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ABSTRACT 
 

DETERMINING THE IMPACTS OF ENVIRONMENTAL CONTAMINANTS TO 
ZEBRA MUSSELS USING GENETIC BIOMARKERS 

by 
 

Nicklaus James Neureuther 
 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Rebecca Klaper, PhD 

 
 
 
 
 Persistent legacy contaminants and emerging chemicals of concern 

continue to be a threat to the function and health in the Great Lakes Areas of 

Concern (AOCs).  While chemical monitoring programs traditionally sample water 

and sediment, these studies can only provide information of the type and level of 

contamination within an (AOC).  This being said, information on the biological 

impacts to the biota are needed to measure impairments of chemical exposure, 

to support remediation efforts in their ability to eventually restore AOCs.  To 

accomplish this, I proposed to measure chemical exposure using molecular 

biomarkers from D. polymorpha (Pallas, 1771), more commonly known as the 

zebra mussel.  This species has been successfully used as a bioindicator of 

contamination in the Great Lakes and in Europe due to it being an invasive 

species and having the physiological qualities of being a sessile filter feeder.  

These unique physiological properties, in addition to the zebra mussel already 

having a library of gene expression biomarkers known to be critical in relation to 

stress and detoxification, including the genes: GST, AHR, P-gP and HSP70, 

made this organism an obvious choice.  Working in conjunction with the already 
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established chemical monitoring program, the NCCOS NOAA Mussel Watch 

Program (MWP), the goal was to test these genomic biomarkers to see how 

robust they could be as an indicator of exposure in conjunction with chemical 

data from the field.  We demonstrated that in an aquatic environment that these 

genes of exposure revealed a significant relationship with the legacy 

contaminants polychlorinated bi-phenols (PCBs) and polycyclic aromatic 

hydrocarbons (PAHs) and the emerging contaminants, 4 nonylphenol (4NP) and 

triclocarban (TCC) over a gradient of contamination and that these results were 

affected by length of exposure.  Likewise, AOCs are dynamic environments 

containing complex mixtures of contaminants, which tend to co-correlate, making 

it difficult to parse out effects of exposure from single contaminants.  To 

investigate individual chemical and gene expression relationships further, zebra 

mussels were exposed to environmentally relevant levels of TCC under 

laboratory conditions.  This study confirmed my field results that the gene GST 

could be a potential biomarker of TCC.  As a whole, these two studies 

demonstrated that using the zebra mussel as not only a bioindicator of 

contamination but as a biomonitor of exposure using gene expression 

biomarkers could be an effective tool used by monitoring programs to help gauge 

restoration success. 
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CHAPTER 1: INTRODUCTION 

Chemical Contamination in the Great Lakes 
 
 Contaminants such as polychlorinated biphenyls (PCBs), heavy metals 

e.g. mercury, lead, and pesticides including DDT have been banned but are still 

prevalent in the Great Lakes (Kimbrough et al., 2013). There are 31 Areas of 

Concern (AOCs) in The Great Lakes, designated by the Great Lakes Water 

Quality Agreement (1978).   This is due to their degradation under the influence 

of anthropogenic contamination (U.S.EPA., 1998; IJC 1978). The ability for these 

toxics to adsorb to particulates and algae, are the cause of sediment 

contamination which has become a potential route of exposure which 

bioaccumulates up the food chain (Cho et al., 2004; Jacobs et al., 2004; 

Schwartz et al., 1983; Van der Oost et al., 2003; Walters et al., 2010).    While 

the use of many of these pollutants has drastically decreased or been eliminated, 

they are still measured at levels that can impact wildlife and human health as 

evidenced by fish consumption advisories (Bence et al., 2008; Jacobson et al., 

1984; Jones and De Voogt, 1998; Li et al., 2009; Schwartz et al., 1983).  In 

addition to these legacy persistent pollutants, contaminants of emerging concern 

(CECs) which include polycyclic aromatic hydrocarbons (PAHs), polybrominated 

diphenyl ethers, (PBDEs), as well as personal care products and 

pharmaceuticals (PPCPs), are making their way into the aquatic ecosystems, 

due to their high volume use, runoff (PAHs) or incomplete removal at wastewater 

treatment plants (PPCPs) (Blair et al., 2013; Klecka et al., 2010; Lee et al., 

2012).  Typically, concentrations of PPCPs are relatively low, though some have 
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been shown to have deleterious effects on wildlife in part because of chronic low 

dose exposures they cause sub-lethal effects such as endocrine disruption 

(Crago and Klaper, 2012; Villeneuve etl., 2016)   

Biomarkers 
 

Chemical monitoring programs are essential in providing evidence for risk 

assessment and determining restoration initiatives.  Directly measuring 

contaminants in organisms provides evidence not only of contamination, but also 

the potential for exposure to organisms (De Luca-Abbott et al., 2005; Johns, 

2011; Kimbrough et al., 2014).  However, chemical monitoring, even within 

organisms, only provides evidence of the presence of chemicals and not their 

effects on the health of the biota.   

Biomarkers are a way to integrate chemical monitoring with the impacts of 

contaminants on an organism.  The National Academy of Science/National 

Research Council (NAS/NRC), defines the term “biomarker” as an induced 

disruption in cellular biochemical processes, structures, or functions, in response 

to a xenobiotic compound, that can be measured in a biological sample (NRC, 

1987).  Most importantly, these can be used as a tool, which can provide 

evidence of exposure as well as an organism’s health.   As an example, many 

environmental investigations have used enzyme ethoxyresorufin –O-deethylase 

(EROD) activity to demonstrate the impacts of organo-chlorine contamination 

(Arcand-Hoy and Metcalfe, 1999; Ku et al., 2014; Liang et al., 2013). Other types 

of stress can be measured using biomarkers.  For instance oxidative stress, 

resulting from reactive oxygen species (ROS), a by product of detoxification 
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which can result in lipid peroxidation, resulting in DNA damage, which can be 

analyzed by measuring the anti-oxidant enzymes superoxide dismutase and 

catalase (Riva et al., 2010; Rocher et al., 2006). 

 More recently, the quantification of messenger RNA (mRNA) biomarkers, 

which code for proteins important for particular biochemical pathways are being 

used as an early indicator of organismal stress in laboratory and environmental 

studies (Châtel et al., 2014; Hook et al., 2006; Navarro et al., 2011; Venier et al., 

2006).  Using genes involved in the detoxification of xenobiotic substances 

provides an indication of the instigator or disruption and in some cases can be 

linked to specific contaminants.   For example, investigators routinely measure 

vitellogenin (VTG), an egg yolk protein precursor, to analyze the effects of 

endocrine disruption in male fish and the gene metallothionein (MT) is 

recognized at the European level as a biomarker for heavy metal contamination 

in fish and invertebrates (Amiard et al., 2006; Harries et al., 1997).   

Additionally, monitoring changes in an organism at a molecular level can allow 

researchers to detect early on the effects of an environmental and potentially 

mitigate population level impacts (Klaper and Thomas, 2004; Thomas and 

Klaper, 2004; Van der Oost et al., 2003).  .   

There are some issues in the use of genomic biomarkers for 

environmental monitoring.  For instance, gene expression monitoring only 

provides a snapshot in time and consequently researchers can miss the optimal 

period that causes changes in key biomarker expression.  Additionally, the 

species that a researcher may want to use needs to be found living in or near the 
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particular location of study. Lastly, RNA can easily degrade and therefore 

requires special handling.  This can be a hindrance in remote field conditions 

where access to liquid nitrogen or refrigeration is not easily accessible. 

The goal of this research is to investigate the impacts of toxics in relation 

to genomic biomarkers of toxicity and stress in order to enhance chemical 

monitoring capabilities. In the studies described herein, I used Dreissena 

polymorpha (Pallas, 1771), which is commonly used as a bioindicator of 

environmental chemical contamination (Binelli et al., 2008; Binelli and Provini, 

2003; De Jonge et al., 2012; Kimbrough et al., 2013; Kraak, 1997; Minier et al., 

2006).  Since its introduction into the Great Lakes, the zebra mussel quickly 

comprised a dominant proportion of the biomass inhabiting the Great Lakes 

benthos (Johnson and Carlton, 1996; Nalepa and Schloesser, 1993; Schloesser 

et al., 1996). The NOAA Mussel Watch Program (MWP), an already established 

monitoring program, using native clams and oysters to monitor coastal marine 

environments, seized the opportunity to use this invasive species to monitor 

contamination in twenty-three core sampling sites for over 150 contaminants 

throughout the Great Lakes basin for over two decades (Kimbrough et al., 2013). 

Zebra mussels retain several unique properties, including a sessile nature, an 

ability to accumulate toxics, and are an invasive species on a global scale 

(Bruner, K., Fisher, S. & Landrum, 1994).  

The second chapter describes using caged zebra mussels in the Niagara 

River AOC for five and ten weeks of exposure.  The main goals for this project 

were to answer the questions: will genomic biomarkers correlate to specific 
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contaminants measured in the zebra mussel tissue to identify the chemical or 

chemicals that are having the greatest impact on organismal health including 

legacy and emerging contaminants?  Additionally, I wanted to test how the length 

of exposure will affect the expression of these genes?   Lastly, is gene 

expression different in free-living in situ mussels harvested from within the 

Niagara River versus caged mussels?  

Complex mixtures of contaminants measured in the Niagara River 

environmental study made it difficult to differentiate which chemicals were having 

effects on the zebra mussels.  For example, many of the organic contaminants 

measured in the first study were similar in structure and were found to statistically 

correlate with each other, which is not uncommon.  As a result, identifying which 

chemical was having the effect; it was necessary to single out a chemical and 

test it against the genes of interest under laboratory conditions.  The third chapter 

describes a second lab-based study, which investigated the relevance of the anti-

microbial agent Triclocarban (TCC).  In the environmental study TCC correlated 

significantly with the gene GST, representing 64% of the variability in the data.  

However, its effect was not clear in the environmental mixture study and there is 

only a small amount of information about this compound in the literature.  Also, 

TCC is a high volume, down the drain compound that also has an estimated 

logarithmic octanol/water partition coefficient (log Kow) of 4.9, this level of 

lipophilicity is generally high enough to bioaccumulate in the environment 

(Halden, 2014; Halden and Paull, 2005).  Most importantly, this compound was 

relatively undetected in water ways due to insufficient testing methods and is now 
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estimated to be quantifiable in 60-90% of U.S. streams (Halden, 2014).  All of this 

evidence pointed to TCC as being a candidate for further investigation.  As a 

matter of fact, the FDA recently banned TCC, in addition to 18 other anti-

microbial agents, as an ingredient in hand soaps and sanitizers due to its 

ineffectiveness and effects on human health in regard to hormones and bacterial 

resistance (FDA, 2016).   

Collectively, these two studies contribute to the mounting evidence that 

genomic biomarkers can have a substantial role in monitoring the health of 

aquatic communities impacted by historic and emerging anthropogenic 

contamination; and as a consequence they will help to advance the zebra mussel 

as a global model organism for monitoring freshwater ecosystems. 
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Abstract 
 
Toxics continue to threaten the health and function of Great Lakes Areas of 

Concern (AOCs).  Although chemical monitoring provides some data on 

impairments, biological information on potential impacts to biota are needed to 

assess the need and success of remediation.  The goal of this project was to 

integrate molecular biomarkers related to stress and detoxification with chemical 

data to better understand correlations between gene expression and exposure.  

Caged zebra mussels were used to monitor specific pollutants, levels of 

contamination, and exposure using mRNA biomarkers critical to the processes of 

detoxification including, P-gP, GST, AHR and HSP70 extracted from gill tissue. 

Seven mid-sized creeks were evaluated using these metrics which were 

measured at five and ten week time periods. Additionally, in situ native zebra 

mussels were harvested to assess conditions in the Niagara River.  This project 

was run in conjunction with NOAA's NCCOS Mussel Watch Program, which 

monitors chemical pollution in the Great Lakes.  Watershed wide, PCBs and 

PAHs were the major pollutants, though chemicals of emerging concern (CECs) 

were measured as well.  Overall, contamination was found to be greater in the 

tributaries then in the Niagara River.  The gene expression analysis resembled 

these results, and although the in situ mussels within the river were not useful 

predictors of contamination, the caged mussels were.  The contaminated 

streams at five weeks of exposure showed that all genes were down regulated 

from control.  AHR and GST significantly correlated with legacy contaminants 

PCBs and PAHs, and the CECs 4 Nonylphenol and Triclocarban over a gradient 
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of contamination, suggesting that these biomarkers have potential for 

environmental monitoring of exposure to these chemicals. 
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Zebra mussels, biomarkers, Niagara River, legacy contaminants, emerging 

contaminants, gene expression 

Introduction 
 
 Toxic substances have burdened the Great Lakes and its tributaries for 

decades.  Legacy contaminants such as mercury, polycyclic aromatic 

hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) in addition to a host of 

other organochlorine contaminants (OC) including pesticides have been 

monitored and identified as a persistent threat to aquatic environments (Kuntz 

and Warry, 1983;Ulbrich and Stahlmann, 2004).  In addition to legacy 

contaminants, new classes of pollutants referred to as contaminants of emerging 

concern (CECs) have recently emerged as a threat to the Great Lakes 

ecosystem.  CECs are a broad assortment of toxins that include wastewater 

contaminants such as pharmaceuticals, hormones, and steroids as well as 

antibacterial agents, pesticides and brominated flame-retardants among many 

others (Klecka et al., 2010). 

 A majority of the harbors and associated tributaries in the Great Lakes 

have contamination from legacy contaminants and an associated degradation of 

biota in these areas (Adrians et al., 2002).  These contaminants impact the 

health of benthic organisms, and can bioaccumulate up the food web leading to 



 17 

deformities in wildlife, and lead to human health concerns, most commonly 

through fish consumption advisories (Jacobson et al., 1984; Schwartz et al., 

1983). (Arcand-Hoy and Metcalfe, 1999; Diggins et al., 1993; Fox, 2001; Van der 

Oost et al., 2003).  Of these sites, 31 have been designated Areas of Concern 

(AOCs) by the International Joint Commission in the US-Canada Great Lakes 

Water Quality Agreement (1987).  Monitoring the status of the benthos is critical 

to the function and well-being of the AOCs and are a priority for managers 

(Grapentine, 2009). Chemical monitoring programs have been critical to listing 

and delisting AOCs for the reason that chemical contamination is the origin for 

many of the beneficial use impairments (BUIs) assigned to an AOC.  However 

chemical monitoring data only provide evidence of the presence of a chemical 

and not the effects of these chemicals on the health of the biota. In addition a 

single measure of contamination may not accurately represent exposures of 

organisms in the ecosystems due to variability over time.   

 Biomarkers are a way to integrate chemical monitoring with information as 

to the potential impacts of contaminants on an organism.  The National Academy 

of Science/National Research Council (NAS/NRC), defines the term “biomarker” 

briefly stated here, as an induced disruption in cellular or biochemical processes, 

structures, or functions, in response to a xenobiotic compound, that can be 

measured in a biological sample (NRC, 1987).  The expression of genes that are 

associated with these disrupted processes can be used as a biomarker providing 

an indication of exposure and potential effects of exposure to a variety of 

chemical stressors (Klaper and Thomas, 2004; Marinković et al., 2012; Navarro 
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et al., 2011).  Since the expression of a gene is an early indicator of an exposure 

taking place, being able to measure specific genes that are associated with key 

pathways, could be effective in determining physiological effects further 

downstream e.g. behavior, growth and reproduction (Lam, 2003; Schirmer et al., 

2010).    Genes involved in the detoxification of xenobiotic substances for 

example are currently being used to demonstrate exposure to organic 

contaminants.  For example, catalase (CAT), superoxide dismutase (SOD), 

glutathione S-transferase (GST), HSP70, aryl hydrocarbon receptor (AHR), P 

glycoprotein (P-gP), and metallothionein (MT), isoforms of the cytochrome genes 

CYP1A1 and P4501A have been shown to be indicative of organochlorine (OC) 

and polycyclic aromatic hydrocarbon (PAH) exposure (Châtel et al., 2014)  

(Mandal, 2005) (Fisher et al., 2006).  Moreover, these genes of exposure and 

organismal stress have been used across species, in vertebrates such as 

rainbow trout (Oncorhynchus mykiss), swordtail fish (Xiphophorus helleri), 

fathead minnow (Pimephales promelas) and invertebrates such as blue mussel 

(Mytilus edulis) and blood worms (Chironomous riparius) (Crago and Klaper, 

2012; Hook et al., 2006; Lacroix et al., 2014; Liang et al., 2013; Marinković et al., 

2012). 

Gene expression biomarkers are not without issues however.  For 

instance, gene expression provides information on a snapshot of time and 

researchers may miss an exposure time period or the course of experiments may 

not match the time period that shows the greatest impact on the expression of a 

particular gene.  Also, as with other monitoring studies, the target species of 
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interest can only be studied where it can be found geographically, which impacts 

the ability to draw conclusions across a range of environmental conditions.  The 

best species for monitoring have a broad distribution and therefore can be used 

over a broad range of conditions.  

In this experiment we examined the use of zebra mussels, Dreissena 

polymorpha (Pallas, 1771), as a monitoring tool and studied the reliability of gene 

expression of caged mussels in monitoring sites and their relationship to 

chemical data and time. The zebra mussel, is a native of the Ponto-Caspian 

basin and is invasive worldwide but because of its distribution has been used in 

the monitoring of chemical exposures in lakes and rivers in Europe and the 

Laurentian Great Lakes, which makes it such a favorable organism to use for 

monitoring freshwater ecosystems (Carrasco et al., 2008; Johns, 2011; 

Kimbrough et al., 2013; Riva et al., 2008).  D. polymorpha are sessile filter 

feeders, and are capable of accumulating excessive amounts of toxics (Bruner, 

K., Fisher, S. & Landrum, 1994).   They are also relatively easy to sample due to 

their abundance in many freshwater systems in North America and Europe, 

where special permitting for collection is not required. Since the accidental 

introduction of the zebra mussel into the Great Lakes in the late 1980s, rapid 

growth and fecundity have made this species a dominant portion of the biomass 

in the Great Lakes (Johnson and Carlton, 1996) (Schloesser et al., 1996). The 

NOAA Mussel Watch Program (MWP) seized the opportunity to use this invasive 

starting nearly two decades ago to monitor contamination in twenty-three core 
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sampling sites for over 150 contaminants throughout the Great Lakes basin 

(Kimbrough et al., 2013).   

 The site chosen for this study was the upper Niagara River AOC (Fig. 1).  

The Niagara River is a Great Lakes connecting channel that flows north from 

Lake Erie 36km, over the Niagara Falls, continuing 22km into Lake Ontario. 

Additionally, the river is physically separated in the middle by Grand Island with 

an American side and a Canadian side of the river.  The portion of the Niagara 

River governed by the United States has been plagued by inputs of toxic 

substances from industry, municipalities and hazardous waste sites while the 

Canadian side of the river is relatively clean and served as a control (Allan et al., 

1983; The Niagara River Secretariat, 2007).  There are approximately seven mid-

sized creeks that contribute toxics to the main stem of the Niagara River, some 

having different chemical signatures.  For this reason, we selected the Niagara 

AOC as an ideal site to serve as a microcosm to demonstrate the usefulness of 

molecular biomarkers in the Great Lakes to examine how gene expression may 

predict exposure to different chemical signatures.  We sampled zebra mussel 

tissue for a vast grouping of bioaccumulated legacy contaminants and CECs 

from each of the seven creeks and in the main trunk of the Niagara River.  

Furthermore, we monitored the expression of several gene expression 

biomarkers that indicate general stress to the health of the zebra mussel.  Gene 

expression was monitored as a biomarker for several genes associated with 

known contaminants (Table 1).   In a broad overview of a common pathway of 

detoxification, it is recognized that PAHs for instance, are ligands known to bind 
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to AHR, which induces phase II enzymes such as GST in response to oxidative 

stress.   GST’s ability to make the reduced product more water soluble will 

enable it than to be transported out of the cell, mediated by P-gP and thus 

reducing its toxicity. Lastly, if damage does occur it is widely accepted that 

HSP70 will  repair and refold damaged proteins (Châtel et al., 2012a; Hankinson, 

1995; Mandal, 2005;  Singer et al., 2005) (Table 1).  Analyzing the mRNA 

transcripts of these genes should permit us to make inferences in to the health of 

the zebra mussel in relation to chemical contaminants. 

 The goal of this study was to test how well biomarkers of stress and 

xenobiotic metabolism in the gill of the zebra mussel correlate to toxic 

compounds in the Great Lakes AOCs to provide a reference of exposure and 

potential impacts to the already well established chemical monitoring program.  

Preliminary studies using whole mussel tissue were shown to be less sensitive 

and therefore tissue from the gill of the zebra mussel was chosen for this study.  

Also, the gill, due to its location at the interface of the aqueous environment is 

therefore the first organ to react to an environmental insult (Binelli et al., 2015).  

Moreover, this tissue has been successfully used and reproduced in many 

studies to show changes in gene expression (Binelli et al., 2011; Lacroix et al., 

2014).   

Mussels were harvested from the outer breakwater at Buffalo Harbor Light, which 

is located about 1 km southeast of the water intake for Buffalo, NY.  The mussels 

were relocated to locations within the Niagara AOC that were estimated to have 

varying levels and types of contaminants near or at the mouths of seven of its 
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tributaries on the U.S. side.  Two cages of mussels were deployed and 

recovered, one at five weeks and one at ten weeks of exposure and analyzed for 

both chemical accumulation and molecular biomarkers, and also to examine how 

the length of exposure impacts gene expression and the correlation between 

biomarkers and gene expression. Finally, data were examined to analyze how 

clean the river sites in the Niagara were based on gene expression biomarkers 

versus smaller creek sites in comparison to actual chemical data.  

 

Materials and Methods 

Mussel caging and experimental design 
 

Zebra mussels D. polymorpha (Pallas, 1771) were collected in June 2014, 

by SCUBA from harvest site NR1 (Fig 1) in Lake Erie off the coast of Buffalo, 

New York and put in coolers with site water. Zebra mussels were then distributed 

into vinyl dipped steel mesh (10” x 9.75” x 9”) torpedo cages and placed in the 

tributaries of interest (Fig. 1).  Two separate cages were attached to a sampling 

station, a frame constructed of black steel pipe to keep the cages from sinking 

into the sediment and to anchor them in the current.   In each location time 0 was 

considered the initial sampling point having collected 20 mussels to provide a 

baseline, cages were than sampled at five weeks and ten weeks for chemical 

and gene expression analysis.  In situ zebra mussels were also collected directly 

from sites NR4, NR5, NR6, and NR9 by SCUBA divers in the main branch of the 

Niagara River (Fig.1). Site NR9 served as the control site due to predetermined 

low levels of contamination. Twenty zebra mussels were immediately extracted 
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from the control site for time 0.  Additionally, twenty mussels were extracted from 

each sampling location at five and ten week intervals.  For each individual 

mussel sample gills were separated from whole mussel tissue and preserved in 

RNAlater™ (Ambion, Austin, TX) per manufacturers instruction, put on dry ice 

and sent overnight to the University of Wisconsin-Milwaukee, School of 

Freshwater Sciences where samples were immediately stored in a -80 freezer.  

The map (Fig. 1) made to reference sampling locations was created using 

ArcGIS Desktop: Release 10.  Redlands, CA: Environmental Systems Research 

Institute. 

In situ mussel experiment 
 

In conjunction to the caged mussel experiment, zebra mussels living 

within the upper Niagara River, which will be referred to as “native mussels” were 

harvested from several locations, NR1, NR4, NR5, NR6 (Fig. 1) by divers from 

the U.S. Army Corp of Engineers in June of 2014.  In each of these locations 

mussels were taken for chemical analysis and gills were removed from twenty 

samples per site for gene expression analysis.    

 

Chemical Analysis 
 

Sub samples of mussels were rinsed with site water to remove debris then 

placed into one-gallon sealed plastic bags.  Samples were then put on water ice 

and shipped to TDI-Brooks International, Inc. for tissue chemical analysis (See 

Tables 4, 5, and 6 for a full list) Whole mussels were rinsed and shucked; soft 

tissue removed, weighed, homogenized and the pooled sample from each site 
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weighed and frozen in a -20 freezer.  15g of wet weight tissue were chemically 

dried with Hydromatrix®.  The mixtures are extracted with dichloromethane using 

a Dionex Accelerated Solvent Extractor (ASE200).  A portion of the mixture was 

purified using alumina/silica gel column chromatography and gel permeation 

column (GPC)/ high performance liquid chromatography (HPLC).  After HPLC, 

the eluents were reduced to 0.5 ml and analyzed for PAHs, PCBs, pesticides, 

PBBs and PBDEs by gas chromatography (McDonald et al., 2006).  An aliquot of 

the mussel homogenate was sent to AXYS Analytical Services Ltd. (B.C. 

Canada) for the analysis of CECs.  AXYS followed EPA method 1694 for 

analysis of all CECs.   

RNA extraction and quantitative RT-PCR analysis 
 

Samples were thawed on water ice, and excess RNAlater was blotted 

from the gill with a sterile Kimwipe per manufacturer’s instructions.  Ribonucleic 

acid (RNA) was extracted using 200ul of TRIzol (Thermo Scientific, Wilmington, 

DE) per sample and a Direct-zol™ RNA MiniPrep kit (Zymo Research, Irvine, 

CA) using an on-column deoxyribonuclease (DNAse) treatment.  The 

concentration of total RNA was measured using a Nanodrop spectrophotometer 

(Thermo Fisher Scientific, Wilmington, DE) and absorption checked at 

260/280nm and 260/230nm.  Samples were also evaluated for RNA quality on an 

Agilant 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).  Reverse 

transcription of 100ng of RNA was used to make complimentary DNA (cDNA) 

using the SuperScript III reverse transcriptase kit (Invitrogen, Carlsbad, CA).  
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 Gene expression was quantified using the iTaq Universal SYBR Green 

Supermix 20ul protocol (Bio-Rad, Hercules, CA) for selected genes associated 

with oxidative and general stress as well as xenobiotic metabolism that had been 

shown to be related to chemical exposures (see Table 1).  Due to the fact that 

the zebra mussel’s genome has not yet been sequenced it is not considered a 

“model” organism.  Few studies have investigated gene expression in the zebra 

mussel and therefore, limited transcripts are available.  

  Real time quantitative polymerase chain reactions were run on a 

StepOnePlus™ RT-PCR system (Applied Biosystems, Foster City, CA) using the 

following protocol: 1) cycle at 95°C for 10min, and 2) 40 cycles of 95°C for 15s 

and 60°C for 30s.  All qRT-PCR reactions were run in duplicate.   The real-time 

quantitative PCR data were first processed through the Miner program, which 

allowed us to extract meaningful cycle threshold (CT) values from the raw 

fluorescence data produced by the StepOnePlus™(Zhao and Fernald, 2005). 

The data driven normalization algorithm (NORMA-gene) developed by 

Heckmann et al., (2011) was used to determine differences in gene expression 

among sites.  This program estimates a normalization factor by averaging 

replicates of all target genes.  It has been shown that the normalization factor 

improves by increasing the number of genes used, however a minimum of five 

genes are needed to reach optimization and that is the number of target genes 

used in this study.  Gene expression for mussels from sampling sites was 

normalized to the control and then log2 transformed to determine the relative fold 

expression levels.   



 26 

 

Statistical Analysis 
 
 The chemical data set was log2 transformed in order for it to be in the 

same scale as the gene expression data to make functional inferences. A 

bivariate Pearson Correlation was used to find correlations among the variables 

in the chemical data set. Although collinearity of our chemical variables was a 

common occurrence in the dataset, due to the amount of chemical data a 

Stepwise linear regression was used initially to parse out individual chemicals of 

interest. Furthermore, single linear regressions were used in validating the 

findings of the Stepwise regressions and relationships between the chemical 

data and gene expression data. All these analyses were performed in SPSS™ 

(24).   

 The Shapiro-Wilk test was used to test for normality and variance was 

tested using Sigma plot™ (12.5).  Significant differences (p < 0.05) between the 

five and ten-week time periods and control site versus sampling stations were 

measured using a Students T-test.  Nonparametric data were analyzed using the 

Mann-Whitney rank sum test and a Kruskal Wallace One Way ANOVA with a 

Dunn’s method post hoc test was used to assess differences among the Niagara 

River Tributaries.    
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Results 
 

Chemical Analysis 
 
 Analyses of the chemical data show that PCBs and PAHs were the main 

contaminants in the upper Niagara River and its tributaries.  Additionally, these 

contaminants were found to be at a lower concentration in the main branch of the 

river in comparison to the creeks feeding into it.  Also, the CECs, 4 Nonylphenol 

(4NP), a surfactant used in detergents, pesticides and paints, and Triclocarban 

(TCC), a commonly used ant-microbial agent, were found to be chemicals of 

interest due to their concentrations correlating with genes of interest and were 

generally found at higher levels in the creeks as well (Table 2) 

Furthermore, Pearson correlation analysis showed that the individual PCB 

congeners and the PAHs correlated with each other.  Therefore, all 83 PCB 

congeners and 81 PAHs were summed (individual PCBs and PAHs summed can 

be found in the supplementary data) and a Pearson correlation was computed to 

assess the relationship between the summed PCBs and summed PAHs.  In fact, 

a significant positive relationship did exist between the two variables, r =0.702, 

n=12, p < 0.05.  The scatterplot (Fig 2) encapsulates the results.   

Stepwise Regression Analysis 
 
To assess relationships between the contaminants measured in the tributaries, 

and the mRNA biomarkers of interest, stepwise-multiple regression analyses 

were performed.  The results from the model infer that there is a significant 

association between the chemicals methylanthracene, heptachlor-epoxide, PCB 

101 and carbazole and GST, explaining 96% of the variance (p < 0.05, df = 11, 
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R2 = .961) Additionally, the gene HSP70 was correlated with PCB 8 explaining 

approximately 42 % of the variance (p < 0.05, df = 11, R2 = .426).  Last, the gene 

AHR was correlated with PCBs congeners 178, 92, and 44, which explains 

approximately 92 % of the variance (p < 0.05, df = 11, R2 = .924).   

Gene expression of caged mussels as a predictor of chemical contamination  
 

As many of the chemicals correlated with each other, individual linear 

regressions were used to further examine if associations did exist between genes 

and contaminants. Due to collinearity of PCBs, these chemicals were summed 

and analyzed with each gene as were PAHs, additionally a few CECs were 

shown to correlate with the gene expression, although these chemicals 

correlated to legacy contaminants as well.  

The summed PCB congeners correlated significantly with GST: R2=0.411, p < 

0.05, df=11, F=6.994, and AHR: R2=0.456, p < 0.05, df=11, F=8.401 (Fig.3). The 

genes P-gP and HSP70 were not significant p > 0.05. Summed PAHs correlated 

significantly with GST: R2=0.717, p < 0.05, df=11, F=5.397), and AHR: R2=0.358, 

p < 0.05, df=11, F=5.570) (Fig. 3).  The genes P-gP and HSP70 were not found 

to correlate significantly p > 0.05.  4 Nonylphenol (4NP) and Triclocarban (TCC) 

classified, as CECs were the only two CECs that correlated significantly with 

genes monitored here.  4NP associated significantly with GST: R2=0.394, p < 

0.05, df=11, F=6.510, and HSP70: R2=0.450, p<. 05, df=11, F=8.190) (Fig 4). 

The genes P-gP and AHR were not significant p > 0.05. Lastly, TCC showed a 

significant relationship with GST: R2= 0.65, p < 0.05, df=11, F=17.602.  P-gP, 

AHR, and HSP70 were not significant p > 0.05. Linear regressions calculated 
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with the data from the ten week data exhibited no significant correlations (p > 

0.05)   

Relationship of gene expression to time of exposure 
 

All four genes, P-gP, GST, AHR, and HSP70 showed significant down 

regulation when measured at the 5 week and 10 week time point, in comparison 

to the control site p < 0.05, except HSP70 at Smokes Creek, which was not 

significantly downregulated in comparison to the control p > 0.05 (Fig. 5).   

 Additionally, significant differences occurred between the measurements 

of expression at the five-week time point in relation to the expression measured 

at the ten week time point in the creeks.  Tonawanda Creek was the only 

sampling site where all of the genes were down regulated in response to the time 

lapse (Mann Whitney Rank Sum: GST: U = 0, df 39, p < 0.05; P-gP: U = 0, df 39, 

p < 0.05; AHR: U = 38, df 39, p < 0.05; HSP70: U = 4 df 39, p < 0.05) (Fig. 5).   In 

one case, the HSP70 was expressed approximately 2.5 fold less than the five 

week time point.    

 Next, at Two Mile Creek the genes GST, P-gP and HSP70 were all significantly 

expressed less (Mann Whitney Rank Sum: GST: U = 33, df, 39, p < 0.05; P-gP: 

U = 4, df 39, p < 0.05; HSP70: U = 8, df 38, p < 0.05)(Fig. 5).  In reference to the 

earlier time point, these genes at Two Mile Creek have the largest disparity in 

expression, the largest being P-gP, with an almost four fold decrease.   At 

Scajaquada Creek, the HSP70 was down regulated while; the AHR was 

upregulated (Mann Whitney Rank Sum: HSP70: U = 0, df 39, p < 0.05; AHR: U = 

18, df =39, p < 0.05) (Fig. 5). At Ellicott Creek, HSP70 was significantly 
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decreased while GST significantly increased upregulated (Mann Whitney Rank 

Sum: HSP70: U = 4, df 39, p < 0.05; GST: U = 57, df 39, p < 0.05) (Fig. 5). Next, 

at Cayuga Creek, we saw significant down regulation of GST (Mann Whitney 

Rank Sum: GST: U = 52, df 39, p < 0.05) (Fig. 5).  Lastly, at Smokes Creek, no 

significant changes in gene expression were documented (p < 0.05, Fig. 5).   

 Gene expression between tributaries  

 To see if there was a differentiation amongst just the tributaries in relation 

to   gene expression, we performed a Kruskal Wallace One Way ANOVA with a 

Dunn’s post hoc test.  We found that in three out of the four genes of interest, P-

gP, GST, and AHR showed a significant trend.  For instance, the expression of 

these genes was significantly less expressed in Scajacquada Creek in reference 

to the others.  P-gP expression was significantly lower (Kruskal Wallace One 

Way ANOVA: X2 = 54.22, df 6, p < 0.05) and a Dunn’s post hoc showing that 

Creeks Gill, Tonawanda, Smokes, Two Mile and Ellicott were all significantly 

different in expression (p < 0.05 (Fig. 6).  Also, GST expression was lower as 

well, (Kruskal Wallace One Way ANOVA: X2 = 70.037, df 6, p < 0.05) and a 

Dunn’s post hoc showing that Creeks Gill, Cayuga, Tonawanda, Smokes, and 

Two Mile were all significantly different in expression (p < 0.05) (Fig. 7).  Lastly, 

AHR continued the trend (Kruskal Wallace One Way ANOVA: X2 = 32.391, df 6, p 

< 0.05) and a Dunn’s post hoc revealed that Creeks Gill, Cayuga, Tonawanda, 

Smokes, and Ellicott were all significantly different in expression from 

Scajacquada (p< 0.05) (Fig. 8).   

In situ monitoring of gene expression and its relation to chemical contamination 
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Results from the in situ experiment to evaluate gene expression of the 

native zebra mussels living in the Niagara River sites revealed a pattern at NR6, 

NR5 and NR1.  For example, GST, AHR, and P-gP were all significantly different 

p < 0.05, while the HSP70, was not p > 0.05 (Fig.1).  Additionally, NR4 was 

considered to be an outlier, due to the fact that all four of the genes measured at 

this site were not significantly different from the control p > 0.05.  Furthermore, 

any correlations of gene expression in regards to the river sites relative to the 

chemical data using linear regression calculations were not found to be 

statistically significant p > 0.05.   

Discussion 
 

Chemical contamination varied significantly across watersheds and gene 

expression correlated with the level of contamination.  Not surprising, due to their 

persistence and historic abundant usage, the legacy contaminants, PCBs and 

PAHs were the most prevalent chemicals found in the Niagara AOC (Table 2).  

Contamination in the creeks was greater than sites sampled in the Niagara River.  

For example, in the Niagara River sites, the sum of PCBs measured was 

between 133.09 ng/g and 316.28 ng/g (Table 2).  In relation to sum PCBs in the 

creeks which were measured between 451.15 ng/g and 4428.18 ng/g (Table 2).  

Additionally, sum PAHs in the Niagara River were measured to be 864.438 ng/g 

and 5820 ng/g (Table 2).  Comparatively, the creeks had samples ranging from 

1808 ng/g to 48407.91 ng/g (Table 2).   

The expression of genes GST and AHR correlated significantly with PCBs 

and PAHs (Fig. 3).  It is not unusual that these two genes would respond to this 
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type of contamination, for the weight of evidence exists to confirm that AHR 

activity is linked to OC contamination as well as GST to concentrations of PAHs 

in the environment (Lam, 2009; Mandal, 2005).  In fact, the strongest association 

we recorded was GST to the sum PAHs that explained 75 percent of the 

variation in the data. 

CECs were sampled at concentrations much less than the legacy 

contaminants (Table 2) and our analysis showed that 4NP and TCC significantly 

correlated to the expression of our genes of interest as well.   For instance, 4NP 

showed a significant correlation to the genes HSP70 and GST.  In this case, the 

evidence is analogous to other 4NP exposures to invertebrates, confirming that 

there is an association between concentrations of 4NP and expression of genes 

HSP70 and GST (Lee and Choi, 2006).  Additionally, the correlation of TCC to 

GST expression was significant explaining approximately sixty-five percent of the 

variation.  However, data regarding gene expression in relation to TCC is 

severely lacking, and these results warrant verification in a lab study to confirm 

this significant correlation. 

In addition to the significant correlations between our genes of interest and 

chemicals measured, a pattern emerged revealing that almost all of the genes of 

interest measured in caged mussels from the creeks were down regulated in 

comparison to control (Fig. 5).  Genes can be down regulated for several 

reasons, though a common response to environmental provocation is an impulse 

pattern of regulation. For instance, levels of mRNA transcripts tend to spike, 

sustain levels for a period of time, and then transition to a state comparable to 
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original levels (Yosef and Regev, 2011). For this study, it is possible that we 

missed the critical period for when the genes were initially expressed and that the 

synthesized proteins had already been processed to help the organism through 

the exposure, our study having sampled near or at the end of the pulse.     

Time was also a significant factor when monitoring gene expression 

biomarkers.  For instance, at ten weeks there were no significant correlations 

among the genes investigated and chemical contamination that correlated with 

the genes at five weeks.  One plausible explanation for these effects is that the 

caged mussels could be shutting down protein production and metabolism due to 

the cumulative impacts of contamination such as through an unfolded protein 

response.  If this were the case, it would make sense that the gene HSP70 was 

the only gene not correlated with the other genes of interest (Table 3), for it 

would be in the beginning stages of refolding damaged proteins, while translation 

of other proteins would be shutting down (Haynes et al., 2007).   

Additionally, there were some significant gene expression changes 

between the five and ten week time points (Fig. 5).  However, no apparent 

pattern could be inferred.  For instance, a trend could be seen at Tonawanda 

Creek, evidence pointing to significant down regulation in all the genes 

measured, though this did relate to the chemical data.  Although some of the 

genes were significantly changing at the later time points, it is possible that gene 

expression could be too sensitive to be a predictor of chemical contaminants in a 

long term chronic exposure. This evidence as a whole, suggests that monitoring 

gene expression at the five week time period is more preferable than the ten 
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week time period to be a predictor of the effects of contaminate exposure on an 

organisms health.   

Furthermore, one of the goals of this study was to attempt to rank the 

tributaries based on the gene expression data.  When comparing just the 

tributaries, we found that there was a significant trend, showing that, strictly 

based on the gene expression data; the site sampled in Scajacquada Creek was 

the most affected.  For instance, in three of the four genes of interest, AHR, P-gP 

and AHR, we found that Scajacquada Creek values of these genes were 

significantly down regulated in relation to five out of the six other sites sampled 

(Fig. 6,7,8).  It would be difficult to show that this was strictly because of levels of 

chemical contamination, for gene expression can be effected by environmental 

factors such as water temperature, depth and general water quality standards 

such as the amount of dissolved oxygen.  To improve the strength of sampling 

data in future studies, some of these physical parameters should be measured to 

help account for trends in the gene expression data set. 

The results from the in situ study demonstrated that sampling already 

present zebra mussels do not provide an effective way to predict chemical 

contamination using these genes.  This study showed that no significant 

relationships existed between these samples of native mussels and chemical 

contamination.  Additionally, although chemical contamination in the Niagara 

River was generally low and in this respect, the sites were comparable, the gene 

expression from the populations of native mussels in relation to gene expression 

showed the sites to be dissimilar.  Previous studies have demonstrated that 
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cellular stress was undetected in the chronically exposed “native” mussels in 

comparison to caged mussels in the prescience of PAHs (Lacroix et al., 2015).  

Conclusion 

This study found a significant relationship between specific genes of 

detoxification and chemical contaminants measured in the Niagara River AOC.   

The results support GST and AHR as short term biomarkers for exposure to 

legacy contaminants, specifically PCBs and PAHs.  This study also shows that 

the CECs, TCC and 4NP, although difficult to separate out, may also be causing 

impacts on aquatic invertebrates as they also correlate with GST and HSP70 

gene, which are associated with oxidative stress and protein damage.  This work 

merits additional studies in a laboratory environment to investigate effects of 

individual chemicals and optimal time points to monitor these effects in zebra 

mussels.  Overall, the zebra mussel is known to be a robust instrument for 

chemical monitoring in North America and Europe.  However, this utility could be 

significantly enhanced to a dual role using molecular biomarkers of chemical 

exposure.  
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Figure 1.  In situ sites and caged mussel sampling locations.  
Letters in Text boxes represent sampling sites and their 
corresponding gene expression patterns from the control site p < 
0.05. 
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Figure 2.  Linear regression representing a significant correlation between 
sum PAH and Sum PCB concentrations (n=12) p < 0.05, R2=0.4693 
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Figure 3.  Correlations of Legacy Contaminants to gene expression for 
caged mussels from the 12 sites of study with chemical data.  Gene 
expression is log2 transformed, and fold change relative to control. The 
chemical data is likewise log2 transformed to calculate linear regressions. 
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Figure 4. Correlations of 4NP and TCC to gene expression for caged 
mussels from 12 study sites.  Gene expression is log2 transformed, and 
fold change relative to control. The chemical data is likewise log2 
transformed to calculate linear regressions. 
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Figure 5.  Levels of GST, P-gP, AHR and HSP70 in the gill of the zebra 
mussels collected at five and ten weeks relative to control.  Data shown in 
figure are from one sampling site per creek to represent pattern of 
significant down regulation in creeks to the control site. (†): Creeks 
significantly different from control at five and ten week intervals (p < 0.05).  
(*): Significantly different changes in gene expression from five week to 
ten-week values (p < 0.05) 
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Figure 6. P-gP gene expression differences in Niagara Tributaries.  (*) 
Represent significant differences in gene expression (p < 0.05) in relation 
to Scajacquada Creek.  
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Figure 7. GST gene expression differences in Niagara Tributaries.  (*) 
Represent significant differences in gene expression (p < 0.05) in relation 
to Scajacquada Creek.  
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Figure 8. AHR gene expression differences in Niagara Tributaries.  (*) 
Represent significant differences in gene expression (p < 0.05) in relation 
to Scajacquada Creek.  
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Table 1.  Primer sequences (5’-3’) used in qRTPCR 
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Table 2.  Sites analyzed for Chemical Analysis. Sum PAH and PCB 

concentrations (ng/g dry wt.) the level of quantification reported at .1ng/g 

based on 10g of mussel tissue.   4NP and TCC concentrations (ng/g wet 

wt.) level of quantification reported at 1.2 ng/g based on 2.5g of mussel 

tissue.   

River Sites  Σ 83 PCBs Σ 81PAHs 4NP TCC 

NR9 133.09 864.438 36.9 <LOQ 
NR6 316.28 1919.801 NS NS 
NR5 202.47 1414.69 NS NS 
NR4 282.8 5820.13 NS NS 
NR1 261.33 1431.68 30.1 <LOQ 

Creek Sites 
    Gill Creek 

    GL01 451.15 1808.91 18 <LOQ 
GL03 3310.06 6791.45 33.2 2.09 
Cayauga Creek 

    CY01 1410.42 10921.7 39.7 2.97 
Tonawanda Creek 

    TW00 921.95 8569.68 45.9 3.82 
TW01 1025.98 28168.756 76.7 6.93 
Ellicott Creek 

    EL01 691.21 45434.36 293 13.1 

Two Mile Creek     
TM00 965.73 9072.61 38.8 3.36 

TM01 4428.18 45914.683 207 26.1 

Scajacquada Creek 
    SC00 3632.48 39342.7 163 30.1 

SC01 2559.97 75063.8 410 24.5 
Smokes Creek 

    SM01 1819.96 48407.91 343 46.2 
(NS)=No Sample (River sites chemical analysis of 4NP and TCC limited to NR9 

and NR1) 

<LOQ: below Limit of Quantification 
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Table 3.  Significant correlations measured using a Pearson Correlation 

across genes of interest. **.  Correlation is significant at the 0.01 level (2-

tailed) 
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Table 4. Individual PCB congeners summed for analysis 

 

 

 

 

 

 

 

 

 

 

 

 



 55 

Table 5. Individual PAHs summed for analysis 
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Table 6. Pharmaceuticals and Personal Care Products analyzed 

PPCPs  
 10-hydroxy-amitriptyline Furosemide 

13C12-Triclosan Gemfibrozil 

13C3-Ibuprofen Glipizide 

13C6-Triclocarban Glyburide 

13C-D3-Naproxen Hydrochlorothiazide 

2-Hydroxy-ibuprofen Hydrocodone 

Albuterol Hydrocortisone 

Alprazolam Ibuprofen 

Amitriptyline Meprobamate 

Amlodipine Metformin 

Amphetamine Methylprednisolone 

Atenolol Metoprolol 

Atorvastatin Naproxen 

Benzoylecgonine Norfluoxetine 

Benztropine Norverapamil 

Betamethasone Oxycodone 

Bisphenol A Paroxetine 

Cimetidine Prednisolone 

Clonidine Prednisone 

Cocaine Promethazine 

Codeine Propoxyphene 

Cotinine Propranolol 

D11-Glipizide Ranitidine 

D3-Glyburide Sertraline 

D5-Warfarin Simvastatin 

D6-Bisphenol A Theophylline 

D6-Gemfibrozil Trenbolone 

DEET Trenbolone acetate 

Desmethyldiltiazem Triamterene 

Diazepam Triclocarban 

Dioxin Triclosan 

Enalapril Valsartan 

Fluocinonide Verapamil 

Fluticasone propionate Warfarin 
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CHAPTER 3: Triclocarban and Gene Expression Biomarkers of Exposure in 

Dreissena polymorpha 

Abstract 
 
 Complex mixtures of contaminants in aquatic environments can cause 

varying degrees of organismal stress and effects to health.  One method used to 

measure these effects are by using gene expression biomarkers.  Evidence from 

a previous field study in the Niagara River Area of Concern (AOC) revealed that 

GST, AHR, P-gP and HSP70 were significantly down regulated in Niagara’s 

tributaries, and correlated with levels of contamination by PCBs, PAHs and 

emerging contaminants such as Triclocarban.    However, as many of the 

chemicals were co-located, it was difficult in the field to attribute gene expression 

to any one individual chemical.  Nevertheless, a significant relationship between 

GST and the antibacterial agent Triclocarban (TCC; 3, 4, 4’-trichlorocarbanilide) 

was found. Based on this finding, we attempted to validate this relationship by 

exposing zebra mussels to environmentally relevant levels of TCC. Messenger 

RNA was isolated from the gill of the zebra mussel and analyzed using 

quantitative real time reverse transcriptase polymerase chain reaction.  Results 

demonstrate that after seven days, the expression of the genes GST, AHR and 

P-gP, were significantly upregulated in a dose dependent manner at 

concentrations of TCC at 50 ng/L, 100 ng/L, though at 200 ng/L, while still 

upregulated from control expression was reduced in relation to the other 

treatments.  Furthermore, Additional investigations of the temporal changes in 

the expression of GST, P-gP, and AHR linked to downstream physiological 
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effects are warranted to increase the efficacy of the use of these select genetic 

biomarkers. 

Introduction  
 

Mixtures of anthropogenic pollutants in aquatic ecosystems create difficult 

scenarios for timely and cost-effective remediation, restoration and successive 

monitoring efforts.  Toxic substances such as polycyclic aromatic hydrocarbons 

(PAHs) and polychlorinated biphenyls (PCBs) are persistent pollutants and are 

only two of the numerous historic persistent priority contaminants found globally 

in surface waters and sediments.  Although many of these persistent 

contaminants have been banned for several decades, they continue to be 

measured at levels of concern in aquatic ecosystems (Bence et al., 2008; Jones 

and De Voogt, 1998).   Novel techniques that allow the chemical quantification of 

emerging persistent contaminants are increasingly being developed, enabling us 

to conclude that long term, low level exposures of these chemicals are having 

effects on organisms.  Pharmaceuticals and personal care products (PPCPs) are 

a new subset of compounds which exhibit the chemical structure associated with 

historic persistent pollutants.  Examples include over the counter prescriptions, 

hormones, antibiotics and antimicrobials (Blair et al., 2013; Klecka et al., 2010). 

The abundant use of well-known anti-microbial agents such as triclosan 

(TCS), which is a common ingredient in several consumer products such as 

detergents, bar soaps, deodorants and similar household cleaning products 

(Perencevich et al., 2001), has been found to have lethal effects on aquatic biota 
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like algae and invertebrates, and has reproductive effects on fish (Dann and 

Hontela, 2011).  

 Triclocarban (TCC; 3, 4, 4’-trichlorocarbanilide), found in similar products, 

is closely related to TCS and only differs slightly in chemical structure.  Although 

the risks associated with TCS are better known, there is a need for assessments 

of lesser-known anti-microbial agents such as TCC. Triclocarban was first 

developed over 60 years ago and more recently has been found in aquatic 

environments in concentrations thought to potentially have effects on aquatic 

species, based on estimates modeled with TCS(Chalew and Halden, 2009; 

Halden, 2014).  Still lab based studies of TCC have shown depleted levels of 

aggression in fat head minnows (Pimephales promelas) and  

This recent detection is, in part, due to advances in analytical techniques 

using liquid chromatography electrospray ionization mass spectrometry 

(LC/ESI/MS) that is now able to measure concentrations of TCC as low as 3.0 

ng/L (Halden and Paull, 2004; Sapkota et al., 2007).  TCC has been recorded in 

surface waters in the United States as high as 6.75 μg/L, although mean and 

median ranges are more readily documented between 0.1 and 0.2 μg/L (Halden 

and Paull, 2005, 2004).   Adsorption of TCC to sediments has been measured at 

748 ng/g to 2633 ng/g in China’s Shijing River and in sediment cores from 

Jamaica bay, New York, USA at a concentration of 24 mg/kg at depths of 2-3 

centimeters and a concentration of 1mg/kg in surface sediment (Miller et al., 

2008; Zhao et al., 2010)  
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TCC has an estimated logarithmic octanol/water partition coefficient (log 

Kow) of 4.9 and its level of lipophilicity is generally high enough to be considered 

as being able to bioaccumulate and persist in the environment (Halden, 2014; 

Halden and Paull, 2005).  Bioaccumulation of TCC in benthic organisms has 

been confirmed in multiple studies.  For example, in a caged snail study, levels of 

TCC that accumulated in tissue were measured at 299 ng/g (wet weight) from a 

stream in North Texas, USA.    Additionally, in zebra mussel, tissue analyzed in a 

caged mussel study from a tributary of the Niagara River, TCC at was quantified 

at a concentration of 48.6 ng/g (wet weight) (Coogan and La Point, 2008; 

Neureuther et al.).  This data illustrates that TCC is able to adsorb to sediment 

and bioaccumulate in the tissue of aquatic organisms in the environment, making 

these concentrations relevant to use for this laboratory investigation. 

 The presence of chemical contamination in the tissues of aquatic 

organisms is a more relevant indicator of the potential exposure and impacts of 

environmental contamination and these impacts are useful gauges of 

contamination and progress of remediation efforts.  D. polymorpha or zebra 

mussel (Pallas, 1771), for example, has been used in the United States and 

Europe as a biological tool for monitoring the contamination of aquatic 

ecosystems due to specific favorable qualities such as: its geographic range, 

filtration rate, ability to withstand accumulated toxicants and sessile nature 

(Contardo-Jara et al., 2009; Johns, 2011; Kimbrough et al., 2008; Riva et al., 

2008).  However, chemical exposure and accumulation alone are not enough to 
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determine the possible impacts, especially when not all chemical contaminants 

act the same.   

The National Academy of Science/National Research Council (NAS/NRC), 

defines the term “biomarker” as a disruption in cellular biochemical processes, 

structures, or functions, induced in response to a xenobiotic compound, that can 

be measured in a biological sample (NRC, 1987).  Examples of biomarkers used 

for monitoring aquatic environmental quality are prolific.  In zebra mussels 

specifically, when exposed to PCBs, PAHs and metals, biomarkers measuring, 

proteins, DNA adducts as well as oxidative stress have been used to show the 

deleterious effects of exposure to zebra mussels (Châtel et al., 2012; Faria et al., 

2009; Michel and Vincent-Hubert, 2012).   

Gene expression biomarkers of organism health and chemical exposure 

have several advantages over traditional biomarkers.  For instance, using small 

quantities of sample, an investigator can analyze several different molecular 

endpoints at once from either an individual or a specific tissue and determine 

molecular pathways that are perturbed in response to a chemical substance 

(Thomas and Klaper, 2004).  The sensitivity of molecular biomarkers enables the 

detection of a chemical perturbation that is causing changes in an organism at an 

early stage.  As a result, these tools may be used as an early warning system to 

detect exposure before adverse impacts occur and in response, risk 

management could take place, mitigating potential population level impacts to 

sensitive species (Van der Oost et al., 2003).  Lastly, genetic biomarkers have 

been proven to be indicative of specific chemical-induced organismal stress as 
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they have been linked to different types contamination (Châtel et al., 2014; Crago 

and Klaper, 2012; Navarro et al., 2011).  Collectively, genetic biomarkers can be 

invaluable for the early detection and validation of specific chemical exposure 

and subsequent adverse outcomes. 

For this investigation zebra mussels were evaluated to determine their 

response to the emerging contaminant TCC to compare to the results of our 

previous study from the Niagara River AOC, where we found TCC correlate with 

gene expression.  Many AOCs contain a complex mixture of historic and newly 

recognized, persistent contaminants making it difficult to tease out which toxics 

are having the greatest impacts on organisms living within them.  TCC correlated 

with many other contaminants and therefore, it was difficult to determine if it was 

having an impact.   

In the present study, effects of environmental levels of TCC on zebra 

mussels were explored in the laboratory using biomarkers of general stress: 

glutathione S-transferase (GST), aryl hydrocarbon receptor (AHR), p-

glycoprotein (P-gP) and heat shock protein 70.  GST is a phase 2 metabolizing 

enzyme, which reduces glutathione (GSH), increasing its solubility and in turns 

its excretion rate.  This is in addition to its role in the redox cycle where it lessens 

the impacts of reactive oxygen species (ROS)(Binelli et al., 2009).   The aryl 

hydrocarbon receptor (AHR) is part of one of the most commonly studied 

metabolic pathways of detoxification.  Historically referred to as the dioxin 

pathway, the study of the expression of AHR has long been linked to the 

detoxification of anthropogenically sourced chemical contamination and was 
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recently shown to be induced in zebra mussel gills when exposed to PAHs 

(Beischlag et al., 2008; Châtel et al., 2012).  Just as important is P-gP which is 

induced specifically to efflux xenobiotics out of the cell in a process which is ATP 

dependent (Faria et al., 2011).  Lastly, HSP70 is induced to refold damaged 

proteins and as a chaperone in relation to stress defense (Contardo-Jara and 

Wiegand, 2008).   

Generally, TCC is greatly underrepresented in terms of studies assessing 

effects to aquatic organismal health in relation to legacy contaminants as well as 

a closely related chemical TCS.  In addition, this is the only investigation of TCC 

exposure to Dreissena polymorpha, which makes this study highly relevant due 

to D. polymorph’s status as a tool for environmental monitoring. 

Materials and Methods 

Zebra Mussel Collection, Maintenance and Care 
 
 Approximately five hundred zebra mussels were harvested from a depth of 

2-3 meters, from the outer harbor of Milwaukee, WI on Lake Michigan, in the first 

week of May 2016.  The mussels were placed in coolers with site water and 

taken directly to the laboratory’s environmental chamber at the UWM School of 

Freshwater Sciences.  The mussels were lightly cleaned of silt and debris and 

introduced into a thirty-gallon aquarium filled with 25 gallons of dechlorinated tap 

water.  The aquaria were maintained with a photoperiod of 10 hours light and 14 

hours dark, constant temperature (18±1 ˚C) and oxygenation (>90% saturation).  

Mussels were fed 800 ml of freshwater algae, Selenastrum capricornutum 

(Printz, 1914), with a density of 4.9 *106 per ml daily.  Water was changed daily 
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for three weeks to depurate mussels of any xenobiotic contamination present in 

the harbor, which had accumulated in the mussel tissue as per (Binelli et al., 

2009).  Next, specimens with a similar shell length (20 ± 2 mm) were selected 

and acclimatized in 8 L glass tanks filled with 5 L of dechlorinated water.  These 

animals were kept in the same conditions described above for a week and only 

mussels with reattached byssi were used in the experiment.   

Experimental Design 

Triclocarban (TCC; 3, 4, 4’-trichlorocarbanilide; 99% purity; CAS# 101-20-

2) and DMSO (dimethylsulfoxide) were purchased from Sigma Aldrich, St. Louis 

MO.  TCCs have a low solubility in water, and therefore three stock solutions 

were prepared in 100% DMSO and kept in the dark at 4 ˚C.  Tanks were dosed 

for each treatment to yield a final concentration of 200 ng/L, 100 ng/L and 50 

ng/L of.  Three replicate tanks of 20 individuals were created for each treatment, 

this exposure was estimated to cause target tissue concentrations of 50 ng/g ww, 

100 ng/g ww and 250 ng/g ww after seven days, based on an exposure of TCS 

to zebra mussels by Riva et. al.,(2012).  The control tanks were exposed to 100 

μL of DMSO.  These treatments were chosen based on data of environmental 

concentrations found in mussel tissue from the Niagara River AOC (Neureuther 

et al., 2016, in review) and similar concentrations representative of TCC in the 

aquatic environment.   

Water for the exposure experiments was changed daily for seven days, 

and TCC was reintroduced with each water change.  Mussels were fed daily, 100 

mL of freshwater algae, one hour before the water change to ensure exposure 
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took place through the water only.  After seven days, 10 zebra mussels were 

removed from each tank and the gills were removed and flash frozen with liquid 

nitrogen and stored at -80 ˚C until gene expression analysis could take place.  

Tissue from the remaining 10 mussels in each tank (~1.5 g per replicate) was 

collected and stored at -20 ˚C and then shipped next day air to AXYS Group (BC, 

Canada) for TCC bioaccumulation analysis.  AXYS Group followed EPA method 

1694, which uses liquid chromatography – tandem mass spectrometry (LC/MS-

MS) for analysis of TCC in zebra mussel tissues.  The data set was from AXYS 

showed that the concentration of TCC in mussel tissue from 30 individuals in the 

200 ng/L treatment was 823.33 ± 108 ng/g ww (Fig. 5), 100 ng/L treatment 

440.66 ± 36 ng/g ww (Fig. 2), and 50 ng/L treatment 215 ± 42 ng/g ww (Fig. 5).   

Two of the three DMSO controls had trace amounts of TCC above the limit of 

quantification (LOQ).  These concentrations were shown to be (n=30) 1.95 ± 0.12 

ng/g ww, the LOQ for TCC being 1.82 ng/g ww.  Because, these mussels were 

harvested from the environment and depurated for three weeks to remove 

contamination, it is possible that these trace amounts of TCC may be artifacts of 

environmental exposure.   

RNA extraction and quantitative RT-PCR analysis 
 

Frozen samples were thawed on ice and total ribonucleic acid (RNA) was 

extracted using 200 μL of TRIzol (Thermo Scientific, Wilmington, DE) per sample 

and a Direct-zol™ RNA MiniPrep kit (Zymo Research, Irvine, CA) using an on-

column deoxyribonuclease (DNAse) treatment per manufacturer’s instructions.  

The concentration of total RNA was quantified using a Nanodrop 1000 
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spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) and absorption 

ratios were checked for potential contamination.  Samples were also evaluated 

for RNA quality on an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA).  Reverse transcription of 100 ng of RNA was used to make 

complementary DNA (cDNA) using the SuperScript III reverse transcriptase kit 

(Invitrogen, Carlsbad, CA).  

 Gene expression was measured using the iTaq Universal SYBR Green 

Supermix 20 μL protocol (Bio-Rad, Hercules, CA) for selected genes related to 

general stress as well as genes that have been previously associated with 

chemical exposures in environmental studies of zebra mussel gills.  Specifically, 

evidence that was citedin our previous study from the Niagara River AOC 

(Neureuther et. al. in review) where GST, AHR, P-gP and HSP70 (table 1) were 

found to be significantly down regulated in relation to control in the environment 

and GST was found to correlate significantly with the chemical TCC.   

  Real time quantitative polymerase chain (qRT-PCR) reactions were run on 

a StepOnePlus™ RT-PCR platform (Applied Biosystems, Foster City, CA) using 

the following protocol: 1) cycle at 95°C for 10min and 2) 40 cycles of 95°C for 15s 

and 60°C for 30s.  All qRT-PCR reactions were run in duplicate.  The real time 

quantitative PCR data results were analyzed using the ΔCt method.   

Statistics 
 
 The Kolmogorov-Smirnov and Levene’s test were used to check data for 

normality and homogeneity of variance; also outliers were identified and 

removed, defined as any data outside 1.5 times the interquartile range.   A two-
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way nested ANOVA was applied to test for treatment and tank effects.  There 

was not a significant tank effect found in any of the treatments (p > 0.05).  In 

addition to the two way nested ANOVA, a Tukey’s post-hoc test was used to 

identify significant differences between groups (p < 0.05).  All statistical analyses 

were performed using SPSS v24.0. Armonk, NY: IBM Corp.   

Results 
 
 The exposure of TCC lasted seven days and mussel behavior was normal 

across treatments based on visual evidence of mussels siphoning.  During the 

experiment, no mussel mortality was recorded. 

Chemical Analysis in tissue and bioaccumulation of TCC 
 
  The concentrations found in the mussel tissue in this experiment were 

higher than the values measured in the zebra mussel tissue from our previous 

field experiment in the Niagara River AOC. However, the concentrations that 

were achieved across treatments are similar to measurements of TCC found in 

snail tissue from a stream in Texas (Coogan and La Point, 2008), showing that 

this study’s  results are still environmentally relevant. 

Gene Expression Biomarkers affected by TCC Exposure 

 
 Observed changes in mRNA expression were found to be significantly 

different from controls for the genes GST, AHR and P-gP throughout all levels of 

treatment, although not for the gene HSP70 (p > 0.05) (Fig. 9,10,11,12). Two-

way nested ANOVA showed GST expression was significantly up regulated from 

control in all treatments the average and standard error being: 50 ng/L = 0.96 ± 
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0.15, 100 ng/L = 2.17 ± 0.37, 200 ng/L = 2.07 ± 0.12 (p < 0.05, df=3, F=12.456) 

(Fig. 1).  Furthermore, treatments were significantly different from each other 

from the 50 ng/L to 100 ng/L concentration treatments (p < 0.05), but not 

between 100 ng/L and 200 ng/L concentration treatments (p > 0.05). P-gP 

expression was also significantly up-regulated across 50 ng/L, 100 ng/L and 200 

ng/L treatments when compared to the controls under two-way nested ANOVA 

analysis the average and standard error being: 50 ng/L = 1.53 ± 0.19, 100 ng/L = 

1.95 ± 0.25, 200 ng/L = 1.25 ± 0.13  (p > 0.05, df=3, F=7.465) (Fig. 2).  

Additionally, P-gP expression in the 50 ng/L, 100 ng/L were not statistically 

different from each other (p > 0.05), however in relation to the 100 ng/L treatment 

P-gP was significantly lower from the 200ng/L treatment (p < 0.05).  AHR 

expression was significantly up regulated when compared to controls in all 

treatments under two-way nested ANOVA analysis the average and standard 

error being: 50 ng/L = 2.16 ± 0.16, 100 ng/L = 1.81 ± 0.25, 200 ng/L = 0.76 ± 0.19 

(p > 0.05, df=3, F=39.024) (Fig. 3).  Differences amongst treatments in relation to 

AHR expression showed no difference between 50 ng/L and 100 ng/L 

concentration treatments (p > 0.05).  However, expression of AHR to TCC 

concentration in the 200 ng/L treatment was less when compared to the 50 ng/L 

and 100 ng/L concentration treatments (p < 0.05).     

Discussion 
 
  The results of this study reveal that accumulation of TCC in the tissue of 

zebra mussels influence the expression of genes GST, P-gP and AHR that are 

critical for organisms coping with contamination and stress.  Evidence from our 
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previous study in the Niagara River AOC showed historic, persistent 

contaminants such as PCBs up to 4428 ng/g dry weight, and PAHs in excess of 

75063 ng/g dry weight, were significantly higher in magnitude, than TCC 

measured in zebra mussel tissue 46.8 ng/g w.w.   However, we measured a 

significant correlation of TCC to the expression of GST. The current study 

demonstrates that this contaminant could be partially responsible for the 

molecular responses seen in the field (Neureuther et al.)  Previous studies have 

demonstrated the difficulty of linking contaminants to biological impacts, as many 

organisms in the environment are exposed to a mixture of contaminants and 

contamination by one chemical often correlated with another (Christiansen et al., 

2014).   

The expression of the genes GST, P-gP and AHR in all treatments was 

significantly induced after seven days. As seen in other invertebrate studies, GST 

is induced when exposed to TCC (Han et al., 2016).  Also, similar anti-bacterial 

agents, triclosan for instance, have been reported to affect zebra mussels GST 

enzymatic activity (Binelli et al., 2011).  The induction of GST in relation to TCC 

and TCS in this study and other studies in the literature provide evidence that 

toxicity may be related to oxidative stress from the metabolism of these 

antibacterial agents. In addition to GST induction, P-gP and AHR expression 

were also significantly upregulated in relation to the control.  Although TCC 

studies of this nature are in its infancy, one study that explores organism 

exposures to triclosan confirm that after seven days, P-gP expression is 

upregulated in the swordtail fish (Liang et al., 2013).  An additional study 



 70 

observed TCC to be a moderate agonist of AHR in human breast cancer cells 

(Tarnow et al., 2013).   

  All of the genes tested in this study revealed a hormetic response, referred 

to as a u-shaped dose response (Calabrese and Baldwin, 2001).  In this study, 

the genes were upregulated in response to lower doses of TCC, but in the 

highest dose of TCC there is a reduction in gene expression in relation to other 

treatments (Fig. 9,10,11).  It is difficult to speculate why this occurs; however, 

evidence of a similar effect was seen in the expression of GST and P-gP in 

triclosan exposures.  For instance, after seven days of yellow catfish exposure to 

triclosan, mRNA levels of GST from liver tissue were measured from the highest 

concentration of triclosan and were found to be significantly reduced while the 

opposite was observed at the three lower concentrations tested (Ku et al., 2014).  

Additionally, relative expression of P-gP after seven days also showed the same 

pattern in swordtail fish (Liang et al., 2013).  

In comparison to our previous study, it was revealed that bioaccumulation 

of TCC after seven days of exposure instigated a significant up-regulation in the 

expression of genes related to organismal stress, showing that gene expression 

monitoring is temporally sensitive.  In reference to the Niagara River AOC field 

study, GST expression had a significantly negative correlation over a gradient of 

TCC concentrations after five weeks of exposure and no correlation at all after 10 

weeks.  We hypothesize that this could have been the result of a physiological 

adaptation to the chemical, or the result of sampling post transcription, the 

proteins already having been synthesized.  In addition to the results from this lab 



 71 

study, mounting evidence would lead us to believe that when monitoring using 

genomic biomarkers, earlier sampling would be more revealing as to when the 

organism is being affected by an environmental insult.   

Conclusion 
 
 The results of this laboratory study revealed that environmentally relevant 

concentrations of TCC will bioaccumulate in zebra mussel tissue and these 

levels of TCC have a statistically significant effect on the organism and 

expression of the biomarkers of stress and chemical detoxification.  These 

results complement findings from the previous study in the Niagara River AOC, 

which helps to demonstrate that these markers could be of interest when 

monitoring effects of TCC, especially where dynamic mixtures of unknown 

amounts of chemicals are found.  Additionally, further exposure studies, using 

the evidence collected here, could help to to evaluate specific functions of genes 

used for detoxification in zebra mussels to reveal whole mechanisms of 

detoxification.  Moreover, it seems that even low concentrations of TCC can 

influence health of zebra mussels on a molecular scale and it would be of great 

use to investigate the relationships of gene expression biomarkers to 

downstream endpoints of exposure, such as correlations with enzymes (e.g. 

protein production) and physiological manifestations (e.g. tumors, neoplasms, 

fecundity, size or condition factor).  Restoration and monitoring of freshwater 

systems are becoming a global priority, and the zebra mussel, although an 

invasive species could have a significant role to perform in the detection and 

evaluation of not only historic contaminants but emerging contaminants as well. 
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Table 7. Primer sequences (5’-3’) used in qRTPCR 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

 

 

 

 

 

 

 

 

 

Target	Gene Forward	primer Reverse	primer Accession	number

18s Ribosomal RNA (18s) TCGATGGTACGTGATATGCC CGTTTCTCATGCTCCCTCTC L33452

P-glycoprotein (P-gP) CACCTGGACGTTACCAAAGAAGATATA TCACCAACCAGCGTCTCATATTT AJ506742

Heat-shock protein 70 (HSP70) GCGTATGGACTTGATAAGAACCTCA GAACCCTCGTCGATGGTCA EF526096

Glutathione S-transferase (GST) ATGATCTATGGCAACTATGAGACAGG GAAGTACAAACAGATTGTAGTCCGC EF194203

Aryl-Hydrocarbon Receptor (AHR) ATCACAGCGATGAGCCTCAG AGACAGCATTGCGAGGTCAC DQ159188
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Figure 9. GST expression after seven days of exposure to TCC. 
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Figure 10. P-gP expression after seven days of exposure to TCC. 
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Figure 11. AHR expression after seven days of exposure to TCC. 
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Figure 12. HSP70 expression after seven days of exposure to TCC. 
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Figure 13. Bioaccumulation of Triclocarban in the tissue of mussel after seven days 

of exposure, three replicates per treatment  
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Chapter 4:  Conclusion and Discussion 

 

 The purpose of this research was to investigate the impacts of toxics in 

relation to genomic biomarkers of stress and toxicity in the invasive species D. 

polymorph to determine how well they predicted exposure to specific chemicals 

and the dose response relationship.   By furthering the development of genomic 

biomarkers, this research could help to enhance the capacity of the zebra mussel 

as more than just a bioindicator of contamination, but a monitor of exposure and 

potential effects as well.    

The first study was an environmental investigation using caged zebra 

mussels in the Niagara River AOC for five and ten weeks of exposure.  The main 

goals for this project were to answer the questions: will genomic biomarkers 

correlate to specific contaminants measured in the zebra mussel tissue to identify 

the chemical or chemicals that are having the greatest impact on organismal 

health including legacy and emerging contaminants?  Additionally, to test how 

does the length of exposure affect the expression of these genes?   Lastly, to 

investigate if gene expression would be different in free living in situ mussels 

harvested from within the Niagara River versus caged mussels?  

The results from our field study in the Niagara River revealed that aquatic 

environments like many of the Great Lakes AOCs contain a complex mixture of 

chemical contamination, and that many of these contaminants are co-correlated, 

making the analysis of determining relationships between individual 

contaminants and these genes of exposure a challenging process.  
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Nevertheless, several conclusions could be drawn from the data collected from 

this environmental study.  

First, expression of the genes GST and AHR significantly correlated to the legacy 

contaminates PCBs and PAHs, supporting the evidence that these could 

potentially be used as biomarkers of exposure for these chemicals in general.  

Additionally, that CECs measured in quantities far lower in magnitude than the 

legacy contaminates, were also significantly correlated to GST as well as HSP70 

that was not correlated to PCBs or PAHS and explained 65% of the variability in 

the expression of GST.   

Second, in addition to the results from the regressions calculated, we 

hypothesize that time is a significant factor when monitoring using gene 

expression biomarkers.  Time had a significant effect on these regressions in that 

our significant results were calculated from data collected at five weeks of 

exposure, and that after ten weeks no significant correlations were found.  

Additionally, in almost all cases, our genes of interest showed a significant 

pattern of down regulation in the caged mussels placed in the tributaries after five 

and ten weeks of exposure.  This evidence was contrary to other environmental 

studies which typically show induction of genes to exposure, evidence that either 

our samples were likely collected after the organisms mRNA expression peaked 

in an effort to deal with detoxification of the contamination.  In addition to down 

regulation being seen as a general trend, a temporal pattern could not be shown 

to explain the variation in gene expression measured between the time periods. 
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Collectively, this evidence showed that sampling gene expression biomarkers at 

an earlier time point is more revealing of exposure.  

Last, the results from the in situ study verified that sampling zebra 

mussels, already present in the Niagara River did not provide an effective way to 

predict chemical contamination using these genes.  This investigation provided 

no evidence that significant relationships existed between in situ zebra mussels 

and chemical contamination despite there being variation in expression across 

locations with associated differences in gene expression.  Once again, these 

results imply that time and lengths of exposure are factors when monitoring gene 

expression biomarkers.  

The third chapter was initiated to investigate individual chemicals to gene 

expression due to co-correlation of contaminants found in our environmental 

study.  A preliminary investigation using PCB aroclor 1242 was our first 

exposure; however no significant results were measured.  Moving forward, a 

laboratory investigation of the anti-microbial agent Triclocarban was initiated to 

verify the discovery that bioaccumulated TCC in the tissue of zebra mussels from 

the Niagara River had significantly correlated to the gene GST.   After an 

exposure for seven days at exposures of 50 ng/L, 100 ng/L and 200 ng/L, we 

found GST to be significantly induced in addition to the genes AHR, and P-gP as 

well.  This confirms the possibility that TCC, although low in concentration could 

be having a realistic toxic effect on the zebra mussels in the environment and 

that GST could be a biomarker of TCC exposure.   

Future Directions 
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 The body of work presented here in these studies displays the relevance 

of using molecular biomarkers to monitor contaminant exposure in the 

environment and the need to advance the development of these markers. 

Furthermore, environmental monitoring of freshwater ecosystems using genetic 

biomarkers in the zebra mussels could be a powerful tool not only as a 

bioindicator of contamination, but as a sentinel organism of exposure and 

eventually effects as well.  While this study only exhibits a handful of biomarkers 

that indicated potential exposure, future studies should correlate markers of 

exposure to more tangible downstream physiological effects like growth or 

reproduction.  As a result, the joining of effects biomarkers to genomic markers of 

exposure could help to detect early insults of environmental exposure, heading 

off effects at a population or ecosystem level.  Additionally, being able to monitor 

these effects in an invasive species that has almost no sampling restrictions, high 

fecundity and resides in freshwater on nearly a global scale could be used as a 

sentinel organism to protect more sensitive species.  Additionally, as the 

technology accelerates, it is only a matter of time until genomic sequencing is as 

economical as it is expedient.  Having a fully sequenced zebra mussel genome 

would hopefully reveal not only individual sequences, but help to unveil whole 

mechanisms of toxicity.  Until then, next generation sequencing could be a way 

to discover mRNA sequences to measure global changes in gene expression in 

relation to chemical exposures as well.  We tried this method unsuccessfully, 

however further research into next generation sequencing has promise to expand 

our library of biomarkers.  The benefits of which, would greatly enhance the 
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ability of researchers to distinguish gene responses to different classes of 

chemicals.  This would be very useful in places like Great Lakes AOCs, where 

contaminants reside as complex mixtures, and being able to tease out the effects 

of individual chemical components on the biota is essential for managers to 

accomplish restoration goals and initiatives.     
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