
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2016

Estimating the Selection Gradient of a Function-
valued Trait
Tyler John Baur
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons, and the Statistics and Probability Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Baur, Tyler John, "Estimating the Selection Gradient of a Function-valued Trait" (2016). Theses and Dissertations. 1348.
https://dc.uwm.edu/etd/1348

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Wisconsin-Milwaukee

https://core.ac.uk/display/217190928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=dc.uwm.edu%2Fetd%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1348?utm_source=dc.uwm.edu%2Fetd%2F1348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

ESTIMATING THE SELECTION GRADIENT OF A

FUNCTION-VALUED TRAIT

by

Tyler J. Baur

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in

Mathematics

at

The University of Wisconsin-Milwaukee

December 2016

ABSTRACT

ESTIMATING THE SELECTION GRADIENT OF A
FUNCTION-VALUED TRAIT

by

Tyler J. Baur

The University of Wisconsin-Milwaukee, 2016

Under the Supervision of Professor Jay H. Beder

Kirkpatrick and Heckman initiated the study of function-valued traits in 1989. How to

estimate the selection gradient of a function-valued trait is a major question asked by evolu-

tionary biologists. In this dissertation, we give an explicit expansion of the selection gradient

and construct estimators based on two different samples: one consisting of independent or-

ganisms (the independent case), and the other consisting of independent families of equally

related organisms (the dependent case).

In the independent case we first construct and prove the joint consistency of sieve es-

timators of the mean and covariance functions of a Gaussian process, based on previous

developments by Beder. From this we prove the consistency of the estimator of the selection

gradient. This is supported by simulations. Using this estimator of the selection gradient,

the estimated between-generation change in the mean phenotype is shown in simulations to

be consistent.

In the dependent case we are able to estimate both the phenotypic and the genetic

covariance functions. Simulations indicate consistency of these estimators, but appear not

to support the consistency of the estimator of the selection gradient, nor of the estimator of

the between-generation change in the mean phenotype. A probable source of this problem

is identified.

ii

© Copyright by Tyler J. Baur, 2016

All Rights Reserved

iii

To Kylee, Everett and Baby Baur

iv

TABLE OF CONTENTS

List of Figures viii

List of Tables ix

List of Symbols xi

Acknowledgements xiii

1 Introduction 1

2 Background on Sieve Estimation 4

2.1 Reproducing Kernel Hilbert Spaces . 4

2.1.1 Constructing Orthonormal Sets in a RKHS 5

2.1.2 Stochastic Processes and

Reproducing Kernel Hilbert Spaces 5

2.2 The Gaussian Dichotomy Theorem . 8

2.2.1 The Gaussian Dichotomy Theorem, Part 1 9

2.2.2 Tensor Products of Hilbert Spaces . 10

2.2.3 The Gaussian Dichotomy Theorem, Part 2 15

2.3 Estimation of the Covariance Function . 19

2.3.1 Sieve Estimation . 21

3 Phenotypic Traits and the Selection Gradient 25

3.1 Finite Dimensional Traits . 26

v

3.1.1 The Relationship Matrix . 27

3.1.2 The Selection Gradient . 28

3.2 Function Valued Traits . 30

3.2.1 Restrictions on T and the Covariance Function 31

3.2.2 Weak Limits . 35

3.2.3 Biological Assumptions . 39

3.2.4 The Selection Gradient . 40

4 Estimation of β from an Independent Sample 44

4.1 Joint Estimation of the Mean and Covariance Functions 46

4.1.1 The Model P′
0 . 55

4.1.2 Asymptotics . 57

4.2 Estimation of β . 66

4.2.1 Consistency of β̂n . 67

4.3 Evolutionary Response to Selection . 70

5 Estimation of β from a Dependent Sample 73

5.1 Estimation of P . 75

5.1.1 Estimation of the Genetic Covariance Function 85

5.2 Estimation of β . 86

6 Simulations 88

6.1 Computation . 88

6.1.1 Orthonormal Functions and Generalized Functions 88

6.1.2 Computing Parameter Values . 92

6.2 Independent Sample . 101

6.2.1 Directional Selection . 103

6.2.2 Stabilizing Selection . 107

6.2.3 Truncation Selection . 115

vi

6.2.4 Comparing Selection . 124

6.3 Dependent Sample . 124

6.3.1 Directional Selection . 126

6.3.2 Stabilizing Selection . 129

6.3.3 Truncation Selection . 132

6.3.4 Comparing Selection . 134

7 Conclusion and Discussion 135

References 138

Appendix 141

MATLAB Code . 141

Independent Data . 141

Dependent Data . 158

Curriculum Vitae 183

vii

LIST OF FIGURES

6.1 Directional Selection: Estimated Functions (a) Genetic Covariance. (b) Esti-

mation Error . 128

6.2 Directional Selection: Estimated vs Actual z̄† 129

6.3 Stabilizing Selection: Estimated Functions (a) Genetic Covariance. (b) Esti-

mation Error . 131

6.4 Stabilizing Selection: Estimated vs Actual z̄† 131

6.5 Truncation Selection: Estimated Functions (a) Genetic Covariance. (b) Esti-

mation Error . 133

6.6 Truncation Selection: Estimated vs Actual z̄† 134

viii

LIST OF TABLES

6.1 Directional Selection: MSE(b̂n) . 104

6.2 Directional Selection: MSE(ˆ̄z†n), P0(s, t) = min(s, t) 105

6.3 Directional Selection: MSE(b̂n), P0(s, t) = exp{−|s− t|} 106

6.4 Directional Selection: MSE(ˆ̄z†n) . 107

6.5 Stabilizing Selection: MSE(b̂n), P0(s, t) = min(s, t), v = 5 108

6.6 Stabilizing Selection: MSE(ˆ̄z†n), P0(s, t) = min(s, t), v = 5 109

6.7 Stabilizing Selection: MSE(b̂n), P0(s, t) = min(s, t), v = 1 110

6.8 Stabilizing Selection: MSE(ˆ̄z†n), P0(s, t) = min(s, t), v = 1 111

6.9 Stabilizing Selection: MSE(b̂n), P0(s, t) = exp{−|s− t|}, v = 5 112

6.10 Stabilizing Selection: MSE(ˆ̄z†n), P0(s, t) = exp{−|s− t|}, v = 5 113

6.11 Stabilizing Selection: MSE(b̂n), P0(s, t) = exp{−|s− t|}, v = 1 114

6.12 Stabilizing Selection: MSE(ˆ̄z†n), P0(s, t) = exp{−|s− t|}, v = 1 115

6.13 Truncation Selection: MSE(b̂n), P0(s, t) = min(s, t), α = 0 116

6.14 Truncation Selection: MSE(ˆ̄z†n), P0(s, t) = min(s, t), α = 0 117

6.15 Truncation Selection: MSE(b̂n)P0(s, t) = min(s, t), α = 1 118

6.16 Truncation Selection: MSE(ˆ̄z†n), P0(s, t) = min(s, t), α = 1 119

6.17 Truncation Selection: MSE(b̂n), P0(s, t) = exp{−|s− t|}, α = 0 120

6.18 Truncation Selection: MSE(ˆ̄z†n), P0(s, t) = exp{−|s− t|}, α = 0 121

6.19 Truncation Selection: MSE(b̂n), P0(s, t) = exp{−|s− t|}, α = 1 122

6.20 Truncation Selection: MSE(ˆ̄z†n), P0(s, t) = exp{−|s− t|}, α = 1 123

6.21 Dependent Organisms: Directional MSE . 127

ix

6.22 Dependent Organisms: Directional MSE . 127

6.23 Dependent Organisms: Stabilizing Selection MSE 129

6.24 Dependent Organisms: Stabilizing Selection MSE 130

6.25 Dependent Organisms: Truncation MSE . 132

6.26 Dependent Organisms: Truncation MSE . 132

x

LIST OF SYMBOLS

δt Delta Function at t i.e. the Point Evaluation Functional at t

δij Kronecker Delta

ℓ2c(B) The subset of square summable sequences indexed by B:

{{ak}k ∈ ℓ2(B) : infk ak > −1, k ∈ B}

〈·, ·〉K Inner Product in the RKHS H(K)

(·, ·)H Inner product in the Hilbert space H

P Model

N Natural Numbers, N = 1, 2, 3, . . .

R Real Numbers

H(K) Reproducing Kernel Hilbert Space (RKHS) with Kernel K

P Probability Measure

z̄ Mean of the process {Zt : t ∈ T}

HP Hilbert Space Associated to the Process {Zt : t ∈ T} under the measure P

P Phenotypic Covariance function

CONS Complete Orthonormal Sequence

xi

ONS Orthonormal Sequence

xii

ACKNOWLEDGEMENTS

First of all, I cannot give enough thanks to my advisor Professor Jay Beder for his continued

guidance and encouragement during my research. My appreciation for his willingness to

spend time and share ideas to help me is beyond words. Without his help, this dissertation

would have never gotten off of the ground. I would also like to thank the rest of my disserta-

tion committee: Professor Jugal Ghorai, Professor Chao Zhu, Professor Kevin McLeod and

Professor Daniel Gervini.

I would also like to thank the Department of Mathematical Sciences at the University

of Wisconsin-Milwaukee for providing support and an excellent place to study and develop

as a Mathematician. The faculty has been very supportive of me; Dr. Eric Key deserves

a special thank you for always being interested in what I was doing during my stay in the

department.

Last but not least I would like to thank my parents and parents-in-law for always believing

in me. My deepest thanks go to my wonderful wife, Kylee, and my ever-joyful son, Everett,

for making me smile when I needed it most.

xiii

Chapter 1

Introduction

One of the most important topics in evolutionary biology is the way in which the physical

traits, also called phenotypes, of an organism change between generations. The phenotype

is often written as the sum of a genetic effect and an uncorrelated environmental effect.

Together with selection, the genetic effect, called the genotype, determines the way that the

phenotypes evolve.

If a trait is able to be entirely described by a vector in some Rn, it is called finite-

dimensional. The evolutionary change in the mean, the change in the mean trait between

generations, is described by a well-known equation (3.3), the Breeder’s Equation, in which

the effects of selection are quantified by a vector called the selection gradient. However,

many traits are better described by functions and are thus called function-valued traits.

Gomulkiewicz and Beder [12] have been able to extend the selection gradient to function-

valued traits. Furthermore, a version of the Breeder’s Equation has also been extended [7]

for use with such traits.

Our goal is to estimate the selection gradient for function-valued traits. To do so, we

refine the definition of the selection gradient given in [12] and show that it lies in a certain

weak completion, M, of a subset of a set of square-integrable functions. Next, we prove

several properties of the selection gradient and show that it has a unique expansion in M. To

1

estimate the selection gradient, we must first estimate the covariance function of a Gaussian

process. Using the Gaussian Dichotomy Theorem (see [20]), Beder [5, 6] gives explicit sieve

estimators for the mean function of a Gaussian process with known covariance and also for

the covariance function of a zero mean process. In most applications, zero mean cannot be

assumed. We are able to use the Gaussian Dichotomy Theorem (GDT) to construct a joint

estimator for the mean and covariance of a Gaussian process and prove several asymptotic

properties.

One issue with using the GDT to estimate the covariance of a Gaussian process is that it

requires independent observations. In many of the experiments performed by biologists, the

pedigree of the individuals is purposefully selected and thus some individuals are related.

When a organisms are equally related, such as siblings, we are able to transform the observa-

tions to independent ones and estimate the covariance functions of these new observations.

This approach is able to estimate the original covariance function, but in many experiments,

there are several unrelated families. With this in mind, we extend the estimation of P for

a sample consisting of one family to one involving independent families, each consisting of

equally-related organisms. From these estimates, we are able to create an estimator of the

phenotypic covariance function and also of the genetic covariance function.

This dissertation is organized as follows. In Chapter 2 we review the concept of a repro-

ducing kernel Hilbert space (RKHS) and the connection to a stochastic process. We also state

the Gaussian Dichotomy Theorem in two parts and show how it may be used to estimate the

covariance function of a stochastic process. Chapter 3 reviews biological traits, both finite-

dimensional and function-valued, and introduces the (functional) selection gradient, β. In

Chapter 4, we develop a joint estimator of the mean and covariance functions of a stochastic

process and prove the consistency of the estimators. We also construct an estimator for the

selection gradient and prove some consistency results, ending with a conjecture. Chapter 5

deals with estimation of a covariance function, genetic covariance function and the selection

gradient based on a sample of independent families consisting of equally related organisms.

2

In Chapter 6, we conduct a simulation study for both the independent and dependent cases.

3

Chapter 2

Background on Sieve Estimation

2.1 Reproducing Kernel Hilbert Spaces

The concept of a reproducing kernel Hilbert space is paramount in estimating the selection

gradient. In this section, we let H be a Hilbert space of real-valued functions on an arbitrary

set T with inner product 〈·, ·〉
H
. We begin with a definition.

Definition 2.1.1. Let T be a set and K be a real-valued function on T × T . K is called a

reproducing kernel for the Hilbert space H if it satisfies the following two properties:

(i)

Kt = K(·, t) ∈ H for all t ∈ T

(ii)

〈f,Kt〉H = f(t) for all t ∈ T and all f ∈ H. (2.1)

The Hilbert space H is called the reproducing kernel Hilbert space (RKHS) with kernel

K and is denoted by H(K, T) or H(K) when T is understood.

The property (2.1) is called the reproducing property. Note that if H is separable, then

for a complete orthonormal sequence (CONS) {gk}∞k=1, it follows that for all s, t ∈ T ,

4

Kt(s) =
∑∞

k=1 〈gk, Kt〉H gk(s). By the reproducing property, we have 〈gk, Kt〉H = gk(t).

Therefore,

K(s, t) =
∞∑

k=1

gk(s)gk(t) for all s, t ∈ T. (2.2)

2.1.1 Constructing Orthonormal Sets in a RKHS

A useful way to construct an orthonormal sequence (ONS), {g1, g2, . . . }, inH(K) is by choos-

ing a sequence t1, t2, · · · ∈ T such that Kt1 , Kt2 , . . . are linearly independent and applying

the Gram-Schmidt process. This gives us expressions

gk =

k∑

i=1

qkiKti , k = 1, 2, 3, . . . (2.3)

where the coefficients qki are computed from values of K. For example,

g1 =
1

||Kt1 ||
Kt1 =

1√
K(t1, t1)

Kt1 .

We will use this throughout the dissertation.

2.1.2 Stochastic Processes and

Reproducing Kernel Hilbert Spaces

Let T be a set and K be a real-valued function on T × T . K is called a covariance kernel if

it is symmetric and nonnegative-definite, where symmetric means that for all t, s ∈ T ,

K(t, s) = K(s, t)

and nonnegative-definite means that for all n ∈ N, all t1, . . . , tn ∈ T and all a1, . . . an, we

have
n∑

i,j=1

aiajK(tj , ti) ≥ 0.

5

Definition 2.1.2. A real-valued stochastic process defined on a probability space (Ω,A,P)

is a family {Zt : t ∈ T} of real-valued random variables on Ω. The process is of pth order if

EP [|Zt|p] < ∞ for all t ∈ T , where expectation is

EP [·] =
∫

Ω

· dP.

The process {Zt : t ∈ T} is called a Gaussian process if any finite linear combination of

elements Zt, t ∈ T is a Gaussian random variable.

If a process is of second order, it has mean function µ(t) = EP [Zt] and covariance function

K(s, t) = CovP (Zs, Zt) = EP [(Zt − µ(t))(Zs − µ(s))]. Note that a second order process is

contained in L2(Ω,A,P) and we may consider the closure of {Zt : t ∈ T}, H = HP =

{Zt|t ∈ T}P, in L2(Ω,A,P). Then H is the smallest Hilbert space contained in L2(Ω,A,P)

that contains {Zt : t ∈ T} and is called the Hilbert space spanned by the process {Zt|t ∈ T}.

That is, H is the space of linear combinations of the random variables Zt, t ∈ T and their

L2-limits. In the case that {Zt : t ∈ T} is Gaussian, the space H will be called the Gaussian

space associated to {Zt : t ∈ T}.

Remark 2.1.1. From this definition, it is clear that we may write H as the L2(Ω,A,P)

completion of the space V defined by

V =

{
X ∈ L2(Ω,A,P) : X =

n∑

i=1

ciZti for some n ∈ N, c1, . . . , cn ∈ R and t1, . . . , tn ∈ T

}
.

(2.4)

Now if K is the covariance function of a second-order process {Zt : t ∈ T}, then K is

symmetric as

CovP (Zs, Zt) = CovP (Zt, Zs) , ∀s, t ∈ T.

6

Furthermore, if n ∈ N, a1, a2, . . . , an ∈ R and t1, t2, . . . , tn ∈ T , then

n∑

i,j=1

ajaiK(ti, tj) = VarP

(
n∑

i=1

aiZti

)
≥ 0.

Therefore, K is also non-negative definite and is thus a covariance kernel. We also note that

if K is the covariance function of the process {Zt : t ∈ T}, then {Zt : t ∈ T} is of second

order. To connect a Gaussian process and a RKHS, we use the following proposition:

Proposition 2.1.1 ([20, Proposition 3.2]). Let T be a set and {Zt : t ∈ T} be a zero mean

Gaussian process with covariance function K and let H be the Hilbert space spanned by

{Zt : t ∈ T}. There is a unique reproducing kernel Hilbert space with kernel K, H(K),

consisting of functions on T . Moreover, the Hilbert spaces H and H(K) are isomorphic via

the isometry Λ : H → H(K) defined by

Λ(Y)[t] = EP [Y Zt] . (2.5)

The mapping Λ in (2.5) has been called the Loève map [6, 12]. If (·, ·)P is the inner

product in H , then it follows that the inner product in H(K) can be written as

〈f, g〉K =
(
Λ−1f,Λ−1g

)
P
, for all f, g ∈ H(K) (2.6)

Furthermore, note that we are able to write

Λ(Zs)[·] = EP [ZsZ·] = K(s, ·) = Ks(·). (2.7)

We will use (2.7) throughout the dissertation to construct an orthonormal set in H : if an

ONS {gk} in H(K) is given by (2.3), i.e. ,

gk =

k∑

i=1

qkiKti ,

7

for all k, then the sequence {Uk} defined by

Uk =
k∑

i=1

qkiZti

is an ONS in H .

Remark 2.1.2. The inner products on HP and H(K) shall be denoted by (·, ·)P and 〈·, ·〉K ,

respectively. When it is clear, the subscripts may be dropped.

2.2 The Gaussian Dichotomy Theorem

The Gaussian Dichotomy Theorem (GDT) is an essential tool used in the estimation of both

the mean and covariance of a Gaussian process. The GDT says roughly that two Gaussian

measures are either equivalent (mutually absolutely continuous) or mutually singular. We

are particularly interested in the treatment of the GDT given by Neveu [20]. The theorem

is stated in two parts, one where the two measures have the same covariance and the other

when the measures both have mean zero and different covariances. Since the equivalence

of measures is an equivalence relation on sets of measures, it is enough to consider both of

these cases to arrive at the equivalence or singularity of any two Gaussian measures.

Before stating the GDT, we shall first introduce the concept of a σ-algebra generated by

a Gaussian space. To any Gaussian space H in L2(Ω,A,P) is associated the sub-σ-algebra

B(H) of A generated by the random variables that belong to H . This space B(H) is very

closely connected to the process {Zt : t ∈ T} as shown in the following lemma [20, Lemma

2.3]:

Lemma 2.2.1. If {Zt : t ∈ T} is the Gaussian process that generates the Gaussian space

H ⊂ L2(Ω,A,P), then the σ-algebra B(H) coincides with the σ-algebra B (Zt, t ∈ T) gener-

ated by the random variables Zt, t ∈ T and the P-negligible sets.

We now are able to discuss the first part of the GDT given in [20, Proposition 8.1].

8

2.2.1 The Gaussian Dichotomy Theorem, Part 1

Theorem 2.2.1. Let {Zt : t ∈ T} be a zero mean Gaussian process defined on a probability

space (Ω,A,P). Let K be the covariance function of this process and let H be the Gaussian

space associated to it. We assume that A = B(H).

Any probability measure Q on (Ω,A) such that {Zt : t ∈ T} is a Gaussian process with

covariance function K is either singular to the probability measure P or equivalent to P. For

the measures Q and P to be equivalent, it is necessary and sufficient that there exist a Y in

H such that

EQ [Zt] = EP [Y Zt] for all t ∈ T. (2.8)

Equivalently, it is necessary and sufficient that the mean µQ(·) = EQ [Z·] of the process

{Zt : t ∈ T} belong to the reproducing kernel Hilbert space H(K). Furthermore, when these

conditions are fulfilled, the Radon-Nikodym derivative of Q with respect to P is

dQ

dP
= exp

{
Y − 1

2
EP

[
Y 2
]}

(2.9)

on (Ω,A,P).

Conversely, for any Y ∈ H, the probability measure Q on (Ω,A) defined by

dQ = exp

{
Y − 1

2
EP

[
Y 2
]}

dP

makes the process {Zt : t ∈ T} Gaussian; the mean of this process is EQ [Zt] = EP [Y Zt] and

the process has covariance K.

This theorem is useful since it states exactly what the Radon-Nikodym derivative (2.9)

is and tells us how to find Y . This derivative is the relative density, and allows us to use

maximum likelihood estimation. The theorem also tells us that the parameter set for µQ is

the RKHS H(K).

Before stating the second half of the GDT, we must first introduce the necessary material

9

found in [20, pages 109-138].

2.2.2 Tensor Products of Hilbert Spaces

Let E1 and E2 be two vector spaces. We begin by taking the closure, E1 ◦ E2, of the vector

space of linear combinations of elements of E1 ×E2. If f1 ◦ f2 denotes an arbitrary element

of E1 × E2, then the elements of E1 ◦ E2 can be written in the form
∑n

k=1 ckf
k
1 ◦ fk

2 , where

ck ∈ R, fk
1 ∈ E1 and fk

2 ∈ E2. Now, denote by N the sub-vector space of E1 ◦ E2 that is

generated by the elements that are of one of the following forms:

(
n∑

k=1

ckf
k
1

)
◦ f2 −

n∑

k=1

ckf
k
1 ◦ f2,

f1 ◦
(

n∑

k=1

ckf
k
2

)
−

n∑

k=1

ckf1 ◦ fk
2 .

The tensor product of E1 and E2, E1 ⊗ E2, is defined as the quotient E1 ◦ E2/N . We

denote by f1⊗ f2 the equivalence class of f1 ◦ f2 in E1⊗E2; an arbitrary element of E1⊗E2

can be written as
∑n

k=1 ckf
k
1 ⊗ fk

2 .

When E1 and E2 are vector spaces of functions, the following proposition [20, Proposition

6.2] will be useful in understanding the general elements of E1 ⊗E2.

Proposition 2.2.1. If E1 and E2 are two vector spaces of real-valued functions defined on

the sets T1 and T2, respectively, then the tensor product E1 ⊗E2 is isomorphic to the vector

space of functions on T1 × T2 generated by the functions f1 ⊗ f2 defined by f1 ⊗ f2(t1, t2) =

f1(t1)f2(t2), where f1 ∈ E1, f2 ∈ E2, t1 ∈ T1 and t2 ∈ T2.

To define the tensor product of two Hilbert spaces, we need to relate the tensor product

and the inner products of two inner product spaces.

Lemma 2.2.2 (Lemma 6.3,[20]). If E1 and E2 are two separable inner product spaces with

inner products (·, ·)1 and (·, ·)2, respectively, then E1 ⊗E2 is a separable inner product space

10

with inner product defined by

(f1 ⊗ f2, f
′
1 ⊗ f ′

2) = (f1, f
′
1)1 (f2, f

′
2)2 . (2.10)

Using this lemma, we may then define the Hilbert space tensor product of two Hilbert

spaces H1 and H2 as the completion of the space H1 ⊗H2 with respect to the inner product

(2.10). To denote this Hilbert space, we use a slight abuse of notation: when the context

is clear, H1 ⊗ H2 will denote the Hilbert space tensor product of H1 and H2. We can

also write a complete orthonormal sequence (CONS) of H1 ⊗ H2 given two CONS of H1

and H2 [20, Lemma 6.5]. If {fi, i ∈ I} and {gj, j ∈ J} are CONS of H1 and H2, then

{fi ⊗ gj, (i, j) ∈ I × J} is a CONS of H1 ⊗H2.

As developed here, the tensor product of two functions f ⊗ g is more of an algebraic

construct. If E1 and E2 are function spaces, we will also use the notation f1 ⊗ f2 for the

function on T1 × T2 defined by

f1 ⊗ f2(t1, t2) = f1(t1)f2(t2), (2.11)

where f1 ∈ E1, f2 ∈ E2, t1 ∈ T1 and t2 ∈ T2. This is justified by the following [20, Proposition

6.2]:

Proposition 2.2.2. If E1 and E2 are two vector spaces of real-valued functions defined on

the sets T1 and T2, respectively, then the tensor product E1 ⊗E2 is isomorphic to the vector

space generated by functions on T1 ⊗ T2 of the form (2.11).

Using this proposition and a slight abuse of notation, when the context is clear, f ⊗ g

will denote the image of the tensor product f ⊗ g and is a function on T1 × T2.

We may extend the tensor product to any finite number of Hilbert spaces H1⊗· · ·⊗Hn,

with inner product

(f1 ⊗ · · · ⊗ fn, f
′
1 ⊗ · · · ⊗ f ′

n) = (f1, f
′
1)H1

. . . (fn, f
′
n)Hn

.

11

We will be mostly concerned with the case where Hi = H for all i. In this case, Hn⊗ will

denote the n-fold tensor product of H with itself. The elements f ⊗ · · · ⊗ f of Hn⊗ are

written as fn⊗ and the inner product of Hn⊗ is given by

(
fn⊗, gn⊗

)
n⊗ = ((f, g)H)

n .

Let Sn be the nth symmetric group. For any σ ∈ Sn, there exists [20, Lemma 6.9] a

unique invertible operator , Uσ, on Hn⊗ such that

Uσ[f1 ⊗ · · · ⊗ fn] = fσ1 ⊗ · · · ⊗ fσn
. (2.12)

Using this equation, we may define a special subspace of Hn⊗.

Definition 2.2.1. Let H be a Hilbert space and n ∈ N. The nth symmetric tensor product

of H is the subspace of Hn⊗ defined by

Hn⊙ = {f |f ∈ Hn⊗, Uσf = f for any σ ∈ Sn}.

If f1, . . . , fn are in H , we define

f1 ⊙ · · · ⊙ fn =
1√
n!

∑

σ

fσ1 ⊗ · · · ⊗ fσn
.

From this definition, we see that f1 ⊙ · · · ⊙ fn ∈ Hn⊙ when fi ∈ H for i = 1, . . . , n. The

inner product of elements of Hn⊙ of the form f1 ⊙ · · · ⊙ fn is given by

(f1 ⊙ · · · ⊙ fn, f
′
1 ⊙ · · · ⊙ f ′

n)n⊙ =
∑

σ

(
f1, f

′
σ1

)
H
. . .
(
fn, f

′
σn

)
H
. (2.13)

In particular, when n = 2, we have

(f1 ⊙ f2, f
′
1 ⊙ f ′

2)2⊙ = (f1, f
′
1)H (f2, f

′
2)H + (f1, f

′
2)H (f2, f

′
1)H . (2.14)

12

If H1 and H2 are Hilbert spaces, let H
′
1 denote the dual space of H1, and if Ũ : H1 → H ′

2

is a linear operator, let Ũh denote Ũ(h) for all h ∈ H1. In order to state the GDT, we need

the following proposition [20, Proposition 6.16]:

Proposition 2.2.3. Let H1 and H2 be two Hilbert spaces. To any element U of H1 ⊗ H2

corresponds a unique continuous linear operator Ũ of H1 into H ′
2 such that

Ũh1(h2) = (h1 ⊗ h2, U)H1⊗H2
, ∀h1 ∈ H1, h2 ∈ H2,

where Ũh1 is the functional in H ′
2 that maps h2 ∈ H2 to (h1 ⊗ h2, U)H1⊗H2

. This operator

satisfies
∑

I

||Ũhi
||2H′

2
= ||U ||2H1⊗H2

< ∞, (2.15)

for any complete orthonormal sequence {hi, i ∈ I} of H1.

When the spaces H1 and H2 are equal, say H1 = H2 = H, the tensor U ∈ H2⊗ is

symmetric, that is, belongs to H2⊙ if and only if the operator Ũ of H into H ′ is self-adjoint.

Because of (2.15), the operators Ũ of H1 into H ′
2 associated to an element U of H1 ⊗H2

are Hilbert-Schmidt operators. The Hilbert-Schmidt norm of the operator is the common

value of the expressions
[∑

I ||Ũhi
||2H′

2

]1/2
, where {hi, i ∈ I} is a CONS of H1. As Hilbert

spaces are self-dual, it should be understood that for g ∈ H2, the equation Ũh = g means

that g is the corresponding operator in H ′
2.

Of further interest is how to write an arbitrary element of the space H1⊗H2 or an element

of H2⊙
1 . We turn to [20, Proposition 6.18]

Proposition 2.2.4. Let H1 and H2 be two Hilbert spaces. Any element U ∈ H1 ⊗H2 can

be written in the form

U =
∑

I

aifi ⊗ gi,

where {fi, i ∈ I} and {gi, i ∈ I} are complete orthonormal sequences of H1 and H2, respec-

tively, and {ai, i ∈ I} is a sequence of scalars such that
∑

I |ai|2 < ∞. The Hilbert-Schmidt

13

operator Ũ of H1 into H ′
2 associated to U satisfies Ũfi = aigi and Ũ ′

gi
= aifi for i ∈ I.

When H = H1 = H2 and U is symmetric, we may write

U =
1

2

∑

I

aif
2⊙
i , (2.16)

for a complete orthonormal sequence {fi, i ∈ I} of H. In addition, Ũ satisfies

Ũfi = aifi, ∀i ∈ I. (2.17)

This proposition says that we may write any U ∈ H2⊙ in the form (2.16) and that the

coefficients of this expansion are the eigenvalues of the associated linear operator Ũ .

To fully understand the consequences of the GDT, we end this subsection with two results

that allow us to write a symmetric tensor U2⊙ in terms of the random variable U . We begin

with [20, Proposition 7.3]:

Proposition 2.2.5. Let H be a Gaussian space in L2(Ω,A,P) and let B(H) be the sub-σ-

algebra of A generated by H.

There exists a unique isomorphism φ of the Hilbert space direct sum ⊕n≥0H
n⊙ onto

L2(Ω,B(H),P) such that for each X ∈ H,

φ [exp⊙(X)] = exp

[
X − 1

2
EP

[
X2
]]

, (2.18)

where exp⊙(X) =
∑

n≥0
1
n!
Xn⊙ in ⊕n≥0H

n⊙.

The next proposition [20, Proposition 7.5] will allow us write φ(X2⊙) in terms of X :

Proposition 2.2.6. If H is a Gaussian space in L2(Ω,A,P) and X ∈ H, then the image

under φ of X2⊙ is given by

φ(X2⊙) = X2 − EP

[
X2
]
. (2.19)

In particular, if U is a standard normal random variable under P, we have

14

φ(U2⊙) = U2 − 1. (2.20)

By abuse of notation, we shall write U2⊙ = U2 − 1.

We are now able to conclude the Gaussian Dichotomy Theorem, where we consider two

measures that give the process {Zt : t ∈ T} zero mean and different covariances.

2.2.3 The Gaussian Dichotomy Theorem, Part 2

The second part of the GDT is given in [20, Proposition 8.6]

Theorem 2.2.2. Let {Zt : t ∈ T} be a real-valued zero mean Gaussian process on a proba-

bility space (Ω,A,P) and such that A = B ({Zt : t ∈ T}); denote by KP and H, respectively,

the covariance and the Gaussian space associated to this process. Let Q be a second proba-

bility measure on (Ω,A) for which {Zt : t ∈ T} is a zero mean Gaussian process; denote by

KQ the covariance of {Zt : t ∈ T} with respect to Q.

Then the probability measures P and Q are either singular or they are equivalent. For

these measures to be equivalent, it is necessary and sufficient that there exist an element U

in H2⊙ such that

KQ(s, t)−KP(s, t) = (Zs ⊙ Zt, U)2⊙ , s, t ∈ T, (2.21)

and furthermore, that the Hilbert-Schmidt operator Ũ associated to H has eigenvalues strictly

greater than −1. A condition equivalent to (2.21) is

KQ(s, t)−KP(s, t) =
∑

k

akgk(s)gk(t) ∀s, t ∈ T, (2.22)

where {gk} is an ONS in H(K).

When the probability measures P and Q are equivalent, the Gaussian space HQ generated

by the process {Zt : t ∈ T} in L2(Ω,A,Q) coincides with the vector space H equipped with

15

the inner product

(Y1, Y1)HQ
= (Y1, Y2)H + (Y1 ⊙ Y2, U)2⊙ , Y1, Y2 ∈ H. (2.23)

Furthermore, the function spaces H(KP) and H(KQ) are composed of the same functions.1

When the probability measures P and Q are equivalent, the Radon-Nikodym derivative of

Q with respect to P equals

dQ

dP
=

exp (X)

EP [exp (X)]
, (2.24)

where X denotes the element of H2⊙ defined by

X =
1

2

∑

k

λkU
2⊙
k if U =

1

2

∑

k

akU
2⊙
k and (1− λk)(1 + ak) = 1, (2.25)

and {Uk}k is an orthonormal sequence (ONS) in H such that ΛPUk = gk, where {gk} is

given in (2.22).

Proposition 2.2.4 and this theorem tell us that the coefficients {ak} are strictly greater

than −1, as {ak} is the set of eigenvalues of the operator Ũ . Furthermore, the sequence {ak}

satisfies
∑

k a
2
k < ∞.

Proof of (2.22). Let {Uk} be the ONS in H given after (2.25) and let gk = ΛP(Uk) for all

k. It follows from equation (2.6), that {gk} is an ONS in H(KP). Using equation (2.14) the

1The inner product in H(KQ) is given terms of those in H(KP) and H(KP)
2⊙ by the formula

〈h1, h2〉H(KQ) = 〈h1, h2〉H(KP)
+ 〈h1 ⊙ h2,KQ −KP〉H(KP)2⊙

.

16

right hand side of (2.21) becomes

(Zs ⊙ Zt, U)2⊙ =

(
Zs ⊙ Zt,

1

2

∑

k

akU
2⊙
k

)

2⊙

=
1

2

∑

k

ak
(
Zs ⊙ Zt, U

2⊙
k

)
2⊙

=
1

2

∑

k

ak ((Zs, Uk)H (Zt, Uk)H + (Zs, Uk)H (Zt, Uk)H)

=
∑

k

ak (Zs, Uk)H (Zt, Uk)H

=
∑

k

akΛP(Uk)[s]ΛP(Uk)[t]

=
∑

k

akgk(s)gk(t).

Therefore, we may write

KQ(s, t)−KP(s, t) =
∑

k

akgk(s)gk(t) ∀s, t ∈ T.

This theorem gives a form for the Radon-Nikodym derivative of Q with respect to P,

namely

dQ

dP
=

exp (X)

EP [exp (X)]
,

where X = 1
2

∑
k λkU

2⊙
k for some ONS {Uk} in H . Similar to the first part of the GDT, this

derivative is the relative density and allows us to use maximum likelihood estimation. The

denominator of this derivative is given [20, Proposition 8.5] by

EP [exp (X)] = exp

{
−1

2

∑

k

λk

}∏

k

(1− λk)
−1/2.

17

Therefore,

dQ

dP
= exp

{
1

2

∑

k

(
λkU

2⊙
k + ln(1− λk) + λk

)
}
.

To deal with the U2⊙
k term, we use the discussion after Proposition 2.2.6 to obtain U2⊙

k =

U2
k − 1. This implies that

dQ

dP
= exp

{
1

2

∑

k

(
λkU

2
k + ln(1− λk)

)
}

(2.26)

Finally, since we know that the {Uk} are i.i.d. standard normal random variables under P

(they are orthonormal in H with respect to P) and EQ [Zt] = 0 for all t ∈ T , we can gain

information about the distribution under Q of the {Uk}.

Proposition 2.2.7. Under the hypotheses of Theorem 2.2.2, we have

EQ [Uk] = 0 (2.27)

and

CovQ (Ui, Uj) = EQ [UiUj] = δij(1 + λj), (2.28)

where δij is the Kronecker δ.

Proof. Let V be as in (2.4), the linear span of {Zt : t ∈ T}. Let X be an element of HQ, so

that X is either an element of V or an L2(Ω,A,Q) limit of a sequence in V . It is clear that

if X ∈ V then EQ [X] = 0. If X ∈ HQ\V , then X there exists a sequence {Xn, n ∈ N} in V

such that EQ [(Xn −X)2] → 0 as n → ∞. By the Cauchy-Schwarz inequality,

(EQ [Xn −X])2 ≤ EQ

[
(Xn −X)2

]
,

and thus EQ [Xn] → EQ [X]. Now EQ [Xn] = 0 for all n, which implies that EQ [X] = 0.

Since Uj ∈ HQ, it follows that Uj has zero mean for all j. This proves (2.27).

18

Similarly by (2.23), we have

(Ui, Uj)Q = (Uj, Uj)P + (Ui ⊙ Uj , U)2⊙

= δij +
1

2

∑

k

λk

(
Ui ⊙ Uj, U

2⊙
k

)
2⊙

= δij +
1

2

∑

k

λk((Ui, Uk)P (Uj, Uk)P + (Ui, Uk)P (Uj , Uk)P

= δij +
1

2

∑

k

λk2((Ui, Uk)P (Uj , Uk)P

= δij + λjδij

= δij(1 + λj),

which proves (2.28).

This proposition shows that under Q, Ui and Uj are uncorrelated (and therefore inde-

pendent) if i 6= j and Uj has variance 1 + λj .

2.3 Estimation of the Covariance Function

In this section, we will define and discuss the need for a sieve estimator. We shall also review

the properties of such an estimator of a covariance function of a Gaussian process given in

[6].

Let {Zt : t ∈ T} be a stochastic process on a measurable space (Ω,A) and let

ℓ2c(B) = {{aα} ∈ ℓ2(B) : inf(aα) > −1}, (2.29)

where B is usually a finite set or N. Recall that f⊗g will denote a function on T ×T defined

by f ⊗ g(s, t) = f(s)g(t). In light of the Gaussian Dichotomy Theorem, we will consider the

largest set P of probability measures on (Ω,A) such that

(A1) the process is Gaussian under every Q ∈ P,

19

(A2) the mean function of the process is identically zero under every Q ∈ P,

(A3) all of the measures in P are equivalent (mutually absolutely continuous), and

(A4) the true probability measure belongs to P.

If a measure is arbitrarily chosen from the model P, say P, then {Zt : t ∈ T} is a zero mean

Gaussian process defined on (Ω,A) with covariance KP and has the associated Gaussian

space HP. Let the RKHS with kernel KP be denoted by HP = H(KP, T) and the Loève map

between HP and HP by ΛP.

The n-fold product measure Q × · · · × Q will be denoted by Qn⊗ and An⊗ will denote

the σ-algebra generated by sets of the form B1 × · · · × Bn, where Bi ∈ Ω for i = 1, . . . , n.

We will also let P(n) = {Qn⊗,Q ∈ P}.

According to the Gaussian Dichotomy Theorem (GDT), for each Q ∈ P,

(i) There are a countable orthonormal sequence {gk} in HP and a sequence a = {ak} ∈ ℓ2c ,

both depending on Q, such that

KQ = KP +
∑

k

akgk ⊗ gk. (2.30)

This means that we may write the set of possible covariances as specified by the model,

C, as

C =

{
KQ = KP +

∑

k

akgk ⊗ gk, a ∈ ℓ2c(N), {gk} countable and orthonormal in HP

}

(2.31)

(ii) There are a countable orthonormal sequence {Uk} in HP and a sequence λ = {λk}

with −λ ∈ ℓ2c such that

dQ

dP
= exp

{
1

2

∑

k

(
λkU

2
k + ln(1− λk)

)
}
, (2.32)

20

where (1 + ak)(1− λk) = 1 and gk = ΛP(Uk) for all k.

(iii) Furthermore,

dQn⊗

dPn⊗ = exp

{
n

2

∑

k

(
λkS

2
k + ln(1− λk)

)
}
, (2.33)

where S2
k = 1

n

∑n
i=1 U

2
ki.

(iv) Under Q, the sequence

{Uk/
√
1 + ak}k is i.i.d. N(0, 1). (2.34)

Given n realizations of this process, the variable Uki is the value of the ith realization of

Uk for all k. We wish to maximize (2.33) by fixing ω ∈ Ωn and allowing {S2
k , k ∈ B} and

−λ ∈ ℓ2c(B) to vary. We begin by fixing {gk} in H(P0) and the corresponding set {Uk,i}k,i.

The following lemma is due to [6, Theorem 3.1]:

Lemma 2.3.1. Fix {Uk,i}k,i for k ∈ B and i = 1, . . . , n. If B is an infinite set, the likelihood

(2.33) is unbounded almost surely P(n). On the other hand, when B is a finite set, then this

likelihood is maximized at

λ̂k =

1− S−2
k if k ∈ B

0 otherwise
, (2.35)

with corresponding estimate

âk =

S2
k − 1 if k ∈ B

0 otherwise
. (2.36)

2.3.1 Sieve Estimation

Since (2.33) is unbounded over an infinite set and can be maximized over a finite set, we shall

consider the method of sieves. Let D = {Pθ, θ ∈ Θ} be a dominated family of probability

measures, that is, the densities of the measures exist with respect to some measure.

21

Definition 2.3.1. A sieve in Θ is a collection {Sd} of subsets of Θ indexed by a parameter

d such that

(i) d′ > d ⇒ Sd′ ⊃ Sd,

(ii) ∪Sd is dense in Θ, and

(iii) the likelihood can be maximized at θ̂d over each Sd for some sample size n.

This estimator θ̂d over each Sd is called a sieve estimator of θ and d is called the sieve

parameter/size.

The parameter space C in (2.31) involves not only letting the coefficients a vary, but also

the CONS {gk}k in H(KP). This space is very large and it is difficult to find a sieve in C.

This leads us to consider a subset, C0 of C defined by

C0 =

{
KQ ∈ C : KQ = KP +

∑

k

akgk ⊗ gk, a ∈ ℓ2c

}
, (2.37)

where {gk}k is a fixed CONS in H(KP).

To make finding a sieve in C0 easier, we make use of the one-to-one correspondence

between C0 and ℓ2c . To see this correspondence, suppose that

∑

k

akgk ⊗ gk =
∑

k

ãkgk ⊗ gk.

Then for each s ∈ T ,
∑

k

akgk(s)gk =
∑

k

ãkgk(s)gk.

Applying the linear functional 〈·, gm〉H(KP)
to both sides of this equation, we obtain

amgm(s) = ãmgm(s).

22

Now,we let s vary in T . One more application of the linear functional 〈·, gm〉H(KP)
gives us

am = ãm.

Therefore, the mapping a → KQ −KP is one-to-one.

Define the sets Sd by

Sd = {a ∈ ℓ2c : ak = 0 for k > d} d ∈ N.

Then {Sd, d ∈ N} is a sieve in ℓ2c . We want a sieve in C0, but we may still consider {Sd, d ∈ N}

as a sieve in C0. The sieve estimator for a in ℓ2c is given by ân,d = {âk}k, where

âk =

S2
k − 1 if k ≤ d

0 otherwise
, (2.38)

where S2
k is given right after (2.33) and the sieve estimator in C0 is

K̂Q = KP +

d∑

k=1

âkgk ⊗ gk. (2.39)

Because of this new sieve estimator, we shall add an assumption to the model:

(A5) The true covariance belongs to C0.

This means that instead of considering the largeP, we are assuming that the true measure

belongs to a subset P0, corresponding to C0. In addition, we may parameterize C0 by ℓ2c , so

that the measure that endows {Zt : t ∈ T} with the covariance function

KP +

∞∑

k=1

akgk ⊗ gk (2.40)

can be denoted by Pa instead of Q.

For Q ∈ P0 and each (s, t) ∈ T × T ,the estimator K̂Q(s, t) has been shown to be

23

asymptotically unbiased as d → ∞ and weakly and mean-square consistent for KQ(s, t)

provided that d = O(n) [6, Corollary 4.1]. Furthermore, the following theorem and corollary

follow from [6, Theorem 5.1, Corollary 5.1]:

Theorem 2.3.1. Let d → ∞ and d/nσ → β < ∞ for some σ ∈ (0, 1). Then for any

ǫ > 16β/e2, we have Pa

(∑d
k=1(âk − ak)

2 < ǫ i.o.
)
= 1.

Corollary 2.3.1. If d → ∞ and d/nσ → 0 for some σ ∈ (0, 1), then ||ân,d − a||ℓ2 → 0 a.s.

Pa.

Therefore, we say that K̂P converges to KP Pa-almost surely in the sense that ân,d

converges to a Pa-almost surely.

24

Chapter 3

Phenotypic Traits and the Selection

Gradient

The evolutionary change of a biological trait from one generation to the next is a topic of

interest of evolutionary biologists. When the trait of interest can be described as a vector,

the result is given by a well-known equation (3.3), the so-called Breeder’s Equation [13]. If

the trait is better described by a function, a version, (3.6), of the Breeder’s equation holds

as well [14].

We assume that evolution occurs in two steps. Evolution first occurs by selection, de-

termined by the fitness (i.e., survivorship). The fitness is determined by the observed trait

called the phenotype and describes an organism’s ability to survive and procreate. Once se-

lection has occurred, inheritance is the second step and is determined by the mating patterns

and genetics of the survivors.

For the majority of quantitative genetics, biologists are interested in the genetic makeup,

or genotype, of an organism. Unfortunately, the genotype of an organism, in general, is not

observable, but the phenotype is, by definition. The phenotype of an organism is its physical

characteristics, which are what give an individual an advantage/disadvantage when it comes

to its ability to survive and reproduce. Therefore, selection is the force that acts upon the

25

phenotype, rather than on the genotype. Since the genotype represents the genetics and the

phenotype represents observable characteristics, we may decompose the phenotype (which is

a random variable) into the sum of two uncorrelated random variables (assuming that there

is no genotype-environment interaction),

z = g + e,

where g is called the additive genetic effect and e is called the environmental effect [14].

In a sample, the ith individual has phenotype zi = gi + ei and it is often assumed that

organisms are raised in similar but independent environments, so the ei’s are independent

and identically distributed.

3.1 Finite Dimensional Traits

The simplest traits are those that can be described by a finite number of measurements.

Such traits are called finite-dimensional. For example, “stature” which is given by height

and weight is a two-dimensional trait. We may consider a finite-dimensional trait as a

random (column) vector z in Rk (realizations of z are the phenotypes). We assume that z is

a Gaussian random variable with mean z = E [z] ∈ Rk and covariance P ∈ Rk×k. Note that

this notation for the expected value is usually taken to be the sample mean, but biologists

prefer to use it for expectation. Since this dissertation has applications in evolutionary

biology, we shall be faithful to this notation. That is, when z̄ appears, it is not a random

quantity. This notation only pertains to the trait z; for any other random variables, say

W1, . . . ,Wn, W = 1
n

∑n
i=1Wi denotes the usual sample mean. Additionally, note that the

only assumption made on z̄ is that it belongs to Rk.

We assume that zi = gi + ei ∈ Rk as in the previous section, where gi and ei are the

additive-genetic trait and the environmental effect of the ith observation, respectively. We

also assume that observations are raised in independent, but similar environments, so that

26

{ei} is an independent and identically distributed set of random vectors.

Let G = Cov (gi) ∈ Rk×k and E = Cov (ei) ∈ Rk×k and set Z = [zT1 . . . zTn]
T ∈ Rnk. Then

Cov

([
gi

]n

i=1

)
=

[
Cov (gi, gj)

]n

i,j=1

(3.1)

=

[
aijG

]n

i,j=1

= A⊗G,

where A = [aij]
n
i,j=1 is the additive-genetic relationship matrix that is discussed in the next

subsection and B ⊗ C denotes the Kronecker product of B and C. Similarly, we may write

Cov

([
ei

]n

i=1

)
= In ⊗ E, (3.2)

where In is the n× n identity matrix.

3.1.1 The Relationship Matrix

The additive-genetic relationship matrix A is a matrix that indicates the different relations

in a sample. Standard arguments [13] show that

Cov (sibling,sibling) = Cov (parent, offspring) =
1

2
G,

Cov (half-sibling,half-sibling) =
1

4
G.

That is, the covariance between the traits of two siblings is equal to one-half of the genetic

covariance. As an example [19, page 757], consider the pedigree

1 2 3

4 5

27

where organisms 1, 2, and 3 are unrelated and 4 and 5 are their offspring. Then the rela-

tionship matrix is given by

A =

1 0 0 1/2 0

0 1 0 1/2 1/2

0 0 1 0 1/2

1/2 1/2 0 1 1/4

0 1/2 1/2 1/4 1

.

3.1.2 The Selection Gradient

The probability density function of z shall be denoted by pz(z) and the expected value with

respect to pz(z) by Ez. The fitness of an individual with phenotype z is denoted by W (z) or

W if the context is clear.

The normal distribution with mean z and covariance matrix P is assumed to be the

pre-selection distribution. Additionally, we assume that

W > 0 and

Varz (W) < ∞, for all z ∈ R
n.

These assumptions allow us to define the post-selection distribution of z. The post- selection

distribution of z is the distribution with density

p∗Z̄(z) =
W (z)pZ̄(z)

Ez [W]
.

It should be noted that if pZ̄(z) is normal density function, p∗
Z̄
(z) may not be a normal

density. In addition, it may be the case that W depends on z or other parameters of the

pre-selection distribution of z. If this isn’t the case, W is said to be frequency independent.

28

Next, we denote other means as follows:

z∗ = the mean of the trait z after selection, i.e. with respect to p∗
Z̄
(z), and

z′ = the mean among newborns of the following generation.

Let s = z∗−z be the selection differential, the within-generation change in the mean pheno-

type due to selection. The between-generation change in the mean is called the evolutionary

response to selection and is denoted by

∆z = z′ − z.

If z follows a N(z,P) distribution, then we have the Breeder’s Equation [15] :

∆z = GP−1s, (3.3)

where G is the additive genetic covariance matrix. The product P−1s has been called [15]

the selection gradient of the trait at z and is denoted by β.

Except in artificially managed populations, z∗ (and therefore s) is difficult, if not impos-

sible, to estimate. Fortunately, the Robertson-Price Identity [13] states that

s = Cov (w, z) , (3.4)

where w is the relative fitness and is defined by

w =
W

Ez [W]
.

Both W and z are observable, so s may be estimated using this identity. Now, from the

equation β = P−1Cov (w, z), we see that β consists of the partial regression coefficients when

regressing w on z, since P = Cov (z). Furthermore, the ith component of β indicates the

29

force of directional selection acting directly on the ith component of the trait [16], hence the

term selection gradient.

3.2 Function Valued Traits

In contrast to the finite-dimensional traits of the previous section, a function-valued trait

cannot be described by a finite number of components. Such a trait is better represented

by a function Z(t) with parameter t. For example, Z(t) could be the size of an organism

at age t, or the shape of a wing, where Z(t) is the length of a wing at a polar angle of t.

When endowed with a probability distribution, such a trait becomes a stochastic process

{Zt : t ∈ T}, where T is a set. Similar to the finite-dimensional case, a realization (sample

path) of {Zt : t ∈ T} is called the phenotype of an organism. The pre-selection mean of

{Zt : t ∈ T} will be denoted by Z̄t and the pre-selection distribution by Pz̄. We assume that

under Pz̄, {Zt : t ∈ T} is a Gaussian process with mean z̄ and phenotypic covariance function

P . It should be noted that the roman P will denote a probability measure, while the italic

P will denote a phenotypic covariance function. Both notations are common notations and

will be used in this dissertation. As with the finite-dimensional case, we assume that for all

t ∈ T , we may write Zt = Gt + Et, where {gt, t ∈ T} is the additive-genetic process and

{et, t ∈ T} is the environmental process. Furthermore, we assume that there is no genotype-

environmental interaction. Then {gt, t ∈ T} and {et, t ∈ T} are uncorrelated. It follows that

for all s, t ∈ T ,

P (s, t) = G(s, t) + E(s, t), (3.5)

30

where G(s, t) is the additive-genetic covariance function and E(s, t) is the environmental

covariance function. We also define

z∗(t) = the mean of the trait z after selection,

s(t) = z∗(t)− z(t) = selection differential,

z̄†(t) = the mean of the trait of newborns in the next generation, and

∆z(t) = z̄†(t)− z(t) = the evolutionary response due to selection.

Kirkpatrick and Heckman [14] state that a version of the Breeder’s Equation (3.3) holds for

function-valued traits. We have

∆z̄ = GP−1s, (3.6)

where P and G are the integral operators with kernels P (s, t) and G(s, t), respectively. Here

G is the additive-genetic covariance function given in (3.5). Kirkpatrick and Heckman also

suggest that the selection gradient should be formally defined as

β = P−1s. (3.7)

This equation defines β if s is in the range of P, but not if s /∈ range(P).

The main goal of this section is to determine what sort of mathematical object the

selection gradient is and where it resides. A few of the results in this section are due to [12],

as noted, while the rest expand upon the results of [12].

3.2.1 Restrictions on T and the Covariance Function

We would like to define an integral operator with kernel P , but to do so, we must first

introduce a few conditions. Most of the results in this subsection are due to [9].

We begin with a few assumptions on T and P :

(B1) (T,T, µ) is a σ-finite measure space,

31

(B2) P is a measurable covariance kernel on T × T that satisfies

∫

T

P (t, t)dµ(t) < ∞, (3.8)

(B3) in the RKHS H = H(P) the only µ-negligible function is the zero function on T .

If the condition (3.8) is satisfied, we say that P has finite trace. Note that the integral in

(3.8) is nonnegative since P (t, t) is a nonnegative function. The conditions (B1)-(B3) are

met, for example, when P is continuous, T is a compact interval [a, b] in R, and µ is Lebesgue

measure [12]. The following lemma is due to [9, Theorem 26]:

Lemma 3.2.1. Under the conditions (B1)-(B3), every f ∈ H is T-measurable and square

integrable on (T,T, µ) and the map j that maps f ∈ H to its µ-equivalence class [f] ∈

L2(T,T, µ) is one-to-one and Hilbert-Schmidt.

In light of this lemma, we may consider H as a vector subspace of L2(T) = L2(T,T, µ).

Let

M = range(j), (3.9)

where E is the closure of E in the ambient space (here, the closure is in L2(T)). It follows

that M is a Hilbert space with the L2(T) inner product restricted to M .

Define the integral operator P by

Pf(s) =

∫

T

P (s, t)f(t)dµ(t), (3.10)

for a square-integrable function f . If (·, ·)L2(T) denotes the inner product in L2(T), then

(3.10) may be written as

Pf(s) = (f, Ps)L2(T) .

32

Furthermore, if j∗ is the adjoint of j, then [9, Lemma 29]

j∗([f]) = Pf. (3.11)

This shows that we may consider P as a map from M ⊂ L2(T) to H(P), so that range(P) =

range(j∗) and also that Pf ∈ H(P). An immediate consequence of (3.11) is that

range(P) ⊂ H(P), (3.12)

since the adjoint maps M to H(P). The result (3.12) can be strengthened slightly. Since

j is one-to-one (Lemma 3.2.1), it follows that range(P) = 0⊥ = H(P). Hence,

range(P) is H-dense in H. (3.13)

The following lemma is essentially due to [9] and connects the inner products of the spaces

H(P) and L2(T). The proof must be slightly modified to suit our hypotheses.

Lemma 3.2.2. Let P be defined as in (3.10). Then for any square-integrable f and any

η ∈ H(P), Pf ∈ H(P) and

〈Pf, η〉P = (f, η)L2(T) . (3.14)

Proof. It has already been shown that Pf ∈ H(P) for any square integrable function f . Let

η ∈ H(P). Then η is square-integrable and also

33

||η||2L(T) =

∫

T

|η(t)|2dµ(t)

=

∫

T

| 〈η, Pt〉P |2dµ(t)

≤
∫

T

||η||2P ||Pt||2Pdµ(t)

= ||η||2P
∫

T

〈Pt, Pt〉P dµ(t)

= ||η||2P
∫

T

P (t, t)dµ(t).

Therefore, there exists an N =
[∫

T
P (t, t)dµ(t)

]1/2 ≥ 0 such that

||η||L2(T) ≤ N ||η||2P . (3.15)

It follows from this and the Cauchy-Schwarz inequality that

|(f, η)L2(T)| ≤ ||f ||L2(T)||η||L2(T) ≤ N ||f ||L2(T)||η||P .

Therefore, (f, ·) is a bounded linear functional on H(P). By the Riesz Representation

Theorem, there exists a g ∈ H(P) such that

(f, η)L2(T) = 〈g, η〉P .

Setting η = Pt and using the reproducing property of H(P), we have

Pf(t) = (f, Pt)L2(T) = 〈g, Pt〉P = g(t). (3.16)

Thus g = Pf , so (3.14) follows from (3.16).

From now on, we will write f to denote both a function and its class [f] in L2(T). It will

34

be clear from context which is meant. From now on, when we write P, it is meant to be the

operator P : M → H. Using (3.14), we are able to prove the following lemma:

Lemma 3.2.3. P maps M one-to-one into H(P).

Proof. Let f ∈ M be such that Pf = 0. By (3.14), it follows that

0 = 〈Pf, η〉P = (f, η)L2(T),

for all η ∈ H(P) and, since the map j is one-to-one, for all η ∈ M . Therefore, f ∈ M⊥.

By assumption f is also an element of M , so that f = 0. Then nullspace(P) = 0 and P is

one-to-one.

Remark 3.2.1. In [12] it is stated that P as a map from L2(T) to H(P) is one-to-one.

However, this doesn’t hold if M⊥ is nontrivial.

3.2.2 Weak Limits

In order to properly define the selection gradient, we must begin by defining weak topologies

and weak limits, see e.g. [23].

Let H be a Hilbert space with inner product (·, ·). A sequence {fk} in H is weakly

convergent if

(fk, η) converges for all η ∈ H. (3.17)

We define the linear functional 〈f, ·〉 by 〈f, η〉 = limk (fk, η) for η ∈ H and call f the weak

limit of {fk}. Note that as of yet, it is unclear whether the weak limits of H are elements

of H . We shall let H̄ denote the weak completion of H , that is H with its weak limits. We

show that the weak limits are actually elements of H .

Lemma 3.2.4. If H is the weak closure of the Hilbert space H, then H = H.

35

Remark 3.2.2. In a RKHS, weak convergence implies pointwise convergence. This follows

immediately from this lemma and the reproducing property by setting η = Pt. Furthermore,

it is easy to show that the converse holds as well.

Proof of Lemma 3.2.4. Let h ∈ H . Then there is a sequence {hn} in H such that the

bounded linear functionals (hn, η)H converge to (h, η) for all η ∈ H . In particular, there

exists a y ∈ R such that | (hn, η)H − y| converges to 0. On the other hand, by the Banach-

Steinhaus Theorem, see e.g. [10, Theorem III.14.6], there is a bounded linear functional L

such that

| (hn, η)H − Lη| → 0

for all η ∈ H(P). Therefore, we see that Lη = y = 〈h, η〉 and thus L = 〈h, ·〉 is a bounded

linear functional on H(P) and by the Riesz Representation Theorem, h may be identified

with an element g ∈ H . Hence H = H .

More generally, let F be a set of linear functionals onH and consider the weakest topology

σ(H,F) that makes all of the linear functionals of F continuous. A sequence {fk} in H is

convergent in this new topology if

(fk, h) converges for every h ∈ F.

Similar to the weak completion, this defines a linear functional (f, ·) = limk(fk, ·) and we

call f the σ(H,F)-limit of {fk}. It may be possible for the σ(H,F)-limit of a sequence to

not exist in H . This is because the linear functionals (f, ·) are continuous in σ(H,F), but

not necessarily in the natural topology of H . Thus, f may not be able to be identified

with an element of H . A specific example of such a limit is given below in Remark 3.2.3.

We will combine the set of all σ(H,F)-limits and H to form the completion of H in the

σ(H,F)-topology.

For example, let H be L2(T) and suppose that restrictions (B1)-(B3) of Subsection

36

3.2.1 hold. Consider the set of linear functionals F on L2(T) defined by

F = {(·, η)L2(t) : η ∈ H, }

and let L be the σ(L2(T),F)-completion of L2(T). If F is a functional in F, then F (·) =

(·, η)L2(T) for η ∈ H. F is extended to L by setting (f, η)L2(T) = limk (fk, η)L2(T) with fk → f

in L. This is no longer an inner product unless f is in L2(T). Let M be as in (3.9). The

completion of M in the σ (M,F)-topology will be denoted by M. It follows that M ⊂ L.

We now extend P to an operator on M.

Theorem 3.2.1. The integral operator P given by (3.10) has a unique extension to a linear

operator P̄, mapping M bijectively on H(P). Moreover, for all f ∈ M and η ∈ H(P), we

have
〈
P̄f, η

〉
P
= (f, η)L2(T). (3.18)

Remark 3.2.3. The right hand side of (3.18) is the value of the functional (f, ·)L2(T) at η.

We also note that (3.18) extends the validity of equation (3.14) and that this theorem extends

Lemma 3.2.2. Moreover, this shows that linear functionals contained in M are continuous

on H(P).

This theorem is similar to [12, Proposition 4.2]. In the proposition, it is claimed that P̄

maps L one-to-one into H(P), but if P : L2(T) → H(P) is not one-to-one (Remark 3.2.1),

P̄ : L → H(P) fails to be one-to-one.

Using this theorem, we can show that it is possible forM to contain generalized functions;

in particular, the δ functions. Here, the phrase δ function at t means the point evaluation

functional at t, i.e. δt satisfies

(δt, η)L2(T) = η(t)

for all t ∈ T and η ∈ H(P). Since Pt ∈ H(P), there is a unique ft ∈ M such that P̄ft = Pt.

37

For all η ∈ H(P), we have
〈
P̄ft, η

〉
P
= 〈Pt, η〉P = η(t).

On the other hand, by (3.18),

〈
P̄ft, η

〉
P
= (ft, η)L2(T).

Therefore, (ft, η)L2(T) = η(t), which shows that ft is a δ function. Since these functionals

are not elements of L2(T), they are not elements of M .

Proof of Theorem 3.2.1. We begin by extending P to an operator P̄ from M onto H(P) by

letting f ∈ M and {fn}n be such that fn → f in M with fn ∈ M for all n. If rn = Pfn, then

by (3.14), for all η ∈ H(P)

〈rn, η〉P = 〈Pfn, η〉P = (fn, η)L2(T) → (f, η)L2(T).

Therefore, {rn} is weakly convergent in H(P). Define P̄f to be the weak limit of {rn} in

H(P). Clearly, we have
〈
P̄f, η

〉
P
= (f, η)L2(T).

Since P̄f is an element of H(P) it follows that

H(P) ⊆ range(P̄) ⊆ H(P). (3.19)

By Lemma 3.2.4, we have H(P) = H(P) and hence H(P) = range(P̄), so that P̄ maps M

onto H(P). Furthermore, since weak limits are unique [11, Theorem 5.8], and P maps M

one-to-one into H(P) (Lemma 3.2.3), it follows that P̄ maps M onto H(P) in a one-to-one

fashion. Thus, P̄ : M → H(P) is a bijection.

This theorem states that if {gk} is a basis, that is, a spanning and linearly independent

38

set in H(P), we have a basis {γk} in M where γk is such that

P̄γk = gk for all k. (3.20)

This may be rephrased as follows:

Let γk be such that P̄γk = gk. For any η ∈ H, we may write

η =
∞∑

k=1

θkgk.

Since P̄ is bijective, it follows that

η = P̄

(∞∑

k=1

θkγk

)
,

and hence for any η ∈ H there exists a unique f =
∑∞

k=1 θkγk ∈ M such that P̄f = η .

3.2.3 Biological Assumptions

Analogous to the finite-dimensional fitness, the fitness of {Zt : t ∈ T}, W , is a positive

function of the trait. Also, W may depend on z̄ or other parameters of Pz̄. When it does

not, it is said to be frequency independent. We assume that W is frequency independent and

that

VarPz̄
(W) < ∞ for all z̄ ∈ H(P).

Define the post-selection distribution P∗
z̄ of {Zt : t ∈ T} by

dP∗
z̄ =

W

EPz̄
[W]

dPz̄.

SinceW is positive, P∗
z̄ is a probability measure and is also absolutely continuous with respect

to Pz̄. Again, this post-selection distribution may not be a Gaussian probability measure

39

even if Pz̄ is. As in the finite-dimensional case, we define

z̄∗ = the post-selection mean of {Zt : t ∈ T},

s = z̄∗ − z̄ = the selection differential (the within-generation change in mean),

z̄† = the mean of {Zt : t ∈ T} among newborns in the following generation, and

∆z̄ = z̄† − z̄ = the evolutionary change in the mean

(the between-generation change in mean).

The last quantity ∆z̄ has also been called the evolutionary response to selection. We

shall make the assumption that {Zt : t ∈ T} is a Gaussian process with phenotypic covari-

ance P (s, t) and mean z̄ ∈ H(P), where P and T satisfy (B1)-(B3) in Subsection (3.2.1).

Further, we assume that W is a positive random variable Pz̄-almost surely, W ∈ L2(Ω,A,Pz̄)

for each z̄ ∈ H(P) and A = σ ({Zt : t ∈ T}).

Once again, save in artificially managed populations, s may be difficult to estimate as it

is unknown if selection has occurred. Fortunately, there is a function-valued version of the

Robertson-Price Identity given in (3.4), see e.g. [13]:

s(t) = CovPz̄
(Zt, w) , (3.21)

where w = W/EPz̄
[W] is the relative fitness function. In order to use this equation, we must

know in what space s resides. The following proposition [12, Proposition 4.1] tells us where:

Proposition 3.2.1. Let z̄ ∈ H(P). Then z̄∗, s ∈ H(P).

This proposition and (3.13) show that s is “almost” in range(P), as it is in the closure of

range(P).

3.2.4 The Selection Gradient

We are now able to define the selection gradient, β, if s /∈ range(P).

40

Corollary 3.2.1. For all s ∈ H(P), there is a unique β ∈ M such that

P̄β = s, (3.22)

and for all η ∈ H(P), we have

〈s, η〉P = (β, η)L2(T) . (3.23)

If s ∈ range(P), then β ∈ L2(T) (in particular, β ∈ M).

Proof. Since s ∈ H(P), (3.22) and (3.23) follow from Theorem 3.2.1. The final statement

follows from Lemma 3.2.3.

It is important to note that given two covariance kernels, P, P0, corresponding to the

equivalent measures, P,P0, the reproducing kernel Hilbert spaces H(P),H(P0) consist of

exactly the same functions, as stated in Theorem 2.2.2. Since s ∈ H(P), we then have

s ∈ H(P0), so that s has an expansion in H(P0). By Assumption (A5) on page 23, we also

have that P = P0 +
∑

k akgk ⊗ gk for some {ak} ∈ ℓ2c and a fixed ONS {gk} in H(P0). Let

P̄0 be the extension of the integral operator P0 with kernel P0. Theorem 3.2.1 shows that

the extended operator P̄0 maps M bijectively to H(P0).

Proposition 3.2.2. Let P0 and P be equivalent measures corresponding to the covariance

kernels P0 and P , respectively, with corresponding operators P0 and P. Let gk be an or-

thonormal sequence in H(P0) and let γk be such that P̄0γk = gk for all k. Then

(γj, gk)L2(T) = δjk. (3.24)

Furthermore, let s =
∑

k ckgk. Then

P̄β = s,

if and only if

(ak + 1)bk = ck,

41

where β =
∑

k bkγk.

Proof. The first result is obtained from the equality

(γj, gk)L2(T) =
〈
P̄0γj, gk

〉
P0

= 〈gj, gk〉P0
= δjk.

Next, note that if P = P0 +
∑

k akgk ⊗ gk, we have

Pf = P0f +
∑

k

ak(f, gk)L2(T)gk,

for f ∈ M . Let fn → f in M, then for each t ∈ T ,

Pfn(t) = (fn, Pt)L2(T) = 〈Pfn, Pt〉P →
〈
P̄f, Pt

〉
P
= P̄f(t). (3.25)

On the other hand, we have

P0fn(t) +
∑

k

ak(fn, gk)L2(T)gk = (fn, P0t)L2(T) +
∑

k

ak(fn, gk)L2(T)gk(t)

= 〈P0fn, P0t〉P0
+
∑

k

ak(fn, gk)L2(T)gk(t). (3.26)

Similar to (3.25), the first term in (3.26) converges to P̄0f(t). Since fn → f in M, it follows

that the second term in (3.26) converges to

∑

k

ak(f, gk)L2(T)gk(t).

It follows that for each t ∈ T ,

P̄f(t) = P̄0f(t) +
∑

k

ak(f, gk)L2(T)gk(t).

42

Therefore, we may write

P̄f = P̄0f +
∑

k

ak(f, gk)L2(T)gk, (3.27)

for all f ∈ M. Thus,

P̄β = P̄0β +
∑

k

ak(β, gk)L2(T)gk

= P̄0

(∑

k

bkγk

)
+
∑

k

ak

(∑

k

bkγk, gk

)

L2(T)

gk

=
∑

k

bkgk +
∑

k

akbkgk

=
∑

k

(1 + ak)bkgk

=
∑

k

ckgk.

Hence, P̄β = s if and only if (1 + ak)bk = ck.

Setting bk = ck/(1 + ak), it is easy to see that {bk} is square-summable since {ak + 1}

is bounded away from zero. By this proposition and the discussion following 3.2.1, we may

write

β =
∞∑

k=1

bkγk,

where bk = ck/(1 + ak) for all k.

43

Chapter 4

Estimation of β from an Independent

Sample

In this chapter, we deal with estimating the selection gradient given an independent sample.

Let (Ω,A) be a measurable space and let P and P0 denote the probability measures that

endow a process {Zt : t ∈ T} on (Ω,A) with a Gaussian distribution with mean zero and

covariances P and P0, respectively. Further, we shall assume that H(P0) is a separable

Hilbert space. For example, H(P0) is separable when P0 is bounded and T ⊂ R is separable

[8, page 35].

Recall from (3.22) that the selection gradient β is the solution to the equation

P̄β = s,

where P̄ is an extension of the integral operator with kernel P and therefore P̄ depends on

P .

Let {gk}k be a CONS of H(P0), ΛP0 be the Loève map between HP0 and H(P0) and

{Uk}k be such that Uk = Λ−1
P0
gk. Recall that under the Loève map, ΛP0(Zt) = P0t, where Zt

44

is the observed trait. Since P0 =
∑

k gk ⊗ gk, it follows that we may write

Z(t) =
∑

k

Ukgk(t) in H(P0).

By the Robertson-Price identity (3.21), we see that

s(t) = CovP (Z(t), w) =
∑

k

CovP (Uk, w) gk(t),

where w = W/EP [W] is the relative fitness function. Therefore,

ck = CovP (Uk, w) , (4.1)

and given a sample of phenotypes Z1(t), . . . , Zn(t), Proposition 3.2.2 implies that we may

estimate bk by

b̂kn =
ĉkn

1 + âkn
, (4.2)

where ĉkn and âkn are estimators of ck and ak, respectively. Furthermore, we estimate β by

β̂n =

∞∑

k=1

b̂knγk,

where γk is such that P̄0γk = gk for all k.

Therefore, to estimate the selection gradient, we need only estimate the sequences {ck}k
and {ak}k. If the true probability measure P endows {Zt : t ∈ T} with mean zero and

covariance P , then we are able to use the estimators âkn given by (2.38) and the natural

estimator ĉkn of ck given by

ĉkn = ĈovP(w,Uk) =
1

n

n∑

j=1

(ŵj − w̄)(Ukj − Ūk), (4.3)

45

where

ŵj =
Wj

1
n

∑n
k=1Wk

,

and w̄ is the sample average of ŵj. Note that we may write

ĉkn =
1

n

n∑

j=1

ŵj(Ukj − Ūk).

On the other hand, if the true distribution of {Zt : t ∈ T} does not have mean zero,

the estimator ĉkn is still an appropriate estimator of ck, but the estimator âkn is no longer

appropriate. Thus, we must estimate the sequence {ak}k if the mean z̄ is nonzero.

4.1 Joint Estimation of the Mean and Covariance

Functions

Let {Zt : t ∈ T} be a function-valued trait on (Ω,A) with mean z̄ and covariance function

P . Recall from (2.29) that ℓ2c(B) = {{ak} : infk ak > −1, k ∈ B} and if B = N it is written

ℓ2c . In most applications, we cannot assume that z̄ = 0. Thus, we must estimate both

z̄ and P simultaneously. We shall use the results of Theorems 2.2.1 and 2.2.2 to do so. These

theorems lead us to initially consider the largest collection P′ of probability measures on

(Ω,A) such that:

(C1) the process is Gaussian under every P ∈ P′,

(C2) the measures in P′ are mutually absolutely continuous (equivalent), and

(C3) the mean function z̄ belongs to H(P) for every P ∈ P′.

These assumptions imply that P′ is composed of the family of measures P (Section 2.3) and

the family of measures with same covariance functions of P, but with mean z̄. Furthermore,

if P0 is the covariance of the process corresponding to the measure P0, the covariance function

46

P under P ∈ P′ may be written in the form

P = P0 +
∑

k

akgk ⊗ gk, (4.4)

where {gk} is a CONS of H(P0) and {ak} ∈ ℓ2c .

Consider the following measures belonging to P′ such that:

� Pz̄ endows {Zt : t ∈ T} with mean z̄ and covariance P ,

� P endows {Zt : t ∈ T} with mean 0 and covariance P , and

� P0 endows {Zt : t ∈ T} with mean 0 and covariance P0.

If {gk}k is an CONS of H(P0) and ΛP0
: HP0

→ H(P0) is the Loève map, and if Uk =

Λ−1
P0
gk, then {Uk}k is a CONS of HP0. Let HP be the Gaussian space generated by {Zt}

under P.

We need to calculate

dPz̄

dP0

.

We use the following theorem to calculate this likelihood:

Theorem 4.1.1. Let Pz̄,P0 ∈ P′ be such that Pz̄ endows the process {Zt : t ∈ T} with mean

z̄ and covariance P and P0 endows {Zt : t ∈ T} mean zero and covariance P0. Then

dPz̄

dP0
= exp

{
1

2

∑

k

(
2θkUk − θ2k

1

(1− λk)
+ λkU

2
k + ln(1− λk)

)}
,

where {θk} ∈ ℓ2, {−λk} ∈ ℓ2c and {Uk} is orthonormal in H(P0).

Proof. To obtain the result, we use the formula

dPz̄

dP0
=

dPz̄

dP

dP

dP0
.

47

From (2.22) and the definition of P′ we have

P = P0 +
∑

k

akgk ⊗ gk,

where {gk} is an ONS in H(P0) and {ak} ∈ ℓ2c . Furthermore, there exists a sequence

λ = {λk}k with −λ ∈ ℓ2c such that

dP

dP0
= exp

{
1

2

∑

k

λkU
2
k + ln(1− λk)

}

and (1 + ak)(1− λk) = 1 for all k, where ΛP0
Uk = gk for all k, as in (2.26).

By a separate application of the Gaussian Dichotomy Theorem (Theorem 2.2.1), we have

dPz̄

dP
= exp

{
Y − 1

2
||Y ||2P

}
, (4.5)

where Y ∈ HP is unique, || · ||P is the norm in HP and that z̄ = ΛP(Y).

By Theorem 2.2.2, HP andHP0 are equal as sets and Y as given in (4.5) has the expansion

Y =
∑

k θkUk in HP0
. It follows that

dPz̄

dP
= exp

{
Y − 1

2
||Y ||2P

}

= exp

{∑

k

θkUk −
1

2
(Y, Y)P

}
.

By the same theorem the inner products of HP and HP0 are related by

(Y1, Y2)P = (Y1, Y2)P0 + (Y1 ⊙ Y2, U)2⊙ ,

where U = 1
2

∑
akU

2⊙
k ∈ H2⊙

P0
. To compute the inner product on H2⊙

P0
we make use of (2.14),

48

which states that the inner product on H2⊙ is given by

(f1 ⊙ f2, f
′
1 ⊙ f ′

2) = (f1, f
′
1)H (f2, f

′
2)H + (f1, f

′
2)H (f2, f

′
1)H .

Now,

(Y, Y)P =
∑

i,j

θiθj(Ui, Uj)P

=
∑

i,j

θiθj [(Ui, Uj)P0 + (Ui ⊙ Uj , U)]

=
∑

i

θ2i +
∑

i,j

θiθj (Ui ⊙ Uj, U)

=
∑

i

θ2i +
∑

i,j

θiθj
∑

k

1

2
ak
(
Ui ⊙ Uj , U

2⊙
k

)

=
∑

i

θ2i +
∑

i,j

θiθj
∑

k

1

2
ak[(Ui, Uk)P0(Uj , Uk)P0 + (Ui, Uk)P0(Uj , Uk)P0]

=
∑

i

θ2i +
∑

i,j

θiθj
∑

k

ak(Ui, Uk)P0(Uj , Uk)P0

=
∑

i

(
θ2i + θ2i ai

)

=
∑

i

θ2i (1 + ai).

Therefore, we have

dPz̄

dP
= exp

{∑

k

(
θkUk −

1

2
θ2k(1 + ak)

)}

= exp

{∑

k

(
θkUk −

1

2
θ2k

1

(1− λk)

)}
,

and hence

49

dPz̄

dP0
= exp

{
1

2

∑

k

(
2θkUk − θ2k

1

(1− λk)
+ λkU

2
k + ln(1− λk)

)}
. (4.6)

To develop estimators of z̄ and P that have nice properties, we first change the pa-

rameterization of the likelihood (4.6). To do so, we wish to determine the expansion of z̄

in H(P0), but from (2.8), we know that z̄ = ΛP (Y), where Y =
∑

k θkUk in HP0 . Then

z̄ =
∑

k θkΛP (Uk). Now, we can write ΛP (Uk) = (Uk, Z·)P . By (2.14),

(Uk, Z·)P = (Uk, Z·)P0 + (Uk ⊙ Z·, U)2⊙

= gk +
1

2

∑

j

aj [(Uk, Uj)P0(Uk, Z·)P0 + (Uk, Uj)P0(Uk, Z·)P0]

= gk +
∑

j

aj(Uk, Uj)P0(Uk, Z·)P0

= gk +
∑

j

ajδjkΛP0(Uk)

= gk + akgk

= (1 + ak)gk

Therefore, it follows that in H(P0) we can write

z̄ =
∑

k

θk(1 + ak)gk.

We can then set

µk = θk(1 + ak), (4.7)

so that z̄ =
∑

k µkgk. Since z̄ ∈ H(P0), it follows that µ = {µk}k ∈ ℓ2. In light of this, the

50

parameter space for P′ is given by

C′ =
{
(z̄, P) : P = P0+

∑

k

akgk ⊗ gk, a ∈ ℓ2c , z̄ =
∑

k

µkgk, (4.8)

µ ∈ ℓ2, {gk} countable and orthonormal in H(P0).
}

To determine the distribution of Uk for each k under Pz̄, we need to use the following:

Proposition 4.1.1 ([5, Corollary 2.2]). For any X, Y ∈ HP,

CovPz̄
(X, Y) = CovP (X, Y) .

Lemma 4.1.1. Under Pz̄, {Uk} is an independent set of Gaussian random variables and for

each k, Uk ∼ N(µk, 1 + ak)

Proof. Since the measures P and Pz̄ are equivalent,

EPz̄
[Uk] = (Uk, Y)P, (4.9)

for a unique Y =
∑

j θjUj in HP given by (4.5). Further, by (2.34), {Uk} is a sequence of

independent normal random variables such that for each k, Uk ∼ N(0, 1 + ak). Therefore,

(Uk, Uj)P = (1 + ak)δjk where δjk is the Kronecker δ. The expectation (4.9) then becomes

EPz̄
[Uk] = (Uk, Y)P

=
∑

j

θj(Uk, Uj)P

=
∑

j

θj(1 + ak)δjk

= θk(1 + ak)

= µk.

51

To show that VarPz̄
(Uk) = 1 + ak, use (2.34) and Proposition 4.1.1 to obtain

CovPz̄
(Uk, Uj) = CovP (Uk, Uj) = (1 + ak)δjk. (4.10)

This proves the lemma.

Continuing, we may rewrite

dPz̄

dP0
= exp

{
1

2

∑

k

(
2θkUk − θ2k

1

(1− λk)
+ λkU

2
k + ln(1− λk)

)}

= exp

{
1

2

∑

k

(
2

µk

1 + ak
Uk −

(
µk

1 + ak

)2
1

(1− λk)
+ λkU

2
k + ln(1− λk)

)}

= exp

{
1

2

∑

k

(
2µk(1− λk)Uk − µ2

k(1− λk) + λkU
2
k + ln(1− λk)

)
}
.

From this, we obtain the likelihood on (Ωn,An⊗),

L =
dPn⊗

z̄

dPn⊗
0

= exp

{
n

2

∑

k

(
2(1− λk)µkŪk − µ2

k(1− λk) + λkS
2
k + ln(1− λk)

)
}

(4.11)

where S2
k =

∑n
i=1 U

2
ki. Note that L is the product of terms of the form,

exp
{n
2

(
2(1− λk)µkŪk − µ2

k(1− λk) + λkS
2
k + ln(1− λk)

)}
. (4.12)

Thus, to maximize L it suffices to maximize (4.12) for all k. Let P′(n) = {Qn⊗ : Q ∈ P′}.

Theorem 4.1.2. Let Uki i = 1, . . . , n, k ∈ B, be fixed. If B is finite, the likelihood (4.11) is

maximized over ℓ2(B)× ℓ2c(B) almost surely (P′(n)) at

µ̂kn =

Ūk if k ∈ B,

0 otherwise

52

and

λ̂kn =

1−
[
1
n

∑n
i=1(Umi − Ūm)

2
]−1

if k ∈ B,

0 otherwise,

with corresponding estimator

âkn =

1
n

∑n
i=1(Umi − Ūm)

2 − 1 if k ∈ B,

0 otherwise

If B is infinite, (4.11) is unbounded almost surely P′(n).

Proof. First, suppose that B is infinite. By construction,
dPn⊗

z̄

dPn⊗
0

=
dPn⊗

z̄

dPn⊗
dPn⊗

dPn⊗
0

. By [6,

Theorem 3.1],
dPn⊗

dPn⊗
0

is unbounded almost surely Pn⊗
0 for P0 ∈ P ⊂ P′. On the other hand, [5,

Theorem 3.1] shows that
dPn⊗

z̄

dPn⊗ is unbounded almost surely Pn⊗. Since P′ contains equivalent

measures,
dPn⊗

dPn⊗
0

is unbounded Pn⊗
0 -almost surely. it follows that

dPn⊗
z̄

dPn⊗
0

is unbounded almost

surely Pn⊗
0 and hence almost surely P′(n).

If B is finite, it suffices to maximize the natural logarithm of (4.12),

ℓk =
n

2

(
2(1− λk)µkŪk − µ2

k(1− λk) + λkS
2
k + ln(1− λk)

)
, (4.13)

for all k. Taking derivatives, it follows that

∂ℓk
∂µk

= n(1− λm)Ūk − nµk(1− λk).

Since supk λk < 1, 1− λk > 0 for all k and therefore,
∂ℓk
∂µk

= 0 if and only if

µk = Ūk. (4.14)

Noting that
∂2ℓk
∂µ2

k

= −n(1− λk), it follows that for each λk, ℓk is maximized at µk = Ūk.

53

On the other hand,

∂ℓk
∂λk

=
n

2
(−2µkŪk + µ2

k + S2
k −

1

1− λk
)

=
n

2

(
−2µmŪk + µ2

k + S2
k − 1− ak

)
((1 + ak)(1− λk) = 1)

=
n

2

(
−2µmŪm + µ2

m + S2
m − 1− ak

)
.

Setting this equal to zero, we find that

ak = S2
k − 2µkŪk + µ2

k − 1.

Since ℓk is maximized when µk = Ūk, this becomes

am =
1

n

n∑

i=1

(Uki − Ūk)
2 − 1, (4.15)

Since 1 + ak = 1/(1 + λk) and
1
n

∑n
i=1(Uki − Ūk)

2 > 0 Pn⊗
0 - almost surely,

λk = 1−
(
1

n

n∑

i=1

(Uki − Ūk)
2

)−1

.

Then ℓk is maximized Pn⊗
0 - almost surely at µk = Ūk since

∂2ℓk
∂λ2

k

= −n

2

1

(1− λk)2
.

Therefore, (4.14) and (4.15) Pn⊗
0 - almost surely maximize ℓk, so that (4.11) is maximized

Pn⊗
0 (and thus P′(n)) - almost surely at

µ̂kn =

Ūk if k ∈ B,

0 otherwise

54

and

âkn =

1
n

∑n
i=1(Umi − Ūm)

2 − 1 if k ∈ B,

0 otherwise

Note that in this theorem, fixing Uki corresponds to fixing the CONS {gk}k in H(P0).

4.1.1 The Model P′
0

Since the original parameter space C′ (4.8) is very large, we currently do not have a sieve in

C′. However, by Theorem 4.1.2, we can create a sieve in a subset of C′ by fixing the CONS

{gk}k in H(P0) and considering the subset C′
0 of C′ defined by

C′
0 =

{
(z̄, P) : P = P0 +

∑

k

akgk ⊗ gk, a ∈ ℓ2c , z̄ =
∑

k

µkgk,µ ∈ ℓ2.
}

(4.16)

This parameterizes a subset P′
0 of P′. As there is a one-to-one correspondence between C

given in (2.37) and ℓ2c and a one-to-one correspondence between z̄ and µ, it follows that

there is a one-to-one correspondence between C′
0 and ℓ2×ℓ2c . Consider the set Sd = {(µ, a) ∈

ℓ2 × ℓ2c : µk = ak = 0 for k > d}. It is easy to see that {Sd : d ∈ N} is a sieve in ℓ2 × ℓ2c and

may be considered as a sieve in C′
0. Therefore, using Theorem 4.1.2 we consider the sieve

estimator of (µk, ak) given by

µ̂kn =

Ūk if k ≤ d,

0 otherwise
and (4.17)

âkn =

1
n

∑n
i=1(Umi − Ūm)

2 − 1 if k ≤ d,

0 otherwise
(4.18)

55

in ℓ2 × ℓ2c . Note that by Lemma 4.1.1, EPz̄
[µ̂kn] = µk and

EPz̄
[âkn] = EPz̄

[
1

n

n∑

i=1

(Uki − Ūk)
2

]
− 1

=
1

n
EPz̄

[
n∑

i=1

U2
ki

]
− EPz̄

[
Ū2
k

]
− 1

= EPz̄

[
U2
ki

]
− EPz̄

[
Ū2
k

]

= VarPz̄
(Uki)− VarPz̄

(
Ūk

)

= (1 + ak)−
1

n
(1 + ak)− 1

=
n− 1

n
(1 + ak)− 1

=
n− 1

n
ak −

1

n
6= ak.

Therefore, âkn is a biased estimator of ak and on average will underestimate ak. To fix this,

consider the estimator

ãkn =

1
n−1

∑n
i=1(Umi − Ūm)

2 − 1 if k ≤ d,

0 otherwise.
(4.19)

It follows that

EPz̄
[ãkn] = EPz̄

[
1

n− 1

n∑

i=1

(Uki − Ūk)
2

]
− 1

=
n

n− 1
EPz̄

[
1

n

n∑

i=1

(Uki − Ūk)
2

]
− 1

=
n

n− 1

n− 1

n
(1 + ak)− 1

= ak,

which shows that ãkn is an unbiased estimator of ak. This is the estimator that we shall use

for ak. To the estimators µ̂nd = {µ̂1n, . . . , µ̂dn, 0, 0, . . .} and ãnd = {â1n, . . . , âdn, 0, 0, . . . }

56

corresponds the estimator of (z̄, P) given by

ˆ̄z =

d∑

k=1

µ̂kngk and (4.20)

P̂ = P0 +
d∑

k=1

ãkngk ⊗ gk. (4.21)

in C′
0. We shall discuss the properties of (ˆ̄z, P̂) and (µ̂nd, ãnd) under the additional assump-

tion:

(C4) the true mean and covariance belong to C′
0.

We may parameterize C′
0 by ℓ2 × ℓ2c , so that the measure that endows {Zt : t ∈ T} with

mean
∑

k µkgk and covariance P = P0 +
∑

k akgk ⊗ gk may be denoted by Pµ,a. Thus the

assumption (C4) is that the true measure belongs to P′
0 ⊂ P′.

4.1.2 Asymptotics

To show the pointwise consistency of (ˆ̄z, P̂), we need the Toeplitz Lemma (see e.g. [17]):

Lemma 4.1.2. Let x′
n = n−1

∑d
k=1 xn for sequences {xn}n and {d} = {dn}. If xn → 0 and

d = O(n) as n → ∞, then x′
n → 0. If xn → x and d/n → α as n → ∞, then x′

n → αx.

Also, for estimators (θ̂1, θ̂2) ∈ R2, weak and mean-square consistency are taken to be

in the norm of R2. That is, (θ̂1, θ̂2) is a P-weakly consistent estimator for (θ1, θ2) if for

all ǫ > 0, P
(
||(θ̂1, θ̂2)− (θ1, θ2)||R2 > ǫ

)
→ 0 as n → ∞ and is mean-square consistent if

EP

[
||(θ̂1, θ̂2)− (θ1, θ2)||2R2

]
→ 0 as n → ∞.

Proposition 4.1.2. For each d ∈ N, (µ, a) ∈ ℓ2× ℓ2c, Pµ,a ∈ P′
0 and for each (s, t) ∈ T ×T ,

(ˆ̄z, P̂) is asymptotically unbiased as d → ∞ and is weakly and mean-square consistent for

(z̄, P) if d = O(n) as d → ∞.

57

Proof. To show the unbiasedness, note that

EPµ,a

[
ˆ̄z(t)
]
=

d∑

k=1

EPµ,a
[µ̂kn] gk(t) and (4.22)

EPµ,a

[
P̂ (s, t)

]
= P0(s, t) +

d∑

k=1

EPµ,a
[ãkn] gk(s)gk(t). (4.23)

By Lemma 4.1.1, (4.22) and (4.23) become

EPµ,a

[
ˆ̄z(t)
]
=

d∑

k=1

µkgk(t) and (4.24)

EPµ,a

[
P̂ (s, t)

]
= P0(s, t) +

d∑

k=1

akgk(s)gk(t). (4.25)

Therefore as d → ∞, (4.24) and (4.25) converge to

z̄(t) =

∞∑

k=1

µkgk(t) and (4.26)

P (s, t) = P0(s, t) +

∞∑

k=1

akgk(s)gk(t). (4.27)

Thus, (ˆ̄z, P̂) is an asymptotically unbiased estimator for (z̄, P).

For mean-square consistency, it is sufficient to show that ˆ̄z(t) and P̂ (s, t) are mean-square

consistent estimators for z̄(t) and P (s, t), respectively. In turn, since mean-square error =

variance + bias2 it suffices to show that the variance of ˆ̄z(t) and P̂ (s, t) converge to 0. Since

{Uki}k,i is a sequence of independent normal random variables, it follows that {µ̂kn}k and

{âkn}k are sequences of independent normal random variables. Therefore, by Lemma 4.1.1,

VarPµ,a

(
ˆ̄z(t)
)
=

d∑

k=1

VarPµ,a
(µ̂kn) (gk(t))

2

=
1

n

d∑

k=1

(1 + ak)(gk(t))
2 (4.28)

58

Note that since {ak}k ∈ ℓ2c , it follows that ak → 0 as k → ∞. Also, note that
∑∞

k=1(gk(t))
2

converges (and equals P0(t, t)) and hence (gk(t))
2 → 0 as k → ∞. Thus, by the Toeplitz

Lemma (Lemma 4.1.2), the expression (4.28) and hence VarPµ,a

(
ˆ̄z(t)
)
converges to 0 as

n → ∞. Along with ˆ̄z being asymptotically unbiased, this shows that ˆ̄z(t) is mean-square

consistent.

By Lemma 4.1.1, Zkn = 1
1+ak

∑n
i=1(Uki − Ūk)

2 are independent χ2
n−1 random variables.

Thus,

VarPµ,a

(
P̂ (s, t)

)
=

d∑

k=1

VarPµ,a
(ãkn) (gk(s)gk(t))

2

=

d∑

k=1

(1 + ak)
2

(n− 1)2
VarPµ,a

(Zkn) (gk(s)gk(t))
2

=

d∑

k=1

(1 + ak)
2

(n− 1)2
2(n− 1)(gk(s)gk(t))

2

=
1

n− 1

d∑

k=1

(1 + ak)
2(gk(s)gk(t))

2. (4.29)

Now, we have (1 + a2k) → 1 and (gk(s)gk(t))
2 → 0 as k → ∞. Therefore, by Lemma 4.1.2,

1
n−1

∑d
k=1(1 + ak)

2(gk(s)gk(t))
2 → 0 as n → ∞. It follows that VarPµ,a

(
P̂ (s, t)

)
converges

to 0 as n → ∞. This and P̂ (s, t) being asymptotically unbiased proves the mean-square

consistency of (ˆ̄z(t), P̂ (s, t)).

Weak consistency follows from the Chebyshev Inequality:

Pµ,a

(
||(ˆ̄z(t),P̂ (s, t))− (z̄(t), P (s, t))||R2 > ǫ

)

≤ 1

ǫ2
EPµ,a

[
||(ˆ̄z(t), P̂ (s, t))− (z̄(t), P (s, t))||2R2

]

=
1

ǫ2
EPµ,a

[(
ˆ̄z(t)− z̄(t)

)2]
+

1

ǫ2
EPµ,a

[(
P̂ (s, t)− P (s, t)

)2]
. (4.30)

Since ˆ̄z(t) and P̂ (s, t) are mean-square consistent, it follows that (4.30) converges to 0.

Hence for each s, t ∈ T , (ˆ̄z(t), P̂ (s, t)) is weakly consistent for (z̄(t), P (s, t)).

59

This proposition can be seen as a “local” result in the sense that the consistency holds

for each (µ, a) and each s, t ∈ T . We wish to find a “global” consistency result. That is, a

result that holds for all (µ, a) ∈ ℓ2 × ℓ2c . Strong consistency is taken to be in the norm of

ℓ2 × ℓ2, so that (θ̂1, θ̂2) is strongly consistent for (θ1, θ2) if

P
(
||(θ̂1, θ̂2)− (θ1, θ2)||ℓ2×ℓ2 → 0

)
= 1.

As the norm in ℓ2× ℓ2 is given by ||(µ, a)||2ℓ2×ℓ2 = ||µ||2ℓ2 + ||a||2ℓ2, it shall suffice to show that

µ̂nd and ãnd are Pµ,a - strongly consistent estimators of µ and a, respectively.

Theorem 4.1.3. Let β ≥ 0 and σ ∈ (0, 1). For all (µ, a) ∈ ℓ2 × ℓ2c and for every sequence

{dn}∞n=1 of integers such that dn → ∞ and dn/n
σ → β as n → ∞, one has ||µ̂nd−µ||2ℓ2 → 0

Pµ,a-almost surely.

Proof. Note that if dn/n
σ → β, then dn/n = (1/n1−σ)(dn/n

σ) → 0. Also

||µ̂− µ||2ℓ2 =
d∑

k=1

(µ̂kn − µk)
2 +

∑

k>d

µ2
k = Xn,d +

∑

k>d

µ2
k,

for Xn,d =
∑d

k=1(µ̂kn − µk)
2. Now,

∑
k>d µ

2
k → 0 as long as d → ∞. For each n ∈ N, it one

has

nXn,d = n
d∑

k=1

(µ̂kn − µk)
2

=

d∑

k=1

(1 + ak)
n(µ̂kn − µk)

2

1 + ak
. (4.31)

By Lemma 4.1.1, µ̂kn ∼ N(µk, 1 + ak) are i.i.d. for k = 1, . . . , d under Pµ,a. Therefore,

Zn,k =
n(µ̂kn − µk)

2

1 + ak

60

is a set of i.i.d. χ2
1 random variables and

Xn,d =
d

n

(
1

d

d∑

k=1

(1 + ak)Zn,k

)

=
d

n

(
1

d

d∑

k=1

(1 + ak)(Zn,k − 1)

)
+

1

n

d∑

k=1

(1 + ak). (4.32)

To deal with the second term in (4.32), note that 1 + ak → 1 as k → ∞ and thus by the

second statement in Lemma 4.1.2 with α = 0,

1

n

d∑

k=1

(1 + ak) → 0 as n → ∞. (4.33)

Let Yn,d =
1
d

∑d
k=1(1 + ak)(Zn,k − 1). The Markov inequality implies that for ǫ > 0,

Pµ,a ((|Yn,d| > ǫ) ≤ 1

ǫ4
EPµ,a

[
Y 4
n,d

]
. (4.34)

As {Zn,k}dk=1 are independent, it follows that

EPµ,a

[
Y 4
n,d

]
=

1

d4
EPµ,a

[

d∑

k=1

(1 + ak)(Zn,k − 1)

]4

=
1

d4

∑

m1+···+md=4

(
4

m1, m2, . . . , md

)
(1 + a1)

m1 . . . (1 + ad)
md

EPµ,a
[(Zn,1 − 1)m1] . . .EPµ,a

[(Zn,d − 1)md] . (4.35)

Since Zn,k − 1 is mean zero and
∑

mi = 4, the only terms in (4.35) that are nonzero are

those that have an even degree, that is,

EPµ,a

[
Y 4
n,d

]
=

1

d4

(
d∑

k=1

(1 + ak)
4
EPµ,a

[
(Zn,k − 1)4

]

+

d∑

k=1

∑

i 6=k

4!

2!2!
(1 + ak)

2(1 + ai)
2
EPµ,a

[
(Zn,i − 1)2

]
EPµ,a

[
(Zn,k − 1)2

]
)
. (4.36)

61

Now, {ak}k ∈ ℓ2c and thus supk(1 + ak) < c1 for some c1 > 0 and {Zn,k}dk=1 are identically

distributed, so that (4.36) is bounded by

1

d4

(
dc41EPµ,a

[
(Zn,1 − 1)4

]
+6d(d− 1)c41

[
EPµ,a

[
(Zn,1 − 1)2

]]2)

≤ 1

d4
(dc2 + d(d− 1)c2)

=
c2
d2

, (4.37)

where c2 = max
{
c41EPµ,a

[(Zn,1 − 1)4] , 6c41
[
EPµ,a

[(Zn,1 − 1)2]
]2}

is independent of n. If

dn/n
σ → β as n → ∞, then by limit comparison, (4.37) is summable. Therefore,

∞∑

n=1

Pµ,a ((|Yn,d| > ǫ) ≤
d∑

n=1

c2
d2

< ∞.

Thus, if dn/n
σ → β the Borel-Cantelli Lemma implies that Yn,d → 0 and hence Xn,d → 0

Pµ,a-almost surely.

Next, we consider the strong consistency of the estimator ãn,d. To show strong consis-

tency, we follow the approach of [6]. The following lemma, taken from [6, Lemma 5.3], finds

a bound for the even central moments of a χ2 random variable.

Lemma 4.1.3. Let Z be a χ2
q-distributed random variable with q ≥ 2 and let s ∈ N. Then

E
[
(Z − n)2s

]
≤ [4q]s(2s)!

q

q − 1

Note that

||ã− a||2ℓ2 =
d∑

k=1

(ãkn − ak)
2 +

∑

k>d

a2k = Vn,d +
∑

k>d

a2k,

where the second term vanishes as d → ∞. We shall let d = dn be such that dn → ∞ as

62

n → ∞ and then only consider n → ∞. We have

Pµ,a (Vn,d > ǫ) = Pµ,a

([
(n− 1)2Vn,d

]r
>
[
(n− 1)2ǫ

]r)

≤ EPµ,a

[
[(n− 1)2Vn,d]

r]

[(n− 1)2ǫ]r
.

Write

(n− 1)2Vn,d =
d∑

k=1

(1 + ak)
2 [Υn,k − (n− 1)]2 ,

where Υn,k = (n−1)(ãkn+1)
(1+ak)

. By Lemma 4.1.1 and the definition of ãkn (4.19), the variables

Υn,k are i.i.d. χ2
n−1 random variables for k = 1, 2, . . . , d. Since the variables Υn,k − (n − 1)

are independent, the Multinomial Theorem implies

EPµ,a

[[
(n− 1)2Vn,d

]r]
=

∑

r1+···+rd=r

((
r

r1, . . . , rd

)

d∏

k=1

(1 + ai)
2rk

d∏

k=1

EPµ,a

[
[Υn,k − (n− 1)]2ri

]
)

(4.38)

Note that
(

2r
2r1,...,2rd

)
= (2r)!/

(∏d
k=1(2rk)!

)
≥ 1, so that (2r)! ≥

∏d
k=1(2rk)!. By Lemma

4.1.3, it follows that

d∏

k=1

EPµ,a

[
[Υn,k − (n− 1)]2ri

]
< [4(n− 1)]r

(
n− 1

n− 2

)d d∏

i=1

(2ri)!

≤ [4(n− 1)]r
(
n− 1

n− 2

)d

(2r)! (4.39)

63

This inequality and (4.38) imply that

EPµ,a

[[
(n− 1)2Vn,d

]r]
< [4(n− 1)]r

(
n− 1

n− 2

)d

(2r)!

∑

r1+···+rd=r

(
r

r1, . . . , rd

) d∏

k=1

(1 + ai)
2rk

= [4(n− 1)]r
(
n− 1

n− 2

)d

(2r)!

(
d∑

k=1

(1 + ai)
2

)r

=

[
4(n− 1)

d∑

k=1

(1 + ai)
2

]r (
n− 1

n− 2

)d

(2r)! (4.40)

This proves a lemma similar to [6, Lemma 5.2]:

Lemma 4.1.4. For each ǫ > 0 and r ∈ N, one has Pµ,a (Vn,d > ǫ) < αndr(ǫ), where

αndr(ǫ) =

[
4

(n− 1)ǫ

d∑

k=1

(1 + ai)
2

]r (
n− 1

n− 2

)d

(2r)! (4.41)

We shall choose the variable r = rn in such a way that makes {αndr} summable over n.

As in Theorem 4.1.3, we shall also choose d = dn such that dn/n → β as n → ∞. We say

that fn ∼ gn if fn/gn → 1 as n → ∞. Parallel to [6, Lemma 5.4], we have the following:

Lemma 4.1.5. Let {rn}n and {dn}n be such that for β ≥ 0 and for some positive scalars

σ, τ such that σ + 2τ = 1, one has

(i) d/nσ → β and

(ii) (r/nτ)rn1/4 and r ≤ n for n large.

Then {αndr(ǫ)} given in (4.41) is a summable sequence for ǫ > 16β/e2.

Proof. As in Theorem 4.1.3 1 + ak → 1 as k → ∞. Fix ǫ and set αn = αndr(ǫ). Since

d/nσ → β, d tends towards infinity at a slower rate than n. Therefore, as n → ∞,

(
n− 1

n− 2

)d

→ 1.

64

This and Stirling’s Formula, (2r)! ∼ 2
√
π(4r2/e2)rr1/2, imply that

αn

2
√
π
∼
[
16

e2ǫ

1

(n− 1)σ

d∑

k=1

(1 + ai)
2

]r (
r

(n− 1)τ

)2r

r1/2,

but then it follows that

[
16

e2ǫ

1

(n− 1)σ

d∑

k=1

(1 + ak)
2

]r (
r

(n− 1)τ

)2r

r1/2 ∼
[
16

e2ǫ

1

nσ

d∑

k=1

(1 + ak)
2

]r (r

nτ

)2r
r1/2.

By Lemma 4.1.2 and d/nσ → β as n → ∞, it follows that 1/nσ
∑d

k=1(1+ak) → β as n → ∞.

Then if ǫ > 16β/e2, for n large, one has

16

e2ǫ

1

nσ

d∑

k=1

(1 + ak) < 1.

Note that by limit comparison with (r/nτ)rn1/4, the sequence
(

r
nτ

)2r
r1/2 is summable. There-

fore, αn/2
√
π is summable by limit comparison with

(
r
nτ

)2r
r1/2.

Remark 4.1.1. As an example of the sequence (r/nτ)rn1/4, let r = ln(n). Then

(ln(n)/nτ)ln(n)n1/4 is summable [6, Example A.1].

From Lemmas 4.1.4 and 4.1.5 and the Borel-Cantelli Lemma, the following theorem is

immediate:

Theorem 4.1.4. If {dn}n is such that dn → ∞ and dn/n
σ → β ≥ 0, for σ ∈ (0, 1), then for

ǫ > 16β/e2, Pµ,a (Vn,d > ǫ i.o.) = 0.

By setting β = 0, we obtain the desired consistency result for ãnd:

Corollary 4.1.1. If {dn}n is such that dn → ∞ and dn/n
σ → β ≥ 0, for σ ∈ (0, 1), then

||ãnd − a||ℓ2 → 0 Pµ,a - almost surely as n → ∞.

We end this section with the desired strong consistency result, which follows from The-

orem 4.1.3 and Corollary 4.1.1:

65

Theorem 4.1.5. Let σ ∈ (0, 1). For all (µ, a) ∈ ℓ2 × ℓ2c and for every sequence {dn}∞n=1 of

integers such that dn → ∞ and dn/n
σ → 0 as n → ∞, one has ||(µ̂nd, ãnd)−(µ, a)||2ℓ2×ℓ2c

→ 0

Pµ,a-almost surely.

Remark 4.1.2. Theorem 3.1 in [1] makes a similar assertion to Theorem 4.1.5, although

with a strong assumption on the sample paths of {Zt : t ∈ T}. However, the theorem in [1]

states that for β ≥ 0 such that dn/n → β as n → ∞, one has ||(µ̂nd, ãnd)−(µ, a)||ℓ2×ℓ2 → 3β

Pµ,a almost surely. This result holds only for β > 0 and is not sufficient to show strong

consistency of the estimator. A different argument would be necessary for β = 0, possibly

with a different growth rate for dn. Corollary 4.1.1 avoids this problem.

4.2 Estimation of β

As before, let P and P0 be the measures that give {Zt : t ∈ T} mean zero and covariance P

and P0, respectively, and let γk be such that P̄0γk = gk for all k. In addition, let Pµ,a be the

true measure that gives {Zt : t ∈ T} mean z̄ and covariance P . As stated at the beginning

of the chapter, we shall estimate β by

β̂n =

∞∑

k=1

b̂knγk,

where b̂kn is of the form (4.2) given by

b̂kn =
ĉkn

1 + âkn
.

The estimator ĉkn is given in (4.3) and the estimator âkn is given by either (2.38) or (4.15),

depending on the assumption z̄ = 0.

66

4.2.1 Consistency of β̂n

Since β ∈ M and M is the weak completion of M as in Subsection 3.2.4, to demonstrate

convergence of β̂n we must show that it converges in the topology of M. That is, we must

show that

(β̂n, η) → (β, η), (almost surely, in probability, etc.)

for all η ∈ H(P).

Let η ∈ H(P) be nonzero. Then η ∈ H(P0) and has the expansion η =
∑

k θkgk for some

square-summable sequence {θk}, where {gk} is the orthonormal sequence in H(P0) fixed by

the model P′
0. Then

|(β̂n, η)− (β, η)| =
∣∣∣(β̂n − β, η)

∣∣∣

=

∣∣∣∣∣

(∞∑

k=1

(b̂kn − bk)γk,

∞∑

j=1

θjgj

)∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=1

(b̂kn − bk)

(
γk,

∞∑

j=1

θjgj

)∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=1

(b̂kn − bk)

∞∑

j=1

θj(γk, gj)

∣∣∣∣∣ (4.42)

=

∣∣∣∣∣
∞∑

k=1

(b̂kn − bk)θk

∣∣∣∣∣ (4.43)

Note that (4.42) follows from the fact that the functional (γk, ·) is continuous on H(P0)

(see Remark 3.2.3).

If η = gk for some k ∈ N, (4.43) becomes

|(β̂n, gk)− (β, gk)| = |b̂kn − bk|,

so that the convergence of β̂n is equivalent to componentwise convergence of the coefficients

{b̂kn}. Note that it is assumed that P and Pµ,a are equivalent measures, so that if an

67

estimator is P - consistent, then it is also Pµ,a - consistent. In particular, this applies to the

estimator âkn given in (2.38), which is P - consistent and thus Pµ,a - consistent.

Proposition 4.2.1. For each k ∈ N, b̂kn is a Pµ,a - strongly consistent estimator for bk.

Proof. Begin by using a standard argument to write ĉk in a different form by adding and

subtracting EP [Uk].

ĉkn =
1

n

n∑

j=1

(
ŵj(Ukj − EPµ,a

[Uk] + EPµ,a
[Uk]− Ūk)

)

=
1

n

n∑

j=1

(ŵjUkj)− EPµ,a
[Uk] +

(
EPµ,a

[Uk]− Ūk

)

=
1

1
n

∑n
j=1Wj

1

n

n∑

j=1

WjUkj − EPµ,a
[Uk] +

(
EPµ,a

[Uk]− Ūk

)
(4.44)

For each j = 1, . . . , n, Ukj is determined by the jth individual andWj is observed from the jth

individual. Hence, for each k = 1, . . . , d, {WjUkj} is an independent set of random variables.

Clearly, WjUkj has finite expectation, since Ukj is a normal random variable and Wj was

assumed to have finite second moment. Therefore, the strong law of large numbers applies.

Thus,

1

n

n∑

j=1

WjUkj → EPµ,a
[WUk] , Pµ,a − a.s as n → ∞.

Next, by the strong law of large numbers and the continuous mapping theorem,

1
1
n

∑n
j=1Wj

→ 1

EPµ,a
[W]

, Pµ,a − a.s as n → ∞.

The third term in (4.44) converges to 0 almost surely by the strong law of large numbers.

68

Hence,

ĉkn → EPµ,a
[WUk]

EPµ,a
[W]

− EPµ,a
[Uk] Pµ,a − a.s as n → ∞.

= EPµ,a
[wUk]− EPµ,a

[w]EPµ,a
[Uk]

= CovPµ,a
(w,Uk)

= ck

Thus, we have the strong consistency of ĉkn.

Returning to the sieve estimator, an application of the continuous mapping theorem

implies that

1

1 + âkn
→ 1

1 + ak
Pµ,a − a.s as n → ∞.

Hence,

b̂k =
ĉkn

1 + âkn
→ ck

1 + ak
= bk Pµ,a − a.s as n → ∞.

This proves the strong consistency of the estimator b̂kn. Let V denote the linear span of

the CONS {gk}, that is, the set of finite linear combinations of {gk}.

Corollary 4.2.1. (β̂n, η)L2(T) is a Pµ,a-strongly consistent estimator of (β, η) for η ∈ V .

Proof. If η ∈ V , that is, if η =
∑m

k=1 θkgjk for a finite subsequence {jk} of N then

|(β̂n, η)− (β, η)| =
∣∣∣∣∣

∞∑

k=1

(b̂kn − bk)

m∑

i=1

θji(γk, gji)

∣∣∣∣∣

=

∣∣∣∣∣
m∑

k=1

θjk(b̂jkn − bjk)

∣∣∣∣∣

≤
m∑

k=1

|θjk |
∣∣∣b̂jkn − bjk

∣∣∣ . (4.45)

This inequality and Proposition 4.2.1 show that |(β̂n, η)L2(T) − (β, η)L2(T)| is Pµ,a-almost

69

surely convergent to zero.

Since the finite linear combinations of {gk} are a dense set in H(P0), it follows that

(β̂n, η)L2(T) converges Pµ,a-almost surely to (β, η) for η in a dense set in H(P0). The general

case η ∈ H(P) is at present unproven:

Conjecture 4.2.1. The estimator β̂n is a Pµ,a-strongly consistent estimator for β.

Remark 4.2.1. It is easy to see that if
∑∞

k=1(b̂kn − bk)
2 converges to 0 almost surely, so

does (4.43). This almost sure convergence is also unproven and the conjecture is left in its

most general form.

If it can be shown that {b̂kn}k converges uniformly Pµ,a-almost surely to {bk}k, then this

conjecture is easily proven. The problem lies in definition of bk, that is, that the estimators

b̂kn are not independent and that W is relatively unknown.

4.3 Evolutionary Response to Selection

Equation (3.6) is undefined if the selection gradient β is not in the range of P. We end the

chapter with an extension of (3.6) for arbitrary selection gradients. Let P be the phenotypic

covariance, G be the additive-genetic covariance and E be the environmental covariance

functions of the process {Zt : t ∈ T}. The following lemma due to [2, Corollary IV.2] allows

us to compare the spaces H(P) and H(G):

Lemma 4.3.1. Let K0 and K1 be two covariance kernels. To have H(K0) ⊂ H(K1) (as

sets) it is necessary and sufficient that there exist a constant B > 0 such that BK1 −K0 is

a covariance kernel.

Noting that E = P −G, it follows from this lemma that H(G) ⊂ H(P) as sets. Suppose

that G has finite trace. Let LG be the σ(L2(T),FG)-completion, where FG = {〈·, η〉G : η ∈

H(G)}. Then we have [7, Proposition A.3]

70

Proposition 4.3.1. If P , G, and LG are as above and let L be as in Subsection 3.2.2. If Ḡ

is the LG extension of G, then L ⊂ LG and for β ∈ L,

Ḡβ(t) = (β,Gt)L2(T) , (4.46)

where Gt(·) = G(t, ·).

Since M (Subsection 3.2.4) is a subset of L, (4.46) holds for all β ∈ M. Therefore, we

extend the Breeder’s Equation (3.6) to M and obtain

∆z̄ = Ḡβ. (4.47)

This gives us a formula for estimating the evolutionary response to selection if we have an

estimate of G and β. The only issue with estimating ∆z̄ using independent organisms, is that

there is no clear way to estimate G. In this case, one must either use a previous estimator or

assume a given form for G; the latter is used in Chapter 6. Recall that V denotes the linear

span of the CONS {gk}. The following proposition follows immediately from Corollary 4.2.1,

(4.46) and (4.47).

Proposition 4.3.2. For each t ∈ T such that Gt ∈ V , the estimator

∆̂z̄(t) = Ḡβ̂n(t) (4.48)

is a Pµ,a-strongly consistent estimator for ∆z̄(t).

It is currently unclear what conditions guarantee that Gt is an element of the linear span

of {gk}. On the other hand, since H(G) ⊂ H(P), it follows that Gt ∈ H(P). We are then

led to the following conjecture:

Conjecture 4.3.1. For each t ∈ T , the estimator ∆̂z̄(t) given in (4.48) is a Pµ,a-strongly

consistent estimator for ∆z̄(t).

71

If Conjecture 4.2.1 holds, then this conjecture automatically holds due to (4.46) and

(4.47).

72

Chapter 5

Estimation of β from a Dependent

Sample

As in the previous chapter, to estimate the selection gradient β, we must first be able

to estimate the covariance function P of a Gaussian process {Z(t) : t ∈ T}. Since the

observations in this chapter will no longer be independent, we must find a new estimator of P .

Recall that in the finite-dimensional case, the covariance matrix of the sample was dependent

on the relationship matrix A. Let Z1(t), Z2(t), . . . , Zn(t) be a sample of traits of organisms.

Similar to the finite-dimensional case, we assume that for each i, Zi(t) = gi(t) + ei(t),

where gi(t) is the additive-genetic process and ei(t) is the environmental process of the ith

observation, see e.g. [13]. We assume that each organism is raised in independent but similar

environments, so that {ei(t)}ni=1 are independent and identically distributed processes. Let

Z(t) =

[
Z1(t) . . . Zn(t)

]T
, g(t) =

[
g1(t) . . . gn(t)

]T
and e(t) =

[
e1(t) . . . en(t)

]T
, so that

Z(t) = g(t) + e(t). It follows that

Cov (g(s), g(t)) = AG(s, t), (5.1)

where A is the relationship matrix discussed in subsection 3.1.1 and G(s, t) is the additive-

genetic covariance function. If the organisms are equally related, it then follows that A =

73

(1 − a)In + aJn, where a is the relationship coefficient of the organisms, In is the n × n

identity matrix and Jn = 1n1
T
n is the n×n matrix of 1’s. The matrix A is equal to 1 on the

diagonal and a on the off-diagonal. Furthermore,

Cov (e(t), e(s)) = InE(s, t), (5.2)

where E(s, t) is the environmental covariance function. Assuming no genetic-environmental

interaction, we have

Cov (Z(s),Z(t)) = AG(s, t) + InE(s, t) (5.3)

Then (5.3) becomes

Cov (Z(t),Z(s)) = (G(s, t) + E(s, t))In + aG(s, t)(Jn − In). (5.4)

Thus the covariance matrix of Z(t) is equal to G(s, t) +E(s, t) on the diagonal and aG(s, t)

on the off-diagonal. Thus, we shall let

P (s, t) := G(s, t) + E(s, t), (5.5)

as usual and Ψ (s, t) be defined by

Ψ (s, t) := aG(s, t). (5.6)

Since G is a covariance function and a is a nonnegative constant, we see that

Ψ is a covariance function. (5.7)

74

5.1 Estimation of P

Let Z1(t), Z2(t), . . . , Zn(t) be a sample of traits of equally related organisms. Let Z(t) =[
Z1(t) Z2(t) . . . Zn(t)

]T
be defined on a probability space (Ω,A,P), where

A = σ(Zi(t), ∀i, t ∈ T). The measure P gives Z(t) zero mean and covariance

P(s, t) := CovP (Z(t),Z(s)) = (P (s, t)− Ψ (s, t))In + Ψ (s, t)Jn. (5.8)

This matrix has the covariance function P (s, t) on the diagonal and the cross-covariance

function, Ψ (s, t) on the off diagonal. For each s, t ∈ T , the matrix P(s, t) has only two

eigenvalues: P (s, t)+ (n− 1)Ψ (s, t) corresponding to the eigenvector 1n and P (s, t)−Ψ (s, t)

of multiplicity n− 1 with eigenvectors in the orthocomplement of 1n (see e.g. [4]).

We can diagonalize the covariance matrix (5.8) by

D(s, t) = V −1P(s, t)V,

where D(s, t) is such that D11(s, t) = P (s, t) + (n− 1)Ψ (s, t), Dii(s, t) = P (s, t)− Ψ (s, t) for

i = 2, . . . , n and Dij(s, t) = 0 for i 6= j and V , is given by V = [v1 . . .vn], with columns

given by the eigenvectors of P(s, t). For example, we may use the orthonormal eigenvectors:

v1 =

[
1√
n
, 1√

n
, . . . , 1√

n

]T

v2 =

[
1√
2
, −1√

2
, 0, . . . , 0

]T

...

vi =

[
1√

i(i−1)
, . . . , 1√

i(i−1)
, −(i−1)√

i(i−1)
, 0, . . . , 0

]T

...

vn =

[
1√

n(n−1)
, . . . , 1√

n(n−1)
, −(n−1)√

n(n−1)

]T
.

75

We may transform Z(t) to a new random variable by

Y(t) = V −1Z(t). (5.9)

Then Y(t) satisfies CovP (Y(s),Y(t)) = D(s, t). It is important to note that P − Ψ is the

covariance function of the process {Yi(t) : t ∈ T} for i = 2, . . . , n. Therefore,

P − Ψ is a covariance kernel. (5.10)

Now, let P0 be the measure on (Ω,A) that gives Z(t) zero mean and covariance

P0(s, t) = (P0(s, t)− Ψ0(s, t))In + Ψ0(s, t)Jn.

Similar to (5.10), we see that

P0 − Ψ0 is a covariance kernel. (5.11)

Furthermore, an argument similar to that showing (5.5) and (5.6) shows that

P0(s, t) = G0(s, t) + E0(s, t), and (5.12)

Ψ0(s, t) = aG0(s, t). (5.13)

Therefore,

Ψ0 is a covariance function. (5.14)

Now, if P ∼ P0 on A and Ai = σ(Yi(t), t ∈ T), then Ai ⊂ A is a sub-sigma-algebra and

P ∼ P0 on Ai. Let P|
Ai

and P0|Ai
be the restrictions of P and P0, respectively, to (Ω,Ai).

It follows that for i = 2, . . . , n, P|
Ai

and P0|Ai
give Yi zero mean and covariance P − Ψ and

P0 − Ψ0, respectively. This allows us to use the equivalent measures P|
Ai

and P0|Ai
on each

76

Ai to estimate the covariance P − Ψ . Similarly, we use the equivalent measures P|
A1

and

P0|A1
to find an estimator of P + (n− 1)Ψ .

Note that if Ki(s, t) = CovP (Yi(s), Yi(t)) and K0i(s, t) = CovP0 (Yi(s), Yi(t)), we can write

K = K0+
∑

k λkhk ⊗hk for {hk} orthonormal functions in H(K0i). On the other hand K is

P + (n− 1)Ψ or P − Ψ and K0i is equal to P0 + (n− 1)Ψ0 or P0 − Ψ0, depending on i. This

leads us to consider the spaces H(P0 + (n− 1)Ψ0) and H(P0 − Ψ0).

As Y1 has covariance P + (n − 1)Ψ , we consider the RKHS H(P0 + (n − 1)Ψ0). Let

Λ1 : H1 → H(P0 + (n − 1)Ψ0) be the Loève map, where H1 = 〈Y1(t), t ∈ T 〉 (closure with

respect to P0|A1
). The GDT (Theorem 2.2.2) gives a countable sequence of orthonormal

functions, {f+
k }∞k=1 in H(P0 + (n − 1)Ψ0) and a square-summable sequence {a+,n

k } with

infk a
+,n
k > −1 such that

P + (n− 1)Ψ = P0 + (n− 1)Ψ0 +
∑

k

a+,n
k f+,n

k ⊗ f+,n
k .

We also have a sequence {λ+
k,n}k with supk λ

+
k,n < 1 such that

dP|
A1

dP0|A1

= exp

{
2−1

∑

k

λ+
k,n(U

+
k)

2 + ln(1− λ+
k,n)

}
,

where (1 + a+,n
k)(1 − λ+

k,n) = 1 and U+,n
k,1 = Λ−1

1 f+,n
k is a countable orthonormal sequence in

H1.

Similarly, since Yi(t), i = 2, . . . , n, have covariance P (s, t)− Ψ (s, t), we now consider the

RKHS H(P0 − Ψ0). Let Λi : Hi → H(P0 − Ψ0) be the Loève map, where Hi = 〈Yi(t), t ∈ T 〉.

From the GDT, we obtain a countable sequence of orthonormal functions, {f−
k }k, in H(P0−

Ψ0) and a square-summable sequence {a−k }k with infk a
−
k > −1 such that

P − Ψ = P0 − Ψ0 +
∑

k

a−k f
−
k ⊗ f−

k .

77

We also obtain a square-summable sequence {λ−
k } with supk λ

−
k < 1 such that

dP|
Ai

dP0|Ai

= exp

{
2−1

∑

k

λ−
k (U

−
k,i)

2 + ln(1− λ−
k)

}
,

where (1 + a−k)(1− λ−
k) = 1 and U−

k,i = Λ−1
i f−

k is a countable orthonormal set in Hi.

The corresponding product measure on (Ω,A2 ⊗ · · · ⊗An) is

dP|
A2

dP0|A2

. . .
dP|

An

dP0|An

= exp

{
2−1

∑

k

λ−
k

n∑

i=2

(U−
k,i)

2 + (n− 1) ln(1− λ−
k)

}
.

Thus, the likelihood function for the covariance is given by

dP

dP0
= exp

{
2−1

∑

k

λ+
k,n(U

+
k,1)

2 + ln(1− λ+
k,n) + λ−

k

n∑

i=2

(U−
k,i)

2 + (n− 1) ln(1− λ−
k)

}
(5.15)

This is the likelihood that we wish to maximize. We have a situation similar to that of

Lemma 2.3.1:

Lemma 5.1.1. Let {U+
k }k and {U−

k,i}k, i = 2, . . . , n, k ∈ B, be fixed. If B is infinite

the likelihood (5.15) is unbounded over ℓ2c(B) × ℓ2c(B) P-almost surely. If B is finite, the

maximum occurs at

λ+
k,n =

1−
(
U+
k

)−2
k ∈ B

0 otherwise
(5.16)

and

λ−
k =

1−
[

1
n−1

∑n
i=2(U

−
k,i)

2
]−1

k ∈ B

0 otherwise
, (5.17)

with corresponding estimates

â+,n
k =

(
U+
k

)2 − 1 k ∈ B

0 otherwise

78

and

â−k =

1
n−1

∑n
i=2(U

−
k,i)

2 − 1 k ∈ B

0 otherwise

Proof. If B is infinite, note that (5.15) is the product of two likelihoods that are each

unbounded almost surely with respect to P|
A1

and P|
A2

× · · · × P|
An
. This and Lemma

2.3.1 imply that (5.15) is unbounded P-almost surely.

Let ℓ = ln dP
dP0

=
∑

k(ℓ
+
k + ℓ−k). It suffices to show that (5.16) and (5.17) maximize the

corresponding summands in ℓ. If B is finite, then

∂ℓ+k
∂λ+

k,n

= 2−1

(
(U+

k,1)
2 − 1

1− λ+
k,n

)
.

Setting this equal to zero yields

λ+
k,n = 1−

(
U+
k

)−2
.

Now,

∂2ℓ+k
∂(λ+

k,n)
2
= − 1

(1− λ+
k,n)

2
< 0,

which shows that ℓ+k is maximized at 1−
(
U+
k

)−2
P|

A1
- almost surely.

Similarly, taking the derivative of ℓ−k with respect to λ−
k yields

∂ℓ−k
∂λ−

k

= 2−1

(
n∑

i=2

(U−
k,i)

2 − (n− 1)
1

1− λ−
k

)
.

Therefore,
∂ℓ−

k

∂λ−

k

= 0 when

λ−
k = 1− (n− 1)

[
n∑

i=2

(U−
k,i)

2

]−1

.

79

Then

∂2ℓ−k
∂(λ−

n)
2
= −(n− 1)

1

(1− λ−
k)

2
< 0,

and thus ℓ−k is maximized P|
A2

× · · · × P|
An

- almost surely. Therefore, ℓ is maximized P -

almost surely at (5.16) and (5.17).

Although it is valid to construct an estimator of P using only one family, we only have

one observation Y1 that can be used to estimate the covariance function P + (n− 1)Ψ . Such

an estimator is inherently independent of the sample size n and nothing can be said about

the asymptotic properties of this estimator and hence of an estimator of P. In order to

have multiple observations of the process Y1, we consider a sample consisting of unrelated

families.

Suppose that we have a sample of traits of m unrelated families, with the jth family

consisting of nj equally related organisms. Let Z = [Z1(t)
T , . . . ,Zm(t)

T]T be defined on the

probability space (Ω, Ã, P̃), where Zj(t) = [Zj,1(t), Zj,2(t), . . . , Zj,nj
(t)]T , j = 1, . . . , m and

where Ã = σ(Zj,1(t), Zj,2(t), . . . , Zj,nj
(t), ∀j, t ∈ T). For each j, P̃ gives Zj(t) the covariance

of the form in (5.8). It follows that the covariance function of Z under P̃ is a block diagonal

matrix with entries of the form (5.8). The vectors

{Zj(t)}mj=1 =

{[
Zj,1(t) Zj,2(t) . . . Zj,nj

(t)

]T}m

i=1

are independent and may be transformed by using the transformation (5.9) to a set of

random variables {Yj(t)}mj=1. Now, each of these Yj(t) can be considered itself as a random

sample of unrelated individuals and thus, we may now consider the new restrictions of P̃

to Ãj = σ(Yj,1(t), Yj,2, . . . , Yj,nj
, ∀t ∈ T). Note that Ãi is the same σ-algebra as A above.

The restricted probability measure, P̃
∣∣∣
Ãj

on (Ω, Ãj) is the measure P in the computation of

(5.15). Let Λj,i be the Loève map corresponding to Yj,i for j = 1, . . . , m and i = 1, . . . , nj .

80

Thus, the likelihood function of the covariance is given by

dP̃

dP̃0

= exp

{
2−1

∑

k

(
m∑

j=1

[
λ+
k,nj

(U+
k,j)

2 + ln(1− λ+
k,nj

)
]

+λ−
k

m∑

j=1

[
nj∑

i=2

(U−
k,j,i)

2 + (nj − 1) ln(1− λ−
k)

])}
, (5.18)

where U−
k,j,i is the realization of the ith observation in the jth family of U−

k,j and satisfies

Λj,iU
−
k,j,i = f−

k , for j = 1, . . . , m and i = 2, . . . , nj, where {f−
k }k is a countable ONS in

H(P0 − Ψ0). Also, {U+
k,j}k is the realization of U+

k corresponding to the jth family and

satisfies Λj,1(U
+
k,j) = f+,j

k for {f+,j
k }k a countable ONS of H(P0 + (nj − 1)Ψ0). Let

N =
∑

j

nj , (5.19)

and let ℓ2c(B)(m+1)⊗ = ℓ2c(B) × · · · × ℓ2c(B) denote the m + 1-fold product of ℓ2c(B). We

maximize the likelihood given by (5.18):

Theorem 5.1.1. Let {U+
k,j}k,j and {U−

k,j,i}k,j,i, i = 2, . . . , n, j = 1, . . . , m and k ∈ B, be

fixed. If B is infinite, the likelihood (5.18) is P̃-almost surely unbounded over ℓ2c(B)(m+1)⊗.

If B is finite, (5.18) is P̃-almost surely maximized over ℓ2c(B)(m+1)⊗ at

λ+
k,nj

=

1−
(
U+
k,j

)−2
k ∈ B

0 otherwise

and

λ−
k =

1− (N −m)
[∑m

j=1

∑nj

i=2(U
−
k,j,i)

2
]−1

k ∈ B

0 otherwise

81

with corresponding estimates

â+k,nj
=

(
U+
k,j

)2 − 1 k ∈ B

0 otherwise

and

â−k =

1
N−m

[∑m
j=1

∑nj

i=2(U
−
k,j,i)

2
]
− 1 k ∈ B

0 otherwise

Proof. The likelihood (5.18) is the product of m likelihoods of the form (5.15) that are each

almost surely unbounded with respect to P̃

∣∣∣
Ãj

. Therefore, if follows that (5.18) is unbounded

P̃-almost surely.

The proof of the maximality of the above estimates is very similar to that of Lemma

5.1.1 and is omitted.

In light of this theorem, we fix the orthonormal sequences {f−
k }k and {f+,j

k }k, j = 1, . . .m

and consider the sets Sd defined by

Sd =
{(

{a+k,n1
}k, . . . , {a+k,nm

}k,{a−k }k
)
∈ ℓ2c(N)

(m+1)⊗ :

a−k = a+k,n1
= · · · = a+k,nm

= 0 for k > d
}
.

It follows that the collection {Sd : d ∈ N} is a sieve in ℓ2c(N)
(m+1)⊗. We use the sieve estimators

â+k,nj
=

(
U+
k,j

)2 − 1 k ≤ d

0 otherwise

and

â−k =

1
N−m

[∑m
j=1

∑nj

i=2(U
−
k,j,i)

2
]
− 1 k ≤ d

0 otherwise

Presently, there is not much that can be said about the asymptotic properties of the estimator

82

â+k,nj
, as it is computed using only one random variable. On the other hand, we have the

following lemma:

Lemma 5.1.2. Let m = mN be such that N −mN → ∞ and mN → ∞ as N → ∞. The

estimator {â−k } is a P̃ - strongly consistent estimator for {a−k } in ℓ2c.

Proof. The lemma is immediate, since â−k is the same form as âk in Lemma 2.3.1.

We now find an estimator of P using the estimators of P − Ψ and P + (nj − 1)Ψ . Now,

for each j, we can write njP = (P + (nj − 1)Ψ) + (nj − 1)(P − Ψ), so that

NP =
∑

j

(P + (nj − 1)Ψ) +
∑

j

(nj − 1)(P − Ψ)

and therefore,

P =
∑

j

1

N
(P + (nj − 1)Ψ) +

N −m

N
(P − Ψ). (5.20)

Combining the expansions for P + (nj − 1)Ψ and P − Ψ , we have

P − P0 =
∑

k

∑

j

a+k,nj

N
f+,j
k ⊗ f+,j

k +
∑

k

N −m

N
(a−k)f

−
k ⊗ f−

k .

As in the independent case, we have the following expansion of P in H(P0):

P = P0 +
∑

k

akgk ⊗ gk,

where {gk} is a fixed CONS of H(P0). Therefore, we have

∑

k

akgk ⊗ gk =
∑

k

∑

j

a+k,nj

N
f+,j
k ⊗ f+,j

k +
∑

k

N −m

N
(a−k)f

−
k ⊗ f−

k . (5.21)

With our assumptions, we note that P0 − (P0 − Ψ0) = Ψ0 and for each n ∈ N, nP0 −

(P + (n− 1)Ψ0) = (n− 1)(P0 − Ψ0) are both covariances by (5.14) and (5.11), respectively.

Therefore, by Lemma 4.3.1 we have proven the following:

83

Lemma 5.1.3. As sets of functions, H(P0 − Ψ0) ⊂ H(P0) and H(P0 + (n− 1)Ψ0) ⊂ H(P0)

for all n ∈ N.

Therefore, since {f+,j
k }∞,m

k,j=1 are functions in H(P0 + (nj − 1)Ψ0) for j = 1, . . . , m, it follows

that f+,j
k ∈ H(P0) for all k ∈ N and j = 1, . . . , m. Similarly, f−

k ∈ H(P0) for all k ∈ N.

For each s ∈ T , apply the linear functional 〈·, gℓ〉P0
to both sides of the equation

∑

k

akgk(s)gk =
∑

k

∑

j

a+k,nj

N
f+,j
k (s)f+,j

k +
∑

k

N −m

N
(a−k)f

−
k (s)f

−
k ,

to obtain the equation

aℓgℓ =
∑

k

∑

j

[
a+k,nj

N

〈
f+,j
k , gℓ

〉
P0

f+,j
k

]
+

N −m

N
(a−k)

〈
f−
k , gℓ

〉
P0

f−
k .

Another application of 〈·, gℓ〉P0
yields

aℓ =
∑

k

(
m∑

j=1

[
a+k,nj

N

〈
f+,j
k , gℓ

〉2
P0

]
+

N −m

N
(a−k)

〈
f−
k , gℓ

〉2
P0

)
. (5.22)

We can use this to estimate aℓ by using the sieve estimators for a+,j
k and a−k , so that

âℓ =

∑
k

(∑m
j=1

[
â+
k,nj

N

〈
f+,j
k , gℓ

〉2
P0

]
+ N−m

N
(â−k)

〈
f−
k , gℓ

〉2
P0

)
if k ≤ d

0 otherwise

(5.23)

Estimation when nj = n

When the families are the same size, i.e. nj = n for all j, (5.18) becomes

dP̃

dP̃0

= exp

{
2−1

∑

k

(
λ+
k,n

∑

j

(U+,n
k,j)2 +m ln(1− λ+

k,n)+

λ−
k

m∑

j=1

n∑

i=2

(U−
k,j,i)

2 +m(n− 1) ln(1− λ−
k)

)}
, (5.24)

84

The sieve estimators of λ+
k,n and λ−

k are then

λ̂+
k,n =

1−
{

1
m

∑
j

(
U+,n
k,j

)2}−1

k ≤ d

0 otherwise

and

λ̂−
k =

1−
{

1
m(n−1)

∑m
j=1

∑n
i=2(U

−
k,j,i)

2
}−1

k ≤ d

0 otherwise
,

corresponding to the estimators

â+k,n =

1
m

∑
j

(
U+,n
k,j

)2 − 1 k ≤ d

0 otherwise

and

â−k =

1
m(n−1)

∑m
j=1

∑n
i=2(U

−
k,j,i)

2 − 1 k ≤ d

0 otherwise

From this, (5.22) becomes

aℓ =
∑

k

[
a+,n
k

n

〈
f+,n
k , gℓ

〉2
P0

+
(n− 1)

n
(a−k) 〈fk, gℓ〉

2
P0

]
. (5.25)

The asymptotic properties of {âk}k in either case are currently unknown. The next chapter

will discuss the convergence of ||{âk} − {ak}||ℓ2 based on simulations.

5.1.1 Estimation of the Genetic Covariance Function

In the case of independent families of equally-related organisms, we are also able to construct

an estimate for the additive-genetic covariance function G. Similarly to (5.20), for each j we

may write

njΨ = P + (nj − 1)Ψ − (P − Ψ). (5.26)

85

Summing over j and solving for Ψ , we have

Ψ =
1

N

m∑

j=1

(P + (nj − 1)Ψ)− m

N
(P − Ψ).

Therefore, we may estimate Ψ by

Ψ̂ =
1

N

m∑

j=1

P + (nj − 1)Ψ
∧

− m

N
P̂ − Ψ. (5.27)

On the other hand, by (5.6) Ψ = aG. Since a 6= 0 for related individuals, it follows that

G = Ψ/a and thus G may be estimated by

Ĝ =
1

a
Ψ̂ =

1

aN

m∑

j=1

P + (nj − 1)Ψ
∧

− m

aN
P̂ − Ψ (5.28)

As with the estimation of P , we do not have any theory about any consistency of Ĝ. The

next chapter will discuss convergence based on simulations of equally related individuals.

5.2 Estimation of β

In estimating β using an independent sample, we used the estimator ĉkn given in (4.3). In

the dependent case, we lack an estimator for ck as the distribution of the fitness function W

and hence of ŵi is unknown. Lacking such information, we shall use the same estimator of

ck as in the independent case. That is,

ĉkn =
1

n

n∑

j=1

ŵj(Ukj − Ūk).

Let {gk} be a CONS of HP0. As in Section 4.2, we estimate β by

β̂n =
∞∑

k=1

b̂knγk,

86

where γk is such that P̄0(γk) = gk for all k and b̂kn = ĉkn/(1 + âkn). Consistency of this

estimator will be studied based on simulations in the next chapter.

87

Chapter 6

Simulations

We now turn our focus from theory to application. We begin with the computational aspects

of the simulations, in particular, computing the CONS {gk}k and the values of the coefficients

ck = Cov (w,Uk) in the expansion of the selection differential s in H(P0).

6.1 Computation

6.1.1 Orthonormal Functions and Generalized Functions

Both the mean function z̄ and the covariance function P can be written in terms of a

complete orthonormal sequence {gk}k in the space H(P0), see (4.26) and (4.27). However,

the sequence {gk}k has been relatively arbitrary. We wish to find a CONS that is easy to

calculate and allows us to find the sequence {γk}k such that P̄0γk = gk for all k. By [21,

Theorem 5B] the set {P0t, t ∈ T} is a spanning set in H(P0). Define a pseudo-metric on T

by

dP0(s, t) = ||P0t − P0s||P0 = P0(s, s)− 2P0(s, t) + P0(t, t). (6.1)

A sufficient condition for dP0 to be a metric is that {P0t, t ∈ T} be linearly independent

[18, Lemma 4.2]. Furthermore [18, Lemma 4.3], H(P0) is separable if and only if (T, dP0) is

separable. Thus, if {P0t, t ∈ T} is linearly independent and H(P0) is separable, there exists

88

a countable dense set T0 = {ti}i such that {P0t, t ∈ T0} is dense in H(P0). In general, the

set {P0t, t ∈ T} is not linearly independent. However, suppose that P0 is of the form

P0(s, t) = u(s ∧ t)v(s ∨ t) s, t ∈ [a, b], (6.2)

where u, v are nonzero on (a, b), u
v
is positive and strictly increasing on (a, b), s∧t = min(s, t)

and s ∨ t = max(s, t). Such a covariance function is said to be a product type covariance

function. We have the following lemma, given in [3, Lemma 5.1.5]:

Lemma 6.1.1. Let {Zt : t ∈ [a, b]} be a stochastic process with product type covariance

function K. Then for all r ∈ N and a < t1 < · · · < tr < b the set of functions {Kti}ri=1 are

linearly independent.

For practical applications, we are only able to create a finite number of functions in

the CONS {gk}k. To compute the functions {gk}rk=1, we take r to be large and choose

Tr = {ti}ri=1 ⊂ T0. Next, we perform Gram-Schmidt orthonormalization on {P0t, t ∈ Tr}.

Usually, to perform Gram-Schmidt orthonormalization, one needs to use an algorithm and

compute the functions sequentially. Fortunately, in a RKHS, we are able to compute all of the

functions {gk}rk=1 at once. Let P = [P0(ti, tj)]
m,m
i,j=1 be the matrix of P0 restricted to Tr × Tr,

which is invertible as the rows are composed of linearly independent functions restricted to Tr.

Since P is a symmetric positive-definite matrix, it has a Cholesky decomposition P = NNT ,

where N is an invertible lower triangular matrix. Now, Gram-Schmidt orthonormalization of

the functions {P0t, t ∈ Tr} is equivalent [24, Definition 5.10] to computing gk =
∑r

i=1 qkiP0ti ,

where

qki =
(
N−1

)
ki
. (6.3)

Alternatively, we may write

g1(·)
...

gr(·)

= N−1

P0t1(·)
...

P0tr(·)

. (6.4)

89

In addition to calculating the sequence {gk}k, we must also calculate the sequence {Uk}k.

This calculation is almost immediate if we use (2.7), which states that ΛP0(Zs) = P0(s, ·).

Then

U1(·)
...

Ur(·)

= Λ−1

P0

N−1

P0t1(·)
...

P0tr(·)

= N−1

Λ−1
P0
P0t1(·)
...

Λ−1
P0
P0tr(·)

= N−1

Zt1

...

Ztr

. (6.5)

In order to calculate the selection gradient, β, we must find the sequence {γk}k such that

P̄0γk = gk for all k. Let {gk}rk=1 be as in (6.4) and let δt be the δ function at t. To find γk,

note that gk =
∑r

i=1 qkiP0ti . The discussion following Lemma 3.2.2 shows that P̄0δt = P0t,

which implies that

gk =

k∑

i=1

qkiP0ti

=

k∑

i=1

qkiP̄0δti

= P̄0

(
k∑

i=1

qkiδti

)
.

As P̄0 is a bijection between M and H(P0), it follows that for each k = 1, . . . , m,

γk =
k∑

i=1

qkiδti .

90

Alternatively, we may symbolically write

γ1
...

γr

= N−1

δt1
...

δtr

When estimating the covariance function of a set of unrelated families consisting of

equally related individuals (Section 5.1), we must compute the inner products
〈
f+,j
k , gℓ

〉
P0

and
〈
f−
k , gℓ

〉
P0
. We compute gℓ by (6.4), which states that

gℓ =

r∑

i=1

qℓiP0ti ,

where qℓi = (N−1)ℓi . Therefore, for any η ∈ H(P0),

〈η, gℓ〉P0
=

r∑

i=1

qℓi 〈η, P0ti〉P0
=

r∑

i=1

qℓiη(ti), (6.6)

where the last equality follows from the reproducing property of H(P0). Then we may write

〈
f+,j
k , g1

〉
P0

...
〈
f+,j
k , gr

〉
P0

= N−1f+,j

k ,

where

f+,j
k =

f+,j
k (t1)

...

f+,j
k (tr)

.

91

It follows that if F+,j =

[
f+,j
1 . . . f+,j

r

]
, then

〈
f+,j
1 , g1

〉
P0

. . . 〈f+,j
r , g1〉P0

...
. . .

...
〈
f+,j
1 , gr

〉
P0

. . . 〈f+,j
r , gr〉P0

= N−1F+,j .

Similarly, we may write

〈
f−
1 , g1

〉
P0

. . . 〈f−
r , g1〉P0

...
. . .

...
〈
f−
1 , gr

〉
P0

. . . 〈f−
r , gr〉P0

= N−1F−,

where

F− =

f−
1 (t1) . . . f−

r (t1)

...
. . .

...

f−
1 (tr) . . . f−

r (tr)

6.1.2 Computing Parameter Values

To be able to run any meaningful simulations, we must be able to construct a covariance

function of the form (4.4), a mean function z̄ in H(P0), the selection differential, s, and the

selection gradient β. To create these, we need to know the true values of {ak}, {bk} and {ck}.

By Lemma 3.2.2, once ck and ak are known, then bk is easily found. The only restriction

on the sequence {ak} is that it belongs to ℓ2c , which means that if we wish to create the

true covariance function, we need only specify {ak}. Similarly, to construct the true mean

function, we need only specify the sequence {µk} in ℓ2. Unfortunately, the sequence {ck} is

not an arbitrary sequence. By (4.1), we see that ck = CovP (w,Uk) for all k. We already know

how to write Uk in terms of {Zti}ri=1. As for the relative fitness, we must know something

about the fitness function W . As in Subsection 3.2.3, we assume that W is frequency

independent. Further, we assume that W = ν(X) for some X ∈ HP. We shall consider

92

several different forms of ν and give specific biological applications of such functions. As in

[7] we assume that X is of one of the following two forms:

X = Z(t∗), (6.7)

for some t∗ ∈ T , or

X =

∫

T

Z(t)f(t)dµ(t), (6.8)

where f is a square integrable function on (T,T, µ). If reproduction occurs at a single stage

in life, then the ability to reproduce depends only on the trait at time of reproduction and

the most appropriate form of X is (6.7). Such is the case in annual plants and many species

of Pacific salmon. If the ability to reproduce at any age depends on the trait, then X of

the form (6.8) is appropriate. Since X is defined in terms of Z(t), it is not independent of

Z(t). Let µX and σ2
X denote the mean and variance of X and let ρi,X denote the correlation

of Zti and X under the measure Pz̄. By definition, the mean and covariance of the random

variable Zti are z̄(ti) and σ2
i = P (ti, ti) and thus if X is of the form (6.7), we have µX = z̄(t∗)

and σ2
X = P (t∗, t∗). To calculate µX , σ

2
X and Cov (Zti , X) when X is of the form (6.8), we

make use of [9, Section 47]:

Proposition 6.1.1. Let X be as in (6.8) and suppose that {Zt : t ∈ T} is of second order

with covariance P and mean zero under the measure P. Then

(X,U)HP
=

∫

T

(Zt, U)HP
f(t)dµ(t),

for every U ∈ H. Furthermore,

VarP (X) =

∫∫

T×T

P (t, s)f(t)f(s)dµ(t)dµ(s).

93

Recall that Pz̄ is the measure that endows {Zt : t ∈ T} with covariance P and mean z̄

and that Pz̄ and P are equivalent measures. Then (2.8) tells us how to calculate µX and

Proposition 4.1.1 tells us how to calculate σ2
X . This is stated in the following:

Corollary 6.1.1. Let X be as in Proposition 6.1.1. Then X is Gaussian under Pz̄ and

µX = EPz̄
[X] =

∫

T

z̄(t)f(t)dµ(t),

and

σ2
X = VarPz̄

(X) =

∫∫

T×T

P (t, s)f(s)f(t)dµ(t)dµ(s).

To calculate Cov (Zti , X), we use Proposition 4.1.1 and (6.1.1) to see that

CovPz̄
(Zti , X) = CovP (Zti , X)

=

∫

T

(Zti , Zt)HP
f(t)dµ(t)

=

∫

T

P (ti, t)f(t)dµ(t) (6.9)

The conditional distribution of Zti |X is Gaussian with mean

z̄(ti) +
σi

σX

ρi,X(X − µX),

and variance

(1− ρ2i,X)σ
2
i .

94

To calculate ck, we use Uk given in (6.5), so that

ck = CovPz̄

(
W

EPz̄
[W]

,
r∑

i=1

qkiZti

)

=
1

EPz̄
[W]

r∑

i=1

qkiCovPz̄
(W,Zti)

=
1

EPz̄
[W]

r∑

i=1

qki (EPz̄
[WZti]− EPz̄

[W] z̄(ti)) , (6.10)

where qki is the k, ith element of N−1 given in (6.3). It follows that for each i, we have

EPz̄
[WZti] = EPz̄

[E [WZti |X]]

= EPz̄
[WE [Zti |X]]

= EPz̄

[
W

(
z̄(ti) +

σi

σX
ρi,X(X − µX)

)]

= EPz̄
[W] z̄(ti) +

σi

σX
ρi,XEPz̄

[XW]− µX
σi

σX
ρi,XEPz̄

[W] . (6.11)

Substituting (6.11) into (6.10),

ck =
1

EPz̄
[W]

r∑

i=1

qki

(
σi

σX

ρi,XEPz̄
[XW]− µX

σi

σX

ρi,XEPz̄
[W]

)
. (6.12)

Therefore, we must calculate EPz̄
[XW] and EPz̄

[W]. We now consider 3 different types of

selection.

Directional Selection: W = eX

Directional selection refers to the type of selection in which the mean trait of the parental

subpopulation that contributes to the mean trait of the offspring population and the mean

trait of the parental population differ [22]. That is, the individuals that successfully repro-

duce have a different mean trait than the population as a whole. This can be thought of as

saying that those with a favorable extreme phenotype reproduce while those with an average

95

phenotype do not. As in [7], we use a fitness function of the form

W = eX

to describe directional selection. This fitness function states that lifetime reproductive suc-

cess is the logarithm of fitness. Then

EPz̄
[XW] =

1√
2πσ2

X

∫

R

xex exp

{
− 1

2σ2
X

(x− µX)
2

}
dx

=
1√
2πσ2

X

∫

R

x exp

{
− 1

2σ2
X

(x2 − 2µXx+ µ2
X +−2σ2

Xx)

}
dx

= exp{− µ2
X

2σ2
X

} 1√
2πσ2

X

∫

R

x exp

{
− 1

2σ2
X

(x2 − 2(µX + σ2
X)x)

}
dx

= exp{− µ2
X

2σ2
X

} 1√
2πσ2

X

∫

R

x exp

{
− 1

2σ2
X

[
(x− (µX + σ2

X))
2 − (µX + σ2

X)
2
]}

dx

= exp

{
−µ2

X − (µX + σ2
X)

2

2σ2
X

}
1√
2πσ2

X

∫

R

x exp

{
− 1

2σ2
X

[
(x− (µX + σ2

X))
2
]}

dx

= exp

{
−
(
µX +

σ2
X

2

)}
(µX + σ2

X). (6.13)

Note that eX is log-normal, so that EPz̄
[W] = EPz̄

[
eX
]
= exp

{
µX +

σ2
X

2

}
. It follows that

(6.13) becomes

EPz̄
[XW] = EPz̄

[W] (µX + σ2
X). (6.14)

Substituting (6.14) into (6.12),

ck =

r∑

i=1

qki

(
σi

σX
ρi,X(µX + σ2

X)− µX
σi

σX
ρi,X

)

=
r∑

i=1

qkiσXσiρi,X

=

r∑

i=1

qkiCovPz̄
(Zti , X)

=
r∑

i=1

qki

∫

T

P (ti, t)f(t)dµ(t), (6.15)

96

where the last equality follows from (6.9). It follows that

c1
...

cr

= N−1

∫
T
P (t1, t)f(t)dµ(t)

...
∫
T
P (tr, t)f(t)dµ(t)

Stabilizing Selection: W = e−X2/2v2 .

Stabilizing selection is a type of selection where the variability of the trait decreases and

stabilizes to the population mean trait. One way to model this type of selection is to let

W = e−X2/2v2 ,

where v ∈ R is constant and X ∈ HPz̄
. For a fitness function of this form, we have

EPz̄
[XW] =

1√
2πσ2

X

∫

R

x exp

{
− 1

2σ2
X

(x−mx)2 − 1

2v2
x2

}
dx

=
1√
2πσ2

X

∫

R

x exp

{
−x2 − 2µXx+ µ2

X

2σ2
X

− 1

2v2
x2

}
dx

=
1√
2πσ2

X

∫

R

x exp

{
−1

2

[
σ2
X + v2

σ2
Xv

2
x2 − 2

µX

σ2
X

x+
µ2
X

σ2
X

]}
dx

= exp

{
−1

2

µ2
X

σ2
X

}
1√
2πσ2

X

∫

R

x exp

{
− 1

2σ2
X,v

[
x2 −

2µXσ
2
X,v

σ2
X

x

]}
dx, (6.16)

where σ2
X,v =

σ2
X
v2

σ2
X
+v2

. Focusing on the exponential in (6.16), we have

− 1

2σ2
X,v

[
x2 −

2µXσ
2
X,v

σ2
X

x

]
= − 1

2σ2
X,v

[
x2 −

2µXσ
2
X,v

σ2
X

x+
µ2
X

(
σ2
X,v

)2

(σ2
X)

2

]
+

µ2
X

2σ2
X,v(σ

2
X)

2

(
σ2
X,v

)2

= − 1

2σ2
X,v

[
x−

µXσ
2
X,v

σ2
X

]2
+

µ2
Xσ

2
X,v

2(σ2
X)

2

= − 1

2σ2
X,v

[
x− µXv

2

σ2
X + v2

]2
+

µ2
Xv

2

2(σ2
X + v2)σ2

X

. (6.17)

97

Substituting (6.17) into the integral in (6.16), we have

∫

R

x exp

{
− 1

2σ2
X,v

[
x2 −

2µXσ
2
X,v

σ2
X

x
]}

dx

= exp

{
µ2
Xv

2

2(σ2
X + v2)σ2

X

}∫

R

x exp

{
− 1

2σ2
X,v

[
x− µXv

2

σ2
X + v2

]2}
dx

= exp

{
µ2
Xv

2

2(σ2
X + v2)σ2

X

}√
2πσ2

X,v

µXv
2

σ2
X + v2

. (6.18)

Substituting (6.18) into (6.16) yields

exp

{
−1

2

µ2
X

σ2
X

}
1√
2πσ2

X

∫

R

x exp

{
− 1

2σ2
X,v

[
x2 −

2µXσ
2
X,v

σ2
X

x
]}

dx

= exp

{
−1

2

µ2
X

σ2
X

}
1√
2πσ2

X

exp

{
µ2
Xv

2

2(σ2
X + v2)σ2

X

}√
2πσ2

X,v

µXv
2

σ2
X + v2

= exp

{
−1

2

µ2
X

σ2
X

}[
σ2
X,v

σ2
X

]1/2
exp

{
µ2
Xv

2

2(σ2
X + v2)σ2

X

}√
2πσ2

X,v

µXv
2

σ2
X + v2

=

[
µXv

2

σ2
X + v2

]3/2
exp

{
−1

2

µ2
X

σ2
X

+
µ2
Xv

2

2(σ2
X + v2)σ2

X

}

=

[
µXv

2

σ2
X + v2

]3/2
exp

{
−1

2

µ2
X

σ2
X

[
1− v2

(sx+ v2

]}

=

[
µXv

2

σ2
X + v2

]3/2
exp

{
−1

2

µ2
X

σ2
X + v2

}

(6.19)

Therefore,

EPz̄
[XW] =

[
µXv

2

σ2
X + v2

]3/2
exp

{
−1

2

µ2
X

σ2
X + v2

}
(6.20)

A very similar calculation shows that

EPz̄
[W] =

[
µXv

2

σ2
X + v2

]1/2
exp

{
−1

2

µ2
X

σ2
X + v2

}
.

98

Thus

EPz̄
[XW] =

[
µXv

2

σ2
X + v2

]
EPz̄

[W] . (6.21)

From this and (6.12), we obtain

ck =

r∑

i=1

qki

(
σi

σX
ρi,X

[
µXv

2

σ2
X + v2

]
− µX

σi

σX
ρi,X

)

=
r∑

i=1

qkiµX
σi

σX
ρi,X

(
v2

σ2
X + v2

− 1

)

=

r∑

i=1

qki
−µX

σ2
X + v2

σiσXρi,X

=
r∑

i=1

qki
−µX

σ2
X + v2

CovPz̄
(Zti , X)

=

r∑

i=1

qki
−µX

σ2
X + v2

∫

T

P (ti, t)f(t)dµ(t). (6.22)

Writing this in matrix form, we have

c1
...

cr

=

−µX

σ2
X + v2

N−1

∫
T
P (t1, t)f(t)dµ(t)

...
∫
T
P (tr, t)f(t)dµ(t)

.

Note that if µX = 0, then ck = 0 and hence bk = 0 for all k. In other words, there is no force

of selection acting on the trait.

Truncation Selection: W = 1A(X)

Truncation selection [22] occurs when individuals exceeding a particular value are chosen to

reproduce. One way to model this type of selection is to let

W = 1[α,∞)(X) =

1 if X > α

0 otherwise.

99

In this case, we have

EPz̄
[XW] =

∫ ∞

α

x
[
2πσ2

X

]−1/2
exp

{ −1

2σ2
X

(x− µX)
2

}
dx

= [2π]−1/2

∫ ∞

α−µX
σX

(µX + σXu) exp

{−1

2
u2

}
du

= µX [2π]
−1/2

∫ ∞

α−µX
σX

exp

{−1

2
u2

}
du+ σX [2π]

−1/2

∫ ∞

α−µX
σX

u exp

{−1

2
u2

}
du

= µXPz̄ [X > α] +
σX√
2π

[
− exp

{−u2

2

}]∞
α−µX
σX

= µXPz̄ [X > α] +
σX√
2π

exp

{
−1

2

(
α− µX

σX

)2
}
. (6.23)

It is easy to see that EPz̄
[W] = Pz̄ [X > α] = 1−Φ

(
α−µX

σX

)
, where Φ is the standard normal

cumulative distribution function. It follows that (6.12) equals

ck =

r∑

i=1

qki
σi

σX
ρi,X

σX√
2π

exp

{
−1

2

(
α−µX

σX

)2}

1− Φ
(

α−µX

σX

)

=
r∑

i=1

qki
CovPz̄

(Zti , X)

σX

√
2π

exp

{
−1

2

(
α−µX

σX

)2}

1− Φ
(

α−µX

σX

)

=

r∑

i=1

qki

∫
T
P (ti, t)f(t)dµ(t)

σX

√
2π

exp

{
−1

2

(
α−µX

σX

)2}

1− Φ
(

α−µX

σX

) . (6.24)

In matrix form, we have

c1
...

cr

=

1√
2πσ2

X

exp

{
−1

2

(
α−µX

σX

)2}

1− Φ
(

α−µX

σX

) N−1

∫
T
P (t1, t)f(t)dµ(t)

...
∫
T
P (tr, t)f(t)dµ(t)

.

100

6.2 Independent Sample

For simulations there are many parameters that are allowed to vary: the measure space

(T,T, µ), the candidate covariance function P0, the coefficients a in the expansion of P , the

coefficients µ in the expansion of z̄, the sieve parameter d, the form of X , the function f in

the definition of X , the type of selection, the selection parameter and the finite grid Tr =

{t1, . . . , tr}. To make things simpler, we shall fix a few of these parameters. In particular,

we shall let T = [0, 1], T be the Borel σ-algebra on [0, 1], µ be Lebesgue measure and we

will let Tr consist of 100 equally spaced points between 0 and 1, not including 0. For the

candidate covariance function P0, we consider two different functions: the Wiener covariance,

P0(s, t) = min(s, t) and the Ornstein-Uhlenbeck covariance, P0(s, t) = exp{−|s − t|}. To

ensure that the measures P0 and Pz̄ are equivalent, we construct

P = P0 +

100∑

k=1

akgk ⊗ gk and

z̄ =

100∑

k=1

µkgk,

where {gk}100k=1 are computed by Gram-Schmidt orthonormalization of the set {P0ti,t∈T ′

r
} and

a and µ are either {1/k}k or {1/k2}k. We then restrict z̄ and P to T ′
r to create a vector in

Rr and a matrix in Rr×r, respectively. We use this vector and matrix to generate a sample of

10000 multivariate normal random variables, say {zi}10000i=1 . Each of these generated random

variables lies on a sample path of {Zt : t ∈ T}.

Further, we will only consider the case when X is an integral of the form (6.8). The

function f in the definition of X will be assumed to be one of three forms, f(s) = 1,

f(s) = s or f(s) = exp{s}. Letting f(s) = 1 makes biological sense, as X is then the

average value of {Zt : t ∈ T} on [0, 1]. To construct X , we need to integrate over the entire

sample path {Zt : t ∈ T} but we only have a finite number of points on this sample path.

Therefore, we estimate X by using the trapezoidal method on the grid Tr. After this, we take

101

the generated random variables and perform the estimation of the desired parameters on an

increasing sequence of nested subsets of {zi}10000i=1 and explore the asymptotic properties of

these random variables. To more accurately depict a sample with unknown parameters, the

sieve parameter d is chosen to be d(n) =
√
n. Then

√
n ≤ 100 for all n = 1, . . . , 10000,

so that we are not estimating every ak. In other words, the only time that we use all 100

orthonormal functions {gk} to estimate P is when n = 10000.

Additionally, we look at the estimates of the evolutionary response to selection given by

the Breeder’s Equation (4.47). As we do not have an estimator of the genetic covariance, we

shall take G = P0. As a measure of closeness, we shall compute the L2([0, 1]) norm of the

difference ˆ̄z†n − z̄† , where z̄† is the mean of {Zt : t ∈ T} among newborns in the following

generation and ˆ̄z†n is computed via (4.47) using β̂n.

To demonstrate consistency of β̂n, we must show that (4.43) converges to 0 for all η ∈

H(P0). We wish to find a way to study the consistency of β̂n independent of η. This follows

from the Cauchy-Schwarz inequality and (4.43). We have

|(β̂n, η)− (β, η)| =
∣∣∣∣∣

∞∑

k=1

(b̂kn − bk)θk

∣∣∣∣∣

≤
[∞∑

k=1

(b̂kn − bk)
2

]1/2 [∞∑

k=1

θ2k

]1/2
. (6.25)

Therefore, we shall study the behavior of the square-error of b̂n,

SE(b̂n) =

∞∑

k=1

(b̂kn − bk)
2,

as n increases. We perform these iterations 100 times each and estimate the mean square

error (MSE) of ˆ̄z†n, denoted by MSE(ˆ̄z†n), and the mean square error of the sequence b̂n =

{b̂kn}, denoted by MSE(b̂n). We similarly define SE(ân) and MSE(ân), to be used in the

next section. For each table below, we find the column corresponding to the chosen values of

102

ak and µk. Next, we find the rows under the chosen function f . The intersection of rows and

columns is the MSE of the indicated estimator when n = 1000, 5000, 10000 . For example,

in Table 6.1, for ak = 1/k2, µk = 1/k and f(s) = es, then MSE(b̂n) is 0.5744 for n = 1000,

8.9466× 10−2 for n = 5000 and 2.5866× 10−2 for n = 10000.

The rest of this section is dedicated to the results of such simulations. Within each

subsection, we consider one type of selection: directional, stabilizing or truncation. For each

type of selection, we begin with the results of MSE(b̂n) followed by those of MSE(ˆ̄z†n) with

P0 being the Wiener covariance function. In the case of stabilizing and truncation selection,

we also have a “selection parameter” for which we select two values. Considering the same

tpe of selection, we then shift to the case when P0 is the Ornstein-Uhlenbeck covariance and

repeat the same format. There is a discussion involving various comparisons between the

different parameter choices following the each of the results of a simulation.

The simulations conducted seem to indicate convergence of bothMSE(b̂n) andMSE(ˆ̄z†n)

to 0 for all of the different combinations of model parameters. While, some values of the

MSE appear to be converging faster than others, these results do seem to support the

conclusions about the selection gradient given in Chapter 4. Even though we do not have

any theoretical results about the evolutionary response to selection, these results also indicate

that the estimates ˆ̄z†n are good estimators of z̄† and are converging to z̄†.

6.2.1 Directional Selection

We shall first consider a fitness function of the form

W (X) = exp(X),

and P0(s, t) = min(s, t) and we let a, µ and f vary.

103

Wiener Covariance

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 0.1225 0.1224 0.1219 0.1217

5000 1.4809× 10−2 1.4803× 10−2 1.4694× 10−2 1.4724× 10−2

10000 4.2758× 10−3 4.1648× 10−3 4.0922× 10−3 4.1014× 10−3

f(s) = s

n = 1000 6.5048× 10−2 6.4903× 10−2 6.4883× 10−2 6.5282× 10−2

5000 9.1233× 10−3 9.1081× 10−3 9.1097× 10−3 9.0574× 10−3

10000 1.4707× 10−3 1.4393× 10−3 1.4689× 10−3 1.4629× 10−3

f(s) = es

n = 1000 0.5720 0.5741 0.5744 0.5746

5000 9.1537× 10−2 9.0228× 10−2 8.9466× 10−2 8.7613× 10−2

10000 2.7612× 10−2 2.6674× 10−2 2.5866× 10−2 2.5828× 10−2

Table 6.1: MSE(b̂n) for Directional Selection with P0(s, t) = min(s, t)

Based on the results in Table 6.1, it appears that convergence is independent of our choice of

f , a and µ; convergence occurs at approximately the same rate. Also, the values ofMSE(b̂n)

is roughly equal for all choices of a and µ. On the other hand, the values of the MSE are

dependent on the choice of the function f . The MSE when f(s) = 1 is approximately twice

as large as when f(s) = s and the MSE when f(s) = es is around 4.5 times as large as when

f(s) = 1.

104

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 2.3122× 10−2 1.9547× 10−2 2.3448× 10−2 2.1356× 10−2

5000 4.4497× 10−4 2.8617× 10−4 5.6439× 10−5 3.3820× 10−4

10000 5.6973× 10−5 6.1121× 10−5 1.1575× 10−5 4.6812× 10−5

f(s) = s

n = 1000 1.4218× 10−2 1.1484× 10−2 1.4898× 10−2 1.3223× 10−2

5000 4.1053× 10−3 2.9830× 10−4 4.3009× 10−4 4.5719× 10−4

10000 2.0427× 10−5 3.4002× 10−5 3.1159× 10−5 6.5659× 10−5

f(s) = es

n = 1000 0.1047 9.7056× 10−2 0.1082 0.1053

5000 2.7160× 10−3 2.3479× 10−3 3.3986× 10−3 3.7008× 10−3

10000 3.7224× 10−4 2.6767× 10−4 3.0223× 10−4 5.1505× 10−4

Table 6.2: MSE(ˆ̄z†n) for Directional Selection with P0(s, t) = min(s, t)

From Table 6.2, we see that as with MSE(b̂n), the convergence of MSE(ˆ̄z†n) appears to

be independent of the choice of a and µ. We see that when f(s) = 1, MSE(ˆ̄z†n) is anywhere

from 0.4 to 2.8 times as large as when f(s) = s. If f(s) = es, we see that MSE(ˆ̄z†n) is the

larger than the other choices of f by around 400-800%.

105

Ornstein-Uhlenbeck Covariance

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 0.1918 0.1924 0.1944 0.1966

5000 4.3958× 10−2 4.3160× 10−2 4.2745× 10−2 4.3139× 10−2

10000 2.0971× 10−2 2.0801× 10−2 2.0612× 10−2 2.0794× 10−2

f(s) = s

n = 1000 8.0974× 10−2 8.1053× 10−2 8.1225× 10−2 8.1230× 10−2

5000 1.5437× 10−2 1.5534× 10−2 1.5576× 10−2 1.5400× 10−2

10000 3.0610× 10−3 3.0099× 10−3 2.9980× 10−3 3.0024× 10−3

f(s) = es

n = 1000 1.1432 1.1266 1.0735 1.1247

5000 0.3686 0.3586 0.3378 0.4499

10000 0.2087 0.1971 0.1844 0.2398

Table 6.3: MSE(b̂n) for Directional Selection with P0(s, t) = exp{−|s− t|}

If P0(s, t) = exp(−|s − t|), Table 6.3 shows that many of the same things that were said

about the results of Table 6.1 are valid. The main difference is that the values of MSE(b̂n)

are 25-100% larger in Table 6.3. Further, the rate of convergence appears to be slightly lower

when P0(s, t) = exp(−|s− t|) versus when P0(s, t) = min(s, t).

106

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 3.8975× 10−2 3.5582× 10−2 4.1519× 10−2 3.6310× 10−2

5000 1.6546× 10−3 1.9009× 10−3 2.2580× 10−3 1.5684× 10−3

10000 3.8197× 10−4 6.1750× 10−4 5.0943× 10−4 3.6211× 10−4

f(s) = s

n = 1000 1.9274× 10−2 1.6576× 10−2 1.8842× 10−2 1.8101× 10−2

5000 8.4371× 10−4 5.9262× 10−4 1.0137× 10−3 8.6174× 10−4

10000 5.1704× 10−5 5.4553× 10−5 2.7251× 10−4 8.8599× 10−5

f(s) = es

n = 1000 0.1673 0.1537 0.1602 0.1598

5000 1.1575× 10−2 1.1102× 10−2 1.0958× 10−2 1.5888× 10−2

10000 4.5098× 10−3 3.6610× 10−3 3.1488× 10−3 5.6310× 10−2

Table 6.4: MSE(ˆ̄z†n) for Directional Selection with P0(s, t) = exp{−|s− t|}

Table 6.4 shows that the results in Table 6.2 hold as well. As with MSE(b̂n), the values

of MSE(ˆ̄z†n) in Table 6.4 are approximately 25-50% larger than those in Table 6.2.

Under directional selection, it appears that the convergence of MSE(b̂n) and MSE(ˆ̄z†n)

is independent of both a and mu and that the choice of covariance function only effects

the magnitude of the MSEs. The most noticeable difference in these tables is that function

f has the largest effect on the magnitude of the MSEs, but still does not affect the rate of

convergence.

6.2.2 Stabilizing Selection

We now consider the a fitness function of the form

W (X) = exp

(
−X2

2v2

)
,

where v is either equal to 1 or 5 and we let the other parameters vary.

107

Wiener Covariance

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 2.6926× 10−4 6.1251× 10−6 2.6972× 10−4 1.2892× 10−2

5000 3.2361× 10−5 2.0086× 10−6 3.2041× 10−5 1.7864× 10−3

10000 8.6775× 10−6 2.8452× 10−7 8.4210× 10−6 6.4975× 10−4

f(s) = s

n = 1000 5.5046× 10−5 6.1992× 10−6 5.5143× 10−5 6.1390× 10−6

5000 7.8021× 10−6 1.0070× 10−6 7.7751× 10−6 9.9563× 10−7

10000 1.3543× 10−6 2.8375× 10−7 1.2984× 10−6 2.7012× 10−7

f(s) = es

n = 1000 4.0015× 10−3 4.8765× 10−4 4.0359× 10−3 4.8754× 10−4

5000 5.4249× 10−4 7.5724× 10−5 5.4328× 10−4 7.7099× 10−5

10000 1.0429× 10−4 2.2908× 10−5 1.0199× 10−4 2.3178× 10−5

Table 6.5: MSE(b̂n) for Stabilizing Selection with P0(s, t) = min(s, t) and v = 5

Table 6.5 shows that the convergence of MSE(b̂n) is occurring at about the same rate for

all choices of f , a, and µ. With this model, it appears that the choice of a and µ has a clear

impact on the magnitude of MSE(b̂n). If µk = 1/k, the MSEs are approximately equal

when ak = 1/k and ak = 1/k2. If µk = 1/k2 and ak = 1/k, the MSE is around 1000-4500%

smaller than the MSE when µk = 1/k. When ak = 1/k2 and µk = 1/k2, MSE(b̂n) for

f(s) = 1 is approximately 4700% larger than when µk = 1/k. On the other hand, when

f(s) = s and f(s) = exp(s), it is approximately 1000% smaller than when µk = 1/k.

108

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 1.9912× 10−3 7.5292× 10−5 2.2322× 10−3 1.0794× 10−3

5000 1.5326× 10−4 4.1739× 10−5 2.9297× 10−4 1.3768× 10−4

10000 3.6563× 10−5 3.8729× 10−5 1.5651× 10−4 2.0290× 10−4

f(s) = s

n = 1000 2.0113× 10−3 7.0968× 10−5 1.9998× 10−3 3.5721× 10−5

5000 1.1220× 10−4 2.8817× 10−5 1.8415× 10−4 6.9237× 10−6

10000 9.5988× 10−6 2.6467× 10−5 5.7790× 10−5 6.1700× 10−6

f(s) = es

n = 1000 2.9697× 10−3 7.7609× 10−5 2.6531× 10−3 2.3635× 10−4

5000 2.2225× 10−4 9.2786× 10−6 1.6662× 10−4 4.3401× 10−5

10000 7.9374× 10−5 1.4852× 10−5 3.5408× 10−5 3.3476× 10−5

Table 6.6: MSE(ˆ̄z†n) for Stabilizing Selection with P0(s, t) = min(s, t) and v = 5

When viewing the results in Table 6.6, we see that there are a couple of times when

MSE(ˆ̄z†n) actually increases when the sample size is increased. This could indicate that for

certain combinations of f , a and µ, MSE(ˆ̄z†n) does not converge to zero. Another item of

note is that the rates of convergence depend on the choice of a and µ. When ak = 1/k and

µk = 1/k2, MSE(ˆ̄z†n) is decreasing, but at a much slower rate than for other choices of a

and µ. The magnitude differences are approximately the same as those in Table 6.5.

109

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 9.6532× 10−2 1.2951× 10−2 9.9619× 10−2 1.2913× 10−2

5000 1.1324× 10−2 1.8054× 10−3 1.1123× 10−2 1.7371× 10−3

10000 2.9723× 10−3 6.6124× 10−4 2.9124× 10−3 6.2034× 10−4

f(s) = s

n = 1000 2.6370× 10−2 2.9333× 10−3 2.6791× 10−2 2.9691× 10−3

5000 3.7018× 10−3 4.8208× 10−4 3.7504× 10−3 4.8430× 10−4

10000 5.8838× 10−4 1.2707× 10−4 5.9548× 10−4 1.3083× 10−4

f(s) = es

n = 1000 0.5094 6.1399× 10−2 0.5422 6.4885× 10−2

5000 7.2036× 10−2 1.0065× 10−2 7.6066× 10−2 1.0425× 10−2

10000 1.6478× 10−2 3.1741× 10−3 1.6804× 10−2 3.2860× 10−3

Table 6.7: MSE(b̂n) for Stabilizing Selection with P0(s, t) = min(s, t) and v = 1

When we let v = 1, Table 6.7 shows that MSE(b̂n) is converging to 0 at approximately

the same rate as the values in Table 6.5. The only possible exception to this is that when

f(s) = exp(s), the values of MSE(b̂n) maybe converging slightly slower than the other two

choices of f . We also note that when µk = 1/k2, the values of the MSE are about 4-8 times

smaller than when µk = 1/k.

110

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 1.6858× 10−2 2.6747× 10−3 1.7513× 10−2 1.9950× 10−3

5000 3.1766× 10−4 1.6736× 10−4 4.3057× 10−4 2.8872× 10−5

10000 2.6647× 10−5 7.4162× 10−5 2.1553× 10−5 1.5941× 10−5

f(s) = s

n = 1000 7.3363× 10−3 3.0316× 10−4 6.2345× 10−3 7.6329× 10−4

5000 3.8368× 10−4 7.3470× 10−5 1.7910× 10−4 6.6090× 10−5

10000 8.4281× 10−5 8.0649× 10−5 1.1306× 10−5 3.4159× 10−5

f(s) = es

n = 1000 9.4061× 10−2 1.0939× 10−2 9.2111× 10−2 1.1517× 10−2

5000 2.3025× 10−3 3.5984× 10−4 1.9072× 10−3 4.3636× 10−4

10000 1.0142× 10−4 4.8831× 10−5 1.1982× 10−4 6.5969× 10−5

Table 6.8: MSE(ˆ̄z†n) for Stabilizing Selection with P0(s, t) = min(s, t) and v = 1

Similarly to when v = 5, there is one case (µk = 1/k2, ak = 1/k, f(s) = s) when

MSE(ˆ̄z†n) increases with increases in sample size. Other than that case, convergence appears

to be occurring at the same rate as the values of MSE(ˆ̄z†n) in Table 6.6. We also note

that different choices of µk lead to differing magnitudes of MSE(ˆ̄z†n). For example, when

µk = 1/k2, MSE(ˆ̄z†n) is approximately 2-9 times smaller than when µk = 1/k.

When comparing Tables 6.5 and 6.7, the most noticeable difference is in the magnitude

of MSE(b̂n). On average the magnitude of MSE(b̂n) is much (100-10000 times) smaller

when v = 5 than when v = 1. The rates of convergence in these tables is approximately

equal throughout. Similar observations can be made when comparing Tables 6.6 and 6.8.

111

Ornstein-Uhlenbeck Covariance

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 7.7989× 10−4 2.4904× 10−4 7.9518× 10−4 2.5272× 10−4

5000 1.4689× 10−4 5.2332× 10−5 1.4793× 10−4 5.3271× 10−5

10000 5.8885× 10−5 2.3580× 10−5 5.9510× 10−5 2.3830× 10−5

f(s) = s

n = 1000 1.0312× 10−4 2.4528× 10−5 1.0416× 10−4 2.4625× 10−5

5000 1.9876× 10−5 5.0389× 10−6 1.9850× 10−5 5.0373× 10−6

10000 3.8721× 10−6 1.311× 10−6 3.9243× 10−6 1.3297× 10−6

f(s) = es

n = 1000 7.9782× 10−3 2.2203× 10−3 2.6301× 10−3 2.2603× 10−3

5000 1.5157× 10−3 4.6230× 10−4 1.5395× 10−3 4.6775× 10−4

10000 3.9151× 10−4 1.4936× 10−4 3.9267× 10−4 1.5184× 10−4

Table 6.9: MSE(b̂n) for Stabilizing Selection with P0(s, t) = exp{−|s− t|} and v = 1

The rates of convergence in Table 6.9 are all approximately equal. The magnitude of

MSE(b̂n) when µk = 1/k2 is slightly smaller than when µk = 1/k. Also, MSE(b̂n) is

increasing over f(s) = s, f(s) = 1 and f(s) = exp(s).

112

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 3.2329× 10−3 1.2702× 10−3 2.6301× 10−3 3.1982× 10−4

5000 2.9824× 10−4 9.7567× 10−4 3.7877× 10−4 2.7316× 10−4

10000 1.0294× 10−4 9.4816× 10−4 1.9719× 10−4 2.7551× 10−4

f(s) = s

n = 1000 2.6958× 10−3 9.5261× 10−5 2.5726× 10−3 1.0516× 10−4

5000 1.7376× 10−4 9.6448× 10−5 4.2034× 10−4 4.7385× 10−5

10000 1.6838× 10−5 9.4340× 10−5 2.3512× 10−4 4.4916× 10−5

f(s) = es

n = 1000 3.8553× 10−3 5.2854× 10−4 3.4065× 10−3 3.4670× 10−4

5000 3.2185× 10−4 4.9947× 10−5 1.9632× 10−4 3.6792× 10−5

10000 7.1483× 10−5 1.6230× 10−5 2.1954× 10−5 2.4019× 10−5

Table 6.10: MSE(ˆ̄z†n) for Stabilizing Selection with P0(s, t) = exp{−|s− t|} and v = 5

From Table 6.10, we see that MSE(ˆ̄z†n) converges more slowly when µk = 1/k2 and

actually increases slightly when ak = 1/k2 and f(s) = 1 and also when ak = 1/k and

f(s) = s.

113

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 0.1837 5.8169× 10−2 0.1844 5.7935× 10−2

5000 5.6188× 10−2 1.8093× 10−2 5.1477× 10−2 1.7730× 10−2

10000 3.8606× 10−2 1.2643× 10−2 3.6561× 10−2 1.2400× 10−2

f(s) = s

n = 1000 4.0263× 10−2 9.4875× 10−3 4.0880× 10−2 9.6945× 10−3

5000 7.6377× 10−3 1.9418× 10−3 7.7958× 10−3 1.9684× 10−3

10000 1.3820× 10−3 4.8332× 10−4 1.4165× 10−3 4.7585× 10−4

f(s) = es

n = 1000 0.3783 0.1051 0.3935 0.1102

5000 8.3034× 10−2 2.3831× 10−2 8.5062× 10−2 2.4411× 10−2

10000 2.8134× 10−2 9.3972× 10−3 2.9506× 10−2 9.3865× 10−3

Table 6.11: MSE(b̂n) for Stabilizing Selection with P0(s, t) = exp{−|s− t|} and v = 1

As with the case P0(s, t) = min(s, t), Table 6.11 shows that the values of MSE(b̂n)

increase substantially when changing from v = 5 to v = 1. Other than this observation, the

comments from Table 6.9 hold here as well.

114

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 7.8630× 10−2 2.1735× 10−2 7.5700× 10−2 2.3137× 10−2

5000 2.9203× 10−2 7.5384× 10−3 2.5564× 10−2 8.4615× 10−3

10000 2.4974× 10−2 6.4458× 10−3 2.1686× 10−2 7.3903× 10−3

f(s) = s

n = 1000 1.2039× 10−2 2.0245× 10−3 8.5953× 10−3 1.7694× 10−3

5000 9.6891× 10−4 1.4790× 10−4 3.5711× 10−4 5.1445× 10−4

10000 2.8360× 10−4 3.0930× 10−5 1.2745× 10−4 4.6307× 10−4

f(s) = es

n = 1000 6.3787× 10−2 2.0377× 10−2 7.7600× 10−2 2.0696× 10−2

5000 2.4847× 10−3 1.1559× 10−3 3.5251× 10−3 1.2399× 10−3

10000 3.2815× 10−4 2.1095× 10−4 3.6606× 10−4 3.0738× 10−4

Table 6.12: MSE(ˆ̄z†n) for Stabilizing Selection with P0(s, t) = exp{−|s− t|} and v = 1

The results in Table 6.12 have the same interpretation as those in Table 6.10, apart from

the values of MSE(ˆ̄z†n) being roughly 20 times larger.

When comparing Tables 6.5-6.12, the main thing that stands out is that for P0(s, t) =

exp(−|s − t|), the respective values of MSE are larger than those for P0(s, t) = min(s, t).

Another item of importance is the convergence rates, which do not appear to follow any

pattern. It is difficult to determine if the convergence can be made faster by choosing a

specific parameter value over another.

6.2.3 Truncation Selection

We now consider a fitness function of the form 1[α,∞)(X).

115

Wiener Covariance

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 3.4860× 10−3 1.8542× 10−2 1.4761× 10−3 6.1725× 10−2

5000 2.2651× 10−3 4.7443× 10−3 3.9920× 10−4 8.6463× 10−3

10000 2.0396× 10−3 2.5037× 10−3 2.4128× 10−4 3.0788× 10−3

f(s) = s

n = 1000 3.5951× 10−3 4.1495× 10−2 2.2952× 10−3 9.7812× 10−2

5000 9.3790× 10−4 8.8718× 10−3 5.4385× 10−4 1.5052× 10−2

10000 4.2381× 10−4 2.5032× 10−4 2.5972× 10−4 3.5369× 10−3

f(s) = es

n = 1000 2.1951× 10−3 2.8597× 10−2 1.8830× 10−3 8.0129× 10−2

5000 5.0380× 10−4 6.3479× 10−3 4.6295× 10−4 1.2122× 10−2

10000 2.6579× 10−4 2.3093× 10−3 2.4135× 10−4 3.2573× 10−3

Table 6.13: MSE(b̂n) for Truncation Selection with P0(s, t) = min(s, t) and α = 0

In contrast to stabilizing selection, Table 6.13 shows that the values of MSE(b̂n) are, on

average, larger for µk = 1/k2 than for µk = 1/k. The convergence rates are roughly all equal

and are not as large as for other types of selection.

116

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 2.7379× 10−3 2.6656× 10−3 2.5133× 10−3 1.1134× 10−2

5000 6.0192× 10−4 1.6278× 10−4 1.6677× 10−4 3.2086× 10−4

10000 5.2763× 10−4 1.1122× 10−4 3.7204× 10−5 5.6239× 10−5

f(s) = s

n = 1000 3.3987× 10−3 7.5794× 10−3 2.4680× 10−3 2.0304× 10−2

5000 2.6435× 10−4 4.4267× 10−4 1.4677× 10−4 9.4315× 10−4

10000 2.1124× 10−5 1.2995× 10−4 2.7558× 10−5 1.9441× 10−4

f(s) = es

n = 1000 2.3876× 10−3 5.2262× 10−3 2.5250× 10−3 1.3109× 10−2

5000 1.2304× 10−4 2.2798× 10−4 1.4007× 10−4 2.7198× 10−2

10000 1.9533× 10−5 3.7217× 10−5 1.6749× 10−5 4.0268× 10−5

Table 6.14: MSE(ˆ̄z†n) for Truncation Selection with P0(s, t) = min(s, t) and α = 0

For all choices of a, µ and f , Table 6.14 shows that the convergence rates are all approx-

imately equal. Similar to Table 6.13, the values of MSE(ˆ̄z†n) tend to be slightly larger when

µk = 1/k2.

117

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 0.1324 0.9071 0.1339 0.9131

5000 1.7481× 10−2 0.1407 1.7584× 10−2 5.2871× 10−2

10000 6.1061× 10−3 5.9537× 10−2 5.8713× 10−3 5.2871× 10−2

f(s) = s

n = 1000 0.7966 3.6887 0.8528 4.1904

5000 0.1239 0.8708 0.1339 1.0103

10000 3.0098× 10−2 0.4331 3.2539× 10−2 0.5035

f(s) = es

n = 1000 2.8240× 10−2 0.3543 2.7573× 10−2 0.3790

5000 4.6683× 10−3 5.2631× 10−2 4.5403× 10−3 5.5131× 10−2

10000 1.5331× 10−3 1.3149× 10−2 1.4881× 10−3 1.3984× 10−2

Table 6.15: MSE(b̂n) for Truncation Selection with P0(s, t) = min(s, t) and α = 1

Table 6.15 shows some of the most extreme results yet. First, we note that the rates of

convergence appear to follow no distinct pattern. For each function f , the rates of conver-

gence are approximately the same, whereas for different functions, the rates appear to follow

no concrete pattern. We also note that much like in Table 6.13, the values of MSE(b̂n)

are larger when µk = 1/k2 and, in this case, are relatively large (3.6887 and 4.1904) when

compared to the case when the truncation parameter, α, is 0. Furthermore, we note that

f(s) = exp(s), has the smallest values of MSE(b̂n), followed by f(s) = 1 and f(s) = s with

the largest values. This is almost the exact opposite of what we saw with other types of

selection.

118

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 3.1501× 10−2 0.1798 2.6295× 10−2 0.1627

5000 1.5859× 10−3 1.2178× 10−2 6.9960× 10−4 5.4292× 10−3

10000 5.7249× 10−4 5.7510× 10−3 5.7818× 10−5 1.2978× 10−3

f(s) = s

n = 1000 0.1387 0.4673 0.1554 0.5223

5000 3.0725× 10−3 1.0051× 10−2 3.8634× 10−3 1.3709× 10−2

10000 1.0087× 10−4 5.7800× 10−4 1.1378× 10−4 8.4938× 10−4

f(s) = es

n = 1000 7.2263× 10−3 5.8776× 10−2 5.9711× 10−3 6.5795× 10−2

5000 3.1895× 10−4 1.0443× 10−3 2.4989× 10−4 1.4834× 10−3

10000 4.5053× 10−5 1.0832× 10−4 1.0516× 10−4 6.5617× 10−5

Table 6.16: MSE(ˆ̄z†n) for Truncation Selection with P0(s, t) = min(s, t) and α = 1

When switching from α = 0 to α = 1, we see from Table 6.16 that MSE(ˆ̄z†n) follows the

same kind of patterns as in Table 6.14. The only real difference is the size of the MSE. In

Table 6.14, the values of MSE(ˆ̄z†n) are all roughly the same, while in Table 6.16 the values

vary by factors of 10 based on the selected parameters.

119

Ornstein-Uhlenbeck Covariance

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 3.1254× 10−2 0.1845 3.1146× 10−2 0.1834

5000 6.8956× 10−3 5.7709× 10−2 6.9980× 10−3 5.6017× 10−2

10000 3.4218× 10−3 4.0431× 10−2 3.2796× 10−3 3.8443× 10−2

f(s) = s

n = 1000 0.2609 0.8609 0.2678 0.8981

5000 5.3077× 10−2 0.1915 5.4082× 10−2 0.1988

10000 1.3070× 10−2 5.9624× 10−2 1.3076× 10−2 6.3613× 10−2

f(s) = es

n = 1000 1.1955× 10−2 8.6821× 10−2 1.5315× 10−2 8.8292× 10−2

5000 3.5330× 10−3 1.8100× 10−2 3.5472× 10−3 1.8562× 10−2

10000 1.4152× 10−3 6.0537× 10−3 1.4381× 10−3 6.2172× 10−3

Table 6.17: MSE(b̂n) for Truncation Selection with P0(s, t) = exp{−|s− t|} and α = 0

As was the case with P0(s, t) = min(s, t), we see that from Table 6.17, µk = 1/k2 produces

larger values of MSE(b̂n). We also notice that the MSE is the smallest with f(s) = exp(s)

and largest with f(s) = s. The convergence rates appear to all be roughly the same; the only

real difference between different selections of parameters is the magnitude of MSE(b̂n).

120

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 9.8474× 10−3 8.2243× 10−2 7.8141× 10−3 7.2711× 10−2

5000 7.2361× 10−4 3.1401× 10−2 4.0759× 10−4 2.6010× 10−2

10000 1.7541× 10−4 2.7255× 10−2 9.6947× 10−5 2.2434× 10−2

f(s) = s

n = 1000 5.3927× 10−2 0.1526 5.7281× 10−2 0.1570

5000 2.4308× 10−3 6.2806× 10−3 2.3480× 10−3 5.5702× 10−3

10000 3.4662× 10−4 3.4864× 10−4 1.3628× 10−4 5.0073× 10−4

f(s) = es

n = 1000 5.9323× 10−3 1.4623× 10−2 6.5083× 10−3 1.8964× 10−2

5000 3.7535× 10−4 6.7774× 10−4 6.2080× 10−4 1.0356× 10−3

10000 9.8372× 10−5 2.0751× 10−4 2.1836× 10−4 2.1915× 10−4

Table 6.18: MSE(ˆ̄z†n) for Truncation Selection with P0(s, t) = exp{−|s− t|} and α = 0

The analysis of Table 6.18 shows that µk = 1/k2 produces larger values of MSE(ˆ̄z†n). It

appears that the convergence for µk = 1/k2 and f(s) = 1 is much slower than the convergence

for other parameters.

121

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 3.0999× 10−2 0.1851 3.1855× 10−2 0.1865

5000 6.7268× 10−3 5.7231× 10−2 7.1184× 10−3 5.7585× 10−2

10000 3.2156× 10−3 4.0283× 10−2 3.3876× 10−3 3.9180× 10−2

f(s) = s

n = 1000 0.2627 0.8465 0.2679 0.8941

5000 5.2670× 10−2 0.1886 5.4464× 10−2 0.1946

10000 1.2689× 10−2 6.0060× 10−2 1.3537× 10−2 6.2579× 10−2

f(s) = es

n = 1000 1.5039× 10−2 8.7618× 10−2 1.5340× 10−2 8.8507× 10−2

5000 3.5627× 10−3 1.8121× 10−2 3.6606× 10−3 1.8478× 10−2

10000 1.4612× 10−3 6.0057× 10−3 1.5189× 10−3 6.0924× 10−3

Table 6.19: MSE(b̂n) for Truncation Selection with P0(s, t) = exp{−|s− t|} and α = 1

We see immediately that Table 6.19 looks very similar to Table 6.17. This may be due

to a similar number of observations have an X value that exceed 1 and 0, respectively. The

interpretation of Table 6.19 is identical to that of Table 6.17.

122

ak = 1/k ak = 1/k2

µk = 1/k µk = 1/k2 µk = 1/k µk = 1/k2

f(s) = 1

n = 1000 1.0993× 10−2 6.7500× 10−2 9.2418× 10−3 6.1490× 10−2

5000 1.2081× 10−3 2.2719× 10−2 5.7729× 10−4 1.8682× 10−2

10000 6.0880× 10−4 1.9591× 10−2 1.3386× 10−4 1.5071× 10−2

f(s) = s

n = 1000 5.5430× 10−2 0.1594 5.5920× 10−2 0.1670

5000 2.2897× 10−3 6.6654× 10−3 2.1104× 10−3 7.8236× 10−3

10000 1.4397× 10−4 2.9305× 10−4 1.4376× 10−4 6.8808× 10−4

f(s) = es

n = 1000 5.8113× 10−3 1.5266× 10−2 4.9146× 10−3 1.7911× 10−2

5000 3.4023× 10−4 4.7935× 10−4 5.6392× 10−4 8.1923× 10−4

10000 3.0427× 10−5 1.1883× 10−4 3.4190× 10−4 1.1914× 10−4

Table 6.20: MSE(ˆ̄z†n) for Truncation Selection with P0(s, t) = exp{−|s− t|} and α = 1

Again, Table 6.20 is very similar to 6.18 and thus the interpretation is identical.

One thing to note is the wildly different behavior of MSE(b̂n) and MSE(ˆ̄z†n) when

comparing the cases a = 0 and a = 1 for the Wiener and Ornstein-Uhlenbeck covariance

functions. For the Ornstein-Uhlenbeck covariance, the values of the MSE do not change much

between a = 0 and a = 1, while for the Wiener covariance, the values of the MSE increase by

as much as 8900%. This may have to do with the magnitude of the covariance functions; the

Wiener covariance, P0(s, t) = min(s, t), is contained in the interval [0,1] for all s, t ∈ [0, 1],

while the Ornstein-Uhlenbeck covariance, P0(s, t) = exp(−|s−t|), is contained in the interval

[1, e] for all s, t ∈ [0, 1]. This implies that a process with the Ornstein-Uhlenbeck covariance

function has a larger variability and thus the number of processes that have a corresponding

X that exceeds 1 is similar to the number of processes that have an X exceeding 0.

123

6.2.4 Comparing Selection

We have already compared MSE(b̂n) and MSE(ˆ̄z†n) for differing parameters under the same

type of selection. We now compare the values of the MSEs under different types of selection.

It appears that the rates of convergence between the directional selection and truncation

selection are approximately equal. For most of the parameter choices of stabilizing selection,

the rate of convergence appears to be the same as well. However, there are certain cases,

such as ak = 1/k, µk = 1/k2, P0(s, t) = exp(−|s − t|) and f(s) = 1 (Table 6.11), where

MSE(b̂n) is decreasing at a much slower rate than the corresponding values for other types

of selection. It is because of this that it is hard to find a particular rate at which the MSEs

are converging to 0. As for the values of the MSEs, there appears to be no way to determine

if one set of parameters will produce larger values than another set of parameters. In the

previous tables, for one type of selection, the values follow a particular pattern and for a

different type of selection, it follows the opposite pattern, as in Tables 6.7 and 6.1.

6.3 Dependent Sample

As in the independent case, we have many parameters that are allowed to vary. As before,

we shall let T = [0, 1], T be the Borel sets on [0, 1] and µ be Lebesgue measure. Further, we

let Tr be 50 equally spaced points between 0 and 1, not including 0. Also, we construct P0

by summing G0 and E0, where G0 and E0 are either the Wiener covariance or the Ornstein-

Uhlenbeck covariance. This guarantees that Ψ will be a covariance function. We also only

consider the case when X is given as an integral (6.8) and f(s) = 1 or f(s) = exp(s). Due

to the extensive computation time, we shall use a−k = 1/k and a+k = 1/k for all k. Next, we

construct P by first computing the sequence {ak} by using (5.25) and computing P by

P = P0 +
50∑

k=1

akgk ⊗ gk.

124

The cross-covariance Ψ is constructed by using (5.26) and the expansions

P + (n− 1)Ψ = P0 + (n− 1)Ψ0 +
∑

k

a+,n
k f+,n

k ⊗ f+,n
k , and

P − Ψ = P0 − Ψ0 +
∑

k

a−k f
−
k ⊗ f−

k ,

for large n. For simplicity, we let {a+,n
k }k be equal for all n. Once this is complete, we restrict

P and Ψ to Tr × Tr and obtain the matrices Pr and Ψr. Next, we construct the matrix

Σr,n = In ⊗Pr + (Jn − In)⊗ Ψr,

where ⊗ is the Kronecker product and n ∈ N. The Cholesky decomposition of Σr,n =

Cr,nC
T
r,n is computed, where Cr,n is a lower triangular matrix. We then generate an rn× 1

vector of i.i.d. standard normal variables, X. To obtain a vector with the variables we

desire, we compute Y = Cr,nX. We split this vector into n vectors in Rr by letting zi =

[Y(i−1)r+1, . . . , Yir]. Then the set of vectors {zi}ni=1 is the desired set of random vectors

with covariance Pr and cross-covariance Ψr. We consider this set {zi}ni=1 as one family of

organisms. This process is repeated m times to create a sample of m independent families

consisting of equally related organisms. This process is very resource intensive; creating the

matrixΣ50,500 (6.25×108 elements) requires approximately 7 gigabytes of memory. Therefore,

we keep the family size at a level that makes biological sense. The family size will be kept

at a maximum of around 50 individuals. As for the estimation, we start with the largest

number of families that we will consider, 200, and we generate 200 Poisson random variables

with mean 50, say {nj}200j=1. Similar to the independent case, we take an increasing sequence

of nested subsets of this sample. We perform the estimation of a, b, G and z̄′ on each of

the sets in the sequence. As for the sieve parameter, d, we take d to be the minimum of the

family sizes over all families. Due to the extensive computational time for one iteration (12-

18 hours) and the number of different models, we repeat for 30 iterations. The computation

125

time indicates that it should be attempted to improve the computational time, although the

majority of the computation was spent computing the L2(T) and L2(T × T) norms. That

is, in practical applications, the estimation should take far less time.

We shall explore the consistency results of the estimated mean square error of these

estimators as m (and thus n) becomes large. Since we are increasing m, we shall write the

estimates of a, b, G and z̄′ as âm, b̂m, Ĝm and ˆ̄z′m, respectively. In the subsections below, we

consider one type of selection and choose G0(s, t) = min(s, t) and E0(s, t) = exp(−|s − t|),

compare the various mean square errors as m increases. Once this discussion is complete,

we choose G0(s, t) = exp(−|s − t|) and E0(s, t) = min(s, t) and discuss the results. We

also plot the graphs of Ĝm, G, ˆ̄z′m and z̄† for a few different models to visualize what the

corresponding square errors are indicating.

The tables and figures below show that MSE(âm) and MSE(Ĝm) are both decreasing

as we increase the number of families. This shows that âm and Ĝm are good estimators for a

and G, respectively, at least for the various parameter values chosen. On the other hand, the

MSEs of the proposed estimators b̂m and ˆ̄z′ are typically increasing as m increases. In some

cases MSE(b̂m) and MSE(ˆ̄z′m) are of the order 103, which indicates that the estimated

values are far from the corresponding true values. We shall address this issue in Chapter 7.

6.3.1 Directional Selection

The resulting mean square errors for directional selection are:

126

MSE(âm) MSE(b̂m) MSE(ˆ̄z′m) MSE(Ĝm)

f(s) = 1

m = 50 2.1840× 10−1 3.0162× 10−1 1.1174× 10−2 8.5957× 10−4

100 8.3607× 10−2 3.9035× 10−1 5.2018× 10−2 1.9597× 10−4

200 2.2531× 10−2 5.0202× 10−1 1.2941× 10−1 4.0381× 10−5

f(s) = es

m = 50 2.1827× 10−1 1.5866 1.8170× 10−2 7.7907× 10−4

100 9.1430× 10−2 1.3458 1.6342× 10−1 2.4655× 10−4

200 3.2142× 10−2 1.9084 4.2922× 10−1 4.1639× 10−5

Table 6.21: Mean Square Error of âm, b̂m, ˆ̄z
′
m and Ĝm with G0(s, t) = min(s, t) and E(s, t) =

exp(−|s− t|) under directional selection

From Table 6.21, we see that MSE(âm) is decreasing to zero as n increases. Similarly,

MSE(Ĝm) is also decreasing as m increases. As should be expected, it does not seem to

matter the form of f , as the rate of decrease appears to be the same if we consider f(s) = 1

or f(s) = es. On the other hand, MSE(b̂m) is actually increasing with m. This is most

likely due to the naive estimator of ck that was used. As ˆ̄z
†
n depends on the selection gradient

β, it should come at no surprise that MSE(ˆ̄z′m) is also increasing as m increases. We see

similar properties from Table 6.22.

MSE(âm) MSE(b̂m) MSE(ˆ̄z′m) MSE(Ĝm)

f(s) = 1

m = 50 2.7316× 10−1 4.0020× 10−1 2.1411 1.0640× 10−2

100 1.0742× 10−1 2.0046× 10−1 3.2478 1.0051× 10−2

200 3.8298× 10−2 4.1832× 10−2 3.7769 8.8998× 10−4

f(s) = es

m = 50 2.7316× 10−1 4.0020× 10−1 8.899× 10−1 3.7769× 10−3

100 1.0741× 10−1 2.0046× 10−1 1.0640 3.2478× 10−3

200 3.8298× 10−2 4.1823× 10−2 1.0504 2.1411× 10−3

Table 6.22: Mean Square Error of âm, b̂m, ˆ̄z
′
m and Ĝm with G0(s, t) = exp(−|s − t|) and

E(s, t) = min(s, t) under directional selection

127

For visualization of the square errors, we choose G0(s, t) = min(s, t) and f(s) = 1.

Figures 6.1a and 6.1b show that Ĝ200 is a fairly decent estimator of G, although it tended

to slightly underestimate the true G.

0

0.5

100.20.40.60.81

0.2

0.3

0.4

0.5

0.6

0

0.1

(a)

10.80.60.40.201

0.5

-0.025

-0.03

-0.005

-0.015

-0.02

-0.01

0

(b)

Figure 6.1: Directional Selection: (a) Graphs of the average of Ĝ200 and G. The shaded
region represents the average Ĝm, while the wireframe represents the true genetic covariance
G. (b) Difference of the average Ĝ200 and G.

In Figure 6.2, we see that ˆ̄z′200 is a poor estimator of z̄†. The two functions are close near

0, but the farther from 0, the worse the estimation.

128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.2: Graphs of the average of ˆ̄z′200 and z̄†. The dashed line represents z̄† and the solid
line represents the average of the estimators ˆ̄z′200.

6.3.2 Stabilizing Selection

For stabilizing selection, we consider the case when v = 5.

MSE(âm) MSE(b̂m) MSE(ˆ̄z′m) MSE(Ĝm)

f(s) = 1

m = 50 2.1122× 10−1 8.3417× 10−6 1.1929× 10−7 7.9710× 10−4

100 8.4723× 10−2 1.0024× 10−5 4.7407× 10−7 2.5954× 10−4

200 2.1919× 10−2 5.2370× 10−6 4.2195× 10−7 4.2041× 10−5

f(s) = es

m = 50 1.5362× 10−1 6.5057× 10−5 1.8429× 10−6 8.0354× 10−4

100 7.7518× 10−2 4.7304× 10−5 2.0582× 10−6 1.9246× 10−4

200 2.3017× 10−2 4.1483× 10−5 3.1784× 10−6 1.7316× 10−4

Table 6.23: Mean Square Error of âm, b̂m, ˆ̄z
′
m and Ĝm with G0(s, t) = min(s, t) and E(s, t) =

exp(−|s− t|) under stabilizing selection with v = 5

We see from Table 6.23 that in either case, MSE(âm) andMSE(Ĝm) are both decreasing

129

at about the same rate as the number of families increases. We also note that when f(s) = 1,

MSE(b̂m) increases from m = 50 to m = 100 and decreases from m = 100 to m = 200

with MSE(b̂200) being the smallest value. On the other hand, MSE(ˆ̄z′m) increases and then

decreases, but MSE(ˆ̄z′50) is the smallest value. When f(s) = es, we see that MSE(b̂m) is

decreasing while MSE(ˆ̄z′m) is increasing.

MSE(âm) MSE(b̂m) MSE(ˆ̄z′m) MSE(Ĝm)

f(s) = 1

m = 50 2.7316× 10−1 2.5001× 10−5 4.2267× 10−5 1.3256× 10−2

100 1.0742× 10−1 1.2872× 10−5 1.1028× 10−5 1.0695× 10−3

200 3.8298× 10−2 1.4508× 10−5 6.6728× 10−6 9.3578× 10−4

f(s) = es

m = 50 2.7316× 10−1 1.5559× 10−4 1.8419× 10−4 1.3256× 10−2

100 1.0743× 10−1 8.1948× 10−5 6.5425× 10−5 1.0690× 10−3

200 3.8297× 10−2 9.4144× 10−5 4.1791× 10−5 9.3599× 10−4

Table 6.24: Mean Square Error of âm, b̂m, ˆ̄z
′
m and Ĝm with G0(s, t) = exp(−|s − t|) and

E(s, t) = min(s, t) under stabilizing selection with v = 5

Table 6.24 shares much of the same interpretation as Table 6.23 for MSE(âm) and

MSE(Ĝm), but is very different for MSE(b̂m) and MSE(ˆ̄z′m). For both choices of f , we

see that MSE(b̂m) is decreasing from m = 50 to m = 100 and increasing slightly from

m = 100 to m = 200. If we consider MSE(ˆ̄z′m), we see that the values are decreasing as m

increases. This doesn’t appear consistent with Table 6.23. To visualize the square errors, we

let f(s) = es and G(s, t) = exp(−|s− t|).

Figure 6.3a shows the difference of the average Ĝ200 and G. From Figure 6.3b we see

that Ĝ200 tends to underestimate G slightly, with the largest difference when s, t = 0 and

the smallest around s, t = 1.

130

1

0.5

0

10.80.60.40.20

0.3

0.7

0.8

0.9

1

0.5

0.6

0.4

(a)

1
0.5

010.80.60.40.20
-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

(b)

Figure 6.3: (a) Graphs of the average of Ĝ200 and G. The shaded region represents the
average Ĝm, while the wireframe represents the true genetic covariance G. (b) Difference of
the average Ĝ200 and G.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×10-3

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 6.4: Graphs of the average of ˆ̄z′200 and z̄†. The dashed line represents z̄† and the solid
line represents the average of the estimators ˆ̄z′200.

Figure 6.4 shows that on average ˆ̄z′200 tends to underestimate z̄†, although by a maximum

of about 3.3× 10−3.

131

6.3.3 Truncation Selection

MSE(âm) MSE(b̂m) MSE(ˆ̄z′m) MSE(Ĝm)

f(s) = 1

m = 50 1.9113× 10−1 2.3966× 103 1.6245× 102 2.9452× 10−4

100 7.9772× 10−2 2.3941× 103 1.6112× 102 1.9307× 10−4

200 2.4072× 10−2 2.3907× 103 1.5885× 102 9.7957× 10−5

f(s) = es

m = 50 1.9112× 10−1 9.0831× 102 5.3118× 101 2.9452× 10−4

100 7.9771× 10−2 9.0733× 102 5.2425× 101 1.9307× 10−4

200 2.4070× 10−2 9.0575× 102 5.1460× 101 9.7959× 10−5

Table 6.25: Mean Square Error of âm, b̂m, ˆ̄z
′
m and Ĝm with G0(s, t) = min(s, t) and E(s, t) =

exp(−|s− t|) under Truncation Selection with α = 0

Table 6.25 shows that the mean square errors for ˆ̄z′m and b̂m are very large. This indicates

that the estimation of β proposed in this dissertation should not be used for truncation

selection with a relatively “weak” selection parameter and possibly for truncation selection

in general. We also see that MSE(âm) and MSE(Ĝm) are both decreasing with very similar

values for both choices of f .

MSE(âm) MSE(b̂m) MSE(ˆ̄z′m) MSE(Ĝm)

f(s) = 1

m = 50 1.7446× 10−1 9.0756× 102 1.7566× 103 1.1908× 10−3

100 8.9326× 10−1 9.0589× 102 1.7546× 103 3.3510× 10−3

200 3.9930× 10−2 9.06056× 102 1.7540× 103 8.7931× 10−5

f(s) = es

m = 50 2.7316× 10−1 2.4000× 103 4.6195× 103 1.3256× 10−2

100 1.0742× 10−1 2.3660× 103 4.6156× 103 1.0695× 10−3

200 3.8298× 10−2 2.3640× 103 4.6078× 103 9.3578× 10−4

Table 6.26: Mean Square Error of âm, b̂m, ˆ̄z
′
m and Ĝm with G0(s, t) = exp(−|s − t|) and

E(s, t) = min(s, t) under Truncation Selection with α = 0

132

Table 6.26 shares the same interpretation as that of Table 6.25. To visualize the square

errors, we let G0 = exp(−|s − t|) and f(s) = 1. Figures 6.5a and 6.5b show that the

estimation of G is fairly good, although appears to underestimate G slightly. Overall, Ĝ200

is a good estimator of G.

1
0.5

010.80.60.40.20

0.9

1

0.3

0.5

0.6

0.7

0.8

0.4

(a)

10.80.60.40.2010.80.60.40.20

0

-0.01

-0.008

-0.002

-0.004

-0.012

-0.014

-0.006

(b)

Figure 6.5: (a) Graphs of the average of Ĝ200 and G. The shaded region represents the
average Ĝm, while the wireframe represents the true genetic covariance G. (b) Difference of
the average Ĝ200 and G.

Figure 6.6 shows the reason that the MSE of ˆ̄z′m is quite large. The estimate ˆ̄z′200 stays

close to 0, with some deviations. On the other hand, z̄ is sometimes around 55 times the

corresponding estimate. This indicates that another estimator of c should be found.

133

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Figure 6.6: Graphs of the average of ˆ̄z′200 and z̄†. The dashed line represents z̄† and the solid
line represents the average of the estimators ˆ̄z′200.

6.3.4 Comparing Selection

We see that overall, âm and Ĝm are good estimators for a and G, respectively. The mean

square errors for both estimators are decreasing as the number of families increases. It

appears that the estimators for z̄† and b are not optimal. They are acceptable in certain

cases, such as the stabilizing selection used in Subsection 6.3.2, but should be avoided with

truncation selection. These results indicate that a different estimator of c should be found.

134

Chapter 7

Conclusion and Discussion

We now recall the main results of this dissertation and discuss some of the open problems

that we found. We first looked to refine the definition of the selection gradient β. Assuming

that the covariance function P of a Gaussian process is of finite trace, (T,T, µ) is a σ-finite

measure space and that the only µ-negligible function in the reproducing kernel Hilbert space

H(P) is the zero function, we found that the integral operator P maps M , the image of the

inclusion map j : H(P) → L2(T) one-to-one into a dense subset of H(P). We then extended

P to P̄ : M → H(P), where M is the σ(M,F)-completion of the space M . It is then shown

that the map P̄ is a bijection between M and H(P) and that β lies in M. Furthermore, β

is the unique solution to the equation P̄β = s, where s is the selection differential. Given a

complete orthonormal sequence in H(P), we find an expansion of β in the space M and find

that its coefficients depend on Cov (w,Z) and a.

Since we only had an estimator of the covariance function P when the mean function z̄

is identically zero, we found a joint estimator (ˆ̄z, P̂) of the mean and covariance functions of

a Gaussian process by using sieve estimation and the Gaussian Dichotomy Theorem. It is

then shown that the joint estimator is asymptotically unbiased and weakly and mean-square

consistent for (z̄, P) as long as the sieve parameter, d is O(n). Furthermore, the coefficients

in the expansions of ˆ̄z and P̂ , (µ̂n, ãn) are strongly consistent for the coefficients (µ, a) in

135

ℓ2 × ℓ2c as long as d = o(nσ) for some σ ∈ (0, 1). We then construct an estimator of β and

show that this estimator is strongly consistent in the topology of M. For η in the linear span

of the orthonormal functions {gk}, we have shown that
(
β̂n, η

)
L2(T)

is strongly consistent

for (β, η)L2(T). We have not shown the general case for η ∈ H(P). This leads to the first

question:

Question 1: Is Conjecture 4.2.1 true?

Simulations point towards yes, but it is unclear on the growth rate on d or the restrictions

on the fitness functions required to prove this.

Our next goal was to find an estimator of the selection gradient when the organisms

involved in the sample are related. This first led to finding an estimator of the pheno-

typic covariance function P . We considered a family of n equally related organisms and

transformed the corresponding phenotypes to a sample of independent processes, albeit with

covariances P + (n − 1)Ψ and P − Ψ . The likelihood function
dP

dP0

was maximized over

ℓ2c(B)× ℓ2c(B), for a finite set B. The issue with this was that there is only one observation

used to estimate a+,n
k and we could say nothing about the asymptotic properties of such an

estimator. Thus, we needed to consider m independent families of equally-related organisms.

Using this sample scheme and the estimation for one family, we were able to find estimators

for the phenotypic covariance and the additive-genetic covariance functions. We then come

upon more questions:

Question 2: Are the estimators for a given in (5.25) consistent in any sense?

Question 3: Is the estimator Ĝ of the genetic covariance function consistent in any sense?

The simulations in Section 6.3 seem to indicate that the answer to both of these questions

is yes, there is some sort of consistency occurring.

Since the organisms in such a sample are dependent, their corresponding fitness functions

are dependent random variables. As we do not have much information on the distribution

of W , it is difficult, if not impossible to find an estimator for ck = Cov (w,Uk). Lacking such

136

information, we use the naive estimator, the same estimator of ck used for an independent

sample. The simulations show that the mean square errors for b̂m and ˆ̄z′m are not converging

to zero and in some cases are quite large. This indicates that we need to find a different

estimator for ck.

Question 4: How can we estimate ck = Cov (w,Uk) for a sample of dependent organims?

This question itself leads to other questions. For example, what restrictions on W are

required to obtain consistency of ĉm?

In summary, our results provide a joint estimator of the mean and covariance functions of

a Gaussian process that is strongly consistent. We also construct an estimator the selection

gradient of a function-valued trait that is “almost” strongly consistent, in the sense that it

is strongly consistent on a dense set. Furthermore, we provide an explicit estimator for both

the phenotypic covariance and genotypic covariance functions that can be used in samples

consisting of equally-related organisms.

137

References

[1] A. Antoniadis and J.H. Beder. Joint estimation of the mean and the covariance of a

Banach-valued gaussian vector. Statistics, 20(1):77–93, 1989.

[2] N. Aronszjan. Theory of reproducing kernels. Transactions of the American Mathemat-

ical Society, 68:337–404, 1950.

[3] J.Y. Bae. Estimation of the Additive Genetic Covariance Function. PhD thesis, Uni-

versity of Wisconsin - Milwaukee, 2009.

[4] A. Basilevsky. Statistical Factor Analysis and Related Methods: Theory and Applica-

tions. John Wiley and Sons, Inc., 1994.

[5] J. H. Beder. A sieve estimator for the mean of a Gaussian process. Annals of Statistics,

15:59–78, 1987.

[6] J. H. Beder. A sieve estimator for the covariance of a Gaussian process. Annals of

Statistics, 16:648–660, 1988.

[7] J. H. Beder and R. Gomulkiewicz. Computing the selection gradient and evolutionary

response of an infinite-dimensional trait. Journal of Mathematical Biology, 36:299–319,

1998.

[8] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability

and Statistics. Springer US, 2011.

138

[9] P. Cartier. Une étude des covariances mesurables. In L. Nachbin, editor, Mathematical

Analysis and Applications, pages 267–316. Academic Press, 1981.

[10] J.B. Conway. A Course in Functional Analysis. Springer-Verlag, 2nd edition, 1990.

[11] G. B. Folland. Real analysis. Pure and Applied Mathematics (New York). John Wiley

& Sons, Inc., New York, 2nd edition, 1999. Modern techniques and their applications,

A Wiley-Interscience Publication.

[12] R. Gomulkiewicz and J. H. Beder. The selection gradient of an infinite-dimensional

trait. SIAM Journal of Applied Math, 56:509–523, 1996.

[13] N. Heckman. Functional data analysis in evolutionary biology. Recent Advances and

Trends in Nonparametric Statistics, pages 49–60, 2003.

[14] M. Kirkpatrick and N. Heckman. A quantitative genetic model for growth, shape,

reation norms, and other infinite-dimensional characters. Journal of Mathematical Bi-

ology, 27:429–450, 1989.

[15] R. Lande. Quantitative genetics analysis of multivariate evolution, applied to brain:body

allometry. Evolution, 33:402–416, 1979.

[16] R. Lande and S. J. Arnold. The measurement of selection on correlated characters.

Evolution, 37:1210–1226, 1983.

[17] M. Loève. Probability Theory I. Springer-Verlag, New York, 4th edition, 1977.

[18] M. Lukić and J. H. Beder. Stochastic processes with sample paths in reproducing kernel

hilbert spaces. Transactions of the American Mathematical Society, 353(10):3945–3969,

2001.

[19] M. Lynch and B. Walsh. Genetics and Analysis of Quantitative Traits. Sinauer Asso-

ciates, Incorporated, 1998.

139

[20] J. Neveu. Processus Aléatoires Gaussiens. Publications du Séminaire de Mathématiques

Supérieures. Les Presses de l’Université Montréal, 1968.

[21] E. Parzen, Stanford University. Applied Mathematics, Statistics Laboratory, and United

States. Office of Naval Research. Statistical Inference on Time Series by Hilbert Space

Methods, I. Number v. 1 in Applied Mathematics and Statistics Laboratory Stanford,

Calif..: Technical report. Applied Mathematics and Statistics Laboraotry, Stanford Uni-

versity, 1959.

[22] D. Roff. Evolutionary Quantitative Genetics. Evolutionary biology : Genetics. Springer

US, 1997.

[23] W. Rudin. Functional Analysis. McGraw-Hill, New York, 1973.

[24] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Kernel

Methods for Pattern Analysis. Cambridge University Press, 2004.

140

Appendix

MATLAB Code

Independent Simulations

The following MATLAB program was used for the simulations using independent data.

function [sq_err ,N_vec ,estimate ,zstar_hat ,Z_all ,varargout]...

= sim_ind (n,N,iter ,t,t_range ,P0 ,G,a,alpha ,...

d,f,Comp_P ,selection ,select_param ,...

X_type ,varargin)

%

%%%%%% Input %%%%%%%

% N = Number of times to increase sample size (scalar)

% n = amount sample size increase (scalar)

% iter = number of iterations (scalar)

% f = anonymous function handle or vector

% (anonymous function or Mx1)

% t = grid of time points (M x 1)

% t_range = vector containing the (finite) range

% of time points (2x1 or 1x2)

% P_0 = Candidate Covariance function (anonymous function)

141

% G = Genetic Covariance Function (anonymous function)

% a = vector of coefficients in the expansion of P (M x 1)

% alpha = vector of coefficients in the expansion

% of zbar (M x 1)

% d = sieve parameter (anonymous function)

% selection = Type of selection ('directional ',

% 'truncated ' or 'stabilizing ')

% select_param = Selection parameter (scalar)

% X_type = type of X ('integral ' or 'sum ')

%%% varargin /varargout %%%

% params = struct containing the computed parameters

% params.P0_matrix = matrix with entries P0(ti ,tj) (M x M)

% params.P_matrix = matrix with entries P(ti ,tj) (M x M)

% params.b = vector containing parameters {bk} (M x 1)

% params.c = vector containing parameters {ck} (M x 1)

% params.g = Gram -Schmidt Orthonormalized functions P_ti

% (M x 1 cell of symbolic functions)

% params.zbar = mean of newborns in current generation

% (symbolic function)

% params.zbar_vec = vector of zbar evaluated at t (M x1)

% params.zstar = mean of newborns in next generation

% (symbolic function)

%%%%%%%%% Output %%%%%%%%

% sq_error = struct containing :

% sq_error .a = Matrix containing square errors of a -

% columns contain independent iterations (N x iter)

% sq_error .b = Matrix containing square errors of b -

142

% columns contain independent iterations (N x iter)

% sq_error .c = Matrix containing square errors of c -

% columns contain independent iterations (N x iter)

% sq_error .alpha = Matrix containing square errors of alpha -

% columns contain independent iterations (N x iter)

%

%

% N_vec = vector containing sample sizes in each iteration

% (N x 1)

% estimate = struct containing :

% estimate .a = Matrix containing final estimate of a

% (M x 1 x iter)

% estimate .b = Matrix containing final estimate of b

% (M x 1 x iter)

% estimate .c = Matrix containing final estimate of c

% (M x 1 x iter)

% estimate .alpha = Matrix containing final estimate of alpha

% (M x 1 x iter)

%

%zstar_hat = cell containing z*_hat(N x iter;

% anonymous functions)

%Z_all = matrix containing all data used (M x n*N x iter)

selection =lower(selection);

X_type=lower(X_type);

% %%%%%%%%%%%%%%%%%%%% Input check %%%%%%%%%%%%%%%%%%%%%

if (size(t,1) >1 && size(t,2) >1)

143

disp(' t must be a vector ')

return

else

if size(t,2) >1

t=t';

end

end

if (size(a,1) >1 && size(a,2) >1)

disp('a must be a vector ')

else

if size(a,2) >1

a=a';

end

end

if (size(alpha ,1) >1 && size(alpha ,2) >1)

disp('alpha must be a vector ')

else

if size(alpha ,2) >1

alpha=alpha ';

end

end

switch X_type

case 'sum'

if isa(f,'function_handle')

disp('f cannot be a function ')

144

return

end

if (size(f,1) >1&& size(f,2) >1)

disp('f must be a vector if X is a sum')

return

else

if size(f,2) >1

f=f';

end

end

case 'integral '

if (strcmp(X_type ,'integral ')&& ~isa(f,'function_handle'))

disp('f must be a function handle if X is an integral ')

return

end

end

% %%%%%%%%%%%%%%%%%%%% End Input Check %%%%%%%%%%%%%%%%%%%%%

%Create cell array of sections of the genetic covariance

% (symbolic functions)

G_t=cell(length(t) ,1);

145

syms s r

for i=1: length(t)

G_t{i}=subs(G(s,r),r,t(i));

end

%%%%% Output Initialization %%%%%%

sq_err=struct('a',zeros(N,iter),'b',zeros(N,iter),'c',...

zeros(N,iter),'alpha',zeros(N,iter));

N_vec=zeros(N,1);

zstar_hat =cell(N,1);

Comp_P=lower(Comp_P);

switch Comp_P

case 'compute '

[P0_matrix ,~, P_matrix , g] = compute_P (t,P0 ,a);

[T,S]= meshgrid (t,t);

G_mat=makeSymmetric(G(T,S),'G_mat');

[~,p]=chol(P_matrix -G_mat);

if (p~=0)

error('P-G is not pd ,so E=P-G is not a covariance ')

end

[zbar ,zbar_vec]= compute_zbar (alpha ,g,t);

[c,b] = compute_b (t, t_range ,P0 ,g, f,a,zbar ,...

P0_matrix ,selection ,select_param ,alpha);

chol_P0 =chol(P0_matrix ,'lower');

inv_chol_P0 =chol_P0 \eye(length(t));

146

gamma_G =cell(length(t) ,1);

for j=1: length(t)

gamma_G {j}= compute_lincomb(G_t ,inv_chol_P0 (j,:));

end

[~, zstar]= compute_zstar(gamma_G ,inv_chol_P0 ,b,zbar);

params=struct('P0_matrix ',P0_matrix ,'P_matrix ',...

P_matrix , 'b',b,'c',c,'g',{g},'zbar ',zbar ,...

'zbar_vec ',zbar_vec , 'zstar',zstar);

varargout {1}= params;

case 'given'

params=varargin {1};

P0_matrix =params.P0_matrix ;

P_matrix =params.P_matrix ;

b=params.b;

c=params.c;

g=params.g;

zbar=params.zbar;

zbar_vec =params.zbar_vec ;

zstar=params.zstar;

otherwise

error('Comp_P must either be ''given'' or ''compute '' ')

end

147

a_hat=zeros(length(t),1,iter);

b_hat=a_hat;

c_hat=a_hat;

alpha_hat =a_hat;

%%%% End Output Initialization %%%%

%%%%%%%%% Start Iterations %%%%%%%%%

Z_all=zeros(length(t),n*N,iter);

for j=1: iter

Z_sim=mvnrnd(zbar_vec ,P_matrix ,n*N) ';%Z_i is

% in the ith column

Z_all(:,:,j)=Z_sim;

% %%%%%%%%%%%%%%%%%%%% Main Simulation %%%%%%%%%%%%%%%%%%%%%

chol_P0 =chol(P0_matrix ,'lower');

for i=1:N

n_sim=n*i;

dn=floor(d(n_sim));

if dn >= length(t);

dn=length(t);

end

Z=Z_sim(:,1: n_sim); %Z_i is in the ith column

[W] =compute_W (Z,t,f,selection ,select_param ,...

n_sim ,X_type);

[a_hat(:,:,j), b_hat(:,:,j),c_hat(:,:,j),...

alpha_hat (:,:,j)] = estimate_b (Z,W,chol_P0...

,n_sim ,alpha ,dn);

148

sq_err.b(i,j)=sum((b_hat(:,:,j)-b).^2);

sq_err.c(i,j)=sum((c_hat(:,:,j)-c).^2);

sq_err.a(i,j)=sum((a_hat(:,:,j)-a).^2);

sq_err.alpha(i,j)=sum((alpha_hat (:,:,j)-alpha).^2);

N_vec(i)=n_sim;

zbar_hat =compute_lincomb(g,alpha_hat);

[~, zstar_anon]= compute_zstar(gamma_G ,inv_chol_P0 ,b_hat ,

zbar_hat);

zstar_hat {i,j}= zstar_anon ;

end

%%%%%%%%% End Main Simulation %%%%%%%%%

end

%%%%%%%%% End Iterations %%%%%%%%%

estimate =struct('a',a_hat ,'b',b_hat ,'c',c_hat ,...

'alpha',alpha_hat);

end

%%%%%%%%%%% AUXILLARY FUNCTIONS %%%%%%%%%%%

function [W] =compute_W (Z,t,f,selection ,select_param ...

149

,n,X_type)

switch X_type

case 'integral '

X=zeros(n,1);

f_vec=f(t);

for i=1:n

X(i)=trapz(t, Z(:,i).* f_vec); %approximates

% the integral int z_t f(t)dt by trapezoidal rule

end

case 'sum'

X=Z'*f;

end

switch selection

case 'directional '

W=exp(X); %Directional selection

case 'stabilizing '

W=exp(-(X.^2) ./(2* select_param .^2));

case 'truncated '

W=(X>select_param);

end

end

function [a_hat , b_hat ,c_hat ,alpha_hat] = ...

150

estimate_b (Z,W,chol_P0 ,n,alpha ,dn)

%Estimates the vectors a,b,c and alpha

U=chol_P0\Z; %U_k is in the kth row

U_bar=mean(U,2);

if any(alpha ~=0)

U_Ubar=zeros(size(U)); %Uk -Ubar

for i=1:n

U_Ubar(:,i)=U(:,i)-U_bar;

end

U_sq=sum(U_Ubar .^2,2)./n;

else

U_sq=sum(U.^2,2)./n;

end

a_hat=[(U_sq (1:dn) -1);zeros(numel(U_sq)-dn ,1)];

W_U=U*W./n;

w_U=W_U./ mean(W);

c_hat=w_U -U_bar;

c_hat=[c_hat (1:dn);zeros(numel(U_sq)-dn ,1)];

b_hat=[c_hat (1:dn)./ U_sq (1:dn);zeros(numel(U_sq)-dn ,1)];

alpha_hat =[U_bar (1:dn);zeros(numel(U_sq)-dn ,1)];

end

function M=makeSymmetric(M,name)

151

%remove rounding error from P_matrix to make P_matrix symmetric

issym =@(x) all(all(x==x.'));

i=20;

while ~issym(M)

M=round(M,i);

i=i-1;

end

disp ([name , ' has been rounded to ',num2str(i+1), ' digits '])

end

function [P0_matrix ,P, P_matrix , g] = compute_P (t, P0 ,a)

% computes a covariance function of the form

% P(s,t)=P0(s,t)+sum(a_i g_i(s)g_i(t)), where {g_i} are

% orthonormal in the RKHS corresponding to P0

n_t=length(t);

[T,S]= meshgrid (t,t);

P0_t=cell(n_t ,1);

g=cell(n_t ,1);

P0_matrix =P0(S,T);

chol_P0 =chol(P0_matrix ,'lower');

inv_chol_P0 =chol_P0 \eye(n_t);

%create a cell array of sections of P0

syms s r

152

for i=1:n_t

P0_t{i}=subs(P0(s,r),r,t(i));

end

%orthonormalize P0 to calculate g

for j=1:n_t

g{j}= compute_lincomb(P0_t ,inv_chol_P0 (j,:));

end

%calculate P from a and g

P=0;

for i=1: n_t

P=P+a(i)*g{i}* subs(g{i},r);

end

P=P0(s,r)+P;

% create a matrix P(ti ,tj) to generate random sample

P_anon=matlabFunction(P);

P_matrix =P_anon(T,S);

P_matrix =makeSymmetric(P_matrix ,'P_matrix ');

%check positive definiteness of P_matrix

[~,p]=chol(P_matrix);

if (p~=0)

error('P_matrix is not positive definite ')

153

else disp('P_matrix is positive definite ')

return

end

end

function f=compute_lincomb(X,v)

%computes linear combinations of the form sum(a_i*g_i) where

%g is a cell array of symbolic functions

f=0;

for i=1: length(v)

f=f+v(i)*X{i};

end

end

function [c,b] = compute_b (t,t_range ,P0 ,g, f,a,zbar ,...

P0_matrix ,selection ,select_param ,alpha)

% calculates the parameters of the selection differential (c)

% and theselection gradient (b)

syms s r

n_t=length(t);

% compute the integral of g_i*f

int_gf=zeros(n_t ,1);

digits (25)

154

for j=1: n_t

int_gf(j)=vpa(int(g{j}*f(s),t_range (1),t_range (2)));

end

%%%% Compute {g_i(tj)} %%%%

g_t=zeros(n_t ,n_t);

for i=1: n_t

for j=1: n_t

g_t(i,j)=vpa(subs(g{i},s,t(j)));

end

end

int_P0f =zeros(n_t ,1);

for j=1: n_t

int_P0f (j)=vpa(int(subs(P0(s,r),r,t(j))*f(s),...

t_range (1),t_range (2)));

end

int_Pf=int_P0f+g_t '*(a.* int_gf);

chol_P0 =chol(P0_matrix ,'lower');

if any(alpha ~=0)

muX=vpa(int(zbar .*f(s),t_range (1),t_range (2)));

else

muX=0;

155

end

varX=vpa(int(int(P0(s,r).*f(s).*f(r),r,t_range (1),...

t_range (2)),s,t_range (1),t_range (2)))+(a.* int_gf) '*int_gf;

switch selection

case 'directional '

c=chol_P0\int_Pf;

case 'stabilizing '

c=(-muX/(select_param .^2+ varX))*(chol_P0 \int_Pf);

case 'truncated '

c=exp (-.5.*((- muX+select_param).^2) ./ varX)./...

(sqrt (2.* pi.* varX).* normcdf (select_param ,...

muX ,sqrt(varX),'upper')).*(chol_P0 \int_Pf);

end

b=c./(1+a);

display (' b has been computed ')

end

function [zbar ,zbar_vec]= compute_zbar (alpha ,g,t)

if any(alpha ~=0)

disp('zbar ~=0')

156

zbar=compute_lincomb(g,alpha);

zbar_anon =matlabFunction(zbar);

zbar_vec =zbar_anon (t);

else

zbar =0;

zbar_vec =zeros(size(t));

disp('zbar =0')

end;

end

function [zstar ,zstar_anon]= compute_zstar(gamma_G ,inv_chol_P0 ,b

,zbar)

%compute/estimate zbar*

%G_t = cell array of symbolic functions of sections of the

% genetic covariance function

%b = coefficients of selection gradient

%zbar = mean process zbar(t) - symbolic function

G_beta=compute_lincomb(gamma_G ,b);

zstar=G_beta+zbar;

zstar_anon =matlabFunction(zstar);

end

157

Dependent Simulations

The following MATLAB program was used for the simulations using equally-related organ-

isms.

function [Psi ,Psi_hat ,estimates ,param ,sq_err ,P_added ,...

P_computed ,num_fam_vec ,Psi_int ,zprime ,zprime_hat ,...

zprime_int ,zprime_vec ,zprime_hat_vec ,varargout]= ...

related_anon (n,N,family ,iter ,reln ,t,t_range ,...

G0 ,E0 , a_minus ,a_plus ,d,f,selection ,...

select_param ,X_type ,smpl_type ,generate ,...

varargin)

% Example Commands :

%

%[Psi ,Psi_hat ,estimates ,param ,sq_err ,P_added ,...

% P_computed ,num_fam_vec ,Psi_int ,zprime ,zprime_hat ...

% ,zprime_int]= related (50,4,200,0.5, t,t_range ,...

% G0 ,E0 ,a_minus ,a_plus ,d,f,selection ,1,...

% 'integral ',smpl_type)

%

%%%%%% Input %%%%%%%

%

% N = Number of times to increase sample size (scalar)

% n = mean family size (scalar)

% family = total number of families (scalar)

% iter = number of different simulations (scalar)

% t = grid of time points (M x 1)

% t_range = vector containing the (finite) range of

158

% time points (2x1)

% f = anonymous function handle or vector

% (anonymous function or Mx1)

% reln = relationship coefficient (scalar)

% G0 = candidate genetic covariance function

% (anonymous function)

% E0 = candidate environmental covariance function

% (anonymous function)

% a_minus = vector of coefficients in the expansion of

% P-Psi (M x 1)

% a_plus = vector of coefficients in the expansion of

% P+(n-1) Psi (M x 1)

% d = sieve parameter (anonymous function)

% selection = Type of selection ('directional ','truncated ' or

% 'stabilizing ')

% select_param = Selection parameter (scalar)

% X_type = type of X ('integral ' or 'sum ')

% smpl = type of sample ('rnd ' or 'given ')

% generate = string ('generate ' or 'given ') signifies

% whether or not the data is to be generated or is given.

% varargin {1} = vector containing the number of

% observations in each family (family x

1)

% varargin {2} = Generated data (family x iter)

%

%%%%%%%%% Output %%%%%%%%

% Psi = true cross -covariance = aG(s,t) (anonymous function)

159

% Psi_hat = cell array containing estimates of Psi

% (anonymous functions , N x 1)

% estimates = struct containing :

% estimates .a = Matrix containing estimates of a

% (M x 1 x N x iter)

% estimates .b = Matrix containing estimates of b

% (M x 1 x N x iter)

% estimates .c = Matrix containing estimates of c

% (M x 1 x N x iter)

% estimates .a_minus = Matrix containing estimates of a_minus

% (M x 1 x N x iter)

% estimates .a_plus = Matrix containing estimate of a_plus

% (M x 1 x N x iter)

% param = struct containing the computed parameters

% param.a = vector containing parameters {ak} (M x 1)

% param.b = vector containing parameters {bk} (M x 1)

% param.c = vector containing parameters {ck} (M x 1)

% sq_err = struct containing :

% sq_err.a = Matrix containing square errors of a

% (N x 1 x iter)

% sq_err.b = Matrix containing square errors of b

% (N x 1 x iter)

% sq_err.c = Matrix containing square errors of c

% (N x 1 x iter)

% P_added = covariance function P found by adding

% (P+(n-1) Psi+(n-1)(P-Psi))/n (anonymous function)

% P_computed = covariance function P found by using param.a

160

% and ONS {gk} (anonymous function)

% num_fam_vec = vector of number of families between increase

% in sample size (N x iter)

% Psi_int = Vector containing the L^2(TxT) norm of Psi_hat -Psi

% (N x iter)

% zprime = mean of newborns in next generation

% (anonymous function)

% zprime_hat = cell containing z*_hat(N x iter;

% anonymous functions)

% zprime_int = matrix containg the L^2(T) norm of zprime_hat -

zprime

% (N,iter)

% zprime_vec = vector containing values of zprime at t,

% where t=linspace (t_range (1),t_range (2) ,100) (100 x 1)

% zprime_hat_vec = matrix containing values of zprime_hat at t

% iterations are in the second dim (N x iter x 100)

% varargout {1} = vector of number of observations in

% each family (family x 1)

% varargout {2} = cell array containing the family data

% (family x iter)

%%%%% Input check %%%%%%

selection =lower(selection);

X_type=lower(X_type);

if (size(t,1) >1 && size(t,2) >1)

disp(' t must be a vector ')

161

return

else

if size(t,2) >1

t=t';

end

end

if (size(a_plus ,1) >1 && size(a_plus ,2) >1)

disp('a_plus must be a vector ')

else

if size(a_plus ,2) >1

a_plus=a_plus ';

end

end

if (size(a_minus ,1) >1 && size(a_minus ,2) >1)

disp('a_minus must be a vector ')

else

if size(a_minus ,2) >1

a_minus =a_minus ';

end

end

switch X_type

case 'sum'

if isa(f,'function_handle')

disp('f cannot be a function ')

162

return

end

if (size(f,1) >1&& size(f,2) >1)

disp('f must be a vector if X is a sum')

return

else

if size(f,2) >1

f=f';

end

end

case 'integral '

if (strcmp(X_type ,'integral ')&& ~isa(f,...

'function_handle'))

disp('f must be a function handle if X is an integral '

)

return

end

end

% %%%%%%%%%%%%%%%%% End Input Check %%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Output Generation %%%%%%

estimates =struct('a',zeros(length(t) ,1,N,iter),'b',...

zeros(length(t) ,1,N,iter),'c',zeros(length(t) ,1,...

163

N,iter),'a_plus ',zeros(length(t) ,1,N,family ,...

iter),'a_minus ',zeros (length(t) ,1,N,iter));

param=struct('a',zeros(length(t) ,1),'b',zeros(...

length(t) ,1),'c',zeros(length(t) ,1));

num_fam_vec =zeros(N,iter);

sq_err=struct('a',zeros(N,1, iter),'b',...

zeros(N,1, iter),'c',zeros(N,1,iter));

Psi_hat =cell(N,iter);

Psi_int =zeros(N,iter);

zprime_int =zeros(N,iter);

Z=cell(family ,iter);

G_t=cell(length(t) ,1);

zprime_hat =cell(N,1, iter);

zprime_hat_vec=zeros(N,iter ,100);

tt=linspace (t_range (1),t_range (2) ,100);

%%%%%% End Output Generation %%%%%%

%%%%%% Preliminary Computation %%%%%%

disp('preliminary computation ')

P0=@(s,t) G0(s,t)+E0(s,t);

Psi0 =@(s,t)reln .*G0(s,t);

P0_minus =@(s,t)(1- reln).*G0(s,t)+E0(s,t);

[T,S]= meshgrid (t,t);

P0_matrix =P0(T,S);

chol_P0 =chol(P0_matrix ,'lower');

164

inv_chol_P0 =chol_P0 \eye(length(t));

g=ortho(t,P0);

f_minus =ortho(t,P0_minus);

[P_minus , ~] = compute_P (t, P0_minus ,a_minus ,...

'P-Psi',f_minus);

P0_minus_mat =P0_minus (T,S);

chol_minus =chol(P0_minus_mat ,'lower');

f_minus_temp =cell2mat (cellfun (@(x) x(t),f_minus ,...

'UniformOutput',false));

f_minus_mat =reshape (f_minus_temp ,length(t),length(t));

% functions are in columns

% round the inner product

Ndecimals = 12;

H = 10.^ Ndecimals ;

rkhs_ip_minus = round(H*(chol_P0 \f_minus_mat))/H;

%Precursory simulations indicated that P0_plus was

% converging to a single function as n-> infinity

P0_plus =@(s,t)P0(s,t)+(n.* iter .* family .*N-1).*Psi0(s,t);

f_plus=ortho(t,P0_plus);

[P_plus , ~] = compute_P (t, P0_plus ,a_plus , ['P+(',...

num2str (n.*iter .* family .*N-1),')Psi'],

f_plus);

f_plus_temp =cell2mat (cellfun (@(x) x(t),f_plus ,...

'UniformOutput',false));

165

f_plus_mat =reshape(f_plus_temp ,length(t),length(t));

% functions are in columns

%round the inner product

Ndecimals = 12;

H = 10.^ Ndecimals ;

rkhs_ip_plus = round(H*(chol_P0 \f_plus_mat))/H;

% <fk ,gl > is the l,k entry

param.a=((rkhs_ip_plus .^2* a_plus)./(n.*iter .* family .*N)+...

((n.*iter .* family .*N) -1)*(rkhs_ip_minus.^2* a_minus)...

./(n.* iter .* family .*N));

[param.c,param.b]= compute_b (t,t_range ,P0 ,g,f,param.a ,...

P0_matrix , selection ,select_param);

[P_computed ,~] = compute_P (t, P0 ,param.a,'P',g);

disp('computing G')

tic;

G=@(s,t)1./(n.*iter .* family .*N).*(P_plus(s,t)-...

P_minus (s,t))./reln;

for i=1: length(t)

G_t{i}=@(s)G(t(i),s);

end

toc;

166

Psi=@(s,t)((1./(n.*iter .* family .*N)).*(P_plus(s,t)-...

P_minus (s,t)));

P_added =@(s,t)((1./(n.*iter .* family .*N)).*...

(((n.*iter .* family .*N) -1).* P_minus (s,t)+P_plus(s,t)));

if strcmp(selection ,'stabilizing ')

zprime =@(s) 0;

zprime_vec =zeros(1, length(tt));

else

[zprime ,zprime_vec]= compute_zprime(G_t ,inv_chol_P0 ,param.b,tt);

end

switch generate

case 'generate '

switch smpl_type

case 'rnd'

n_smpl= poissrnd (n,family ,1);

while any(n_smpl ==0) % ensures that n_smpl is nonzero

n_smpl=poissrnd (n,family ,1);

end

n_smpl=floor(n_smpl ./N); %increase within family

%%%%%% Generate Data %%%%%%

tic;

for k=1: iter

167

disp('Generating Data ')

for jj=1: family

Z{jj ,k}= gen_related (n_smpl(jj)*N,P_computed ,Psi ,t);

end

end

varargout {2}=Z;

toc;

%%%%%% End Generate Data %%%%%%

case 'given'

n_smpl =(n).* ones (1, family);

n_smpl=floor(n_smpl ./N);

end

case 'given'

Z=varargin {2};

n_smpl=varargin {1};

end

%%%%%% End Preliminary Computation %%%%%%

168

%%%%%% Main Simulation %%%%%%

disp('Running Main Simulation ')

[T,S]= meshgrid (t,t);

for k=1: iter

disp (['Beginning Iteration No. ',num2str (k)])

tic;

for j=1:N

num_fams =floor(family/N*j);

dn=floor(d(min(n_smpl (1: num_fams)*j)));

if dn >= length(t);

dn=length(t);

end

num_fam_vec (j,k)=num_fams ;

Z_all=cell(num_fams ,1);

P_plus_hat =cell(num_fams ,1);

sum_P_plus_hat=@(s,t)0;

num_obs =sum(n_smpl (1: num_fams)*j);

a_minus_temp =zeros(length(t) ,1,num_fams);

for i=1: num_fams

n_fam=n_smpl(i)*j;

Z_temp=Z{i,k};

Z_all{i}= Z_temp (1:n_fam ,:);

169

P0_plus =@(s,t)P0(s,t)+(n_fam -1).* Psi0(s,t);

f_plus=ortho(t,P0_plus);

P0_plus_mat =P0_plus (S,T);

chol_plus =chol(P0_plus_mat ,'lower');

f_plus_temp =cell2mat (cellfun (@(x) x(t),f_plus ,...

'UniformOutput',false));

f_plus_mat =reshape (f_plus_temp ,length(t),length(t));

%functions are in columns

% round inner product

Ndecimals = 12;

H = 10.^ Ndecimals ;

rkhs_ip_plus = round(H*(chol_P0\f_plus_mat))/H;

%inner product <fk ,gl > is the l,k entry

Transform =transform (n_fam);

Y=Transform '*Z_all{i};

Y1=Y(1,:);

Yend=Y(2:end ,:);

a_minus_temp (:,:,i)=estimate_a (Yend ',chol_minus ,dn);

aplus_temp =estimate_a (Y1 ',chol_plus ,dn) -[ones(dn ,1);...

zeros(length(t)-dn ,1)];

aplus_temp ((dn+1):end)=zeros(length(t)-dn ,1);

estimates .a_plus (:,:,j,i,k)=aplus_temp ;

[P_plus_hat {j,k},~]= compute_P (t,P0_plus ,aplus_temp ,...

170

'P_plus_hat ',f_plus);

estimates .a(:,:,j,k)=estimates .a(:,:,j,k)+...

(rkhs_ip_plus .^2* aplus_temp);

P_plus_temp =P_plus_hat {j,k};

sum_P_plus_hat=@(s,t)sum_P_plus_hat(s,t)+...

P_plus_temp (s,t);

pause (.005)%allow user to stop execution (ctrl + c)

end

Z_all_mat =vertcat (Z_all {:});

estimates .a_minus (:,:,j,k)=sum(a_minus_temp ,3) ./(num_obs -

num_fams)-...

[ones(dn ,1);zeros(length(t)-dn ,1)];

estimates .a_minus ((dn+1):end ,:,j,k)=zeros(length(t)-dn ,1);

W=compute_W ((Z_all_mat)',t,f,selection ,select_param ,...

num_obs ,X_type);

[P_minus_hat ,~]= compute_P (t,P0_minus ,...

estimates .a_minus (:,:,j,k),'P_minus_hat ',f_minus);

estimates .a(:,:,j,k)=estimates .a(:,:,j,k)./ num_obs +...

(rkhs_ip_minus.^2) *(estimates .a_minus (:,:,j,k))...

.* (num_obs -num_fams)./(num_obs);

estimates .a((dn+1):end ,:,j,k)=zeros(length(t)-dn ,1);

171

estimates .c(:,:,j,k)=estimate_c (Z_all_mat ',W,chol_P0 ,...

num_obs ,dn);

estimates .b(:,:,j,k)=estimate_b (estimates .a(:,:,j,k),...

estimates .c(:,:,j,k));

%

sq_err.a(j,k)=(estimates .a(:,:,j,k)-param.a)'*...

(estimates .a(:,:,j,k)-param.a);

sq_err.b(j,k)=(estimates .b(:,:,j,k)-param.b)'*...

(estimates .b(:,:,j,k)-param.b);

sq_err.c(j,k)=(estimates .c(:,:,j,k)-param.c)'*...

(estimates .c(:,:,j,k)-param.c);

Psi_hat {j,k}=@(s,t)(sum_P_plus_hat(s,t))./num_obs -...

P_minus_hat (s,t).* num_fams ./ num_obs;

G_hat=@(s,t)Psi_hat {j,k}(s,t)./reln;

G_hat_t =cell(length(t) ,1);

for i=1: length(t)

G_hat_t {i}=@(s)G_hat(t(i),s);

end

172

[zprime_hat {j,k},zprime_hat_vec(j,k,:)]= compute_zprime(...

G_hat_t ,inv_chol_P0 ,estimates .b(:,:,j,k),tt);

disp('integrating functions ')

hat_Psi_sq =@(s,t) ((Psi_hat {j,k}(s,t)-Psi(s,t)).^2);

Psi_int(j,k)=integral2 (hat_Psi_sq ,t_range (1),...

t_range (2),t_range (1),t_range (2),'method ',...

'tiled','AbsTol ',1e-5,'RelTol ',1e-3);

zprime_sq =@(x)((zprime_temp (x)-zprime(x)).^2);

zprime_int (j,k)=integral (zprime_sq ,t_range (1),...

t_range (2),'AbsTol ',1e-5,'RelTol ',1e-3);

runtime =toc;

disp (['integration complete : number=',num2str (j)])

%%%%%% End Main Simulation %%%%%%

end

disp (['Iteration No. ',num2str (k),' Completed . ','Took ',...

num2str (runtime), 'seconds '])

end

end

173

%%%%%%%% Auxillary Functions %%%%%%%%%

function X=gen_related (n,P,Psi ,t)

%n=sample size

%P=(Anonymous function) Covariance function

%Psi=(Anonymous function) Cross -covariance function

%t = grid of time points

%X=Random correlated data , where X_i is in the ith row

[T,S]= meshgrid (t,t);

Cov=kron(eye(n),P(T,S)-Psi(S,T))+kron(ones(n,n),Psi(T,S));

Z=mvnrnd(zeros(length(t)*n,1),Cov);

X=(reshape(Z,length(t),n)) ';

end

function g=ortho(t,P0)

% Orthonormalize the sections P_0t

P0_t=cell(length(t) ,1);

g=cell(length(t) ,1);

[T,S]= meshgrid (t,t);

P0_matrix =P0(S,T);

chol_P0 =chol(P0_matrix ,'lower');

inv_chol_P0 =chol_P0 \eye(length(t));

%create a cell array of sections of P0

for i=1: length(t)

174

P0_t{i}=@(s)P0(t(i),s);

end

% orthonormalize P0 to calculate g

for j=1: length(t)

g{j}= compute_lincomb(P0_t ,inv_chol_P0 (j,:));

end

end

function [P,P_matrix]= compute_P (t,P0 ,a,cov ,g)

%Compute P=P0+sum ak gk*gk

[T,S]= meshgrid (t,t);

P=@(s,t)0;

for i=1: length(t)

f=g{i};

if a(i)==0

continue

else

P=@(s,t)P(s,t)+a(i).*f(s).*f(t);

end

end

P=@(s,t)P0(s,t)+P(s,t);

% create a matrix P(ti ,tj) to generate random sample

P_matrix =P(T,S);

175

P_matrix =makeSymmetric(P_matrix ,cov);

%check positive definiteness of P_matrix

[~,p]=chol(P_matrix);

if (p~=0)

error([cov ' is not positive definite '])

end

end

function g=compute_lincomb(X,v)

%computes linear combinations of the form sum(v_i*X_i)

%where X is a cell array of symbolic functions

g=@(s)0;

for i=1: length(v)

if v(i)==0

continue

else

g=@(s)(g(s)+v(i).*X{i}(s));

end

end

end

function M=makeSymmetric(M,~)

%remove rounding error from P_matrix to make P_matrix symmetric

176

issym=@(x) all(all(x==x.'));

i=20;

while ~issym(M)

Ndecimals = i ;

H = 10.^ Ndecimals ;

M = round(H*M)/H;

% M=round(M,i);

i=i-1;

end

end

function a_hat=estimate_a (Z,chol_P0 ,dn)

%estimates ahat +1

%Z_i must be in columns

U=chol_P0 \Z; %U_k is in the kth row

U_sq=sum(U.^2,2);

a_hat=[(U_sq (1:dn)); zeros(numel(U_sq)-dn ,1)];

end

function c_hat=estimate_c (Z,W,chol_P0 ,n,dn)

U=chol_P0 \Z; %U_k is in the kth row

U_bar=mean(U,2);

W_U=U*W./n;

w_U=W_U./ mean(W);

c_hat=w_U -U_bar;

c_hat=[c_hat (1:dn); zeros(numel(U_bar)-dn ,1)];

177

end

function [b_hat] = estimate_b (a_hat ,c_hat)

b_hat=c_hat./(a_hat +1);

end

function T= transform (n)

T = gallery ('orthog ',n,4) ';

return;

end

function [W] =compute_W (Z,t,f,selection ,select_param ...

,n,X_type)

% Compute the true fitness values

switch X_type

case 'integral '

X=zeros(n,1);

f_vec=f(t);

for i=1:n

X(i)=trapz(t, Z(:,i).* f_vec);

%approximates the integral int z_t f(t)dt

% by trapezoidal rule

end

case 'sum'

178

X=Z'*f;

end

switch selection

case 'directional '

W=exp(X); %Directional selection

case 'stabilizing '

W=exp(-(X.^2) ./(2* select_param .^2));

case 'truncated '

W=(X>select_param);

end

end

function [c,b] = compute_b (t,t_range ,P0 ,g, f,a ,...

P0_matrix ,selection ,select_param)

% calculates the true coefficients of the selection

% differential (c) and the selection gradient (b)

n_t=length(t);

%compute the integral of g_i*f

int_gf=zeros(n_t ,1);

digits (25)

for i=1: n_t

gi=g{i};

179

int_gf(i)=integral (@(x)f(x).*gi(x),t_range (1),t_range (2)) ;

end

%%%% Compute {g_i(tj)} %%%%

g_t=zeros(n_t ,n_t);

for i=1: n_t

f=g{i};

for j=1: n_t

g_t(i,j)=f(t(j));

end

end

int_P0f =zeros(n_t ,1);

for j=1: n_t

int_P0f (j)=integral (@(s)P0(t(j),s).*f(s),t_range (1),...

t_range (2));

end

int_Pf=int_P0f+g_t '*(a.* int_gf);

chol_P0 =chol(P0_matrix ,'lower');

muX=0;

varX=integral2 (@(s,t)P0(s,t).*f(s).*f(t),t_range (1),...

t_range (2), t_range (1),t_range (2),'method ','tiled'...

180

,'AbsTol ',1e-6,'RelTol ',1e-4);

switch selection

case 'directional '

c=chol_P0 \int_Pf;

case 'stabilizing '

c=zeros(length(t) ,1);

case 'truncated '

c=exp (-.5.*((select_param).^2) ./varX)./...

(sqrt (2.* pi.*varX).* normcdf(select_param ,muX ,...

sqrt(varX),'upper')).*(chol_P0 \int_Pf);

end

b=c./(1+a);

display (' b has been computed ')

end

function [zprime ,zprime_vec]= compute_zprime(G_t ,inv_chol_P0 ,b,t

)

%compute/estimate zbardagger

%G_t = cell array of anonymous functions of sections of the

genetic covariance function

%b = coefficients of selection gradient

181

%zbar = mean process zbar(t) - anonymous function

n_t=size(G_t ,1);

gamma_G =cell(n_t ,1);

gamma_G_vec =zeros(n_t ,length(t));

if size(t,1) >1

t=t';

end

for j=1:n_t

gamma_G {j}= compute_lincomb(G_t ,inv_chol_P0 (j,:));

gamma_G_vec (j,:)=G_t{j}(t);

end

zprime_vec =b'* inv_chol_P0 *gamma_G_vec ;

zprime=compute_lincomb(gamma_G ,b);

end

182

Curriculum Vitae

Name

Tyler J. Baur

Education

Ph.D., Mathematics, University of Wisconsin-Milwaukee, December 2016

M.S., Mathematics, University of Wisconsin-Milwaukee, August 2011

B.S., Mathematics, University of Wisconsin-La Crosse, May 2009

Dissertation Title: Estimating the Selection Gradient of a Function-Valued Trait

Affiliations

Member, American Mathematical Society

Member, American Statistical Association

183

	University of Wisconsin Milwaukee
	UWM Digital Commons
	December 2016

	Estimating the Selection Gradient of a Function-valued Trait
	Tyler John Baur
	Recommended Citation

	thesis_final.dvi

