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Abstract

Density estimation for lifetime distributions under
semi-parametric random censorship models

by

Carsten Harlaß

The University of Wisconsin–Milwaukee, 2016

Under the Supervision of Professor Gerhard Dikta and Professor Jugal Ghorai

We derive product limit estimators of survival times and failure rates for randomly right

censored data as the numerical solution of identifying Volterra integral equations by em-

ploying explicit and implicit Euler schemes. While the first approach results in some known

estimators, the latter leads to a new general type of product limit estimator. Plugging in

established methods to approximate the conditional probability of the censoring indicator

given the observation, we introduce new semi-parametric and presmoothed Kaplan-Meier

type estimators. In the case of the semi-parametric random censorship model, i.e. the lat-

ter probability belonging to some parametric family, we study the strong consistency and

asymptotic normality of some linear functionals based on the proposed estimator.

Assuming that the underlying random variable admits a probability density, we define semi-

parametric and presmoothed kernel estimators of the density and the hazard rate for ran-

domly right censored data, which rely on the newly derived estimators of the survival func-

tion. We determine exact rates of pointwise and uniform convergence as well as the limiting

distribution.
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Chapter 1

Introduction

In survival analysis it is often not possible to observe the variable of interest. Therefore

approximations can only rely on incomplete data. Assuming the framework of the random

censorship model (RCM), we deduce a Volterra integral equation for the survival function of

the censored random variable. Employing the explicit Euler scheme to numerically solve the

equation results in some already known estimators, among them the Kaplan-Meier product

limit estimator (PLE), and its semi-parametric and presmoothed equivalents.

Since the corresponding differential equation is stiff, applying an implicit Euler scheme is

more suitable from a numerical point of view. This approach leads to a new class of es-

timators whose members are almost all true distribution functions (d.f.). In comparison,

the already established estimators, e.g. the Kaplan-Meier PLE, are in general only subdis-

tribution functions. Plugging in estimators for the conditional probability of the censoring

indicator given its actual value, we propose the new semi-parametric and presmoothed PLEs

F SE
2,n and F PR

2,n , respectively. For the semi-parametric approach we slightly extend the RCM

to the semi-parametric random censorship model (SRCM). In case of F SE
2,n , we show that the

estimator is asymptotically equivalent to the semi-parametric estimators introduced in Dikta

(1998, 2000) and therefore inherits its asymptotic properties. In particular, the estimators

have the same asymptotic variance. Thus the integral estimator based on F SE
2,n is optimal

w.r.t. the class of all regular estimators of the integral induced by the true distribution F .
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Given that the censored random variable admits a density, kernel based approximations of

this underlying probability density function (p.d.f.), evolving from the Kaplan-Meier PLE

or its presmoothed version, are considered in the literature. Besides the definition of a new

nonparametric density estimator, we focus on the investigation of semi-parametric kernel

estimators of the p.d.f. and the hazard rate. We present an asymptotic representation which

is used to deduce exact rates of pointwise and uniform convergence as well as the limit

distribution. We will show that the semi-parametric density estimator is superior to its

Kaplan-Meier counterpart in terms of the asymptotic variance, when assuming the correct

parametric model of the plug-in estimator.

Chapter 2 explains the RCM and extends it to the semi-parametric random censorship model

(SRCM). In Section 3.1 we present a technique to derive PLEs from identifying Volterra

integral equations and propose the new estimators F SE
2,n and F PR

2,n in Definition 3.7 and Def-

inition 3.8, respectively. Their properties are discussed in Section 3.2. The main results

related to F SE
2,n are given in Theorem 3.13 and Theorem 3.16. Those are essential for ex-

tending the strong law of large numbers (SLLN) and the central limit theorem (CLT) to the

semi-parametric setup. Chapter 4 is concerned with kernel based density estimators. New

estimators are introduced in Section 4.2 and their asymptotic representations are given in

Theorem 4.6 and Theorem 4.7. Based on those we determine exact rates of pointwise and

uniform convergence and deduce the pointwise limiting distribution as well as the distribu-

tion of the maximal deviation. Due to their complexity, most of the proofs are postponed to

the last sections of Chapter 3 or Chapter 4.
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Chapter 2

Preliminaries

In this chapter we give a brief introduction to basic concepts in survival analysis and list

some preliminary definitions. The ideas are more widely discussed in Klein and Moeschberger

(2003) and Kleinbaum and Klein (2012). Comprehensive results can be found in Klein, van

Houwelingen, Ibrahim, and Scheike (2013).

2.1 Basics on survival analysis

In classical statistics d.f.s and p.d.f.s are standard tools for data modeling. In survival

analysis, where one is interested in survival probabilities and failure rates, usually other

instruments are employed. A life time X is the time during which an entity exhibits certain

characteristics – for example the time from the entry of a proband into a pharmaceutical

study till their death. Other examples are the time a production machine is in working condi-

tion before it needs replacement or the time a worker is unemployed until being hired again.

Often it is assumed that a life time is concentrated on the positive real line R≥ ≡ [0,∞).

Definition 2.1. If not stated otherwise, a life time X is a random variable on some prob-

ability space (Ω,A,P) which has an absolute continuous distribution w.r.t. the Lebesgue

measure on R≥ and maps into (R≥,B(R≥)). Let F be its d.f. The induced measure is

denoted by dF and the corresponding Radon–Nikodym derivative by f .

3



Counterparts of the d.f. and the p.d.f. are the survival and the hazard function, respectively.

Definition 2.2. Let X be a random variable as defined in Definition 2.1, then the survival

function is defined by F̄ (x) := 1 − F (x) = P(X > x) =
∫∞
x
f(t)dt. The hazard function is

specified by

λ : R≥ 3 x 7→ λ(x) :=
f(x)

F̄ (x)
∈ R≥

and

Λ : R≥ 3 x 7→ Λ(x) :=

∫ x

0

λ(t)dt ∈ R≥

is called the cumulative hazard function.

The survival function evaluated at x is the probability that the random variable X is greater

than x. In terms of survival analysis, this can be interpreted as the probability that an

individual survives a certain point in time x. By looking at

λ(x) =
f(x)

F̄ (x)
= lim

h→0

(
P(X ≤ x+ h|X ≥ x)

h

)
,

the hazard function could be interpreted as the mortality rate at time point x. Both, F̄ and

Λ, are closely related.

Lemma 2.3. Let X be a random variable as defined in Definition 2.1, then

F̄ (x) = exp(−Λ(x)).

Proof. Applying the exponential function on both sides, the result follows immediately from

the definition of the hazard rate and the fundamental theorem of calculus,

Λ(x) =

∫ x

0

λ(t)dt =

∫ x

0

f(t)

F̄ (t)
dt =

∫ x

0

F ′(t)

F̄ (t)
dt = − ln(F̄ (x)).
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In many practical applications and scientific fields it is not possible to observe the variable

of interest and analysis can only be based on incomplete data, for example see Kalbfleisch

and Prentice (2002). When testing for lifetimes or failure rates, incomplete data is primarily

caused by censoring. There are different types of censoring; data which is truncated from the

right is called right-censored. This kind of data often arises in medical research, cf. Armitage,

Berry, and Matthews (2001). For instance in a clinical trial patients start taking a medicine

at a certain point in time. A proband could either die during the time frame of the study

from the disease which is actually being treated (no censoring), leave the study prior the

end (e.g. moving away) or survive the end of the trial. Both last cases are examples for

right-censoring. For a more detailed explanation and examples see Klein and Moeschberger

(2003, Chapter 3).

A common way to describe randomly right-censored data is the RCM. It is the basis of many

publications, among them Kaplan and Meier (1958) and Efron (1967).

Definition 2.4. Let (Xi)1≤i≤n be a sequence of independent, identical distributed (i.i.d.),

nonnegative random variables defined on the probability space (Ω,A,P) and distributed

according to the unknown d.f. F ; cf. Definition 2.1. Furthermore, let (Yi)1≤i≤n be another se-

quence of i.i.d., nonnegative random variables defined on the same probability space (Ω,A,P)

and distributed according to the d.f. G. In addition, assume that the sequences (Xi)1≤i≤n and

(Yi)1≤i≤n are independent from each other. Under the RCM, data of the form (Zi, δi)1≤i≤n

is observed, where Zi = min(Xi, Yi) and δi = I[Xi≤Yi]. The variable δi indicates whether

observation Zi is censored (δi = 0) or uncensored (δi = 1). Denote the d.f. of the random

variable Z = min(X, Y ) by H.

In this scenario, the PLE proposed by Kaplan and Meier (1958) has received great attention

both in theory and practice; cf. Section 3.2. Supplementary to the RCM, we here assume

the X and Y are absolutely continuous w.r.t. the Lebesgue measure and therefore admit the

5



p.d.f.s f and g, respectively. Furthermore, let (Zi:n)1≤i≤n denote the order statistics of the

Z-sample and
(
δ[i:n]

)
1≤i≤n the sequence of indicators adjunct to the ordered Z-sample. For

all 1 ≤ i ≤ n, let Rn(Zi) represent the rank of Zi in the Z-sample.

Given the RCM, the importance of the conditional probability

m(z) := P(δ = 1|Z = z) = E
(
1{X≤Y }|Z = z

)
, (2.1)

the probability of an uncensored observation given its actual value Z = z, for the consistency

of
∫
ϕdFKM

n was pointed out in Stute (1993). Consistently, define m̄(z) := 1−m(z). When

looking at the Kaplan-Meier PLE, the probability m is basically estimated by setting it to

one or zero, in particular

m(Zi) ≈ δi.

When we use somehow better estimators for m, which are based on the sample (Zi, δi)1≤i≤n,

one can deduce other estimators of F . If for example δ is independent of Z, thenm(x) = E[δ]

and a suitable estimator of m is given by (1/n)
∑n

i=1 δi. The resulting estimator for F was

presented in Abdushukurov (1987) and Cheng and Lin (1987); cf. Remark 3.5. For the semi-

parametric PLE introduced by Dikta (1998) it is assumed that m belongs to a parametric

family. Hence it can be estimated using common parametric approaches. We now extend

the RCM by this assumption.

Definition 2.5. Given the RCM, the semi-parametric random censorship model (SRCM)

additionally assumes that the conditional expectation m(z) = P(δ = 1|Z = z) belongs to a

parametric family where each member is identified by a parameter θ ∈ Θ. Hence

m(z) = m(z, θ0),

where m(·, θ0) is a parametric function and θ0 = (θ0,1, ..., θ0,k) ∈ Θ ⊂ Rk the true parameter.

6



Parametric models for m can be found in Cox and Snell (1989), Dikta (1998) or Collett

(2002). Given the RCM, note the two following basic relationships between F , G, H and m.

Corollary 2.6. Given the definitions of the RCM, it holds that H̄ = F̄ Ḡ.

Proof. Exploiting the independence of X and Y we have

H̄(t) = P(min(X, Y ) > t) = P({X > t} ∩ {Y > t}) = P(X > t)P(Y > t) = F̄ (t)Ḡ(t).

Corollary 2.7. Given the RCM, let Ḡ(x−) denote the left-hand limit of Ḡ at x. Then both

subdistribution functions

H1(t) := P(δ = 1, Z ≤ t) and H0(t) := P(δ = 0, Z ≤ t)

have Radon–Nikodym derivatives w.r.t. dH, and dF or dG, respectively. E.g.

H1(t) =

∫
[0,t]

m(x)H(dx) =

∫
[0,t]

Ḡ(x−)F (dx) (2.2)

and

H0(t) =

∫
[0,t]

m̄(x)H(dx) =

∫
[0,t]

F̄ (x−)G(dx). (2.3)

Moreover, let’s denote the Radon–Nikodym derivative of H1 by h1 and observe that

h1(x) = m(x)h(x) = Ḡ(x−)f(x). (2.4)

7



Proof. Recalling δ := 1{X≤Y }, the first equality of (2.2) is a shorthand version of

H1(t) := P(δ = 1, Z ≤ t) =E
(
1{X≤Y } · 1{Z≤t}

)
= E

[
E
(
1{X≤Y } · 1{Z≤t}|Z

)]
=

∫
R≥

E
(
1{Z≤t}1{X≤Y }|Z = z

)
H(dz)

=

∫
R≥

1{z≤t}E
(
1{X≤Y }|Z = z

)
H(dz)

=

∫
[0,t]

m(x)H(dx),

where we used the definition of m(x) from (2.1). Similarly, for the second equality in (2.2)

consider Z := min(X, Y ) and

H1(t) =E
(
1{X≤Y } · 1{Z≤t}

)
= E

[
E
(
1{X≤Y } · 1{X≤t}|X

)]
=

∫
R≥

E
(
1{X≤t}1{X≤Y }|X = x

)
F (dx) =

∫
R≥

1{x≤t}E
(
1{x≤Y }

)
F (dx)

=

∫
R≥

1{x≤t}[1− E
(
1{Y <x}

)
]F (dx) =

∫
[0,t]

Ḡ(x−)F (dx).

The proof of (2.3) is analogous.

2.2 Solving differential equations

In Chapter 3, PLEs are derived as the solution of some initial value problem. Already

Volterra (1887) was concerned with the numerical solution of Volterra integral equations. He

applied Euler schemes to obtain approximate solutions in product form. Gill and Johansen

(1990) pointed out that the famous Kaplan-Meier PLE emerges as a solution of an identifying

integral equation. However, ordinary differential equations are very well studied and a huge

variety of literature is available, for example Hartman (2002), Ascher and Petzold (1998)

and Deuflhard and Bornemann (2002). Here we just briefly outline the explicit and implicit

Euler scheme as we will use them in the subsequent chapter.

8



Let U ⊂ R, V ⊂ Rn, u ∈ C(U, V ) where C(U, V ) denotes the set of continuously differen-

tiable functions mapping U 7→ V . Furthermore let f ∈ C(W ) with W an open subset of

R1+n. Then a general first order initial value problem is given by

u′(t) = f(t, u(t)) for all t ∈ [t0, te], u(t0) = u0,

and the corresponding Volterra integral equation is

u(t) = u0 +

∫ t

t0

f(τ, u(τ))dτ for all t ∈ [t0, te].

Assuming the initial value problem has a unique solution and defining the node points

t0 ≤ t1 ≤ . . . ≤ tn = te, an intuitive way to numerically approximate u(ti) ≈ ui is given by

the iterative method

ui+1 = ui + (ti+1 − ti)f(ti, ui) for i = 1, . . . , n, (2.5)

which is called the explicit Euler scheme. It is the simplest member of the more general

family of Runge-Kutta methods.

An initial value problem is called stiff if u(t) exponentially decreases to zero as t increases

but the derivative is significantly larger then u(t) itself. For a more detailed explanation

cf. Aiken (1985, pp. 360). In case of the initial value problem being stiff, explicit methods are

not applicable any more and A/A(α)- and L-stable methods are recommended, for example

see Hairer and Wanner (2010, Chapters IV.3 and IV.5). The simplest L-stable method is

the implicit Euler scheme defined by the iteration

ui+1 = ui + (ti+1 − ti)f(ti+1, ui+1) for i = 1, . . . , n. (2.6)

There are a lot of results available concerning the theory of solving stiff differential equations

and there exist much more advanced numerical methods. But here we restrict ourselves to

the simplest case and refer to the literature mentioned above.

9



Chapter 3

Survival time estimators derived from identifying

Volterra equations

In literature, the construction of survival time estimators for right censored data is commonly

based on the Nelson (1972) and Aalen (1978) estimator. Following the idea of Gill and

Johansen (1990) we are going to present a more general technique to derive PLEs of the

survival function. Using this method, we will show an alternative way to deduce already

known estimators, among those the well-known Kaplan and Meier (1958) PLE. Primarily we

are interested in the construction of a new general type of survival time estimators. We will

establish a new presmoothed and a new semi-parametric survival time PLE in Section 3.1

and analyze the properties of the latter in Section 3.2. Corollary 3.14 states the asymptotic

distribution of the new estimator and Corollary 3.20 represents our strong law result. The

proofs of the major theorems are given in Section 3.3.

3.1 Deriving PLEs from Volterra integral equations

Under the RCM and the SRCM, respectively (cf. Section 2.1), data of the form (Zi, δi)1≤i≤n

is observed but one is usually interested in characteristics of the random variable X, e.g.

the d.f. F or the p.d.f. f . In the following we develop Volterra integral equations which

identify the d.f. F . Those identifying integral equations will be discretized and approximate

solutions are derived by applying the Euler schemes from Section 2.2. Depending on the

10



initial identifying integral equation and the solution method we will end up with different

types of PLEs.

Under the assumption that F and G are continuous, we first construct a Volterra type

integral equation using G as a starting point. Therefor consider on the one hand

G(t) = 1− Ḡ(t) = 1− F̄ (t)Ḡ(t)

F̄ (t)
=
F̄ (t)− H̄(t)

F̄ (t)
, (I)

where the last equality follows by Corollary 2.6. On the other hand we have, when applying

Corollary 2.7,

G(t) =

∫
[0,t]

F̄ (x−)

F̄ (x−)
G(dx) =

∫
[0,t]

1

F̄ (x−)
H0(dx). (II)

Since we assume continuity of F and G we can omit the left-hand limits. Setting I = II gives

the identifying Volterra type integral equation

F̄ (t)− H̄(t)

F̄ (t)
=

∫
[0,t]

1

F̄ (x)
H0(dx).

Replacing H and H0 by their empirical counterparts,

Hn(t) =
1

n

n∑
i=1

1{Zi≤t}, H̄n = 1−Hn, H0
n(t) =

1

n

n∑
i=1

m̄n(Zi)1{Zi≤t}, (3.1)

with mn being some estimator of m, leads to the estimating equation

F̄ ∗n(t)− H̄n(t)

F̄ ∗n(t)
=

∫
[0,t]

1

F̄ ∗n(x)
H0
n(dx). (3.2)

Here F ∗n denotes some estimator of F and consistently F̄ ∗n = 1−F ∗n as well as m̄n = 1−mn.

11



It is easy to construct a Volterra type integral equation based on F using (2.2):

F (t) =

∫
[0,t]

Ḡ(u−)

Ḡ(u−)
F (du) =

∫
[0,t]

1

Ḡ(u−)
H1(du) = F (0) +

∫
[0,t]

F̄ (u−)

H̄(u−)
H1(du). (3.3)

Due to the continuity of F , G and H it is reasonable to omit the left-hand limits. Again, let

F ∗n denote some estimator of F . Then the corresponding estimating equation

F ∗n(t) = F ∗n(0) +

∫
[0,t]

F̄ ∗n(u)

H̄n(u)
H1
n(du) = F ∗n(0) +

∫
[0,t]

F̄ ∗n(u)mn(u)

H̄n(u)
Hn(du) (3.4)

emerges when replacing H by its empirical distribution function (e.c.d.f.) Hn and, similarly

to (3.1), approximating H1 by

H1
n(t) =

1

n

n∑
i=1

mn(Zi)1{Zi≤t}. (3.5)

A common method to numerically solve integral equations like (3.2) and (3.4) is the explicit

Euler scheme as outlined in Section 2.2. In our particular case, the grid points are given

by the ordered sample (Zk:n)1≤k≤n. To actually solve the integral equation define F ∗n(t) = 0

for all t < Z1:n. Furthermore, it is natural to define Z0:n such that Z0:n < Z1:n. Hence

F ∗n(Z0:n) = 0, which is going to be used as the initial value for the Euler scheme.

Consider the integral equation (3.4). Using Z0:n, · · · , Zn:n as node points, observe that

F ∗n(Zk:n) = F ∗n(Zk−1:n) +

∫
]Zk−1:n,Zk:n]

F̄ ∗n(u)mn(u)

H̄n(u)
Hn(du) (3.6)

for k = 1, . . . , n. The application of the explicit Euler scheme and replacing mn(Zk−1:n) by

mn(Zk:n) gives

F ∗n(Zk:n) = F ∗n(Zk−1:n) +
mn(Zk:n)F̄ ∗n(Zk−1:n)

nH̄n(Zk−1:n)
,
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which, after observing that nH̄n(Zk−1:n) = n− k + 1, is equivalent to

F̄ ∗n(Zk:n) = F̄ ∗n(Zk−1:n)

[
1− mn(Zk:n)

n− k + 1

]
.

This recursive formula can be written explicitly in the typical product form and can be used

to define a class of estimators.

Definition 3.1. Let F ∗1,n denote a type of product limit estimators defined by

1− F ∗1,n(Zk:n) :=
k∏
i=1

[
1− mn(Zi:n)

n− i+ 1

]
, (3.7)

where mn is some estimator of the conditional probability m defined in (2.1).

Note that this definition is equivalent to

1− F ∗1,n(t) =
∏
i:Zk≤t

[
1− mn(Zi)

n−Rn(Zi) + 1

]
,

where Rn(Zi) is the rank of Zi in the Z-sample and an empty product is considered to be 1.

In the remarks below we will see that most of the known estimators, which rely on the RCM,

actually belong to this class.

We again turn to the identifying equation (3.3). Assuming that H admits a continuous

p.d.f. h with respect to the Lebesgue measure, the corresponding initial value problem is

formulated by

∂F̄ (t)

∂t
= −F̄ (t)λ(t), λ(t) =

m(t)h(t)

H̄(t)
, F̄ (0) = 1, (3.8)

where λ is the hazard rate of X. The differential equation (3.8) becomes arbitrarily stiff as

λ attains large values, especially if λ(t)→∞ as t→∞.
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In numerical analysis the standard approach to solve such stiff ODEs is the application of

A/A(α)- and L-stable methods; cf. Section 2.2. Since all explicit Runge-Kutta methods are

not A-stable neither is the explicit Euler scheme. However, the implicit Euler scheme is the

simplest L-stable method. Applying the implicit Euler scheme to equation (3.6) gives

F ∗n(Zk:n) = F ∗n(Zk−1:n) +
mn(Zk:n)F̄ ∗n(Zk:n)

nH̄n(Zk:n)
for k = 1, . . . , n− 1.

Then solving for F̄ ∗n(Zk:n) results in the following recursive definition

F̄ ∗n(Zk:n) = F̄ ∗n(Zk−1:n)− mn(Zk:n)F̄ ∗n(Zk:n)

nH̄n(Zk:n)

⇔F̄ ∗n(Zk:n)

[
1 +

mn(Zk:n)

nH̄n(Zk:n)

]
= F̄ ∗n(Zk−1:n)

⇔F̄ ∗n(Zk:n) = F̄ ∗n(Zk−1:n)
n− k

n− k +mn(Zk:n)

⇔F̄ ∗n(Zk:n) = F̄ ∗n(Zk−1:n)

[
1− mn(Zk:n)

n− k +mn(Zk:n)

]
,

which together with the initial condition F ∗n(Z0:n) = 0 is equivalent to the following product

form which we use to define a new class of estimators. Even though the calculations hold

true only for k < n, the last equation is also well-defined for k = n if mn(Zn:n) > 0.

Definition 3.2. Let F ∗2,n denote a class of product limit estimators defined by

1− F ∗2,n(Zk:n) :=
k∏
i=1

[
1− mn(Zi:n)

n− i+mn(Zi:n)

]
(3.9)

=
k∏
i=1

[
n− i

n− i+mn(Zi:n)

]
=
∏
i:Zi≤t

[
n−Rn(Zi)

n−Rn(Zi) +mn(Zi)

]
,

where Rn(Zi) is the rank of Zi in the Z-sample and an empty product is interpreted to be 1.

Note that applying the explicit Euler scheme to the estimating equation (3.2) results in F ∗2,n

defined in (3.9), and similarly, using the implicit version to solve (3.2) eventuates in the

definition of F ∗1,n given in (3.7).
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In the case of no censoring, in particular δ ≡ 1, the conditional probability m(z) = 1 for all

z ∈ R≥. Hence both prototype estimators, F ∗1,n and F ∗2,n, reduce to the well known e.c.d.f.

In case of censoring, it is left to specify the exact form of mn for both prototype estimators

F ∗1,n and F ∗2,n. The choice of mn strongly depends on the information which is available about

m. At first we take a look at the case with the least amount of assumptions.

Remark 3.3. If we assume nothing else but the RCM, then δ[k:n], the adjunct indicator of

Zk:n, is a reasonable estimator of m(Zk:n). When using

mn(Zk:n) = δ[k:n], ∀k = 1, . . . , n

F ∗1,n is exactly the estimator introduced by Kaplan and Meier (1958):

1− FKM
n (t) :=

∏
i:Zi≤t

(
1− δi

n−Rn(Zi) + 1

)
, (3.10)

where Rn(Zi) denotes the rank of Zi for all 1 ≤ i ≤ n.

If we assume a SRCM, then m(z) = m(z, θ0). Interpreting m to be the link function of the

underlying binary regression model of the sample (Zi, δi)1≤i≤n, we can exploit the maximum

likelihood estimator (MLE) θn of the true value θ0 to derive an estimator of m.

Remark 3.4. Under the SRCM, we can use a parametric estimator mn(·) = m(·, θn) and

substitute it into (3.7). Setting θn to be the MLE, given in Definition 3.7 below, results in

the semi-parametric estimator F SE
1,n introduced in Dikta (2000):

1− F SE
1,n (t) :=

∏
i:Zi≤t

[
1− m(Zi, θn)

n−Rn(Zi) + 1

]
.
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Remark 3.5. If, besides the RCM, δ is independent of Z, the model is equivalent to the

simple proportional hazards model (PHM) as considered in Koziol and Green (1976). In this

case m(z) = E[δ] for all z ∈ R≥ and a suitable estimator of m is given by

mn(Zk:n, θn) = θn =
1

n

n∑
i=1

δi, ∀k = 1, . . . , n.

Plugging this mn into (3.7) gives a slightly modified version of an estimator FACL
n , which

was first considered by Abdushukurov (1987) and Cheng and Lin (1987). To be precise,

the estimator Ḟ SE
1,n , defined in (3.14) below, is equivalent to FACL

n under the PHM when

setting m(Zk:n, θn) = 1/n
∑n

i=1 δi. It was shown, that this estimator is more efficient than

the Kaplan-Meier PLE in terms of asymptotic variance under the PHM.

Remark 3.6. When assuming that m satisfies certain smoothness conditions, we can use a

nonparametric regression estimator of m; cf. Definition 3.8. In this case (3.7) becomes the

presmoothed Kaplan-Meier estimator F PR
1,n as introduced in Ziegler (1995) and Cao, López-de

Ullibarri, Janssen, and Veraverbeke (2005).

Definition 3.7. Similar to Remark 3.4, under the SRCM, we have mn(·) = m(·, θn) for all

k = 1, . . . , n. Then F ∗2,n induces the estimator

1− F SE
2,n (t) :=

∏
i:Zi≤t

[
1− m(Zi, θn)

n−Rn(Zi) +m(Zi, θn)

]
=
∏
i:Zi≤t

[
n−Rn(Zi)

n−Rn(Zi) +m(Zi, θn)

]
,

where θn is the MLE of θ0. In particular θn is the maximizer of the (partial) likelihood

function

Ln(θ) =
n∏
i=1

m(Zi, θ)
δi · (1−m(Zi, θ))

1−δi , θn := arg max
θ∈Θ

Ln(θ).
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This estimator was first introduced and investigated in Dikta, Reißel, and Harlaß (2016b).

Often instead of the likelihood function the (partial) log-likelihood function

ln(θ) = n−1

n∑
i=1

[δiw1(Zi, θ) + (1− δi)w2(Zi, θ)],

is used to determine θn in the previous definition where

w1(x, θ) = ln(m(x, θ)) and w2(x, θ) = ln(1−m(x, θ)). (3.11)

Similar to the semi-parametric case, we can rely on the estimators for m from the Remarks

3.3, 3.5 and 3.6 to plug them into the prototype estimator F ∗2,n. If only assuming the

RCM, we use again mn(Zk) = δk which together with F ∗2,n results in an estimator almost

identical to the already mentioned Kaplan-Meier PLE FKM
n . In fact, the definitions only

differ in the mass assigned to the largest observation. Since the semi-parametric approach

is a generalization of the Cheng-Lin estimator, there is not much value in considering the

PHM separately.

Definition 3.8. If we assume, in addition to the RCM, that m is a smooth function we

can employ a preliminary nonparametric estimator of m. Then F ∗2,n defines a new type of

presmoothed PLE of F which we are going to denote by F PR
2,n :

1− F PR
2,n (t) :=

∏
i:Zi≤t

[
n−Ri,n

n−Ri,n + pn(Zi)

]
,

where mn = pn is some nonparametric estimator of m, for example the Nadaraya (1964) and

Watson (1964) estimator

pn(t) =
n−1

∑n
i=1 δib

−1
n K

(
t−Zi
b

)
n−1

∑n
i=1 b

−1
n K

(
t−Zi
b

) ,

as used in Ziegler (1995) and Cao and Jácome (2004). Here K is some probability kernel

and (bn)n>1 a series of bandwidths.
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3.2 Properties of PLEs under the RCM

The estimators derived in Section 3.1 are partially very well studied and a variety of results

is available. Often we are interested in quantities of the underlying lifetime X, which can

be expressed as an integral w.r.t. F of some Borel-measurable function ϕ; for example ex-

pectation, variance or simply F (t) for some fixed t ∈ R≥. Let F ∗n be some estimator of F ,

then these quantities can be estimated by
∫∞

0
ϕdF ∗n . To ensure the quality of such integral

estimates, one is usually interested in some kind of SLLN, i.e.

∫ ∞
0

ϕdF ∗n
a.s.−−−→
n→∞

∫ τH

0

ϕdF (3.12)

for τH = inf{x : H(x) = 1}. Moreover, the limiting distribution is an important property of

such an integral estimate and is vital for the construction of confidence intervals. Commonly

those PLEs are asymptotically normal distributed, e.g.

n1/2

(∫ ∞
0

ϕdF ∗n −
∫ τH

0

ϕdF

)
−−−→
n→∞

N(0, σ2
∗) in distribution. (3.13)

For the already established estimators presented in Section 3.1, results like (3.12) and (3.13)

are available. In case of uncensored data, those properties are provided by the ordinary

SLLN and CLT, respectively; cf. Cohn (2013, Theorem 10.2.5 and Theorem 10.3.16).

If we make no further assumptions besides the RCM, then the Kaplan-Meier estimator FKM
n

from Remark 3.3 is the natural choice. It is by far the most popular estimator for analyzing

censored data and is often applied in practice. Under some weak assumptions, (3.12) and

(3.13) also hold for FKM
n . In particular, strong consistency of integrals w.r.t. FKM

n was

shown in Stute and Wang (1993) and Stute (1995) proved that (3.13) holds under some

weak assumptions for FKM
n , where the asymptotic variance σ2

F,KM is given in Stute (1995,

Corollary 1.2). Thereby Stute extended the work presented in Breslow and Crowley (1974),
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Gill (1983) and Schick, Susarla, and Koul (1988). Asymptotic optimality of FKM
n was studied

in Wellner (1982).

As already seen in Remark 3.5, F SE
1,n is almost identical to FACL

n under the PHM. Hence F SE
1,n

can be seen as a generalization of FACL
n , as described in Dikta (2000, Example 1.3). Some

of its basic properties are reviewed in Csörgő (1988). Almost sure (a.s.) consistency is given

in Stute (1992) and asymptotic normality was proven in Dikta (1995).

As mentioned in Remark 3.6, when assuming that m suffices certain smoothness conditions,

it is possible to estimate m by some nonparametric estimator, which, in combination with

the prototype estimator F ∗1,n, gives F PR
1,n . Along with other results, Cao et al. (2005) provided

an a.s. asymptotic representation of F PR
1,n and Jácome and Cao (2007) studied its asymptotic

distribution. In particular, they proved (3.12) and (3.13) for the special case of ϕ(t) = 1[0,x](t)

for all x ≤ τH . Dikta, Külheim, Mendonça, and de Uña-Álvarez (2016a) obtained a CLT for

presmoothed Kaplan-Meier integrals with covariates.

3.2.1 The semi-parametric PLE F SE
1,n

In Section 3.2 it is shown that the difference between the semi-parametric estimators F SE
2,n

and F SE
1,n is asymptotically negligible. Hence, F SE

2,n inherits some of its properties from F SE
1,n .

For this reason we will give a short overview of F SE
1,n .

As defined in Remark 3.4 the estimator is given by

1− F SE
1,n (t) =

∏
i:Zi≤t

(
1− m(Zi, θn)

n−Rn(Zi) + 1

)
, (3.14)

where m(·, ·) is the parametric model as described in Definition 2.5 and θn the MLE of the

true parameter as explained in Definition 3.7. The estimator was proposed in Dikta (2000),

where it is also stated that F SE
1,n is very close to the semi-parametric estimator introduced in
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Dikta (1998):

1− Ḟ SE
1,n (t) :=

∏
i:Zi≤t

(
n−Rn(Zi)

n−Rn(Zi) + 1

)m(Zi,θn)

. (3.15)

In particular, Lemma 3.11 shows that Ḟ SE
1,n and F SE

1,n are asymptotically identical. When

making use of the order statistics (Zi:n)1≤i≤n of the Z-values, F SE
1,n may be written as

1− F SE
1,n (Zi:n) =

i∏
k=1

(
1− m(Zk:n, θn)

n− k + 1

)
.

For some Borel integrable function ϕ : R≥ 7→ R, it holds that

∫
ϕdF SE

1,n =
n∑
i=1

ϕ(Zi:n)W SE
1,i,n(θn), (3.16)

where, for all 1 ≤ i ≤ n, W SE
1,i,n(θn) is the weight assigned to the observation Zi:n, which is

W SE
1,i,n(θn) :=F SE

1,n (Zi:n)− F SE
1,n (Zi−1:n) =

m(Zi:n, θn)

n− i+ 1

i−1∏
k=1

(
1− m(Zk:n, θn)

n− k + 1

)
. (3.17)

Equivalent to F SE
1,n , it is possible to define a semi-parametric version of the Nelson (1972)-

Aalen (1978) estimator, compare Dikta (1998, p. 255),

ΛSE
1,n(t) :=

∫ t

0

m(x, θn)

1−Hn(x−)
Hn(dx) =

∑
i:Zi≤t

m(Zi, θn)

n−Rn(Zi) + 1
. (3.18)

Similar to the other estimators, the results available for F SE
1,n rely on some assumptions which

we list here.

(A1) There exists a measurable solution θn ∈ Θ of the equation ∇(ln(Ln(θ))) = 0 converg-

ing to the true θ0 in probability as n→∞.

(A2) There exists a measurable solution θn ∈ Θ of the equation ∇(ln(Ln(θ))) = 0 converg-

ing to the true θ0 a.s. as n→∞.

20



(A3) For 1 ≤ r ≤ k,

E

([
∇rm(Z, θ0)

m(Z, θ0)

]2
)
<∞ and E

([
∇rm(Z, θ0)

1−m(Z, θ0)

]2
)
<∞.

(A4) For i = 1, 2, wi(z, θ), as given by (3.11), possesses continuous second order partial

derivatives w.r.t. θ for all θ ∈ Θ and z ≥ 0. Furthermore ∇r,swi(·, z) is measurable for

all θ ∈ Θ and there exists a neighborhood V (θ0) ⊂ Θ of θ0 and a measurable function

M such that for all θ ∈ V (θ0), z ≥ 0 and 1 ≤ r, s ≤ k

|∇r,sw1(z, θ)|+ |∇r,sw2(z, θ)| ≤M(z) and E(M(Z)) <∞.

(A5) The matrix I(θ0) = (σr,s)1≤r,s≤k with w(δ, z, θ) = δw1(z, θ) + (1− δ)w2(z, θ) and

σr,s = −E(∇r,sw(δ, Z, θ0)) = E
(
∇r(m(Z, θ0))∇s(m(Z, θ0))

m(Z, θ0)(1−m(Z, θ0))

)

is positive definite.

(A6) There exists a neighborhood V (θ0) ⊂ Θ of θ0 such that m(z, θ) possesses continuous

second order derivatives w.r.t. θ for all θ ∈ Θ and z ≥ 0. Furthermore, for all θ ∈ V (θ0)

and 1 ≤ r, s ≤ k, ∇r,sm(·, θ) is measurable, and

sup
0≤z<∞

‖∇m(z, θ0)‖ <∞ and sup
θ∈V (θ0)

sup
0≤z<∞

∑
1≤r,s≤k

|∇r,sm(z, θ)| <∞.

(A7) For 1 ≤ r ≤ k, ∇rm(·.θ0) is Lipschitz continuous on [0, T ] for all T < τH , i.e.

|∇rm(x, θ0)−∇rm(y, θ0)| ≤ c |x− y|

for an appropriate constant c, possibly depending on T . Here, τH = inf{x : H(x) = 1}.
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(A8) m(·, θ0) is of bounded variation on [0, τH ], i.e.

sup

{
l∑

i=1

|m(zi, θ0)−m(zi−1, θ0)| : 0 = zo ≤ z1 ≤ . . . ≤ zl ≤ τH , l ≥ 1

}
<∞.

(A9) For each ε > 0 there exists a neighborhood V (ε, θ0) ⊂ Θ of θ0 such that for all

θ ∈ V (ε, θ0)

sup
0≤z
|m(z, θ)−m(z, θ0)| < ε.

For some of the results, ϕ has to satisfy certain moment conditions:

(M1)
∫ τH

0
ϕ2(x)γ0(x)F (dx) <∞,

(M2)
∫ τH

0
|ϕ(x)|

(1−H(x))1/2
F (dx) <∞,

(M3)
∫ τH

0
|ϕ(x)| γ0(x)H(dx) <∞,

(M4)
∫ τH

0
|ϕ(x)|

m(x,θ0)(1−H(t))ε
F (dx) <∞ for some ε > 0,

where γ0 as defined in Theorem 3.10. Assumptions (A1), (A3) to (A5) are necessary to

ensure the asymptotic normality of the MLE θn. For the a.s. results we have to strengthen

the assumption (A1) to strong consistency in (A2).

Dikta (1998, Theorem 2.4) proves uniform consistency of Ḟ SE
1,n and Dikta (1998, Corollary 2.6)

gives a functional central limit theorem of the process n1/2(Ḟ SE
1,n −F ). Both results are valid

on the compact interval [0, T ] with H(T ) < 1. Moreover, Dikta (1998, Corollary 2.7) shows

that Ḟ SE
1,n is more efficient than the Kaplan-Meier estimator FKM

n in terms of asymptotic

variance under the SRCM. Since Lemma 3.11 shows that Ḟ SE
1,n and F SE

1,n are asymptotically

equivalent, those results also hold true for F SE
1,n ; cf. Dikta (2000, p. 3). Furthermore, Dikta

(2000, Theorem 1.1) established a SLLN for integrals w.r.t. F SE
1,n , which we quote in the next

theorem.
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Theorem 3.9. Assuming that H is continuous and if the assumptions (A2), (A9) and (M4)

are satisfied, then with τH = inf{x : H(x) = 1}

∫ ∞
0

ϕ(t)F SE
1,n (dt)

a.s.−−−→
n→∞

∫ τH

0

ϕ(t)F (dt).

Therefore, (3.12) holds for F SE
1,n under some weak assumptions. Similar to Stute (1995), the

proof of Theorem 3.9 relies on martingale theory.

Dikta, Ghorai, and Schmidt (2005) extended the CLT to the SRCM, i.e. they proved the

following theorem.

Theorem 3.10. Let Θ be a connected open subset of Rk. Assuming that H is continuous,

(A1),(A3)–(A8), and (M1)–(M3) are satisfied, then

n1/2

(∫ ∞
0

ϕdF SE
1,n −

∫ τH

0

ϕdF

)
−−−→
n→∞

N(0, σ2
F,SE) in distribution (3.19)

where σ2
F,SE =Var

(
ϕ(Z)γ0(Z)m(Z, θ0) + (1−m(Z, θ0))γ1(Z)− γ2(Z)

− δ −m(Z, θ0)

m(Z, θ0)(1−m(Z, θ0))
(γ3(Z)− γ4(Z))

)
,

with

γ0(z) = exp

(∫
1{t<z}

1−H(t)
H0(dt)

)
,

γ1(z) =
1

1−H(z)

∫
1{z<t}ϕ(t)γ0(t)H1(dt),

γ2(z) =

∫ ∫
1{z>x,t>x}ϕ(t)γ0(t)

(1−H(x))2
H1(dt)H0(dx),

γ3(z) =

∫ ∫
1{t>x}α(x, z)ϕ(t)γ0(t)

1−H(x)
H1(dt)H(dx),

γ4(z) =

∫
ϕ(t)γ0(t)α(t, z)H(dt) and

α(x, y) = 〈∇m(x, θ0)|I−1(θ0)∇m(yθ0)〉, where 〈·, ·〉 denotes the inner product.
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Already Dikta (1998) pointed out, that the asymptotic variance of F SE
1,n is less or equal to

the asymptotic variance of the Kaplan-Meier estimator FKM
n , if the correct model for m

is assumed. When looking at Dikta (1998, Corollary 2.7) it is evident, that equality only

occurs in exceptional cases. Besides the latter theorem, Dikta et al. (2005), proved that

σ2
F,SE ≤ σ2

F,KM under the SRCM, where σ2
F,KM is the asymptotic variance of (3.13) in the

case of F ∗n = FKM
n , cf. Stute (1995, Corollary 1.2). Corollary 2.5 and Remark 2.6 of Dikta

et al. (2005) explain why the increase in efficiency is strict, in almost all reasonable cases,

that is σ2
F,SE < σ2

F,KM . Dikta (2014) actually showed that F SE
1,n is asymptotically efficient

w.r.t. the class of all regular estimators of
∫ τH

0
ϕdF given the SRCM.

Since it has never been stated explicitly in the literature, the next lemma shows that Ḟ SE
1,n

from Dikta (1998) and F SE
1,n as defined in Dikta (2000) are asymptotically identical.

Lemma 3.11. Assuming (A2) and (A10), it holds for 0 ≤ T < τH that

sup
0≤t≤T

|Ḟ SE
1,n (t)− F SE

1,n (t)|a.s.= O(n−1).

3.2.2 The semi-parametric PLE F SE
2,n

In the previous sections it was shown that, under certain assumptions, (3.12) and (3.13) hold

for the estimators FKM
n , FACL

n , F PR
1,n and F SE

1,n . Here we are going to examine the estimator

1− F SE
2,n (Zi:n) =

i∏
k=1

[
n− k

n− k +m(Zk:n, θn)

]
,

which we proposed in Definition 3.7. Due to their complexity, most of the proofs for the

following theorems are postponed to Section 3.3.
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First note that

1− F SE
2,n (Zn:n) =

[
1− m(Zn:n, θn)

m(Zn:n, θn)

] n−1∏
k=1

[
1− m(Zk:n, θn)

n− i+m(Zk:n, θn)

]
= 0,

which shows that the entire weight of one gets distributed among the data points. By

definition F SE
2,n (t) = 0 for all t < Z1:n, F SE

2,n is monotonically increasing, right-continuous and

its left-hand limits exist. Hence we immediately have the following consequence.

Corollary 3.12. The estimator F SE
2,n is always a proper probability distribution function.

A Nelson-Aalen type estimator based on F SE
2,n can be defined by

ΛSE
2,n(t) :=

∫ t

0

1

1− F SE
2,n (x−)

F SE
2,n (dx) =

∑
i:Zi:n≤t

1

1− F SE
2,n (Zi:n

−)
W SE

2,i,n(θn)

=
∑
i:Zi≤t

m(Zi, θn)

n−Rn(Zi) +m(Zi, θn)
=

∫ t

0

m(x, θn)

H̄n(x) +m(x, θn)/n
Hn(dx). (3.20)

Furthermore, for a Borel-measurable function ϕ : R≥ 7→ R it holds that

∫
ϕdF SE

2,n =
n∑
i=1

ϕ(Zi:n)W SE
2,i,n(θn), (3.21)

where, for all 1 ≤ i ≤ n, W SE
2,i,n(θn) is the weight assigned to Zi:n by F SE

2,n . To be precise

W SE
2,i,n(θn) :=F SE

2,n (Zi:n)− F SE
2,n (Zi−1:n)

=
i−1∏
k=1

(
1− m(Zk:n, θn)

n− k +m(Zk:n, θn)

)

−
(

1− m(Zi:n, θn)

n− i+m(Zi:n, θn)

) i−1∏
k=1

(
1− m(Zk:n, θn)

n− k +m(Zk:n, θn)

)

=
m(Zi:n, θn)

n− i+m(Zi:n, θn)

i−1∏
k=1

(
n− k

n− k +m(Zk:n, θn)

)
. (3.22)
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Just by visual inspection, the difference between F SE
1,n and F SE

2,n seems to be minor. In fact,

from Theorem 3.13 and Theorem 3.16 we can conclude that the difference is asymptotically

negligible. Theorem 3.13 shows that F SE
1,n and F SE

2,n are stochastically equivalent under some

assumptions, among them:

(A10) 0 < m(x, θ) ≤ 1 for all x > 0 and for all θ in an open neighborhood of θ0.

(M5)
∫ |ϕ|

(1−H)1.5+ε
dH <∞ for some ε > 0.

Theorem 3.13. If F and G are continuous, assumptions (A1), (A10) and (M5) are satisfied,

then

n1/2

(∫
ϕdF SE

2,n −
∫
ϕdF SE

1,n

)
−−−→
n→∞

0 in probability.

The last theorem together with Theorem 3.10 immediately yields the following CLT result.

Corollary 3.14. Given the assumptions of Theorem 3.10 and Theorem 3.13, it holds that

n1/2

 ∞∫
0

ϕdF SE
2,n −

τH∫
0

ϕdF

 −−−→
n→∞

N(0, σ2
F,SE) in distribution

with the asymptotic variance σ2
F,SE as given in Theorem 3.10.

Note that Dikta et al. (2005, p. 31) give an estimator of σ2
F,SE which can be used to obtain

confidence intervals. In addition, Dikta et al. (2005, Theorem 2.1) provided the following

asymptotic representation of F SE
1,n -integrals which, due to the latter corollary, also holds for

integrals w.r.t. F SE
2,n .
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Corollary 3.15. Let Θ be a connected open subset of R. Then under the assumptions of

Theorem 3.13 and Dikta et al. (2005, Theorem 2.1), that is F and G are continuous, (A1),

(A3) to (A8), (A10), (M1) to (M3), and (M5), it holds that

∫ ∞
0

ϕF SE
2,n =

1

n

n∑
i=1

ϕ(Zi)γ0(Zi)m(Zi, θ0) +
1

n

n∑
i=1

(1−m(Zi, θ0))γ1(Zi)−
1

n

n∑
i=1

γ2(Zi)

− 1

n

n∑
i=1

δ −m(Zi, θ0)

m(Zi, θ0)(1−m(Zi, θ0))
γ3(Zi)

+
1

n

n∑
i=1

δ −m(Zi, θ0)

m(Zi, θ0)(1−m(Zi, θ0))
γ4(Zi) + op(n

−1/2),

where γ0 to γ4 are given in Theorem 3.10.

A similar result as given in Theorem 3.13 holds true almost surely under the assumption

(M6)
∫ |ϕ|

(1−H)1+ε
dH <∞ for some ε > 0.

Theorem 3.16. Given that F and G are continuous and assumptions (A2), (A10), and

(M6) are satisfied, then ∣∣∣∣∫ ϕdF SE
2,n −

∫
ϕdF SE

1,n

∣∣∣∣ a.s.−−−→
n→∞

0.

Note that with (A2) we require the MLE θn to be strongly consistent while we weaken

the moment assumption to (M6), in comparison to Theorem 3.13. In the special case of

ϕ(t) = 1[0,x](t) we can give a uniform a.s. convergence order.

Theorem 3.17. Assuming the conditions of Theorem 3.16 hold for ϕ(t) = 1[0,x](t) for all

x ≤ T < τH , we have

sup
0≤x≤T

∣∣F SE
2,n (x)− F SE

1,n (x)
∣∣ a.s.= O(n−1).

Using the last theorem in combination with Dikta (2000, Corollary 1.4) we easily deduce the

next result.
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Corollary 3.18. Given the assumptions of Theorem 3.9 and Theorem 3.17 then

F SE
2,n (x)

a.s.−−−→
n→∞

F (x).

Both, Theorem 3.17 together with Dikta (2000, Corollary 1.5) or Corollary 3.18 in combina-

tion with Loeve (1977, p. 21) can be used to enhance the last result to uniform convergence.

Corollary 3.19. Assuming the conditions of Theorem 3.9 and Theorem 3.16 hold for ϕ(t) =

1[0,x](t) for all x ≤ T < τH , we have

sup
0≤x≤T

∣∣F SE
2,n (x)− F (x)

∣∣ a.s.−−−→
n→∞

0.

Theorem 3.9 together with Theorem 3.16 yields the following strong law result.

Corollary 3.20. Given the assumptions of Theorem 3.9 and Theorem 3.16 then

∫ ∞
0

ϕdF SE
2,n

a.s.−−−→
n→∞

∫ τH

0

ϕdF .

As seen, Theorem 3.13 and Theorem 3.16 are the key to our analysis of the asymptotic

properties of F SE
2,n . By those arguments F SE

2,n also inherits the efficiency properties of F SE
1,n .

Remark 3.21. Theorem 3.13 shows that the integral estimators w.r.t. F SE
1,n and F SE

2,n admit

the same asymptotic variance σ2
F,SE. Then due to Dikta (2014, Corollary 3.11),

∫ τH
0

ϕdF SE
2,n

is a regular estimator and is asymptotically efficient w.r.t. the class of all regular estimators

of
∫ τH

0
ϕdF given the SRCM.
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3.2.3 Discussion of the estimators

The Kaplan-Meier estimator assigns mass only to uncensored observations while the attached

weight increases from the smallest to the largest observation; cf. Efron (1967). This is par-

ticularly critical if the last observation is censored. In this case the Kaplan-Meier estimator

FKM
n lacks the important property of being a proper d.f., that is limt→∞ F

KM
n (t) < 1 since

FKM
n fails to attach the total mass of one to the observations. This deficit becomes even more

apparent when noting that the estimator is designed to put the largest amount of weight

on last observation. Hence, neglecting this mass could cause significant bias. Because the

weight assigned to a data point depends on the number of preceding censored observations,

this behavior gets amplified under high censoring rates. Also F PR
1,n and F SE

1,n suffer from the

same shortcoming if mn(Zn:n) 6= 1 and therefore are only subdistribution functions. There

are methods to fix this disadvantage, for example rescaling the weights or simply assigning

the missing weight to the largest observation while completely ignoring the censoring indica-

tor, but those are not well studied or cause an unreasonable bias. As discussed above, Ḟ SE
1,n ,

as defined in (3.15), is a slightly modified version of F SE
1,n . Even that Ḟ SE

1,n (Zn:n) = 1, there is

a similar problem: in case of high censoring rates, especially of the larger observations, Ḟ SE
1,n

attaches an unrealistic amount of mass to the largest observation.

However, Corollary 3.12 shows that F SE
2,n is a true probability function under every circum-

stance, while still providing a more realistic distribution of the total mass. This is a big

advantage in comparison to FKM
n , F PR

1,n and F SE
1,n when using those as plug-in estimators

in the approximation of linear functionals. Thereby the missing weight could cause some

unreasonable bias especially in case of small sample sizes. Moreover, since F SE
2,n is a proper

d.f., it is possible to use its quantile function to resample according to F . For example,

sampling directly from F SE
2,n might improve the bootstrap based construction of confidence

bands presented in Subramanian and Zhang (2013).
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Theorem 3.13 and Theorem 3.16 show that the estimators F SE
1,n and F SE

2,n are asymptoti-

cally equivalent. Hence all asymptotic results available for F SE
1,n also hold true for F SE

2,n .

For instance, Corollary 3.14 shows that the integral estimators w.r.t. F SE
1,n and F SE

2,n , respec-

tively, admit the same asymptotic variance σ2
F,SE. As discussed in Subsection 3.2.1 and

Remark 3.21, σ2
F,SE is optimal w.r.t. the class of regular estimators of

∫ τH
0

ϕdF and therefore

F SE
2,n outperforms the corresponding Kaplan-Meier integral estimator assuming a correctly

chosen parametric model for m. In fact, Theorem 3.13 together with Dikta (2014, Corol-

lary 3.11) shows that both, F SE
1,n and F SE

2,n , are more efficient than FKM
n , F PR

1,n and F PR
2,n and

can not be improved in means of asymptotic variance, when the model for m is chosen cor-

rectly. Since F SE
1,n and F SE

2,n incorporate the additional information of the parametric model,

the achieved efficiency gain is something one would intuitively expect.

All results in Subsection 3.2.1 and Subsection 3.2.2 were derived under the SRCM, that

is, assuming the correct parametric model for m. Simulation studies, conducted in Dikta,

Hausmann, and Schmidt (2002), show that F SE
1,n still performs well even under wrong as-

sumptions for m. As discussed, m is based on a parametric binary regression model. Hence

it is possible to validate the model assumptions via goodness-of-fit tests. Dikta, Kvesic, and

Schmidt (2006) presented a general bootstrap based test to verify the model assumptions.

The SLLN and CLT for integral estimators based on FKM
n , obtained in Stute and Wang

(1993) and Stute (1995), requires F and G from the RCM only not to have common jumps.

This assumption is not well-suited for the SRCM, as explicated in Dikta (2000, Remark 1.6).

Hence we expect F and G, and therefore H, to be continuous. However, in his proofs,

Stute applied techniques to overcome this restriction. Those might also be applicable in the

semi-parametric case.
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3.3 Proving the properties of F SE
2,n

In this section we will give the proofs for the results related to F SE
2,n , primarily Theorem 3.13

and Theorem 3.16. The technique used for both theorems is very similar. Hence we will start

proofing Theorem 3.16 and sketch the second proof more briefly. The following representation

of the difference of two products will turn out to be an essential tool.

Remark 3.22. Let (ai)1≤i≤n (bi)1≤i≤n be two complex sequences. Then

n∏
i=1

ai −
n∏
i=1

bi =
n∑
i=1

(
i−1∏
k=1

ak(ai − bi)
n∏

k=i+1

bk

)
. (3.23)

Proof. Trivially, this equation holds for n = 1 when interpreting empty products to be equal

to one. Then using induction, assume that the equality holds for n ∈ N and consider

n+1∑
i=1

(
i−1∏
k=1

ak(ai − bi)
n+1∏
k=i+1

bk

)
=

n∑
i=1

(
i−1∏
k=1

ak(ai − bi)
n∏

k=i+1

bk

)
bn+1 + (an+1 − bn+1)

n∏
k=1

ak

which, when applying the induction assumption (3.23), is equivalent to

=bn+1

n∏
i=1

ai −
n+1∏
i=1

bi +
n+1∏
k=1

ak − bn+1

n∏
k=1

ak,

and the proof is complete. A similar result can be found in Gill and Johansen (1990,

Lemma 1).

In addition, multiple times we will make use of the quantile representation of Z based on

a uniformly distributed random variable; cf. (Shorack and Wellner, 1986, Theorem 1.1.1).

Let (Ui)1≤i≤n be an i.i.d. sample from the uniform distribution on [0, 1] with d.f. H̃. Hence

Zi and H−1(Ui) are equal in distribution for i = 1, . . . , n. To shorten the notation we will

write Zi = H−1(Ui) for i = 1, . . . , n.
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The quantile function H−1 of H is defined by

H−1(u) = inf{z : H(z) ≥ u}, 0 < u < 1.

Similarly, the empirical distribution and quantile function of the U -sample are denoted by

H̃n and H̃−1
n , respectively. H−1

n is the empirical quantile function of the Z-sample. In the

following we list some known results related to H, Hn, H̃n and their quantile functions. From

Shorack and Wellner (1986, Theorem 1.1.2) we have

Hn(t) = H̃n(H(t)), t ≥ 0. (3.24)

Relying on this equality and Shorack and Wellner (1986, p. 5, Eq. 21), we have for 0 < u < 1

H−1
n (u) = inf{t : H̃n(H(t)) ≥ u} = inf{t : H(t) ≥ H̃−1

n (u)}

= inf{t : t ≥ H−1(H̃−1
n (u))} = H−1(H̃−1

n (u)). (3.25)

Furthermore by Shorack and Wellner (1986, Proposition 1.1.1) and since H is considered to

be continuous we have H(H−1(u)) = u for 0 < u < 1. Together with (3.25) this yields

H(H−1
n (u)) = H̃−1

n (u), 0 < u < 1. (3.26)

Moreover, first applying (3.24) and than using (3.26) gives

Hn(H−1
n (u)) = H̃n(H̃−1

n (u)), 0 < u < 1. (3.27)

When defining H̃−1
n (0) = 0 and H̃−1

n (1) = Un:n, where (Ui:n)1≤i≤n denotes the order statistics

of the U -sample, we can extend the domain of H̃−1
n to the closed interval [0, 1]. Note that

the sample points in (Ui)1≤i≤n are a.s. distinct. Hence we have a.s. for k
n
< u ≤ k+1

n
and
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k = 1, . . . , n− 1,

H̃n(H̃−1
n (u)) = H̃n(Uk+1:n) =

k + 1

n
< u+

1

n
,

which in combination with Shorack and Wellner (1986, Proposition 1.1.1) gives

u ≤ H̃n(H̃−1
n (u)) ≤ u+

1

n
, 0 ≤ u ≤ 1. (3.28)

For convenience of a brief notation, set mi = m(Zi:n, θn) and define

ai =
n− i

n− i+mi

, bi =
n− i+ 1−mi

n− i+ 1
,

āi = 1− ai, and b̄i = 1− bi. Then (3.22) and (3.17) are equal to

W SE
2,i,n = āi

i−1∏
k=1

ak and W SE
1,i,n = b̄i

i−1∏
k=1

bk,

respectively.

Proof of Theorem 3.16.

Assume that ϕ ≥ 0. Otherwise decompose ϕ into its positive and negative part, and proceed

as follows. Using the previous abbreviations, (3.16) and (3.21) give

∫
ϕ(x)F SE

2,n (dx)−
∫
ϕ(x)F SE

1,n (dx)

=
n∑
i=1

ϕ(Zi:n)
(
W SE

2,i,n(θn)−W SE
1,i,n(θn)

)
=

n∑
i=1

ϕ(Zi:n)

(
āi

i−1∏
k=1

ak − b̄i
i−1∏
k=1

bk

)
.
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Then Remark 3.22 yields

=
n∑
i=1

ϕ(Zi:n)

(
i−1∑
j=1

{
j−1∏
k=1

ak(aj − bj)b̄i
i−1∏

k=j+1

bk

}
+ (āi − b̄i)

i−1∏
j=1

ak

)

=
n∑
i=1

ϕ(Zi:n)

(
i−1∑
j=1

{
j−1∏
k=1

ak(aj − bj)b̄i
i−1∏

k=j+1

bk

})
+

n∑
i=1

ϕ(Zi:n)

(
(āi − b̄i)

i−1∏
j=1

ak

)

≡I1(n) + I2(n). (3.29)

Note that for j = 1, . . . , n− 1

b̄j − āj = aj − bj =
m2
j −mj

(n− j + 1)(n− j +mj)
≤ 0

and an = 0 since mn > 0, and bn = 1 −mn. Furthermore, since 0 ≤ aj ≤ 1 and 0 ≤ bj ≤ 1

for all j = 1, . . . , n, we have

0 ≤
j−1∏
k=1

ak ≤ 1 and 0 ≤
i−1∏

k=j+1

bk ≤ 1.

Then, because (aj − bj) ≤ 0, for j = 1, . . . , n,

|I1(n)| =−
n∑
i=1

ϕ(Zi:n)

(
i−1∑
j=1

{
j−1∏
k=1

ak(aj − bj)b̄i
i−1∏

k=j+1

bk

})

≤−
n∑
i=1

ϕ(Zi:n)b̄i

(
i−1∑
j=1

(aj − bj)

)

=
n∑
i=1

ϕ(Zi:n)b̄i

(
i−1∑
j=1

mj −m2
j

(n− j + 1)(n− j +mj)

)

≤
n∑
i=1

ϕ(Zi:n)b̄i

(
i−1∑
j=1

1

(n− j + 1)(n− j)

)
.
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With (n− j + 1)−1(n− j)−1 = (n− j)−1 − (n− j + 1)−1 and using telescoping sums

=
n∑
i=1

ϕ(Zi:n)
mi

n− i+ 1

(
1

n− i+ 1
− 1

n

)
≤

n∑
i=1

ϕ(Zi:n)
mi

(n− i+ 1)2

≤
n−2∑
i=1

ϕ(Zi:n)

(n− i)2
+ ϕ(Zn−1:n) + ϕ(Zn:n). (3.30)

Furthermore, because I2(n) is positive,

I2(n) ≤
n∑
i=1

ϕ(Zi:n)
mj −m2

j

(n− j + 1)(n− j +mj)

≤
n−2∑
i=1

ϕ(Zi:n)

(n− i)2
+ ϕ(Zn−1:n) + ϕ(Zn:n). (3.31)

When defining B(n) :=
∑n−2

i=1
ϕ(Zi:n)
(n−i)2 , we have shown that

∣∣∣∣∫ ϕ(x)F SE
2,n (dx)−

∫
ϕ(x)F SE

1,n (dx)

∣∣∣∣ ≤ 2
(
B(n) + ϕ(Zn−1:n) + ϕ(Zn:n)

)
.

Then together with nHn(Zi:n) = i for all 1 ≤ i ≤ n we have

B(n) =
n−2∑
i=1

ϕ(Zi:n)

(n− i)2
=

1

n2

n−2∑
i=1

ϕ(Zi:n)

(H̄n(Zi:n))2

=
1

n

∫ Zn−2:n

0

ϕ(t)

(H̄n(t))2
Hn(dt)

=
1

n

∫ (n−2)/n

0

ϕ(H−1
n (u))

(H̄n(H−1
n (u)))2

du.

Now exploiting the quantile representation of the Z-sample by using the results (3.25), (3.27)

35



and (3.28), it holds that

B(n) =
1

n

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃n(H̃−1
n (u)))2

du

=
1

n

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− u)2

(1− u)2

(1− H̃n(H̃−1
n (u)))2

du

<
1

n

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− u)2

(1− u)2

(1− u− 1/n)2
du.

Since (1− u)2/(1− u− 1/n)2 ≤ 4 for u ∈ [0, (n− 2)/n]

≤ 4

n

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− u)2
du (3.32)

=
4

n

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃−1
n (u))1+ε

(1− H̃−1
n (u))2+0.5ε

(1− u)2

(1− H̃−1
n (u))1+ε

(1− H̃−1
n (u))2+0.5ε

du

≤ 4

n
sup

0≤u≤(n−2)/n

(
1

(1− H̃−1
n (u))1−0.5ε

)
sup

0≤u≤(n−2)/n

(
(1− H̃−1

n (u))2+0.5ε

(1− u)2

)

×
∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃−1
n (u))1+ε

du.

Then, for ε small enough, (1− x)0.5ε−1 is monotone increasing in x, hence

4

n
sup

0≤u≤(n−2)/n

(
1

(1− H̃−1
n (u))1−0.5ε

)
≤ 4

n
[
1− H̃−1

n

(
n−2
n

)]1−0.5ε

=
4

n [1− Un−2:n]1−0.5ε ≤
4

n [1− Un:n]1−0.5ε

a.s.
= O

(
4

(log(n))1−0.5εn0.5ε

)
.

The last a.s. equality follows from 1−Un:n
a.s.
= O

(
log(n)
n

)
as shown in Robbins and Siegmund

(1972, Theorem 1 (i)).

Furthermore, from Shorack andWellner (1986, Theorem 10.6.1) we have for a fixed 0 < δ < 1,

for n large enough and for all u ∈ [0, (n− 2)/n]

1− H̃−1
n (u)

a.s.

≤ 22−δ(1− u)1−δ.
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Therefore it yields

(1− H̃−1
n (u))2+0.5ε

(1− u)2
≤ 2(2−δ)(2+0.5ε)(1− u)(1−δ)(2+0.5ε)−2 = 2(2−δ)(2+0.5ε)(1− u)0.5ε−δ(2+0.5ε)

and, since ε > 0, δ can be chosen in such a way that the exponent of (1− u) is nonnegative

for u ∈ [0, (n− 2)/n]. For that reason

sup
0≤u≤(n−2)/n

(
(1− H̃−1

n (u))2+0.5ε

(1− u)2

)

is bounded almost surely. Moreover, by the SLLN,

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃−1
n (u))1+ε

du =

∫ (n−2)/n

0

ϕ(H−1
n (u))

(1−H(H−1
n (u)))1+ε

du

≤
∫ ∞

0

ϕ(u)

(1−H(u))1+ε
Hn(du)

a.s.−−−→
n→∞

∫ ∞
0

ϕ(u)

(1−H(u))1+ε
H(du) <∞, (3.33)

where the last term is bounded due to assumption (M6). Hence B(n)
a.s.−−−→
n→∞

0.

For ϕ(Zn:n) we have

ϕ(Zn:n) =ϕ(H−1(Un:n)) ≤ log(n)1+ε

nε

(
n

log(n)
(1− Un:n)

)1+ε

sup
1≤i≤n

1

n

ϕ(H−1(Ui))

(1− Ui)1+ε
.

Since assumption (M6) holds, Ghosh, Parr, Singh, and Babu (1984, Lemma 3) yields

sup
1≤i≤n

1

n

ϕ(H−1(Ui))

(1− Ui)1+ε

a.s.−−−→
n→∞

0. (3.34)

Furthermore from Robbins and Siegmund (1972, Theorem 1 (i))

1− Un:n
a.s.
= O

(
log(n)

n

)
.
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Thus (
n

log(n)
(1− Un:n)

)1+ε

is bounded almost surely. Because the first factor is also bounded, we have ϕ(Zn:n)
a.s.−−−→
n→∞

0.

In a similar way we can show the same for ϕ(Zn−1:n):

ϕ(Zn−1:n) ≤ log(n)1+ε

nε

(
n

log(n)
(1− Un−1:n)

)1+ε

sup
1≤i≤n

1

n

ϕ(H−1(Ui))

(1− Ui)1+ε
.

Note that (1 − Un−1:n) = (1 − Un:n) + (Un:n − Un−1:n). Then again due to Robbins and

Siegmund (1972, Theorem 1 (i)), (1−Un:n) = O(log(n)n−1) a.s. Furthermore, due to Shorack

and Wellner (1986, pp. 720-721), (1 − Un:n) and (Un:n − Un−1:n) are i.i.d. Therefore, from

Robbins and Siegmund (1972, Remark 2.1) in conjunction with Robbins and Siegmund

(1972, Theorem 1 (i)) we have

(Un:n − Un−1:n)
a.s.
= O

(
log(n)

n

)
.

Hence

(
n(1− Un−1:n)

log(n)

)1+ε

=

(
n(1− Un:n)

log(n)
+
n(Un:n − Un−1:n)

log(n)

)1+ε

is bounded almost surely. Then again using (3.34) yields ϕ(Zn−1:n)
a.s.−−−→
n→∞

0, which completes

the proof.

The overall concept of the next proof is equivalent to the last one. Since Theorem 3.13

incorporates convergence in probability we have to use slightly different arguments.
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Proof of Theorem 3.13.

Again assume that ϕ is positive. Otherwise employ the decomposition in its positive and

negative parts. Then, due to the same argumentation as in the proof of Theorem 3.16, we

have

T̃n := n−1/2

(∫
ϕdF SE

2,n −
∫
ϕdF SE

1,n

)
= n−1/2

(
I1(n) + I2(n)

)

where I1 and I2 are exactly the same as in (3.29). Then from (3.30) and (3.31) we have

T̃n ≤ 2n1/2
(
B(n) + ϕ(Zn−1:n) + ϕ(Zn:n)

)

where, equivalently to previous proof, B(n) :=
∑n−2

i=1
ϕ(Zi:n)
(n−i)2 . Hence it is left to show that

n1/2B(n), n1/2ϕ(Zn−1:n) an n1/2ϕ(Zn:n) converge to zero in probability.

Inequality (3.32) yields

n1/2B(n) ≤ 4

n1/2

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− u)2
du

=
4

n1/2

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃−1
n (u))1.5+ε

(
1− H̃−1

n (u)

1− u

)1.5+ε
(1− u)1.5+ε

(1− u)2
du

≤ 4

n1/2
sup

0≤u≤(n−2)/n

(
(1− u)−0.5+ε

)
sup

0≤u≤(n−2)/n

(
1− H̃−1

n (u)

1− u

)1.5+ε

×
∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃−1
n (u))1.5+ε

du

≤ 4

21/2−εnε
sup

0≤u≤(n−2)/n

(
1− H̃−1

n (u)

1− u

)1.5+ε ∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃−1
n (u))1.5+ε

du,

since (1− u)−0.5+ε attains its maximum on [0, (n− 2)/n] at the upper bound of the interval.

Due to Shorack and Wellner (1986, p. 419, Inequality 1)

sup
0≤u≤(n−2)/n

(
1− H̃−1

n (u)

1− u

)1.5+ε
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is bounded in probability. Furthermore, similar to (3.33), we have by the ordinary SLLN,

∫ (n−2)/n

0

ϕ(H−1(H̃−1
n (u)))

(1− H̃−1
n (u))1.5+ε

du ≤
∫ ∞

0

ϕ(u)

(1−H(u))1.5+ε
Hn(du)

a.s.−−−→
n→∞

∫ ∞
0

ϕ(u)

(1−H(u))1.5+ε
H(du) <∞.

The last term is finite due to assumption (M5). Thus

n1/2B(n) −−−→
n→∞

0 in probability.

Moreover it yields

n1/2ϕ(Zn:n) =n1/2 ϕ(H−1(Un:n))

(1− Un:n)1.5+ε
(1− Un:n)1.5+ε

≤(1− Un:n)ε(n(1− Un:n))1.5 sup
1≤i≤n

ϕ(H−1(Ui))

n(1− Ui)1.5+ε
.

Similarly as in the previous proof,

sup
1≤i≤n

ϕ(H−1(Ui))

n(1− Ui)1.5+ε

a.s.−−−→
n→∞

0

due to Ghosh et al. (1984, Lemma 3) because we assume (M5). Note that both, n(1−Un:n)

and n(1− Un−1:n), are bounded in probability. Hence

n1/2ϕ(Zn:n) −−−→
n→∞

0 in probability.

Using the same arguments, the equivalent holds true for n1/2ϕ(Zn−1:n).
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Proof of Theorem 3.17.

The proof of Theorem 3.17 is a simplified version of the one for Theorem 3.16. To shorten

the notation in the following calculation we define mi = m(Zi, θn). At first note that

∣∣F SE
2,n (t)− F SE

1,n (t)
∣∣ =

∣∣∣∣∣ ∏
i:Zi≤t

(
1− m(Zi:n, θn)

n− i+ 1

)
−
∏
i:Zi≤t

(
1− m(Zi:n, θn)

n− i+m(Zi:n, θn)

)∣∣∣∣∣ .
Applying Remark 3.22 to rewrite the difference and using 1 as an upper bound of the

contained products yields

∣∣F SE
2,n (t)− F SE

1,n (t)
∣∣ ≤ ∑

i:Zi≤t

(
m(Zi:n, θn)

n−Rn(Zi) +m(Zi:n, θn)
− m(Zi:n, θn)

n−Rn(Zi) + 1

)
=
∑
i:Zi≤t

m(Zi:n, θn)−m2(Zi:n, θn)

(n−Rn(Zi) +m(Zi:n, θn))(n−Rn(Zi) + 1)

≤
∑
i:Zi≤t

1

(n−Rn(Zi))2
=

1

n2

∑
i:Zi≤t

1

(1−Rn(Zi)/n)2
=

1

n

∫ t

0

1

(H̄n(x))2
Hn(dx),

where we used Rn(Zi) = nHn(Zi). Since H̄n(x) ≥ H̄n(t) ≥ H̄n(T )

≤ 1

n

1

(H̄n(T ))2

∫ x

0

Hn(dx) ≤ 1

n

1

(H̄n(T ))2
.

The result follows by the SLLN and H(T ) < 1

(H̄n(T ))−2 a.s.−−−→
n→∞

(H̄(T ))−2 <∞,

and holds uniformly in t ∈ [0, T ].
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Proof of Lemma 3.11.

We again use the simplified notation mi = m(Zi, θn). First consider the basic inequalities

− a

1− a
≤ ln(1− a) ≤ −a and 1 + x ≤ exp(x) ≤ 1

1− x

for all 0 ≤ a < 1 and 1 > x ∈ R. Under the given conditions we have for i = 1, . . . , n on the

one hand

(
n−Rn(Zi)

n−Rn(Zi) + 1

)mi
=

(
1− 1

n−Rn(Zi) + 1

)mi
= exp

(
mi ln

(
1− 1

n−Rn(Zi) + 1

))
≤ exp

(
− mi

n−Rn(Zi) + 1

)
≤ n−Rn(Zi) + 1

n−Rn(Zi) + 1 +mi

(3.35)

and on the other hand

(
n−Rn(Zi)

n−Rn(Zi) + 1

)mi
≥ exp

(
− mi

n−Rn(Zi)

)
≥ 1− mi

n−Rn(Zi)
=
n−Rn(Zi)−mi

n−Rn(Zi)
.

(3.36)

Applying Remark 3.22 to rewrite the difference Ḟ SE
1,n −F SE

1,n while using 1 as the upper bound

of the occurring products gives

∣∣∣Ḟ SE
1,n (t)− F SE

1,n (t)
∣∣∣ =

∣∣∣∣∣ ∏
i:Zi≤t

(
1− mi

n−Rn(Zi) + 1

)
−
∏
i:Zi≤t

(
n−Rn(Zi)

n−Rn(Zi) + 1

)mi∣∣∣∣∣
≤
∑
i:Zi≤t

∣∣∣∣(1− mi

n−Rn(Zi) + 1

)
−
(

n−Rn(Zi)

n−Rn(Zi) + 1

)mi∣∣∣∣ ≡ ∑
i:Zi≤t

|Ai −Bi| .

Note that |Ai −Bi| = max (Ai −Bi, Bi − Ai). Then inequality (3.36) yields

Ai −Bi ≤
(

1− mi

n−Rn(Zi) + 1

)
−
(
n−Rn(Zi)−mi

n−Rn(Zi)

)
=

mi

(n−Rn(Zi))(n−Rn(Zi) + 1)
≤ 1

(n−Rn(Zi))2
.
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Furthermore by inequality (3.35) we have

Bi − Ai ≤
n−Rn(Zi) + 1

n−Rn(Zi) + 1 +mi

−
(

1− mi

n−Rn(Zi) + 1

)
=

m2
i

(n−Rn(Zi) + 1 +mi)(n−Rn(Zi) + 1)
≤ 1

(n−Rn(Zi))2
.

Here we used 0 ≤ m(·, ·) ≤ 1 for n large enough. Combining the last two results leads to

∣∣∣Ḟ SE
1,n (t)− F SE

1,n (t)
∣∣∣ ≤ ∑

i:Zi≤t

|Ai −Bi| ≤
∑
i:Zi≤t

1

(n−Rn(Zi))2
≤ 1

n(H̄n(T ))2
,

where the last inequality is derived identically as described in the proof of Theorem 3.17.

Since H(T ) < 1, the assertion follows by the SLLN, (H̄n(T ))−2 a.s.−−→ (H̄(T ))−2 < ∞ as

n→∞, and holds uniformly in t ∈ [0, T ].
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Chapter 4

Kernel type density estimators for right censored data

We are going to define kernel density estimators applicable under the random censorship

model by replacing the e.c.d.f. in the definition of the usual kernel density estimator with the

product limit estimators derived in Chapter 3. In Definition 4.3 and Definition 4.4 we propose

the new semi-parametric and presmoothed estimators fSE2,n and fPR2,n . The main objective is

the derivation of the asymptotic representations for fSE2,n in Theorem 4.6 and Theorem 4.7.

Relying on those we determine exact rates of pointwise and uniform convergence and deduce

the pointwise limiting distribution as well as the distribution of the maximal deviation.

4.1 Kernel density estimation for complete data

As an entry point to density estimation, first consider the case of observing only uncensored

data points, e.g. all estimations can rely on a sample (xi)1≤i≤n of X. In many applications

one has no information about the existence or structure of a parametric family possibly

underlying X. Therefore nonparametric methods have to be applied.

One of the most popular and extensively studied nonparametric estimators is the kernel

density estimator introduced by Rosenblatt (1956) and Parzen (1962). A general version of

this estimator is given in the following definition.
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Definition 4.1. Assume X is a random variable as given in Definition 2.1 and let F ∗n be

some consistent estimator of the d.f. F . Then

f ∗n(t) :=
1

an

∫
R
K

(
t− x
an

)
F ∗n(dx) (4.1)

defines an estimator of the density function f , provided that the kernelK and the sequence of

bandwidths (an)n≥1 satisfy certain conditions, which will be concretized during the following

discussion.

In the absence of censoring, the e.c.d.f. Fn, based on a sample (xi)1≤i≤n, is a natural choice

for F ∗n . In particular

fn(t) :=
1

an

∫
R
K

(
t− x
an

)
Fn(dx) (4.2)

is the estimator established by Rosenblatt (1956) and Parzen (1962). There are a lot of

results available for complete data including Silverman (1986), Härdle (1991) and Wand and

Jones (1994) or, more recently for the multivariate case, Scott (2015). Some elementary

characteristics of fn could readily be seen from the definition. If the conditions

(K1)
∫∞
−∞K(x)dx = 1 and

(K2) K(x) ≥ 0 ∀x ∈ R

hold, e.g. K is a probability density function, then fn itself is a probability density func-

tion. Furthermore, fn inherits the continuity properties of K. It is shown in Parzen (1962,

Corollary 1A) that the estimator fn(t) is asymptotically unbiased at all continuity points of

f given the assumptions

(H1) lim
n→∞

an = 0,

(K3) sup
−∞<x<∞

|K(x)|<∞,

(K4)
∫∞
−∞|K(x)|dx <∞ and

(K5) lim
x→∞
|xK(x)|= 0.
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Often an even function satisfying (K1) to (K5) is referred to as weighting function or proba-

bility kernel. Possible kernel functions are for example given in Silverman (1986, p. 43). The

Epanechnikov (1969) kernel, Kep(t) := 3/4 (1− t2)1|t|<1, is considered to be optimal among

the kernels of second order since Kep minimizes the mean integrated squared error, cf. Wand

and Jones (1994, Chapter 2.7).

If we put more restrictive assumptions on the bandwidth an which guarantee that the variance

tends to zero as n→ 0, i.e.

(H2) lim
n→∞

nan =∞,

we can ensure weak convergence of fn(t) to f(t) at all continuity points of f , cf. Parzen

(1962, p. 1069). When extending (H2) to lim
n→∞

na2
n =∞ the last result also holds uniformly.

Nadaraya (1965) was the first one who proved a strong consistency result. Silverman (1978)

managed to weaken his assumptions. Given the assumptions (K3),

(H3) lim
n→∞

nan · (log n)−1 =∞,

(K6) K is of bounded variation, denoted by VK

(K7) The set of all discontinuities of K has Lebesgue measure zero,

and assuming f is uniformly continuous on (−∞,∞), Bertrand-Retali (1978) showed that

fn(t) converges to f a.s. uniformly. Furthermore, given (K1), (K3) to (K5), (H1), (H2) and

(K8)
∫
K(x)2+δdx <∞ ∀δ > 0,

Parzen (1962) proved that

n1/2
(
fn − f̄n

)
−−−→
n→∞

N(0, σ2) in distribution, (4.3)

where the asymptotic variance is given by σ2 = f(x)
∫∞
−∞K

2(x)dx and

f̄n(t) := E[fn] =
1

an

∫
R
K

(
t− x
an

)
F (dt), (4.4)

is the expectation of the kernel density estimator fn.
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4.2 Density estimators for right censored data

In Section 4.1 we have seen that kernel density estimators as given in Definition 4.1 mainly

depend on a consistent estimator of F and some generic kernel function K:

f ∗n(t) :=
1

an

∫
R
K

(
t− x
an

)
F ∗n(dx).

In the case of complete data, F ∗n = Fn, the e.c.d.f. based on (xi)1≤i≤n, is used. The resulting

estimator fn is very well-studied.

In Chapter 3 we presented a new technique to derive estimators which extend the usual

e.c.d.f. Fn to the RCM. Those can be used to define density estimators applicable in the case

of censoring. Possible candidates for F ∗n are FKM
n , FACL

n , F SE
1,n and F PR

1,n from remarks 3.3 to

3.6 but also the new estimators F SE
2,n and F PR

2,n introduced in Definition 3.7 and Definition 3.8,

respectively.

In fact, the estimator

fKMn (t) :=
1

an

∫
R
K

(
t− x
an

)
FKM
n (dt)

=
1

an

n∑
i=1

K

(
t− Zi:n
an

)
WKM
i,n

has been proposed by Blum and Susarla (1980) and received great attention in practical

applications. McNichols and Padgett (1981) introduced the above given representation in

terms of the order statistics of the Z-sample and proved that under the assumptions (K1),

(K3) to (K5) and (H1) the estimator fKMn (t) is an asymptotically unbiased estimator of

f(t) for all t ≥ 0. If, in addition to (H2), some further weak assumptions on K hold, then

McNichols and Padgett (1981) also showed that fKMn → f in mean square as n→∞.
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In Földes, Rejtő, and Winter (1981, Theorem 3.2) it is shown that under the following hy-

potheses fKMn is strongly consistent: Let f be bounded, G(T−F ) < 1 with TF = sup{x|F (x) < 1}

and assume in addition to (K6), (H1)

(K9) K is right-continuous,

(H4) lim
n→∞

an(n/log n)1/8 =∞,

then it holds
fKMn (t)

a.s.−−−→
n→∞

f(t),

at all continuity points t of f . Földes et al. (1981) also gave conditions for a.s. uniform

convergence. Zhang (1998) used strong approximation techniques and counting processes to

study strong uniform convergence. His proof uses a similar approach to Silverman (1978) for

the uncensored case. A version of fKMn , where the bandwidths an depend on the censored

sample (Zi, δi)1≤i≤n, is considered in McNichols and Padgett (1984). The consistency of fKMn

for some other choices of bandwidths based on the distance to the k(n)th nearest uncensored

observation are investigated in Mielniczuk (1986).

Ramlau-Hansen (1983) and Mielniczuk (1986) were concerned with the asymptotic distri-

bution of fKMn , but for somewhat suboptimal bandwidths. Also Blum and Susarla (1980)

already derived the limit distribution of an estimator similar to fKMn . More generally, Diehl

and Stute (1988) proved that given (K1) to (K5), (H1), (H2) and

(K10) K is continuously differentiable,

(K11) K vanishes outside some finite interval −∞ < r < 0 < s <∞,

and f , g are bounded on [0, T ′] for some T < T ′ then for almost all 0 ≤ t ≤ T < T ′ < τH

(nan)1/2
(
fKMn (t)− f̄n(t)

)
−−−→
n→∞

N(0, σ2
KM) in distribution,

where σ2
KM =

f(t)

1−G(t)

∫
R
K2(x)dx, (4.5)

and f̄n = E(fn) as given in (4.4).
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Note that f̄n(t) is not the expectation of fKMn in the presence of censoring. In addition,

Zhang (1996) proved several asymptotic results of fKMn , including asymptotic normality, by

using the theory of martingales for counting processes. Optimal bandwidth selection for

fKMn is discussed in Marron and Padgett (1987), among others. Giné and Guillou (2001)

extended the results of Diehl and Stute (1988) to hold for adaptive intervals. The approach

they used is similar to Einmahl and Mason (2000) for the uncensored case. Lp convergence of

fKMn was considered in Csörgő, Gombay, and Horvath (1991), Ghorai and Pattanaik (1990)

and Carbonez and Györfi (1992). The asymptotic normality of the weighted integrated

squared error of fKMn was proven in Ghorai and Pattanaik (1991) by using a version of the

martingale central limit theorem. An error bound for the mean integrated absolute error is

given in Kulasekera (1995) and an exact asymptotic expression of the L1-error is determined

in Lemdani and Ould-Saïd (2002). Dinwoodie (1993) studied some large deviation properties

of FKM
n . More recently Diallo and Louani (2013) stated moderate and large deviation

principles for kernel type estimators of the hazard rate in presence of censoring.

If we make, in addition to the RCM, further smoothness assumptions, for example m, f ,

and h are four times continuously differentiable then

fPR1,n (t) :=
1

an

∫
R
K

(
t− x
an

)
F PR

1,n (dx)

defines an estimator of the p.d.f. f . Among other results, Cao and Jácome (2004) and

Jácome and Cao (2007) were concerned with the asymptotic normality of fPR1,n . Jácome and

Cao (2007) also proved pointwise strong consistency. A comparison of different presmoothing

methods is given in Jácome, Gijbels, and Cao (2008). Bandwidth selection is very crucial

for those estimators and is discussed in Jácome and Cao (2008).
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Proceeding using the same idea of plugging in PLEs of F into Definition 4.1, it is natural to

define the following estimators.

Definition 4.2. Given the SRCM, then under certain assumptions on K and (an)n≥1,

fSE1,n (t) :=
1

an

∫
R
K

(
t− x
an

)
F SE

1,n (dx)

defines an estimator of the p.d.f. f where F SE
1,n is given in Remark 3.4.

To our knowledge, this estimator has only been considered in simulation studies presented

in Jácome et al. (2008) and more elaborately in Harlaß (2011). Further on, making use of

the newly defined approximations F SE
2,n and F PR

2,n , we propose the following estimators.

Definition 4.3. Given the SRCM, let K be some probability kernel and (an)n≥1 a series of

bandwidths, then

fSE2,n (t) :=
1

an

∫
R
K

(
t− x
an

)
F SE

2,n (dx)

is an estimator of the density function f where F SE
2,n is defined in Definition 3.7.

Definition 4.4. Requiring m, f and h to fulfill some smoothness conditions, e.g. see Cao

and Jácome (2004) and Jácome and Cao (2007), then

fPR2,n (t) :=
1

an

∫
R
K

(
t− x
an

)
F PR

2,n (dx)

defines an estimator of the density function f , where F PR
2,n is given in Definition 3.8, K some

probability kernel and (an)n≥1 a series of bandwidths.

In an equivalent way, it is possible to specify kernel based estimators of the hazard rate as the

scaled convolution of some probability kernel and the estimators ΛSE
1,n or ΛSE

2,n , respectively:
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λSE1,n(t) :=
1

an

n∑
i=1

K

(
t− Zi
an

)
m(Zi, θn)

n−Rn(Zi) + 1
,

and

λSE2,n(t) :=
1

an

n∑
i=1

K

(
t− Zi
an

)
m(Zi, θn)

n−Rn(Zi) +m(Zi, θn)
.

Because of this construction, those estimators behave quite similar to their counterparts for

the p.d.f.

Due to the improved properties of the semi-parametric PLEs versus the Kaplan-Meier es-

timator, in particular the gain in efficiency in terms of the asymptotic variance under the

SRCM, see Remark 3.21, it is conceivable that those improvements are carried over to the

semi-parametric kernel estimators. The simulation studies in Harlaß (2011) support this

conjecture. The simulations indicate a reduction of the asymptotic variance and the mean

squared error when comparing fSE1,n to fKMn . Theorem 4.10 below shows that this hypothe-

ses is indeed true. In particular we show that fSE1,n and fSE2,n are equivalent as n → ∞ and

therefore the result holds for both estimators.

Recalling Theorem 3.13 and Theorem 3.17, it is not very surprising that the semi-parametric

estimators fSE1,n and fSE2,n , given in Definition 4.2 and Definition 4.3, are asymptotically iden-

tical. An exact statement is given in the following theorem.

Theorem 4.5. Requiring (K10), (K11) and given the assumptions of Theorem 3.17, that is

F and G are continuous (A2), (A10), and (M6) are satisfied, then for T < T ′ < τH

(nan)1/2 sup
0≤t≤T

∣∣fSE2,n (t)− fSE1,n (t)
∣∣ a.s.= O((nan)−1/2).
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The following two theorems represent our major results related to semi-parametric kernel

density estimators. The asymptotic representation of fSE1,n heavily depends on h1
n, the kernel

density estimator of h1, which was defined in (2.4),

h1
n(t) :=

1

an

∫
R
K

(
t− x
an

)
H1
n(dx).

H1
n is given in (3.5). Note that this estimator relies on the complete dataset (Zi)1≤i≤n.

Theorem 4.6. Let Θ be a connected, open subset of Rk and let K be some probability

kernel, that is (K1) to (K5), satisfying (K10) and (K11). Furthermore, assume (H1), (H2)

and that f and g are bounded on [0, T ′] for some T < T ′. Given the SRCM and that

H is continuous, then under the assumptions (A1) to (A7), (A10) it holds for almost all

0 ≤ t ≤ T < T ′ < τH that

sup
0≤t≤T

(nan)1/2

∣∣∣∣fSE1,n (t)− f̄n(t)− h1
n(t)− Eh1

n(t)

1−G(t)

∣∣∣∣ = O((nan)−1/2) + O(a1/2
n ) in probability.

Theorem 4.7. Under the assumptions of Theorem 4.6 it holds that

sup
0≤t≤T

(nan)1/2

∣∣∣∣fSE1,n (t)− f̄n(t)− h1
n(t)− Eh1

n(t)

1−G(t)

∣∣∣∣ = O

(
ln lnn

(nan)1/2

)
+ O

(
(an ln lnn)1/2

)
a.s.

Corollary 4.8. As a direct consequence of Theorem 4.5, Theorem 4.6 and Theorem 4.7

hold true for fSE2,n under the same assumptions.

Theorems 4.6 and 4.7 are the counterparts to Diehl and Stute (1988, Theorem 1) for the

semi-parametric case. To prevent possible misapprehension, Diehl and Stute (1988) defined

the kernel density estimator, appearing in their theorem, using Ĥ1
n(x) := n−1

∑n
i=1 δi1{Zi≤x}.

Here we rely on h1
n as given above, in particular H1

n(x) = n−1
∑n

i=1m(Zi, θn)1{Zi≤x}; cf. (3.5).
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Similar asymptotic representations can be derived for λSE1,n and λSE2,n , the kernel based esti-

mators of the hazard rate which rely on ΛSE
1,n and ΛSE

2,n , respectively. We omit the proof since

it is analogous to the one given in Section 4.3.

Remark 4.9. If G and f̄n are replaced by H and

λ̄n(t) =
1

an

∫
R
K

(
t− x
an

)
Λ(dx),

respectively, then Theorem 4.6 and Theorem 4.7 hold for λSE1,n as well as for λSE2,n under the

same assumptions.

In the following we derive the asymptotic distribution of the fSE1,n − f̄n and the limit distri-

bution of the maximal deviation. Moreover, we give exact rates of pointwise and uniform

strong convergence.

Theorem 4.10. Under the assumptions of Theorem 4.6 it holds that

(nan)1/2
∣∣fSE1,n (t)− f̄n(t)

∣∣ −−−→
n→∞

N(0, σ2
SE) in distribution,

with the asymptotic variance

σ2
SE =

m(t, θ0)f(t)

1−G(t)

∫
R
K2 (u) du.

Due to Theorem 4.5, the same holds true for fSE2,n .

Corollary 4.11. Under the same assumptions as Theorem 4.6 it holds that

(nan)1/2 sup
0≤t≤T

∣∣fSE2,n (t)− f̄n(t)
∣∣ −−−→
n→∞

N(0, σ2
SE) in distribution

where σ2
SE as given in Theorem 4.10.
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Proof. The triangle inequality yields

(nan)1/2
∣∣fSE2,n (t)− f̄n(t)

∣∣ ≤ (nan)1/2
∣∣fSE2,n (t)− fSE1,n (t)

∣∣+ (nan)1/2
∣∣fSE1,n (t)− f̄n(t)

∣∣ = I + II.

Then I → 0 as n → ∞ almost surely due to Theorem 4.5. The limit distribution follows

from Theorem 4.10.

Remark 4.12. When comparing the asymptotic variance of fSE2,n with the one of the Kaplan-

Meier counterpart, we have

σ2
KM − σ2

SE = (1−m(t, θ0))
f(t)

Ḡ(t)

∫
R
K2 (u) du ≥ 0,

for all t ∈ R≥ given the SRCM. Since 0 ≤ m(t) ≤ 1, the semi-parametric estimator is more

efficient at t, wherever m(t) < 1. Both estimators perform equally at all t, if and only if

m(t) = 1 for all t. But this is only the case if there is no censoring at all. In case of a

continuous model m, equality only occurs with probability 0. Moreover, recall that m ≡ 1

implies that there is no censoring. In this case both estimators reduce to the e.c.d.f.

Corollary 4.13. Assume that the conditions of Theorem 4.6 are satisfied. Set an = n−δ for

some 0 < δ < 1/2. Given that h1 and K satisfy the assumptions of Bickel and Rosenblatt

(1973, Theorem 3.1), then

P

(
(2δ lnn)1/2

[
sup

T ′′≤t≤T
(nan)1/2

√
1−G(t)

m(t, θn)f(t)
∫
K2

∣∣fSE1,n (t)− f̄n(t)
∣∣− dn] < x

)
→ e−2e−x ,

for dn →∞, depending on K and δ, as n→∞.
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Corollary 4.14. Assume (H1), (H2) and additionally

(H5) lim
ε→0

lim
n→∞

supk:|k−n|≤nε

∣∣∣ akan − 1
∣∣∣ = 0

and

(H6) lim
n→∞

(lnn)4

nan ln lnn
= 0.

Then, under the assumptions of Theorem 4.7,

lim sup
n→∞

√
nan

2 ln lnn

(
fSE1,n (t)− f̄n(t)

) a.s.
=

(
m(t, θ0)f(t)

1−G(t)

∫
K2(u)du

)1/2

.

Proof. This result is a direct consequence of Theorem 4.7 and the application of Hall (1981,

Theorem 2).

Corollary 4.15. Under the assumptions of Theorem 4.7, extend (H1) and (H2) by choosing

(an)n>1 such that the following holds:

(H7) lim
n→∞

ln a−1
n

nan
= 0,

and

(H8) lim
n→∞

ln a−1
n

ln lnn
=∞.

Furthermore, assume 0 < k ≤ f(t) for t ∈ [T ′′, T ′] with 0 ≤ T ′′ < T < T ′. Then

lim
n→∞

√
nan

2 ln a−1
n

sup
T ′′≤t≤T ′

√
1−G(t)

m(t, θn)f(t)

∣∣fSE1,n (t)− f̄n(t)
∣∣ a.s.=

(∫
K2(u)du

)
.

Proof. The convergence follows directly from Stute (1982, Theorem 1.3) due to Theorem 4.7.

In practice assumptions (H5) and (H6) are no restriction since usually the bandwidth an

is taken to behave like Cn−b with C > 0 and 0 < b < 1 for which both assumptions are

satisfied. Prerequisites (H7) and (H8) roughly state that the bandwidth ranges between 1/n

and 1/lnn). When choosing for example an = Cn−b (H7) and (H8) are satisfied.
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The rule-of-thumb given in Silverman (1986, Equation 3.31)

an = Cn−1/5 (4.6)

with C = min(standard deviation, inter quartile range/1.34) is a popular choice for a fixed

bandwidth and satisfies all of the previously mentioned conditions. Scott (1992) suggests to

choose the factor 1.06 instead. For more comprehensive results on bandwidth selection see

for example Heidenreich, Schindler, and Sperlich (2013) and Chiu (1996).

Corollary 4.16. Due to Theorem 4.5, the corollaries 4.13, 4.14 and 4.15 also hold for fSE1,n

replaced by fSE2,n .
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4.3 Proving the properties of fSE1,n and fSE2,n

In this section we are primarily concerned with the proof of the Theorems 4.6, 4.7 and

4.10. Other results are proved right away in Section 4.1. Note that by assumption (K11),

K((t − x)/an)) = 0 for all x /∈ (t − san, t − ran). Hence it is sufficient to integrate over

Sn := Sn(t) := [t− san, t− ran] instead of the whole real line.

The following two corollaries will be used repeatedly in the course of this section. They can be

derived by applying a general variant of integration by parts. Hewitt (1960, p. 423) provides

a formula for integration by parts w.r.t. signed measures which fits our needs. The proof of

more elementary versions could be based on Hewitt and Stromberg (1965, Theorem 21.67).

Corollary 4.17. Let H be some arbitrary continuous d.f. and assume (K10) and (K11),

then

∫
R
K

(
t− x
an

)
H(dx) = −

∫
R
H(x)K

(
t− dx
an

)
.

Proof. By (K10) and (K11), K((t − x)/an)) is an absolute continuous function in x which

evaluates to zero at the boundaries of Sn. Then Hewitt (1960, p. 423) yields

∫
Sn

K

(
t− x
an

)
H(dx) = −

∫
Sn

H(x)K

(
t− dx
an

)
.

Corollary 4.18. Let ψ : R 7→ R be some bounded Borel-measurable function and again use

Sn = [t− san, t− ran]. Moreover, assume (K10) and (K11). Then

∫
Sn

ψ(x)K

(
t− dx
an

)
= −

∫
[r,s]

ψ(t− uan)K ′(u)d(u) = −
∫

[r,s]

ψ(t− uan)K(du).

Proof. Let K ′ denote the derivative of K and λ the Lebesgue measure. By assumption

(K10), K((t− x)/an) = K ◦ T(x) with T(x) := (t− x)/an) is absolutely continuous.
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Note that T−1(u) = t− uan. Then by Hewitt (1960, p. 423)∫
Sn

ψ(x)(K ◦ T)(dx) =

∫
Sn

ψ(x)(K ◦ T)′(x)λ(dx)

=−
∫
Sn

ψ(x)K ′(T(x))a−1
n λ(dx)

=−
∫
T−1(Sn)

ψ(T−1(u))K ′(u)a−1
n λT(du),

where λT is the image measure of the Lebesgue measure λ induced by the transformation T.

Applying the transformation formula, cf. Cohn (2013, Theorem 6.1.7), gives

=−
∫

[r,s]

ψ(t− uan)K ′(u)λ(du) = −
∫

[r,s]

ψ(t− uan)K(du),

where the last equality again relies on Hewitt (1960, p. 423).

The guiding idea to eventually obtain an asymptotic representation is to decompose the

difference fSE2,n − f̄n into an asymptotically negligible remainder and a contributing part for

which we will give an i.i.d. representation. Having this in mind, Theorem 4.5 examines the

difference fSE2,n − fSE1,n .

Proof of Theorem 4.5.

From Definition 4.2 and Definition 4.3 it follows

∣∣fSE2,n (t)− fSE1,n (t)
∣∣ =

∣∣∣∣ 1

an

∫
R
K

(
t− x
an

)
F SE

2,n (dx)− 1

an

∫
R
K

(
t− x
an

)
F SE

1,n (dx)

∣∣∣∣ .
Then first applying Corollary 4.17 and then using Corollary 4.18 gives

∣∣fSE2,n (t)− fSE1,n (t)
∣∣ =

∣∣∣∣ 1

an

∫
R

[
F SE

2,n (t− uan)− F SE
1,n (t− uan)

]
K ′(u)du

∣∣∣∣
≤ 1

an
sup

0≤x≤T

∣∣F SE
2,n (x)− F SE

1,n (x)
∣∣ ∫ s

r

|K ′(u)| du

=
1

an
sup

0≤x≤T

∣∣F SE
2,n (x)− F SE

1,n (x)
∣∣VK a.s.

= O((nan)−1).
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Note that
∫ s
r
|K ′(u)| du = VK by Hewitt and Stromberg (1965, Theorem 18.1) where VK

denotes the total variation of the kernel function K which is finite due to (K10). The almost

sure result follows then from Theorem 3.17.

We now determine asymptotic representations of fSE1,n −f̄n which hold in probability as well as

almost surely. Note that f̄n is not the expectation of fSE1,n if some observations are censored,

compare (4.4).

Proof of Theorem 4.6 and Theorem 4.7 .

To avoid ln(0) when F SE
1,n (x) = 1 in later calculations, we introduce

1− F̃ SE
1,n (t) :=

∏
i:Zi≤t

(
1− m(Zi, θn)

n−Rn(Zi) + 2

)
, (4.7)

which turns out to be close to 1 − F SE
1,n . Note that F SE

1,n (t) ≥ F̃ SE
1,n (t) for all t ≥ 0. From

Definition 4.2 and (4.4) we have

(nan)1/2
∣∣fSE1,n (t)− f̄n(t)

∣∣ = (nan)1/2

∣∣∣∣ 1

an

∫
R
K

(
t− x
an

)
F SE

1,n (dx)− 1

an

∫
R
K

(
t− x
an

)
F (dx)

∣∣∣∣ .
Then applying Corollary 4.17 for both fSE1,n and f̄n with H = F SE

1,n and H = F respectively,

gives

(nan)1/2
∣∣fSE1,n (t)− f̄n(t)

∣∣ = (nan)1/2

∣∣∣∣ 1

an

∫
R

[
F SE

1,n (x)− F (x)
]
K

(
t− dx
an

)∣∣∣∣
=(nan)1/2

∣∣∣∣ 1

an

∫
R
[F SE

1,n (x)− F̃ SE
1,n (x)]K

(
t− dx
an

)
+

1

an

∫
R
[F̃ SE

1,n (x)− F (x)]K

(
t− dx
an

)∣∣∣∣
≡(nan)1/2 |I1(n) + I2(n)| .

As mentioned above, we have to introduce F̃ SE
1,n to safeguard against ln(0). Lemma 4.19

shows that its distance to F SE
1,n is asymptotically not significant.
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Lemma 4.19. Assuming (A2) and (A10), it holds for 0 ≤ T < τH that

sup
0≤t≤T

|F SE
1,n (t)− F̃ SE

1,n (t)|a.s.= O(n−1).

Proof. Very similar to the proof of Theorem 3.17, it follows from Remark 3.4 and (4.7)

Tn := |F SE
1,n (t)− F̃ SE

1,n (t)| =

∣∣∣∣∣ ∏
i:Zi≤t

(
1− m(Zi, θn)

n−Rn(Zi) + 2

)
−
∏
i:Zi≤t

(
1− m(Zi, θn)

n−Rn(Zi) + 1

)∣∣∣∣∣ .

Now first rewriting the difference of the products using the representation given in Re-

mark 3.22 and then using Rn(Zi) = nHn(Zi) yields

Tn ≤
∑
i:Zi≤t

∣∣∣∣ m(Zi, θn)

n−Rn(Zi) + 1
− m(Zi, θn)

n−Rn(Zi) + 2

∣∣∣∣
=
∑
i:Zi≤t

m(Zi, θn)

(n−Rn(Zi) + 1)(n−Rn(Zi) + 2)

≤
∑
i:Zi≤t

m(Zi, θn)

(n−Rn(Zi))2
=

1

n2

∑
i:Zi≤t

m(Zi, θn)

(H̄n(Zi))2
=

1

n

∫ t

0

m(x, θn)

(H̄n(x))2
Hn(dx).

Since 0 ≤ m(·, ·) ≤ 1 for n large enough due to (A2) and (A10) and H̄n(x) ≥ H̄n(t) ≥ H̄n(T )

we have

Tn ≤
1

n

1

(H̄n(T ))2

∫ t

0

Hn(dx) ≤ 1

n

1

(H̄n(T ))2
.

The result follows by the SLLN and since H(T ) < 1,

H̄−2
n (T )

a.s.−−−→
n→∞

H̄−2(T ) <∞,

and holds uniformly in t ∈ [0, T ].
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Having obtained the last lemma, we can now examine,

I1(n) =
1

an

∫
R

[
F SE

2,n (x)− F̃ SE
2,n (x)

]
K

(
t− dx
an

)
.

Using T ′ such that 0 ≤ T < T ′ < τH in Lemma 4.19, in particular t − uan ≤ T ′ for all n

larger than some N . Then applying Corollary 4.18 yields

|I1(n)| =
∣∣∣∣ 1

an

∫
R

[
F̃ SE

2,n (t− uan)− F SE
2,n (t− uan)

]
K ′(u)du

∣∣∣∣
≤ 1

an
sup

0≤t≤T ′
|F SE

2,n (t)− F̃ SE
2,n (t)|

∫
R
|K ′(u)| du.

Since (K10) by Hewitt and Stromberg (1965, Theorem 18.1),
∫
R |K

′(u)| du = VK . Hence

|I1(n)| ≤ 1

an
sup

0≤t≤T ′
|F SE

2,n (t)− F̃ SE
2,n (t)|VK

a.s.
= O((nan)−1),

according to Lemma 4.19. Therefore we have shown that

I1(n)
a.s.
= O((nan)−1).

In order to analyze the term I2(n), the following lemma splits up the difference F SE
1,n (x)−F (x)

into several parts. Slightly different versions can be found in Diehl and Stute (1988, Lemma 5)

and Breslow and Crowley (1974, Formula 7.12).

Lemma 4.20. Let F̃ SE
1,n be as given in (4.7). If ΛSE

1,n is the estimator of the cumulative

hazard function Λ defined in (3.18), then for all x ≤ T < τH it holds true that

F̃ SE
1,n (x)− F (x) =[1− F (x)]

[
ΛSE

1,n(x)− Λ(x)
]
− 2−1e−Λ∗n(x)

[
ΛSE

1,n(x)− Λ(x)
]2

+ e−Λ∗∗n (x)
[
− ln

(
1− F̃ SE

1,n (x)
)
− ΛSE

1,n(x)
]
,

where Λ∗n(x) is some intermediate point between ΛSE
1,n(x) and Λ(x) and Λ∗∗n between ΛSE

1,n(x)

and − ln(1− F̃ SE
1,n (x)).
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Proof. In order to simplify the notation we leave out the argument x in the following calcu-

lation. Use Taylor expansion in combination with the intermediate value theorem to obtain

exp
(
−ΛSE

1,n

)
= exp(−Λ)− exp(−Λ)

(
ΛSE

1,n − Λ
)

+ 2−1 exp(−Λ∗n)
(
ΛSE

1,n − Λ
)2 ,

exp
(

ln
(

1− F̃ SE
1,n

))
= exp(−ΛSE

1,n)− exp(−Λ∗∗n )(− ln(1− F̃ SE
1,n )− ΛSE

1,n).

Applying the basic equality Λ(t) = − ln(1− F (t)) from Lemma 2.3 together with the latter

expansions yields

F SE
1,n − F = (1− F )−

(
1− F̃ SE

1,n

)
= exp(−Λ)−

(
1− F̃ SE

1,n

)
=
[
exp(−Λ)− exp

(
−ΛSE

1,n

)]
+
[
exp(−ΛSE

1,n)− exp
(

ln
(

1− F̃ SE
1,n

))]
=
[
exp(−Λ)

(
ΛSE

1,n − Λ
)
− 2−1 exp(−Λ∗n)

(
ΛSE

1,n − Λ
)2
]

+
[
exp(−Λ∗∗n )

(
− ln

(
1− F̃ SE

1,n

)
− ΛSE

1,n

)]
= (1− F )

(
ΛSE

1,n − Λ
)
− 2−1 exp(−Λ∗n)

(
ΛSE

1,n − Λ
)2

+ exp(−Λ∗∗n )
(
− ln

(
1− F̃ SE

1,n

)
− ΛSE

1,n

)
.

Turning to I2(n), rewrite the integrand by applying Lemma 4.20

I2(n) =
1

an

∫
R
[1− F (x)]

[
ΛSE

1,n(x)− Λ(x)
]
K̃t,n(dx)

− 1

an

∫
R

2−1e−Λ∗n(x)
[
ΛSE

1,n(x)− Λ(x)
]2
K̃t,n(dx)

+
1

an

∫
R
e−Λ∗∗n (x)

[
− ln

(
1− F̃ SE

1,n (x)
)
− ΛSE

1,n(x)
]
K̃t,n(dx)

≡ I3(n)− I4(n) + I5(n),

where Λ∗n(x) and Λ∗∗n are some intermediate points, as explained in Lemma 4.20. Here

K̃t,n := K((t− x)/an) denotes the transformed kernel. To examining the parts I3(n), I4(n)

and I5(n) separately, we first derive the following lemma.
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Lemma 4.21. Assuming (A2) and (A10), it holds for 0 ≤ T < τH that

sup
0≤t≤T

|− ln(1− F̃ SE
1,n (t))− ΛSE

1,n(t)|a.s.= O(n−1).

Proof. Comparable to Breslow and Crowley (1974, Lemma 7.1), the proof is based on the

basic inequalities

− a

1− a
≤ ln(1− a) ≤ −a, for all 0 ≤ a < 1. (4.8)

To shorten the notation we use mi = m(Zi, θn) in the following calculation. Note that

ΛSE
1,n(t) ≥ − ln(1− F̃ SE

1,n (t)) for all t > 0. Due to the left-hand inequality of (4.8) it holds that

− ln(1− F̃ SE
1,n (t))− ΛSE

1,n(t) =
∑
i:Zi≤t

− ln

(
1− mi

n−Rn(Zi) + 2

)
− mi

n−Rn(Zi) + 1

≤
∑
i:Zi≤t

mi

n−Rn(Zi) + 2−mi

− mi

n−Rn(Zi) + 1

≤
∑
i:Zi≤t

mi

n−Rn(Zi) + 1
− mi

n−Rn(Zi) + 1
= 0.

Hence the difference is given by

ΛSE
1,n(t)+ ln(1− F̃ SE

2,n (t)) = ΛSE
1,n(t) + ln

( ∏
i:Zi≤t

(
1− m(Zi, θn)

n−Rn(Zi) + 2

))

=ΛSE
1,n(t) +

∑
i:Zi≤t

ln

(
1− m(Zi, θn)

n−Rn(Zi) + 2

)
.

Then applying the right-hand side inequality of (4.8) yields

≤
∑
i:Zi≤t

[
m(Zi, θn)

n−Rn(Zi) + 1
− m(Zi, θn)

n−Rn(Zi) + 2

]
≤
∑
i:Zi≤t

m(Zi, θn)

(n−Rn(Zi))2
≤ 1

n(H̄n(T ))2
,

where the latter two inequalities are derived equivalently as in the proof of Lemma 4.19.
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Since H(T ) < 1, the assertion follows by the SLLN

H̄−2
n (T )

a.s.−−−→
n→∞

H̄−2(T ) <∞

and holds uniformly in t ∈ [0, T ].

Consider I5(n). Note that 0 < e−a ≤ 1 ∀ a ≥ 0. Again using T ′ such that 0 ≤ T < T ′ < τH

in Lemma 4.21 and applying Corollary 4.18 yields

|I5(n)| =
∣∣∣∣ 1

an

∫
R
e−Λ∗∗n (t−uan)

[
ΛSE

1,n(t− uan) + ln
(

1− F̃ SE
1,n (t− uan)

)]
K ′(u)du

∣∣∣∣
≤ 1

an

∫
R

∣∣∣[− ln
(

1− F̃ SE
1,n (t− uan)

)
− ΛSE

1,n(t− uan)
]
K ′(u)

∣∣∣ du
≤ 1

an
sup

0≤t≤T ′

∣∣∣− ln
(

1− F̃ SE
1,n (t)

)
− ΛSE

1,n(t)
∣∣∣VK a.s.

= O((nan)−1).

Recall that
∫
R |K

′(u)| du = VK , the total variation of K, which is finite by (K10). The almost

sure convergence result follows by Lemma 4.21. That is

I5(n)
a.s.
= O((nan)−1).

The remaining terms I3(n) and I4(n) are primarily governed by the process ΛSE
1,n − Λ. An

asymptotic representation of this process was derived in Dikta (1998, Lemma 3.12). This

representation could be used to prove our weak convergence results. For the sake of com-

pleteness, the result is quoted in the next lemma.
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Lemma 4.22. Let Θ be a connected, open subset of Rk. Given that H is continuous,

0 ≤ t ≤ T < τH and assumptions (A1), (A3) to (A6) hold, then

ΛSE
1,n(t)− Λ(t) =

1

n

n∑
i=1

{
m(Zi, θ0)I[Zi≤t] −H1(t)

H̄(t)

+
δi −m(Zi, θ0)

m(Zi, θ0)(1−m(Zi, θ0))

∫ t

0

α(x, Zi)

H̄(x)
H(dx)

}
−
∫ t

0

H1
n(x)−H1(x)

H̄2(x)
H(dx) +

∫ t

0

Hn(x)−H(x)

H̄2(x)
H1(dx) + op(n

−1/2).

where H1 and α(x, y) as given in Corollary 2.7 and Theorem 3.10, respectively. Furthermore

H1
n(t) :=

∫ t
0
m(x, θ0)Hn(dx).

Since we are also interested in strong convergence results, in particular see Theorem 4.7, this

representation is not sufficient. The next lemma provides weak and strong convergence rates

for ΛSE
1,n and therefore extends Dikta (1998, Theorem 2.4).

Lemma 4.23. Let Θ be a connected, open subset of Rk. Given that H is continuous then

under the assumptions (A1) to (A7), (A10) it holds for all 0 ≤ T < τh that

sup
0≤t≤T

∣∣ΛSE
1,n(t)− Λ(t)

∣∣ =


O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) in probability.

In order to prove those rates we first derive lemmata 4.24, 4.25 and 4.26.
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Lemma 4.24. Given H is continuous, then for all 0 ≤ t ≤ T < τH and θ0 = (θ0,1, . . . , θ0,k)

we have

ΛSE
1,n(t)− Λ(t) =

H1
n(t)−H1(t)

H̄(t)
−
∫ t

0

H1
n(x)−H1(x)

H̄2(x)
H(dx)

+

∫ t

0

Hn(x)−H(x)

H̄n(x)H̄(x)
H1
n(dx) +

∫ t

0

m(x, θn)−m(x, θ0)

H̄n(x) + 1/n
Hn(dx)

− 1

n

∫ t

0

m(x, θ0)

H̄(x)(H̄n(x) + 1/n)
Hn(dx) (4.9)

≡ Qn,1(t) +Qn,2(t) +Qn,3(t) +Qn,4(t) +Qn,5(t).

Proof. By simply adding and subtracting

ΛSE
1,n(t)− Λ(t) =

[∫ t

0

m(x, θn)

H̄n(x) + 1/n
Hn(dx)−

∫ t

0

m(x, θ0)

H̄n(x) + 1/n
Hn(dx)

]
+

[∫ t

0

m(x, θ0)

H̄n(x) + 1/n
Hn(dx)−

∫ t

0

m(x, θ0)

H̄n(x)
Hn(dx)

]
+

[∫ t

0

m(x, θ0)

H̄n(x)
Hn(dx)−

∫ t

0

m(x, θ0)

H̄(x)
Hn(dx)

]
+

[∫ t

0

m(x, θ0)

H̄(x)
Hn(dx)−

∫ t

0

m(x, θ0)

H̄(x)
H(dx)

]
.

Note that (1 − H)−2 is the Radon–Nikodym derivative of d([1 − H]−1) with respect to

dH. Therefore, due to integration by parts and equivalently to the proof of Dikta (1998,

Lemma 3.12), we have for the difference in the last line above

∫ t

0

m(x, θ0)

H̄(x)
d[Hn(x)−H(x)] =

H1
n(t)−H1(t)

H̄(t)
−
∫ t

0

H1
n(x)−H1(x)

H̄2(x)
H(dx).

Then simple algebra yields ΛSE
1,n(t)−Λ(t) = Qn,4(t)+Qn,5(t)+Qn,3(t)+Qn,1(t)+Qn,2(t).
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Lemma 4.25. Let θn be the MLE of the true parameter θ0 as introduced in Definition 3.7

and let Θ be a connected, open subset of Rk. Under the assumptions (A1) to (A7) it holds

that

‖θn − θ0‖ =


O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) in probability.

The weak convergence result follows directly from Dikta (1998, Theorem 2.3). Since the

proof of the a.s. convergence rate is rather technical and does not contribute to the topic, it

is postponed to the appendix.

Lemma 4.26. Given that H is continuous, 0 ≤ t ≤ T < τH and assumption (A7) holds,

then

sup
0≤t≤T ′

∣∣H1
n(t)−H1(t)

∣∣ =


O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) in probability.

Proof. By (A7), m(x, θ0) is absolutely continuous in x on [0, T ′] with 0 ≤ T ′ < τH . By

Hewitt and Stromberg (1965, Theorem 18.13) there exist absolute continuous, nondecreasing

functions ma and mb such that

m(x, θ0) = ma(x)−mb(x).

Note that ma and mb are bounded on [0, T ′]. Then we have for H1 and H1
n as defined in

(2.2) and (3.5), respectively,

H1
n(t)−H1(t) =

(∫
[0,t]

ma(s)Hn(ds)−
∫

[0,t]

ma(s)H(ds)

)
−
(∫

[0,t]

mb(s)Hn(ds)−
∫

[0,t]

mb(s)H(ds)

)
≡ An(t)−Bn(t).
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Exploiting the properties of H and Hn, integration by parts, cf. Hewitt and Stromberg

(1965, Theorem 21.67), yields

An(t) =−
∫

[0,t]

[
Hn(s−)−H(s)

]
ma(ds) + (Hn(t)−H(t))ma(t).

Therefore

sup
0≤t≤T ′

|An(t)| ≤
(

sup
0≤t≤T ′

|Hn(t)−H(t)|+ 1/n
)(
ma(T

′)−ma(0)
)

+ sup
0≤t≤T ′

|Hn(t)−H(t)| sup
0≤t≤T ′

|ma(t)|

=


O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) in probability,

where the convergence rates are due to the law of iterated logarithm, cf. Serfling (2001, p. 62,

Theorem B), and the Dvoretzky, Kiefer, and Wolfowitz (1956) (DKW) inequality. The same

holds true for Bn(t).

Relying on the previous results, we can now prove Lemma 4.23.

Proof of Lemma 4.23. Consider the representation of ΛSE
1,n − Λn given in Lemma 4.24 and

examine the summands Qn,1(t) to Qn,5(t) separately. Since x ≤ t ≤ T < τH , m(·, θ0) ≤ 1 for

n large enough and both, H and Hn are increasing

−Qn,5(t) =
1

n

∫ t

0

m(x, θ0)

H̄(x)(H̄n(x) + 1/n)
Hn(dx) ≤ 1

n

1

H̄(T )(H̄n(T ))
.

Since H̄n(T )→ H̄(T ) as n→∞ by SLLN and H(T ) < 1 we have

sup
0≤t≤T

Qn,5(t)
a.s.
= O

(
n−1
)
,
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uniformly in t ∈ [0, T ]. Moreover, Lemma 4.26 immediately yields

sup
0≤t≤T ′

(Qn,1(t) +Qn,2(t) +Qn,3(t)) =


O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) in probability.

Since (A6), there exists measurable function M such that for all θ ∈ V (θ0), x ≥ 0, and

1 ≤ r, s ≤ k, ∇r,sm(xθ) ≤ M(x) and E(M(Z)) < ∞. Then in a similar fashion as Dikta

(1998, p. 265), we get by Taylor expansion and strong consistency of θn for n large enough

|m(x, θn)−m(x, θ0)| ≤ k ‖θn − θ0‖M(x).

Furthermore, for n large and small ε > 0 it yields ∀ 0 ≤ x ≤ t, (H̄n(x)+1/n) > (H̄(t)−ε) > 0

almost surely. Therefore

Qn,4(t) ≤
∫ t

0

|m(x, θn)−m(x, θ0)|
H̄n(x) + 1/n

Hn(dx) ≤ k ‖θn − θ0‖
∫ t

0

M(x)

H̄n(x) + 1/n
Hn(dx)

≤ k ‖θn − θ0‖
1

H̄n(T )− ε

∫ ∞
0

M(x)Hn(dx).

Note that
∫∞

0
M(y)Hn(dy)

a.s.−−−→
n→∞

E(M(Z)) < ∞ and H̄n(T ) → H̄(T ) < 1 as n → ∞ by

SLLN. Then Lemma 4.25 yields

sup
0≤t≤T

Qn,4(t) =


O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) in probability.

The weak consistency result could have been derived as an immediate consequence of Dikta

(1998, Theorem 2.5).
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Employing the latter result for 0 ≤ T < T ′ < τH and one more time using 0 < e−a ≤ 1

∀ a ≥ 0 as well as Corollary 4.18 gives

|I4(n)| =
∣∣∣∣ 1

an

∫
R

2−1e−Λ∗n(t−uan)
[
ΛSE

1,n(t− uan)− Λ(x)
]2
K ′(u)du

∣∣∣∣
≤ 1

an

∫
R

[
ΛSE

1,n(t− uan)− Λ(t− uan)
]2 |K ′(u)| du

≤ 1

an

{
sup

0≤t≤T ′

∣∣ΛSE
1,n(t)− Λ(t)

∣∣}2

VK =


O
(

ln ln(n)
nan

)
a.s.

O((nan)−1) in probability,

where VK denotes the total variation of K. The asymptotic result follows by Lemma 4.23

when replacing T by T ′. Recall, we decomposed

(nan)1/2
∣∣fSE1,n (t)− f̄n(t)

∣∣ = (nan)1/2 |I1(n) + I2(n)|

with I2(n) = I3(n)− I4(n) + I5(n). So far we have shown that I1(n), I4(n) and I5(n) vanish

as n→∞ at a sufficient rate. Hence it is left to analyze I3(n). Before applying Lemma 4.24

to handle the remaining term, we further investigate the first summand of the therein given

representation. For that reason note

1

Ḡ(x)
=
G(x)−G(t)

Ḡ(x)Ḡ(t)
+

1

Ḡ(t)
.

An application of Corollary 2.6 and subsequently using the previous expansion gives

(1− F (x))

[
H1
n(x)−H1(x)

H̄(x)

]
=
H1
n(x)−H1(x)

Ḡ(x)

=
H1
n(x)−H1(x)

Ḡ(t)
+
G(x)−G(t)

Ḡ(x)Ḡ(t)
(H1

n(x)−H1(x)). (4.10)
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Now using the representation for ΛSE
1,n −Λ given in Lemma 4.24 in combination with (4.10),

I3(n) can be written as

I3(n) =
1

an

∫
Sn

[1− F (x)]
[
ΛSE

1,n(x)− Λ(x)
]
K

(
t− dx
an

)
= An + Bn + Cn + Dn + En + Fn

where

An(t) =
1

an

1

Ḡ(t)

∫
Sn

[
H1
n(x)−H1(x)

]
K

(
t− dx
an

)
,

Bn(t) =
1

an

∫
Sn

G(x)−G(t)

Ḡ(x)Ḡ(t)
(H1

n(x)−H1(x))K

(
t− dx
an

)
,

Cn(t) =
1

an

∫
Sn

[1− F (x)]

[∫ x

0

H1
n(y)−H1(y)

(H̄(y))2
H(dy)

]
K

(
t− dx
an

)
,

Dn(t) =
1

an

∫
Sn

[1− F (x)]

[∫ x

0

Hn(y)−H(y)

H̄n(y)H̄(y)
H1
n(dy)

]
K

(
t− dx
an

)
,

En(t) =
1

an

∫
Sn

[1− F (x)]

[∫ x

0

m(y, θn)−m(y, θ0)

H̄n(y) + 1/n
Hn(dy)

]
K

(
t− dx
an

)
,

Fn(t) =
1

nan

∫
Sn

[1− F (x)]

[∫ x

0

m(y, θ0)

H̄(y)(H̄n(y) + 1/n)
Hn(dy)

]
K

(
t− dx
an

)
.

The terms Cn to Fn are an immediate result when plugging Lemma 4.24 into I3(n), whereas

An and Bn were introduced when applying (4.10).

In the following, we will show that An is the only contributing term. The others will turn

out to be asymptotically negligible. The technique to actually show this is very similar for

the terms Bn to Fn. We present the treatment of Fn in detail and only proof the key parts

for the other terms.

First consider Fn and let

WF,n(x) :=

∫ x

0

m(y, θ0)

H̄(y)(H̄n(y) + 1/n)
Hn(dy)

denote its inner integral.
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Then for 0 ≤ t ≤ T < T ′ < τH by using Corollary 4.18 and T(x) = (t− x)/an) we have

|Fn(t)| =
∣∣∣∣ 1

nan

∫
Sn

F̄ (x)WF,n(x)K (T(dx))

∣∣∣∣
=

∣∣∣∣ 1

nan

∫
[r,s]

F̄ (t− uan)WF,n(t− uan)K ′(u)du

∣∣∣∣
≤
∣∣∣∣ 1

nan
WF,n(t)

∫
[r,s]

F̄ (t− uan)K ′(u)du

∣∣∣∣
+

∣∣∣∣ 1

nan

∫
[r,s]

F̄ (t− uan) [WF,n(t− uan)−WF,n(t)]K ′(u)du

∣∣∣∣
≡ |AF,n(t)|+ |BF,n(t)| .

Now examine WF,n(t). Since y ≤ t ≤ T and m(·, θ0) ≤ 1

sup
0≤t≤T

WF,n(t) ≤ 1

H̄(T )H̄n(T )
. (4.11)

Now let 0 ≤ t ≤ T and n large enough such that |t− uan| < T ′ for all u ∈ [r, s]. Then

|WF,n(t− uan)−WF,n(t)| ≤ 1

H̄(T ′)H̄n(T ′)
|Hn(t− uan)−Hn(t)|

=
1

H̄(T ′)H̄n(T ′)
(2 ‖Hn −H‖+ |H(t− uan)−H(t)|)

=
1

H̄(T ′)H̄n(T ′)
(2 ‖Hn −H‖+ h(y∗(t, an, u)) |u| an) ,

where y∗(t, an, u) between t− uan and t. Hence |y∗(t, an, u)| < T ′.

Therefore we have

sup
0≤t≤T

sup
r≤u≤s

|t−uan|<T ′

|WF,n(t− uan)−WF,n(t)|

≤ sup
0≤t≤T

sup
r≤u≤s

|t−uan|<T ′

1

H̄(T ′)H̄n(T ′)

(
2 ‖Hn −H‖+ sup

0≤t≤T ′
h(t) max(|r| , |s|)an

)
.
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which together with the DKW inequality and the law if iterated logarithm finally leads to

sup
0≤t≤T

sup
r≤u≤s

|WF,n(t− uan)−WF,n(t)| =


O

((
2 ln ln(n)

n

)1/2
)

+ O (an) a.s.

O((n)−1/2) + O (an) in probability.
(4.12)

Due to (K11) we have
∫

[r,s]
K ′(u)du = 0 and therefore it holds that

∫
[r,s]

[1− F (t− uan)]K ′(u)du =

∫
[r,s]

[F (t)− F (t− uan)]K ′(u)du

=

∫
[r,s]

f(u∗(t, an, u))uanK
′(u)du,

where we used Taylor expansion in combination with the intermediate value theorem. Here

u∗(t, an, u) is some value between t and t− uan. Hence

sup
0≤t≤T

∣∣∣∣∫
[r,s]

[1− F (t− uan)]K ′(u)du

∣∣∣∣ ≤ an sup
0≤t≤T ′

f(t) max(|r| , |s|)
∫ s

r

|K ′(u)| du. (4.13)

Then by (4.11) and (4.13) it follows

|AF,n(t)| ≤ 1

nH̄(T ′)H̄n(T ′)
sup

0≤t≤T ′
f(t) max(|r| , |s|)

∫ s

r

|K ′(u)| du.

In other words we have

sup
0≤t≤T

|AF,n(t)| a.s.= O(n−1).

73



Similarly for BF,n(t), it follows from (4.12) and (4.13) that

sup
0≤t≤T

|BF,n(t)| ≤ 1

nan
sup

0≤t≤T
sup
r≤u≤s

|WF,n(t− uan)−WF,n(t)| sup
0≤t≤T

∣∣∣∣∫ s

r

F̄ (t− uan)K ′(u)du

∣∣∣∣
=


1
n

[
O

((
2 ln ln(n)

n

)1/2
)

+ O (an)

]
a.s.

1
n

[
O((n)−1/2) + O (an)

]
in probability.

=


O

((
2 ln ln(n)

n3

)1/2
)

+ O (ann
−1) a.s.

O
(

(n)−3/2
)

+ O (ann
−1) in probability.

All together we have for Fn

sup
0≤t≤T

|Fn(t)| ≤


O

((
2 ln ln(n)

n3

)1/2
)

+ O (ann
−1) a.s.

O
(

(n)−3/2
)

+ O (ann
−1) in probability.

In order to handle En we proceed in a similar way. Let

WE,n(x) :=

∫ x

0

m(y, θn)−m(y, θ0)

H̄n(y) + 1/n
Hn(dy)

be the inner integral of En. Then similarly as above

|En(t)| ≤
∣∣∣∣ 1

nan
WE,n(t)

∫
[r,s]

F̄ (t− uan)K ′(u)du

∣∣∣∣
+

∣∣∣∣ 1

nan

∫
[r,s]

F̄ (t− uan) [WE,n(t− uan)−WE,n(t)]K ′(u)du

∣∣∣∣
≡ |AE,n(t)|+ |BE,n(t)| .
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Expanding m(y, ·) in combination with the intermediate value theorem yields

WE,n(x) =

∫ x

0

〈∇m(y, θ∗(y, θn, θ)), θn − θ0)〉
H̄n(y) + 1/n

Hn(dy)

where θ∗(y, θn, θ) ∈ Θ lies in the interior of the line segment connecting θn and θ0. Hence

‖θ∗(y, θn, θ)− θ0‖ ≤ ‖θn − θ0‖ .

Now let V (θ0) be the neighborhood of θ0 from (A6). Then due to (A2) for n large enough

sup
0≤t≤T

|WE,n(t)| a.s.=
1

Hn(T )
‖θn − θ0‖ sup

0≤t≤T
sup

θ∈V (θ0)

‖∇m(x, θ)‖

=


O

((
2 ln ln(n)

n

)1/2
)

a.s.

O
(
n−1/2

)
in probability.

(4.14)

Furthermore, for n large enough, because of (A2) and (A6) it holds that

sup
0≤t≤T

sup
r≤u≤s

|t−uan|<T ′

|WE,n(t− uan)−WE,n(t)|

≤ 1

H̄n(T )

(
sup

0≤t≤T ′
sup

θ∈V (θ0)

‖∇m(x, θ)‖

)
‖θn − θ0‖ sup

0≤t≤T ′
sup
r≤u≤s

|t−uan|<T ′

(Hn(t)−Hn(t− uan))

≤ 1

H̄n(T )

(
sup

0≤t≤T ′
sup

θ∈V (θ0)

‖∇m(x, θ)‖

)
‖θn − θ0‖

×
(

2 ‖Hn −H‖+ sup
o≤t≤T ′

h(t) max(|r| , |s|)an
)
.
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Therefore it yields

sup
0≤t≤T

sup
|t−uan|<T ′

|WE,n(t− uan)−WE,n(t)|

=


O

((
2 ln ln(n)

n

)1/2
){

O

((
2 ln ln(n)

n

)1/2
)

+ O (an)

}
a.s.

O
(
n−1/2

) {
O
(
n−1/2

)
+ O (an)

}
in probability.

=


O

(
an

(
2 ln ln(n)

n

)1/2
)

a.s.

O
(
ann

−1/2
)

in probability.
(4.15)

We then have from (4.14) and (4.13)

sup
0≤t≤T

|AE,n(t)| =


O

((
2 ln ln(n)

n

)1/2
)

a.s.

O
(
n−1/2

)
in probability,

and from (4.15) it follows

sup
0≤t≤T

|BE,n(t)| =


O

(
an

(
2 ln ln(n)

n

)1/2
)

a.s.

O
(
ann

−1/2
)

in probability.

Therefore we have shown that

sup
0≤t≤T

|En(t)| =


O

((
2 ln ln(n)

n

)1/2
)

a.s.

O
(
n−1/2

)
in probability.
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Consider Cn(t) and Dn(t) and denote the inner integrals by

WC,n(x) :=

∫ x

0

H1
n(y)−H1(y)

H̄2(y)
H(dy), WD,n(x) :=

∫ x

0

Hn(y)−H(y)

H̄n(y)H̄(y)
H1
n(dy).

Then, similar as above, it follows that

sup
0≤t≤T

|WD,n(t)| ≤ ‖Hn −H‖
1

H̄n(T )H̄(T )
=


O

((
2 ln ln(n)

n

)1/2
)

a.s.

O
(
n−1/2

)
in probability.

(4.16)

and

sup
0≤t≤T

|WC,n(t)| ≤
∥∥H1

n −H1
∥∥ 1

H̄2(T )
=


O

((
2 ln ln(n)

n

)1/2
)

a.s.

O
(
n−1/2

)
in probability.

(4.17)

Furthermore it yields

sup
0≤t≤T

sup
r≤u≤s

|t−uan|<T ′

|WC,n(t− uan)−WC,n(t)|

≤ sup
0≤t≤T ′

∣∣H1
n(t)−H1(t)

∣∣ 1

H̄2(T ′)
sup

0≤t≤T ′
sup
r≤u≤s

|t−uan|<T ′

|H(t)−H(t− uan)|

≤ sup
0≤t≤T ′

∣∣H1
n(t)−H1(t)

∣∣ 1

H̄2(T ′)
sup

0≤t≤T ′
h(t) max(|r| , |s|)an,

which leads to

sup
0≤t≤T

sup
r≤u≤s

|WC,n(t− uan)−WC,n(t)| =


O

(
an

(
2 ln ln(n)

n

)1/2
)

a.s.

O
(
ann

−1/2
)

in probability.
(4.18)
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Now turning to the term Dn(t), we have

sup
0≤t≤T

sup
r≤u≤s

|t−uan|<T ′

|WD,n(t− uan)−WD,n(t)|

≤ sup
0≤t≤T ′

|Hn(t)−H(t)| 1

H̄n(T ′)H̄(T ′)
sup

0≤t≤T ′
sup
r≤u≤s

|t−uan|<T ′

∣∣H1
n(t)−H1

n(t− uan)
∣∣

≤ sup
0≤t≤T ′

|Hn(t)−H(t)| 1

H̄n(T ′)H̄(T ′)

×
(

2 sup
0≤t≤T ′

(H1
n(t)−H1(t)) sup

0≤t≤T ′
h(t) max(|r| , |s|)an

)
,

which yields

sup
0≤t≤T

sup
r≤u≤s

|WD,n(t− uan)−WD,n(t)| =


O

(
an

(
2 ln ln(n)

n

)1/2
)

a.s.

O
(
ann

−1/2
)

in probability.
(4.19)

In order to derive an asymptotic representation of Bn(t) consider

|Bn(t)| =
∣∣∣∣ 1

an

∫
Sn

G(x)−G(t)

Ḡ(x)Ḡ(t)
(H1

n(x)−H1(x))K

(
t− dx
an

)∣∣∣∣
=

1

an

1

Ḡ2(T ′)
sup

0≤t≤T ′
(H1

n(t)−H1(t))

∣∣∣∣∫ s

r

g(u∗(t, u, an))uanK
′(u)du

∣∣∣∣
=

1

Ḡ2(T ′)
sup

0≤t≤T ′
(H1

n(t)−H1(t)) sup
0≤t≤T ′

g(t) max(|r| , |s|)
∫ s

r

K ′(u)du.

Now use (4.17) and (4.18) as well as (4.16) and (4.19) in combination with (4.13) to obtain

sup
0≤t≤T

|Bn(t) + Cn(t) + Dn(t)| =


O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) in probability.
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Recapitulating, we have shown so far that

(nan)1/2
∣∣fSE2,n (t)− f̄n(t)

∣∣ = (nan)1/2An (4.20)

+ (nan)1/2


O
((

ln ln(n)
nan

))
+ O

((
ln ln(n)
n

)1/2
)

a.s.

O(n−1/2) + O((nan)−1) in probability.

with An = 1
1−G(t)

1
an

∫
Sn

[H1
n(x)−H1(x)]K

(
t−dx
an

)
. Using Corollary 4.17, note that

An =− 1

Ḡ(t)

1

an

∫
Sn

K

(
t− x
an

)[
H1
n −H1

]
(dx)

=− 1

Ḡ(t)

[
1

an

∫
Sn

K

(
t− x
an

)
H1
n(dx)− 1

an

∫
Sn

K

(
t− x
an

)
H1(dx)

]
=− h1

n(t)− E(h1
n(t))

Ḡ(t)
.

Hence we have

(nan)1/2 sup
0≤t≤T

∣∣∣∣fSE2,n (t)− f̄n(t)− h1
n(t)− E(h1

n(t))

Ḡ(t)

∣∣∣∣
=


O
((

ln ln(n)

(nan)1/2

))
+ O

(
(an ln ln(n))1/2

)
a.s.

O(a
1/2
n ) + O((nan)−1/2) in probability.
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Proof of Theorem 4.10.

Recall (4.20), the definition of An from the latter proof, and

H1
n(x)−H1(x)

Ḡ(t)
=

1

n

n∑
i=1

m(Zi, θ0)I[Zi≤x] −H1(x)

Ḡ(t)
.

Therefore

An =
1

Ḡ(t)

1

an

∫
Sn

[
H1
n(x)−H1(x)

]
K

(
t− dx
an

)
=

1

n

n∑
i=1

1

an

1

Ḡ(t)

∫
Sn

[
m(Zi, θ0)I[Zi≤x] −H1(x)

]
K

(
t− dx
an

)
≡ 1

n

n∑
i=1

Ai,n,

where Ai,n only depends on the random variable (Zi, δi). Hence, by CLT, the left hand side

of (4.20) is asymptotically normal distributed:

(nan)1/2
∣∣fSE2,n (t)− f̄n(t)

∣∣ −−−→
n→∞

N(µ, σ2
SE) in distribution,

where

µ = lim
n→∞

a1/2
n E [Ai,n] and σ2

SE = lim
n→∞

anVar [Ai,n] .

For the sake of a brief notation let’s set m(Zi) = m(Zi, θ0) for i = 1, . . . , n. Then cal-

culating the expected value using Corollary 4.18 and Fubini’s theorem, cf. Cohn (2013,

Theorem 5.2.2), yields

E [Ai,n] =
1

anḠ(t)
E
[∫

Sn

[
m(Z1)I[Z1≤x] −H1(x)

]
K

(
t− dx
an

)]
=− 1

anḠ(t)

∫
[r,s]

[
E
(
m(Z1)I[Z1≤t−uan]

)
−H1(t− uan)

]
K ′(u)du = 0,

since E
(
m(Z1)I[Z1≤t−uan]

)
= H1(t− uan).
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Thus µ = 0 and it is left to calculate the variance of asymptotic variance:

anVar [Ai,n] = Var
[
(nan)1/2A

]
=

1

Ḡ2(t)

n

an
Var

[∫
Sn

[
H1
n(x)−H1(x)

]
K

(
t− dx
an

)]
=

1

Ḡ2(t)

n

an
Var

[∫
Sn

K

(
t− x
an

)
H1
n(dx)−

∫
Sn

K

(
t− x
an

)
H1(dx)

]
=

1

Ḡ2(t)

n

an
Var

[
1

n

n∑
i=1

K

(
t− Zi
an

)
m(Zi)

]

=
1

Ḡ2(t)

1

an

[∫
Sn

K2

(
t− x
an

)
m2(x)h(x)dx−

(∫
Sn

K

(
t− x
an

)
m(x)h(x)dx

)2
]

=
1

Ḡ2(t)

[∫
[r,s]

K2 (u)m2(t− uan)h(t− uan)du− an
∫
Sn

K

(
t− x
an

)
m(x)h(x)du

]
−−−→
n→∞

m2(t)h(t)

Ḡ2(t)

∫
R
K2 (u) du =

m(t)h1(t)

Ḡ2(t)

∫
R
K2 (u) du =

m(t)f(t)

Ḡ(t)

∫
R
K2 (u) du.

In conclusion, we have shown that

σ2
SE =

m(t)h1(t)

(1−G(t))2

∫
R
K2 (u) du =

m(t)f(t)

1−G(t)

∫
R
K2 (u) du.

81



Chapter 5

Simulation study

In Chapter 4 it is shown that under the SRCM fSE1,n and fSE2,n admit a smaller asymptotic

variance when compared to fKMn . In this chapter we are going to perform a simulation

study in order to demonstrate the improvement regarding the asymptotic variance and to

investigate the bias admitted by these estimators.

Recall the SRCM from Definition 2.5. For the simulations we choose the lifetime X to be

Weibull distributed and randomly right censored by an independent Weibull variable Y , that

is

X ∼ F =̂Weibull(α1, β1) and Y ∼ G=̂Weibull(α2, β2)

where f and g denote the p.d.f.s of X and Y , respectively. The p.d.f. of a Weibull(α,β)

distribution is given by f(t) = αβ(αt)β−1 exp(−(αt)β) for t ≥ 0. As explained in Dikta

(1998, Example 2.9.) and Harlaß (2011, Section 3.1.1.), this results in a two-parameter

model for the conditional probability m, in particular

m(t, θ) =
θ1

θ1 + tθ2
, θ1 > 0, θ2 ∈ R (5.1)

with θ = (θ1, θ2)ᵀ, θ1 = (αβ
1

1 β1)/(αβ
2

2 β2) and θ2 = β2 − β1. Note that this setup describes a

generalized proportional hazard model and that τH =∞.

82



As a first step, one single dataset of the form (Zi, δi)1≤i≤n was generated according to the

SRCM with a parametric model as given in (5.1). We choose the parameters α1 = 1 and

β1 = 5 for the lifetime distribution F and α2 = 1.7 and β2 = 1 for the censoring distribution

G which causes approximately 80% of the observations to be censored. Based on this dataset

the estimators fKMn , fSE1,n and fSE2,n were used to estimate the true p.d.f. f . The bandwidth

was determined by the rule of thumb given in (4.6). A plot of the estimating curves is given

in Figure 5.1.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
0

0.
5

1.
0

1.
5

2.
0

t1 t2 t3 t4 t5

f(x)

fkmn

fSE1,n

fSE2,n

Figure 5.1: Comparison of fKMn , fSE1,n and fSE2,n based on a single Weibull-Weibull dataset

Table 5.1 lists the bias and the squared bias for each of the three estimators at the node

points (ti)i=1,...,5. That is

BiasSE2(ti) := f(ti)− fSE2,n (ti) and Bias2
SE2(ti) :=

(
f(ti)− fSE2,n (ti)

)2

and similarly for fSE1,n and fKMn . The additional column labeled with Bias2 shows the averaged

squared bias taken over the five node points which in case of fSE2,n is

1

5

5∑
i=1

(
f(ti)− fSE2,n (ti)

)2 .

83



The data in Table 5.1 shows that the semi-parametric estimations lead to a smaller deviation

from the true value when compared to the Kaplan-Meier estimator. Except in one node

point, the squared bias of the semi-parametric estimators is smaller than the ones of the

Kaplan-Meier approximation. In addition, the results suggest that the new semi-parametric

estimator fSE2,n leads to a smaller bias in comparison to fSE1,n .

t1 = 0.5 t2 = 0.7 t3 = 0.9 t4 = 1.1 t5 = 1.3

BiasKM -0.0186 +0.1000 -0.4528 +0.0994 +0.2498

BiasSE1 -0.0531 -0.0268 -0.2346 +0.0266 +0.2272

BiasSE2 -0.0493 -0.0131 -0.2224 +0.0227 +0.2159

t1 = 0.5 t2 = 0.7 t3 = 0.9 t4 = 1.1 t5 = 1.3 Bias2

Bias2
KM 0.0004 0.0100 0.2050 0.0099 0.0624 0.011426

Bias2
SE1 0.0028 0.0007 0.0550 0.0007 0.0516 0.007793

Bias2
SE2 0.0024 0.0001 0.0495 0.0005 0.0466 0.007772

Table 5.1: Bias and squared bias of the estimators at particular node points

To further investigate the behavior of the estimators we generate k = 100 datasets

Dj = (Zi, δi)1≤i≤n, j = 1, . . . , k

of sample size n = 40. We again use the same Weibull-Weibull model as described in (5.1)

but with the parameters α1 = 4, β1 = 0.6, α2 = 2, β2 = 2. This leads to roughly 30%

censored observations. Similarly as before we apply the estimators fKMn , fSE1,n and fSE2,n to

each of the datasets in order to approximate the true p.d.f. f at 50 equally spaced node

points 0.01 < t1 < · · · < t50 < 0.5. To indicate the dependence of the estimate fSE2,n (t) upon

a particular dataset D we write

fSE2,n (t) ≡ fSE2,n (D, t),

and similarly for fKMn and fSE1,n .
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Based on the k = 100 approximations of f(ti) the average, the MSE and the sample variance

are calculated for each of the estimates fKMn (ti), fSE1,n (ti) and fSE2,n (ti) for i = 1, . . . , 50. That

is

AVGSE2(ti) :=
1

k

k∑
j=1

fSE2,n (Dj, ti),

MSESE2(ti) :=
1

k

k∑
j=1

(
fSE2,n (Dj, ti)− f(ti)

)2 ,

VARSE2(ti) :=
1

k

k∑
j=1

(
fSE2,n (Dj, ti)− AV ESE2(ti)

)2 ,

and similarly for fSE1,n and fKMn . The results for five particular note points are shown in

Table 5.2. In order to obtain some global measures we calculate the average of the MSEs

and the variances over all 50 node points, in particular

MSESE2 =
1

50

50∑
i=1

MSESE2(ti) and VarSE2 =
1

50

50∑
i=1

VarSE2(ti),

and similarly for fSE1,n and fKMn . These averages are given in Table 5.3.

t13 = 0.126 t21 = 0.202 t27 = 0.260 t35 = 0.336 t43 = 0.412

f(ti) 1.6264 1.0824 0.8500 0.6462 0.5094

AVGKM 1.9840 1.2693 0.9504 0.6470 0.4498

AVGSE1 1.1656 0.6864 0.7606 0.9621 1.1656

AVGSE2 1.9963 1.2671 0.9487 0.7100 0.5875

MSEKM 2.2073 1.8997 2.0132 2.2701 2.5874

MSESE1 2.1509 1.8259 1.9495 2.1878 2.4186

MSESE2 2.1737 1.8229 1.9254 2.1313 2.3191

VARKM 1.2928 0.7992 0.8479 1.0433 1.3226

VARSE1 1.1655 0.6864 0.7606 0.9621 1.1655

VARSE2 1.1071 0.6569 0.7371 0.9294 1.1065

Table 5.2: MSE and variance of the estimators based on k = 100 datasets
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From the results presented in Chapter 4 one might suggest that the semi-parametric esti-

mators produce smaller variances also for finite sample sizes. The data shown in Table 5.2

confirms this conjecture: At all 50 node points the estimators fSE1,n and fSE2,n attained a smaller

sample variance than fKMn . Moreover fSE2,n produces smaller variances than fSE1,n at all node

points ti. Both facts are also reflected by the averaged variances, in particular Table 5.3

shows that

VARSE2 < VARSE1 < VARKM .

This suggest that for a fixed sample size fSE2,n provides approximations with a smaller variance

when compared to fSE1,n .

MSEKM MSESE1 MSESE2 VarKM VarSE1 Varse2

2.4387 2.3510 2.3180 1.372486 1.256572 1.200321

Table 5.3: Average of the MSE and the variance taken over all node points

Furthermore Table 5.2 shows that the behavior of the bias is very similar to the one of

the variances. The Kaplan-Meier estimator results in larger MSEs at all node points when

compared to the semi-parametric counterparts. In addition, the semi-parametric estimator

fSE2,n gives even smaller MSEs than the estimator fSE1,n , except for some of the smaller node

points. The averaged MSEs given in Table 5.3 show that fSE2,n produces overall a smaller bias

in comparison to fSE1,n for a fixed sample size:

MSESE2 < MSESE1 < MSEKM .

This corresponds with the insights drawn from Table 5.1.
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Chapter 6

Conclusion

Product limit estimators of the survival time can be derived as the solution of identifying

integral equations. The widely used Kaplan Meier PLE FKM
n and also its semi-parametric

and presmoothed extensions F SE
1,n and F PR

1,n are in general only sub-distribution functions. In

comparison, the proposed semi-parametric estimator

1− F SE
2,n (t) :=

∏
i:Zi≤t

[
1− m(Zi, θn)

n−Rn(Zi) +m(Zi, θn)

]

is a true distribution function and therefore should perform better w.r.t. the bias especially in

the case of small sample sizes. In addition, it is possible to directly sample according to F SE
2,n

which is particularly useful for the construction of confidence bands of the underlying survival

function. Theorem 3.13 and Theorem 3.16 show that F SE
1,n and F SE

2,n are asymptotically

equivalent, i.e., for some Borel-measurable function ϕ,
∫∞

0
ϕdF SE

2,n is a strong consistent

estimator of the linear functional
∫ τH

0
ϕdF where τH = inf{x : H(x) = 1}. Furthermore∫ τH

0
ϕdF admits the same asymptotic variance as the corresponding functional w.r.t. F SE

1,n .

This attained variance is optimal w.r.t. to the class of all regular estimators of
∫ τH

0
ϕdF and

therefore F SE
2,n outperforms its Kaplan-Meier and presmoothed competitors. A more detailed

discussion can be found in Subsection 3.2.3.
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Relying on F SE
2,n , it is possible to extend the usual kernel density estimator to the semi-

parametric random censorship model. Key to the analysis of the resulting estimator

fSE2,n (t) :=
1

an

∫
R
K

(
t− x
an

)
F SE

2,n (dx)

are the asymptotic representations derived in Theorem 4.6 and Theorem 4.7 which reveal the

enhancement of fSE2,n in comparison to the Kaplan-Meier kernel estimator fKMn . For example,

the asymptotic variance introduced by fSE2,n is in almost all scenarios strictly smaller than the

one of fKMn but is at most equal. Further results drawn from those asymptotic representations

are improved pointwise and uniform convergence rates of fSE2,n when compared with fKMn .

The simulation study has shown that, for a fixed sample size, the semi-parametric estimators

fSE1,n and fSE2,n produce smaller variances when compared to the Kaplan-Meier estimator fKMn .

In addition, although fSE1,n and fSE2,n are asymptotically identical, the simulation indicates that,

for a fixed sample size, fSE2,n results in smaller variances in comparison to fSE1,n . The admitted

bias shows a similar behavior: For a fixed sample size, fSE2,n causes a smaller bias than fSE1,n

while the bias of both semi-parametric estimators is smaller then the one induced by fKMn .

For both, F SE
2,n and fSE2,n , the bias reduction and the gain in efficiency was shown under

the assumption of a correctly chosen parametric model for m. There are bootstrap based

goodness-of-fit tests available in order to validate the model assumptions. Simulation studies

have shown that F SE
1,n performs well even under incorrect model assumptions. It is conceivable

that F SE
2,n and fSE2,n behave similarly.
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Appendix A

Convergence rate of the MLE

In the following we will give the proof for Lemma 4.25 and therefore derive an a.s. convergence

rate of the MLE defined in Definition 3.7.

Proof of Lemma 4.25.

Recall the log-likelihood function for θ, with w1, w2 and w as defined in (A5) and (3.11)

ln(θ) =
1

n

n∑
i=1

w(δi, Zi, θ),

in particular w(δ, Z, θ) = δw1(Z, θ) + (1 − δ)w2(Z, θ) with w1(z, θ) = ln(m(z, θ)) and

w2(z, θ) = ln(1−m(z, θ)). Furthermore let θ = (θ1, . . . , θk) and define

∇rm(z, θ0) := Drm(z, θ0) = [∂/∂θrm(z, θ)]|θ=θ0

and ∇m(z, θ0) = Grad(m(z, θ0)) = (D1m(z, θ0), . . . , Dkm(z, θ0))ᵀ. Moreover let

J(∇m(z, θ0)) :=


∇ᵀ∇1m(z, θ0)

...

∇ᵀ∇km(z, θ0)

 =


D1,1m(z, θ0) · · · Dk,1m(z, θ0)

... . . . ...

D1,km(z, θ0) · · · Dk,km(z, θ0)


be the Jacobian matrix of ∇m(z, θ0).
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Following the reasoning of Witting and Müller-Funk (1995, Theorem 6.35), the expansion of

Grad(ln(θn)) at θ0 yields

Grad(ln(θn)) = Grad(ln(θ0)) + J(ln(θ̃n))(θn − θ0)

= Un(θ0) +
[
Tn(θ0) +Rn(θ0, θn, θ̃n)

]
(θn − θ0), (B.1)

where θ̃n ∈ Θ lies in the interior of the line segment connecting θn and θ0, and Un(θ0) is a

vector with elements

Un,r(θ0) :=
1

n

n∑
i=1

Drw(δi, Zi, θ0), for all r = 1, . . . , k.

Tn(θ0) and Rn(θ0, θn, θ̃n) are matrices with elements

Tn,r,s(θ0) :=
1

n

n∑
i=1

Dr,sw(δi, Zi, θ0),

Rn,r,s(θ0, θn, θ̃n) :=
1

n

n∑
i=1

Dr,sw(δi, Zi, θ̃n)−Dr,sw(δi, Zi, θ0), for all r, s = 1, . . . , k.

Now consider Un. Since Drw(δi, Zi, θ0) are i.i.d. for all i = 1, . . . , n it follows by SLLN

Un,r(θ0)
a.s.−−−→
n→∞

E[Drw(δ, Z, θ0)] = 0 ∀ 1 ≤ r ≤ k (B.2)

where, since m(Z, θ0) = E [δ|Z],

E[Drw(δ, Z, θ0)] = E [Dr{δ ln(m(Z, θ0)) + (1− δ) ln(1−m(Z, θ0))}]

= E
[
δDrm(Z, θ0)

m(Z, θ0)
− (1− δ)Drm(Z, θ0)

1−m(Z, θ0)

]
= E

[
Drm(Z, θ0)(δ −m(Z, θ0))

m(Z, θ0)(1−m(Z, θ0))

]
= E

[
E

[
Drm(Z, θ0)(δ −m(Z, θ0))

m(Z, θ0)(1−m(Z, θ0))

∣∣∣∣∣Z
]]

= E
[

Drm(Z, θ0)

m(Z, θ0)(1−m(Z, θ0))

(
E [δ|Z]−m(Z, θ0)

)]
= 0.
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Furthermore, note that

E [Drw(δ, Z, θ0)Dsw(δ, Z, θ0)]

= E [{δDr ln(m(Z, θ0)) + (1− δ)Dr ln(1−m(Z, θ0))}

× {δDs ln(m(Z, θ0)) + (1− δ)Ds ln(1−m(Z, θ0))}]

= E
[
δ2Dr ln(m(Z, θ0))Ds ln(m(Z, θ0))

+ (1− δ)2Dr ln(1−m(Z, θ0))Ds ln(1−m(Z, θ0))
]

= E
[
δ
Drm(Z, θ0)Dsm(Z, θ0)

m2(Z, θ0)
+ (1− δ)Drm(Z, θ0)Dsm(Z, θ0)

(1−m(Z, θ0))2

]
= E

[
Drm(Z, θ0)Dsm(Z, θ0)

m2(Z, θ0)
E [δ|Z] +

Drm(Z, θ0)Dsm(Z, θ0)

(1−m(Z, θ0))2
E [1− δ|Z]

]
= E

[
Drm(Z, θ0)Dsm(Z, θ0)

m(Z, θ0)
+
Drm(Z, θ0)Dsm(Z, θ0)

(1−m(Z, θ0))

]
= E

[
Drm(Z, θ0)Dsm(Z, θ0)

m(Z, θ0)(1−m(Z, θ0))

]
= σr,s.

Now consider Tn. Since Dr,sw(δi, Zi, θ0) are i.i.d. for all i = 1, . . . , n it follows by SLLN

Tn,r,s(θ0)
a.s.−−−→
n→∞

E [Dr,sw(δ, Z, θ0)] = −σr,s.

Due to (A4) an (A5), I(θ0) is finite and positive definite. Hence we have

Tn(θ0)
a.s.−−−→
n→∞

−I(θ0). (B.3)

In the following we will show that Rn(θ0, θn, θ̃n)
a.s.−−→ 0 as n→∞. Therefor define

Ar,s(δ, z, γ) := sup
θ′∈V (θ0,γ)

|Dr,sw(δ, z, θ′)−Dr,sw(δi, zi, θ0)| .
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By (A4) and Witting (1985, A3.6) Ar,s is measurable. Assumption (A4) also yields that

ar,s(γ) := E [Ar,s(δ, z, γ)] <∞ for all 0 < γ ≤ γθ0 and that Ar,s(δ, z, γ)→ 0 as γ → 0. Hence

ar,s(γ)→ 0 as γ → 0 by Lebesgue’s Dominated Convergence Theorem. For ε > 0 consider

lim
N→∞

P
(

sup
n≥N

∣∣∣Rn,r,s(θ0, θn, θ̃n)
∣∣∣ > ε

)
≤ lim

N→∞
P
(

sup
n≥N

∣∣∣Rn,r,s(θ0, θn, θ̃n)
∣∣∣ > ε, sup

n≥N
‖θn − θ0‖ < γ

)
+ lim

N→∞
P
(

sup
n≥N
‖θn − θ0‖ ≥ γ

)
≤ lim

N→∞
P

(
sup
n≥N

1

n

n∑
i=1

Ar,s(δi, zi, γ) > ε

)
+ lim

N→∞
P
(

sup
n≥N
‖θn − θ0‖ ≥ γ

)

≤ lim
N→∞

P

(
sup
n≥N

1

n

n∑
i=1

Ar,s(δi, zi, γ)− ar,s(γ) >
ε

2

)
+ lim

N→∞
P
(

sup
n≥N
‖θn − θ0‖ ≥ γ

)
= 0.

The first term vanishes due to SLLN since Ar,s(δi, zi, γ) are i.i.d. for i = 1, . . . , n. The

second term is zero because the MLE θn is strongly consistent by assumption (A2). So we

have Rn,r,s(θ0, θn, θ̃n)
a.s.−−→ 0 as n→∞ and hence

Rn(θ0, θn, θ̃n)
a.s.−−−→
n→∞

0. (B.4)

Using the latter result together with (B.3) gives |Tn(θ0) + Rn(θ0, θn, θ̃n)| a.s.−−→ |−I(θ0)|6= 0 as

n→∞ since the determinant is a continuous mapping and I(θ0) is positive definite by (A5).

Therefore, for n large enough, [Tn(θ0) + Rn(θ0, θn, θ̃n)] is invertible. Since Grad(ln(θn)) = 0

it follows from (B.1), (B.3) and (B.4) for n large enough

0 = Un(θ0) +
[
Tn(θ0) +Rn(θ0, θn, θ̃n)

]
(θn − θ0)

⇔ (θn − θ0) = −
[
Tn(θ0) +Rn(θ0, θn, θ̃n)

]−1

Un(θ0)

⇔ (θn − θ0) =
[
I(θ0)−1 + o(1)

]
Un(θ0) a.s.

⇔
( n

2 ln lnn

)1/2

(θn − θ0) =
[
I(θ0)−1 + o(1)

] ( n

2 ln lnn

)1/2

Un(θ0) a.s.

a.s.−−−→
n→∞

I(θ0)−1C <∞
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when applying the continuous mapping theorem and where C = (C1, . . . , Ck) is the a.s. limit

of
(

n
2 ln lnn

)1/2
Un(θ0). Then by the law of iterated logarithm

lim sup
n→∞

( n

2 ln lnn

)1/2

Un,r(θ0)
a.s.
=
√

Var(Un,r(θ0)) =
√
σr,r

for all r = 1, . . . , k. Due to assumption (A5), C is bounded and therefore

‖θn − θ0‖
a.s.
= O

((
2 ln ln(n)

n

)1/2
)
.
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