO merit serious consideration.  The fact that GTO and SGTO with 

series PiN Diode series combinations are being researched for medium voltage pulsed applications 

[17], AC SSCL [14][15] gives good reason to consider these devices applied to SSPD.  The 

requirements for pulsed applications will be very similar to those for SSPDs.  The SiC SGTO/PiN 

Diode based SSPDs may very well be a preferable choice for SSPD when compared to SiC 

MOSFET/JBS Diode for the following reasons: 

• Lower voltage drop than SiC IGBT solutions 

• Fully controllable 9kV SiC SGTOs with 2kA pulsed current have been tested [17] 

• SGTO devices have larger surface area than SiC MOSFET and IGBT chips and, therefore, better 

inherent short circuit surge current capability  

• High peak current (>12.8kA) measured with SGTO [17] 
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• SGTOs are unidirectional devices that can only block in the forward direction, so an appropriately 

rated Sic PiN diode is placed in series to block the reverse direction. The SGTO blocks the forward 

voltage during fault conditions, while the PiN Diode blocks the reverse voltage. 

 

Figure 3-14 Basic SGTO based unidirectional current limiter 

 

Figure 3-15 Basic design for solid state fault current limiter[14][15] 

Figure 3-14 and Figure 3-15 shows the basic design of the limiter topology. Unlike other Sic 

devices, These Sic devices has negative temperature coefficient which can create problem in 

paralleling the devices. Because the current sharing by each device should be similar, so to 

maintain sharing equality a series resister with positive temp coefficient is added. 

SGTOs were selected since they are the highest voltage rated fully controllable SiC device 

available rated at 8 kV 50A.SGTOs have better short circuit capability than IGBT or MOSFET. 

SGTOs are unidirectional devices that only block in the forward direction, so appropriately rated 
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Sic Pin diodes are placed in series to block the reverse direction. The SGTO blocks the forward 

voltage during fault conditions, while the diode blocks the reverse voltage. The MOV is employed 

to capture the initial sub-transient high voltage spike, while the snubber clamps the transient 

portion of the spike. A study was conducted that shows employing both types of protection 

dramatically increases the life time of the components. The value of the snubber capacitor was 

chosen to be 1 µF and the snubber resistor is 30 Ω. One of the most challenging aspects of the 

SSFCL power module design is device paralleling and current sharing as current capability of the 

manufactured single SGTO die is around 50 A only. 8KV SIC SGTO, 10KV SIG PIN Diode 

current carrying capacity of 50A, JN Temp of 70°C at normal operating condition. Turn on delay 

is 200 µS and turn off delay is 7. 68µS. Parallel combinations can be made to increase the current 

rating up to 1000Amps 

3.2.5 Hybrid DC Circuit breaker for HVDC transmission 

HVDC transmission for long distance power transfer has become widely popular for large capacity 

power systems. Remote renewable power generation such as offshore wind or solar power can 

easily be integrated through HVDC technologies. Voltage source converters and Modular 

multilevel converters have been put to practical use for hvdc transmission but they have a 

drawback of losing control capability in case of short circuit faults in dc side circuits. Solid state 

circuit breakers could be a prominent option to interrupt the fault current without activating AC 

side breakers or forcing converters to bear fault current until AC side breakers opens. 

The most advanced state of the art in SSPD is ABB’s hybrid HVDC circuit breaker [18], which is 

currently being implemented in HVDC systems in Europe and is fast becoming a viable utility 

systems product [19].  The highest rating system to which the system has been applied is 320kV, 

2kA and has the demonstrated capability of interrupting up to 9kA.  A circuit schematic 
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implementation is shown in Figure 3-16 and a physical implementation of a modular 80kV cell is 

shown in Figure 3-17.  Referring to Figure 3-16, ABB’s hybrid HVDC circuit breaker bypasses 

“Main DC Breaker” with a lower resistance series combination of mechanical switch (“Fast 

Disconnector”) and power semiconductor (“Auxiliary DC Breaker” or Load Commutating Switch 

(LCS)).  When a fault is detected the “Fast Disconnector” begins to open and, as a result, the fault 

current follows the lower resistance path into the “Main DC Breaker.  Once the “Main DC 

Breaker” is fully commutated of the remaining current due to stored energy in circuit inductance 

to the fault is diverted into the surge arrestor or MOV.  Current continues to flow until the energy 

is dissipated in the MOV until it is driven to zero. 

 

Figure 3-16 Circuit schematic for ABB’s hybrid HVDC circuit breaker[18] 

 

 

Figure 3-17 80kV hybrid HVDC circuit breaker cell implementation[18] 
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The power semiconductor device used for the SSPD is an IGBT in a Press-Pack module package. 

This packaging approach puts the IGBT Silicon into a compressible package similar to a “hockey-

puck” thyristor and provides a much higher i2t capability than the typical bond-wire connection of 

Silicon chips in a heat sink mountable module package—and is thus better suited for a protective 

device implementation. The hybrid HVDC circuit breaker can interrupt fault current in less than 

5mseconds (followed by the longer opening time of the associated GIS).  The significance of 

ABB’s achievement is the indication that SSPD at voltages even well in excess of the 20kV 

distribution voltage requirement can be a reality. However, the hybrid HVDC circuit breaker 

implementation will not meet the space constraints. Although ABB has not published the size of 

their hybrid HVDC circuit breaker module, in order to develop a viable SSPD for space constraints 

design like shipboard MVDC, the focus should be on the development of high voltage, low loss 

power semiconductors, i.e. >10kV SiC-based modules, and advanced packaging to achieve the 

desired power density and reliability. 

3.2.6 Hybrid DC Circuit breaker topology [20] 

Before considering potential new developments in the area of SSPD, this study must consider the 

alternatives to a fully solid state solution to SSPD. Many topologies can be proposed for operation 

of solid state switches in combination with mechanical switch. Mechanical switch can be seen as 

a medium of galvanic isolation but in this case it has been used to reduce the on state losses The 

conventional approach is to utilize a hybrid solid state/electromechanical circuit breaker where the 

SSPD handles commutation during the fault but during normal connected operation it is bypassed 

by a much lower loss electromechanical circuit breaker or no load contactor. The SSPD also 

mitigates the possibility of restrike across the mechanical breaker during the commutation process 
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In order to better exploit the high turn-off current device capability, a hybrid DC circuit breaker is 

proposed. As presented in Figure 3-18, this circuit breaker is composed of a mechanical By-Pass 

Switch (BPS) paralleled to an IGCT static breaker. 

 

Figure 3-18 Typical hybrid DC breaker 

In normal conditions the current flows through the BPS that generally has negligible resistance 

and capability to sustain high. At the BPS opening command time, after a delay due to mechanical 

switch inertia, an arc is formed across the BPS terminals, whose voltage allows current 

commutation into the static breaker. During commutation, the BPS is not subject to reapplied 

voltage that only appears when the IGCT is opened. This happens when the current commutation 

is over and the BPS is fully open, so that it is possible to interrupt the current in the static breaker 

without the risk of re-strike of the mechanical switch. 
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Figure 3-19 Scheme for BPS and IGCT opening command 

As shown in Figure 3-19 we can see that the IGCT opening time is generally very short, of the 

order of few microseconds, while the BPS opening time, evaluated from the opening command 

time to the actual reaching of open position, depends on the switching technology and on the rated 

voltage and current values and can range from tens to hundreds of milliseconds. The IGCT carries 

current only for a limited time period, which depends on the BPS opening time and on the current 

commutation duration. The circuit involved in the current commutation between the BPS and the 

IGCTs has low impedance in order to limit the arcing time in BPS and the associated contact 

erosion. In this case the model can be simplified supposing that the current commutation happens 

with a current step. The dynamic behavior of the junction temperature can be studied considering 

the IGCT thermal impedance in transient conditions. 

Chapter 4 Assessment and modelling of switching topologies for 

application in MVDC circuit breaker 

Classification of SSPDs based on fault mitigation techniques 

In this section three types of SSPD topologies are evaluated: (1) Interrupting; (2) Limiting and (3) 

Dissipating. The main difference between these topologies is how the SSPD handles the stored 
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inductive energy that inevitably exists in the system when the fault is being interrupted which, if 

not handled correctly, will destroy the power semiconductors. 

4.1 Interrupting topology 

A unidirectional Interrupting SSPD suitable for a floating system is shown in Figure 4-1 [19]. 

Assuming the use of 10kV device rated SiC MOSFET [8] in both PGM and SSPD, a PGM feeding 

a feeding a 30MW load on the 20kVDC bus through the Interrupting SSPD was simulated and a 

fault was applied to a branch off of the main bus. Results are shown in Figure 4-4. It was 

determined that four series devices are required per leg in order to keep peak stress per device 

below 8kV. The simulation shows that the main bus voltage is barely perturbed when the faulted 

branch is isolated. When the switch is opened, device current is diverted into the parallel RC 

snubber. The resistance is there to damp any ringing with circuit inductance that exists and a 

limiting inductor must be part of the assembly in order to ensure that response is critically damped 

in the presence of variable cable inductance between the PGM and the fault. A snubber capacitance 

of 100µF per device and a limiting inductance of 500µH is required, assuming worst case cable 

inductance is 40µH. 
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Figure 4-1 Interrupting SSPD 

 

Figure 4-2 Simulation model for Interrupting topology 

 

Figure 4-2 shows the PLECS model for simulating Interrupting topology, a dc voltage bus is being 

fed by 6 pulse diode rectifier. Cable inductance is shown as Lb on both the sides of the sspd. Step 

function is used to connect load and generate fault, Switch Sload is used to connect load and Sfault 

is used to generate fault. Lflt inductance is used to simulate fault inductance in the circuit. Bus 

current is measured using ammeters which in fact is giving a fault current signal to controls.AC 
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side Line inductances and resistances are shown as L1, L2, L3 and R1, R2, R3 respectively. Vabc 

shows the constant AC voltage supplied to the rectifier. Figure 4-3 shows the 4KV interrupter with 

MOV simulation schematics, Lp is the inductance needed to limit the current within specified limit 

for the duration of control to act and trigger the gate drive signal in case of fault is sensed. 

Minimum inductance is needed so save the switching devices from high current surges till the 

control sense and sends a gate drive turn off signal and gate drive turn off process happen. 5µs of 

the delay is used to compensate for the actual practical delays in the circuit and hence 10µH of 

inductance is used to limit the current surges during this delay. Ifb is the bus current feedback sent 

to control systems which compare this current with certain fixed limit and triggers the gate drive 

turn off operation once the bus current passed the given fault current level. In this simulation we 

have assumed two 4 KV 500A SiC mosfet device to be used in parallel to withstand a bus current 

level of 1000A. RC snubber is used to maintain a constant voltage across the device for smooth 

turn off. A 5kv MOV was designed and simulated in PLECS to analyze the path of the current, 

stress and energy recovery across the device. Understanding the fault energy management in the 

system is the key to design well behaved SSPD, studying the performance of inductance, snubber 

and MOV and the device controls will help is designing a better protective interrupting device. 
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Figure 4-3 4kV Interrupter with MOV 

 

Figure 4-4 20kVInterrupting SSPD simulation results 
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4.1.1 MOV Modelling: 

In [22] authors have investigated the advantages of using RCD and MOV over using just MOV. 

Major limitation of using MOV is the parasitic inductance of connecting wire between switch and 

MOV, which leads to voltage spike in the system while commutation process. As we know that 

while commutation process of fault current any inductance in the path will lead to voltage surges 

in the system which should be avoided. If we use a snubber in addition to MOV, the constant 

voltage clamp developed by snubber capacitor will help in smooth transition of current paths. The 

breaker with MOV and RCD enlarge the paralleled capacitor between IGBT. During the 

commutation, the larger capacitor can reduce the slope of MOV current. Because of the existence 

of parasitic inductor in MOV loop, the lower slope rate means lower additional voltage spike. 

In [23], to reduce the effect of parasitic inductance authors have tried to use two parallel MOVs in 

place of single MOV. The idea is to divide the voltage limitation from the energy absorption into 

two separate components to decrease the stress on the PE switch. MOVE is used for energy 

absorption, MOVOV is used to provide constant voltage across the switch which results in low 

voltage spike across the device. Basically characteristic of a single MOV has been divided into 

two separate MOVs. The MOV is characterized by its blocking voltage and energy absorption, the 

voltage rating of the MOV depends on the thickness of the component, and the energy rating is 

proportional to the volume of the component. There could be a tradeoff between amount of energy 

absorbed by MOVE and level of voltage spikes across the device allowed by MOVov. Typically, 

the voltage level of MOVE will be set by the system voltage and the energy of MOVE is set by the 

magnetic energy that should be absorbed. Hence, it is the choice of MOVov and the voltage rating 

of the IGBT that is the trade-off that has to be done considering parasitic inductance in the system 

as well as the cost. [24] discuss about design aspects of series and parallel combination of varistors, 
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number of series MOV will decide voltage rating of the switch and number of parallel varistors 

will decide the amount of energy to be absorbed in the system. After the turn-off of the 

semiconductor branch, the current will be commutated to the varistor branch. Since the voltage 

level of the varistor in conducting state will be higher than the system voltage, the system current 

will decrease. The voltage level of the varistor will be a trade-off between how fast the system 

current decreases and the voltage stress applied to the semiconductor components. A high voltage 

level will rapidly decrease the current and hence limit the energy flowing through the system, but 

will require a higher voltage rating of the semiconductor branch resulting in higher costs. 

Naturally, the voltage level increases with increasing varistor voltage rating, but also decreases 

with increasing number of parallel components. The latter is due to that when the number of 

parallel components increase, the current in each device becomes lower which gives a lower 

effective voltage-current characteristic. Since galvanic isolation is not obtained by the varistors or 

the semiconductor switches, a disconnector will be required in series with the breaker. Hence the 

varistor only has to withstand the system voltage until the disconnector is opened and the opening 

time of the disconnector will dictate the required energy absorption from the leakage current. 

However, if a fast disconnector is used, this energy will be small compared to the inductive energy 

during the interruption of the current. 

Figure 4-5 shows the simulation result for one of the mov used for 6KV rating, As we can see that 

in the graph, current through increased to a very high value once the voltage across the mov or the 

device reaches beyond the allowed value of 5.5KV. By allowing high amount of current through 

itself mov is providing a safe environment for the switching device in switching over voltage/surge 

condition. 
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Figure 4-5 Simulation result of 6kV mov design 

 

 

4.2 Limiting topology 

A unidirectional Limiting SSPD actively limits the fault current using PWM to predefined level 

(usually zero current) and requires a combination of additional diodes to provide a freewheeling 

path for inductive energy and capacitive voltage clamping to provide a relatively stiff voltage 

against which the power semiconductors can switch as shown in Figure 4-6[20] [21] [22]. Figure 

4-7 shows the limiting sspd model in plecs to simulate the fault removal process for unidirectional 

dc system. Simulation results are provided in Figure 4-8 for the same system as in Figure 4-1 again 
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with four devices in series. A total bulk capacitance of 4000µF was required with 100µH of 

limiting inductance. For the 20kV DC application these results indicate that only three devices are 

required in series. For limiting topology fault resistance and inductance plays role in defining the 

total time of fault current to free wheel to zero. 

 

Figure 4-6 Limiting SSPD scheme for floating system 
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Figure 4-7 plecs model for unidirectional limiting sspd 

 

Figure 4-8 20kVLimiting SSPD simulation results 
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4.3 Dissipating topology 

A unidirectional Dissipating SSPD, shown in Figure 4-9, utilizes additional active devices to divert 

energy into dissipative components [23]. The Dissipating SSPD requires a pre-charged capacitor 

in parallel with the commutating devices and sufficient resistance to dissipate the energy under all 

potential scenarios. One advantage of the Dissipating SSPD is that there is no need for current 

limiting inductance. The amount of cable inductance affects the energy that must be dissipated by 

the resistors and their resulting size. 

Since cable length is limited in a shipboard application when compared to terrestrial systems, the 

size of resistors may be manageable for this application. Figure 4-10 shows the plecs model to 

simulate the unidirectional dissipating sspd for DC bus faults. Simulation results for 20KV 

Dissipating SSPD are shown in Figure 4-11. In this implementation, each SSPD has a 400µF clamp 

storage capacitor. Here again, with this topology it may be possible to utilize only three series 

SSPDs per leg instead of four. 

Dissipative has inherent quality of limiting the device voltage to very safe level by the use of 

hysteresis control of capacitor voltage across the devices, Also It does not need much higher 

inductance to limit the fault current because of its inherent design property. 

 

Figure 4-9 Dissipating SSPD for floating system 
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Figure 4-10 Plecs model of unidirectional dissipative SSPD 

 

Figure 4-11 20kVDissipating SSPD simulation results 
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4.4 Comparison and analysis of commutation stages of SSPD topologies through 

simulation for 4kV DC system 

In order to make a valid comparison of the topologies, each was assumed to utilize a dual 10kV/240A SiC/JBS diode module in 

10kV/240A SiC/JBS diode module in an appropriate configuration to the topology in order to minimize inter-connection 

minimize inter-connection inductance.  A rated current of 500A was assumed which requires two parallel paths for continuous 

parallel paths for continuous current supply through-put.  A 4kV system was simulated with the assumption that assemblies or 

assumption that assemblies or modules can be connected in series (depending upon the topology) in order to apply to higher 

in order to apply to higher voltage rated systems.  The 4kVdc system was assumed with a constraint applied to the topologies that 

applied to the topologies that voltage during fault turn-off cannot exceed 6.5kV which is one of the drivers for required passive 

the drivers for required passive components to manage the commutation energy.  Also, a total fault current sensing and gate drive 

current sensing and gate drive actuation delay of 5µseconds was assumed.  Assuming a fault tripping level, a maximum allowable 

tripping level, a maximum allowable peak current of 3kA and a fault detection level of 1kA and sudden zero-ohm fault 

sudden zero-ohm fault application a di/dt limiting inductance of at least 13µH is required.  In the shipboard IPS the cable 

shipboard IPS the cable inductance can be widely varying.  It is assumed that the minimum cable inductance is 2µH and that the 

inductance is 2µH and that the maximum inductance to the fault is 50µH.  The positive leg SSPD+ with the Interrupting SSPD is 

with the Interrupting SSPD is shown in  

Figure 4-12 during three operating stages: (a.) Normal conduction to the load; (b.) Fault 

commutation through the snubber; (c.) Fault energy dissipation through the MOV.  The 

Interrupting nomenclature was selected because the power semiconductors interrupt the flow of 

current to the fault and fault energy ultimately diverted to the MOV.  The bidirectional Interrupting 

SSPD can be implemented with the 10kV/240A SiC/JBS diode module in a common source 

configuration. Assuming a continuous rating of 500A, two modules must be connected directly in 

parallel.  It is assumed that some measures may be required in the gate drive design to ensure 

dynamic current sharing between devices.  Care must also be taken to minimize the parasitic 
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inductance when paralleling the modules and connecting RC snubber and MOV components 

across the devices, otherwise, additional RC plus diode (RCD) voltage clamps would be required 

to mitigate the di/dt induced over-voltages during device turn-off.  The purpose of the RC snubber 

across each paralleled set of devices is to provide an initial path through which fault current can 

pass when the MOSFET device(s) are commutated off.  The resistive part of the RC snubber is 

required to dampen out ringing between any fault path inductance and the snubber capacitance, 

Cs, therefore some minimum inductance, Lp, is required to ensure that ring-up does not cause 

excessive voltage across the device or current through the device during fault commutation.  The 

optimal values for Lp, Cs and Rs are found by considering both low inductance cabling (2µH) and 

high inductance cabling (50µH).  With low inductance the current stresses will be highest and with 

high inductance the commutating device(s) voltage stresses will be higher. In order to keep ringing 

from occurring and resultant increased current stress Lp=20µH is required. An MOV was selected 

with a clamping voltage of 4000V, modeled and included in the simulation.  Simulation results are 

shown in Figure 4-13.  After the time sensing and gate drive delay, td, the MOSFETs are 

commanded off and current diverts into the snubber capacitor (t0<t≤t1).  When the voltage across 

the device reaches 4000V (t1<t≤t2) the MOV conducts. The remaining fault current is then 

diverted into the MOV where the remaining fault energy (a function of the system inductance 

between the source and fault) is dissipated (t2<t≤t3). An important result of the simulation is how 

long it takes for bus current into the fault to be driven to zero, which indicates the delay required 

before the fault can be air gap isolated with a no load DC disconnect switch, which is 0.5mseconds 

(2µH cable inductance) and 1msecond (50µH cable inductance). 
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(a)                                        (b)                                          (c)                                                     
 

Figure 4-12 Interrupting SSPD and its commutation stages 

 

Figure 4-13 Interrupting SSPD simulation results for low cable and high cable inductances 

 

A Limiting SSPD nomenclature implies that the fault current can be limited to predefined level by 

coordinated switching between the active power semiconductor(s) in series with fault and in a 

freewheeling path.  The bidirectional topology of Figure 4-14 shows both the positive and negative 

legs (SSPD+ and SSPD-) and, like the Interrupting SSPD, can be implemented with common 

source of the SiC MOSFET modules.  To drive fault current to zero the power semiconductor(s) 

are commanded off and a freewheeling path must be provided with a resistive component, Rd, to 

dissipate fault energy to zero.  The three operating stages in Figure 4-14 are (a.) Normal conduction 
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to the load; (b.) Fault commutation against the voltage clamping capacitor, Ccl and RCD snubber 

path and (c.) Fault energy dissipation by creating a freewheeling path that localizes the fault and 

decouples the fault path from the feed side of the SSPD.  In a simple form, the bidirectional 

Limiting SSPD looks like two back-to-back dc-dc buck converters with devices that need to 

actively turn off being in the direction of the fault current flow with a diode freewheeling path to 

capture the inductive energy in the fault. The reason that active switches are added to the 

freewheeling path is to handle different kinds of fault paths.  The bidirectional active switch in the 

freewheeling path provides flexibility to block current through a freewheeling path for such cases 

where unsymmetrical LG voltages might otherwise cause fault current to flow through diodes 

through an undesired path.  Simulation results are shown in Figure 4-15 for a LL fault described 

by the commutation sequence of Figure 4-14. Comparing Figure 4-13 and Figure 4-15 the Limiting 

SSPD has tighter control of device voltage and current stresses but a commutation time that is less 

dependent on cable inductance than the Interrupting SSPD.  This is due to the fact that the time to 

drive the current to zero is a function of the L/R time constant whereas for the Interrupting SSPD 

the time is influenced by damped resonance between inductance in the circuit and the snubber 

capacitor.  The time to drive current can be reduced by reducing the value of Rd.  There will be a 

trade-off between this time and the energy dissipated by the resistor.   
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(a) 

 

 

(b) 
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(c) 

Figure 4-14 Limiting topology and its commutation stages 

 

 

Figure 4-15 Limiting SSPD simulation results for low and high cable inductances 

The Resistive SSPD and its commutation stage is shown in Figure 4-16.  This topology is a 

derivative of SSPDs having an H-Bridge structure, introduced in [31] . Under the normal 

conduction, Figure 4-16(a), the current divides up between two parallel branches.  When the main 

path devices are commutated off fault current is diverted through the forward diodes of devices in 
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the center path through a capacitor, Ccl, as shown in Figure 4-16(b).  This capacitor is pre-charged 

to the nominal bus voltage level.  When capacitor voltage, vc, rises above a set-point level the 

center path devices are gated on, Figure 4-16(c), which diverts the fault energy through the Rd 

resistive path.  When vc has dropped to a set-point level that is below nominal by some difference 

the center path devices are gated off and the SSPD returns to the commutation state of Figure 

4-16(b).  This sequences are alternative repeated until the fault current is driven to zero.  The speed 

at which fault current is eliminated is a function of the pre-set hysteresis band around the nominal 

bus voltage, which controls voltage stresses, and the value of Rd, which controls peak 

instantaneous power.  The simulated performance is shown in Figure 4-17.  It should be noted that 

the total commutation time is much smaller than the other topologies.  The amount of inductance 

in the fault path directly affects the energy that must be dissipated by resistor(s) in the SSPD so 

the amount of deliberate inductance added to the SSPD, Lp, should be kept to a minimum while 

keeping the switching device current stress within acceptable constraints given the need to limit 

di/dt caused by control and gate drive delays.  For terrestrial applications this sensitivity to 

inductance.  However, since cable length is relatively limited in shipboard applications resistor 

sizing may be manageable.  
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Figure 4-16 Dissipative topology commutation 
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Figure 4-17 Dissipative topology commutation simulation for low and high cable inductances 

Table 2 shows a summary comparison of the different SSPD topologies for a 4kVdc system.  

Considering only complexity as a criterion, the Interrupting SSPD is the most attractive because it 

requires the least number of gate drives and modules. The Resistive SSPD has complexity as the 

Limiting SSPD from an active component count. The Resistive SSPD is also attractive because it 

inherently divides the bus current into two well controlled paralleled current paths per assembly 

and the management of inter-connection inductance between paralleled modules is more easily 

achieved. 

Table 2 Comparison of SSPD topologies for a 4kVdc system using SiC MOSFET dual modules 

 

Lp Cs Ccl 

No. of 
Gate 

Drives per 
SSPD 

assembly 

No. of 
Modules 
per SSPD 
assembly Dissipative Components 

Interrupting 20H 20F N/A 8 4 LittleFuse V202BB60 with clamping voltage of 5200V 

Limiting 20H 0.5F 10F 12 6 HVR International Epoxy Coated Discs, 0.5 

Resistive 10H N/A 2F 12 6 

HVR International Aluminum Cooling Fins, 2 in series, 

3 in parallel, 5 
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Chapter 5 Proposed research instrument design for DC fault study 

and simulation results 

In order to update present DC protection standards (IEC 60909) there is a need of DC short circuit 

fault tester to perform fault characterization and develop protective system requirements. To 

achieve this, the short circuit tester must be developed that can (1) safely make and break DC 

current; (2) apply short circuits without impose additional di/dt limits that would not be present in 

the actual system; (3) remove short circuits without imposing required delays; (4) present a nearly 

zero impedance fault to the system; and (5) sustain long term fault currents.  

Based on the principle of dissipative topology of protection, the proposed static fault simulator is 

designed to emulate all types of DC faults. By switching H bridge topologies in a manner to get 

+Vdc, -Vdc or 0 across each bridge we can simulate any kind of DC fault across the device. 

Switches and batteries in the device should be able to sustain the fault energy. That’s why a proper 

heatsink design is needed. Resistor and capacitor plays an important role while turn off the device 

by dissipating inductive energy of the circuit into resistor bank and clamping voltage across the 

devices at a constant level. 

5.1 Static fault simulator simulation analysis 

The Static Fault Simulator will be configurable to simulate any type of fault that can occur, 

including intermittent high resistance faults that can be tailored through intelligent controls to 

mimic the effect of arc faults.  The Static Fault Simulator must be a solid state switch solution that 

has the same capabilities as a SSCBs—that is when the fault is removed there must be a capability 

to actively drive current to zero and there must be a way to divert the inductive energy in the fault 

to a place where it can be dissipated.  Most solid state circuit breakers require a current limiting 

inductor and other passive devices to ensure safe commutation when the switch is opened.  
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However, the dissipating H-bridge topology, shown in Figure 5-1 as a means for applying a short 

circuit to a DC system, utilizes additional active switches to divert energy into dissipative 

components when it is commutated off and requires no additional inductor to limit the rate of rise 

of current.  Instead, any existing system inductance affects the energy that must be dissipated by 

the resistors and resulting size.  This characteristic makes this device foundation short circuit tester 

from the perspectives of requirements (1) -(5) stated above. This configuration enables application 

of sustained faults by sharing the load current between all eight switches and provides a multiple 

modular configuration that can be configured to apply any type of fault to the system.  It is possible 

for the topology of the circuit in Figure 5-1 to be stacked and paralleled so that it can be scalable 

to use for testing of MVDC systems.  Figure 5-5 shows the simulated electrical variables in the 

SSCB during a fault extinction.  The fault current is diverted into the storage capacitor when the 

fault current is extinguished and then energy is alternatively traded between the capacitor and 

dissipating resistor, keeping capacitor voltage within safe limits using a hysteresis controller. 

Figure 5-6 shows how the circuit sustains faults during fault characterization by alternatively 

sharing currents between different halves of the H-bridge in order to mitigate internal device 

stresses. 

 

Figure 5-1 Basic fault simulator model 
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Figure 5-2 Basic outline of dc fault characterization system 

 

Figure 5-3 plecs model for proposed fault characterization instrument 
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Figure 5-4 Simulation results for working of fault simulator instrument 

 

 

Figure 5-5 Simulation of fault extinction through hysteresis controlled cap energy dissipation 
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Figure 5-6 Simulation of H bridge currents during sustained fault 

5.2 Heat sink design 

5.2.1 Selection process of heat sink[21] 

Heat sink design is very important component for complete design of any power electronic 

topology. Thermal heat management should be considered for all the power electronic topologies 

for proper functioning of the device. Temperature of the equipment have very strong impact on 

reliability, and life expectancy of the device. That means proper management of the temperature 

of the device will lead to higher performance of the device. So usually device manufacturers or 

design engineers suggest safe operating temperature of the device, by designing proper heat sink, 

we can maintain the device temperature within the allowed limit and ensures the reliability of the 

instrument being designed. 

Heat sink dissipates heat from hot surface (the device base plate) to ambient cooler environment 

usually air. Heat sinks has high surface area for energy dissipation into ambient temperature 

environment which usually is air or liquid. Efficiency of the heat sink is defined as amount of heat 

dissipated for particular surface area. Using heat sink one can help the devices to cool down faster 
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and limit the device temperature within maximum allowable temperature limit as per 

manufacturer. 

Optimization of heat sink performance is very important for the design of the overall system. For 

the design and optimization of the heat sink for our project we used the online tools available on 

the website of companies like Merson and C&H technology to get an idea of available product in 

the market. To design a heat sink you need to know amount of heat generated by solid state devices 

which needs to be dissipated, maximum allowable heat sink temperature, ambient coolant 

temperature, size of the heat sink, budget limit. You can play with fin height, fin length, fin 

spacing, number of fins, shape and thickness of base plate and heat sink materials to get your 

optimized heat sink design.  

Chapter 6 Conclusions and future work 

This thesis has provided a detailed overview of the protection requirements for future MVDC 

systems. From the literature on SSPD topologies, this thesis has analyzed three topologies: 

Interrupting, Limiting and Resistive. WBG SiC power semiconductors will be necessary in order 

to achieve high system efficiency and to avoid growth of thermal management requirements. The 

Interrupting SSPD is the most popular approach and will be attractive as SiC p-GTOs, SGTOs and 

ETOs become commercially available. The Limiting SSPD is an inferior option because a scalable 

approach cannot be easily achieved. The Resistive SSPD is an attractive option because modular, 

scalable packaging can be achieved and voltage stresses in the Resistive SSPD can be well-

controlled it is possible to reduce the number of series modules as the SSPD voltage rating 

increases. Hardware implementation and experimental validation of Dissipative topology is future 

work of this thesis.
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