
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2016

Investigation of Sparsifying Transforms in
Compressed Sensing for Magnetic Resonance
Imaging with Fasttestcs
Christopher Adams Baker
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons, Engineering Commons, and the Mathematics

Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Baker, Christopher Adams, "Investigation of Sparsifying Transforms in Compressed Sensing for Magnetic Resonance Imaging with
Fasttestcs" (2016). Theses and Dissertations. 1347.
https://dc.uwm.edu/etd/1347

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1347?utm_source=dc.uwm.edu%2Fetd%2F1347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


INVESTIGATION OF SPARSIFYING TRANSFORMS IN COMPRESSED SENSING FOR

MAGNETIC RESONANCE IMAGING WITH FASTTESTCS

by

Christopher Adams Baker

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

December 2016



ABSTRACT

INVESTIGATION OF SPARSIFYING TRANSFORMS IN COMPRESSED SENSING FOR
MAGNETIC RESONANCE IMAGING WITH FASTTESTCS

by

Christopher Adams Baker

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Guangwu Xu

The goal of this contribution is to achieve higher reduction factors for faster Magnetic

Resonance Imaging (MRI) scans with better Image Quality (IQ) by using Compressed Sensing

(CS). This can be accomplished by adopting and understanding better sparsifying transforms for

CS in MRI. There is a tremendous number of transforms and optional settings potentially

available. Additionally, the amount of research in CS is growing, with possible duplication and

difficult practical evaluation and comparison. However, no in-depth analysis of the effectiveness

of different redundant sparsifying transforms on MRI images with CS has been undertaken until

this work. New theoretical sparsity bounds for the dictionary restricted isometry property

constants in CS are presented with mathematical proof. In order to verify the sparsifying

transforms in this setting, the experiments focus on several redundant transforms contrasting

them with orthogonal transforms. The transforms investigated are Wavelet (WT), Cosine (CT),

contourlet, curvelet, k-means singular value decomposition, and Gabor. Several variations of

these transforms with corresponding filter options are developed and tested in compression and

CS simulations. Translation Invariance (TI) in transforms is found to be a key contributing

factor in producing good IQ because any particular translation of the signal will not effect the

transform representation. Some transforms tested here are TI and many others are made TI by

transforming small overlapping image patches. These transforms are tested by comparing

different under-sampling patterns and reduction ratios with varying image types including MRI

data. Radial, spiral, and various random patterns are implemented and demonstrate that the

TIWT is very robust across all under-sampling patterns. Results of the TIWT simulations show
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improvements in de-noising and artifact suppression over that of individual orthogonal wavelets

and total variation `1 minimization in CS simulations. Some of these transforms add

considerable time to the CS simulations and prohibit extensive testing of large 3D MRI datasets.

Therefore, the FastTestCS software simulation framework is developed and customized for

testing images, under-samping patterns and sparsifying transforms. This novel software is

offered as a practical, robust, universal framework for evaluating and developing simulations in

order to quickly test sparsifying transforms for CS MRI.
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Chapter 1

Introduction to Compressed Sensing in
MRI

Magnetic Resonance Imaging (MRI) is a noninvasive diagnostic modality used to create images

of 3-Dimensional (3D) biological tissue utilizing non-ionizing microwave radiation with magnetic

fields that are 100,000 times more powerful than what is measured from the earth’s natural

magnetic field. An MRI signal arises from protons which are in water and has a wide range

throughout our body which gives good imaging possibilities. High quality images are created

when the MRI signal or k-space frequency data is fully sampled based on the Nyquist sampling

criteria. However, when using this criteria the length of time required to acquire these samples

can be a great challenge. Many advances in speed have occurred over the past few decades,

however, many technical and physical limits have been reached. Less sampling time is desired

in MRI to accelerate the data acquisition speed and enable more applications such as cardiac

imaging. A typical high resolution acquisition can take five minutes which may negatively effect

Image Quality (IQ), due to the movements of the patient and biologic function.

A promising theory that can potentially be applied to reduce MRI acquisition time is Com-

pressed Sensing (CS) which allows under-sampling of k-space below what the Nyquist criteria

requires without compromising IQ, see Figure 1.1. K-space is the sampling frequency domain of

MRI; it is inversely related to the spatial image domain via the Fourier transform. Candès et al.

introduce theory and experiments for the general CS framework [15]. Under-sampling for CS must

be carefully designed so that artifacts and errors can be minimized and noise-like. MR scanner
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Figure 1.1: Compressed sensing for MRI reconstruction
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data is redundant which allows measuring signals at a rate closer to their intrinsic information

rate rather than the Nyquist rate.

The CS theory has been applied by Lustig et al. [40] to MRI reconstruction problems outlining

a technique to produce a high quality MRI image while under-sampling k-space and thus improve

the imaging speed. The application is made possible by the fact that MRI satisfies the two

conditions of CS: the image is sparse in a certain transform domain and the under-sampling arti-

facts can be designed to be noise-like. Parallel imaging is another important speed up technique

to combine the signals from multiple coils at the same time allowing some additional parallel

sampling of k-space to boost the IQ. Parallel imaging can be combined with CS to have sam-

pling speed further improved. Deshmane et al. discuss the effects of under-sampling and the

advantages of using parallel imaging that allows faster acquisition [27].

High sparsity is a representation of an image or signal that has minimal information. When a

p-dimensional signal is k-sparse, the signal has p elements, but only has k elements of valuable

information. In cases where there is high sparsity, k � p, CS provides recovery of a signal with less

samples required than Nyquist sampling. Therefore, CS produces images with the same quality

in less time. MRI data and images are not typically sparse, however, a sparsifying transform is

used which will produce a sparse representation in the transform coefficient domain and thereby

allow the application of CS to recover the image.

If under-sampling data is acquired, the signal recovery in equation 1.1 is under-determined.

The signal β ∈ Rp is recovered from incomplete measurements y ∈ Rn and a sampling matrix

Φ ∈ Rn×p. Error z is added to accommodate real world systems with noise. The error must be

sufficiently small with respect to the measurement magnitude, where ε is at most proportional to

the noise level [17].

y = Φβ + z, where ‖ z ‖2 ≤ ε (1.1)

The solution to 1.1 can be obtained using either a combinatory algorithm, a greedy algorithm,

or an `1 minimization for which convex minimization with linear programming applies. However,

a combinatory algorithm is non-practical since there is an exponentially expanding number of

search possibilities to find, O(2n), where there are n elements. When the set of possible elements
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is small, the problem becomes a sparse recovery.

Greedy algorithms rely on an iterative approximation of the signal coefficients and support.

Orthogonal Matching Pursuit (OMP) and iterative thresholding are some of the simplest greedy

algorithms. OMP iteratively finds columns most correlated with the measurements and the

estimated signal. Iterative thresholding will iterate on the steepest gradient descent step until it

meets convergence criteria.

`1 minimization can also be used to find a sparse solution because the problem space has a

convex shape, and therefore, can be minimized by finding the minimum point on the curve or

cone. The `1 norm is defined

‖ x ‖1=

p∑
i=1

| xi | (1.2)

And the `2 norm defined here:

‖ x ‖2=

√√√√ p∑
i=1

| xi |2 (1.3)

The problem is now convex and can be minimized with quadratic programming, see equation

1.4.

minimize : ‖ Wx ‖1

subject to : ‖ Φx− y ‖2 ≤ ε (1.4)

Where W represents the sparsifying transform and x is the signal approximation. In order to

practically implement this sparse recovery problem, an unconstrained formulation is utilized as

shown in equation 1.5.

minimize ‖ Φx− y ‖2 +λ ‖ Wx ‖1 (1.5)

λ is a regularization parameter for balancing data consistency and sparsity. Equation 1.5 can

be solved in many ways; for example, a Non-Linear Conjugate Gradient (NLCG) method can be

used, as in [45] and [40].

4



1.1 Questions for Consideration in CS Research

Stated here are some of the questions and challenges for consideration when undertaking this

research. What optimization techniques and sampling patterns for simulation are applicable to

MRI? What computational hurdles may need to be crossed? Should certain transforms that are

computationally quicker or more robust, be favored over others that are theoretically superior?

What is the best experimental environment? Should `1 Magic be used? Should NLCG be used?

Should constrained vs unconstrained optimization be used?

Another question to consider in applying sparsifying transforms is how robust they are against

changes in under-sampling that could create unmanageable artifacts that affect diagnostic quality.

The best sparsifying transform would produce consistent results with various under-sampling

patterns across required image types. Practically, every real MRI image differs drastically in the

size of the data collected, sparsity, edges, or detail level, and will produce different under-sampling

artifacts even if the same sampling pattern is used. Are there transforms that can create great

images and still be applicable for several image types, sampling patterns, sizes and under-sampling

ratios?

One of the biggest variables with CS MRI is to determine the sampling pattern that will

produce the best images. There are several types of MRI images: Multi channel, single channel,

MIP, cine and other temporal, k-time space types. How should the many parallel imaging recon-

struction techniques be integrated or compared? What sampling is practical on MRI machines?

How do you test robustness of the sampling pattern for various image types? What about non-

Cartesian sampling? How does re-gridding/re-sampling affect the CS algorithm? How does PSD

impact different sampling schemes for the CS recon solution?

Since CS can have an effect of de-noising, does the sampling pattern need to be adjusted for

this effect? Potentially too much smoothing could be introduced which would be very undesirable

due to lack of sharp edges. What changes to the sampling pattern or optimization algorithm

should be made? Is the type of sparsifying transform totally the source of this smoothing or

are there other factors? What artifacts can become better dispersed or incoherent based on the
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sampling pattern? Are certain artifacts particularly difficult for CS?

Does accuracy or IQ degrade after certain number of iterations? How robust are these

minimization techniques and are they usable for all image types? Does image size affect the

optimization technique? Does the number of iterations need to be defined or optimized? Does a

balance between iteration time and IQ need to be established? Do different sparsifying transforms

cause the number of iterations or stability of the minimization to change? What artifacts are

present if too few iterations are performed?

What `1 minimizations or convex optimizations can and should be used for MRI? There are

many, so is there a tradeoff – speed vs. accuracy? What about reconstruction times? Does

the minimization algorithm need to be tested to verify it does not diverge from a solution? Are

certain objective functions better than others? In the NLCG, the gradient of the regularization

function is needed; there are different ways to calculate the gradient. Which one is best?

1.2 Contribution

In summary, the approach followed for this research looks at the current state of the art to see

how to advance the science, with an in-depth look at each aspect of the problems and solutions.

Lustig’s work is a starting point for developing CS MRI, which used the orthogonal wavelet

sparsifying transform. Preliminary experiments of this research showed improvement with other

sparsifying transforms. Understanding the role of better sparsifing transforms in CS for MRI is

key to developing the appropriate solution that improves the speed of the MRI.

Sparsifying transforms are proposed to provide advancement for the CS solution in MRI:

Translational Invariant Wavelet Transform (TIWT), Gabor transform, three redundant patch

transforms that use OMP with the CT or WT, and K-means Singular Value Decomposition (K-

SVD). These dictionaries produce a higher IQ in CS MRI compared to other sparsifying transforms

such as TV and non-redundant WT. Additionally, a software framework called FastTestCS is

presented for developing and comparing other sparsifying transforms and under-sampling patterns.

Next, new theoretical bounds for sparsity constraints in CS are introduced.

The outline is as follows: Chapter two provides a more detailed background to the chap-
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ters that follow. Chapter three explains several image comparison techniques for identifying and

measuring IQ of compressed and CS reconstructed images. The qualities and options for using

these measures are discussed to give insight into quantitative image comparison methods that

work well for identifying good sparsifying transforms. Chapter four covers an explanation of re-

dundant sparsifying transforms compared with other transforms such as Gabor wavelets in CS

for MRI. Problems in finding good sparsifying transforms in CS MRI are also identified. Chapter

five develops various under-sampling patterns utilized for CS in MRI. Chapter six highlights com-

plications and extensions that must be overcome when simulating CS MRI solutions. Insights

for researchers and practical software engineering practices are advanced. FastTestCS, a tool

for comparing simulations and running CS reconstructions with various sparsifying transforms, is

formulated as a time saving solution. The NLCG and Cartesian CS sampling scheme is detailed

for quick application to enhance standard Cartesian sampling in MRI. Chapter seven presents the

sparsity bound developed for the Dictionary based Restricted Isometry Property (D-RIP). New

techniques and solutions are utilized for proving this sparsity bound.
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Chapter 2

State of the Art in CS MRI

2.1 Under-Sampling for MRI

For quick adoption of CS in MRI, patterns that follow existing sequences and trajectories with

some under-sampling should be used. Both Cartesian and non-Cartesian under-sampling patterns,

such as radial and spiral trajectories, have already been investigated for CS in MRI. Lustig et al.

utilized a 1D variable density under-sampling [40]. Bigot et al. investigated a random block of

sensing vectors [8]. Castets et al. developed an interleaved golden angle spiral for imaging at high

magnetic fields [22]. Chan et al. utilized CS with different radial sampling schemes [23]. Polak

et al. considered how the performance of CS is bounded when grouped sampling is necessary

[46]. For MRI, sampling speed is somewhat constrained to human physiology and Pulse Sequence

Design (PSD).

Radial and spiral sampling techniques are used for their advantages. For example, they

reduce structural and motion artifacts, while keeping the requirement of artifact incoherence.

King improved non-Cartesian spiral scanning with an anisotropic field of view where acquisition

is fast and reconstruction improves IQ utilizing gridding [36]. Liu et al. developed a circular

Cartesian under-sampling strategy for CS that does not require gridding [37]. Ersoz et al. also

analyzed a Cartesian based radial sampling trajectory for MRI [30]. In many of these cases, due

to computational simplicity, the Fast Fourier Transform (FFT) is desired, which operates on a

Cartesian grid. Gridding and inverse gridding with interpolation are often needed to transform

from a non-Cartesian sample space to a Cartesian space and back again, adding significant
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computation when repeated for iterative optimization in CS. However, there are spiral and radial

linogram Cartesian based trajectories which do not require gridding and interpolation which easily

make use of the FFT directly. Therefore, careful selection of sampling patterns does have an

impact on reconstruction time.

2.2 The Restricted Isometry Property in CS

Let Φ ∈ Rn×p and β ∈ Rp be a signal such that

y = Φβ + z (2.1)

with ‖z‖2 ≤ ε. In CS, one can find a good stable approximation (in terms of ε and the tail of β

consisting of p−k smallest entries) of β from the measurement matrix Φ and the measurement y

through solving an `1-minimization, provided that Φ belongs to a family of well behaved matrices.

A subclass of this family of matrices can be characterized by the well known Restrictive Isometry

Property (RIP) of Candès, Romberg, and Tao, [17] and [20]. This property requires the following

relation for Φ and an integer k, 1 ≤ k ≤ p, the k Restricted Isometry Constant (RIC) δk is the

smallest constant such that

√
1− δk‖c‖2 ≤ ‖Φc‖2 ≤

√
1 + δk‖c‖2 (2.2)

for every k-sparse vector c (namely, c has at most k non-zero components). Then, the matrix Φ

satisfies the k RIP with RIC δk. The RIP constant is defined as the infimum of all possible δ for

a given Φ.

δK = inf [δ : (1− δ)‖c‖2
2 ≤ ‖Φc‖2

2 ≤ (1 + δ)‖c‖2
2], (2.3)

∀k ≤ K, ∀c ∈ Rk

`1 minimization can recover a sparse signal under specific conditions or bounds on δ. Some

bounds on δ have been determined in previous publications [17], [20], [11], and [14]. Notably,

Cai and Zhang have established several sharp RIP bounds that cover the most interesting cases

of δk and δ2k [10][9] showing δk ≤ 1
3
, δ2k <

√
2

2
.
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A key requirement in this setting is a signal being sparse or approximately sparse. Indeed,

many families of integrating signals have sparse representations under suitable bases. Recently,

an interesting sparsifying scheme was proposed by Candès et al. [13]. In their scheme, instead

of bases, tight frames are used to sparsify signals.

Let D ∈ Rp×d (d ≥ p) be a tight frame and k ≤ d. Candès et al. [13] suggests that one use

the following optimization to approximate the signal β:

β̂ = argminγ∈Rp‖D∗γ‖1 subject to ‖y − Φγ‖2 ≤ ε. (2.4)

The traditional RIP is no longer effective in the generalized setting. Candès et al. defined the

Dictionary-restricted isometry property D-RIP which generalizes RIP [13]. Here the formulation

of D-RIP is used as in Lin et al. [51].

Definition 1 The measurement matrix Φ obeys the D-RIP with constant δk if

(1− δk)‖Dv‖2
2 ≤ ‖ΦDv‖2

2 ≤ (1 + δk)‖Dv‖2
2 (2.5)

holds for all k-sparse vectors v ∈ Rd.

The RIP is now a special case of D-RIP (when the dictionary D is the identity matrix). For D

being a tight frame, Candès et al. [13], proved that if δ2k < 0.08, then if D∗β is approximately

k-sparse, the solution to (2.4) is a good approximation of β. Lin et al. [38], improved this result

to δ2k < 0.472 by using some techniques developed by Candès et al. [18].

2.3 Quantitative Measurements for Image Comparison

Quantitative measurements are used and listed here. However, it is important to note that

quantitative measures do not directly correlate to a clinical setting of perceived IQ, where a

radiologist’s expertise is needed. Wang et al. present a helpful example of visual IQ differences

in image which all have the same Mean Square Error (MSE), yet have quite different visual IQ.

They introduce Structural SIMilarity (SSIM) as a better way of assessing IQ [50].
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The MSE or Normalized MSE (NMSE) is defined as a measure of pixel intensity error between

xi and x̂i, which are the original and reconstructed image.

MSE =
1

N

N−1∑
i=0

| xi − x̂i |2 (2.6)

Normalized MSE =
MSE

1

N

∑N−1
i=0 | xi |2

(2.7)

The smaller this value is, roughly correlates to less measured error and better IQ. MSE and NMSE

is used extensively in this work as a consistent numeric measure of image differences.

The Standard Deviation (STD) where x
′
i is the mean of x

′
i and x

′
i is a small (15× 15) block

of pixels in a section of the image, which is relatively uniform.

σ = STD =

 1

N

N−1∑
i=0

∣∣∣x′

i − x
′
i

∣∣∣2
1

2
(2.8)

SNR = 10log10
σ2

MSE
(2.9)

Note that the whole image is used for STD when calculating the Signal to Noise Ratio (SNR)

rather than a small (15 × 15) block. These measurements of quality (Eq’s (2.6) - (2.9)) are

presented in [49]. Closely related to MSE is the sum of error calculation. This is where the pixel

by pixel difference is calculated between the golden image (x) vs. reconstructed image (−→x ) and

totaled.

sum of error =
∑
m

∑
n

∣∣∣xmn −−→x mn

∣∣∣ (2.10)

Another well-known measurement is SSIM, where several measures are combined to produce

an index for measuring the similarity between two images x and y.

Contrast = σx luminance =
1

N

N∑
i=1

xi SSIM =
x− µx
σx

,
y − µy
σy

(2.11)

We use a measure of noise suppression and edge preservation from [48]

Noise Suppression =
Γ (s− s, ŝ− ŝ)√

Γ (s− s, s− s)Γ (ŝ− ŝ, ŝ− ŝ)
(2.12)
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where s and ŝ are mean values of the Region of Interest (ROI) of the two images being compared.

Γ (s1, s2) =
∑

i,j∈ROI

s1(i, j) · s2(i, j) (2.13)

Edge Preservation =
Γ
(

∆s−∆s, ∆̂s− ∆̂s
)

√
Γ
(

∆s−∆s,∆s−∆s
)
Γ
(

∆̂s− ∆̂s, ∆̂s− ∆̂s
) (2.14)

where ∆s is the high passed filtered version of s obtained by a standard 3× 3 approximation of

the Laplacian operator.

2.4 Compressed Sensing Software for MRI

Several software packages have been developed and released in Matlab that can be used for CS

simulation. Here are a few of noteworthy contributions:

• CVX [33]

• `1-Magic [21]

• SparseMRI V0.2 [40]

CVX is Matlab software for disciplined Convex Programming. Several advances have been

made to this sofware over the past decade. It solves the convex optimization problem allowing

constrains and objectives with standard Matlab syntax. Although this software will support typical

CS MRI problems, it will perform slow when scaling up to larger matrices which are needed for

image processing.

`1-Magic is specifically designed for solving CS problems by using nonlinear recover algorithms

based on convex optimization. It does perform large scale optimization for images that would

be relevant for MRI. Although the software source code is available, there are still challenges in

developing new redundant sparsifying transforms that have stable convergence.

SparseMRI is a collection of Matlab functions that implement the CS algorithm described by

Lustig et al. It performs `1 penalized non linear conjugate gradient reconstruction for MRI data.
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This uses the orthogonal wavelet as a sparsifying transform in the CS reconstruction which can

be considered as a first step for comparison of other sparsifying transforms.

Matlab is very versatile with a good purpose for developing algorithm prototypes for CS

that can easily be distributed and consumed by the research community. However, with each

of these pieces of software, the reconstruction times are longer compared to an optimized re-

implementation in C++. Matlab does have an optional MEX feature allowing custom C++

methods to be developed that run within Matlab. Using MEX is a great way to speed up highly

computational code and optimize it to bring additional speed up to these algorithms.
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Chapter 3

Image Compression Techniques and
Measures for IQ

3.1 Introduction

There have been some studies of the sparsity of typical medical images with a few standard

compression methods such as CT and WT. Alexander analyzed Joint Picture Experts Group

(JPEG) compression thresholds that do not compromise medical image IQ [2]. However, with

CS, no major comparison of the effectiveness of different sparsifying transforms on MRI images

has been undertaken. Studying the sparsity of data with a specific basis is helpful because the

CS approach requires that the desired image have a sparse representation in a known transform

domain. Sparsity is defined for a vector as the number of non-zero coefficients. A lesser number

of coefficients needed to represent an image corresponds to a sparser representation. In CS MRI,

an ideal sparsifying transform would produce images without artifacts, is not overly de-noising, is

able to account for various sampling levels and would work for various MRI image types.

The stability of a sparsifying transform is critical for CS. Perhaps investigating IQ and de-

tail preservation after transform coefficient truncation or noise reduction will give clues as to

what transforms to use for CS. For image compression standards like JPEG, there are orthog-

onal transforms, such as wavelets and cosines, which represent images as sparse coefficients.

These applications truncate small values while still allowing expansion to the original image after

transmission[34].

How do you compare techniques in CS? A good solution is to compare resulting image differ-
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ences objectively. However, there are many pitfalls in performing the correct image comparison.

One can judge images from human perception, which may range from being subjective and vary-

ing, to standardized and professional. How does one measure subjective visual qualities? Using

mathematical calculations to compare IQ has a range of results from being ineffective and mis-

leading to precise and essential. Do certain levels of qualitative or quantitative measures need to

be used for medical imaging? How does one determine the signal to be measured vs. noise for

all 2D images? The most accurate image comparisons are between the “golden,” fully sampled

image and the under sampled reconstruction to verify if there are artifacts introduced. However,

this is not the real world CS case because the original data is already under sampled – there is

no gold standard. Do additional precautions need to be made that guarantee the reconstruction

is free from artifacts? One would be challenged to verify every possible image scenario, but is

there a better approach?

Ultimately, since the user is the radiologist, what works well for them? Do compression

experiments inform good CS results? Do certain sparsifying transforms that lend themselves

more to MRI image compression also work for CS? What specific measures of IQ are needed or

need to be avoided? What precautions should be made when under-sampling? To answer these

questions, image compression tests are proposed with several IQ comparisons as a first step to

guide future CS experiments.

3.2 Methods

To narrow the field of possible sparsifying transforms covered in many publications, compression

tests are proposed to understand how well transforms and settings perform. The quality of a

transform for compression can be measured by IQ tests where the representation of the small-

est valued coefficients are truncated and then the image is reconstructed with only the larger

coefficients. Quality can be seen visually by looking at noise, artifacts, distortion and detail

preservation. Quantitatively, high fidelity can be measured with direct comparisons between the

ideal image and the reconstruction with image subtraction or (MSE) and other calculations such

as SSIM index [50], edge preservation and noise suppression[48].
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The following sparsifying transforms are compared:

1. Orthogonal wavelets with all combinations of Wavelab filters and types

2. Standard redundant contourlets

3. Crisp contourlets

4. Wavelets with contourlets

5. Curvelets

The transforms tested are from publications and software available from various sources listed in

the appendix.

3.2.1 Compression Tests

For each compression technique, a hard threshold is used where the smaller coefficients are set

to zero depending on a desired threshold or percentage of compression. In using each of these

transforms, the real and imaginary datasets are separately transformed and then re-combined in

the transform domain with an absolute value calculation.

For the compression testing, Matlab and Wavelab are used extensively to loop through all

the different Wavelab filters, transforms and settings of interest. Due to the Wavelab software

having a similar API for each transform, setup is minimal. The integration of the other sparsifying

transform software for curvelets, contourlets, and various thresholds is also straight forward. The

steps involved are: Reading in the data from disk, applying an IFFT on the 2D image, applying

a transform of choice, truncating the data, applying the inverse of the transform, and calculating

various quantitative comparison measures between the original and the compressed image. All

these simulations are performed timely on current laptop computers. Therefore, efficiency and

performance of software are not issues considered for these tests.

A similar approach is used to perform a combined basis of wavelet + contourlet compres-

sion, see Figure 3.1. The process starts by transforming the input image with each transform

independently. Combining the coefficients in the transform domain is performed by sorting the
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Figure 3.1: The process of combining the coefficients and compression with wavelets and con-
tourlets.

magnitude. The combined list is truncated by setting the smaller coefficients in the list to zero.

Then the combined coefficients are separated to use the respective inverse transform. Finally, an

averaging of the two images is completed to produce the final image. The averaging process is

a pixel-by-pixel average of a wavelet image pixel with the corresponding contourlet image pixel.

This scheme is developed because it is the most similar to the way a CS compression will be

performed. It is expected that for CS, when basis are combined, the coefficients are combined in

a similar fashion.

For Time Of Flight (TOF) Maximum Intensity Projection (MIP) datasets, in addition to

wavelet or contourlet compression, a pixel magnitude threshold is used where the image is com-

pressed by just a hard threshold. This can be done because in TOF MIP datasets, the data of

interest is of a much higher magnitude than the rest of the image.

Different image datasets are compared: A brain image, a TOF MIP image, and an individ-

ual coil image from a multi-coil brain dataset. A visual inspection of the smoothness, detail

preservation and artifacts is performed.

3.3 Comparison of Image Measures

For the contourlet and wavelet transform, different parameters are adjusted to find which would

achieve better compression. Both transforms use filters and there are differences depending on

which filters are used and the number of coefficients for each filter. A trial and error search

of available settings is performed. Some settings produce much better images as measured

17



quantitatively and qualitatively and these are then used for compression tests. An important factor

in dealing with the contourlet transforms is that it produces an over complete set of coefficients.

In the transform domain there are more coefficients than initial image values. Therefore, since

the number of coefficients truncated is a percentage of the image coefficients, the contourlet

compression is at a disadvantage to wavelet compression, which does not have an over complete

set. This is also the case for curvelets, and the combined wavelet + contourlet transform.

However, the purpose of these tests is to determine transform robustness during compression

with the application of interest being CS which does not perform truncation.

MSE is one of the easiest measures to implement. From the quantitative perspective, MSE

can be a great measure; however, it can easily become misleading. When MSE is used within

the same type of image artifact, it is great at distinguishing between small levels of error. When

different filters or sampling patterns and artifacts are introduced, however, then the use of MSE

across the board is questionable.

Four other measurements are used and compared: SNR, edge preservation, noise suppression

and SSIM. Edge preservation measurement comparisons tend to be the most helpful in observing

good detail preservation; however, good results in edge measures do not always correlate to good

noise suppression measurements. This observation bolsters the argument that quantitative IQ

analysis must take into account multiple measures. SSIM is also investigated quite extensively;

however, understanding its usage is more complicated, due to it already being a combination of

several qualities of an image. It gives a result which is an index, based on how much structure is

similar. Another variable in SSIM is the amount of Gaussian blur. When looking for edges or fine

artifacts, one may prefer a very small amount of Gaussian blur in the SSIM measure. Whereas,

when looking at noisy images, measures that are overly influenced by how much noise is in the

image, may be quite misleading. Much variability in the SSIM measure is found, therefore, caution

and understanding would be advised when using it.

The usefulness of SSIM is found in the following way: Use the SSIM index as a measure for

how much structure is available to compare, then measure the SSIM map of the “Golden” image
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g with itself,

G = SSIMmap(g, g) (3.1)

and another map of the reconstructed image r with itself.

R = SSIMmap(r, r) (3.2)

Normalize the maps to 1, as in eq. 3.3 and eq. 3.4, subtract the maps, and measure the max

and the mean over the difference map, as in eq. 3.5 and eq. 3.6. Remember that the sensitivity

of the difference map can be adjusted by setting of the amount of Gaussian blur in the SSIM

map calculation.

Golden Normalized SSIM Map = N1(i, j) =
G(i, j)

max(G(i, j))
(3.3)

Reconstructed Normalized SSIM Map = N2(i, j) =
R(i, j)

max(R(i, j))
(3.4)

Max SSIM = max(N1 −N2) (3.5)

Mean SSIM = mean(N1 −N2) (3.6)

The max SSIM tells the maximum amount any smaller structure is mis-aligned with the

golden image. The mean SSIM gives an overall average measure of mis-alignment and image

differences. These measures should be taken with a comparison to the overall SSIM of eq. 3.1

and eq. 3.2 to help understand the significance of the structural differences. For instance, an

image without much structural difference does have a very low SSIM. Yet, the max SSIM and

mean SSIM measures may be quite high if the small amount of structure is quite different. Due

to normalizing the maps, the calculation is a relative measure of difference, compared to the

amount of structure available.

Visual inspection is a good way to verify that these measures are being used properly. Some

effective visual inspection criteria use comparison of identifiable features, noise, and artifact

suppression. These visual inspections of image differences are performed throughout this research.

Although, quantitative measures can give clues about IQ, visual analysis is more valuable because

ultimately a person is going to read and evaluate these images visually.
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Nlevs Pfilter Dfilter SSIM SNR Notes
[0,0,0,4,5] 9-7 pkva 0.92 42.52 Previously used settings
[4,5] 9-7 pkva 0.911 41.89
[4,5,0,0,0] 9-7 pkva 0.914 49.7 Almost critically sampled

when 0’s at end of nlevs
[3,3] Sym4 9-7 0.845 52.8 Less noise, spot artifacts, and

more detailed features com-
pared to bior4.4 [3 3]

[3,3,0,0,0] bior4.4 9-7 0.915 52.21
[3,3] bior4.4 9-7 0.916 51.63
[2,0,0,0,0] db4 9-7 0.911 51.35
[2,0,0,0,0] bior3.3 9-7 0.94 40.67 Blurry features compared to

other options. These filters
and settings measured the
highest SSIM.

Table 3.1: Compression to 20% of pixels for comparison between contourlet filter results and
settings

3.4 Results and Discussion

Tables 3.1 and 3.2 list compression results from comparing different settings for wavelets and con-

tourlets. Many parameters do not make a great difference; however, using the wrong parameters

does cause major differences and greater error. When comparing wavelets to contourlets, there

is some difference visually and quantitatively when using the better filters for each transform, see

Figure 3.2.

Wavelets appear to have a non-uniform de-noising effect that preserves some detail and

smooths others, which produces a “block like” effect and may be less visually appealing. Multi-

coil compression did not seem to differ much from single coil compression. Noise is impacted

quite differently by different compression schemes and noise in multi-coil images appears more

present than in single coil images, and therefore, needs to be considered more thoroughly for

multi-coil datasets, see Figure 3.2 d-f.

Wavelet compression consistently performs better than the contourlet in quantitative compar-

isons of SNR and MSE (see Table 3.3), most likely because there are more contourlet coefficients

than wavelet coefficients. For these experiments, a percentage of the original number of pixels
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Type SSIM NMSE SNR Notes
Haar coarse
level = 4

0.849 0.000194 44.9 Lower resolution result. Very large
blocks in the place of detail.

Beylkin
coarse
level= 6

0.904 0.000152 45.9 Slightly more noise than others

Vaidyanathan
coarse
level= 6

0.907 0.000154 46.2 More artifacts are noticeable

Vaidyanathan
coarse
level= 5

0.92 0.000155 46.3 The change in course level produces
a major change in SSIM, but it is
not visually apparent.

Coiflet
coarse
level= 5, par
= 3

0.906 0.000135 48.5 Has slight spot artifacts

Daubechies
coarse
level= 5, par
= 8

0.908 0.000139 51.1 A comparison between parameters,
par=8 vs par=4, appears to show a
decrease in details of some features
while the overall image is more
smoothed out with less artifacts.

Symmlet
coarse
level= 5, par
= 4

0.908 0.000134 52.7 Preserves more detail and is
smoother. Indistinguishable differ-
ence from Battle.

Battle
coarse
level= 5,
par=1

0.907 0.000134 54.1 Preserves more detail and is
smoother. Indistinguishable differ-
ence from Symmlet.

Table 3.2: Compression to 20% of pixels for comparison between wavelet filter results
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Figure 3.2: Compression keeping 20% of pixels, on three types of images, multi-coil high sensi-
tivity (from left to right and top to bottom)(a-c), multi-coil low sensitivity (d-f), and single coil
(g-i). (a) No compression (b) Contourlet compression, (c) Wavelet compression, (d) No compres-
sion (e) Contourlet compression, (f) Wavelet compression (g) No compression, (h) Contourlet
compression, (i) Wavelet compression.
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Figure 3.3: Compression keeping 15% of pixels.(from left to right) (a) Contourlet + wavelet, (b)
Wavelet (c) Contourlet.

is chosen as the threshold, rather than a percentage of the number of coefficients. In contourlet

compression, everything is smoothed; therefore, some fine details of features are lost. Crisp con-

tourlets are also investigated for their use in compression; however, they consistently performed

poorer quantitatively for compression ratios below 40% where major artifacts became apparent.

The combination of wavelet and contourlet coefficients did produce good images compared to

wavelets or contourlet alone, as seen in Figure 3.3; however, quantitatively, in Table 3.3 the MSE

results are poorer. This performance is primarily due to the higher level of truncation performed

in these experiments on redundant transforms. When using the combined dictionary, the number

of coefficients is over a factor of two times the number of pixels y, therefore, a truncation of

50% would result in over 75% of the coefficients being truncated. When compressing TOF data

and generating a MIP, less artifacts could be seen, so greater compression could be achieved.

At compression to 10% of pixel values, differences in transforms can be found, as seen in Figure

3.4. An absolute value threshold of pixels produced artifacts at the noise level which are not

smooth. This may be improved if a soft threshold is used rather than a hard threshold. Wavelet

compression has an interesting streaking artifact where contourlets did not, although, some fine

details are lost. In compression tests, the transforms performed better with MIP images than

compression of standard body images. Standard images could be compressed to 40% of the data

whereas TOF MIP images could be compressed by transform thresholding to about 20% without
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Compression Transform Compression % of
retained pixels

STD NMSE SNR

No Compression 100 0.0477 0 N/A
Wavelet 60 0.0476 0.000017 56.8
Wavelet 50 0.0474 0.000030 56.4
Wavelet 40 0.0475 0.000050 52.4
Wavelet 30 0.0472 0.000081 51
Wavelet 20 0.0460 0.000141 43
Contourlet 60 0.0471 0.000054 50.8
Contourlet 50 0.0464 0.000077 50.3
Contourlet 40 0.0463 0.000110 45.2
Contourlet 30 0.0459 0.000159 42.5
Contourlet 20 0.0459 0.000246 38.7
Wavelet + Contourlet 60 0.0462 0.000083 49.7
Wavelet + Contourlet 50 0.0457 0.000106 46.4
Wavelet + Contourlet 40 0.0454 0.000139 45
Wavelet + Contourlet 30 0.0453 0.000192 41.3
Wavelet + Contourlet 20 0.0451 0.000289 37.3
CRISP Contourlet 60 0.0476 0.000024 48.2
CRISP Contourlet 50 0.0475 0.000057 44.7
CRISP Contourlet 40 0.0475 0.000131 39
CRISP Contourlet 30 0.0475 0.000404 36.7
CRISP Contourlet 20 0.0503 0.003097 22.7
Curvelet 60 0.0460 0.000200 37.3
Curvelet 50 0.0464 0.000261 35.7
Curvelet 40 0.0461 0.000352 33.6
Curvelet 30 0.0470 0.000492 31.6
Curvelet 20 0.0467 0.000751 29.5

Table 3.3: Compression results
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Figure 3.4: TOF MIP detail comparison. (left to right, top to bottom) (a) Fully sampled MIP
reconstruction, (b) Fully sampled individual TOF image from which compression is performed, (c)
fully sampled detail of MIP, (d) Absolute value threshold, keeping 10% of pixels, (e) Contourlet
compression, keeping 10% of pixels, (f) Wavelet compression, keeping 10% of pixels.
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visual loss when using contourlets or wavelets.
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Chapter 4

Sparsifying Transforms for CS MRI

4.1 Introduction

Linear reconstructions of MRI data that are under-sampled may produce major artifacts because

the solution is under-determined. Many sparsifying transforms have been proposed and used for

data and image processing applications, including MRI. Sparsifying transforms that apply to image

compression focus on non-redundant sparsifying transforms because the goal is compression and

extra data is not desired. CS utilizes expansion; it may be that a redundant representation is

more applicable, produce sparser coefficients, and have a better reconstruction. Candès et al.

has generalized the CS RIP theory to utilize potentially redundant dictionaries, D-RIP [13].

4.2 Determining Optimal Artifact Free Sparsifying Trans-
forms for CS

What sparsifying transforms for compression are applicable to CS MRI for optimum IQ? Is it

a good idea to have orthogonal wavelets as a standard, which are considered a primary case

proposed by Lustig et al. in Sparse MRI [40]? They are fast to compute compared to redundant

transforms and can be used as a starting point comparison with any other sparsifying transforms.

There are orthogonal wavelet implementations readily available in software for Matlab and C++.

They do sparsify images and are used in image compression standards like JPEG. However, a

problem occurs because orthogonal wavelets leave artifacts at very high levels of compression, as

seen in Figure 4.1. These compression artifacts may carry over to CS artifacts, as seen in Figure
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Figure 4.1: (left)Fully sampled original MRI brain image quadrant. (right) Wavelet compression
and reconstruction showing artifacts where 80% of the smallest wavelet coefficients are removed
by a hard threshold.

Figure 4.2: (left)Fully sampled original MRI brain image quadrant. (right) CS reconstruction with
decimated wavelets showing artifacts where sampled lines of k-space are reduced aggressively by
a factor of 3 (only 33% of “full” data used to reconstruct).
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4.2.

We also see from Figures 4.1 and 4.2 that de-noising is a natural result of using an orthogonal

wavelet sparsifying transform. At first thought, de-noising appears to be a positive effect of using

CS, but radiologists may see a de-noised image as problematic and wonder if some structures

have been smoothed out. A sparsifying transform ensures that `1 minimization is regularized and

converges, but should de-noising be applied to MRI images? Since it is very important that end

users are confident in the results, are there other sparsifying transforms that produce good results

both visually and accurately?

What approach should be used for finding the best sparsifying transforms? For example,

curvelets, proposed by Candès et al., are an alternative to wavelets and may be better for dealing

with curves or edges in a 2D image [19]. Also, according to Lustig et al. [40] when considering the

CS MRI problem, using just one sparsifying transform is not as effective as combining sparsifying

transforms. In Sparse MRI, Total Variation (TV) is used in combination with orthogonal wavelets

for better results. What other combinations and transforms are as effective or better?

Redundancy can be achieved in various ways such as from circular shifting the full sized

image, or from application to small, overlapping patches. Contourlets are sparsifying transforms

that preserve geometries and are redundant, yet have a fast discrete computation[28]. Both

“CRISP” contourlets and redundant contourlets are considered [39]. Learned dictionaries have

been shown to provide good sparse representations. How much of a benefit can learned (or

trained) dictionaries enhance a sparsifying transform? K-SVD is an extension of patches with

the Discrete Cosine Transform (DCT) and the K-means algorithm to train a dictionary on the

dataset using OMP to sparsify the coefficients[1]. TV is a calculation of the pixel by pixel

finite differences in both horizontal and vertical directions across an image [42]. The TIWT is

a redundant circularly shifted wavelet calculation that achieves translational invariance, which is

lacking in the standard orthogonal wavelet[25].

A Gabor dictionary is used as a sparsifying transform in re-weighted `1 minimization [16].

One important advantage of a Gabor dictionary is that it is invariant in both time and frequency

[31]. In a similar context, a TIWT is used with good results in MRI reconstruction[6]. Invariance

29



in the `1 minimization penalty term is advantageous for its ability to represent different signals

sparsely.

4.3 Methods

To pinpoint changes between sparsifying transforms, each transform is implemented in either

Matlab or FastTestCS. The CS algorithm is also mirrored in both simulation platforms and the

transforms are selected individually. Also, only the 1D variable density under-sampling pattern

is used for these experiments from Figure 5.2 f. Due to the long computation time of some

transforms, they are implemented in FastTestCS from Matlab. The confidence in good sparsifying

transforms is achieved through testing fidelity on different data sets. The following sparsifying

transforms are tested in this framework.

Full image transforms:

1. Orthogonal Wavelet Transform (OWT)

2. OWT with small redundant patches

3. OWT with large redundant patches

4. Redundant contourlets with full image

5. Non-redundant contourlets with full image

6. Curvelets with full image

7. DCT with full image

8. Translational Invariant DCT with small redundant patches (TICT)

9. TIWT with full image

10. TIWT with small redundant patches

11. TIWT with large redundant patches
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12. OMP with small redundant patches

13. K-SVD with small redundant patches

14. TV pixel by pixel finite differences

4.3.1 Gabor Transform Experiments

Comparison measurements of sparsity in Gabor and TV coefficients of various signals are used to

verify if good and robust results can be achieved. A selection of 5 different real valued signals

and/or images with variants are used to simulate the complexity of practical signals.

• Sinusoidal pulses (GHz range)

• Shepp-Logan phantom image

• Penguin image

• T1 weighted MRI image

• TOF MIP MRI image

The original images and signals are sized to be a total length of 16k values. For images, this

is a 128 × 128 gray-scale image, shown in part (a) of Figures 4.11 through 4.18. These signals

are not sparse in their native domain, but can become sparse when a transform is applied.

The use of the Gabor dictionary to reconstruct these signals utilizes a core optimization algo-

rithm solver for the primal-dual interior point method provided by `1-Magic [21]. The redundancy

of the Gabor transform coefficients compared to the original signal is about 43 times. These re-

sults are compared to reconstructions of the same input signal using another CS optimization

algorithm solver, TV minimization with quadratic constraint, which is also provided by `1 - Magic.

These algorithms operate on the full sized image (or signal) without breaking up the data into

segments. The under-sampling is performed by using a pseudo-random Gaussian measurement

matrix, similar to Candès et al. [13], with a factor of 50%. The measurement matrix in these
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Gabor experiments is quite different from a typical MRI trajectory that would have a binary

representation which samples frequency points.

A Linear (L) MSE of the reconstruction is used as a reference, shown as (b) in Figures 4.11

through 4.18. This is calculated by the transpose of the measurement matrix as the pseudo

inverse. Gabor (G) MSE identifies the error in the use of that dictionary in the CS reconstruction,

shown in parts (c) of the figures. TV MSE is a measure of the error when TV weighted `1

minimization is performed and is shown in part (d) of each figure.

Sparsity measurements taken in the coefficient domain are based on a ratio of the count of

values that are less than 1
256

of the maximum coefficient, divided by the total number of the

coefficients. This ratio then is a percentage of sparsity. Two sparsity measures are taken:

• % G Sparse - Sparsity of the Gabor transform coefficients of the fully sampled signal

• % TV Sparse - Sparsity of the TV calculation of the fully sampled signal

4.4 Results and Discussion

Based on compression test comparisons, one can optimize for settings and filters in different

sparsifying transforms and identify good IQ, as seen in chapter 2. The use of the compression ex-

periments help inform generally good transforms, however, those results did not directly correlate

to the perfect transforms for use in CS. Because of this finding, one must additionally compare

sparse transforms with a CS simulation to determine the best transforms.

Table 4.1 shows results of some of the best filters and settings for wavelets, curvelets and

contourlets. The baseline for comparison is the non-optimized row indicated where no sparsifying

transform is used, but rather the non-linear optimization is still performed. The best filter and

settings for each transform are chosen from this table for the other comparison tests.

Some similar artifacts seen in compression do show up in CS image results when using the

same sparsifying transforms. For instance, a blocky image artifact appears when using decimated

wavelets for CS, in much the same way when using too much wavelet compression in an image

reconstruction. To counter that, redundant transforms with TI qualities produce better IQ in many
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Figure 4.3: Unconstrained CS results with reduction factor of 33% (left to right and top to
bottom) (a) Original image, (b) Without regularization, (c) With only `1-norm regularization,
(d) With only TV (e) With only curvelet regularization, (f) With only wavelet regularization, (g)
With only contourlet regularization, (h) All combined regularization.
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Figure 4.4: CS reconstruction with reduction factor of 30% (left to right and top to bottom)
(a) Fully sampled (b) Linear reconstruction (c) K-SVD (d) OWT, (e) Over-complete TICT, (f)
TICT, (g) OWT on small patches.
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Figure 4.5: CS reconstructions, (a) Single channel T1-weighted brain fully sampled, (b) Initial
guess linear reconstruction, reduction factor of 50%, (c) Reconstruction with an over-complete
TICT untrained dictionary and a reduction factor of 50%, (d) Reconstruction with a trained
dictionary (K-SVD) and a reduction factor of 50%. (e) Initial guess linear reconstruction, reduc-
tion factor of 20%, (f) Reconstruction with an over-complete TICT untrained dictionary and a
reduction factor of 20%, (g) Reconstruction with a trained dictionary (K-SVD) and a reduction
factor of 20%.
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Figure 4.6: Single-channel T1-weighted brain MRI data (a) Linear reconstruction, reduction
factor = 25%, (b) Linear reconstruction, reduction factor = 50%, (c) Fully sampled, (d and e)
CS reconstruction with wavelet sparsifying transform on full image representation, reduction factor
= 25% and 50%, respectively, (f and g) CS reconstruction with wavelet sparsifying transform on
small and redundant patch representation, reduction factor = 25% and 50%, respectively.
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Figure 4.7: CS reconstructions with a reduction factor of 40% (left to right and top to bottom,
with the corresponding enlarged region shown above) utilizing different sparsifying transforms as
regularization (a) Fully sampled reconstruction and (b) Reconstructions with TV, (c) DCT, (d)
TICT, (e) WT, and (f) TIWT.
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Figure 4.8: Comparison of linear reconstruction error (non CS) and CS reconstruction errors
(NMSE) with different sparsifying transforms: TV, orthogonal DCT (OCT), TICT, orthogonal
WT (OWT), and TI WT as the sparsifying transforms. Each point is an average of 10 results.
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Type Settings SNR SSIM Notes
Non-
optimized

NA 23.5 0.93 All artifacts and noise
are present

Daubechies
Wavelet

par = 4, L = 3 20.92 0.9494 A few more artifacts
than the other wavelet
types

Symmlet
Wavelet

par = 4, L = 1 21.09 0.9509 A few more artifacts
than the contourlet
cases

Battle
Wavelet

par = 1, L = 2 21.02 0.949 Good IQ

Curvelets Real, defaults 20.35 0.9469 Good IQ
Curvelets
Highest
SNR

Real, Finest =
curvelets, nbscales
= 2, nbangles coarse
= 16

21.03 0.938 More artifacts and less
smooth compared to
other curvelets

Curvelets
High SSIM

Real, Finest =
curvelets, nbscales
= 5, nbangles coarse
= 8

20.92 0.9502 Good IQ

Contourlets
nlevs = [1
1 1 1]

pfilter = sym5, dfilter
= pkva12

20.8 0.9474 Less artifact result
compared to other con-
tourlet filters, wavelets
and curvelets

Contourlets
nlevs = [1
1 1 1]

pfilter = db4, dfilter =
pkva 12

20.76 0.9466 Good IQ

Curvelets Complex, defaults 19.24 0.934 Much smoother and
less detailed edges

Table 4.1: Comparison of sparsifying transform parameters in CS reconstruction
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areas: Artifact suppression, noise reduction, detail preservation, and statistical quantification. TI

transforms are more robust with less variance from run to run with different random sampling

patterns.

Figure 6.4 shows that TV does contribute the most to an improved sum of error calculation.

Visually, the artifacts seen in Figure 4.3.b appear to be reduced the most by TV regularization,

seen in Figure 4.3.d. The other transforms (Figures 4.3.e,f,g) produce varying degrees of quality.

The Wavelet regularization has fewer ring artifacts than the Contourlet or Curvelet regularization.

The Curvelet regularization is much smoother than the Contourlet and Wavelet regularization.

The Contourlet regularization appears to preserve some line features better, but more artifacts

remain. The `1-norm regularization did not contribute to improve the artifacts; however, some

noise is reduced, as seen in a comparison of Figures 4.3.b and 4.3.c. A small additional im-

provement in MSE can be found when combining multiple regularization techniques with the

appropriate lambda. This lambda will not be the same as the minimum lambda found in Figure

6.3 because lambda becomes a balancing parameter between the other regularization techniques.

Finding the optimum lambdas for multiple regularization was not performed, therefore better

results than Figure 4.3.h may be achievable.

Another group of CS reconstruction results involve transforms performed on small and over-

lapping patches of the image. The K-SVD learning algorithm is applied to these patches which

have the benefit of TI. The smaller patch sized matrices also allow OMP and SVD to operate

with more feasibility. The transforms tested are K-SVD, DCT, over-complete DCT, and wavelets.

These results show an improvement over full image transforms in the CS reconstruction simula-

tion. Figures 4.4 through 4.8 show comparisons of a wavelet reconstruction using the full image

with different TI and patch transforms. The reduction factor is from 20% to 80%, the patch size

is 4 × 4, the redundancy factor of the dictionary for K-SVD and the over-complete DCT is 4,

and the number of iterations is determined by a MSE convergence and visual inspection. These

patch transform results show an improvement over the wavelet transform on a whole image by

visually comparing Figure 4.4.d with c,e,f and g. When comparing KSVD with the training step

of that algorithm removed, the reconstruction IQ is not substantially degraded. This leads to a
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Figure 4.9: IQ (NMSE) vs redundancy. Patch size = 256 × 256, 2D circular shift of 6
rows/columns, reduction factor = 2

valid trade off, if it is necessary to include the training step of KSVD when less computation time

is desired.

In whole image comparisons, contourlets and wavelets perform equivalently. In general, over-

complete dictionaries are better than critically sampled dictionaries, as seen from these results.

With that in mind, the TIWT is one transform that performs well, and is moderately redundant.

This is an advantageous middle ground between having too much redundancy and too little.

With too much redundancy, the transforms take too long to perform. With too little, quality

is compromised. With the TIWT, the implementation is faster and deserves more consideration

because it may be more computationally feasible.

The TICT is a good sparsifying transform, therefore, it is compared with other transforms

and settings. Measurements and comparisons are made for levels of redundancy. IQ vs sliding

distance is measured by MSE and shows that IQ worsens as sliding distance increases. The sliding

distance is the number of pixels shifted between overlapping patches. Both small patches and

large overlapping patches are compared. Small patches are image portions from 4× 4 to 16× 16

pixels, either square or rectangular. Large patches are full sized images (256× 256) that overlap

by circularly shifting edge rows and columns. With large patches, a certain level of redundancy in

overlapping patches is beneficial, but increasing redundancy is less impacting, as seen in Figure

4.9.
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This result clearly shows that redundant sparsifying transforms perform better than orthogonal

transforms. With the DCT being improved, other transforms may also be improved. When the

orthogonal wavelet transform is implemented with patches, it performs even better. Overlapping

patches with OMP provide a great way to improve CS and enhance IQ because OMP does operate

efficiently on smaller data sets. The patches provide a good level of translational invariance, while

also providing a way for parallelization which takes advantage of programming parallel threads.

In conclusion, patches open up a way to improve many different sparsifying transforms.

In MRI image CS tests, several image types that give a basic broad coverage are tested: A

single channel 256 × 256, a multi-channel 256 × 256, a multi-channel MIP, and multi-slab 3D.

Simulated images are also explored; they are created in Matlab and randomly varied in complexity

and type, see Figure 4.10. Sixty different images are created starting with a few small dots of

many large circles of varying intensity and size. The CS MRI problem is tested with varying

under-sampling factors and image sizes. Measurements of IQ are done with different sparsifying

transforms. The results are interesting, due to extreme changes in the image. No single transform

could consistently perform well across all images. This is most likely due to the different types

of structures and changing sparsity in the images.

With each image, several under-sampling factors are tested. Generally, under-sampling greater

than 66% reduces IQ to non-diagnostic; however, this is a subjective visual measure. Some

under-sampling schemes and transforms minimize artifacts better than others with higher under-

sampling. Measuring several levels of reduction factors gives confidence in transform robustness.

4.4.1 Gabor Transform

The goal is to show how well a sparse tight frame representation of various signals performs in CS

reconstruction. Analysis is done of the Gabor dictionary as a sparsifying transform on non-sparse

signals and images. A large range of reconstruction errors and sparsity levels are observed for

different image types and signals. The use of the Gabor frame is contrasted with TV weighted `1

minimization in CS reconstruction. Table 4.2 quantifies MSE and sparsity for each reconstruction

test. Figures 4.11 - 4.18 are the corresponding image and signal reconstructions.
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Figure 4.10: Synthetically generated images, varying numbers of points or circles or sizes can be
adjusted to increase or decrease image complexity for rerunning simulations with different images

(a) (b) (c) (d)

Figure 4.11: Signal reconstruction test 1, one long pulse (a) Original, (b) Linear pseudo inverse,
(c) CS Gabor, (d) CS TV

According to these measurements, sparsity in the coefficient domain will correlate to image re-

construction success. For example, test 1 measures a Gabor coefficient sparsity of over 99% and a

reconstruction success which reduces the MSE by 36 times compared to the linear reconstruction.

Whereas, with the same signal, which is not sparse at all in the TV domain, TV minimization

actually increases the MSE when compared with the linear reconstruction, see Figure 4.11. It is

important to note that the sparsity calculated on the Gabor coefficient set is on a much larger

set of redundant coefficients than the non-redundant TV coefficients.

In test 2, the complexity and sparsity are adjusted by adding additional sinusoidal pulses which

may overlap. The complexity of the pulses significantly increases to twenty pulses and the Gabor

dictionary is able to sparsely represent the signal very well compared to TV minimization, see
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Test L MSE G MSE TV
NMSE

%GSparse %TVSparse

1 (Pulse 1) 0.7045 0.0195 0.9411 99.5 0.19
2 (Pulse 2) 0.7075 0.0192 0.8023 94.8 2.6
3 (Shepp-Logan) 0.7062 0.2697 0.0 54.7 91.7
4 (Penguin) 0.7077 0.3011 0.0 54.1 87.6
5 (Pulse +
Shepp-Logan) 0.7101 0.2541 0.2141 54.4 2.2
6 (T1 MRI) 0.7013 0.1445 0.0637 82.9 7.8
7 (TOF MRI) 0.7012 0.2555 0.1369 68.4 13.3

Table 4.2: Sparsity and CS reconstruction errors of various signals (L - Linear, G - Gabor, TV -
Total Variation, MSE - Mean Square Error)

(a) (b) (c) (d)

Figure 4.12: Reconstruction test 2, 20 short pulses (a) Original, (b) Linear pseudo inverse, (c)
CS Gabor, (d) CS TV

Figure 4.12. Similar to the results in test 1, the reconstruction MSE is reduced by 36 times.

In tests 3 and 4, images are chosen which are sparse in the TV domain but not in the Gabor

domain. The TV reconstruction reduces the MSE to zero, compared to the Gabor reconstruction

reducing by only a factor of 2.6 and 2.4 respectively. The penguin image is an example with a

different background magnitude from the Shepp-Logan phantom, see Figures 4.13 and 4.14.

The signal in test 5 is a combination of a pulse from test 1 with the Shepp-Logan image from

test 3. The same signal is plotted in the time domain for Figure 4.15 and in the image domain for

Figure 4.16. Although both Gabor and TV CS reconstructions improve the result over the linear

calculation, the error still remains quite large. It is noteworthy that the sparsity percentages are

much lower for this case in both the TV and Gabor domains. This underscores the important

connection between having a sparse representation and making a good reconstruction.

In the last experiments, tests 6 and 7, MRI images of the brain are either T1 weighted or TOF

MIP. They appear not to be sparsely represented well in either the Gabor domain or in TV. The
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(a) (b) (c) (d)

Figure 4.13: Reconstruction test 3, Shepp-Logan phantom (a) Original, (b) Linear pseudo inverse,
(c) CS Gabor, (d) CS TV

(a) (b) (c) (d)

Figure 4.14: Reconstruction test 4, penguin (a) Original, (b) Linear pseudo inverse, (c) CS Gabor,
(d) CS TV

MSE result is poor in both reconstruction algorithms, see Figures 4.17 and 4.18. It is important

to note that under-sampling is in the image domain and not in the native MRI signal domain of

k-space. However, this is still an equivalent comparison for cases when the under-sampled k-space

produces artifacts that are incoherent, as in this experiment. A requirement of CS reconstruction

is that artifacts due to sampling are similar to uniform noise with an even distribution across the

image.

It is also important to point out that the linear reconstructions, calculated with a pseudo-

inverse, have a consistent MSE for all experiments, see L MSE in Table 4.2. This is not the case

for this tight frame. These findings show remarkably good results for some periodic signals. The

ability of the sparsifying transform to produce a high percentage of sparsity contributes greatly

to the reduction of reconstruction error. However, the Gabor tight frame does not appear to be

advantageous for the images investigated here. When using CS in these cases, it is vital to pick

a dictionary which will effectively and sparsely represent the signal of interest.
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(a) (b) (c) (d)

Figure 4.15: Signal reconstruction test 5, one long pulse + Shepp-Logan phantom (a) Original,
(b) Linear pseudo inverse, (c) CS Gabor, (d) CS TV

(a) (b) (c) (d)

Figure 4.16: Image reconstruction test 5, one long pulse + Shepp-Logan phantom (a) Original,
(b) Linear pseudo inverse, (c) CS Gabor, (d) CS TV

(a) (b) (c) (d)

Figure 4.17: Reconstruction test 6, T1 MRI, (a) Original , (b) Linear pseudo inverse, (c) CS
Gabor, (d) CS TV

(a) (b) (c) (d)

Figure 4.18: Reconstruction test 7, MIP MRI, (a) Original, (b) Linear pseudo inverse, (c) CS
Gabor, (d) CS TV
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Chapter 5

MRI Sampling Trajectories for CS MRI
Simulation

5.1 Introduction

One of the main ingredients of CS for MRI is correct under-sampling. Candès et al. and Lustig

et al. state a CS requirement of incoherence between the under-sampling domain and the sparse

representation domain, [15] and [40]. This means that under-sampling in k-space must have

minimal artifacts that are incoherent in the linear image reconstruction. A primary aspect of

this requirement is determining the best under-sampling technique. Using a uniform random

under-sampling matrix could seem appropriate, however, in MRI, k-space packs a majority of

discernible frequency content at its origin which trails off at its periphery. Additionally, just

sampling individual points of k-space randomly is non-standard for MRI and may not be as

efficient. Sampling is costly in time, therefore, determining the shortest sample trajectory path

is desired.

Under-sampling patterns for use in CS MRI are developed for comparing Total Variation (TV)

with the TIWT sparsifying transforms. The six different under-sampling patterns analyzed are:

Uniform random, 1D variable density with large and small center, 2D variable density with and

without fully sampled center, uniform radial, and logarithmic spiral. The process of developing

and comparing these different measurement matrices also involves processing a number of per-

mutations. Through checking several types of applicable under-sampling patterns in simulation,

the goal of proving the robustness of the TIWT is established. This provides proof that it can
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Figure 5.1: Fully sampled reconstruction simulation images: (a) Shepp-Logan phantom 256×256
(b) T1 MRI image 256× 256 (c) TOF MRI MIP image 192× 512× 512 8 channel (d) TOF MRI
(one slice) image 512× 512

enhance the reconstruction quality of the CS MRI result, therefore, enabling the use of less MRI

data to reduce acquisition time.

5.2 Methods

5.2.1 MRI Under-Sampling Patterns Developed

The radial under-sampling technique is calculated in a circular pattern, see Figure 5.2.a and

equations 5.1 and 5.2. Each line has a unique angle a of π/L. Where L is the number of lines,

N is the length of one dimension of the sampling space and n represents a point on that line.

x(a, n) =

{
tan(a)(−N

2
+ n) + N

2
if a ≤ 90o, a > 270o,

n if 90o < a ≤ 270o.
(5.1)

y(a, n) =

{
n if a ≤ 90o, a > 270o,

cot(a)(−N
2

+ n) + N
2

if 90o < a ≤ 270o.
(5.2)

The spiral technique presented here is logarithmic, meaning it will grow from the origin as

the distance increases, see Figure 5.2.b and equations 5.3 and 5.4. Where a and b are constants

that control the radius and expansion of the spiral and t is a point along the spiral

x(t) = aebtcos(t) (5.3)

y(t) = aebtsin(t) (5.4)

Several random distributions are utilized; a basic uniform random under-sampling is used, as

in 5.2.c. The variable density random under-sampling in Figure 5.2.d uses a 2D radial distance x
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Figure 5.2: Under-sampling patterns at 25%: (a) Radial with 70 lines (b) Spiral (c) Random
(d) 2D variable density (e) 2D variable density with 25 point fully sampled center radius (f) 1D
variable density with 32 line fully sampled center
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Figure 5.3: CS reconstructions of T1 MRI with 25% samples (a) Radial (b) Spiral (c) Random
(d) 2D variable density (e) 2D variable density with 25 point fully sampled center radius (f) 1D
variable density with 32 line fully sampled center
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calculation between the origin and any particular point. This distance is then used in a calculation

of a random variable based on a 1D Probability Density Function (PDF), that takes a standard

deviation (σ) and a distance (x), see equation 5.5.

PDF (σ, x) =
e
x2

2σ2

√
2πσ

(5.5)

The resulting random distribution matrix can be thresholded to any desired reduction factor

%. Additionally, a fully sampled center can be applied to this technique by setting the probability

of the points within the center diameter to 100%, see Figure 5.2.e.

A 1D variable density under-sampling technique with a fully sampled center is seen in Figure

5.2.f. This is achieved in much the same way as the 2D variable density calculation, using a 1D

distance from the origin of k-space and sampling the entire line.

An analysis is carried out for the question, “Can CS reconstructions for MIP be performed at

low or high resolution?” The input high resolution MRI TOF k-space dataset is 256× 224. It is

centered by the highest peak in a 512× 512 matrix, see Figure 5.4.a. Notice that this dataset is

a partial Fourier encoding, where the center of k-space is fully sampled, and a portion of k-space

is not sampled. For simulation of CS, this dataset presents a challenge for reconstruction at low

resolution, see Figure 5.4.b. In order to use this data, it needs to be cropped at 256×256 having

the peak centered. This does impact IQ of high resolution details, due to the fact that some fine

details are deleted in the periphery of k-space. For the simulations here, shifting of the k-space

peak avoids any cropping of data, and thus minimizes this negative impact to IQ. Therefore, a

shifting of the under-sampling pattern to correlate with the center of k-space is also performed.

For a real CS MRI acquisition, the under-sampling needs to be centered at the k-space peak to

be effective and not lose important information at the k-space center and periphery.

5.3 Results

5.3.1 Comparing TIWT and TV

The Tables 5.1 through 5.7, show a comparison of TIWT vs TV CS with several sampling patterns

for IQ analysis on three sample images from Figure 5.1. These images are diverse in several
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Figure 5.4: TOF MRI k-space data (1 receiver) and MIP reconstruction zoomed in (a) High
resolution 512×512 data (b) Cropped low resolution 256×256 (c) High resolution reconstruction
(d) Cropped low resolution reconstruction

practical qualities. The Shepp-Logan phantom is commonly used in analysis and demonstrates

low noise and simple structures. The T1 and TOF MRI brain images portray practical medical

images which have differences in noise and fine structure throughout. The 3D TOF additionally

represents a sparse image domain which should lend well to CS due to the use of TV and wavelet

`1 minimization functions.

In Table 5.1, there is a linear vs CS reconstruction IQ comparison with a variable density radial

under-sampling pattern across the three images. There is also an analysis of stopping criteria

where MSE results of 10 iterations are compared with 100 and 500 iterations. Note that for the

phantom, the CS reconstruction with the TIWT has a much lower MSE than that of TV at 10

NLCG iterations and at a lower under-sampling rate of 25%. However, at 100 and 500 iterations

the MSE is similar. This shows that 10 iterations is insufficient and performing more than 100

iterations may not change the image substantially. Through this data, there also appears to be

different iteration limits to improving IQ for certain image types and transforms. When looking

for a robust general solution, this experiment highlights how important it is to have an analysis

to determine good iteration stopping criteria. Given this challenge, in order to have a consistent

analysis, 100 iterations are chosen as the stopping criteria for all the other simulations.

In Table 5.2 for spiral under-sampling, comparisons can be made with radial sampling in terms

of MSE. For instance, in the TOF MIP at 38% samples for TIWT and TV, the MSE is 10.4 and

33.0, respectively, which is similar to the results shown in Table 5.1. Looking at the same under-

sampling ratios, a better IQ is achieved in an initial linear reconstruction. However, this does not
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Figure 5.5: TOF reconstruction with 38% random under-sampling, receiver 1, slice 1 (a) Fully
sampled (b) Linear (c) TIWT CS (d) TV CS

Figure 5.6: TOF MIP reconstruction with 38% random under-sampling (a) Linear (b) TIWT CS
(c) TV CS

always correlate to a better CS reconstruction, as seen in some results of this table.

Table 5.3 shows results using a uniform random under-sampling pattern. Much higher MSE

is observed in all linear and CS reconstructions. These results show it is important to have dense

sampling at the center of k-space for reconstruction. Notice the range of MSE at lower % vs higher

%, even at 75% samples, the MSE of the reconstruction is similar with radial under-sampling at

25%. However, even with this poor choice of under-sampling, the TIWT does operate effectively.

In Table 5.3, according to the MSE of the TOF MIP, it appears that the IQ does not improve

very much when CS is utilized, and in some cases for TV, even degrades. Actually, this is not

entirely the case, but rather an example of where IQ analysis with only MSE can be misleading.

This can be seen by analyzing intermediate CS reconstructed TOF images that make up the MIP.

Figures 5.5b and 5.6a show a 38% under-sampling linear reconstruction of the TOF slice and MIP.

A fully sampled slice is shown in Figure 5.5a. Intense noise has clouded the TOF and MIP image.
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After a TIWT or TV CS reconstruction, the noise is significantly reduced, see Figures 5.5c, 5.6b,

5.5d and 5.6c. Notice that comparing these results and the fully sampled MIP, Figure 5.1c, shows

a large difference in background intensity. This is greatly reduced in the CS reconstruction and

may be a desired trait because it intensifies the SNR.

Tables 5.4 and 5.5 represent the use of several 1D variable density under-samplings of k-space

for good IQ and simple adoption into standard Cartesian MRI pulse sequences. In Table 5.5,

a larger center of 2D fully sampled k-space contributes to a much better linear reconstruction,

which in turn, produces an improved CS reconstruction over the smaller center shown in Table

5.4. Additionally, these consistent improvements do bolster a robust use of TIWT for CS.

Table 5.6 shows the use of a random variable density 2D under-sampling. Similar to the fully

uniform random under-sampling cases of Table 5.3, there are drastic differences in MSE for recon-

structions at different under-sampling percentages. Lower sampling results in less improvement

in the CS reconstructions, however, this result improves when more samples are taken. Notice

that for both these cases when a low percentage of samples are taken, the center of k-space

is not fully sampled and the image reconstructions suffer a large loss of quality in major image

structures and intensity. It appears that this under-sampling pattern should also be avoided.

Table 5.7 shows improved results over Table 5.6 by modifying the 2D under-sampling pattern

with the addition of a center that is fully sampled. These results are very promising and show

that this under-sampling pattern produces some of the best reconstructions. The TIWT also

performs quite well with this sampling pattern.

Figures 5.4c and 5.4d represent an enlarged portion of the fully sampled TOF MIP. A high

resolution (512 × 512) linear reconstruction is compared with a cropped k-space low resolution

(256×256) reconstruction zipped to 512×512 for MIP calculation, The MSE difference between

the two results is about 3.0, which is small compared to some under-sampled linear reconstruc-

tions. However, in a visual analysis of the figures, some very fine vessels are missing or blurred

in the low resolution reconstruction causing an IQ impairment.

To mitigate this, the MIP simulations shown in the tables are all done by shifting the k-space

data so that it is not cropped, but rather has the center of k-space and the sampling center match
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Samples Phantom T1 MRI TOF MIP
% (itr) Lin TI TV Lin TI TV Lin TI TV

25% (10) 355 55.2 145 449 65.6 362 194 135 140
25% (100) 355 4.68 3.00 449 65.3 59.5 194 27.2 81.5
25% (500) 355 0.450 0.033 449 64.0 49.7 194 25.3 67.9
38% (10) 197 22.6 25.7 256 12.1 50.0 132 36.0 73.4

38% (100) 197 1.34 0.0244 256 13.0 34.8 132 10.9 38.5
38% (500) 197 0.004 0.02 256 14.5 21.2 132 9.52 27.2
50% (10) 132 10.6 2.95 86.2 13.0 29.0 37.8 6.00 20.6

50% (100) 132 0.163 0.0112 86.2 15.6 14.6 37.8 3.45 15.9
50% (500) 132 0.0018 0.0122 86.2 14.0 23.1 37.8 3.69 14.4
75% (10) 53.6 3.11 0.021 4.6 1.94 2.51 3.67 0.92 2.66

75% (100) 53.6 0.033 0.0064 4.6 1.96 2.65 3.67 0.73 2.52
75% (500) 53.6 0.0007 0.0052 4.6 2.34 2.60 3.67 0.77 2.48

Table 5.1: Radial under-sampling pattern IQ comparison with MSE between CS reconstructed
images and reduction factors (%) with 10 and 500 NLCG iterations

Samples Phantom T1 MRI TOF MIP
% Lin TI TV Lin TI TV Lin TI TV

25% 216 28.9 1.91 354 18.8 25.3 138 39.6 85.8
38% 164 3.2 0.0221 80 12.0 14.0 70.2 10.4 33.0
50% 118 0.492 0.0194 34.6 6.75 19.6 30.9 4.81 14.8
75% 54.9 0.061 0.0077 2.98 2.0 2.92 4.12 0.93 2.23

Table 5.2: Spiral under-sampling pattern IQ comparison with MSE between images and reduction
factors (%)

slightly off center. The MSE difference in this case is 0.11, which is negligible, and verifies the

assumption that there is no visible difference in IQ between low and high resolution fully sampled

reconstructions. With this accuracy, there is confidence in running these tests at low resolution

with a shifted k-space.

5.4 Discussion

5.4.1 Good Under-Sampling Patterns

Here it is shown that the choice of good under-sampling patterns clearly has a correlation to

the data being gathered. The center of k-space visually has a more intense magnitude of data,

therefore, sampling density at the center contributes to a better SNR and a lower MSE. The
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Samples Phantom T1 MRI TOF MIP
% Lin TI TV Lin TI TV Lin TI TV

25% 2629 1029 1128 3709 2077 3125 389 304 2684
38% 1910 837 1033 3251 2121 2823 281 196 310
50% 1518 789 922 1346 519 837 154 95.5 145
75% 1099 603 824 409 146 269 33.2 10.1 33.9

Table 5.3: Random under-sampling pattern IQ comparison with MSE between images and reduc-
tion factors

Samples Phantom T1 MRI TOF MIP
% Lin TI TV Lin TI TV Lin TI TV

25% 594 129 164 354 124 135 1128 457 631
38% 408 15.0 29.0 277 66.6 108 562 85.8 266
50% 291 1.23 13.5 252 26.7 35.6 444 50.8 216
75% 85.3 0.033 1.97 43.4 3.41 6.87 29.2 3.01 15.8

Table 5.4: 1D variable density with small (32 line) center under-sampling pattern IQ comparison
with MSE between images and reduction factors

Samples Phantom T1 MRI TOF MIP
% Lin TI TV Lin TI TV Lin TI TV

25% 336 264 182 169 85.3 89.0 370 188 276
38% 222 60.7 75.8 145 31.7 57.9 217 82.6 114
50% 174 11.0 2.24 136 27.5 76.6 134 41.4 67.1
75% 64.6 0.014 0.386 28.5 2.66 4.72 12.9 1.94 7.70

Table 5.5: 1D variable density with large (60 line) center under-sampling pattern IQ comparison
with MSE between images and reduction factors

Samples Phantom T1 MRI TOF MIP
% Lin TI TV Lin TI TV Lin TI TV

25% 1429 770 960 1956 848 1696 87.8 31.9 84.9
38% 1092 568 808 1618 768 1541 59.5 23.7 52.5
50% 910 581 750 1496 797 1505 22.2 4.03 11.8
75% 59.6 0.702 0.008 3.74 1.99 2.61 2.45 1.53 1.87

Table 5.6: 2D variable density under-sampling pattern IQ comparison with MSE between images
and reduction factors
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Samples Phantom T1 MRI TOF MIP
% Lin TI TV Lin TI TV Lin TI TV

25% 286 65.4 3.42 280 31.7 27.1 187 32.3 56.1
38% 221 14.3 0.0211 186 11.1 20.4 124 4.96 37.4
50% 167 0.0328 0.0132 101 7.50 10.3 61.4 2.87 20.1
75% 54.2 0.0596 0.0035 10.3 2.32 3.25 4.37 0.84 2.69

Table 5.7: 2D variable density with small (25 pixel radius) center under-sampling pattern IQ
comparison with MSE between images and reduction factors

radial, spiral, 1D and 2D variable density with the center fully sampled perform well, compared

to the other patterns that did not sample with a dense center. Balancing IQ with how the under-

sampling pattern dissipates is a complex analysis that requires visual as well as error analysis.

5.4.2 Reconstruction of MIP

CS reconstruction of TOF data used in a MIP can be performed at a lower acquisition resolution

and then transformed to a higher resolution because there are no visible differences in smaller

vessels. The analysis of IQ with MSE is chalenging for MIPs because the error measurement may

not pick up the changes in small vessels being of little numerical error. Additionally, changes in

the background intensity of the image do contribute to larger error. Having a larger MSE may

be misleading compared to what is observed with a visual analysis.

Special care must be taken for under-sampling with partially encoded Fourier k-space data.

Visually, the image generated without small amounts of data at the periphery does have a negative

impact on small vessel details of the MIP CS reconstruction. Therefore, adjusting the k-space

center is needed to prevent cropping any data and have more meaningful IQ comparisons.
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Chapter 6

Optimization for CS Problems with
FastTestCS

6.1 Introduction

Since CS MRI reconstruction problems are extremely computational due to the iterative opti-

mization with repeated transforms required, this reconstruction would have taken vastly longer

to perform even a couple decades ago. Now many of these experiments and simulations are

able to be implemented and performed fairly quickly with advances in computer technology and

resources. Computationally, orthogonal transforms will operate faster than redundant or adaptive

dictionaries which can add considerable time and memory to CS simulations and reconstructions.

Sparsifying transforms that perform well in CS can be a wide variety from orthogonal to redundant

to adaptive dictionaries, each with varying degrees of complexity and applicability. Along these

lines of thought, Ning et al. investigate the patched-based trained directional wavelets and extend

them into the TI domain to enhance MRI image features [44]. Sadeghi et al. compare redundant

dictionary learning algorithms for computational burden and quality [47]. Practical experimenta-

tion and application as proof of theory underlay engineering progress. The need for comparing

other researcher’s software code and algorithms is essential for prototyping ideas. There is a huge

body of research in CS for MRI, so how does one evaluate what is the best practical technique

for a CS MRI product? The advanced simulation software proposed here is necessary for trying

techniques and making comparisons.
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6.2 Methods

6.2.1 “FastTestCS”, A Fast Software Framework for Testing Under-
Sampling and Sparsifying Transforms in CS

Novel software, FastTestCS, is introduced here as a CS testing framework for answering some

of the questions posed in Chapter 1. It is a tool that can be customized for CS reconstructions

using different images, sampling patterns, sparse transforms and optimization techniques. It

also is written in the compiled language of C++ that allows for quick runtime of simulations.

Additionally, CPU performance and time can be measured more in line with an expected fast

product implementation. The FastTestCS executable is designed with a full set of versatile

arguments to customize all the needed functionality to run several different simulations. It is

modular, with simple methods that can be used similar to functions used in Matlab [43] or other

object oriented programs.

FastTestCS is built upon the understanding that CS takes considerably more computation

and memory than standard cases of MRI reconstruction. Wavelab [29], a collection of wavelet

implementations for Matlab, used initially in testing the TIWT, is too slow. The abstraction and

additional language internal processing are contributing factors. FastTestCS addresses the need

to have a more efficient compiled programming environment over prototype Matlab software.

The speed of the TIWT is tested by comparing the transform reconstruction wall time dif-

ference between the Wavelab Matlab implementation vs. the transform written in C++. Two

resolutions of an image are chosen, 256 × 256 and 512 × 512. The test code is developed by

isolating the transform setup, data memory transfers, computation and tear down of the method.

These timing tests are performed without the overhead of other CS processing. This time mea-

surement includes calculating 10 forward and inverse transforms on both real and imaginary parts

of the image for a total of 40 calls to the TIWT method.

This number of transform calculations is comparable to the minimum that must be performed

in a CS program. However, often the number of transforms are much greater, such is the case

for the NLCG with a quadratic line search and Wolfe conditions. Many extra iterations must be

performed to determine appropriate search directions and step sizes.
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Four different implementations are tested for the standard orthogonal wavelet and the TIWT.

The translational invariance is achieved by performing circular shifts of the data. The orthogonal

wavelet provided by Matlab as “WAVEREC2” and “WAVEDEC2,” is compared with the GSL

C++ implementation “gsl wavelet2d nstransform matrix.” The TIWT, provided by Wavelab as

“FWT2 TI” and “IWT2 TI,” is compared with the FastTestCS implementation “TIDWT” and

“ITIDWT.”

The FastTestCS approach implements CS and several sparsifying transforms that run faster

in C++ than in Matlab. Algorithms can be prototyped for accuracy first in Matlab, and then

re-implemented in C++. The simulations are run in C++ in less time and in parallel across

multiple cores and machines. Additionally, FastTestCS has image comparison tools such as MSE,

as well as other useful image operations like “Normalize,” “ReadImg” or “WriteData.” It is a

Microsoft Visual Studio project and can be compiled for Windows or Linux. It allows sharing

code for easy algorithm prototyping, comparison and dataset manipulation. It is a portable and

customizable simulation tool to benefit CS research.

There are many required permutations of several parameters and reconstruction tests to run

in order to prove robustness. It is apparent that efficiency can be improved by parallelizing

computations and simulations, compared with running on just one machine with one thread.

Since some CS routines could run over a week to a month, it would be impractical to try many

different options serially.

In response, FastTestCS executable is designed with very versatile arguments to implement all

the needed functionality and parameters to run several different simulations from the command

line. Multiple machines are used to easily distribute many simulations. Simple scripts are used

to tar up the software and unique calling parameters, send the package to the specified machine,

build and run the package, save the results and transfer the images and results back to a single

archiving repository for review. With this method, there are no limits to the number of machines

that can be used and simulations that can be achieved more quickly in parallel.

Distribution is achieved for these tests with a small cluster of five individual quad core ma-

chines, with one being the source and archive, in addition to having its own portion of processing.
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Meta-data in the image identifies what simulation parameters produced the image for distinction.

Once all the resulting images are together, quantitative and qualitative image comparisons are

performed with a “golden” fully sampled image. An executable loads the reconstructed images

and the golden image, and makes several calculations for each image such as MSE. The program

can then output results to a comma separated table with one line for each image that is easily

viewed in a spreadsheet.

MRI k-space data is generated by a General Electric (GE) Healthcare MRI scanner and saved

as a “P”-file. GE provided Matlab software to read the P-file and make a k-space matrix. Due to

this data being on a Cartesian grid, a fully sampled reconstruction is simply an inverse FFT. This

fully sampled dataset is input to the under-sampling process used in FastTestCS reconstruction

by way of a Comma Separated Value (CSV) file. The resulting CS reconstruction is compared to

the original fully sampled dataset and measured by MSE to verify its fidelity.

An important way to analyze different parameters and IQ results of CS reconstructions is to

keep all parameters the same in the CS algorithm and just change the transform or sampling

pattern. The analysis and results here are done with individual transforms without a combination

of other transforms. This is to measure the error of each sampling pattern independently and

identify the transform quality.

The steps of the CS reconstruction simulation are as follows and in Figure 6.1:

1. Start with fully sampled k-space data.

2. Sample the k-space data using a desired under-sampling pattern. (ie. Randomly 1D sample

the k-space data rows using a desired PDF. The middle of the PDF has a probability of

1 to fully sample at the middle of k-space. See Figure 6.1 for the PDF and an example

resulting sampling pattern.)

3. Perform the iterative non-linear optimization technique.

4. Compare the error between the fully sampled image and the CS reconstruction to measure

the quality of the reconstruction.
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Regularization is a standard technique for preventing over-fitting and having noise overly affect

the solution [35]. In CS, conjugate gradient regularization uses a sparsifying transform such as

the Wavelet transform, W , to take advantage of the compressibility of the actual image. To

balance the effect of regularization, λ is used as a weighting parameter. One solution is the

unconstrained convex optimization problem shown in equation 6.1 [5].

x = minimizex[‖Ax− y‖2
2 + λ‖Wx‖1] (6.1)

The last term can be replaced or added to with other regularization approaches such as TV or

a contourlet transform [27] instead of a wavelet transform. The transform chosen depends on

the sparse domain(s) of the image, which can be measured by IQ from compression and CS

simulations. One important property of this formulation in equation 6.1 is non-linearity; it is no

longer a linear function of the vector x.

For reduced acquisition in MRI, data along the phase-encoding direction is usually under-

sampled due to its direct reduction in acquisition time, but data along the frequency-encoding

direction is still fully acquired. In Sparse MRI [40], variable-density random under-sampling along

the phase-encoding direction is usually used for data acquisition.

The CS reconstruction optimization in FastTestCS is the NLCG with backtracking line search

and Wolfe conditions, [45] and [40]. The formulation of the objective function f(x) in equation

6.1 requires the calculation of the gradient (∇f(x)), which Lustig et al. [40] define as equation

6.2.

∇f(x) = 2Φ∗(Φx− y) + λ∇ ‖ Wx ‖1 (6.2)

Where ∇ ‖ Wx ‖1 can be approximated with the sign function as in equation 6.3. The star (∗)

symbol represents the complex conjugate transpose.

∇ ‖ Wx ‖1= W ∗sign(Wxr) +W ∗sign(Wxi) (6.3)

This unconstrained formulation is versatile when dealing with non-orthonormal transforms.

The calculation of the gradients in the unconstrained approach requires the inverse of the trans-

form. For an orthonormal transform, that is simply a multiplication of the coefficients by a
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Figure 6.1: Implementation of CS image reconstruction simulation

transpose of the wavelet dictionary. However, for a non-orthonormal transform, like the TIWT

and many of the other transforms, a separate calculation of the inverse transform is used rather

than a transpose of the dictionary. In FastTestCS, a transform method is created that calls the

forward or inverse of the transform. All coding for the transform is easily integrated, segregated

and tested. Real and imaginary parts of MRI data are treated separately throughout all of the

optimization.

Additionally, a combination of any two transforms could be created. This is done by performing

a separate NLCG optimization at each iteration for each type, then the average of the two is

created at the end. The IQ of the combined transforms perform better than the individual ones

with the obvious impact of more CPU time. Much analysis is done on individual transforms

without other transforms or a TV term. This is needed to measure the value of each transform

independently and identify their qualities.

There are several other approaches to calculating ∇‖Wx‖1 which are also investigated. The

`1 norm for the data matrix is defined as
∑
| Wx |, however, when dealing with a complex data

set, there are different ways of applying the sparsifying transform and calculating the gradient. A

description is in the appendix.

Recall in equation (6.1) for the unconstrained CS formulation, there is an unknown constant,

the weighting parameter lambda. In order to estimate the ideal lambda, a guess and check
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Figure 6.2: (left to right) (a) PDF of sampling function. Vertical scale of the plot is 0 to 1. (b)
The resulting sampling pattern in k-space, where the white lines are acquisition lines.

method is implemented where the MSE measurement of the image quality is computed for each

image that is produced with a given lambda. It is determined that there is a minimum MSE

as a function of lambda. Therefore, the lambda that produced the lowest MSE is an optimized

lambda and is used for comparisons between transforms.

Another non-linear reconstruction approach uses OMP, to calculate a sparse transform given

a custom dictionary for the transform. A custom dictionary can be created and even trained to

be more applicable to the image being reconstructed. OMP is an inexact transform because it

will find a representation that is most sparse given an acceptable error tolerance. The lower the

error tolerance, the more exact is the representation. To use OMP in the CS framework of Figure

6.1, replace the sparsifying transform, non-linear update, and inverse sparsifying transform steps,

with the OMP sparsifying transform. Alternatively, one could keep the non-linear update step;

however, that would be adding an unnecessary additional non-linear update to the process.

To train a dictionary, the K-SVD [1] approach is implemented, where the training set is the

initial guess image that is produced from a linear reconstruction. K-SVD will produce a sparsifying

transform dictionary, given a specified error tolerance. Once a dictionary is trained, it can be

used with OMP.

OMP is implemented on small image patches because it cannot operate on large datasets all

at once due to memory requirements. A full image is broken up into small patches that overlap
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and are averaged when recombined so as to eliminate blocky artifacts. This technique will add

much redundancy to the image and coefficient set if the overlap is large. The block size and

overlap are important factors in IQ. Comparisons of these different settings are also performed.

One additional parameter with this approach is the use of a redundant dictionary, which can vary

from not being redundant to being many times redundant.

Due to the differences of a sparse representation calculated on a whole image vs patches, tests

with transforms on small patches are also investigated. By using the unconstrained NLCG ap-

proach, rather than doing a whole image transform, the image is broken into small and redundant

patches, then the NLCG is performed on the redundant representation.

Another parameter that needs to be understood in all of these optimization approaches is

the number of iterations. The objective function is found to be a good indicator of convergence

because it will decrease rapidly at first and then decrease at smaller increments. When these

increments are small, the image is not changing much and the advantage of more iterations be-

comes of lesser value. Additionally, sometimes the objective function will increase, thus indicating

that the image may not converge but rather diverge. In this case, it is important to stop the

iterations at a point when objective function is a minimum and before it diverges.

When using OMP as the non-linear update step, there is no objective function, but there is

a level of sparsity. The sparsity increases after each iteration, at first very drastically, but after

a few iterations, it increases by a smaller amount. At this point, the image is not changing very

much which may indicate a good stopping criteria.

Both the objective function and sparsity stopping criteria should be contrasted with actual

image quality by visually inspecting the images a few iterations before and after one has deter-

mined to stop. Additionally, a quantitative measure can be plotted at each iteration to see where

improvement ends. These approaches are a simulated verification of the stopping criteria because

in a real situation, one will not have a fully sampled image to compare.

To find the best k-space trajectories to use, the standards set up by Lustig et al. in Sparse MRI

are compared using a Cartesian grid, so results can be compared equally with other sparsifying

transforms [41]. Just the sum of squares is used for parallel imaging, since our focus is on
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sparsifying transforms, and not on parallel imaging technique comparisons. In using the PDF,

there is a way to randomize the sampling pattern so as to test robustness with different seeded

patterns, see Figure 6.2.

The unconstrained CS reconstruction formulation from equation 6.1 requires calculation of

lambda. Lambda was determined by setting the number of non-linear CG iterations to 15 and

the reduction factor to 33% and varying lambda for each transform. The result of this analysis is

shown in Figure 6.3, where it can be seen that a minimum occurs for each sparsifying transform.

This minimum can then be used for future tests that use a similar image type and reduction

factor. The effect of lambda may need to be readjusted when the image is of a different type,

has different artifacts or a different reduction factor. This is because more or less regularization

may be needed to mitigate or enhance these image features so convergence of good IQ occurs.

The other factor that needs to be understood is the number of iterations. This can be

determined partly from the plot of MSE after each iteration and from visual inspection of the

image when MSE appears to be stable. This stability can be seen in Figure 6.4 after about

40 iterations. It should be noted that in certain cases, more iterations are needed to remove

artifacts. Even if MSE does not appear to be improving much, artifacts can still be removed.

This is observed in Figure 6.5 where at 35 iterations there are still artifacts, but at 100, they

are lessened. Figure 6.4 shows that TV does contribute the most to an improved sum of error

calculation. Visually, the artifacts seen in Figure 6.6.b appear to be reduced the most by TV

regularization, seen in Figure 6.6.d as well. The other transforms (Figures 6.6.e,f,g) produce

varying degrees of quality. The wavelet regularization has fewer ring artifacts than the contourlet

or curvelet regularization. The curvelet regularization is much smoother than the contourlet

and wavelet regularization. The contourlet regularization appears to preserve some line features

better, but more artifacts remain. The `1-norm regularization did not contribute to improve the

artifacts; however, some noise is reduced, as seen in a comparison of Figures 6.6.b and 6.6.c.

A small additional improvement in MSE can be found when combining multiple regularization

techniques with the appropriate lambda. This lambda will not be the same as the minimum

lambda found in Figure 6.4 because lambda becomes a balancing parameter between the other
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Figure 6.3: Unconstrained CS with different transforms and regularization parameters (lambda).

Figure 6.4: Unconstrained CS iteration comparison.
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Figure 6.5: Unconstrained CS result for iteration comparison with wavelet regularization. (left to
right) (a) 15 iterations, (b) 35 iterations, (c) 100 iterations.

regularization techniques. Finding the optimum lambdas for multiple regularization was not

investigated, therefore better results than Figure 6.6.h may be achievable.

The unconstrained CS formulation from equation (6.1) can be performed without a weighing

parameter; however, there may be some improvement when a soft threshold is used to weight

the regularization. Figure 6.7 shows how different soft thresholds affect the sum of error for the

constrained CS reconstruction. Figure 6.7 also shows how different contourlet settings (a change

in nlevs is shown) can drastically affect the minimum error that can be achieved. One important

observation from this graph is that for these cases, a soft threshold only minimally improves the

reconstruction. Figure 6.8 shows images reconstructed with constrained CS using an optimized

soft threshold. Here wavelets appear to have mitigated artifacts better than contourlets or

curvelets. One factor that is not optimized for each transform is the number of iterations. This

depends on how quickly an image converges for each transform, which can differ.

6.3 Robust Simulation Framework

Two main sampling schemes are investigated, Cartesian 2D and radial 2D. The Cartesian scheme

is investigated more thoroughly. A random probability density under-sampling is used which

samples lines, while fully sampling the center of k-space on the Cartesian grid. Having the

probability density function allows for repeating runs to test the robustness of the sampling

pattern with different random seeds. Each sparsifying transform is tested repeatedly with the
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Figure 6.6: Unconstrained CS results, (left to right, top to bottom) (a) Original image, (b) With-
out regularization, (c) With only `1-norm regularization, (d) With only TV (e) With only curvelet
regularization, (f) With only wavelet regularization, (g) With only contourlet regularization, (h)
All transforms combined regularization.
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Figure 6.7: CS with different transforms and soft threshold values

same set of random k-space acquisitions at several levels of under sampling. Sum of squares is

used to combine the parallel channel datasets.

The first step is to test these transforms and find the best optimization and sampling schemes

for this research in Matlab. Due to limits of compute time, the NLCG constrained `1 minimization

was re-implemented into FastTestCS, a C++ application. The probability density function is also

re-implemented from Matlab to C++ for use with the NLCG CS application. OMP is also re-

implemented in C++ and used for TICT in the NLCG CS application. Additionally, K-SVD is

implemented in Matlab using code from the author[1]. Attempts are made to re-implement it in

C++ without success. The Matlab CS NLCG problem is also able to be modified to perform K-

SVD as the sparsifying transform. Due to K-SVD and OMP also being non-linear optimizations,

an additional approach is taken that eliminates the non-linear update step typical in the CS NLCG

implementation. From a theoretical perspective, there is no need to have two non-linear steps

present in the optimization, only one is necessary. Therefore, tests were also performed using

only K-SVD as the non-linear optimization and results proved this to be true.
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Figure 6.8: Unconstrained CS simulation results using optimized soft threshold (left to right, top
to bottom)(a) Original image (b) Non-transformed (no threshold) (c) Wavelet (d) Contourlet (e)
Curvelet
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In terms of non-linear solver convergence, the unconstrained NLCG has the best robustness

and ease of implementation. Every sparsifying transform did converge with this solver.

A radial sequence is investigated because of the quality of less coherent artifacts, which has

been pointed out in the application of `1-Magic. `1-Magic is investigated for use in 2D CS with

different sparsifying transforms; although many attempts are made, the optimization algorithms

did not converge, therefore, no results are obtained.

In terms of de-noising and artifacts, having the center of k-space fully sampled produces

better quantitative measures. The center of k-space is where lower frequency larger structures

are maintained. When under-sampling the outer lines of k-space, more fine structures can be

distorted, blurred or lost when using higher reduction factors. Therefore, minimizing based on

MSE does not lead to the best sampling pattern.

In terms of using quantitative measures to find the best sparsifying transforms and settings,

MSE did not always produce reliable results, but neither did any single measure. If quantitative

measures are to be used, a balancing of multiple measures may prove most effective, similar to

edge and noise measures, or SSIM, or a combination of all. These measures do identify a good

set of sparsifying transform settings, but are not reliable enough to identify the best. A visual

inspection of the results is always necessary. Often, a very low edge error does not produce a

very low noise result. Potentially, these two measures are helpful together, because when both

measures are equally good, the results are better.

In summary, a simple to use framework is developed for testing sparsifying transforms: The

NLCG with `1 minimization. The gradient calculation applies the transform to the real and

imaginary parts separately to produce the most stable results.

6.4 Results

Performance measurements show a big speed up in computation time with optimized C++ code

vs Wavelab. See Table 6.1, where the orthogonal wavelet is optimized in a Matlab toolbox vs

in C++ using the Gnu Scientific Library (GSL) [32] in FastTestCS, the computational time is

very similar. However, when using the TIWT from Wavelab in Matlab vs C++ where the TIWT
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Transform Function Language 256x256 512x512
O Wavelet WAVEREC2 Matlab toolbox 0.75 2.9

& WAVEDEC2
O Wavelet gsl wavelet2d C++ GSL 0.33 2.21

nstransform matrix FastTestCS
TIWT FWT2 TI & Matlab Wavelab 342 1380

IWT2 TI
TIWT TIDWT & C++ GSL 4.6 22.83

ITIDWT FastTestCS

Table 6.1: Time measurement (seconds) comparison of 40 wavelet transforms (10 complex,
forward and reverse), O = Orthogonal, with C++ and Matlab implementations.

implementation is coded for FastTestCS, the difference is quite dramatic. FastTestCS is sixty

times faster! This shows that coding some computationally time consuming algorithms in C++

is most beneficial.

Reconstructing the TOF MIP, all at a high resolution did come at a high computation cost of

about 5× longer, therefore, lower resolution reconstructions are performed. As a time comparison,

a 512 × 512 8 channel 192 slice MIP CS reconstruction with the TIWT for 10 iterations takes

20 hours, whereas, the same reconstruction at 256× 256 takes 4 hours, single threaded, with an

Intel Core i7 CPU.

6.4.1 Lack of Good Comparison Software

Software engineering is sometimes a neglected discipline in the process of research and simulation.

It may be at most an afterthought of the work for a publication which produces tables, images

or other results through much computation.

Ideally, one would like to have produced software that meets software engineering principles

with high quality such as robustness, maintainability, usability, re-usability, abstraction, modular-

ity, stability, documentation, performance, modern language, streamlined, efficient, safe, accu-

rate, multi-threaded, multiplatform, customizable, and distributable. Effort is required for such

tasks and when these aspects are neglected, a need may arise in the development of the research

software for one or a few of the missing aspects requiring extra re-work. This may be typical and
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may explain why research software is very much an application specific prototype. It can have

problems when needed for other projects, other than the one it is designed. After going through

a few iterations of rewriting methods, Application Programming Interfaces (API) and designs,

some understanding of the value of software engineering becomes apparent.

Additionally, one should identify and answer several questions: What is the state of the art?

What implementation is currently used that requires advancement? How are comparisons done?

How are simulations and results used and shared? What compute resources are needed? How

much collaboration and teamwork is needed? What cross functional work is required?

Much MRI research software is written in Matlab; often, colleagues will share Matlab code.

So, the use of Matlab software is essential to research development, because it allows for easy

algorithm prototyping and dataset manipulation. Matlab can be used as a prototype to read raw

data and generate plots, images, movies and other datasets.

For performance computation measurements, and future implementation, is Matlab really a

good environment for the development of CS? How can research software be made that will work

for prototype and then be useful to others for advancement or comparison?

Practical CPU considerations should also be understood. For example, is a learned dictionary

practical when the computations are orders of magnitude higher than other sparsifying transforms?

With the understanding that CS takes considerably more computation and memory than

standard cases of MRI reconstruction, a question could be asked: Should a different programming

environment be used? There are several additional considerations. Current MRI products are

produced and programmed in C++ and must use several software libraries. This may be a big

transition for researchers that use Matlab where there is such a code base already written. Matlab

also has many necessary software libraries already preloaded or easily integrated. However, with

C++, one may be able to integrate their software more easily to product implementations when

the same language is used. From a CPU performance perspective, C++ code may run up to

10, 000× faster than Matlab code, and this is the type of speed up required for CS. Matlab does

have the ability to wrap C++ code to be used in Matlab, which does then run just as fast. It

seems that the transition to at least coding some time consuming algorithms in C++ would be
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most beneficial. Whether to code everything in C++ or some in Matlab and some in C++ takes

some additional balancing.

Even with an ideal language implementation, compute resources often limit simulation and

test speed. Research often involves trying several different options which will involve many

iterations of the simulation. Contrast this with product software which must run once the right

way and may not be as parallelizable or customizable. Therefore, product equivalent software

and compute resources may not be ideal for this research. What should be used instead?

The CS research involved in investigating sparsity of transforms in CS first required imple-

menting the transform and allow the API to modify several important parameters. For instance,

after investigating the K-SVD transform, it is found that the image patch size can be modified

in some cases to produce better results. It is important to try these cases to compare results

with other parameter settings. Additionally, many results require statistical stability, so several

iterations with different random seeds for the random under-sampling are required. Some spar-

sifying transforms work better at different reduction factors; therefore, trying several ranges of

reduction factors is also required. For wavelets, several different filters could be used which would

also result in different results and these parameters could be set up to be swept through as

well. Image types are also a factor: There are various single and multi-channel image types and

datasets which will perform differently with different transforms. The exponential expansion of

the number of simulations quickly becomes overwhelming.

Consider new applications that patches can impact like DCT or wavelets. Consider how

much computation does this required compared to other transforms? How does adding TI and

redundancy to wavelets affect the CS MRI reconstruction and computational cost? TV is very

fast to compute and can be easily combined with other sparsifying transforms for better IQ.

6.4.2 Fast Software Framework for Testing Sparsifying Transforms with
CS “FastTestCS”

Several transforms for IQ improvements are evaluated while not neglecting performance, the

analysis of the amount of time it takes to perform these sparsifying transforms in a clinical
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Transform Memory(MB) Iterations Time(sec) Threads BS SD
WT 20 1 0.34 1 n.a. n.a.
WT 20 20 3.9 1 n.a. n.a.

TIWT 134 20 30.5 1 n.a. n.a.
TV 24 20 9.5 1 n.a. n.a.

DCT 24 20 17 1 4 4
TICT 156 20 178.3 4 4 1
TICT 169 20 397.1 1 4 1
TICT 324 20 2243 1 6 1
TICT 560 20 9915 1 8 1

Table 6.2: Time and memory measurements when using various transforms in CS simulation vs.
threads, Block Size (BS) and Sliding Distance (SD) for a single image reconstruction (256x256)

setting. If these transforms take an impractically long time, how can it be applicable to be

used in a product time frame of about a minute? CS reconstructions with decimated wavelets for

single images can take minutes. However, when dealing with larger datasets such as multi-channel

3D volumes, this could result in the reconstruction taking over a day on a single dataset. For

more advanced sparsifying transforms with dictionary learning, the time problem becomes much

worse. Not only would clinicians be affected by the time element, but, researchers would find

it insurmountable to perform many tests in Matlab comparing many transforms. To overcome

this time hurdle, another language and implementation is pursued by optimizing code and re-

implementing algorithms and transforms in C++. Speed up factors of 10× to 10, 000× are

seen. Once the CS algorithm and a few sparsifying transforms are converted to C++, CPU

performance and time could be measured more in line with a fast product implementation. Now

a decimated orthogonal wavelet transform in a single image reconstruction takes less than 10

seconds. Still other redundant transforms such as the TIWT takes on the order of 10× longer

than the decimated orthogonal wavelet transform of about a minute per image. A 100× to

3000× increase in time is measured when the translational invariant DCT using patches with

OMP is used compared to the baseline time of decimated orthogonal wavelets, depending on the

level of redundancy, see Table 6.2.

CS is an iterative approach which repeats the computations several times. Hundreds or
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even potentially thousands of iterations are possible when forward and inverses of sparsifying

transforms and FFT’s are being performed to go back and forth from sparse space to image

space to measurement space. If additional gridding is required, then another highly computative

step must be a part of each iteration. For the investigation of sparsifying transforms, it leads to

over-complete representations and dictionary learning. This means that the image was no longer a

256×256 matrix, for example, but rather could be redundant 5 fold or more, and much more with

overlapping patches. A single 2D image could be broken up into about 65000 8× 8 overlapping

patches with a redundancy of 64 times. Additionally, when performing the K-SVD algorithm, at

each sparse representation calculation of coefficients, there is an additional optimization step of

OMP on each small patch. The computational increase in performing K-SVD is 100’s of times

more than a decimated 2D wavelet on the same image. When considering memory space, the

space required for a basic 2D image in Matlab is 65k elements, which are complex doubles, at 16

bytes each, that is 1 megabyte. The processing involved with larger representations will require

much more time and memory space. When dealing with 3D datasets, memory becomes even more

of an issue. For example, a 256×256×256 matrix, when gridded could be up to 512×512×512

taking 2 GB of memory. On a 32 bit system, which is typical of the student edition of Matlab, 2

GB is the maximum capacity of RAM. In subsequent years, however, most modern workstations

are 64-bit with support of +10 GB of RAM; therefore, these sizes of datasets are now more

plausible.

The prototype Matlab software is used for generating all the results for the ISMRM abstract

“The Investigation of Sparsifying Transforms in Compressed Sensing for Magnetic Resonance

Imaging”[6], where several different sparsifying transforms and algorithms are compared and

evaluated by simulation. Some of these sparsifying transforms are available through Wavelab,

a collection of wavelets written in Matlab. Some other transforms are available through the

authors’ websites (see appendix). Finally, the remaining algorithms and transforms are hand

coded in Matlab. The raw k-space data is generated by a GE scanner and saved as a raw data

“P”-file. GE provided Matlab software to read the P-file and use a k-space matrix. Due to this

data being on a Cartesian grid, reconstruction is simply an inverse Fourier transform, performed
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with a Matlab function “IFFT”. The fully sampled dataset is input to the under-sampling process

used in CS reconstructions. The resulting reconstruction is compared to the original fully sampled

dataset to verify its fidelity.

It became apparent that after running these simulations on just one machine, Matlab would

not be efficient. Since some CS routines such as K-SVD would take over a week to a month

to run, it was impractical to try many different options. This research then takes an additional

approach to implement CS and several sparsifying transforms that are in Matlab into C++. The

path is quite clear now, one can create software by verifying the accuracy of the transform and

algorithm first in Matlab and then re-implement it in C++, verifying between the two, and then

run the simulations in C++.

Much Matlab code is converted to C++ to take advantage of more speedup. The orthogonal

wavelets, TIWT, DCT, TICT with patches are re-implemented in C++. Some investigation is

also done to determine the value of implementing code with GPUs and CPU’s. It is determined

that the versatility and advancements of multi-core CPUs is keeping pace with the advancing GPU

offerings. The patch transform with OMP for TICT with parallel threads is implemented to take

advantage of multi-core CPU’s. When attempting GPU integration with Matlab and C++ for

additional speedup, one needs to understand what transforms and operations are parallelizable.

This research is also able to use advances in multi-core computer hardware to run multiple

simulations at the same time on the same machine, to test several options more quickly than

testing those options one by one.

This optimization and parallelization gives speed up benefits of 3 orders of magnitude in

performance for many simulations. The OMP algorithm also sees this substantial speed improve-

ment. Additionally, for K-SVD and TI-DCT which uses OMP, the small patch calculations can

be performed in parallel. An additional speed up of about 2.5 is achieved with P-threads on a 4

core system.

Multiple machines are also used to distribute many simulations. Simple software clustering

scripts are written to tar up the test executable and calling parameters, send the package to

the specified machine, run the package, save the results and transfer the images and results
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back to a single archiving machine for review. The executable is designed with a very versatile

API to implement all the needed functionality to run several different simulations with all the

needed parameters. With this method, there are no limits to the number of machines that can

be used and simulations that can be achieved more quickly in parallel. For instance, a cluster was

implemented to use 5 individual quad core machines, with one being the source and archive, in

addition to having its own portion of processing. It would tar up 5 packages each with different

calling parameters. Then, scripts would send the packages, one by one, to each of the machines,

to execute their set of simulations, running 8 at a time, 1 per hyper threaded core, starting the

next set of 8 simulations once the first 8 finished. Any number of simulations are automatically

accommodated. The archiving machine then starts polling the other machines to see when they

are done. If they are, it will retrieve the results and place them in the archive. Meta-data is used

for distinction in the image, it identifies what simulation parameters produced the image. Once

all the resulting images are together, quantitative and qualitative image comparisons are then

performed with a “golden” fully sampled image. An executable loads the “golden” images, and

makes several calculations for each image such as MSE, Edge, Noise, and SSIM. The program

then outputs a comma separated Table with one line for each image that is then easily viewed in

a spreadsheet.

6.5 Discussion

6.5.1 Stopping Criteria

The stopping criteria is determined by analyzing the IQ after a certain number of iterations. This

proves to be a very challenging issue due to the fact that different image types will require a

different number of iterations to produce the best reconstructions. Image types with very little

noise require many more iterations, however, the reconstruction IQ improves greatly as well. This

improvement is probably due to the fundamental aspect of CS reconstruction theory of sparsity.

When higher sparsity can be achieved in transforming these images, CS has a greater probability

of better reconstructions with less data. However, most real images do have noise.

Despite this dilemma, a solution can be observed where enough iterations can be achieved

79



that produces a result that will not change IQ significantly, even if more iterations are performed.

Then this number of iterations can be used for other similar tests. This aspect of CS highlights

the importance of performing an analysis for determining the best stopping criteria for specific

image types and algorithms.

6.6 Other Algorithms

There is a way to get `1-Magic to work with different sparsifying transforms. The code for

`1-Magic with the Gabor transform and reweighted `1 minimization is available (thanks to the

author Michel Wakin). However, since the example is in Matlab, it needed to be converted to

C++ for a quicker comparison with the other sparsifying transforms and optimization algorithms.

Another option when using radial sampling is to implement gridding for either radial 2D or 3D

with sparsifying transforms in the framework.

6.6.1 Computation Time with FastTestCS

The choice to develop FastTestCS came out of the necessity to speed up reconstructions using a

more complex TIWT in CS with larger 3D data sets. Table 6.1 proves a considerable speedup is

achieved by coding in a compiled language like C++ which is a more realistic time measurement

of reconstruction than using less optimized software. Having faster software contributes to more

research opportunities such as being able to compare more sampling patterns, finding better

stopping criteria, and performing higher resolution experiments with more images. For instance,

comparing the CS reconstruction time of the TOF MIP, which uses +1500 images (256× 256),

the Wavelab TIWT implementation in Matlab would have taken approximately 10 days to recon-

struct, whereas, with FastTestCS, this same reconstruction takes 4 hours on a single CPU core.

Additionally, by adding parallelization, with five quad-core machines, this reconstruction takes

less than 15 minutes.
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6.6.2 Use of FastTestCS

FastTestCS may be customized to include any sampling pattern and sparsifying transform to test

different scenarios and compare reconstructions. Having consistent CS input data and algorithms

to test various options provides a clear analysis and simulation tool with unlimited possibilities for

future enhancements and tests. The standalone executable and command line interface provides

a convenient way to parallelize on different CPU cores and machines to quickly test across various

inputs and options in an automated way. Contact the author for software availability to obtain

reproducible results, usage and advancement.
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Chapter 7

Proof of Bounds on D-RIP Constants

7.1 Introduction

Proofs of some bounds on RIP constants have been provided by Candès et al. [20] and then

improved for sharp bounds by Cai et al. [9]. An extension of the RIP is to accommodate redundant

dictionaries with D-RIP for CS. D-RIP has been proposed by Candès et al. [13] with a proof of

some bounds with cases of interest. The proof by Cai et al. [10] and [9] for sharp bounds in RIP

does not apply to D-RIP; therefore, can the proof of Candès et al. [13] be improved to cover

the sharp sparsity bounds for D-RIP? Bounds on D-RIP isometry constants have been proven by

Candès et al. [13], specifically δ2k ≤ 0.08. Counter examples for sharp bounds have also been

reported in Cai et al. [10] and Davies et al. [26]. What new sharp bounds could be proven? This

research aims at providing a proof and simulated experimental results that show how new sharp

bounds can be achieved.

7.1.1 Contribution

The proof in Section 7.2 establishes an improved D-RIP bound which states that δ2k <
2
3
. This

result was previously available [5] and it has been improved on by Wu and Li [51]. The main

ingredient of the proof in Section 7.2 is a tool developed by Xu et al. [54]. This approach takes

its inspiration from the clever ideas of Cai and Zhang [10] and [9].
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7.2 New D-RIP Bounds

Theorem 1 Let D be an arbitrary tight frame and let Φ be a measurement matrix satisfying

D-RIP with δ2k <
2
3
. Then the solution β̂ to (2.4) satisfies

‖β − β̂‖2 ≤ C0ε+ C1

‖D∗β − (D∗β)max(k)‖1√
k

(7.1)

where the constants C0 and C1 depend on δ2k, (D∗β)max(k) is the vector D∗β with all but the k

largest components (in magnitude) set to zero.

Before proving this theorem, some remarks are helpful. Firstly, Cai and Zhang have obtained a

sharp bound δ2k <
√

2
2

for the case D = I [9]. Their work inspired pursuit of the bound in this

proof. Secondly, following the ideas of Cai and Zhang [10] and [9], more general results (other

D-RIP bounds) can be obtained in parallel.

In order to prove Theorem 1, the following `1-norm invariant convex k-sparse decomposition

by Xu and Xu [54], and Cai and Zhang [9] are needed.

The following description is taken from Xu et al. [54].

Lemma 1 For positive integers k ≤ n, and positive constant C, let v ∈ Rn be a vector with

‖v‖1 ≤ C and ‖v‖∞ ≤ C
k

. Then there are k-sparse vectors w1, . . . , wM with

‖wt‖1 = ‖v‖1 and ‖wt‖∞ ≤
C

k
for t = 1, · · · ,M, (7.2)

such that

v =
M∑
t=1

xtwt (7.3)

for some nonnegative real numbers x1, . . . , xM with
∑M

t=1 xt = 1.

Now Theorem 1 is proven. This proof follows some ideas in the proofs of Theorems 1.1 and 2.1

by Cai et al. [9], incorporating some simplified steps. Some strategies from Cai et al.[11] and

[12] are also used. This proof deals only with the δ2k case so that the key ideas can be conveyed

clearly. Let h = β̂−β. For a subset S ⊂ {1, 2, · · · , d}, denoted by DS the matrix D is restricted

to the columns indexed by S (and replacing other columns by zero vectors). Let Ω denote the
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index set of the largest k components of D∗β (in magnitude), i.e., (D∗β)max(k) = D∗Ωβ. With

this notation there is D∗ΩCβ = D∗β− (D∗β)max(k). As in Candès et al. [13], one can easily verify

the following:

‖D∗ΩCh‖1 ≤ 2‖D∗ΩCβ‖1 + ‖D∗Ωh‖1 (7.4)

‖Φh‖2 < 2ε (7.5)

Denote vi = 〈Di, h〉 for i = 1, · · · , d, where Di is the i-th column of D, then

D∗h = (v1, . . . , vd)
>. (7.6)

By rearranging the columns of D if necessary, assume |v1| ≥ |v2| ≥ · · · ≥ |vd|. Let T =

{1, 2, . . . , k}. In this case, have

D∗Th = (v1, . . . , vk, 0, . . . , 0)> and D∗TCh = (0, . . . , 0, vk+1, . . . , vd)
>. (7.7)

Assume that the tight frame D is normalized, i.e., DD∗ = I, and ‖x‖2 = ‖D∗x‖2 for all x ∈ Rp.

Thus there is the following useful relation:

〈DD∗Th,DD∗TCh〉 = 〈DD∗Th,DD∗h−DD∗Th〉 = 〈DD∗Th, h〉 − ‖DD∗Th‖2
2

= 〈D∗Th,D∗h〉 − ‖DD∗Th‖2
2

= ‖D∗Th‖2
2 − ‖DD∗Th‖2

2. (7.8)

From the facts

‖D∗Ωh‖1 ≤ ‖D∗Th‖1 (7.9)

and

‖D∗Ωh‖1 + ‖D∗ΩCh‖1 = ‖D∗Th‖1 + ‖D∗TCh‖1 = ‖D∗h‖1, (7.10)

the relation

‖D∗ΩCh‖1 ≤ 2‖D∗ΩCβ‖1 + ‖D∗Ωh‖1 (7.11)

yields

‖D∗TCh‖1 ≤ 2‖D∗ΩCβ‖1 + ‖D∗Th‖1 (7.12)
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Since

‖D∗TCh‖∞ ≤
‖D∗Th‖1

k
≤

2‖D∗ΩCβ‖1 + ‖D∗Th‖1

k
, (7.13)

use Lemma 1 to get the following `1-invariant convex k-sparse decomposition of D∗TCh:

D∗TCh =
M∑
t=1

xtwt, (7.14)

with each wt ∈ Rd being k-sparse,

‖wt‖1 = ‖D∗TCh‖1 (7.15)

‖wt‖∞ ≤
2‖D∗ΩCβ‖1 + ‖D∗Th‖1

k
. (7.16)

From this and the Cauchy-Schwartz inequality, there is

M∑
t=1

xt‖wt‖2 ≤
2‖D∗ΩCβ‖1 + ‖D∗Th‖1√

k
≤

2‖D∗ΩCβ‖1√
k

+ ‖D∗Th‖2. (7.17)

By the triangle inequality, ‖D∗TCh‖2 ≤
∑M

t=1 xt‖wt‖2 holds and thus

‖D∗TCh‖2 ≤
2‖D∗ΩCβ‖1√

k
+ ‖D∗Th‖2. (7.18)

Note that

‖β − β̂‖2
2 = ‖h‖2

2 = ‖D∗h‖2
2 = ‖D∗TCh‖

2
2 + ‖D∗Th‖2

2 (7.19)

and

D∗β − (D∗β)max(k) = D∗ΩCβ. (7.20)

In order to prove the theorem, it suffices to show that there are constants C ′0, C
′
1 such that

‖D∗Th‖2 ≤ C ′0ε+ C ′1
‖D∗ΩCβ‖1√

k
. (7.21)

In fact, assuming (7.21) there is

‖h‖2 =
√
‖D∗Th‖2

2 + ‖D∗
TC
h‖2

2 (7.22)

≤

√(
C ′0ε+ C ′1

‖D∗
ΩC
β‖1√
k

)2

+

(
2‖D∗

ΩC
β‖1√
k

+ ‖D∗Th‖2

)2

≤ C ′0ε+ C ′1
‖D∗ΩCβ‖1√

k
+

2‖D∗ΩCβ‖1√
k

+ ‖D∗Th‖2 (7.23)

= 2C ′0ε+ 2(C ′1 + 1)
‖D∗ΩCβ‖1√

k
(7.24)
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Now moving to the proof of (7.21). Denote

Π :=
∣∣〈ΦDD∗Th,Φh〉∣∣ =

∣∣〈ΦDD∗Th,ΦDD∗h〉∣∣. (7.25)

First, as D∗Th is k sparse, hence 2k sparse. There is

Π ≤ ‖ΦDD∗Th‖2‖Φh‖2 ≤
√

1 + δ2k‖D∗Th‖22ε. (7.26)

On the other hand, as each D∗Th+ wt is 2k sparse, there is

Π =
∣∣〈ΦDD∗Th,ΦDD∗Th+ ΦDD∗TCh〉

∣∣ =
∣∣ M∑
t=1

xt〈ΦDD∗Th,ΦDD∗Th+ ΦDwt〉
∣∣

=

∣∣∣∣ M∑
t=1

xt
〈(

ΦDD∗Th+
1

2
ΦDwt

)
− 1

2
ΦDwt,

(
ΦDD∗Th+

1

2
ΦDwt

)
+

1

2
ΦDwt

〉∣∣∣∣
=

M∑
t=1

xt

(∥∥ΦDD∗Th+
1

2
ΦDwt

∥∥2

2
−
∥∥1

2
ΦDwt

∥∥2

2

)

≥
M∑
t=1

xt

(
(1− δ2k)

∥∥DD∗Th+
1

2
Dwt

∥∥2

2
− (1 + δ2k)

∥∥1

2
Dwt

∥∥2

2

)
(7.27)

=
(
1− δ2k

)
‖DD∗Th‖22 −

1

2
δ2k

M∑
t=1

xt‖Dwt‖22 + (1− δ2k)

M∑
t=1

xt〈DD∗Th,Dwt〉

=
(
1− δ2k

)
‖DD∗Th‖22 −

1

2
δ2k

M∑
t=1

xt‖Dwt‖22 + (1− δ2k)〈DD∗Th,DD∗TCh〉 (7.28)

(7.8)
=

(
1− δ2k

)
‖DD∗Th‖22 −

1

2
δ2k

M∑
t=1

xt‖Dwt‖22 + (1− δ2k)
(
‖D∗Th‖22 − ‖DD∗Th‖22

)
= (1− δ2k)‖D∗Th‖22 −

1

2
δ2k

M∑
t=1

xt‖Dwt‖22

≥ (1− δ2k)‖D∗Th‖22 −
1

2
δ2k

M∑
t=1

xt‖wt‖22

≥ (1− δ2k)‖D∗Th‖22 −
1

2
δ2k

(
2‖D∗

ΩC
β‖1√
k

+ ‖D∗Th‖2
)2

(7.29)

= (1− 3

2
δ2k)‖D∗Th‖22 −

1

2
δ2k

(
4‖D∗

ΩC
β‖21

k
+

4‖D∗
ΩC
β‖1‖D∗Th‖2√
k

)
. (7.30)

Combining this with (7.26) shows

(1− 3

2
δ2k)‖D∗Th‖22 −

1

2
δ2k

(
4‖D∗

ΩC
β‖21

k
+

4‖D∗
ΩC
β‖1‖D∗Th‖2√
k

)
≤
√

1 + δ2k‖D∗Th‖22ε. (7.31)
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By making a perfect square, there is(
‖D∗Th‖2 −

(
2
√

1 + δ2k

3(2
3 − δ2k)

ε+
2δ2k

3(2
3 − δ2k)

‖D∗
ΩC
β‖1√
k

))2

≤
(

2
√

1 + δ2k

3(2
3 − δ2k)

ε+
2δ2k

3(2
3 − δ2k)

‖D∗
ΩC
β‖1√
k

)2

+

(√
2δ2k

3(2
3 − δ2k)

‖D∗
ΩC
β‖1√
k

)2

, (7.32)

which implies that

‖D∗Th‖2 −
(

2
√

1 + δ2k

3(2
3 − δ2k)

ε+
2δ2k

3(2
3 − δ2k)

‖D∗
ΩC
β‖1√
k

)
≤ 2
√

1 + δ2k

3(2
3 − δ2k)

ε+
2δ2k

3(2
3 − δ2k)

‖D∗
ΩC
β‖1√
k

+

√
2δ2k

3(2
3 − δ2k)

‖D∗
ΩC
β‖1√
k

. (7.33)

and finally have (7.21):

‖D∗Th‖2 ≤
4
√

1 + δ2k

3(2
3 − δ2k)

ε+
4δ2k +

√
6δ2k(

2
3 − δ2k)

3(2
3 − δ2k)

‖D∗
ΩC
β‖1√
k

. (7.34)

This demonstrates the use of Lemma 1 to get a good result. This could be pursued further

to general cases for an even better bound. Indeed, this has been done recently by Wu and Li [51]

to improve the result of this proof which has been available previously [5].
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Chapter 8

Conclusion

An in-depth coverage of several sparsifying transforms for CS in MRI is presented. A novel proof

of the D-RIP sparsity constant bound, δ2k, is given to address the need for understanding the use

of redundant dictionaries in CS. A thorough investigation is presented for redundant sparsifying

transforms in CS for MRI due to the improved quality they provide over the state of the art.

This research covers compression tests with several settings and filters for determining transform

robustness. Several good sparsifying transforms are simulated in a CS reconstruction with MRI

data. Different under-sampling patterns, reduction factors and images are utilized for a broad

range of tests. Results prove that redundant transforms that have a TI quality perform exceedingly

well. Of note, the TIWT has a fast implementation and provides robust IQ improvements over

the Orthogonal WT in CS MRI simulations.

FastTestCS simulation software is developed which performs CS simulations and reconstruc-

tions significantly faster than prototype Matlab software. Several simulations are compared with

the various algorithms and settings that can be adjusted. It is available to aid in this research at

http://people.uwm.edu/gxu4uwm/fasttestcs.

8.1 Future work

8.2 Best Practice Definition

Some future work would develop the best way for using a combination of all the quantitative

image measures to give credible across the board evidence that IQ is measured accurately or
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improved. Another look at the compression experiments that base the threshold percentage on

the number of coefficients rather than the number of pixels might give additional insight into

which transform will perform well. Those results may be more applicable for CS and encourage

the use of more redundant transforms in CS.

8.3 More Sparsifying Transforms

A literature search found over 300 articles in just the journal MRM on CS MRI, and every few

weeks a new article or two appears. This is a vast amount of research! It would be important to

compare other new sparsifying transforms that work well in MRI. Here is a list of additional ideas

and transforms for future investigation.

1. TI wavelets with patches.

2. Better contourlets?

3. Contourlets on patches?

4. Formulate a better simulation with dynamic dots which can be used to identify better

conclusions why some transforms performed better than others.

5. Continue literature search for new developments in sparse transforms for consideration.

6. Develop a better understanding of the theory: Why do transforms on small patches perform

better than transforms on full images?

7. Consider wavelet filter adjustment for optimal compression. This would be another type of

learned transform. Are there other learned dictionaries that are important?

8. For unconstrained CS, analyze the combination of regularization techniques for optimal

balancing between techniques, while keeping in mind the number of iterations affecting this

balance.

9. Perform mean normalization on the reconstructed images for an improvement in contrast

and error.
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10. For patch transforms, change overlapping factors and observe block artifacts and IQ.

11. Compile a list of good filters and settings for wavelets, contourlets and curvelets.

12. Implement the combined wavelet+contourlet transform with patches.

13. Implement the curvelet transform on patches.

14. Analyze standard deviation of image error vs. reduction factor as a measure of robustness.

8.3.1 FastTestCS: Enhancement, Versatility and Distribution

To enhance the FastTestCS software framework, more functionality and algorithms can be added

and a more standardized API. It may be beneficial to investigate GPU opportunities for addi-

tional speed up. For more product exposure and capability, integrating into a GE Orchestra

reconstruction would be a great advancement.
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Appendix A

The Gradient of the Regularization
Function

Calculating the gradient of the regularization function 5‖Wx‖1 is necessary in using the conju-

gate gradient solver. There are three ways to calculate this gradient of a complex function and

a transform:

1. Apply the transform to the complex data and then take the magnitude.∑
|Wx| =

∑
|W (xr + ixi)|

5
∑
|Wx| =

∑
∂
|W (xr + ixi)|

∂xr
+ ∂
|W (xr + ixi)|

∂xi

5
∑
|Wx| =

∑
W T Wxr
|W (xr + ixi)|

+W T Wxi
|W (xr + ixi)|

2. Apply the transform to the magnitude of the image.∑
|Wx| =

∑∣∣W |(xr + ixi)|
∣∣

5
∑
|Wx| =

∑
∂

∣∣W |(xr + ixi)|
∣∣

∂xr
+ ∂

∣∣W |(xr + ixi)|
∣∣

∂xi

5
∑
|Wx| =

∑ xr
|(xr + ixi)|

W T sign(W |xr + ixi|) +
xi

|(xr + ixi)|
W T sign(W |xr + ixi|)

3. Apply the transform to the real parts and imaginary parts separately.∑
|Wx| =

∑∣∣|Wxr|+ |Wxi|
∣∣

5
∑
|Wx| =

∑
∂

∣∣W |xr∣∣
∂xr

+ ∂

∣∣Wxi
∣∣

∂xi

5
∑
|Wx| =

∑
W T sign(Wxr) +W T sign(Wxi)
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where T is the transpose. According to the sum of error measurements, the third approach

performs the best with wavelets for regularization. These derivations can be applied with other

sparsifying transforms; however, if the transform is not orthogonal, the transpose may not be

equivalent to the inverse. For TV, the three approaches can also be used; however, the derivations

will be different because a transform is not used.
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Appendix B

MRI Dataset Parameters

1. Single Channel T1-weighted Brain, 3.0 T, axial, 2D T1-weighted spin echo, single channel

quadrature transmit/receive head coil, TE = min full, TR = 700, 25 kHz, 22 cm FOV, 256

× 256, 5 mm, skip 0, 10 slices, Fully sampled

2. Eight Channel T1-Weighted Brain, 3.0 T, axial, 2D T1-weighted spin echo, 8-channel

receive only head coil TE = min full, TR = 700, 25 kHz, 22 cm FOV, 256 × 256, 5 mm,

skip 0, 10 slices Fully sampled

3. Eight Channel 3D Gradient Echo TOF head, 3.0 T, axial, 3D gradient echo, 8-channel

receive only head coil, Flow comp, flip = 25, min TE, TR = 38, 16 kHz, 22 cm FOV, 384

× 224, 1. 4 mm, 32 slices / slab, 3 slabs, fully sampled
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Appendix C

Software References for Different
Transforms Used

1. FastTestCS

• http://people.uwm.edu/gxu4uwm/fasttestcs.

2. Contourlet Toolbox

• http://www.ifp.uiuc.edu/∼minhdo/software/

3. CRISP Contourlet toolbox

• http://www.uam.es/personal pdi/ciencias/mtc/software.htm

4. Wavelet Toolbox

• http://www-stat.stanford.edu/∼wavelab/WaveLab701.html

• http://www.mathworks.com/products/wavelet/

5. Curvelet Toolbox

• http://www.curvelet.org/software.html

6. Discrete Cosine Transform (DCT)

• http://www.mathworks.com/access/helpdesk/help/toolbox/signal/dct.html
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7. K-SVD, OMP, and over-complete DCT

• http://www.cs.technion.ac.il/∼elad/software/

• http://www.cs.technion.ac.il/∼ronrubin/software.html

8. `1-Magic

• http://statweb.stanford.edu/∼candes/l1magic/

9. GSL - GNU Scientific Library

• http://www.gnu.org/software/gsl/
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