
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2016

Identifying Gait Deficits in Stroke Patients Using
Inertial Sensors
Lauren Benson
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Biomechanics Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Benson, Lauren, "Identifying Gait Deficits in Stroke Patients Using Inertial Sensors" (2016). Theses and Dissertations. 1336.
https://dc.uwm.edu/etd/1336

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/43?utm_source=dc.uwm.edu%2Fetd%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1336?utm_source=dc.uwm.edu%2Fetd%2F1336&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 

 

IDENTIFYING GAIT DEFICITS IN STROKE PATIENTS USING INERTIAL SENSORS 

 

by 

 

Lauren C. Benson 

 

 

 

A Dissertation Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

in Health Sciences 

at 

The University of Wisconsin-Milwaukee 

August 2016



 

ii 

 

ABSTRACT 

 

IDENTIFYING GAIT DEFICITS IN STROKE PATIENTS USING INERTIAL SENSORS 

by 

Lauren C. Benson 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Kristian M. O’Connor 

 

Falls remain a significant problem for stroke patients.  Tripping, the main cause of falls, 

occurs when there is insufficient clearance between the foot and ground.  Based on an 

individual’s gait deficits, different joint angles and coordination patterns are necessary to achieve 

adequate foot clearance during walking.  However, gait deficits are typically only quantified in a 

research or clinical setting, and it would be helpful to use wearable devices – such as 

accelerometers – to quantify gait disorders in real-world situations.  Therefore, the objective of 

this project was to understand gait characteristics that influence the risk of tripping, and to detect 

these characteristics using accelerometers.  

Thirty-five participants with a range of walking abilities performed normal walking and 

attempted to avoid tripping on an unexpected object while gait characteristics were quantified 

using motion capture techniques and accelerometers.  Multiple regression was used to identify 

the relationship between joint coordination and foot clearance, and multiple analysis of variance 

was used to determine characteristics of gait that differ between demographic groups, as well as 

those that enable obstacle avoidance.  Machine learning techniques were employed to detect joint 

angles and the risk of tripping from patterns in accelerometer signals.  
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Measures of foot clearance that represent toe height throughout swing instead of at a 

single time point are more sensitive to changes in joint coordination, with hip-knee coordination 

during midswing having the greatest effect.  Participants with a history of falls or stroke perform 

worse than older non-fallers and young adults on many factors related to falls risk, however, 

there are no differences in the ability to avoid an unexpected obstacle between these groups.  

Individuals with an inability to avoid an obstacle have lower scores on functional evaluations, 

exhibit limited sagittal plane joint range of motion during swing, and adopt a conservative 

walking strategy.   

Machine learning processes can be used to predict knee range of motion and classify 

individuals at risk for tripping based on an ankle-worn accelerometer.  This work is significant 

because a portable device that detects gait characteristics relevant to the risk of tripping without 

expensive motion capture technology may reduce the risk of falls for stroke patients.  
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Chapter 1: Introduction 

Falls are a major problem for recovering stroke patients, with higher incidences of falls 

for stroke patients than the general elderly population (Batchelor, Mackintosh, Said, & Hill, 

2012).  However, interventions have been unsuccessful in preventing falls for stroke patients 

(Batchelor, Hill, Mackintosh, & Said, 2010; Batchelor, Hill, Mackintosh, Said, & Whitehead, 

2012; Batchelor et al., 2012; Dean et al., 2012; Verheyden et al., 2013).  Due to a variety of 

sensorimotor impairments, patients recovering from a stroke typically experience gait deviations 

that may present a risk for falling, such as spatiotemporal asymmetries and abnormal joint 

kinematics that could limit foot clearance (Balaban & Tok, 2014; Kim & Eng, 2003; Olney & 

Richards, 1996; Woolley, 2001). 

Insufficient clearance between the foot and the walking surface or an obstacle may result 

in a trip, one of the greatest causes of falls  (W. P. Berg, Alessio, Mills, & Tong, 1997; Blake et 

al., 1988; Overstall, Exton-Smith, Imms, & Johnson, 1977; Robinovitch et al., 2013; Tuunainen, 

Rasku, Jantti, & Pyykko, 2014).  Low foot clearance and high foot clearance variability is 

suspected to increase risk of falling (Begg, Best, Dell'Oro, & Taylor, 2007).  A low foot 

clearance value indicates that the foot passes close to the walking surface during swing phase, 

and high variability in foot clearance suggests an increased probability that the foot will come in 

contact with the walking surface.  Foot clearance is dependent on the extent to which the swing 

leg shortens during gait.  Gait adaptations to accommodate varying walking surfaces (Gates, 

Wilken, Scott, Sinitski, & Dingwell, 2012) and perform everyday tasks while walking (Schulz, 

Lloyd, & Lee, 2010) include concurrent changes in joint kinematics and foot clearance.  

Similarly, foot clearance variability is correlated with joint angle variability (Mills, Barrett, & 
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Morrison, 2008).  Therefore, an understanding of how the joints of the lower extremity are 

controlled during walking will provide insight about how adequate foot clearance is achieved.   

Joint coordination can allow the same goal, such as foot clearance, to be reached within 

each stride cycle, even if the strategy for achieving adequate foot clearance is different.  For 

example, patients with knee osteoarthritis exhibit similar foot clearance as a control group, but 

the knee flexion, hip abduction and ankle adduction angles were different between the groups 

(Levinger et al., 2012).  This evidence supports the theory that the lower extremity joints are 

coordinated to achieve the planned distal endpoint trajectory of the limb (Karst, Hageman, Jones, 

& Bunner, 1999).  In healthy gait, coordination between the joints of the lower extremity enables 

foot clearance while the leg advances during swing (Moosabhoy & Gard, 2006).  Since lack of 

coordination in the lower extremity has been observed in stroke patients (Barela, Whitall, Black, 

& Clark, 2000; Little, McGuirk, & Patten, 2014; Moosabhoy & Gard, 2006; Rinaldi & Monaco, 

2013), investigation of the coupling of joint segments in stroke patients may yield information 

regarding the kinematic strategies required to achieve adequate foot clearance during walking. 

Despite the obvious consequences of inadequate foot clearance and the incidence of trips, 

it is unclear how joint kinematics, coordination and foot clearance relate to the ability to avoid 

unexpected obstacles that could present a tripping hazard.  Current clinical evaluations related to 

falls risk are used to quantify community engagement, fear of falling and gait and balance 

performance, although they often do not rely on information that can be obtained using 

equipment found in a 3D motion capture laboratory, and are not based on actual ability to avoid a 

trip or a fall.  There is a push to investigate falls risk using perturbations that are similar to actual 

falls in an effort to further understand the mechanisms of falls and identify potential 

interventions that could reduce the incidence of falls (Grabiner, Crenshaw, Hurt, Rosenblatt, & 
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Troy, 2014).  Experiments that challenge the ability to avoid an obstacle will help identify which 

individual and gait characteristics are relevant to the risk of tripping. 

While abnormal joint kinematics and joint coordination patterns are common among 

stroke patients, the effect of hemiparesis caused by the stroke is different for each patient 

(Jonsdottir et al., 2009).  It has been suggested that an individual-based approach to evaluate a 

patient’s risk of tripping may be more effective than a group-based approach (Begg et al., 2007).  

The gold standard for detecting individual components of a gait disorder requires the use of 

motion capture technology, typically found in research labs.  More commonly, a stroke patient 

will receive a gait analysis in a clinical setting.  However, the frequency of falls for stroke 

patients within the first six months following discharge from rehabilitation highlights the need 

for gait supervision when patients are ambulating on their own (Forster & Young, 1995; 

Mackintosh, Hill, Dodd, Goldie, & Culham, 2005; Wagner, Phillips, Hunsaker, & Forducey, 

2009).  The ability to identify in real-time when an individual may be at risk for a fall may 

reduce the number of falls, particularly in the stroke population.   

Wearable sensors are becoming a common way to reliably monitor and evaluate health-

related indices (Appelboom et al., 2014; Bassett, 2012; Dobkin, 2013).  Although there have 

been several efforts to quantify joint kinematics outside of a research or clinical setting using 

wearable inertial sensors, most current methods only identify foot clearance, not the lower 

extremity kinematics or coordination patterns that may contribute to changes in foot clearance 

(Hamacher, Hamacher, Taylor, Singh, & Schega, 2014; Mariani, Rochat, Buela, & Aminian, 

2012; McGrath, Greene, Walsh, & Caulfield, 2011).  Other methods designed to provide 

accurate information about joint kinematics require the placement of several sensors on multiple 
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body segments (Seel, Raisch, & Schauer, 2014; Slajpah, Kamnik, & Munih, 2014), which may 

be difficult for the general population to effectively adopt.   

Machine learning techniques contain the tools to identify patterns and associations in 

various types of health-related data (Chawla & Davis, 2013).  For quantifying movement, 

machine learning algorithms are applied to the accelerometer signals from wearable devices to 

classify different activities, such as walking, running, climbing stairs and sitting (Moncada-

Torres, Leuenberger, Gonzenbach, Luft, & Gassert, 2014).  The ability to use similar machine 

learning techniques to classify and predict different walking patterns based on accelerometer 

signals could be used to quantify joint kinematics related to falls or evaluate the risk of tripping 

in real-time. 

 

Statement of Purpose 

The purpose of the proposed studies is to understand the gait characteristics that influence 

foot clearance and the ability to avoid obstacles that could present a tripping hazard.  The 

ultimate goal is to use machine learning techniques to detect these falls-related gait abnormalities 

using a portable inertial sensor.   

  

Specific Aims and Hypotheses 

Aim 1: To identify the relationship between joint coordination and foot clearance during 

walking.  This objective will be accomplished by using vector coding to quantify the 

coordination between the sagittal plane joint motions of the lower extremity, as well as 

determining foot clearance during normal overground walking for stroke patients, older adults 
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with and without a history of falls, and young adults.  It is expected that abnormal and highly 

variable coordination patterns will be associated with lower and more variable foot clearance.    

 

Aim 2: To identify differences in function and gait characteristics related to falls risk, as 

well as the ability to avoid an unexpected obstacle, among stroke patients, young adults, 

older fallers and older non-fallers.  This objective will be accomplished by comparing joint 

kinematics, joint coordination, neuromuscular function, and performance on falls-related 

evaluations across groups.  It is hypothesized that participants with a history of falls and stroke 

will perform worse on falls-related evaluations and exhibit gait characteristics associated with 

the risk of falling, and that these participants will also be unable to avoid an obstacle while 

walking. 

 

 

Aim 3: To determine gait and individual characteristics that enable successful avoidance of 

an unexpected object that could present a tripping hazard.  This objective will be 

accomplished by observing participants react to an object that unexpectedly impedes the normal 

trajectory of the foot.  Joint coordination patterns, joint angles, foot clearance, neuromuscular 

function and evaluations of falls risk will be compared for those who are successful and 

unsuccessful at avoiding the object.  It is hypothesized that participants who do not avoid the 

object will have abnormal joint coordination and joint coordination variability, reduced sagittal 

plane joint angles, lower and more variable foot clearance, poor functional gait and balance 

scores, and lower muscle activity and isometric strength. 
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Aim 4: To detect gait characteristics related to the risk of tripping and classify individuals 

likely to contact an unexpected obstacle based on accelerometer signals.  This objective will 

be accomplished by using machine learning algorithms to identify features in data from ankle-

worn accelerometers related to specific joint kinematics and gait patterns of individuals who are 

unable to avoid an unexpected obstacle.  It is expected that machine learning algorithms will be 

more successful in predicting knee joint angles than hip or ankle angles, and that the parameters 

required for accurate classification of the risk for tripping will be identified. 

 

Delimitations of the Study 

Results of this study may only be generalizable to the sample and conditions of the experiment.   

1. All participants will be able to ambulate on their own for five minutes at a time without 

the use of an assistive device; therefore, any identification of abnormal gait may not be 

generalizable to individuals with more severe gait deficits.  

2. Gait characteristics for each participant will be assessed during overground walking, and 

the ability to avoid obstacles will be evaluated while walking on a treadmill.  Kinematic 

analyses may only be generalizable to each testing condition. 

 

Assumptions of the Study 

Some assumptions will be made in conducting this study: 

1. Participants will truthfully answer all questions in the questionnaire. 

2. Participants will walk in a way that represents their typical gait. 

3. Participants will make an effort to avoid the obstacle when it is presented. 

4. Walking overground will be similar to walking on treadmill. 
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5. All lower-extremity segments are rigid bodies. 

6. All lower-extremity joints are frictionless. 

 

Significance of the Study 

Falls remain a significant problem for stroke patients, and each patient’s risk of falling 

may be based on unique gait deficits.  Identifying the characteristics of gait that control foot 

clearance and those that are associated with the ability to avoid obstacles while walking can 

inform rehabilitation techniques and interventions designed to reduce the risk of tripping.  

Developing a convenient way to monitor an individual’s gait with wearable sensors and machine 

learning techniques could eventually be used to predict the risk of tripping in real-time, and 

allow for an individual to make gait alterations that enable them to avoid an obstacle. 
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Chapter 2: Predicting Foot Clearance from Joint Coordination 

Introduction 

Falls are a major problem for stroke survivors, with higher incidences of falls than the 

general elderly population (Batchelor et al., 2012).  Trips are one of the greatest causes of falls, 

and are the result of insufficient clearance between the foot and floor (Robinovitch et al., 2013).  

Determining the ability for individuals to achieve adequate foot clearance requires the 

quantification of the minimum foot clearance (MFC), the lowest point of the toe as it passes the 

walking surface during the swing phase of gait.  Low MFC indicates that the toe is close to the 

walking surface, and high MFC variability means that a person exhibits a variety of toe heights 

while walking, presumably some with low foot clearance.  Both low MFC and high MFC 

variability are suspected to increase the risk of falling (Begg et al., 2007).  To reduce the risk of 

falling, it would be beneficial to understand the gait characteristics that contribute to low MFC 

and high MFC variability.   

Individual changes in the sagittal plane ankle, knee and hip angles affect toe clearance 

throughout swing phase of healthy gait (Gates et al., 2012; Moosabhoy & Gard, 2006; Schulz et 

al., 2010; Schulz, 2011; Winter, 1992), and MFC variability is correlated with joint angle 

variability (Mills et al., 2008).  However, joint adaptations to achieve MFC may be specific to a 

patient group or individual (Levinger et al., 2012).  Rather than identify distinct joint angles to 

ensure adequate foot clearance, in healthy gait, a variety of coordination patterns between the 

joints can result in a consistent end-point trajectory of the lower extremity (Latash, Levin, 

Scholz, & Schoener, 2010; Latash, 2010).  However, abnormal coordination has been observed 

in stroke survivors (Barela et al., 2000; Chow & Stokic, 2015; Little et al., 2014; Moosabhoy & 

Gard, 2006).  The effect of abnormal joint coordination or joint coordination variability on the 
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magnitude or variability of foot clearance is not known, but it may help to explain a greater 

incidence of falls among the chronic stroke population. 

There have been several methods used to quantify foot clearance and foot clearance 

variability.  MFC and MFC variability are commonly determined as the mean and standard 

deviation, respectively, of the vertical position of the toe at the local minimum of the toe 

trajectory during midswing (Moosabhoy & Gard, 2006; Nagano, James, Sparrow, & Begg, 

2014).  However, it is possible that this local minimum does not exist for every stride, with the 

toe height increasing throughout swing phase without the inflection point identified as MFC.  

This has been noted particularly among individuals with a history of stroke (Little et al., 2014).  

Due to the challenges in identifying MFC from the toe trajectory, MFC has been identified as the 

toe height at the point of greatest forward velocity of the foot (Winter, 1992).  Additionally, the 

magnitude of MFC and the part of the shoe closest to the walking surface (e.g. toe vs. midfoot 

vs. heel) varies with task, suggesting that an absolute value for MFC may not be an adequate 

representation of foot clearance in all circumstances (Loverro, Mueske, & Hamel, 2013; Thies, 

Jones, Kenney, Howard, & Baker, 2011).  Another way of measuring foot clearance is by 

determining how much the leg shortens during the swing phase (Little et al., 2014; Moosabhoy 

& Gard, 2006).  Maximal limb shortening provides a measure of the capacity for shortening of 

the leg during swing to facilitate foot clearance.  Because maximal limb shortening is based on 

the distance between the hip and toe, it may be more sensitive to changes in joint coordination as 

the hip-toe distance relies on concurrent joint motions at the ankle, knee and hip.  Nonetheless, 

maximal limb shortening and maximal limb shortening variability still represent a single point 

during swing phase and may not adequately describe foot clearance or foot clearance variability.  

Principle Components Analysis (PCA) can be used to identify modes of variation within a 
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waveform without choosing a discrete point (Daffertshofer, Lamoth, Meijer, & Beek, 2004).  By 

performing PCA on the vertical trajectory of the toe during swing, it is possible to obtain a 

variable that represents the magnitude of toe height not at one point, but throughout swing phase.  

The standard deviation of this variable represents the variability in toe height throughout swing. 

The purpose of this study was to identify how lower extremity sagittal plane joint 

coordination and coordination variability influences foot clearance and foot clearance variability 

for people with a range of walking patterns.  Traditional measures of foot clearance were 

compared with a representation of foot clearance using PCA.  It was expected that the PCA 

method of quantifying foot clearance and foot clearance variability would be more sensitive to 

changes in joint coordination and joint coordination variability.  Additionally, it was anticipated 

that abnormal gait patterns would play an important role in defining the relationship between 

joint coordination and foot clearance.  Exploring this relationship will provide insight about how 

to ensure adequate foot clearance, particularly for people with abnormal joint coordination. 

 

Methods 

Participants.  Thirty-five community-dwelling participants with a range of walking abilities 

were included in this study (Table 1).  Ten participants were healthy young adults age 18-45, ten 

were healthy older adults age 65 and older without a history of falls, ten were healthy older 

adults age 65 and older with a history of falls, and five were participants who had experienced a 

stroke more than six months earlier.  Participants were considered as having a falls history if they 

had experienced a fall in the last six months, defined as unintentionally coming to rest on the 

ground (Senden, Savelberg, Grimm, Heyligers, & Meijer, 2012).  Participants with chronic 

stroke were recruited from local rehabilitation centers, and their affected side was noted.  For all 
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other participants, the ‘affected’ side was assigned randomly.  All participants were able to walk 

without an assistive device for 5 minutes at a time.  Mental state was determined using the Mini-

Mental State Examination (MMSE), and inclusion was limited to participants with a MMSE 

score greater than 22 (Savin, Morton, & Whitall, 2014).  



 

 

 

1
2
 

Table 1 

Participant Characteristics by Group 

     

  
Young Adult 

Older Adult - 

Non-faller 

Older Adult - 

Faller 
Stroke 

N 10 10 10 5 

Age (range), yr 30.5 (22-44) 71.9 (65-87) 75.3 (66-91) 61.6 (40-83) 

Height (SD), m 1.74 (0.14) 1.68 (0.08) 1.72 (0.12) 1.68 (0.10) 

Weight (SD), kg 76.0 (18.1) 75.9 (16.2) 86.3 (23.0) 82.6 (13.4) 

Sex 5 M, 5 F 3 M, 7 F 5 M, 5 F 2 M, 3 F 

Number of Falls 6 Months (range) 0.1 (0-1) 0 1.4 (1-3) 0.4 (0-1) 

Mini Mental State Exam (range) 29.6 (28-30) 29.3 (28-30) 28.6 (27-30) 27.6 (24-30) 

LE Fugl-Meyer (range) -- -- -- 24.6 (17-31) 

Affected Side -- -- -- 3 R, 2 L 

Type of Stroke -- -- -- 5 ischemic 

Time since stroke onset (range), mo -- -- -- 43.2 (10-120) 

Note. SD = standard deviation; LE = lower extremity. 
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Each participant was provided a pair of standard laboratory shoes (Saucony Jazz, 

Lexington, MA) and tight-fitting shorts.  The participants with chronic stroke completed the 

lower extremity sub-scale of the Fugl-Meyer assessment, which has a range of possible scores of 

0-34 (Sanford, Moreland, Swanson, Stratford, & Gowland, 1993; Sullivan et al., 2011).  

Participants wore a gait belt and the evaluator provided assistance for stability only as needed. 

 

Biomechanics assessment.  Retroreflective markers used for motion capture were applied 

bilaterally to track the motion of the thigh, leg and foot. The tracking markers were placed on a 

the right and left ASIS and PSIS, a four-marker plate on the thighs and the legs, and a rigid four-

marker cluster attached to the heel counter of the shoes. A standing calibration was recorded with 

additional calibration markers on the following bilateral anatomical locations: iliac crest, greater 

trochanter, lateral and medial femoral epicondyles, malleoli and first and fifth metatarsal heads. 

An additional calibration marker was placed on the distal end of each shoe.  The location of this 

marker in the local coordinate system of the foot was used to determine the toe position during 

the movement trials without the need for tracking the toe marker.  The distal toe marker position 

represented the toe’s trajectory during swing phase (Nagano, Begg, Sparrow, & Taylor, 2011).  

A global coordinate system was defined with the origin in the plane of the walking surface, the 

x-axis pointing laterally to the right of the participant, the y-axis pointing in the direction of 

walking, and the z-axis perpendicular to the floor pointing superiorly.  The calibration markers 

were removed following a three-second standing calibration trial.  During all trials, the three-

dimensional positions of each marker were continuously collected at 200 Hz with a ten-camera 

Eagle system (Motion Analysis, Inc., Santa Rosa, CA).  This data was filtered using a 4th order, 

zero-lag, recursive Butterworth filter with a cutoff at 10 Hz. 
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From the calibration trial, the joint center of each hip was established as 25% of the 

distance between the left and right greater trochanters (Weinhandl & O'Connor, 2010), and the 

knee and ankle joint centers were defined as the midpoint between the lateral and medial femoral 

epicondyles and malleoli, respectively.  Right-handed local coordinate systems were defined for 

the pelvis, thigh, shank and foot segments as outlined by Wu et al. (2002).  Three-dimensional 

joint angles at the hip, knee and ankle were calculated using a joint coordinate system approach 

(Grood & Suntay, 1983; Wu et al., 2002).  Processing of the kinematic data was done using 

Visual 3D software (v5.00.24; C-Motion, Inc., Rockville, MD).  

Data was collected as each participant walked overground at their normal walking pace.  

Ten strides were recorded for the affected leg.  Participants were allowed to rest if their rating of 

perceived exertion was above 9 – very light (Borg, 1970).  Each stride was time normalized to 

100% of the stride cycle (101 data points), with heel-strike and toe-off events determined from 

the location of a heel marker and the virtual location of the toe marker using the horizontal 

velocity algorithm (Zeni, Richards, & Higginson, 2008), implemented using custom software 

(Matlab v8.0.0.783, Mathworks, Inc., Natick, MA, USA).   

 

Data analysis.  Coordination and variability of coordination was calculated for the relative 

sagittal plane motion of the hip and knee, hip and ankle, and knee and ankle using a vector 

coding technique (Hamill, Haddad, & McDermott, 2000).  With the proximal joint angle on the 

x-axis and the distal joint angle on the y-axis, each point in a stride cycle was plotted.  A vector 

was made between consecutive points, and split into x- and y-components, where the x-

component indicates proximal joint motion and the y-component indicates distal joint motion.  

The relative motion between the joints was established by taking the four-quadrant arctangent of 
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the y-component over the x-component, producing a coupling angle with a range of -180° to 

180°.  All coupling angles in quadrants II-IV were converted to a corresponding coupling angle 

in quadrant I by taking the absolute value of angles in quadrant III, and subtracting from or 

adding to 180° for angles in quadrant II and IV, respectively.  The result was a range of coupling 

angles of 0° to 90° (Ferber, Davis, & Williams, 2005).  Circular statistics were used to calculate 

each participant’s mean and standard deviation of the coupling angle at each point in the stride 

cycle.  The stride cycle was split into six sub phases, labeled loading response (ipsilateral heel-

strike to contralateral toe-off), midstance (contralateral toe-off to contralateral heel-strike), 

terminal stance (from contralateral heel-strike to ipsilateral toe-off), and initial swing, midswing 

and terminal swing (one third each of the swing phase of the ipsilateral leg).  The coupling angle 

and coupling angle variability were averaged across each sub phase, using circular statistics.     

Three measures of foot clearance were calculated: two that approximate toe height during 

swing, and one measure of maximal limb shortening.  The standard deviation of each these 

measures represents foot clearance variability.  In the first measure of toe height, MFC was 

defined as the vertical displacement from the ground of the toe marker at the point of greatest 

horizontal velocity of the toe marker (Winter, Patla, Frank, & Walt, 1990).  The mean and 

standard deviation of the MFC was calculated for each participant.  The second method 

represented toe height through Principle Components Analysis of the vertical toe marker position 

waveform during swing phase.  All trials of all subjects were organized into n rows of a matrix 

with the vertical toe marker position during swing phase for each trial, time normalized to 101 

data points, filling p columns of an Xnxp matrix.  Using eigenvector analysis, the covariance 

matrix S101 x 101 was orthonormalized to determine the eigenvector matrix U101 x 101.  Each 

eigenvector represents a principle component (PC) that describes one mode of variation within 
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the entire dataset.  The eigenvalues, U’SU = L1 x 101, were determined to rank each PC’s 

contribution to the total variation in the data.  A parallel analysis with an equivalently-sized input 

matrix of normally-distributed randomly-generated numbers revealed the variance explained by 

random error, and therefore a PC was retained only if the variance explained by that PC was 

greater than this threshold.  Each trial was given a score for each of the retained PCs based on 

how it contributes to that PC’s mode of variation (Equation 1), where �̅�1x101 is the mean of all 

trials.  The interpretation of each retained PC was determined according to the single PC 

reconstruction method outlined by Brandon, et al. (2013), and the PCs that represent the 

magnitude of the vertical toe position during swing were identified.  For each participant, the 

mean and standard deviation of each PC score that represents toe height were evaluated across 

all trials. 

𝑍𝑛×101 = (𝑋𝑛×101 − (1𝑛×1 × �̅�1×101)) × 𝑈′
101×101                                                                            (1) 

 

To determine maximal limb shortening, the locations of the hip joint and toe at each point 

in the stride cycle were considered.  The instantaneous distance between the hip and toe was 

divided by the instantaneous height of the hip joint relative to the ground to determine the 

normalized limb length.  The greatest percent reduction (i.e. the lowest value) of normalized 

limb length during swing represented the maximal limb shortening (Little et al., 2014).  For each 

participant, the mean and standard deviation of the maximal limb shortening were taken across 

all trials.  All data reduction was done using custom software (Matlab v8.0.0.783, Mathworks, 

Inc., Natick, MA, USA). 

A Pearson correlation was calculated for each pair of foot clearance measures and for 

each pair of foot clearance variability measures.  Three stepwise multiple regression analyses 
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were used to determine the relative contributions of the joint coordination variables in predicting 

foot clearance: the mean coupling angle for each pair of coupled joints (hip-knee, hip-ankle, 

knee-ankle) over each sub phase of the stride cycle was used to predict the toe height at the 

greatest horizontal velocity of the foot, the PC scores that represent toe height during swing, and 

the maximal limb shortening.  Additionally, the relationship of within-subject variability of the 

coupling angle to within-subject variability of foot clearance was investigated with three similar 

stepwise multiple regression analyses: the variability in coupling angle for each pair of coupled 

joints (hip-knee, hip-ankle, knee-ankle) over each sub phase of the stride cycle was used to 

predict the variability of the toe height at the greatest horizontal velocity of the foot, the standard 

deviation of the PC scores that represent toe height during swing, and the variability in maximal 

limb shortening.  Stepwise multiple regression was used to control for multicollinearity between 

the predictor variables, with stepping criteria of a 0.05 probability of F to enter, and a 0.10 

probability of F to be removed.  For each model that significantly predicted the dependent 

variable, the predictor variables that contributed significantly and had a variance inflation factor 

of less than 5 were identified, with significance determined at p < 0.05.  All statistical analyses 

were performed in SPSS (v19.0.0.1; SPSS, Inc., Chicago, IL). 

 

Results 

The relative motion of each pair of coordinated joints (hip-knee, hip-ankle, knee-ankle) 

was interpreted using the coupling angle (Figure 1).  When the coupling angle is 0°, just the 

proximal joint is moving, and there is only distal joint motion at 90°.  There is equal relative 

motion of the proximal and distal joints when the coupling angle is 45°.   
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Figure 1. Mean and variability of the coupling angle for each coordination pattern: hip-knee, hip-

ankle, knee-ankle.  Numbered sections represent the six sub phases of the gait cycle: 1) loading 

response, 2) midstance, 3) terminal stance, 4) initial swing, 5) midswing and 6) terminal swing. 
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The mean MFC was 0.026 m (SD = 0.014) (Figure 2), and the mean maximal limb 

shortening was 0.975 of normalized limb length (SD = 0.013) (Figure 3).  Both MFC and 

maximal limb shortening occurred approximately in the middle of swing (MFC: M = 54.4%, SD 

= 5.90%; maximal limb shortening: M = 44.2%, SD = 6.98%).  The results of the Principle 

Components Analysis of the vertical toe position during swing yielded three retained PCs.  Upon 

visual inspection of the features of toe height during swing characterized by each PC, it was 

revealed that PC1 explains 70.42% of the overall variance in the data, and represents the 

magnitude of toe height during the second half of swing (Figure 4; Table 2).  While PC2 only 

explains 14.33% of the overall variance in the data, and demonstrates a difference in toe height 

from the beginning to end of swing, most of the variance explained by PC2 occurs during early-

to-mid swing when the toe is closest to the ground (Figure 4; Table 2).  Therefore, both PC1 and 

PC2 were used to describe foot clearance.   

 
Figure 2. Mean and standard deviation of toe height throughout swing phase.  The mean and 

standard deviation of the MFC location is identified. 
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Figure 3. Mean and standard deviation of limb length (hip-toe distance) normalized to hip height 

throughout swing phase.  The mean and standard deviation of the maximal limb shortening is 

identified. 
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Figure 4. The effect of each of the three retained PCs on toe height during swing, and the 

variance explained by each retained PC. 
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Table 2 

The Variance Explained and the Feature Represented by Each of the Retained PCs for Toe 

Height during Swing 

   

PC 
Variance 

Explained (%) 
Feature Represented 

1 70.42 Magnitude of toe height during swing 

2 14.33 Difference in toe height from beginning to end of swing 

3 10.79 Timing of minimum foot clearance 

Total 95.53   

   

 

There was no significant correlation between maximal limb shortening and MFC or PC1, 

but there was a significant moderate correlation between MFC and both PC scores, and between 

maximal limb shortening and PC2.   By definition, the PC1 and PC2 scores are not correlated.  

There was a significant and high correlation between MFC variability and maximal limb 

shortening variability, and between the standard deviations of both PC scores.  The moderate 

correlation between MFC variability and the variability of both PC scores was also significant.  

There was no significant correlation between maximal limb shortening variability and the 

variability of either PC score (Table 3).   
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Table 3 

Bivariate Correlation Coefficients and Significance of the Correlation Between Measures of 

Foot Clearance and Foot Clearance Variability 

       

    Foot Clearance   
Foot Clearance 

Variability 

  r p  r p 

MFC - Max Limb Shortening   -0.296 0.084   0.777 <0.001* 

MFC - PC1  0.493 0.003*  0.550 0.001* 

MFC - PC2  0.696 <0.001*  0.564 <0.001* 

Max Limb Shortening - PC1  -0.174 0.318  0.017 0.092 

Max Limb Shortening - PC2  -0.491 0.003*  0.071 0.685 

PC1 - PC2   -0.031 0.858   0.834 <0.001* 

* p < 0.05       

       

 

 Each predictor model was statistically significant and contained between 1 and 5 of the 

18 predictors, with no variables removed for any of the models.  A single variable accounted for 

less than 20% of the variance in MFC (F(1,33) = 6.895, p = 0.013) and MFC variability (F(1,33) = 

8.051, p = 0.008), while more than approximately 50% of the variance in the magnitude and 

variability of maximal limb shortening (Mean: F(5,29) = 11.971, p < 0.001; Standard Deviation: 

F(2,32) = 21.753, p = <0.001), PC1 (Mean: F(2,32) = 20.856, p < 0.001; Standard Deviation: F(3,31) = 

14.214, p = <0.001) and PC2 (Mean: F(2,32) = 13.728, p < 0.001; Standard Deviation: F(3,31) = 

12.497, p = <0.001) was explained by their respective models (Table 4). 
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Table 4 

Variance in Foot Clearance and Foot Clearance Variability Accounted for by Joint 

Coordination and Joint Coordination Variability 

       

    Foot Clearance   Foot Clearance Variability 

  # Predictors Adjusted R2  # Predictors Adjusted R2 

MFC   1 0.148   1 0.172 

Max Limb Shortening  5 0.617  2 0.550 

PC1  2 0.539  3 0.538 

PC2   2 0.428   3 0.504 

Note. All models were statistically significant at p < 0.05. 

       

 

 The effect of each variable on the prediction of foot clearance or foot clearance 

variability was determined from the standardized coefficients of the predictors for each model 

(Table 5).  MFC was predicted by a lower knee-ankle coupling angle during midstance.  

Maximal limb shortening was primarily predicted by lower hip-knee coupling angle during 

initial swing and lower knee-ankle coupling angle during midstance, and to a lesser extent 

greater coupling angle for knee-ankle during midswing and greater hip-knee and hip-ankle 

coupling angle during terminal stance.  The PC1 score was primarily predicted by a greater hip-

knee coupling angle during midswing, and to a lesser extent, a lower hip-knee coupling angle 

during loading response.  The PC2 score was predicted by a lower coupling angle for hip-knee 

during terminal stance and knee-ankle during initial swing.  The variability in MFC was 

predicted by greater variability in hip-ankle coupling angle during terminal stance.  The 

variability in maximal limb shortening was predicted by greater hip-knee and lower knee-ankle 

coupling angle variability during initial swing.  The variability in PC1 score was primarily 

predicted by greater knee-ankle variability in midstance, and to a lesser extent, greater hip-ankle 

coupling angle variability during loading response and greater hip-ankle coupling angle 
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variability during terminal stance.  PC2 variability was predicted by lower hip-knee and greater 

knee-ankle variability during midstance, and greater knee-ankle variability during initial swing. 
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Table 5 

Descriptive Information and Standardized Coefficients for the Predictor Variables Included in Each Multiple Regression Model 

Predicting Foot Clearance or Foot Clearance Variability from Joint Coordination or Joint Coordination Variability 

              

Sub phase Joints 
  Coupling Angle (°)   Model Standardized Coefficients (β) 

  Max Median Min   MFC   MLS   PC1   PC2 

Loading Response Hip-Knee  87.39 70.94 37.99      -0.384   

Midstance Knee-Ankle  62.93 42.47 19.30  -0.416  -0.439     

Terminal Stance Hip-Knee  77.15 72.67 57.66        -0.371 

Initial Swing Hip-Knee  58.12 42.47 35.99    -0.655     

Initial Swing Knee-Ankle  50.67 38.98 13.80        -0.446 

Midswing Hip-Knee  77.02 66.70 30.83      0.698   

Midswing Knee-Ankle  35.17 19.50 8.48    0.266     

Terminal Swing Hip-Knee  85.53 80.05 54.16    0.310     

Terminal Swing Hip-Ankle   75.73 48.37 21.32       0.288         

              

              

Sub phase Joints 
  SD Coupling Angle (°)   Model Standardized Coefficients (β) 

  Max Median Min   SD MFC   SD MLS   SD PC1   SD PC2 

Loading Response Hip-Ankle  13.87 7.52 3.48      -0.410   

Midstance Hip-Knee  11.63 4.90 3.43        -0.640 

Midstance Knee-Ankle  17.83 8.92 5.28      0.636  0.733 

Terminal Stance Hip-Ankle  16.85 6.10 2.30  0.443    0.396   

Initial Swing Hip-Knee  16.71 4.84 1.67    1.657     

Initial Swing Knee-Ankle   20.05 7.92 3.54       -1.421       0.500 

Note. MLS = maximal limb shortening; SD = standard deviation. 
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Discussion 

The significant correlation between MFC and both PC scores – and the lack of correlation 

between maximal limb shortening and MFC or PC1 – is likely due to the fact that MFC and the 

PC scores represent toe height during swing, while maximal limb shortening is based on the hip-

toe distance.  The moderate correlation between maximal limb shortening and PC2 may be due 

to the fact that most of the variance explained by PC2 occurs around the point of maximal limb 

shortening.  Regardless of their relationship with each other, each of these measures can be used 

to quantify foot clearance, with low foot clearance and high foot clearance variability considered 

risk factors for tripping (Begg et al., 2007).  However, to modify foot clearance requires an 

understanding of the effect of joint coordination on the toe height.  The low variance explained 

in the prediction of MFC and MFC variability from coordination and coordination variability 

suggests that there is not a strong relationship between sagittal plane joint coordination and foot 

clearance, determined as MFC.  The problem likely lies within identifying a single point during 

the stride cycle to represent foot clearance, particularly when that point was chosen based on the 

velocity of the foot, rather than an actual measure of toe height.  In contrast, coordination and 

coordination variability accounted for a greater percentage of the variance in the mean and 

standard deviation of maximal limb shortening as well as the PC scores.  In the case of the PC 

scores, it appears that a continuous variable that represents toe height has a stronger relationship 

with joint coordination than the discrete variable of MFC.  While maximal limb shortening is 

also a single point during the stride cycle, it is based on the hip-toe distance, which is determined 

by the kinematics of the lower extremity joints and likely has a stronger relationship to joint 

coordination.   
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With six sub phases of the gait cycle, and three pairs of coupled joints, there were 18 

potential predictor variables for each model.  The stepwise multiple regression method resulted 

in five or fewer predictor variables for each of the models.  The reduced number of predictor 

variables may be due to the simplified information from the coordination variables by collapsing 

the range of coupling angle to 0° to 90°.  Each measure of joint coordination reports the relative 

motion of the proximal and distal joints.  The original coupling angle had a range of -180° to 

180°, and provided the ability to determine not only which joint had greater motion, but also 

which direction each joint was moving (e.g. flexion or extension).  The result was a circular 

variable, with values of -180° and 180° representing the same coupling angle.  However, to be 

able to use the coordination variables in the linear multiple regression models, the coupling angle 

was converted to a scale of 0° to 90°, with the magnitude of the coupling angle simply reporting 

which joint had more relative motion.  It is likely that several of the predictor variables were 

more similar to each other on this reduced scale than if the coupling angle had been able to 

indicate the direction of motion as well as the magnitude of relative motion. 

To evaluate the effect of individual predictor variables, the sign of the coefficient (β) is 

used to determine whether an increase in the predictor variable is associated with an increase (β 

> 0) or decrease (β < 0) in the dependent variable.  For the coordination variables, an additional 

interpretation of the magnitude of the coupling angle is necessary to determine the relative 

motion of the proximal and distal joints during the sub phase of interest.  A greater coupling 

angle specifies more distal joint motion relative to the proximal joint.  A greater value for MFC 

or one of the PC scores means greater toe height, while a greater value for maximal limb 

shortening means less limb shortening.  For the models that predict foot clearance variability, the 
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magnitude of the predictor variable indicates the amount of coupling angle variability for that 

particular sub phase. 

Specific coordination patterns related to foot clearance depend on the measure of foot 

clearance chosen.  For MFC, greater foot clearance is the result of more knee motion relative to 

ankle motion during midstance.  The opposite effect occurred for maximal limb shortening, as 

greater relative motion of the ankle to the knee during midstance resulted in greater foot 

clearance.  This discrepancy provides further support that the relationship between joint 

coordination and foot clearance is not same for MFC and maximal limb shortening.  However, 

for maximal limb shortening, PC1 and PC2, it appears that the amount of knee motion relative to 

hip motion – during initial swing, midswing and terminal stance, respectively – has an effect on 

the magnitude foot clearance.  This is consistent with the results of Little et al. (2014), who noted 

abnormal hip-knee coordination had a greater effect on foot clearance than ankle dorsiflexion.  

While the direction of the hip and knee motion cannot be determined from the reported coupling 

angles, it can be approximated by looking at the overall mean sagittal plane joint angles (Figure 

5).  During typical gait, both the hip and knee are flexing during terminal stance and initial 

swing.  Hip flexion serves to advance the leg forward, and as evidenced by these results, knee 

flexion during initial swing controls the magnitude of foot clearance.  All participants had more 

knee motion relative to hip motion (minimum coupling angle > 45°) during terminal stance, with 

most experiencing a hip-knee coupling angle between 72-77°, although this higher coupling 

angle results in a lower predicted PC2 score, which represents low foot clearance.  Similarly, 

with a median hip-knee coupling angle of less than 45° during initial swing, most participants 

had greater hip flexion than knee flexion.  The few participants with a greater coupling angle did 

not have a lower foot clearance as predicted by maximal limb shortening.  During midswing, the 



 

30 

 

knee typically extends while the hip continues to flex (Figure 5).  Most participants had much 

greater knee extension than hip flexion during this sub phase (median coupling angle > 45°), 

however, the minimum coupling angle was as low as 30.83°.  From the joint angles of the 

participant with a history of stroke (Figure 5), it appears that not only was the relative hip-knee 

motion different from the typical gait pattern, but the knee for this participant is flexing rather 

than extending during midswing.  While the difference in direction of knee motion could not be 

determined from the coupling angle, this participant with abnormal coordination – less knee 

motion relative to hip motion – had a lower predicted PC1 score, which corresponds to a lower 

toe height throughout swing.   
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Figure 5. Overall mean sagittal plane hip, knee and ankle angle curves for all participants 

(black), and individual mean curves for a representative participant with a history of stroke 

(gray).  Positive angles represent hip flexion, knee extension and ankle dorsiflexion.  Numbered 

sections represent the six sub phases of the gait cycle: 1) loading response, 2) midstance,           

3) terminal stance, 4) initial swing, 5) midswing and 6) terminal swing. 
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 It was expected that greater joint coordination variability would result in greater predicted 

variability of foot clearance, regardless of how foot clearance was determined.  For all coupling 

patterns that contributed significantly to the foot clearance variability models, the median 

coupling angle variability was closer to the minimum than the maximum, indicating that greater 

coupling angle variability was abnormal.  In almost all cases, this led to greater predicted 

variability in foot clearance, which increases the likelihood that low foot clearance could occur.  

For MFC, PC1 and PC2, variability in joint coordination during stance had the greatest influence 

on predicted foot clearance variability.  Variability in the relative motion of the hip and ankle 

during terminal stance – just before toe-off – affects the predicted variability of the toe height 

during swing for both MFC and PC1.  Additionally, knee-ankle variability during midstance has 

the greatest effect on predicted PC1 and PC2 variability.  This is consistent with the observation 

that joint kinematic variability is related to foot clearance variability (Mills et al., 2008).  Similar 

to the magnitude of foot clearance analysis, hip-knee coordination variability during initial swing 

has the greatest effect on maximal limb shortening variability. 

 Three of the predictor variables for the foot clearance variability models have negative 

standardized coefficients, meaning greater coupling angle variability results in less predicted foot 

clearance variability.  In the maximal limb shortening model, the knee-ankle coordination 

variability has the opposite effect of the hip-knee coordination variability within the same sub 

phase.  This behavior may be explained by a high variance inflation factor (4.790) for each of 

these predictor variables, indicating that hip-knee and knee-angle coordination variability during 

initial swing are highly correlated.  To avoid having two correlated predictor variables, it may be 

reasonable to consider a model for maximal limb shortening variability that includes initial 

swing hip-knee coupling angle variability only, although this model barely accounts for about 
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15% of the variance in maximal limb shortening variability (F(1,33) = 6.026, p = 0.020, R2 = 

0.154, Adjusted R2 = 0.129).  The negative standardized coefficients for hip-ankle coupling 

angle variability during loading response in the PC1 variability model and hip-knee coupling 

angle variability during midstance in the PC2 variability model may exist for a different reason.  

Having greater coordination variability (i.e. a variety of possible combinations for the relative 

motion of the lower extremity joints) may allow a person to adapt to unexpected obstacles or 

perturbations during gait (Latash, 2010).  This could be especially important during stance when 

an individual may have to adjust to inconsistencies in the walking surface.  Therefore, in these 

instances, greater coupling angle variability may be considered a healthy component of gait, and 

that is reflected in low predicted variability of the PC1 and PC2 scores.  

 

Conclusion 

 Only a small portion of the variance in MFC, defined at the point of the greatest 

horizontal velocity of the foot, is explained by joint coordination.  Maximal limb shortening may 

be more sensitive to changes in joint coordination because the hip-toe distance is constrained by 

the hip, knee and ankle angles.  Rather than identifying foot clearance at a discrete time point, 

PC1 and PC2 quantify toe height throughout swing.  Normal hip-knee coordination during 

midswing, namely more knee extension relative to hip flexion, results in greater predicted toe 

height as measured by PC1.  Abnormal gait that results in high joint coordination variability may 

yield greater variability in foot clearance during swing.  Future studies should examine if training 

an individual to make changes to joint coordination results in an increase in foot clearance and 

reduction of foot clearance variability among those with abnormal gait. 
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Chapter 3: Identifying Group Differences Related to Falls Risk and Obstacle Avoidance 

Introduction 

Certain demographic groups, such as older adults, recurrent fallers, and people with a 

history of stroke, are considered to have a high risk of falling.  Nearly 40% of older adults fall in 

a given year (Blake et al., 1988; Hausdorff, Rios, & Edelberg, 2001; Tinetti, Speechley, & 

Ginter, 1988), and older adults are more likely to trip than young adults (Garman, Franck, 

Nussbaum, & Madigan, 2015).  About half of all fallers will fall recurrently (Stalenhoef, 

Crebolder, Knottnerus, & VanderHorst, 1997), and so having a history of falls increases falls risk 

(Deandrea et al., 2010).  Despite the prevalence of falls in the elderly population, the risk of 

falling is even greater among stroke survivors (Batchelor et al., 2012). 

The ability to identify and address specific risk factors may prevent falls.  Risk factors 

may include low falls self-efficacy, poor gait and balance ability, abnormal spatiotemporal gait 

parameters, and insufficient foot clearance during walking.  Although there is some evidence to 

the contrary (Clemson, Kendig, Mackenzie, & Browning, 2015), falls history and low falls self-

efficacy have been thought to feed into a downward spiral of mobility limitations, reduced 

independence and more falls (Belgen, Beninato, Sullivan, & Narielwalla, 2006; Delbaere, 

Crombez, Vanderstraeten, Willems, & Cambier, 2004; Deshpande et al., 2008; Friedman, 

Munoz, West, Rubin, & Fried, 2002).  Gait and balance disorders are the most significant risk 

factor for falling among community-ambulating older adults (Deandrea et al., 2010), and are 

more modifiable than other risk factors, such as medical history or advanced age.  A common 

way to modify gait and balance disorders is through exercise, including strength training, which 

has been effective at preventing falls in the elderly population (Panel on Prevention of Falls in 

Older Persons, American Geriatrics Society and British Geriatrics Society, 2011), and reducing 
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gait asymmetries for stroke survivors (Seo & Kim, 2014).  Therefore, lower-extremity strength 

may play a role in preventing falls (Pavol, Owings, Foley, & Grabiner, 2002).  Specific gait 

characteristics have also been considered in relation to falls risk.  While most spatiotemporal gait 

parameters are not related to falls risk (Moreira, Sampaio, & Kirkwood, 2014), greater step width 

has been used to discriminate fallers from non-fallers (Gehlsen & Whaley, 1990a; Maki, 1997).  

Additionally, low foot clearance and increased foot clearance variability are suspected to 

increase the risk of falling (Begg et al., 2007).  Foot clearance is determined by the degree of 

flexion during swing phase of the lower extremity joints, either individually (Little et al., 2014; 

Moosabhoy & Gard, 2006; Winter, 1992), or in coordination with each other, as shown in 

Chapter 2. 

It is expected that groups considered at risk for falling (e.g. older adults, previous fallers, 

stroke survivors) would score differently than those not at risk for falling (e.g. young adults) on 

measures related to each of these factors.  However, it is important to determine if an individual 

is at risk for falling simply by their demographics.  Therefore, the purpose of this study was to 

identify differences among stroke survivors, young adults, older fallers and older non-fallers in 

function and ability related to measures of falls risk, including falls self-efficacy, gait and 

balance, neuromuscular function, spatiotemporal gait parameters, foot clearance, joint kinematics 

and joint coordination.  Additionally, group effects of the ability to successfully avoid a tripping 

hazard while walking were determined.  It was anticipated that there would be group differences 

in measures of falls risk and the ability to avoid an obstacle, with the older fallers and 

participants with a stroke expected to perform worse than the young adults and older non-fallers.  
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Methods 

Participants.  The 35 participants introduced in Chapter 2 were included in this analysis, and 

split into four groups: young adults, older adult non-fallers, older adult fallers, and chronic stroke 

participants.  A questionnaire was administered to gain demographic information, information 

about the type and location of the stroke, falls history.  Fear of falling was assessed through the 

Frenchay Activities Index (FAI) (Schepers, Ketelaar, Visser-Meily, Dekker, & Lindeman, 2006), 

Swedish modification of the Falls Efficacy Scale (FES-S), which has been validated in a stroke 

population (Hellstrom & Lindmark, 1999), and the Activities-specific Balance Confidence scale 

(ABC) (Powell & Myers, 1995). 

 

Functional evaluation.  The following functional evaluations were administered in order, 

however, items that were common among different evaluations were not repeated: Performance-

Oriented Assessment of Mobility (POMA) Balance Assessment (Tinetti, 1986), Mini-BESTest 

(Franchignoni, Horak, Godi, Nardone, & Giordano, 2010), POMA Gait Assessment (Tinetti, 

1986), fast walking speed (Oken, Yavuzer, Ergocen, Yorgancioglu, & Stam, 2008; Richards & 

Olney, 1996), and Functional Gait Analysis (FGA) (Wrisley, Marchetti, Kuharshy, & Hitney, 

2004).  Participants wore a gait belt, and the evaluator held onto the belt in case the participant 

lost their balance during the tasks, but only provided assistance if necessary. 

 

Biomechanics assessment.  Force output and muscle activity were recorded as the participant 

performed the following maximum voluntary contractions (MVC): isometric knee extension, 

isometric ankle dorsiflexion and isometric ankle plantar flexion.  Each isometric contraction 

lasted five seconds.  Participants wore shoes to protect their feet and they were verbally 
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encouraged to give a maximal effort during each contraction.  Each leg was tested separately 

using a handheld dynamometer (Lafayette Manual Muscle Testing System, Model 01165, 

Lafayette, IN, USA), and the peak force during the contraction was identified.  Electromyogram 

(EMG) signals were recorded wirelessly (Noraxon, DTS EMG, Scottsdale, AZ, USA) at 1000 

Hz from the rectus femoris, tibialis anterior, and medial gastrocnemius of both legs.  Prior to 

application of the surface electrodes (Vermed, NeuroPlus, Bellows Falls, VT, USA), the skin 

was shaved (if necessary), gently abraded, and wiped with alcohol to reduce electrical 

impedance.  Pairs of electrodes were placed on the skin above each muscle according to the 

guidelines established by the Surface Electromyography for the Non-Invasive Assessment of 

Muscles project (Hermens, Freriks, Disselhorst-Klug, & Rau, 2000).   

Retroreflective markers used for motion capture were applied and the location of the 

markers was recorded and processed as described in Chapter 2.  Data was collected as each 

participant walked at their self-selected walking pace (Table 6), both overground (Chapter 2) and 

on a treadmill (Precor, C964i, Woodinville, WA, USA).  During the treadmill walking trials, 

participants wore a safety harness that provided no support during normal walking, but prevented 

the participant from landing on the ground in the case of a fall.  The treadmill walking began 

with a one-minute acclimation period that was not recorded.  Two treadmill conditions were 

tested: normal walking, and avoiding an unexpected obstacle.  The order of the treadmill 

conditions was randomized to distribute any learning or fatigue effects across all conditions.  

Additionally, participants were allowed to rest at any point if their perceived exertion was above 

what is considered very light based on the Rating of Perceived Exertion scale (Borg, 1970).  If 

the participant was required to rely on the support of the harness and fall-arrest system, the 

treadmill was stopped immediately.   
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Table 6 

Walking Speed by Group for the Overground and Treadmill Conditions 

            

  

Young 

Adult 
  

Older Adult - 

Non-faller 
  

Older Adult - 

Faller 
  Stroke 

  M SD   M SD   M SD   M SD 

Overground Speed (m/s) 1.48 0.12  1.35 0.16  1.24 0.19  1.02 0.39 

Treadmill Speed (m/s) 1.01 0.21   0.74 0.22   0.73 0.27   0.80 0.47 

Note. M = mean; SD = standard deviation. 

            

 

To ensure participants were looking straight ahead and not at their feet, participants were 

required to complete a concurrent visual task while walking on the treadmill.  An arrow appeared 

on a screen positioned at eye level approximately one meter from the treadmill.  The participants 

were asked to report the direction the arrow was pointing.  The verbal response was manually 

entered into a computer, and the time to produce the response was recorded using custom 

software (Matlab v8.0.0.783, Mathworks, Inc., Natick, MA, USA).  A new arrow appeared one 

second after each response for a total time of one minute.  Each minute of testing was evaluated 

on the number of responses, percent of correct responses, and the mean, maximum and minimum 

time for each response.  To control for the effects of doing this dual motor and visual task, 

participants also completed the visual task for one minute while standing on the treadmill but not 

walking, as well as walking without performing the visual task for one minute while all 

biomechanical data were recorded. 

For normal treadmill walking with the visual task, kinematic data were recorded 

continuously for one minute.  For the obstacle avoidance treadmill condition, participants were 

instructed to attempt to avoid the obstacle.  The obstacle was a lightweight piece of foam cut to 
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length, width and height dimensions of 20 x 16 x 6 cm (Airex AG, Balance-pad, CH-5643 Sins, 

Switzerland).  Similar to the process outlined by Weerdesteyn, et al. (2003), at random heel-

strike events, the foam was placed on the belt of the treadmill in front of the foot entering stance 

phase so that the obstacle would have to be avoided in the subsequent swing phase.  Considering 

typical minimal foot clearance for most elderly adults has been reported to be no more than 5 cm 

(Begg et al., 2007), using a 6-cm obstacle required the participant to react to the object to avoid 

coming in contact with it.  This is also within the range of obstacle heights used in previous 

studies of obstacle avoidance in stroke survivors (Said, Goldie, Patla, & Sparrow, 2001).  If the 

foot did come in contact with the side of the block of foam, the obstacle was kicked away so that 

the progress of the foot was not actually impeded.  If the foot stepped down on the obstacle, the 

block of foam compressed to only minimally disturb the participant’s gait cycle.  After the foot 

cleared or came in contact with the obstacle, the block of foam slid off of the treadmill.  The 

participant continued to walk on the treadmill until another obstacle was presented, for a total of 

six obstacles in a one-minute period.  This was repeated for a total of four periods, or 24 

obstacles.  The number of steps between obstacles was randomized, as was the foot (right or 

left), however, within each period the obstacle was presented on the right side three times and the 

left side three times.  

All kinematic data were divided into individual strides as described in Chapter 2.  The 

outcome of each stride with an obstacle present was classified as follows: Trip – if the foot 

kicked the obstacle forward during swing; Step on – if the next heel-strike landed on top of the 

obstacle rather than on the treadmill belt; Clear – if the foot did not come in contact with the 

obstacle.  The classification was determined by tracking the location of retroreflective markers 

attached to the obstacle, and using custom software (Matlab v8.0.0.783, Mathworks, Inc., Natick, 
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MA, USA) to identify any changes in velocity of the markers relative to the treadmill belt speed, 

as well as the location of the toe and heel relative to the position of the obstacle.   

 

Data analysis.  All kinematic data were processed as outlined in Chapter 2.  The EMG data were 

full-wave rectified and root mean square values were calculated using a 120-ms window.  The 

greatest muscle activity during the maximal voluntary contraction trial was considered the 

maximal muscle activity for each muscle (Hassanlouei, Falla, Arendt-Nielsen, & Kersting, 

2014).  The processed EMG signals were expressed as a percent of the maximal muscle activity, 

and time-normalized from 1000 Hz to match the 200 Hz recording of the kinematic data. 

Data were analyzed to identify differences between groups (young, older non-faller, older 

non-faller, and stroke) for the following constructs: falls-related evaluations, neuromuscular 

function, spatiotemporal gait parameters, foot clearance, foot clearance variability, joint 

kinematics, kinematic timing, initial swing joint coordination, midswing joint coordination and 

obstacle avoidance.  Since each construct can be defined by several variables, for each group of 

measurements a MANOVA was used to determine the group effect. 

Common tests for fear of falling and gait and balance ability were employed as the falls-

related evaluations.  Measures of falls self-efficacy included total FAI score (Schuling, de Haan, 

Limburg, & Groenier, 1993), the total FES-S score (Hellstrom & Lindmark, 1999), and the total 

ABC score (Powell & Myers, 1995).  Gait and balance performance was evaluated with the 

balance component of the POMA (Tinetti, 1986), the total Mini-BESTest score (Franchignoni et 

al., 2010), and the Functional Gait Analysis score (Wrisley et al., 2004).  Measures of 

neuromuscular function included maximal isometric force output during knee extension, 

dorsiflexion and plantar flexion, and the peak rectus femoris, tibialis anterior and medial 
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gastrocnemius activity during swing for the affected leg.  All strength measures were normalized 

to body mass. 

Several spatiotemporal gait parameters were calculated during each condition of the 

biomechanics assessment.  To simplify the analysis and use data most similar to typical walking, 

only walking speed (considered separately for overground and treadmill conditions), and 

overground stance time, swing time and step width were considered.  Step width for each stride 

was calculated as the average horizontal distance between the right and left feet during double 

support time, and then averaged across all strides of overground walking to get a participant’s 

mean step width.   

Four measures of foot clearance for the affected leg during overground walking were 

calculated as described in Chapter 2: MFC, maximal limb shortening, and PC1 and PC2 scores.  

The standard deviation of each these measures represents foot clearance variability.  Kinematic 

variables of interest included the sagittal plane peak angle and range of motion for the hip, knee 

and ankle during swing.  Kinematic timing was determined as the time – expressed as a 

percentage of stride – to the peak joint angle during swing.  Joint coordination during initial 

swing and midswing was quantified as the mean of the coupling angle over the respective 

subphase of the gait cycle for hip-knee, hip-ankle and knee-ankle coordination.  Obstacle 

avoidance was quantified as the percent of strides with the obstacle present that were classified 

as a trip or step on, as well as the total percent of strides where the foot came in contact with the 

obstacle. 

Additional information was collected that related to the execution of the experiment.  

This included performance on the visual task and placement of the obstacle.  Visual task 

performance was quantified with five variables measuring response time (number of responses, 
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and the mean, maximum and minimum time for each response) and percent of correct responses.  

For the walking with the visual task and the obstacle conditions, each participant’s performance 

on the visual task was expressed relative to their score during the standing baseline visual task.  

Factor analysis reduced the number of variables needed to describe visual task performance to 

include only number of responses and maximum time for the walking condition, and mean time 

and percent correct for the obstacle condition (Appendix F).  Using the reduced set of variables, 

a MANOVA was performed to detect differences in visual task performance across groups.  

Obstacle placement was measured as the mean and standard deviation of the distance in the 

direction of walking from the toe to the obstacle at toe-off.  An additional MANOVA was used 

to determine if obstacle placement was different across groups.  

The assumptions for using a MANOVA to investigate group differences were checked.  

Due to unequal sample sizes in each group and a significant (p < 0.001) Box’s M test for some of 

the constructs, the results of each MANOVA were reported using Pillai’s trace (Tabachnick & 

Fidell, 2013).  For each MANOVA that identified a construct that was significantly different 

across groups (p < 0.05), the follow up test was a one-way ANOVA for each dependent variable 

that was included in the omnibus test.  In the case of a significant (p < 0.05) group effect for a 

dependent variable, all pairwise comparisons across groups were performed using a Tukey 

correction.  All statistical tests were done in SPSS (v19.0.0.1; SPSS, Inc., Chicago, IL). 

 

Results 

There were no differences between groups on visual task performance and obstacle 

placement (Table 7).  Results of the omnibus tests for falls-related constructs ( 
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Table 8), indicated a significant effect of group for falls self-efficacy, gait and balance, 

maximal isometric strength, spatiotemporal gait parameters, and foot clearance.  There was no 

overall effect of group for midswing joint coordination or obstacle avoidance.   

 

Table 7 

Overall Group Effects for Experiment-Related Constructs 

       

Construct 
Pillai's 

Trace 
F df1 df2 p ηp

2 

Visual Task Performance 0.539 1.641 12 90 0.094 0.180 

Obstacle Placement 0.278 1.667 6 62 0.144 0.139 

       

 

Table 8 

Overall Group Effects for Each Gait- or Falls-Related Construct 

       

Construct 
Pillai's 

Trace 
F df1 df2 p ηp

2 

Falls-Related Evaluations 1.072 2.596 18 84 0.002* 0.357 

Neuromuscular Function 1.094 2.584 18 81 0.002* 0.365 

Spatiotemporal Parameters 0.950 2.687 15 87 0.002* 0.317 

Foot Clearance 0.607 1.904 12 90 0.044* 0.202 

Foot Clearance Variability 0.811 2.781 12 90 0.003* 0.270 

Joint Kinematics 1.217 3.186 18 84 <0.001* 0.406 

Kinematic Timing 0.815 3.852 9 93 <0.001* 0.272 

Initial Swing Coordination 0.785 3.664 9 93 0.001* 0.262 

Midswing Coordination 0.433 1.743 9 93 0.090 0.144 

Obstacle Avoidance 0.317 1.947 6 62 0.087 0.159 

* p < 0.05       

       

 

 Follow up tests for falls-related evaluations showed that the total FAI score and all 

measures of gait and balance were significantly different between groups, and there was a trend 

toward group differences for total FES-S score and ABC score (Table 9).  There were no 
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significant differences between pairs of groups for the total FAI score (p > 0.050).  The young 

participants scored higher than the stroke participants for POMA balance (Young: M = 15.9, SD 

= 0.3; Stroke: M = 14.4, SD = 0.5; p = 0.009), Mini-BESTest total (Young: M = 27.1, SD = 1.0; 

Stroke: M = 21.8, SD = 3.8; p = 0.005), and the FGA (Young: M = 29.5, SD = 0.7; Stroke: M = 

19.8, SD = 6.1; p = 0.001).  The young participants also had a greater score than older fallers on 

the Mini-BESTest total (Fallers: M = 23.5, SD = 3.0; p = 0.022), and the FGA (Fallers: M = 

23.9, SD = 5.1; p = 0.030), and a greater score than non-fallers on the Mini-BESTest total (Non-

fallers: M = 23.3, SD = 2.7; p = 0.015) (Figure 6).   

 

Table 9 

Group Effects for Each Falls-Related Evaluation 

    

Dependent Variable F p ηp
2 

FAI Total 3.464 0.028* 0.241 

FES-S Total 2.709 0.062 0.208 

ABC 2.793 0.057 0.213 

POMA Balance 4.295 0.012* 0.294 

Mini-BESTest Total 6.069 0.002* 0.370 

Functional Gait Analysis 6.359 0.002* 0.381 

Note. df1 = 3 and df2 = 31 for all tests. 

* p < 0.05 
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Figure 6. Pairwise comparisons for falls-related evaluations that are significantly different 

bewtween groups. (*p < 0.05; ***p < 0.001) 

 

 The group differences in neuromuscular function of the affected leg were related to 

strength and not muscle activity (Table 10).  The stroke participants were weaker than the young 

participants for all strength measures (knee extension (Stroke: M = 0.186 kg/kg body mass, SD = 

0.062 kg/kg body mass; Young: M = 0.320 kg/kg body mass, SD = 0.051 kg/kg body mass; p = 
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0.013), plantar flexion (Stroke: M = 0.156 kg/kg body mass, SD = 0.084 kg/kg body mass; 

Young: M = 0.378 kg/kg body mass, SD = 0.074 kg/kg body mass; p < 0.001), dorsiflexion 

(Stroke: M = 0.177 kg/kg body mass, SD = 0.075 kg/kg body mass; Young: M = 0.361 kg/kg 

body mass, SD = 0.055 kg/kg body mass; p < 0.001)), and they were also weaker than the older 

non-fallers for all strength measures (knee extension (Non-fallers: M = 0.306 kg/kg body mass, 

SD = 0.109 kg/kg body mass; p = 0.030), plantar flexion (Non-fallers: M = 0.260 kg/kg body 

mass, SD = 0.043 kg/kg body mass; p = 0.016), dorsiflexion (Non-fallers: M = 0.314 kg/kg body 

mass, SD = 0.054 kg/kg body mass; p < 0.001)).  The young participants were stronger than the 

older fallers in plantar flexion (Fallers: M = 0.206 kg/kg body mass, SD = 0.040 kg/kg body 

mass; p <0.001) and dorsiflexion (Fallers: M = 0.361 kg/kg body mass, SD = 0.055 kg/kg body 

mass; p < 0.001).  The young participants were also stronger than the older non-fallers in plantar 

flexion (p = 0.001), while the older non-fallers were stronger than the older fallers in dorsiflexion 

(p = 0.018) (Figure 7). 

 

Table 10 

Group Effects for Each Measure of Neuromuscular Function 

    

Dependent Variable F p ηp
2 

Knee Extension 5.318 0.004* 0.340 

Plantar Flexion  20.940 <0.001* 0.670 

Dorsiflexion 16.439 <0.001* 0.614 

Peak RF Activity Swing 0.928 0.439 0.085 

Peak TA Activity Swing 0.674 0.575 0.063 

Peak GAS Activity Swing 2.676 0.065 0.211 

Note. df1 = 3 and df2 = 30 for all tests; RF = rectus femoris; 

TA = tibialis anterior; GAS = medial gastrocnemius. 

* p < 0.05 
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Figure 7. Pairwise comparisons for lower extremity strength on the affected side for motions that are significantly different between 

groups. (BM = body mass; *p < 0.05; ***p < 0.001) 
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 Spatiotemporal gait parameters that were different between groups included overground 

speed, stance time and step width (Table 11).  The participants with chronic stroke (M = 1.020 

m/s, SD = 0.388 m/s) had a slower overground walking speed than the young (M = 1.485 m/s, 

SD = 0.119 m/s; p = 0.001) and older non-fallers (M = 1.354 m/s, SD = 0.159 m/s; p = 0.025), 

and the young participants also had a faster overground walking speed than the older fallers (M = 

1.236 m/s, SD = 0.186; p = 0.046).  There were no significant differences between pairs of 

groups for stance time (p > 0.050).  The stroke participants (M = 0.117 m, SD = 0.060 m) had a 

greater step width than the older non-fallers (M = 0.041 m, SD = 0.026 m; p = 0.004) and the 

young participants (M = 0.044 m, SD = 0.028 m; p = 0.005) (Figure 8).   

 

Table 11 

Group Effects for Each Spatiotemporal Gait Parameter  

    

Dependent Variable F p ηp
2 

Overground Speed 6.502 0.002* 0.386 

Treadmill Speed 2.269 0.100 0.180 

Stance Time 3.142 0.039* 0.233 

Swing Time 1.979 0.138 0.161 

Step Width 5.478 0.004* 0.346 

Note. df1 = 3 and df2 = 31 for all tests. 

* p < 0.05 

    

 



 

 

 

4
9
  

Figure 8. Pairwise comparisons for spatiotemporal gait parameters that are significantly different between groups. (*p < 0.05; **p < 

0.01; ***p < 0.001) 
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While there was a trend toward group differences for MFC, the only measure of foot 

clearance that was different between groups was PC2 score, which represents toe height in early 

swing (Table 12).  The participants with chronic stroke (M = 0.144, SD = 0.096) had a greater 

PC2 score than the young (M = -0.039, SD = 0.048; p < 0.001), older fallers (M = -0.014, SD = 

0.056; p = 0.001), and older non-fallers (M = -0.001, SD = 0.070; p = 0.002) (Figure 9). 

 



 

51 

 

Table 12 

Group Effects for Each Measure of Foot Clearance  

    

Dependent Variable F p ηp
2 

MFC 2.763 0.059 0.211 

Maximal Limb Shortening 2.612 0.069 0.202 

PC1 0.384 0.765 0.036 

PC2 9.570 <0.001* 0.481 

Note. df1 = 3 and df2 = 31 for all tests. 

* p < 0.05 

    

 

 
Figure 9. Pairwise comparisons for PC2 score, the only measure of foot clearance that is 

significantly different between groups. (**p < 0.01; ***p < 0.001) 
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0.006 m, SD = 0.005 m; p = 0.004), older non-fallers (M = 0.004 m, SD = 0.001 m; p = 0.001), 
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stroke (M = 0.047, SD = 0.036) also had a greater standard deviation of PC2 score than the older 

non-fallers (M = 0.022, SD = 0.004; p = 0.018) (Figure 10). 

 

Table 13 

Group Effects for Each Measure of Foot Clearance Variability 

    

Dependent Variable F p ηp
2 

MFC SD 8.026 <0.001* 0.437 

Maximal Limb Shortening SD 2.844 0.054 0.216 

PC1 SD 2.337 0.093 0.184 

PC2 SD 3.502 0.027* 0.253 

Note. df1 = 3 and df2 = 31 for all tests; SD = standard deviation. 

* p < 0.05 

    

 

 
Figure 10. Pairwise comparisons for measures of foot clearance variability that are significantly 

different between groups. (*p < 0.05; **p < 0.01; ***p < 0.001) 
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 Between-group kinematic differences during swing were observed for peak knee flexion 

and range of motion at the knee and ankle (Table 14).  The participants with chronic stroke 

(Peak: M = 53.15°, SD = 17.87°; ROM: M = 48.00°, SD = 18.85°) had a lower peak knee flexion 

and knee range of motion than the young (Peak: M = 67.00°, SD = 3.53°, p = 0.011; ROM: M = 

67.86°, SD = 2.91°, p < 0.001), older fallers (Peak: M = 66.86°, SD = 5.74°, p = 0.013; ROM: M 

= 65.08°, SD = 5.58°, p = 0.002), and older non-fallers (Peak: M = 69.76°, SD = 3.36°, p = 

0.002; ROM: M = 64.64°, SD = 4.12°, p = 0.003).  Ankle range of motion during swing was 

greater for young (M = 26.59°, SD = 7.90°) than participants with chronic stroke (M = 10.48°, 

SD = 5.81°; p < 0.001) and older non-fallers (M = 18.66°, SD = 5.37°; p = 0.029).  Older fallers 

(M = 19.76°, SD = 4.20°) had a greater ankle range of motion during swing than participants 

with chronic stroke (p = 0.039). 

 

Table 14 

Group Effects for Swing Phase Joint Kinematics at the Hip, Knee and Ankle 

     

Dependent Variable F p ηp
2 

Hip 
Peak 0.429 0.734 0.040 

ROM 1.877 0.154 0.154 

Knee 
Peak 5.679 0.003* 0.355 

ROM 7.586 0.001* 0.423 

Ankle 
Peak 1.442 0.249 0.122 

ROM 8.389 <0.001* 0.448 

Note. df1 = 3 and df2 = 31 for all tests; ROM = range of motion. 

* p < 0.05 

     

 



 

 

 

5
4  

Figure 11. Pairwise comparisons of sagittal plane joint kinematics during swing that are significantly different between groups. (*p < 

0.05; **p < 0.01; ***p < 0.001) 
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 The only difference between groups for kinematic timing was the time to peak ankle 

angle during swing (Table 15).  Participants with chronic stroke (M = 79.68%, SD = 11.84%) 

reached peak dorsiflexion earlier during the stride cycle than young (M = 96.99%, SD = 2.55%; 

p < 0.001), older fallers (M = 94.87%, SD = 5.56%; p < 0.001), and older non-fallers (M = 

95.53%, SD = 4.59%; p < 0.001) (Figure 12). 

 

Table 15 

Group Effects for Time to Peak Hip, Knee and Ankle Angle during Swing 

    

Dependent Variable F p ηp
2 

Hip 0.867 0.468 0.077 

Knee 0.913 0.446 0.081 

Ankle 11.108 <0.001* 0.518 

Note. df1 = 3 and df2 = 31 for all tests. 

* p < 0.05 

    

 

 
Figure 12. Pairwise comparisons for time to peak dorsiflexion during swing, the only measure of 

kinematic timing that is significantly different between groups. (***p < 0.001) 
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 Joint coordination during initial swing was different between groups for hip-ankle and 

knee-ankle coupling patterns (Table 16).  Participants with chronic stroke (M = 27.29°, SD = 

7.51°) had a smaller hip-ankle coupling angle than young (M = 38.99°, SD = 3.98°; p = 0.001) 

and older fallers (M = 38.25°, SD = 6.33°; p = 0.002).  The participants with chronic stroke (M = 

30.14°, SD = 10.02°) also had a smaller knee-ankle coupling angle than young (M = 41.13°, SD 

= 3.55°; p = 0.004), older fallers (M = 43.30°, SD = 5.94°; p = 0.001), and older non-fallers (M = 

38.88°, SD = 3.02°; p = 0.030) (Figure 13). 

 

Table 16 

Group Effects for Hip-Knee, Hip-Ankle and Knee-Ankle Joint Coordination during Initial Swing  

    

Dependent Variable F p ηp
2 

Hip-Knee 2.880 0.052 0.218 

Hip-Ankle 7.846 <0.001* 0.432 

Knee-Ankle 6.925 0.001* 0.401 

Note. df1 = 3 and df2 = 31 for all tests. 

* p < 0.05 
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Figure 13. Pairwise comparisons of coupling angle during initial swing for coordination patterns 

that are significantly different between groups. (*p < 0.05; **p < 0.01; ***p < 0.001) 

 

Discussion 

 This study examined measures of falls risk, gait characteristics, and the ability to avoid an 

object presented as a tripping hazard.  The main result was that the ability to avoid an obstacle 

was not different between groups of young adults, older non-fallers, older fallers, and stroke 

survivors.  There were, however, group differences for common measures of falls risk, including 

falls self-efficacy, gait and balance, lower extremity strength, spatiotemporal gait parameters, 

foot clearance, and foot clearance variability.  Additionally, the groups exhibited different joint 

kinematics and coordination during swing. The lack of correspondence between group effects for 

obstacle avoidance and falls risk suggests that all measures of falls risk included in this study are 

not directly related to the ability to avoid an obstacle.  While trips are one of the greatest causes 

of falls (W. P. Berg et al., 1997; Blake et al., 1988; Overstall et al., 1977; Robinovitch et al., 

2013; Tuunainen et al., 2014), other reasons for falling may be explained by common falls risk 
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measures, including the ability to recover from a trip.  Additionally, the gait characteristics that 

were different between groups may not be relevant to avoiding an obstacle.  It is likely that an 

individual-based approach is more relevant in determining ability to avoid an obstacle than 

membership in an at-risk group.  

 Differences between young and older adults in their ability to avoid an obstacle while 

walking has been shown to depend on time as well as the avoidance strategy employed by each 

individual.  In situations where ample time is allowed to adjust foot placement, there is no 

difference between young and older adults in obstacle avoidance (Galna, Peters, Murphy, & 

Morris, 2009).  Additionally, when attention is divided, such as when providing a verbal 

response to a visual task, the risk of coming in contact with an unexpected obstacle increases for 

both young and older adults, though more so for older adults (H. C. Chen et al., 1996).  

Therefore, many older adults adopt a conservative obstacle avoidance strategy that consists of a 

slower walking pace, and/or taking shorter steps.  A shorter step adaptation may not completely 

eliminate obstacle contact, however, since it increases the risk of stepping on the obstacle (H. C. 

Chen, Ashtonmiller, Alexander, & Schultz, 1994), which was measured in this study.  Since all 

participants were allowed to walk at a self-selected pace, it was possible that older adults 

walking significantly slower than young participants could explain why there were no 

differences in obstacle avoidance between the groups.  The older fallers and the participants with 

chronic stroke did walk at a slower speed during the overground trials.  However, there were no 

group differences in treadmill walking speed, which is the condition where the obstacles were 

presented.  The absence of group differences on the visual task suggests the task had a similar 

result on divided attention for all groups.  Additionally, the placement of the obstacles was 

consistent across groups.  Based on the similar treadmill speed, divided attention task and 
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obstacle placement, it would be expected that older adults would contact obstacles more 

frequently than young participants.  However, this was not the case, as obstacle avoidance was 

not different across groups.  Further analysis revealed that for all groups except the stroke 

participants, the self-selected treadmill speed was significantly slower than the self-selected 

overground walking pace (Table 6; Young: F(1,9) = 79.607, p < 0.001, partial η2 = 0.898; Non-

fallers: F(1,9) = 102.297, p < 0.001, partial η2 = 0.919; Fallers: F(1,9) = 45.855, p < 0.001, partial η2 

= 0.836; Stroke: F(1,4) = 2.432, p = 0.194, partial η2 = 0.378).  It may be that the relatively slower 

treadmill speed reduced the time constraint on the obstacle avoidance task and leveled the 

playing field across groups.  

 Adequate foot clearance is necessary for stepping over an obstacle while walking.  

Consistent with the lack of group differences in obstacle avoidance, the toe height and variability 

throughout swing phase – measured by PC1 score – was not different between groups.  The only 

measure of foot clearance that was different between groups was PC2 score, which represents toe 

height in the first half of swing, and the only differences were between the participants with 

chronic stroke and each of the other groups.  In fact, the participants in the stroke group had a 

greater PC2 score, indicating greater foot clearance during the first half of swing.  The same 

participants also had greater MFC variability than all other groups, and greater standard 

deviation of PC2 score than non-fallers.  The greater foot clearance variability observed for 

stroke participants relative to the other groups may be a consequence of the more variable 

walking patterns commonly observed in hemiparetic gait (Balasubramanian, Neptune, & Kautz, 

2008).  The lack of other group differences in the magnitude and variability of toe height is 

consistent with the results of several studies that have found no difference in foot clearance 

between older and younger adults under normal walking conditions, (Bunterngchit, Lockhart, 
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Woldstad, & Smith, 2000; Elble, Thomas, Higgins, & Colliver, 1991).  It is only walking over a 

period of time that older adults adopt risky walking patterns that include lower MFC paired with 

lower MFC variability (Nagano et al., 2014), and effects of fatigue on foot clearance were not 

investigated in this study. 

Stroke survivors often exhibit abnormal joint kinematics on the affected side – reduced 

hip and knee flexion resulting in toe drag, decreased knee extension prior to heel strike due to 

insufficient acceleration of the leg, and reduced ankle dorsiflexion – which may limit foot 

clearance during swing phase (Balaban & Tok, 2014; Olney & Richards, 1996).  Similar 

kinematic patterns were observed in this study, particularly at the knee and ankle.  It is possible 

that the greater PC2 score for the participants with chronic stroke could be explained by the time 

to peak ankle dorsiflexion.  The stroke survivors reached peak dorsiflexion at around 80% of the 

stride cycle, which is within the first half of swing.  Meanwhile, the other groups of participants 

continued to dorsiflex until nearly the end of swing.  It could be that the participants with chronic 

stroke were overcompensating for limitations in ankle dorsiflexion by using hip and knee flexion 

to produce more than adequate foot clearance immediately after toe-off.  The results from the 

analysis of joint coordination during initial swing showed that the participants with chronic 

stroke exhibit less ankle motion relative to the proximal joints than the other groups.  Overall, the 

participants with chronic stroke displayed an inability to dorsiflex the ankle throughout swing 

phase along with reduced knee flexion compared to the other groups.  While compensation for 

these deficits may have resulted in greater foot clearance at the beginning of swing (prior to the 

occurrence of the peak joint angles), other measures of foot clearance were not different between 

groups, and these particular gait characteristics did not affect the ability to avoid an obstacle. 
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Due to the abnormal gait patterns observed in the stroke group, concurrent differences in 

muscle activation might be expected.  Previous work has identified a variety of abnormal muscle 

activation characteristics for individuals with stroke, including reduced magnitude of muscle 

activity (Woolley, 2001).  Interestingly, in this study there were no differences in peak muscle 

activity during swing for any of the muscles, including tibialis anterior which contributes to 

ankle dorsiflexion.  While the peak muscle activity during swing was the only component of 

EMG signal investigated, it may be that group differences exist for other measures of muscle 

activation, including the timing of muscle onset and offset.  The neuromuscular factors that did 

reveal group differences were measures of lower extremity strength.  As expected, the young 

participants were the strongest.  The participants with chronic stroke were the weakest, but not 

significantly different from the fallers. 

 The greater step width for participants with chronic stroke than the older non-fallers and 

young adults is consistent with other studies that have shown that stroke survivors tend to have 

greater step width relative to normal, healthy older adults (Woolley, 2001).  A wider step may be 

employed to compensate for reduced balance ability, suggests a history of falls (Gehlsen & 

Whaley, 1990a), and can be an indicator of future falls (Maki, 1997).  In this case, the 

participants that employed a wider step did not come in contact with an obstacle more frequently.  

Therefore, step width may be more associated with the ability to prevent fall following a 

perturbation than the ability to avoid an obstacle. 

 Gait and balance measures have often been used to determine falls risk, however, 

differences in these measures among groups in the current study did not correspond with the 

ability to avoid an obstacle.  As such, these methods of evaluating gait and balance function 

among older adults or stroke patients may be useful in determining levels of recovery and the 
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extent of community engagement, though they may not be useful when trying to predict trips, 

particularly among high-functioning individuals.  The POMA balance score is correlated with 

other measures of function and activity, including the timed up and go, function reach, walking 

speed, and ABC (Lin et al., 2004).  More so than the POMA gait component or the total POMA 

score, the POMA balance score has been used to predict falls in patients with Parkinson’s disease 

(Contreras & Grandas, 2012), and a cutoff score of 11 has been used to separate fallers and non-

fallers (Thomas & Lane, 2005).  In the current study, stroke participants scored below this 

threshold.  Likewise, the mean stroke score on the FGA was below the threshold of 22 for 

distinguishing between fallers and non-fallers established by Wrisley et al. (2010).  Yet the 

stroke participants did not perform differently than other groups on the obstacle avoidance task.  

This suggests that the POMA balance and FGA scores may be predicting other types of falls 

besides a trip.   

 In general, the participants in this study appear to be high-functioning.  Tsang et al. 

(2013) showed that a cutoff score of less than 17.5 on the Mini-BESTest would predict fallers 

among a stroke group.  However, the stroke participants in this study scored on average 21.8.  

Additionally, there were no significant differences in any gait and balance scores between older 

fallers and older non-fallers, although gait and balance measures have been used to distinguish 

these groups in the past.  The relatively high functionality of the participants in this study could 

account for the fewer than expected group differences in gait and balance scores, and could 

explain why all groups performed similarly on the obstacle avoidance task. 

Fear of falling can be defined as “low perceived self-confidence at avoiding falls during 

essential, relatively nonhazardous activities” (Tinetti & Powell, 1993), and has frequently been 

associated with falls and falls risk.  Fear-related activity restriction has been observed in up to 
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25% percent of older adults (Reelick, van Iersel, Kessels, & Rikkert, 2009; Tinetti et al., 1988), 

and fear of falling is greater among stroke survivors, particularly among those with a history of 

falls (Belgen et al., 2006; Mackintosh et al., 2005).  Measures such as the FES-S and ABC 

chronicle fear of falling while performing certain tasks, and the FAI is used to record a recent 

(within three to six months) history engaging in activities that require some initiative, such as 

housework or gardening.  Neither the FES-S nor ABC were significantly different across groups, 

and the group difference in FAI total score did not translate into any pairwise differences.  

Further, the average total FAI score for the stroke participants was greater than the normative 

score for chronic stroke participants reported by Schepers et al. (2006), suggesting that the stroke 

participants in this study had greater community engagement than typical chronic stroke patients. 

A limitation of this study is the way MFC was used to quantify foot clearance and foot 

clearance variability.  MFC was defined as the toe height at the point of greatest horizontal 

velocity of the foot.  Using MFC as a measure of foot clearance, therefore, relies on the 

assumption that there is a local minimum in toe height at this point.  Deviations from this 

relationship may affect the magnitude of MFC.  Additionally, it is likely that the MFC standard 

deviation is a reflection of the variability of when the point of greatest forward velocity of the 

foot occurs within the stride cycle.  The other measures of foot clearance and foot clearance 

variability may be more accurate representations of the distance between the floor and the foot. 

The prevalence of high-functioning participants in all groups may be considered a 

limitation of this study.  It is possible that group differences in obstacle avoidance between the 

groups would exist if the older faller and stroke participants exhibited greater functional 

impairments.  Nevertheless, the observed differences in measures of falls risk did not correspond 

with differences in the ability to avoid an obstacle.  This suggests that an individual in a group 
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that is not considered at risk may still experience a trip.  Of course not all trips result in falls.  It 

is impossible to know from the observations in this study what determines whether a person will 

fall after coming in contact with an obstacle because this controlled setting (i.e. lightweight 

obstacle that was free to move, and available support from the harness) was designed to prevent 

falls.  Investigations of factors that contribute to a reduced capacity to maintain balance after a 

perturbation and not an inability to avoid obstacles are key to developing fall prevention 

programs.  Yet the results of this study indicate that the ability to successfully avoid a tripping 

hazard cannot be determined simply by inclusion within an at-risk group.  

 

Conclusion 

While measures of falls risk were higher for stroke participants and to a lesser extent 

older fallers, the inability to distinguish between groups on obstacle avoidance suggests that the 

risk of tripping should be evaluated on an individual, and not group, basis. 
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Chapter 4: Determining Factors that Affect Obstacle Avoidance Ability 

Introduction 

As shown in Chapter 3, certain demographic groups – including stroke survivors and 

older adults with a history of falls – score higher on measures of falls risk, but the ability to avoid 

an obstacle while walking was not dependent on group.  This underscores the conclusion reached 

by Begg et al. (2007) that an individual-based approach to evaluate a patient’s risk of tripping 

may be better than a group-based approach.  Evaluations of an individual’s function, including 

measures of falls self-efficacy, gait and balance performance, and walking speed, have been 

linked to falls risk (Belgen et al., 2006; Campbell, Borrie, & Spears, 1989; Deandrea et al., 2010; 

Delbaere et al., 2004; Deshpande et al., 2008; Gehlsen & Whaley, 1990b; Stalenhoef et al., 

1997).  It is likely that lower-functioning individuals are less likely to avoid obstacles, and 

therefore are at greater risk of tripping.  Therefore, these measures of function can be useful for 

identifying at-risk individuals.  However, as shown in Chapter 3, being labeled at-risk for falling 

does not necessarily predict the ability to avoid an obstacle.  It is possible that specific gait 

characteristics have a more relevant relationship with obstacle avoidance.   

Achieving adequate foot clearance is crucial for avoiding obstacles while walking, and foot 

clearance can be accounted for by each of the lower extremity joints individually (Winter, 1992).  

Yet the hip, knee and ankle all contribute concurrently to this task.  It has been shown that limb 

movements are planned for the distal endpoint trajectory, not specific joint trajectories (Karst et 

al., 1999), which suggests that coordination of the lower extremity joints plays a role in the 

ability to avoid obstacles.  How this is achieved appears to depend on the individual, as different 

strategies are employed to achieve adequate foot clearance (Levinger et al., 2012; Little et al., 
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2014).  Each strategy for avoiding an obstacle relies on the magnitude of lower extremity joint 

angles, the relative motion between joints, and the muscle activity that causes joint motion. 

The purpose of this study was to determine individual and gait characteristics related to 

the ability to avoid an unexpected obstacle that could present a tripping hazard.  It was expected 

that participants who were able to avoid an obstacle would score higher on measures of function, 

and have different gait characteristics than those who were not able to avoid the obstacle.  In 

particular, it was projected that successful obstacle avoidance would be associated with greater 

foot clearance, and greater peak flexion and sagittal plane range of motion for the lower 

extremity joints.  Additionally, differences in lower extremity joint coordination and 

neuromuscular function during swing were expected. 

 

Methods 

Participants.  The 35 participants introduced in Chapter 2 were included in this analysis.  

According to performance on the obstacle avoidance task in Chapter 3, the participants were split 

into two groups: those that came in contact with an obstacle multiple times (N = 10), and those 

that came in contact with an obstacle one or no times (N = 25). 

 

Biomechanics assessment.  The same procedures for collecting data from Chapters 2 and 3 were 

used in this analysis.  

 

Data analysis.  Data were analyzed to identify factors related to the ability to avoid an obstacle 

while walking.  The factors tested were the same as outlined in Chapter 3, and included scores on 

falls-related evaluations, neuromuscular function, spatiotemporal gait parameters, foot clearance, 
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foot clearance variability, lower extremity sagittal plane kinematics, the timing of kinematics 

during swing phase, and lower extremity joint coordination during initial swing and midswing.  

The falls-related evaluations were performed prior to the biomechanics assessment, and all 

measures of gait characteristics were recorded during overground walking.  The ability to avoid 

an obstacle was assessed on a treadmill.  For each group of measurements, a MANOVA was 

used to identify significant differences between participants that came in contact with more than 

one obstacle, and participants that came in contact with just one or no obstacles (p < 0.05).  

When the assumptions for using a MANOVA were checked, a significant (p < 0.001) Box’s M 

test for some of the constructs was found indicating heterogeneity of the variance-covariance 

matrix.  Therefore, the results of each MANOVA were reported using Pillai’s trace (Tabachnick 

& Fidell, 2013).  The follow up test was a one-way ANOVA for each dependent variable that 

was included in the omnibus test.  All statistical tests were done in SPSS (v19.0.0.1; SPSS, Inc., 

Chicago, IL). 

 

Results 

 There were significant differences between participants that came in contact with 

multiple obstacles and participants that came in contact with one or no obstacles for falls-related 

evaluations, spatiotemporal gait parameters, foot clearance, and joint kinematics (Table 17).  

Differences were not observed for neuromuscular function, which included measures of strength 

as well as peak muscle activity of the hip, knee and ankle during swing.  Measures of foot 

clearance variability, the time to peak flexion during swing, and joint coordination during initial 

swing and midswing were also not different based on ability to avoid an obstacle. 
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Table 17 

Overall Effect of Each Gait- or Falls-Related Construct to Distinguish Participants with 

Multiple Instances of Obstacle Contact from Participants with One or No Instances of Obstacle 

Contact 

       

Construct 
Pillai's 

Trace 
F df1 df2 p ηp

2 

Falls-Related Evaluations 0.754 14.285 6 28 <0.001* 0.754 

Neuromuscular Function 0.206 1.168 6 27 0.352 0.206 

Spatiotemporal Parameters 0.572 7.751 5 29 <0.001* 0.572 

Foot Clearance 0.393 4.855 4 30 0.004* 0.393 

Foot Clearance Variability 0.060 0.480 4 30 0.750 0.060 

Joint Kinematics 0.408 3.220 6 28 0.016* 0.408 

Kinematic Timing 0.181 2.277 3 31 0.099 0.181 

Initial Swing Coordination 0.111 1.289 3 31 0.296 0.111 

Midswing Coordination 0.169 2.102 3 31 0.120 0.169 

* p < 0.05 

       

 

 There were significant differences for all falls-related evaluations except for the total 

score for the FAI (Table 18).  Participants that came in contact with the obstacle once or not at 

all scored higher than participants with repeated contact on measures of falls self-efficacy 

including total score for the FES-S and the ABC, as well as all measures of gait and balance.   
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Table 18 

Differences in Scores on Each Falls-Related Evaluation Between Participants with Multiple 

Instances of Obstacle Contact and Participants with One or No Instances of Obstacle Contact 

          

Dependent Variable 

One or No 

Contact 
  

Multiple 

Contact 
  ANOVA Results 

M SD   M SD   F p ηp
2 

FAI Total 50.24 4.94  48.30 5.48  1.036 0.316 0.030 

FES-S Total 9.99 0.03  9.65 0.36  23.217 <0.001* 0.413 

ABC 97.51 3.75  88.22 11.85  12.718 0.001* 0.278 

POMA Balance 15.56 0.65  14.40 0.97  17.089 <0.001* 0.341 

Mini-BESTest Total 25.40 2.20  21.30 3.40  18.003 <0.001* 0.353 

Functional Gait Analysis 27.87 2.59  19.30 5.03  44.554 <0.001* 0.574 

Note. df1 = 1 and df2 = 33 for all tests; M = mean; SD = standard deviation. 

* p < 0.05 

          

 

 Participants that contacted the obstacles multiple times walked slower, both overground 

and on the treadmill.  The difference in speed was expressed as greater stance time, while swing 

time was the same.  Additionally, participants that came in contact with the obstacle multiple 

times also had a greater step width (Table 19). 
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Table 19 

Differences in Each Spatiotemporal Gait Parameter Between Participants with Multiple 

Instances of Obstacle Contact and Participants with One or No Instances of Obstacle Contact 

 
          

Dependent Variable 

One or No 

Contact 
  

Multiple 

Contact 
  ANOVA Results 

M SD   M SD   F p ηp
2 

Overground Speed (m/s) 1.40 0.15  1.09 0.31  17.042 <0.001* 0.341 

Treadmill Speed (m/s) 0.94 0.25  0.54 0.16  22.531 <0.001* 0.406 

Stance Time (s) 0.63 0.06  0.71 0.08  11.409 0.002* 0.257 

Swing Time (s) 0.41 0.04  0.41 0.06  0.082 0.776 0.002 

Step Width (m) 0.05 0.03  0.09 0.05  7.464 0.010* 0.184 

Note. df1 = 1 and df2 = 33 for all tests; M = mean; SD = standard deviation. 

* p < 0.05 

          

 

 Participants with multiple obstacle contacts exhibited greater MFC, and a greater toe 

height in early swing, as measured by PC2 score.  The PC1 score, which quantifies toe height 

during the second half of swing, and maximal limb shortening were not different between 

individuals that avoided the obstacles and those that did not (Table 20). 
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Table 20 

Differences in Each Measure of Foot Clearance Between Participants with Multiple Instances of 

Obstacle Contact and Participants with One or No Instances of Obstacle Contact 

          

Dependent Variable 

One or No 

Contact 
  

Multiple 

Contact 
  ANOVA Results 

Mean SD   Mean SD   F p ηp
2 

MFC (m) 0.021 0.010   0.036 0.013   13.008 0.001* 0.283 

Max Limb Shortening 0.967 0.061  0.924 0.101  2.373 0.133 0.067 

PC1 -0.002 0.162  0.008 0.175  0.028 0.869 0.001 

PC2 -0.027 0.053   0.085 0.101   18.346 <0.001* 0.357 

Note. df1 = 1 and df2 = 33 for all tests; M = mean; SD = standard deviation; Units of 

maximal limb shortening are normalized limb length; Units of PC1 and PC2 have no 

biological meaning. 

* p < 0.05 

          

 

 Significant differences in sagittal plane joint angles were observed between the two 

groups.  Participants who contacted the obstacle multiple times had reduced range of motion at 

the hip, knee and ankle.  The same participants also had lower peak knee flexion during swing 

(Figure 14; Table 21). 
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Figure 14. Mean sagittal plane joint hip, knee and ankle angles for participants that contacted the 

obstacle multiple times (gray), and those that did not (black).  Positive angles represent hip 

flexion, knee extension and ankle dorsiflexion.  Vertical lines represent toe-off. 
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Table 21 

Differences in Sagittal Plane Joint Kinematics during Swing Between Participants with Multiple 

Instances of Obstacle Contact and Participants with One or No Instances of Obstacle Contact 

            

Dependent Variable 
  

One or No 

Contact 
  

Multiple 

Contact 
  

ANOVA Results 

 Mean SD  Mean SD  F p ηp
2 

Hip 
Peak (°)   27.26 10.01   24.46 9.71   0.570 0.456 0.017 

ROM (°)   37.27 5.70  32.42 4.75   5.626 0.024* 0.146 

Knee 
Peak (°)   67.89 4.63   60.48 14.39   5.437 0.026* 0.141 

ROM (°)   66.07 4.83   56.41 15.45   8.126 0.007* 0.198 

Ankle 
Peak (°)  11.27 4.12  10.72 3.69  0.135 0.716 0.004 

ROM (°)   22.37 7.41   14.33 5.20   9.770 0.004* 0.228 

Note. df1 = 1 and df2 = 33 for all tests; M = mean; SD = standard deviation; ROM = range of 

motion. 

* p < 0.05 

            

 

Discussion 

 Most of the falls-risk evaluations examined in this study were successful at distinguishing 

between participants that came in contact with the obstacle multiple times, and those that did not.  

FAI was not differenct in this case, but was the only measure of falls self-efficacy that 

distinguished demographic groups in Chapter 3.  Taken together, these results indicate that FAI 

serves as a measure of community engagement, and is not related to falls as much as FES-S and 

ABC, which assess fear of falling.  Considering there were differences for the FES-S and ABC 

scores, it appears that participants with a greater fear of falling were more likely to come in 

contact with the obstacle multiple times.  It has been suggested that fear of falling causes a 

reduction in activity that leads to decreased physical function and an increased risk of falling.  

However, a greater fear of falling among participants that came in contact with the obstacle 

multiple times without a concurrent difference in community engagement reveals that even 
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individuals with a high level of community engagement may have limitations that affect their 

ability to avoid an unexpected obstacle while walking.   

Based on the physical measures of function, it appears that poor balance or gait 

performance is related to an inability to avoid an obstacle while walking.  The mean score of the 

Functional Gait Analysis for participants that made contact with the obstacle multiple times was 

lower than the cutoff reported by Wrisley & Kumar (2010) that distinguishes fallers from non-

fallers.  While the mean score for participants that contacted the obstacle multiple times was not 

below the threshold established in the literature to separate fallers and non-fallers for the POMA 

balance (Thomas & Lane, 2005) or Mini-BESTest total (Tsang et al., 2013), those participants 

scored significantly lower than the participants that avoided the obstacle.  Participants that came 

in contact with the obstacle multiple times exhibited a more conservative walking strategy, with 

a wider step width, longer stance times, and a slower walking speed overground and on the 

treadmill.  This walking pattern is common among individuals that are fearful about falling 

(Maki, 1997).  Nevertheless, this approach did not prevent participants in this study from 

contacting the obstacle multiple times. 

By definition, adequate foot clearance is necessary to avoid a trip, which is why low foot 

clearance is considered a risk for falling (Begg et al., 2007).  The results of this study, however, 

did not support that theory.  The participants that came in contact with the obstacle multiple 

times actually had a greater foot clearance during overground walking.  It has already been 

established that these participants adopt a conservative walking strategy, and ensuring greater 

foot clearance may be another component of that strategy.  Regardless, the mean MFC of 0.036 

m (SD = 0.013 m) was not enough to avoid the obstacles, which were approximately 0.06 m 

high.  Therefore, the ability to avoid an obstacle is not reliant on foot clearance during normal 
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overground walking, but rather the ability to adjust toe height in proportion to the obstacle 

height.  It appears that elevated foot clearance during normal walking may serve as an indication 

of a conservative walking strategy common among individuals that do not have the capacity to 

avoid an obstacle. 

The ability to achieve adequate foot clearance when necessary appears to be related to 

sagittal plane lower extremity joint motion.  Flexion of the hip, knee and ankle occur 

concurrently during swing phase to enable foot clearance.  It was expected that joint coordination 

during swing would be related to the ability to avoid an obstacle, but none of the variables that 

represent joint coordination during initial swing and midswing were significantly different 

between the two sets of participants.  Thus, gait characteristics that are relevant to obstacle 

avoidance appear to be confined to sagittal plane lower extremity joint kinematics.  Greater 

range of motion in the hip, knee and ankle as well as greater peak knee flexion was observed for 

the participants that did not come in contact with the obstacle multiple times, and the difference 

is greater than the reported minimal detectable change for each angle (Wilken, Rodriguez, 

Brawner, & Darter, 2012).  Some of the kinematic differences between participants can be 

attributed to the effects of walking at a slower speed (Kirtley, 2006; Kwon, Son, & Lee, 2014; 

Stansfield et al., 2001), and may serve as another indication of a conservative walking strategy 

for those who came in contact with the obstacle multiple times.  Since speed was not controlled 

in this study, it cannot be determined whether the kinematic differences were solely due to speed 

effects, or if the participants that came in contact with the obstacle multiple times have a physical 

limitation in their ability to produce hip, knee and ankle flexion.  Of note is the fact that a 

reduction in joint motion due to slower walking speeds typically affects the knee and ankle but 

not the hip (Kirtley, 2006; Kwon et al., 2014; Stansfield et al., 2001).  Even so, regardless of the 
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reason for the kinematic differences, a lower range of motion may contribute to the inability to 

avoid an obstacle.  With less available range of motion in the lower extremity joints, a participant 

may not be able to react to an unexpected obstacle, which could result in a trip. 

While measures of falls self-efficacy, physical function and walking strategy are useful to 

identify individuals at risk for tripping, a trip does not occur every time that someone walks.  It is 

possible that risky walking behavior only occurs some of the time, and so specific gait 

characteristics within a stride cycle may be more helpful than a general designation of falls risk 

at detecting exactly when an individual may be unable to avoid an obstacle.  It would be 

beneficial to be able detect gait characteristics such as limited sagittal plane range of motion in 

real time as part of a falls prevention program. 

  

Conclusion 

Participants that repeatedly came in contact with an unexpected obstacle could be 

classified as being at risk for tripping based on functional evaluations.  Specific gait 

characteristics that were related to their inability to avoid the obstacle included limited sagittal 

plane joint range of motion during swing at the hip, knee and ankle, and in general a 

conservative walking strategy that consisted of slower walking speed, greater step width, and 

elevated foot clearance. 

  



 

77 

 

Chapter 5: Using Accelerometers and Machine Learning to Detect Gait Characteristics 

Related to Obstacle Avoidance 

Introduction 

In the previous chapters, factors related to the risk of falling and the ability to avoid 

unexpected obstacles were identified, however, these factors are typically only detected in a 

controlled setting.  Measures of function (e.g. gait and balance ability) rely on evaluations by a 

trained observer or a clinician, and the kinematic measures of gait (e.g. peak ankle and knee 

angle and hip and knee range of motion during swing) are the product of expensive equipment 

and time-consuming data processing done in a motion capture lab.  Despite the wealth of 

information that can be produced using these techniques, the analysis may not represent 

everyday gait patterns or behavior.  As a result, there has been a surge in the development of 

wearable devices that can track movement in real time and in natural settings.  The global market 

for all wearable devices is expected to grow 800% from 2012 to 2018, with a value close to $6 

billion (Transparency Market Research, 2015).  Wearable devices that track information about 

the body have been developed for multiple purposes, including the tracking of physical activity, 

temperature, blood pressure, heart rate, weight, and glucose (Appelboom et al., 2014).   

A common method used to analyze human gait through wearable devices is to apply 

machine learning algorithms to signals obtained from a tri-axial accelerometer.  This technique 

has been employed extensively to classify different activities (e.g. walking, running, climbing 

stairs, sitting, etc.) (Bao & Intille, 2004; Mannini & Sabatini, 2010; Mannini, Intille, 

Rosenberger, Sabatini, & Haskell, 2013; Moncada-Torres et al., 2014; Preece, Goulermas, 

Kenney, & Howard, 2009).  Additionally, walking events and walking speed have been detected 

from accelerometers placed on both shanks (Dobkin, Xu, Batalin, Thomas, & Kaiser, 2011), and 
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idiopathic toe walking can be distinguished from normal gait by analyzing accelerometer data at 

the heel (Pendharkar, Percival, Morgan, & Lai, 2012).  Several machine learning algorithms 

applied to accelerometer data have also been used to classify older adults at risk for falling, 

however, the risk of falling was not determined by actual prospective falls, and the accelerometer 

system contained 10 sensors distributed over the body (Caby, Kieffer, de Saint Hubert, Cremer, 

& Macq, 2011).  Related to the risk of tripping, foot clearance can be estimated using wireless 

inertial sensors, with placement on the foot or shank (Hamacher et al., 2014; Mariani et al., 2012; 

McGrath et al., 2011), although these methods do not consider the joint kinematics that influence 

foot clearance.  Other inertial sensor systems have been constructed to make accurate joint angle 

measurements, based on placement of several sensors on multiple body segments (Seel et al., 

2014; Slajpah et al., 2014).  Although these methods are designed to provide accurate 

information about joint kinematics outside of a laboratory setting, it may be difficult for the 

general population to effectively adopt a multiple-sensor system (Ward, Evenson, Vaughn, 

Rodgers, & Troiano, 2005).   

The success of these many applications indicates that applying machine learning 

algorithms to accelerometer signals may have a role in preventing falls by detecting gait 

characteristics related to the ability to avoid an obstacle.  A significant contribution to this field 

would be to develop a single device that is capable of detecting specific gait patterns, as well as 

predict individuals at risk for tripping based on actual trip history.  The first goal of this study 

was to predict joint angles (peak ankle and knee angle, and hip and knee range of motion during 

swing) for a given stride from a single ankle-worn accelerometer.  The second goal was to 

determine ability to avoid an obstacle based on features from accelerometers worn on a single or 

both ankles.  Various machine learning algorithms were evaluated to determine optimal 
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performance in terms of accuracy.  Computational load was also calculated, as the time required 

to make a prediction could be an important consideration if this technology was used in a real-

time gait detection wearable device.  It was expected that the prediction of joint angles would be 

most successful for the knee joint since the accelerometer was placed on the distal segment of the 

joint.  A positive predictive value near 1 when classifying participants at risk for tripping was 

expected for the best-performing algorithms, with the simplest algorithms expected to have the 

worst classification accuracy.  Demonstrating successful prediction and/or classification ability 

indicates that an accelerometer could be incorporated into a wearable device that alerts an 

individual when they may be at risk for tripping.  

 

Methods 

Participants.  The 35 participants introduced in Chapter 2 were included in this analysis.  

According to performance on the obstacle avoidance task in Chapter 3, the participants were split 

into two groups: those that came in contact with an obstacle more than one time (N = 10), and 

those that came in contact with an obstacle one or no times (N = 25). 

 

Biomechanics assessment.  During the biomechanics analyses performed in Chapters 2 

and 3, inertial sensors containing a tri-axial accelerometer (Noraxon Inc, DTS 3D Accelerometer 

518, Scottsdale, AZ, USA) were worn on both legs just above the lateral ankle, to record 

accelerations at 1000 Hz.  The orientation of both accelerometers was adjusted so that the 

positive x-axis pointed anteriorly, the positive y-axis pointed superiorly and the positive z-axis 

pointed laterally (Figure 15).  Each accelerometer had a sensitivity of 24 g, with a maximum 
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input voltage of 4 V.  The accelerometer signal was converted from volts to accelerations using 

the conversion factor 0.167 V/g.   

 

 
Figure 15. Orientation of the axes for each accelerometer. 

 

Data analysis.  The accelerometer data were used in machine learning algorithms with 

two specific goals: predict lower extremity joint angles and classify individuals likely to come in 

contact the obstacle multiple times or not (Table 22).  All algorithms were executed using the 

free machine learning software package, Weka (v.3.6.13; The University of Waikato, Hamilton, 

New Zealand).
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Table 22 

Framework of the Machine Learning Process for Predicting Kinematics and Classifying Obstacle Contact   

         

Goal Method Raw Data Window Overlap 
Segment 

Label 

Feature 

extraction 

Feature 

Selection 
Prediction 

Predict 

Kinematics 

1 

1 sensor: 

left and 

right 

separate 

Individual 

strides 
-- 

  

Time- and 

frequency-

domain 

Correlation-

based 
Linear Regression 

Hip ROM 

Knee Peak 

Knee ROM 

Ankle ROM 

  

2 

1 sensor: 

left and 

right 

separate 

Individual 

strides 
-- 

 

PCA -- Linear Regression 

Hip ROM 

Knee Peak 

Knee ROM 

Ankle ROM 

 

Classify 

Obstacle 

Contact 

1 

1 sensor: 

left and 

right 

separate 

  

0% 

Obstacle 

contact or no 

contact 

Time- and 

frequency-

domain 

Correlation-

based 

1R 

0.256 s C4.5 Tree 

0.512 s Best-First Tree 

1.024 s Random Forest 

2 sensors: 

left and 

right 

together 

2.048 s 

50% 

Decision Table 

4.096 s Naïve Bayes 

 Instance-Based 

  k-Nearest Neighbor 
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Joint Angle Prediction.  All kinematic and accelerometer data were divided into 

individual strides using the horizontal velocity algorithm employed in Chapters 2-4 (Zeni et al., 

2008).  Based on the results from Chapter 4, lower extremity joint kinematics related to the 

ability to avoid an obstacle – peak knee angle and hip, knee and ankle range of motion during 

swing – were identified for each stride.  Also for each stride, two sets of features were extracted 

from the three-dimensional accelerometer signal.  The first method of feature extraction was 

based on previous work regarding activity recognition using accelerometers.  This set of 48 

features (Table 23) was selected from the time- and frequency-domain features outlined by 

Preece, et al. (2009).  The mean, standard deviation, median, 25th percentile and 75th percentile of 

the accelerometer signal was calculated for each axis (Ermes, Parkka, Mantyjarvi, & Korhonen, 

2008; Pirttikangas, Fujinami, & Nakajima, 2006).  The correlation of the accelerometer signals 

between axes (x-y, x-z, y-z) was also determined (Bao & Intille, 2004).  For additional time-

domain features, the accelerometer signal was separated into accelerations due to gravity (DC) 

and body accelerations (AC) using a median filter (n=3), followed by a low pass filter (third-

order elliptical infinite impulse response, cut-off frequency = 0.25 Hz, passband ripple = 0.01 

dB, stopband = -100 dB) (Karantonis, Narayanan, Mathie, Lovell, & Celler, 2006).  The mean of 

the DC signal and the mean of the rectified AC signal were calculated for each axis.  The 

frequency-domain features were a product of a fast Fourier transform (FFT) performed on each 

stride of accelerometer data.  The following features were determined for each accelerometer 

axis: principal frequency (Foerster & Fahrenberg, 2000), spectral energy (sum of the squared 

FFT coefficients, normalized by signal length) (Bao & Intille, 2004), entropy (A. Zhang, B. 

Yang, & L. Huang, 2008; Bao & Intille, 2004), and the sum of FFT coefficients grouped in five 
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exponential bands (21, 22, 23, 24, 25) to avoid using each coefficient separately or in pairs (Huynh 

& Schiele, 2005).   

A subset of relevant features that were not redundant with other features in the subset was 

selected using the correlation-based feature selection algorithm in Weka (Hall et al., 2009; 

Maurer, Smailagic, Siewiorek, & Deisher, 2006).  This algorithm was performed using a greedy 

forward stepwise search method: starting with an empty subset, features were added when they 

had a high correlation with the dependent variable, but also a low correlation with features 

previously added to the subset.  A separate subset of features was chosen for each of the four 

joint angles based on the relationship between the feature and the given angle.   

 

Table 23 

Full Set of Features Determined for Each Window of Data from a Single Sensor 

   

Time Domain   Frequency Domain 

Mean  Principal Frequency 

Standard Deviation  Spectral Energy 

Median  Entropy 

25th Percentile  Sum of FFT Coefficients 1-2 

75th Percentile  Sum of FFT Coefficients 3-6 

Mean DC  Sum of FFT Coefficients 7-14 

Mean Rectified AC  Sum of FFT Coefficients 15-30 

X-Y Correlation  Sum of FFT Coefficients 31-62 

X-Z Correlation   

Y-Z Correlation     

Note. All features were calculated separately for all three axes (X, Y, Z) 

except for the correlations between axes in the time domain, which were 

only calculated once. 

   

 

The second set of features was derived based on an analysis of the relationship between 

the accelerometer signals and the joint kinematics.  Since the predicted angles were based on 
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swing phase, the accelerometer signals and joint angles were time normalized to 101 data points 

representing 0-100% of swing phase.  A principal components analysis of each accelerometer 

axis and the hip, knee and ankle waveforms during swing was performed according to the 

methods outlined in Chapter 2.  The results of the principal components analysis were principal 

components (PCs) that identified the major modes of variance within the data.  Each stride was 

given a PC score for each of the retained PCs for the accelerometer signal in the x-, y- and z-

directions, as well as the hip, knee and ankle angles.  The PCs that represented peak knee angle 

and hip, knee and ankle range of motion during swing were identified visually (Brandon et al., 

2013).  PCs from the accelerometer signals that had the highest correlations with the relevant 

angle PCs were also identified and interpreted.  Based on the interpretation of the accelerometer 

PCs, discrete variables were chosen as features of the accelerometer signal relevant for the 

prediction of a joint angle (Appendix G).  For example, a PC that represented the magnitude of 

the accelerometer signal throughout swing could be characterized by the mean accelerometer 

signal.  The result was a subset of features unique to each predicted angle. 

 For the computer-selected and PC-selected subsets of features, the linear regression 

algorithm in Weka was used to predict each of the four joint angles of a single stride (Hall et al., 

2009).  Performance of the linear regression model was evaluated using ten runs of 10-fold cross 

validation, with measures of error reported as mean absolute error, root mean squared error, 

relative-absolute error, root relative squared error, and the correlation between the actual and 

predicted angles.  Computational load was calculated as the total time testing divided by the 

number of strides in the testing dataset for a given fold.  The linear regression performance was 

averaged across all repetitions of training and testing for each of the four angles. 
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Obstacle Contact Classification.  To classify an individual participant based on their 

ability to avoid an obstacle, all accelerometer data were collected as a continuous waveform for 

each walking condition.  It was then divided into windows of 256, 512, 1024, 2048, and 4096 

frames, which, with a sampling rate of 1000 Hz, corresponds to window lengths of 0.256, 0,512, 

1.024, 2.048 and 4.096 seconds, respectively (Huynh & Schiele, 2005).  The number of frames in 

each window was a power of two to facilitate the FFT during feature extraction.  The windows of 

accelerometer data were also computed using both no overlap and a 50% overlap (Bersch, Azzi, 

Khusainov, Achumba, & Ries, 2014).  For each window of accelerometer data, time- and 

frequency-domain features were extracted as outlined in the first method above.  Since there 

were two accelerometers, one on each ankle, feature extraction was done twice: on individual 

sensors separately and both sensors together.  The full vector of features for the single sensor 

was identical to the 48-feature vector described above (Table 23).  The double sensor vector had 

105 features.  The number of features was more than double that of the single sensor due to nine 

additional correlations of the accelerometer signal between sensors (X1-X2, X1-Y2, X1-Z2, Y1-

X2, Y1-Y2, Y1-Z2, Z1-X2, Z1-Y2, Z1-Z2; for the x-, y-, and z-axes of the same (1) and opposite 

(2) sensors).  Using the same correlation-based feature selection algorithm method described 

previously (Hall et al., 2009), a subset of features relevant to the classification of obstacle contact 

was selected.  In an activity prediction experiment, a window size of 1 s was identified as the 

cut-off where any increase in window size did not result in improved performance (Banos, 

Galvez, Damas, Pomares, & Rojas, 2014), therefore the feature selection algorithm was run 

separately for single and double sensors using the datasets constructed with windows of length 

1.024 s with 50% overlap.   
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 All windows for a given participant were labeled based on that participant’s ability to 

avoid an obstacle, with windows from participants that came in contact with the obstacle 

multiple times labeled “contact”, and with windows from those that did not labeled “no contact”.  

Classification of obstacle contact was done using a variety of classification algorithms on each 

window size, percent of window overlap, and number of sensors combination.  The classifiers 

included 1-Rule, Decision Table, C4.5 Decision Tree, Best-First Decision Tree, Random Forest, 

Naïve Bayes, Instance-Based, and k-Nearest Neighbor.  All classifiers were implemented using 

the default settings in Weka, with k set to three in the k-Nearest Neighbor algorithm (Hall et al., 

2009).  Performance for each algorithm and combination of data was evaluated using 10-fold 

cross-validation (Banos et al., 2014).  Performance was reported as recall, also known as 

sensitivity (percent of “contact” cases that were identified), and precision (percent of correct 

“contact” cases that were identified).  Recall and precision across all window/overlap/sensor 

combinations were examined to determine the ideal parameters for segmenting the accelerometer 

data.  At those parameters, positive predictive value (PPV) and computational load were 

compared for each classifier.  PPV was calculated from sensitivity, specificity (percent of “no 

contact” cases that were identified), and prevalence of trips in the older adult population 

(Equation 1) (Altman, Machin, Bryant, & Gardner, 2000).  Prevalence was determined to be 

0.15, based on the number of trips reported in studies of the incidence of falls among older adults 

(Appendix H) (W. P. Berg et al., 1997; Blake et al., 1988; Robinovitch et al., 2013; Talbot, 

Musiol, Witham, & Metter, 2005).  Computational load was reported as time required for testing 

for each window.    

𝑃𝑃𝑉 =  
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 + (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) × (1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒)
                         (1) 
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Results 

 The correlation-based feature selection method resulted in 7, 14, 18 and 7 time- and 

frequency-domain features in the subsets for hip range of motion, knee peak, knee range of 

motion and ankle range of motion, respectively (Table 24).  The Principal Components Analysis 

to determine relevant features in the hip, knee and ankle waveforms and the accelerometer 

signals resulted in 7, 10, 10, and 13 PC-based features in the subsets for hip range of motion, 

knee peak, knee range of motion and ankle range of motion, respectively (Table 25), with the 

same subset used for both the peak angle and range of motion at the knee.   
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Table 24 

Axes of the Time- and Frequency-Domain Features Selected for the Prediction Model of Each 

Angle 

         

    
Hip 

ROM 
  

Knee 

Peak 
  

Knee 

ROM 
  

Ankle 

ROM 

Mean    Z  Y,Z   

Standard Deviation  Y,Z  Z  X,Z  Z 

Median  Y  Y  Y  Y 

25th Percentile      Y  X 

75th Percentile  Z  Z  Y,Z  Z 

Mean DC    Z  Y,Z   

Mean Rectified AC  X,Y,Z  X,Z  X  Y,Z 

Principal Frequency    Z  X  Y 

Spectral Energy         

Entropy    X,Y  X,Y,Z   

Sum of FFT Coefficients 1-2    Y     

Sum of FFT Coefficients 3-6    Y  Y   

Sum of FFT Coefficients 7-14         

Sum of FFT Coefficients 15-30         

Sum of FFT Coefficients 31-62         

X-Y Correlation         

X-Z Correlation         

Y-Z Correlation         

Number of Features Selected   7   14   18   7 

Note. ROM = range of motion;  indicates correlation was selected. 
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Table 25 

Axes of the PC-based Features Extracted for the Prediction Model of Each Angle 

         

    
Hip 

ROM 
  

Knee 

Peak 
  

Knee 

ROM 
  

Ankle 

ROM 

Mean  Z  X,Z  X,Z  X,Z 

Max  Z  X,Y,Z  X,Y,Z  X,Y,Z 

Min    Z  Z  Z 

Mean First 25%  Z       

Mean First 50%  X      X 

Value at 50%  X  X,Z  X,Z  X,Z 

Value at 60%        Z 

Value at 75%  X      X 

Value at 80%        Z 

Value at 100%    X  X  Y 

Number of Peaks    Y  Y   

Zero Cross Rate  Z       

Number of Features Selected   7   10   10   13 

Note. ROM = range of motion; percentages refer to percent of swing. 

         

  

 The time- and frequency-domain feature subset performed better than the PC-based 

features for each of the four datasets (Table 26).  Examining performance for each of the 

individual angles using the time- and frequency-domain feature subset, the ankle peak model 

performed the best on absolute measures of error (mean absolute error and root mean squared 

error), but was among the worst on relative measures of error.  The predicted knee angle range of 

motion had the best performance on relative measures of error, and a strong correlation to the 

actual knee angle range of motion (Table 26).  Computational load was similar for each feature 

set and angle model (Table 26).   
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Table 26 

Results of the Linear Regression Models Using Both Feature Selection Methods 

                   

    

Mean 

Absolute 

Error (°) 

  

Root Mean 

Squared 

Error (°) 

  

Relative-

Absolute 

Error (%) 

  

Root Relative 

Squared Error 

(%) 

  
Correlation 

Coefficient 
  

Time Testing 

(ms) 

    TF PC   TF PC   TF PC   TF PC   TF PC   TF PC 

Hip ROM  5.24 6.21  7.10 8.21  73.86 87.61  77.91 90.16  0.627 0.433  0.164 0.155 

Knee Peak  5.68 5.71  8.09 8.80  95.43 95.84  78.44 85.28  0.621 0.523  0.141 0.139 

Knee ROM  6.18 8.19  8.09 10.71  49.94 66.18  52.06 68.97  0.854 0.724  0.168 0.160 

Ankle ROM   4.89 4.79   6.75 6.71   93.09 91.32   93.67 93.20   0.350 0.363   0.158 0.152 

Note. TF = time- and frequency-domain features; PC = PC-based features; ROM = range of motion. 
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 The correlation-based feature selection algorithm for the obstacle avoidance classification 

resulted in a subset of 17 features for the single sensor and 15 features for the double sensor 

(Table 27).  The Instance-Based and k-Nearest Neighbor classifier had the best recall across all 

conditions (Figure 16).  All tree-based classifiers (C4.5, Best-First and Random Forest) had 

similar performance, while the simplest classifiers (1-Rule, Decision Table and Naïve Bayes) 

performed the worst.  In general, two sensors were better than one, 50% overlap was better than 

no overlap, and performance improved as window size increased.  Recall and precision plateaued 

with a window size of approximately one second, particularly for the Instance-Based, k-Nearest 

Neighbor and decision tree algorithms.  Additionally, with a window size of around one second, 

the difference between no overlap and 50% overlap appears to be negligible.   

 With a window size of 1.024 s, 50% overlap and one sensor, the Instance-Based and k-

Nearest Neighbor classifiers had the best PPV, but also the greatest computational loads (Table 

28).  Random Forest had a lower computational load while maintaining high PPV.  The C4.5 and 

Best-First Trees were among the fastest classifiers and produced a PPV of around 0.85.  The 

simplest classification algorithms had the lowest PPV.  Performance was better for two sensors 

than one sensor for each classification algorithm. 
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Table 27 

Axes of the Time- and Frequency-Domain Features Selected for the Obstacle Avoidance 

Classification Models 

     

    
Single 

Sensor 
  

Double 

Sensor 

Mean  Y   

Standard Deviation  X,Y,Z  Y1,Y2,Z2 

Median  X,Y  X1,Y2 

25th Percentile  X,Z  X2,Z2 

75th Percentile  X,Y  X1,Y1,Y2 

Mean DC  Y   

Mean Rectified AC  Z   

Principal Frequency  Z  Z2 

Spectral Energy  Y  Y1 

Entropy  X,Y,Z  Y1,Z1 

Sum of FFT Coefficients 1-2     

Sum of FFT Coefficients 3-6     

Sum of FFT Coefficients 7-14     

Sum of FFT Coefficients 15-30     

Sum of FFT Coefficients 31-62     

X1-Y1 Correlation     

X1-Z1 Correlation     

Y1-Z1 Correlation     

X1-X2 Correlation     

X1-Y2 Correlation     

X1-Z2 Correlation     

Y1-X2 Correlation     

Y1-Y2 Correlation    

Y1-Z2 Correlation     

Z1-X2 Correlation     

Z1-Y2 Correlation     

Z1-Z2 Correlation     

Number of Features Selected   17   15 

Note. Numbered axes indicate the sensor;  indicates correlation 

was selected. 
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Figure 16. Recall for each classifier based on window size, one sensor (circles), two sensors (triangles), no overlap (empty), and 50% 

overlap (filled). 
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Figure 17. Precision for each classifier based on window size, one sensor (circles), two sensors (triangles), no overlap (empty), and 
50% overlap (filled). 
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Table 28 

Positive Predictive Value and Computational Load for Each Classifier and Number of Sensors 

       

Classifier 
  PPV   Time (ms) 

  One Sensor Two Sensors   One Sensor Two Sensors 

1-Rule  0.536 0.559  3.58E-04 4.56E-04 

C4.5 Tree  0.854 0.920  6.53E-04 5.87E-04 

Best-First Tree  0.857 0.915  5.22E-04 2.61E-04 

Random Forest  0.940 0.981  3.00E-02 1.84E-02 

Decision Table  0.776 0.792  4.05E-03 1.96E-03 

Naive Bayes  0.486 0.583  8.52E-03 7.11E-03 

Instance-Based  0.956 0.986  1.04E+01 4.65E+00 

k-Nearest Neighbor   0.961 0.990  5.47E+00 1.43E+01 

Note. Window size = 1.024 s; Overlap = 50%. 

       

 

Discussion 

 The results of this study indicate that it is possible to use an ankle-worn accelerometer to 

anticipate and individual’s risk of tripping, by both predicting joint angles and identifying 

walking patterns that are associated with the inability to avoid an unexpected obstacle.  The 

various machine learning techniques that were used to train and test the regression and 

classification models provided a range of performance outcomes, however, a strong correlation 

between the predicted and actual knee range of motion and a high positive predictive value for 

detecting individuals at risk for tripping were achieved. 

For the regression analyses, using the correlation-based feature selection algorithm on a 

large set of features from both the time and frequency domain was more successful than 

identifying a set of time-domain features through Principal Components Analysis.  The goal of 

the PC-based features was to visually identify components of the accelerometer signal that were 

related to the joint angles of interest.  However, this method relied on the interpretation of 
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multiple PCs, as well as translating the meaning of relevant PCs into discrete variables that could 

be computed for each stride independently.  The reduced performance from the PC-based feature 

set compared to the time- and frequency-domain feature set could be due to inadequate 

representation of the relevant PCs.  It is also possible that the addition of frequency-domain 

features is crucial to predicting kinematic behavior from an accelerometer signal.  Preece et al. 

(2009) and Huynh & Schiele (2005) also reported good machine learning performance when 

using frequency-domain features of an accelerometer signal.  Including frequency-domain 

features does add to the computational load in the feature extraction stage of the machine 

learning process.  In this study, the feature extraction and machine learning were done separately 

using Matlab and Weka, respectively, and so the time cost of the feature extraction was not 

included in the computational load analysis.  As a result, the reported time testing per stride was 

similar for models using the two different feature sets.   

Considering only models that used a combination of time- and frequency-domain features 

extracted from the accelerometer signal, the most successful regression model was the prediction 

of the knee joint range of motion, based on measures of relative error and the correlation 

coefficient.  The kinematic differences between participants who were likely to trip and those 

who did not were highlighted in Chapter 4, where peak knee flexion was significantly lower for 

participants that came in contact with the obstacles multiple times, but the reduction in knee 

range of motion was even greater.  So while inadequate peak knee flexion may have contributed 

to the inability to avoid an obstacle, the same participants also did not achieve the same degree of 

knee extension during swing.  Despite having similar measures of absolute error as the peak knee 

angle model – and greater absolute error than the ankle and hip range of motion – the greater 
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variance in the knee range of motion likely contributed to the smaller relative error terms in the 

knee range of motion regression model.   

The accelerometer used in the prediction models was placed just above the ankle, 

recording shank accelerations.  As the ankle angle is calculated as the displacement of the foot 

relative to the shank, the placement of the accelerometer was not conducive to predicting ankle 

range of motion. Similarly, the shank is not one of the segments determining the hip angle, 

which likely explains the poor hip range of motion predictions.  With the accelerometer on the 

distal segment of the knee, the knee angle predictions were more successful.  Previous studies 

have utilized sensors on multiple segments to quantify joint kinematics (Seel et al., 2014; Slajpah 

et al., 2014), and additional sensors may have improved prediction accuracy in this case.  

However, the goal was to accomplish kinematic prediction using a single sensor, which was done 

for knee range of motion.  Adjustments to sensor position and feature selection could be used to 

improvement prediction performance for other joints.  It is also possible that approaching joint 

angle prediction as a classification problem may be more successful.  For example, if it was 

determined that everyone with a knee range of motion less than a certain value was considered at 

risk for tripping, machine learning algorithms may be more adept at predicting high and low 

classes, rather than the actual joint angle. 

 The second goal of this study was to use classification algorithms on accelerometer 

signals to identify individuals at risk for tripping, regardless of other measures of kinematics or 

walking ability.  Of all the classifiers used in this study, the simplest (1-Rule, Decision Table and 

Naïve Bayes) performed the worst.  The best performance based on recall and PPV belonged to 

the Instance-Based and k-Nearest Neighbor algorithms, although the large computational load 

may be discouraging when trying to implement a similar system in real time.  The relatively high 
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PPV and low computational load for the decision tree algorithms (C4.5, Best-First, and Random 

Forest) indicates that this type of algorithm should be considered when looking for a classifier 

with high accuracy and low computational load, which may be the case when using these 

algorithms to predict the risk of tripping in real-time.  The accuracy performance of the 

classifiers in this study was similar to results from Bao & Intille (2004) who showed that 

Instance-Based/Nearest Neighbor and C4.5 Decision Tree outperformed Decision Table and 

Naïve Bayes during activity recognition tasks using accelerometer signals.  Another similarity 

with the activity recognition literature is that classification performance begins to plateau at a 

window size around one second, with smaller window sizes resulting in worst performance 

(Banos et al., 2014).  One second appears to be a reasonable window size as the typical walking 

stride rate is approximately one stride per second (Kirtley, 2006).  Allowing for overlapping 

windows avoids a situation where relevant information may be split between two windows and 

not fully captured during the feature extraction phase (Bersch et al., 2014). 

Almost all of the features selected for the single sensor were also selected when data 

from both sensors were included.  The relevant additional information from using both sensors 

appears to be related to differences in y-axis (vertical) accelerations between the sensors.  The 

standard deviation and 75th percentile of the y-axis acceleration was selected for both sensors, as 

well as the correlation between the y-axes of both sensors.  The feature selection algorithm chose 

relevant features that were not correlated with each other, suggesting that having vertical 

accelerations that are different between legs is relevant to obstacle avoidance.  For all other 

features that were selected, only one of the axes in a given direction was included.  In terms of 

performance, inclusion of data from two sensors was better than one, particularly for small 
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window sizes.  However, with a window size of about one second, it was possible to achieve a 

PPV of over 0.9 for detecting the risk of tripping with the use of just one sensor. 

Three limitations to the procedures used in this study are highlighted.  First, in the 

prediction of joint angles from each stride of accelerometer data, a kinematic algorithm was used 

to split the data into individual strides (Zeni et al., 2008).  Although identifying gait events using 

ankle-worn accelerators was previously completed (Sant'Anna & Wickstrom, 2010), this study 

identified these events via an approach not based on accelerometer measurements.  Second, for 

both the regression and classification analyses, the feature extraction was performed in Matlab, 

and then relevant features were subsequently selected using Weka.  The full feature set was then 

reduced using Matlab before the regression and classification algorithms were run in Weka.  

Although the back-and-forth between different programs likely did not affect the results of this 

study, for this technology to be used in the real world, all components of the machine learning 

process from data acquisition to segmentation to feature extraction/selection to prediction should 

occur in seamless sequence on one device.  Future studies that utilize this approach will be able 

to provide a better picture of the computational load for each algorithm as all aspects of the 

machine learning process will be considered.  A third limitation of this study was that only one 

dataset was used to train and test the models.  To perform a statistical comparison between 

different algorithms requires many different datasets (Demšar, 2006).  The inclusion of 

participants with a range of ages and falls history, as well as participants with a history of stroke 

suggests that the results of this study may be generalizable to a diverse population.  However, 

comparisons of the machine learning algorithms across many independent datasets is necessary 

to confirm the differences in performance observed here. 
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In the future, the ability to predict joint kinematics and classify individuals at risk for 

tripping needs to be tested in real-time as well as in a non-laboratory setting.  The algorithms 

could then be paired with a program designed to suggest changes in observed walking mechanics 

that are associated with the risk of tripping.  A prospective study should also be done to 

determine if this technology can be used to successfully prevent trips. 

 

Conclusion 

 In conclusion, this study identified machine learning processes that can be used to predict 

knee range of motion and classify individuals at risk for tripping based on an accelerometer worn 

just above the ankle.  Placement of the accelerometer on the distal joint segment appears 

beneficial for lower extremity joint angle prediction.  Identifying gait patterns of individuals at 

risk for tripping can be done using the signal from a single accelerometer with features extracted 

in overlapping windows of about one second in length.  Simple classification algorithms have 

low accuracy, and excellent accuracy with an instance-based approach can come with a high 

computational cost, but a high PPV for the risk of tripping and low-to-moderate computational 

load can be achieved using decision tree classifiers. 
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Chapter 6: Summary and Conclusions 

The objectives of this study were to (a) identify the relationship between joint 

coordination and foot clearance during walking; (b) identify differences in function and gait 

characteristics related to falls risk, as well as the ability to avoid an unexpected obstacle, among 

stroke patients, young adults, older fallers and older non-fallers; (c) determine gait and individual 

characteristics that enable successful avoidance of an unexpected object that could present a 

tripping hazard; (d) detect gait characteristics related to the risk of tripping and classify 

individuals likely to contact an unexpected obstacle based on accelerometer signals. 

Thirty-five community-dwelling participants including young adults, older adults without 

a history of falls, older adults with a history of falls, and chronic stroke patients were included in 

this study.  Participants completed written and physical evaluations of falls risk.  Each participant 

walked at a self-selected pace both overground and on a treadmill.  During the treadmill walking 

condition, participants were exposed to a series of unexpected obstacles, which they attempted to 

avoid.  Performance on the obstacle avoidance task was recorded, and three-dimensional lower 

extremity kinematics, bilateral muscle activity of rectus femoris, tibialis anterior and medial 

gastrocnemius, and accelerations of the distal shank were captured during all walking conditions.  

Kinematic data were used to calculate foot clearance and joint coordination.  Falls-related 

evaluations, neuromuscular function, spatiotemporal gait parameters, foot clearance, foot 

clearance variability, joint kinematics, kinematic timing, joint coordination and obstacle 

performance were compared across demographic groups.  Comparisons were also made between 

participants that successfully avoided the obstacles, and those that came in contact with the 

obstacle multiple times.  Machine learning algorithms were used to predict joint angles and gait 
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characteristics associated with the ability to avoid an obstacle based solely on accelerometer 

data. 

Sagittal plane joint coordination can predict measures of foot clearance that rely on 

concurrent motion at the hip, knee and angle, as well as measures of toe height throughout swing 

phase.  In particular, hip-knee coordination from terminal stance throughout swing appears to 

have the greatest effect on foot clearance.  Individuals that have approximately equal hip and 

knee motion during terminal stance and initial swing, and more knee extension relative to hip 

flexion during midswing and terminal swing are predicted to have greater toe height.  

Additionally, high joint coordination variability may yield greater variability in foot clearance 

during swing.  Future studies should examine if changes to hip-knee joint coordination result in 

an increase in foot clearance and a reduction of foot clearance variability. 

Falls-related evaluations and gait characteristics are different among demographic 

groups.  Participants with chronic stroke perform the worst on the functional evaluations, 

followed by older adults with a history of falls.  The participants with chronic stroke also exhibit 

gait characteristics that may indicate an increased risk of tripping.  However, there are no 

differences between the groups on the ability to avoid an unexpected obstacle.  These results 

suggest that all common measures of falls risk included in this study are not directly related to 

the ability to avoid an obstacle, and that membership in an at-risk group is not the best way to 

identify individuals who are likely to trip.  When individuals were classified by their ability to 

avoid an obstacle and not by their group, factors related specifically to obstacle avoidance 

emerged.  In general, participants with an inability to avoid an obstacle score lower on functional 

evaluations that assess fear of falling and gait and balance performance.  These individuals also 

adopt a more conservative walking strategy that includes slower walking speed, greater step 
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width and elevated foot clearance.  Reduced range of motion of the swing phase hip, knee and 

ankle angles may also contribute to the inability to avoid an unexpected obstacle.   

Detection of gait characteristics associated with obstacle avoidance can be achieved by 

applying machine learning algorithms to signals from ankle-worn accelerometers.  When 

considering individual walking strides, a linear regression model applied to features from the 

accelerometer signal can predict joint range of motion during swing.  Predicting range of motion 

at the knee is more successful than at the hip or ankle, although it is possible that better 

performance at the hip or ankle could be achieved if the accelerometer was attached to the distal 

segment of those joints.  Binary classification algorithms can be used to identify an individual 

that is unable to avoid an unexpected obstacle based on windows of raw accelerometer data.  In 

general, classification performance is better when longer window lengths and a 50% overlap is 

used to segment the accelerometer signal.  Using information from two sensors, one on each 

ankle, has better classification performance than one sensor, but this difference is small for larger 

window sizes.  Simple classification algorithms have low accuracy.  In spite of a higher 

computational cost, excellent classification performance can be achieved using decision tree and 

instance-based classifiers.  Future work should examine the feasibility of using these machine 

learning algorithms as part of a wearable device that detects gait characteristics relevant to the 

risk of tripping, with the goal of reducing the incidence of falls for stroke patients.  
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Appendix A: Literature Review 

Falls 

Falls are the second greatest cause of accidental or unintentional injury deaths worldwide, 

behind traffic accidents (World Health Organization, 2012), accounting for 40% of all injury 

deaths (World Health Organization, 2008).  Among older adults, falls are the greatest cause of 

accidental death (Hausdorff et al., 2001; Hornbrook et al., 1994).  Each year, 37.3 million falls 

require medical attention (World Health Organization, 2012), and the annual direct cost of falls 

is expected to reach $240 billion by 2040 (World Health Organization, 2008).  This is in addition 

to the indirect costs of loss of productivity and expenses related to caregivers (World Health 

Organization, 2008).   

 

Falls Risk.  The risk of falling can be determined using a number of metrics that assess an 

individual’s function and environment.  Falls are also more prevalent among certain 

demographic groups, such as older adults and people who have experienced a stroke.  An 

individual may be considered at risk for falling simply by being a member of these groups.  

 

Older Adults.  Nearly 40% of older adults fall in a given year (Blake et al., 1988; 

Hausdorff et al., 2001; Tinetti et al., 1988), about half of fallers will fall recurrently (Stalenhoef 

et al., 1997), and about one quarter of falls result in a serious injury (Tinetti et al., 1988).  The 

majority of falls occur during walking (Hausdorff et al., 2001; Robinovitch et al., 2013), and 

trips are one of the greatest causes of falls, comprising up to 53% of falls among older adults (W. 

P. Berg et al., 1997; Blake et al., 1988; Overstall et al., 1977; Robinovitch et al., 2013; 

Tuunainen et al., 2014).  Older adults are more likely to trip than young adults (Garman et al., 

2015). 
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Older adults have described reasons for tripping to include: not lifting their feet as high as 

they used to, difficulty recovering at the onset of a trip, and alterations in gait when tired or in a 

hurry that make them more susceptible for tripping (Sheldon, 1960).  Despite these insights, 

identifying factors that can be used to predict falls risk is challenging.  Extrinsic risk factors 

suggest falls are more likely to occur at home than away, outside than inside, and alone versus 

with someone else (W. P. Berg et al., 1997).  In addition, there may be a greater ratio of female 

to male fallers, although this difference decreases with age (Blake et al., 1988).  There are 

several intrinsic risk factors that have been associated with falls among older adults, with varying 

levels of support.  These include history of falls, fear of falling, cognitive impairment, balance 

and gait disorders, vertigo, use of sedatives, hypnotics or antiepileptic drugs, history of stroke, 

Parkinson’s disease, advanced age, arthritis, a high level of dependence, weak handgrip strength, 

giddiness, use of a walking aid, and foot difficulties (Blake et al., 1988; Deandrea et al., 2010; 

Stalenhoef et al., 1997; Tuunainen et al., 2014).  Using a falls risk assessment tool, the 

probability of a fall ranges from 7% with no or just one risk factor identified, up to 49% when six 

or more risk factors are present (Tiedemann, Lord, & Sherrington, 2010).  Of the identified risk 

factors for falls, gait and balance disorders have received a lot of attention, because behind 

history of falls, they are the most significant risk factor for falling among community-ambulating 

older adults (Deandrea et al., 2010).  Another potential reason for the attention paid to balance 

and gait disorders is that they may be seen as more modifiable than other risk factors, such as 

medical history or advanced age.   

A common measure of balance disorders is to determine postural sway during a standing 

task, with greater sway indicating poor balance.  Overstall et al. (1977) reported no difference in 

postural sway among non-fallers and those who fell as a result of a trip, however, those who fell 
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for other reasons had greater postural sway.  A more recent study confirmed that traditional 

measures of postural stability (e.g.  area of body sway and center of pressure velocity) are not 

helpful in determining falls risk.  Rather, it was suggested that balance-related risk of falls and 

fear of falling is associated with the critical time, or the time using a preplanned strategy as 

opposed to relying on vestibular, visual and somatosensory feedback to maintain balance 

(Tuunainen et al., 2014).  Another posture-related task, the choice stepping reaction time test, 

can be used to predict fallers in an older adult population, though it requires equipment that 

might not be readily available such as illuminated floor panels that contain pressure switches 

(Lord & Fitzpatrick, 2001).   

Since most falls occur during walking, spatiotemporal gait parameters that describe 

walking patterns such as velocity, cadence, stance time, swing time, double support time, step 

length and heel width, have been investigated.  Additionally, some kinematic variables including 

toe height, and hip, knee and ankle angular excursion in the sagittal plane have been considered.  

However, greater heel width while walking at a fast speed was the only variable to distinguish 

between older adults with a history a falls and non-fallers (Gehlsen & Whaley, 1990a), and 

spatiotemporal gait parameters have not been shown to discriminate recurrent fallers from non-

recurrent fallers (Moreira et al., 2014).  While the magnitude of spatiotemporal gait parameters 

and sagittal plane walking kinematics have not been successful in identifying those at risk for 

falling, the variability in these measures may be a more accurate determination of falls risk.  

Even though increased age is associated with greater variability in spatiotemporal gait 

parameters (Callisaya, Blizzard, Schmidt, McGinley, & Srikanth, 2010), greater stride time 

variability can be used to discriminate fallers from non-fallers (Hausdorff et al., 2001), and 

stride-to-stride variability in walking speed was shown to be the best predictor of falling among 
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spatiotemporal gait parameters (Maki, 1997).  Using a principal components analysis approach, 

it was also determined that fallers have greater joint kinematic variability than non-fallers, 

suggesting that reductions in joint kinematic variability may reduce the risk of falling 

(Kobayashi, Hobara, Matsushita, & Mochimaru, 2014). 

 

Stroke Patients.  Although the risk of falls increases with age (World Health 

Organization, 2008), the risk of falling is even greater in the stroke population than the general 

elderly population (Batchelor et al., 2012).  Up to three-quarters of stroke patients who live at 

home having some residual disability related to stroke fall within 6 months of discharge from a 

rehabilitation facility (Forster & Young, 1995; Mackintosh et al., 2005; Wagner et al., 2009).  

Despite the increased risk of stroke with age, about a quarter of strokes occur in people under the 

age of 65 (Daniel, Wolfe, Busch, & McKevitt, 2009).  The 45-64 age group will account for half 

of the total cost of strokes by the year 2050 (Brown et al., 2006), with financial and social 

consequences due to loss of productivity at a working age (Brown et al., 2006; G. Wang et al., 

2014).  Therefore, reducing the risk of falling for stroke patients of all ages is important to 

lowering the cost of stroke-related disabilities. 

There are different types of stroke that cause damage to a portion of the brain (American 

Stroke Association, 2012).  An ischemic stroke is the most common type of stroke, and is 

characterized by an obstruction or clot in a blood vessel that halts the supply of blood to a brain.  

When a stroke is caused by a temporary clot, it is called a transient ischemic attack and 

considered a mini-stroke or a warning sign for a potential larger stroke in the future.  A 

hemorrhagic stroke occurs when a blood vessel ruptures and the accumulating blood compresses 

the brain tissue.  The location of the lesion or brain damage determines the effect of the stroke on 
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the patient’s function.  There is some evidence that falls risk is greater for stroke patients with 

left hemisphere lesions, potentially because stroke patients with right hemisphere lesions tend to 

need greater supervision (Alemdaroglu, Ucan, Topcuoglu, & Sivas, 2012).  However, there is 

generally no association between falls among stroke patients and age, gender, stroke location, or 

stroke type (Batchelor et al., 2012).  Therefore, when stroke patients are discharged from the 

hospital, the basic information available is typically not helpful in distinguishing first-time fallers 

from non-fallers (Wagner et al., 2009).  Balance and gait analyses, functional assessments and 

falls history are tools that can be used to identify stroke patients who are at risk for falling 

(Forster & Young, 1995). 

Stroke patients typically exhibit deviations from normal gait that may indicate a risk of 

falling.  Spatiotemporal gait disturbances that are frequently identified among stroke patients 

include slow walking speeds, prolonged stance phase on the unaffected side, increased double 

support time, reduced cadence, and early foot contact on the unaffected side (Balaban & Tok, 

2014; Kim & Eng, 2003; Olney & Richards, 1996; Woolley, 2001).  Additionally, stroke patients 

exhibit abnormal kinematics on their affected side during both stance and swing phases of gait.  

Stance is typically characterized by decreased hip extension, reduced knee flexion or knee 

hyperextension, foot flat at initial contact due to lack of dorsiflexion during swing, and reduced 

plantar flexion at toe-off (Balaban & Tok, 2014; Kinsella & Moran, 2008; Olney & Richards, 

1996; Woolley, 2001; Yavuzer, Oeken, Elhan, & Stam, 2008).  Other aberrant joint kinematics 

on the affected side – reduced hip and knee flexion resulting in toe drag, decreased knee 

extension prior to heel strike due to insufficient acceleration of the leg, and reduced ankle 

dorsiflexion – may limit foot clearance during swing phase (Balaban & Tok, 2014; Olney & 

Richards, 1996).  To ensure sufficient foot clearance, a common compensation is leg 
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circumduction and an elevated pelvis on the affected side (Balaban & Tok, 2014; C. L. Chen et 

al., 2003; Olney & Richards, 1996).  These spatiotemporal and kinematic gait adjustments not 

only produce asymmetric gait patterns, but also contribute to a greater metabolic cost of walking 

(Balaban & Tok, 2014; Olney & Richards, 1996; Woolley, 2001).  While gait asymmetries are 

common among stroke patients, the effect of hemiparesis caused by the stroke is different for 

each patient, particularly for slow walkers and women (Jonsdottir et al., 2009; Oken et al., 2008).  

This underscores the conclusion reached by Begg et al.  (2007) that an individual-based approach 

to evaluate a patient’s risk of tripping is better than a group-based approach.   

Because stroke patients often fall while walking, and commonly fall forward or to their 

affected side (Batchelor et al., 2012; Mackintosh et al., 2005), rehabilitation efforts have 

historically been aimed at correcting asymmetry in gait patterns.  However, due to a lack of 

strength or function on the affected side, asymmetry may be appropriate for hemiplegic subjects, 

particularly at walking at fast speeds (Griffin, Olney, & McBride, 1995; Olney & Richards, 

1996).  Evidence supporting a normal, albeit asymmetric, gait pattern for stroke patients showed 

that stroke patients guided by a Lokomat to have similar gait kinematics to control subjects had 

abnormal joint torques when producing those movements (Neckel, Blonien, Nichols, & Hidler, 

2008).  Although gait asymmetry may be a normal component of stroke recovery, a gait pattern 

that presents a risk of falling deserves attention.   

 

Minimum Foot Clearance.  A trip occurs when the progress of the foot during swing phase of 

gait is impeded by an external force.  This force may be due to insufficient clearance between the 

foot and the walking surface or an obstacle.  As such, the magnitude of minimum foot clearance 

(MFC), which typically occurs at the point of greatest forward velocity of the foot (Winter, 
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1992), is often studied.  Low MFC and high MFC variability is suspected to increase risk of 

falling (Begg et al., 2007).  A low MFC value indicates that the foot passes close to the walking 

surface during swing phase, and high variability in MFC height suggests an increased probability 

that the foot will come in contact with the walking surface.   

Because falls risk increases with age, there have been some comparisons of MFC 

between young and older adults.  Several studies have found no difference in MFC between 

older and younger adults, (Bunterngchit et al., 2000; Elble et al., 1991).  However, older adults 

reduced MFC, and also reduced MFC variability, following six minutes of fast treadmill 

walking, while there was no change in young adults (Nagano et al., 2014).  Additionally, when 

adequate time is provided to avoid to an obstacle in a walking path, both young and older adults 

adjust their gait and rarely come in contact with the object.  However, when less time is 

provided, older adults contact the obstacle more frequently than the younger adults, and the older 

adults have a more conservative strategy for avoiding the obstacle (Galna et al., 2009).  These 

examples suggest that MFC is similar between young and older adults in normal walking 

conditions, but older adults adopt more risky behavior in challenging situations.   

Strategies to avoid tripping include increasing median MFC and reducing MFC 

variability (Begg et al., 2007).  However, the magnitude of MFC and the part of the shoe closest 

to the walking surface (e.g. toe vs. midfoot vs. heel) varies with task, suggesting that an absolute 

value for MFC may not be adequate to ensure foot clearance in all circumstances (Loverro et al., 

2013; Thies et al., 2011).  Gait adaptations to accommodate varying walking surfaces (Gates et 

al., 2012) and perform everyday tasks while walking (Schulz et al., 2010) include concurrent 

changes in joint kinematics and MFC height.  For example, to adapt gait to avoid contact with 

visible objects by doubling MFC height, healthy young adults utilize up to 10% more ankle 
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dorsiflexion and knee and hip flexion (Schulz, 2011).  Similarly, MFC variability is correlated 

with joint angle variability (Mills et al., 2008).  Therefore, another way of measuring trip 

avoidance is by determining how much the leg shortens during swing phase (Little et al., 2014; 

Moosabhoy & Gard, 2006). 

Winter (1992) quantified the range of joint angles at the ankle, knee and hip that would 

independently account for the variability observed in MFC height.  More recently, Moosabhoy 

and Gard (2006) developed a theoretical model to determine how changes in the sagittal plane 

ankle, knee and hip angles affect toe clearance throughout swing phase of healthy gait.  Their 

results suggested that ankle dorsiflexion has a greater effect on toe clearance during mid-swing 

than knee or hip flexion, while knee and hip flexion have the greatest effect on toe clearance at 

the beginning and end of swing phase.  Little et al. (2014) found that the knee has the greatest 

influence on toe clearance and limb shortening at the lowest trajectory of the toe, regardless of 

the time during swing.  It has been shown that different patient populations may use different 

strategies to achieve adequate MFC.  For example, patients with knee osteoarthritis had similar 

MFC height as a control group, but their knee flexion, hip abduction and ankle adduction angles 

were different (Levinger et al., 2012).  Stroke patients diagnosed with “foot drop” are suspected 

to have weak dorsiflexors that contribute to limited foot clearance, yet impaired coordination of 

hip and knee flexion had a greater effect on MFC than ankle dorsiflexion (Little et al., 2014).  

This evidence supports the theory that limb movements are planned for the distal endpoint 

trajectory, not joint trajectories (Karst et al., 1999).  Overall, the achievement of adequate MFC 

relies on contributions from all of the joints in the lower extremity. 
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Fear of Falling.  Fear of falling can be defined as “low perceived self-confidence at avoiding 

falls during essential, relatively nonhazardous activities” (Tinetti & Powell, 1993), and has 

frequently been associated with falls and falls risk.  The theory behind this association is that a 

history of falls – or knowledge of the debilitating consequences of falls – instills a fear of falling, 

which leads to reduced activity.  The decrease in physical and social activities results in 

declining physical function and an increased risk of falling (Belgen et al., 2006; Delbaere et al., 

2004; Deshpande et al., 2008).  This fear-related activity restriction has been observed in up to 

25% percent of older adults (Reelick et al., 2009; Tinetti et al., 1988).  In stroke patients, fear of 

falling is much more prevalent, approaching 50%, and those with a history of falls have even 

lower falls-related self-efficacy (Belgen et al., 2006; Mackintosh et al., 2005).  Historically, these 

investigations supported the theory that falls history and fear of falling fed a downward spiral 

into mobility limitations, reduced independence and more falls (Friedman et al., 2002).  

However, a recent publication of an 11-year study of falls in older adults has shown that fear of 

falling does not lead to more injurious falls, and a history of falling does not increase fear of 

falling (Clemson et al., 2015).  Among stroke patients, it has been suggested that those with 

reduced function and balance ability, as well reduced cognitive function, could be at greater risk 

for falls (Chin, Wang, Ong, Lee, & Kong, 2013).  Conversely, increased mobility among stroke 

patients could result in more opportunities for falling, and stroke patients that overestimate their 

walking ability by having greater walking speeds for short distances could have a higher risk of 

falling (Morone, Iosa, Pratesi, & Paolucci, 2014).   

The relationship between fear of falling and falls is complicated by other factors that may 

contribute to anxiety about falling, such as vision impairments, as well as gait adaptations as a 

result of that fear.  Self-reported poor vision is associated with low falls self-efficacy and activity 
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restriction related to fear of falling, but actual measures of poor vision do not support this 

association.  However, poor vision among those with a fear of falling is associated with poor 

mobility (Donoghue et al., 2014).  Those who report a fear of falling often adopt a stiffening 

posture during balance and gait tasks, or visual behavior, such as not properly fixating gaze on an 

obstacle, that could increase the risk of falling while walking.  These adaptations may be used to 

improve head stability, which has been shown to decrease in older adults (Young & Williams, 

2015).  Other adjustments may be made with the intention of stabilizing gait, including reduced 

stride length, reduced gait speed, increased double support time, and increased stride width, with 

increased stride width the only adjustment to also have an independent association with falls risk 

(Maki, 1997).  In stroke patients, it is possible that temporal gait parameters may be more 

associated with fear of falling than spatial gait parameters (Park & Yoo, 2014).  Another analysis 

showed that fear of falling is associated with an increase in variability of a variety of 

spatiotemporal gait parameters (Ayoubi, Launay, Annweiler, & Beauchet, 2015).  Using 

different gait-related measures, variability of the medial-lateral accelerations of the trunk was not 

associate with fear of falling.  However, dynamic stability and maximum voluntary knee 

extension torque were associated with fear of falling, with decreased dynamic stability and low 

knee extensor strength indicating a greater fear of falling among older adults without a history of 

falls (Toebes, Hoozemans, Furrer, Dekker, & van Dieen, 2015).  While a clear cause-and-effect 

relationship between fear of falling and falls risk lacks support, it is evident that having a low 

falls-related self-efficacy can lead to changes in gait patterns. 

 

Interventions.  In an effort to reduce falls among older adults, several programs have been 

created that seek to address commonly identified risk factors for falling.  Interventions are 
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typically multifactorial and include any of the following: creating an exercise plan, assessment 

and adjustment of medications, modifying the environment to remove hazards, vision treatment, 

providing education about falls risk, and vitamin D supplementation (Panel on Prevention of 

Falls in Older Persons, American Geriatrics Society and British Geriatrics Society, 2011).  

Focusing specifically on gait deficits, a balance or weight training program may be successful in 

reducing gait asymmetries among older adults (Seo & Kim, 2014).  However, a limitation of this 

approach is using outcome measures that are commonly associated with falls risk, and not an 

actual record of whether the participants experienced falls following the program (Seo & Kim, 

2014).  In general, programs with high intensity and that include multiple components and 

balance exercises have been shown to reduce the risk of falls, improve balance, and decrease fear 

of falling (Arantes et al., 2015; Batchelor et al., 2012).  Despite the successes of some program in 

reducing falls risk, it is possible that additional gains can be made.  It has been proposed that 

task-specific perturbations during training may improve the effectiveness of falls-prevention 

interventions (Grabiner et al., 2014).  Specifically, a program that exposes a participant to a trip 

while in a safe environment allows the participant to practice recovering from that perturbation, a 

skill that may be beneficial when transferred to a real-life situation. 

In contrast, most proposed interventions have been unsuccessful in preventing falls for 

stroke patients (Batchelor et al., 2010; Batchelor et al., 2012; Batchelor et al., 2012; Dean et al., 

2012; Hornbrook et al., 1994; Verheyden et al., 2013).  This is especially true for chronic stroke 

patients, as a plateau in recovery typically occurs at about six months post-stroke (Richards & 

Olney, 1996).  The improvements observed in stroke patients following the completion of 

proposed programs have included better mobility and a decreased fear of falling (Dean et al., 

2012; Jung, Lee, Shin, & Lee, 2015; Shaughnessy & Michael, 2012).  Functional electrical 
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therapy has been used to correct gait deficits, resulting in improved preferred walking velocity 

and fast walking velocity, longer duration of stance on the paretic side, shorter duration of gait 

cycle, and better stance time symmetry ratio.  However, there was no observed effect on ability 

to function independently during walking (Spaich, Svaneborg, Jorgensen, & Andersen, 2014).  

Multifactorial exercise programs, which have shown a decrease in falls in the general elderly 

population, have not had similar success among stroke patients (Batchelor et al., 2012).  An 

individualized approach is likely the best way to prevent falls among stroke patients, with 

emphasis on specific intrinsic and extrinsic risk factors unique to an individual patient.  For 

example, vitamin D supplementation has been shown to be an effective intervention for female 

stroke patients in an institutionalized setting (Batchelor et al., 2010; Verheyden et al., 2013).  

One limitation to determining effective falls prevention interventions for stroke patients is a lack 

of consistency in how falls are defined and measured (Batchelor et al., 2010).  Additionally, 

studies that evaluate the effectiveness of falls interventions do not often include stroke patients 

(Verheyden et al., 2013).   

 

Measuring Gait Deficits  

Identifying gait deficits or functional losses is often the first step of a rehabilitation 

program.  The goal is to correct the abnormalities that may present a risk of falling.  It has been 

shown that older adults with more than one type of gait assessment that is abnormal are at greater 

risk of falling, as the combined information provides a more holistic mobility evaluation (Allali, 

Ayers, & Verghese, 2015).  There are several ways to measuring gait deficits.  A variety of tests 

and scales, some administered by clinicians and others used in research laboratories, have been 

developed to determine a patient’s gait function.  Research labs may have equipment available to 
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record 3D joint kinematics and kinetics, or even the MFC during walking.  The results obtained 

by motion capture techniques can be used in a variety of ways, such as determining joint 

coordination patterns or gait stability.  Despite the wealth of information that can be produced in 

a motion capture lab, the analysis is limited to movements in a controlled environment, and may 

not represent everyday gait patterns or behavior.  As a result, there has been a surge in the 

development of in-home systems or wearable devices that can track movement in a natural 

setting. 

 

Evaluating Function.  Stroke patients often deal with a loss of function, and so tests and scales 

that monitor function can be used to track the progress made in recovery.  Recovery is typically 

characterized by three phases: acute (up to one month post-stroke), subacute (one to six months 

post-stroke) and chronic (more than six months post-stroke) (Harris, Eng, Marigold, Tokuno, & 

Louis, 2005).  Functional recovery post-stroke can be determined using the Fugl-Meyer 

Sensorimotor Scale, where a trained evaluator assesses sensation, balance, and upper and lower 

extremity function (Richards & Olney, 1996; Sanford et al., 1993).  Other common clinical 

measures of functional independence are the Barthel Index, which focuses on self-care and 

mobility (Richards & Olney, 1996), and Brunnstrom’s Motor Recovery Stage (BMRS) which 

evaluates lower extremity function (C. L. Chen et al., 2003; Oken et al., 2008).  The majority of 

the recovery on these scales occurs within the first 6 weeks to 3 months post-stroke, so the use of 

other measures of recovery are needed to provide the responsiveness required to track long-term 

improvements (Schepers et al., 2006).  For example, significant improvements in gait speed, 

cadence and stride length can be observed well beyond a year after baseline evaluations 

(Richards & Olney, 1996).   
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Self-selected walking speed is a particularly common evaluation due to the ease of 

measuring the time it takes a patient to walk a fixed distance.  Oken et al. (2008) used gait speed 

faster or slower than 0.34 m/s to divide a sample of stroke patients into fast and slow subgroups.  

In another classification, Perry et al. (1995) determined that stroke patients with severe 

impairment resulting in household ambulation only had walking speeds of less than 0.4 m/s, 

while mild impairment and full community ambulation required gait speed of at least 0.8 m/s, 

and those with moderate impairment and limited community ambulation walked between 0.4 and 

0.8 m/s.  Walking speed was validated as a way to distinguish homebound stroke patients from 

those who walk in the community (Bowden, Balasubramanian, Behrman, & Kautz, 2008).  In 

analyzing muscle activity and lower extremity motion, stroke patients who are able to walk faster 

exhibit mechanics that are most similar to a control group (Richards & Olney, 1996).  

Categorizing function based on gait speed should be used with caution, however, as older adults 

may choose a different walking speed depending on the distance they are expected to travel 

(Najafi, Helbostad, Moe-Nilssen, Zijlstra, & Aminian, 2009).  Additionally, it may take older 

adults up to 2.5 m to achieve steady state walking, which should be considered when evaluating 

gait parameters (Lindemann et al., 2008). 

Several methods of evaluating function have combined gait speed with other tasks that 

are easily measured in a laboratory setting.  The Dynamic Gait Index was developed to 

determine postural stability during walking (Wrisley et al., 2004).  It is an eight-item scale 

consisting of a simple walking task with modifications to make it more challenging, such as 

speed changes, head turns, stairs, and navigation over and around an obstacle.  A modified 

version using only four of the original eight items has been validated in a sample of patients with 

balance and vestibular disorders (Marchetti & Whitney, 2006).  The Dynamic Gait Index is 
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considered an acceptable way to measure function, though it is susceptible to ceiling effects.  To 

avoid this, the Functional Gait Analysis includes seven of the items from the Dynamic Gait 

Index and adds an additional three items that are greater challenges to balance during walking, 

including a narrow base of support, eyes closed, and backwards walking conditions (Wrisley et 

al., 2004).  The Performance-Oriented Mobility Assessment evaluates balance and gait in 

separate assessments (Tinetti, 1986), while the Berg Balance Scale contains some similar balance 

items and adds other dynamic tasks such as placing a foot on a stool while standing unassisted 

(K. Berg, Wooddauphinee, & Williams, 1995).  Modified from the BESTest, the mini-BESTest 

is a more recently developed functional assessment that is valid in the chronic stroke population 

repeats some of the anticipatory, sensory orientation, and dynamic gait tasks that are found in 

other evaluations, but adds a reactive postural control component as well as a dual-task timed up 

and go test (Franchignoni et al., 2010; Tsang et al., 2013). 

Since fear of falling is suggested to have an influence on function as well as activity, 

assessments related to falls self-efficacy have been created.  The simplest way to evaluate of fear 

of falling is to ask, “Are you afraid of falling?” and recording the answer of “yes” or “no” 

(Ayoubi et al., 2015).  The Falls Efficacy Scale created by Tinetti et al. (1990) determines 

confidence in ability to perform common activities of daily living, and is a reliable tool in the 

stroke population (Hellstrom & Lindmark, 1999).  When evaluating function related to fear of 

falling, the association between fear of falling and gait variability may be better detected by 

using the Falls Efficacy Scale, rather than simply asking the participant if they are afraid of 

falling (Hausdorff et al., 2001).  Other measures of falls self-efficacy are the Activities-specific 

Balance Confidence Scale (Ayoubi et al., 2015; Powell & Myers, 1995) and the Survey of 

Activities and Fear of Falling in the Elderly (Lachman et al., 1998), which also chronicle a 
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patient’s fear of falling while performing certain tasks.  While not explicitly measuring fear of 

falling, the Frenchay Activities Index is used to record a patient’s recent (within three to six 

months) history engaging in activities that require some initiative, such as housework or 

gardening.  It has been shown to be responsive to improvements made in the chronic phase of 

stroke recovery (Schepers et al., 2006).  Measures of willingness to participate in community or 

household activities can provide information about how fear of falling might contribute to 

activity restriction. 

In addition to evaluating function among older adults and specific patient populations, it 

has been attempted to use several of these measures to predict falls.  Healthy older adults that 

scored low on the Berg Balance Scale and Dynamic Gait Index did have an increased risk of 

falling, with a model that included the Berg Balance Score and self-reported history of imbalance 

serving as the best method to predict fallers (Shumway-Cook, Baldwin, & Polissar, 1997).  

However, the Berg Balance Scale and gait speed are not great predictors of future fallers among 

stroke patients (Harris et al., 2005).  Conversely, study by Shumway-Cook et al. (2000) showed 

that falls risk in older adults can be predicted by performance on a simple three-meter Timed Up 

and Go Test with a cutoff of 13.5 seconds.  An additional dual-task during the Timed Up and Go 

Test, either manual or cognitive, was not necessary for accurate falls prediction (Shumway-Cook 

et al., 2000).  These equivocal results indicate that methods of evaluating function among older 

adults or stroke patients may be useful in determining levels of recovery and the extent of 

community engagement, though they may not be useful when trying to predict falls. 

 

Motion Capture.  To get more specific about abnormal gait patterns that may result in poor 

performance during functional evaluations, joint kinematics can be recorded using 3D motion 
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capture technology.  There are a few limitations to this approach that suggest that the recorded 

kinematics are not an exact representation of the motion of the body.  For example, improper 

identification of anatomical landmarks, particularly at the knee, can influence how the joint 

angles are calculated (Della Croce, Leardini, Chiari, & Cappozzo, 2005).  Additionally, the 

assumption that each segment can be modeled as a rigid body is not correct for segments that 

contain multiple articulations like the trunk or foot, and for segments with a lot of soft tissue 

such as the thigh.  Kinematic errors occur when the rigid-body assumption is not met because 

markers that move due to skin motion do not represent the true motion of the underlying bone 

(Cappozzo, Della Croce, Leardini, & Chiari, 2005; Leardini, Chiari, Della Croce, & Cappozzo, 

2005; Li, Zheng, Tashman, & Zhang, 2012; Reinschmidt et al., 1997).  Nevertheless, 3D motion 

capture technology remains the gold standard for detecting the individual components of gait and 

identifying gait disorders.  If the equipment is available, this technique is relatively simple.  

Aside from placing markers on anatomical landmarks, quantification of kinematics does not 

require any measurements of the subject or specific body segments ahead of time, and the 

techniques used for measuring kinematics are not restrictive so participants are free to move as 

they typically would. 

Once joint kinematics are recorded, they can be used to identify the results of an 

intervention on changes in joint angles, or the data can be analyzed further.  A review of the 

reliability of 3D motion capture in reporting joint angles suggests that errors of less than 2° are 

clinically acceptable, and are regularly reported for sagittal and frontal plane kinematics, 

although errors of greater than 5° have been reported for hip and knee rotation (McGinley, 

Baker, Wolfe, & Morris, 2009).  This result is supported by an analysis of the minimal detectable 

change not being less than 2° for common sagittal and frontal plane joint angles (Wilken et al., 
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2012).  For chronic stroke patients, however, the minimal detectable change in sagittal plane 

kinematics ranges from 4.9° at the ankle to 11.5° at the hip (Kesar, Binder-Macleod, Hicks, & 

Reisman, 2011).  Differences in minimal detectable change between healthy people and stroke 

patients may be due to greater variability in the gait patterns of stroke patients.  Other uses of 

kinematics beyond raw joint angles include determining MFC, joint coordination, and gait 

stability. 

 

Minimal Foot Clearance.  Much of the research on trip avoidance has been focused on 

quantifying and manipulating MFC height or MFC variability, and so MFC has to be quantified.  

In a laboratory with motion capture equipment available, geometric models can be used to 

predict lowest point on the shoe (Begg et al., 2007), and foot clearance can be measured using 

digitization of marker clusters on the foot (Telonio, Blanchet, Maganaris, Baltzopoulos, & 

McFadyen, 2013).  This information can be helpful to walkers as they adjust their gait to change 

MFC.  Providing real-time visual feedback about the vertical displacement of the toe results in an 

increase in mid-swing toe height for healthy young adults (Tirosh, Cambell, Begg, & Sparrow, 

2013) as well as older adults and a stroke patient (Begg et al., 2014).  This is a promising result, 

however, the method is confined to gait analysis performed in a biomechanics lab.   

 

Coordination.  Joint angles obtained using motion capture techniques can be used to 

analyze the coordination of the joints throughout the stride cycle.  In normal gait, there is 

significant coordination that occurs between the segments of the lower extremity.  These 

coordinative structures, or muscle synergies, can allow the same goal to be reached by using 

different degrees of freedom, and they can use the same degrees of freedom to reach the same 
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goals (Latash, Scholz, & Schoner, 2002).  Intra-limb coordination of joints or segments can be 

assessed by either discrete or continuous methods.  Discrete methods are used to determine 

relative timing of joints or segments at one point in a movement cycle.  An advantage to using 

discrete methods to evaluate movement coordination is that the data does not need to be 

manipulated beyond normal calculation of joint angles.  The disadvantage of using discrete 

methods is that they evaluate coordination at only one point during the cycle (Hamill et al., 

2000).   

Continuous methods are used to determine coordination or coupling of movement over a 

period of time.  Therefore, a continuous measure of coupling is important for determining 

coordination throughout the stride cycle (Hamill, van Emmerik, Heiderscheit, & Li, 1999; 

Hamill et al., 2000).  Traditionally, two types of continuous methods are used for determining 

coordination: continuous relative phase (CRP) and relative motion, also known as vector coding.  

While both methods are valid for measuring coordination and variability, they do not convey the 

same information at all times.  The differences between the methods are most obvious when 

determining variability at specific instances or portions of a movement cycle (Miller, Chang, 

Baird, Van Emmerik, & Hamill, 2010).  The decision of which method to use depends on the 

research question being asked (Hamill et al., 2000; Miller et al., 2010). 

CRP is useful because it provides continuous information that is both spatial and 

temporal.  CRP is calculated by creating a parametric phase plot – velocity plotted as a function 

of position – for each segment.  Phase angles are then determined from the arctangent of this 

plot.  After time-normalizing the phase angle, CRP is found by subtracting the phase angle of 

one segment from the other at every time point.  When CRP is 0° the segments are in-phase, and 
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when CRP is 180° the segments are anti-phase.  CRP variability is the standard deviation of the 

CRP at each point in the cycle (Hamill et al., 1999; Hamill et al., 2000). 

An additional normalization step must be taken for CRP before calculation of the phase 

angles.  This will account for the frequency differences between waves.  The goal of 

normalization should be to make the phase-plane more circular and center the phase plot about 

an origin.  Different results will be obtained depending on the normalization procedures utilized 

(Hamill et al., 2000; Peters, Haddad, Heiderscheit, Van Emmerik, & Hamill, 2003; Wheat & 

Glazier, 2006).   

CRP is used to compare the degree of in-phase or out-of-phase relationships for various 

coupling relationships.  This has been done with mixed results.  The use of angular velocity in 

the computation of phase angles provides temporal as well as spatial information, and may make 

CRP a more sensitive measurement of variability.  However, the higher derivative of angular 

velocity may propagate errors in the displacement data.  Additionally, it has been shown that 

normalization alters the data, and so some authors do not normalize, making comparisons 

between studies difficult (DeLeo, Dierks, Ferber, & Davis, 2004; Wheat & Glazier, 2006).  It is 

also difficult to generalize the in- or out-of-phase coupling for multiple joint segments or joint 

combinations throughout stance.  Another limitation of CRP is that it is traditionally used for 

predominantly sinusoidal oscillators.  However, most lower extremity joint movements – with 

the exception of the sagittal plane motion of the hip – are non-sinusoidal, which may affect the 

results of CRP (DeLeo et al., 2004; Heiderscheit, Hamill, & van Emmerik, 2002; Peters et al., 

2003; Wheat & Glazier, 2006).   

Vector coding is a way to determine continuous coordination for non-sinusoidal data.  

Using relative motion or a vector coding method to determine coordination is convenient 
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because no normalization of data is required.  It may be useful as a clinical tool because the 

original kinematic data are used in the analysis (Miller et al., 2010).  However, only spatial, and 

not temporal, information is presented.  Relative motion measures coordination by using angle-

angle plots.  With the proximal segment or joint angle on the x-axis and the distal segment or 

joint angle on the y-axis, each point in the time-series is plotted.  A vector is made between 

consecutive points, and the orientation of the vector relative to the right horizontal is called the 

coupling angle.  The coupling angle describes the relative motion of the joints or segments, and 

can be plotted as a function of the stride cycle.  The variability of the coupling angle can be used 

to assess variability across multiple trials and/or between subjects (DeLeo et al., 2004; Hamill et 

al., 2000; Sparrow, Donovan, Vanemmerik, & Barry, 1987; Wheat & Glazier, 2006). 

Coordination across different limbs has been studied in stroke patients, using a variety of 

methods.  A cross-correlation of the sagittal plane angles of the shoulder and contralateral hip 

joints showed that the upper limb motion coordinated with the lower limb (Bovonsunthonchai, 

Hiengkaew, Vachalathiti, Vongsirinavarat, & Tretriluxana, 2012).  CRP was used to quantify the 

bilateral coordination of lower extremity segments during the course of an intervention, which 

yielded improvements in bilateral coordination (Combs, Dugan, Ozimek, & Curtis, 2013).  

Additionally, walking speed is related to limb coordination for tasks that require coordinated 

motion of different limbs, such as sliding the heel of one foot along the shin of another (Hollman 

et al., 2013). 

Because stroke patients exhibit a disruption in the “phasic interdependence” of hip and 

knee sagittal plane excursions (Little et al., 2014), it is beneficial to examine the coordination 

between body segments on the same limb.  Coordination between the joints of the lower 

extremity is crucial for gait, and enables foot clearance while leg advances during swing 
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(Moosabhoy & Gard, 2006).  While lack of coordination was observed in stroke patients by 

Little et al. (2014) and Moosabhoy and Gard (2006), it was quantified during the swing phase of 

gait using a CRP analysis (Barela et al., 2000).  Another CRP measure of intersegment 

coordination indicated that stroke patients exhibit more in-phase coordination between the thorax 

and pelvis when walking at their preferred slow speed as opposed to a fast walking pace.  

Additionally, thoracic and pelvic coordination is correlated with Functional Gait Assessment 

scores and performance on the BESTest balance evaluation (Hacmon, Krasovsky, Lamontagne, 

& Levin, 2012).  Coordination in joint kinematics for stroke patients has also been quantified 

using the planar law of intersegmental coordination.  Under planar law for healthy gait, plotting 

the elevation angles (the inclination angle of the segment relative to vertical) of the thigh, shank 

and foot in 3D space results in a teardrop-shaped plane.  Although the gait of both stroke patients 

and controls followed the planar law, the timing of the segment motion was abnormal in stroke 

patients (Chow & Stokic, 2015).  The significance of these few studies that have examined 

coordination in stroke gait is that coordination of coupled segments within a limb may provide 

an understanding of the pathology that is causing hemiparetic gait, more so than spatiotemporal 

gait parameters (Rinaldi & Monaco, 2013).  Further investigation of the coupling of joint 

segments using a vector coding technique could provide additional information about how stroke 

patients coordinate the segments of their lower extremity during walking. 

 

Comparison of treadmill and overground walking.  In a laboratory gait analysis, it is 

common for walking to be done on a treadmill.  When the desired number of gait cycles are 

recorded in consecutive steps, the data collection process is much quicker than if only a couple 

strides can be used during each trial of overground walking.  Additionally, it is common to use a 
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harness when conducting experiments on people with gait deficits as a safety precaution, and a 

harness stationed over a treadmill is easier to manage than if the support was necessary while 

walking overground.  Yet overground walking is typically how people ambulate, and differences 

in gait analyses from the treadmill to overground could limit the generalizability of discoveries 

made during treadmill walking.   

Spatiotemporal gait parameters have high between- and within-day reliability for healthy 

older adults during treadmill walking (Faude, Donath, Roth, Fricker, & Zahner, 2012), but are 

different on an instrumented treadmill compared to overground walking (Wearing, Reed, & 

Urry, 2013).  For example, it has been shown that preferred walking speed is slower on a 

treadmill than overground (Nagano et al., 2011).  When the treadmill is set to the preferred 

overground walking speed, cadence increases and stance time decreases (Warabi, Kato, 

Kiriyama, Yoshida, & Kobayashi, 2005).  However, there is some evidence that training on a 

treadmill may have carry-over effects to overground walking.  Adaptation to a swing phase 

perturbation on the affected side while walking on an instrumented treadmill could be 

generalized to overground walking for both stroke patients and controls.  Both sets of 

participants showed improved step length symmetry, increased overground gait velocity, 

increased stride length and decreased stride duration after the treadmill intervention (Savin et al., 

2014).  MFC and gait stability are also affected depending on whether walking is recorded 

overground or on a treadmill.  Treadmill walking results in improved local dynamic stability 

compared with overground walking (Dingwell, Cusumano, Cavanagh, & Sternad, 2001), and 

MFC is lower on the treadmill compared to overground for both limbs of young and older adults, 

except for older adults’ non-dominant leg (Nagano et al., 2011). 
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From a kinematics perspective, both healthy older adults and healthy young adults have 

similar joint angles during treadmill and overground walking, and except for transverse plane 

rotation at the hip and the ankle, the differences between the two modes of walking is less than 

2-3° (Parvataneni, Ploeg, Olney, & Brouwer, 2009; Riley, Paolini, Della Croce, Paylo, & 

Kerrigan, 2007; Watt et al., 2010).  This is typically considered to be within the range of 

clinically acceptable error in kinematic measurements (McGinley et al., 2009).  However, older 

adults have about a 23% higher metabolic cost of walking on a treadmill than overground 

(Parvataneni et al., 2009), and the differences in spatiotemporal gait parameters suggests that an 

acclimatization period may be useful when analyzing gait on a laboratory treadmill (Watt et al., 

2010). 

 

Wearable Devices.  While a gait analysis obtained using motion capture provides the most 

accurate information about a gait deficit, a major limitation is that it must be done in a setting 

where the expensive equipment is available.  This means that knowledge of joint kinematics is 

restricted to patients who are able to access this type of facility, and the motion examined is 

restricted by the laboratory setup and may not be generalizable to everyday activities.  An 

alternative is the development of in-home systems that can be installed in a location outside of a 

laboratory to track gait during rehabilitation.  In one such system, components for constant 

monitoring of rehabilitation progress includes a step counter, photo-emitting detectors, a data 

collection and processing center, and a software interface (Giansanti, Morelli, Maccioni, & 

Grigioni, 2013; Giansanti, Morelli, Maccioni, & Brocco, 2013).  Another web-cam based system 

is designed to capture walking speed, step time and step length in a home environment (F. Wang 

et al., 2013).  However, these systems are still limited by the place of installation, and the 
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assumption that the user will have the ability to control and troubleshoot the system.  Perhaps the 

best alternative to using motion capture equipment to monitor gait in natural settings is to use 

wearable devices that can convey the same information without requiring a contrived setting or 

expensive and complicated equipment.  Wearable devices that track information about the body 

have been developed for multiple purposes, and future improvements in this technology can help 

to monitor stroke patients at risk for falling. 

 

General Use.  The global wearable wireless device market is booming, and is expected to 

continue to grow, particularly in tech-savvy, health-conscious and affluent countries like the U.S. 

and Canada (Transparency Market Research, 2015).  The demand for this type of technology 

across all platforms was 14 million devices in 2011; that number is projected to be 171 million in 

2016 (Appelboom et al., 2014).  Likewise, the global market is expected to grow 800% from 

2012 to 2018, with a value close to $6 billion (Transparency Market Research, 2015).  The 

healthcare field has begun using mobile health (mHealth) technology consisting of 

accelerometers, gyroscopes, GPS and other sensors to monitor and report aspects of patient’s 

lives in real-time.  Common analyses include physical activity, temperature, blood pressure, 

heart rate, electrocardiogram, weight, and glucose (Appelboom et al., 2014).  The benefits of 

mHealth include: reliable information in contrast to a self-report by the patient that is not always 

accurate, identification of patients in need of treatment, streamlined communication between the 

patient and healthcare professional, and personal engagement and behavior change by the patient 

(Appelboom et al., 2014; Bassett, 2012; Dobkin, 2013). 

These devices have already been designed for specific populations to aid in health care 

outcomes.  Older adults are at risk for heart failure, and there are over a hundred different mobile 
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electrocardiogram systems that can provide continuous monitoring of heart function and 

detection of heart arrhythmia (Baig, Gholamhosseini, & Connolly, 2013; Tanantong, 

Nantajeewarawat, & Thiemjarus, 2014).  A system has even been developed to monitor the fetal 

heart (Signorini, Fanelli, & Magenes, 2014).  A wireless electrocardiogram monitor can also be 

used to detect epileptic seizures (Masse, Van Bussel, Serteyn, Arends, & Penders, 2013), or 

episodes of obstructive sleep apnea (Sannino, De Falco, & De Pietro, 2014) based on changes in 

cardiac rhythm.  Wearable devices can be used to monitor heart rate and respiratory rate, and this 

has been applied to firefighters, athletes, and other workers at risk for sudden health impairment 

(Lukocius, Vaitkunas, Virbalis, Dosinas, & Vegys, 2014; Smith, Haller, Dolezal, Cooper, & 

Fehling, 2014).  Activity monitors can be used to quantify sedentary behavior within certain 

populations, and have had success in detecting changes in physical activity behavior (Bassett, 

2012; Swartz, Rote, Cho, Welch, & Strath, 2014).  A clinical trial is in place to determine if 

measuring walking activity with accelerometers during rehabilitation alters physical activity 

behavior and improves walking function after discharge (Mansfield et al., 2013).  The use of 

wearable devices offers a more ecologically sound alternative to the questionnaires and scales 

that are used to quantify physical function (Dobkin, 2013).  While constant monitoring by body-

worn sensors may be considered a violation of privacy, it is a tradeoff that has to be considered if 

wearable devices are going to be used to enhance diagnosis, treatment and rehabilitation of 

pressing health issues (Dobkin, 2013).  However, if the use of wearable devices to monitor health 

and function is to be successful, it is reliant on the patients to wear the device.  A study that 

investigated stroke patients’ adherence to the use of a step activity monitor found greater 

adherence in older patients, those with greater balance self-efficacy, and those with better 

walking endurance.  Additionally, adherence was lower on the second day than the first day, 
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suggesting that strategies for ensuring adherence are necessary when gait is to be monitored for 

more than one day (Barak et al., 2014).  It appears that the use of wearable devices for healthcare 

is a valuable tool with a variety of potential applications for health improvement. 

 

Falls risk.  An ideal use of wearable devices is to detect the risk of falls, and several 

studies have examined the feasibility of this by using inertial measurement units.  Inertial sensors 

can provide measures of position, angle, angular velocity, or linear acceleration, depending on 

the type of device (Howcroft, Kofman, & Lemaire, 2013).  Accelerometers, which record linear 

acceleration, are a good choice for monitoring gait because they can be small and do not require 

a lot of power (Rueterbories, Spaich, Larsen, & Andersen, 2010).  Also, the type of 

accelerometer appears to be flexible: a high test-retest reliability has been reported for using 

smart phone accelerometers compared with tri-axial accelerometers to quantify gait parameters 

(Nishiguchi et al., 2012).  However, accelerometer reliability is better when using the mean of 

two walking trials rather than a single trial (Bautmans, Jansen, Van Keymolen, & Mets, 2011). 

In the absence of motion capture equipment, gait dysfunction can be detected with 

inertial sensors as asymmetry in spatiotemporal gait parameters (Dobkin et al., 2011; Punt et al., 

2014).  The sensors are commonly placed on the lower back or pelvis, near the body’s center of 

mass, however, some protocols apply the sensor to the shank, while others involve multiple 

sensors placed on various body parts.  Obtaining information requires analysis of the 

accelerometer signal: peak frequency represents the gait cycle or the time for one step, root mean 

square indicates the degree of gait instability where a high root mean square corresponds with 

low stability, autocorrelation peak is the degree of gait balance where a high score means greater 

balance, and coefficient of variance represents the degree of gait variability or the variability in 
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time between consecutive footfalls (Nishiguchi et al., 2012; Senden et al., 2012).  These 

variables can be used to detect subtle changes in gait patterns (Isho, Tashiro, & Usuda, 2015).  

The subsequent challenge, however, is to parlay these variables into clinically meaningful 

information about gait.  For example, triaxial accelerometers worn on the ankles can accurately 

predict walking speed and identify bouts of walking as distinct from other activities (Dobkin et 

al., 2011), while a triaxial accelerometer worn on the lower back can be used to quantify number 

of steps, mean step length, and walking distance in chronic stroke patients (Punt et al., 2014). 

It has been the focus of a few experiments to relate data obtained from wearable devices 

to falls risk.  With a triaxial accelerometer on the back of the pelvis, gait speed was used to 

discriminate falls risk in older adults in studies by Bautmans et al. (2011) and Senden et al. 

(2012).  Additional discriminators of falls risk in the Senden et al. (2012) paper were step length 

and root mean squared.  A potential reason for the discrepancy between the two experiments is 

how falls risk was classified.  In the Bautmans et al. (2011) study, falls risk was evaluated by a 

six-month history of falls, a timed up and go test time of greater than 15s, or a Tinetti score less 

than or equal to 24.  The Senden et al. (2012) study used only the Tinetti scale to determine falls 

risk.  Among stroke patients, smart-phone based accelerometers were used to measure trunk 

accelerations during walking.  Interstride variability of mediolateral trunk acceleration could 

distinguish between self-reported fallers and non-fallers, but traditional clinical evaluations could 

not (Isho et al., 2015).  While these successes suggest that falls risk may be identified using 

wearable devices, the results should be validated using an actual measure of falls rather than 

scales or relying on a patient’s self-report. 

In some cases, kinematic information can be obtained using wearable devices.  Related to 

the risk of tripping, foot clearance can be estimated using wireless inertial sensors, with 
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placement on the foot or shank (Hamacher et al., 2014; Mariani et al., 2012; McGrath et al., 

2011).  The method proposed by McGrath et al. (2011) was successful in predicting MFC in 

“non-normal” gait.  However, these gait aberrations were not consistent with any clinical 

population, rather they were a healthy individual’s interpretation of “shuffling gait.” Despite the 

convenience of using wearable technology to monitor MFC outside of a clinic or lab, most 

current methods only identify foot clearance, not the lower extremity kinematics that may 

contribute to changes in foot clearance.  Other inertial sensor systems have been constructed to 

make accurate joint angle measurements, based on placement of several sensors on multiple 

body segments (Seel et al., 2014; Slajpah et al., 2014).  Walking kinematics can be determined 

from a system of wearable sensors that includes seven inertial measurement units and two 

instrumented shoe insoles (Slajpah et al., 2014).  Most methods of using inertial measurement 

units require that each device be placed on specific locations with a specific orientation to 

calculate joint kinematics.  A new approach can get the same information with arbitrary 

placement of the inertial measurement units by taking advantage of the mechanical constraints of 

the joints (Seel et al., 2014).  Although this method is be designed to provide accurate 

information about joint kinematics outside of a laboratory setting, it may be difficult for the 

general population to effectively adopt the multiple-sensor system.  A better solution would be to 

have a single device that is capable of detecting specific gait patterns. 

 

Machine Learning 

Wearable devices can produce a large amount of data, and when machine learning 

algorithms are applied to that data, it is possible to produce information well beyond the actual 

measurement that is recorded.  For example, linear accelerations obtained from an accelerometer 
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are used to classify types of physical activity such as gardening, walking, or cycling (Moncada-

Torres et al., 2014).  There are three main ways that machine learning algorithms can be used: 

anomaly detection (e.g. support vector machines, Markov models and wavelet analysis), which 

separates the data into normal and abnormal sets; prediction (e.g. supervised learning), which 

aims to identify future events based on the data; and diagnosis or decision making (e.g. neural 

networks or decision trees), which involves classifying the data based on a large database of 

labeled information (Banaee, Ahmed, & Loutfi, 2013).   

 

Algorithms.  Regardless of the algorithm used to get higher level information out of the data, the 

approach is the same.  This approach, outlined by Banaee et al. (2013) requires raw sensor data 

that is labeled according to the desired classification, and then split into a training set and a 

testing set.  The training set is preprocessed and then key features are detected and selected.  

Then a model can be built on the training data as it learns which features correspond to which 

labels.  When the model is created, it can be tested with the test data set.  The test data set is also 

preprocessed and the key features are extracted.  Based on the features and the model, the data 

are classified according to the desired data mining technique: anomaly detection, prediction, or 

diagnosis.  Once the classification occurs, the model can be checked by comparison to the labels 

associated with the original data.  Machine learning performance depends on decisions made at 

each step of the process: data acquisition, preprocessing, segmentation, feature extraction and 

selection, classification, and evaluation (Banos et al., 2014).   

 

Data acquisition.  During the data acquisition phase, the accelerometer signal is affected 

by the sampling rate.  According to the Nyquist sampling theorem, the sampling rate should be at 
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least twice the maximum frequency in the data.  For gait, 99% of the frequency of gait is below 

15 Hz, requiring a minimum sampling rate of 30 Hz, though a higher rate is necessary to 

improve beyond what would be a crude estimate at 30 Hz (Antonsson & Mann, 1985).  In a 

review of the literature on activity recognition, Bersch et al. (2014) found the highest sampling 

frequency to be 512 Hz.  Typically, the sampling rate is chosen based on the capacity of the 

accelerometer, and 50 Hz is common among off-the-shelf monitors (Bersch et al., 2014).  A 

higher sampling frequency improves classification accuracy up to 20 Hz, but improvements are 

not significant beyond 20 Hz (Maurer et al., 2006).  After data acquisition, preprocessing such as 

filtering may occur, however, if preprocessing can be avoided, it will prevent the removal of 

relevant information from the raw data (Banos et al., 2014). 

 

Segmentation.  Once the data has been collected, several methods can be used to segment 

the data into smaller, more manageable windows.  These methods fall into one of two categories: 

they can be used online (the data can be segmented before the entire data collection is complete) 

or they need to be used offline (after all of the data has been collected).  When designing a 

system to be used in real time, only online segmentation methods should be considered.  Some 

methods of segmenting data rely on accompanying knowledge of the beginning and end of an 

activity (e.g. rigorously shaking the accelerometer between bouts of walking, sitting, running, 

etc.) (Moncada-Torres et al., 2014), or specific events such as heel-strike and toe-off during gait 

(Banos et al., 2014).  A common online technique is to use a fixed-size sliding window, with 

either non-overlapping or overlapping data (Bersch et al., 2014).  Overlapping allows some, but 

not all, data that appeared in one window to be included again in the subsequent window.  The 

sliding window method of segmentation is beneficial for periodic activities such as gait, as long 

as each window captures a full period of the activity being captured (Banos et al., 2014).  
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Therefore, the size of the window needs to be considered.  A smaller window size typically leads 

to more frequent analysis of the data.  However, there may need to be a tradeoff between 

performance and speed.  With small windows, more windows need to be processed which affects 

the computational load, and less data is included in each winsow which may reduce performance 

(Banos et al., 2014).  A window size of 1 s appears to yield the best performance in classifying 

activities (walking vs. running vs. stairs etc.), with no significant benefits of using a larger 

window size, and a 30% increase in performance compared to a window size of 0.25 s, but the 

optimal window size is dependent on the activity being recognized (Banos et al., 2014).  

 

Feature extraction.  Rather than using the raw accelerometer signal, for each window of 

data, features are extracted to be used in the machine learning algorithms.  Typically, the features 

are based on the time domain or the frequency domain.  Time-domain features include statistics 

such as the mean and standard deviation of the signal, or the correlation between different axes 

of an accelerometer (Bao & Intille, 2004; Bersch et al., 2014).  Additionally, the accelerometer 

signal is sometimes separated into components that represent acceleration due to gravity and 

body acceleration (Karantonis et al., 2006).  To obtain frequency-domain features requires the 

use of a discrete Fourier transform, which has a high computation cost (Maurer et al., 2006).  

The use of a fast Fourier transform helps reduce the time required for the transform, but relies on 

a window size that is a power of 2.  From the fast Fourier transform, common features include 

spectral energy, entropy, principal frequency, and combinations of the fast Fourier transform 

coefficients (Bersch et al., 2014; Preece et al., 2009).   

 

Feature selection.  While a large range of features can be extracted, the complete feature 

space can be reduced to eliminate irrelevant or redundant features that do not contribute to the 
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classification accuracy.  The presence of irrelevant features causes machine learning algorithms 

to deteriorate.  This is even true for algorithms such as decision trees that theoretically only 

choose features that help the algorithm because in some situations, the unhelpful features may 

appear to be as good as a truly helpful feature, and will be included in the algorithm (Witten & 

Frank, 2005).  Several algorithms exist that will aid in feature selection.  A forward wrapper can 

be used in conjunction with a specific classification algorithm to select features that will aid the 

performance of that particular classification scheme (Caby et al., 2011).  A correlation-based 

feature selection algorithm is used independent of the classification algorithm to select features 

that are highly correlated with the classes to be detected, but are not correlated with other 

selected features (Maurer et al., 2006; Witten & Frank, 2005). 

 

Classification.  Many classification algorithms have been developed to perform machine 

learning, and most fall into groups including, among others, decision trees, classification rules, 

instance-based learning, numeric prediction, and Bayesian networks (Witten & Frank, 2005).  

Classifiers range from simple to complex, though an increase in complexity does not always 

equate to better performance.  Decision trees use a divide-and-conquer approach to sort the data 

based on the values of the features.  The simplest and most rudimentary application of a decision 

tree is 1R or 1-rule.  Each feature is branched according to the different values of the feature, and 

each branch is assigned to the class that occurs most often within that branch.  The error rate of 

this classification is calculated for all of the features, and the feature that has the least error is 

chosen as the 1R classifier (Witten & Frank, 2005).  More complex decision tree algorithms 

involve multiple features and branches.  One feature is selected as the first node, with branches 

for each value of that feature.  Each branch is then split further with additional features until all 

instances at a node have the same classification, which is known as a pure node.  Once a tree is 
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constructed, postpruning is often used to simplify the tree and prevent overfitting.  This practice 

always results in errors based on the training data, but might result in better performance when 

applied to a different testing data set (Witten & Frank, 2005).  Standard decision tree algorithms 

use a depth-first expansion, using a fixed order to expand nodes of the tree until a pure node is 

reached.  Postpruning is then applied to the full tree.  A common depth-first algorithm is called 

C4.5.  Decision trees can also be constructed using best-first expansion, where the order of 

expansion is dependent on the best available nodes for splitting with the goal of finding pure 

nodes as quickly as possible (Shi, 2007).  The full trees for both depth-first and best-first 

expansion are identical, however, both pre- and postpruning are used to construct a tree using 

best-first expansion, and so the pruned structure is different.  A Random Tree is constructed 

using a random number of features at each node with no pruning.  Regardless of the method used 

to construct a tree, it is likely that different training sets will yield different models, and the 

classification of the test data depends on which tree is used for the classification.  Bagging is a 

machine learning technique that involves each tree considering the same test instance and voting 

on the classification, then the class that receives the most votes is chosen.  The Random Forest 

decision tree algorithm uses bagging on ensembles of Random Trees (Witten & Frank, 2005), 

and has been successful in detecting falls (Gjoreski, Gams, & Lustrek, 2014). 

Other types of classifiers are based on rules or probabilities. A Decision Table is a simple 

rule-based classifier that uses a subset of features.  A table is constructed from the training data 

that contains all instances and their values for each feature in the subset, as well as their class.  

For each instance in the testing data set, the table is searched for an exact match of features.  If 

no exact match is found, the assigned class is the majority class.  Otherwise, the majority class of 

the matches from the table is assigned (Kohavi, 1995).  Naïve Bayes is another simple classifier, 
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but rather than using just one feature as in 1R, or a subset of features like a Decision Table, it 

uses all features with equal importance and independent of each other (Witten & Frank, 2005).  

The classification is made based on the probability of each class occurring with the given feature 

set.  The Naïve Bayes algorithm is based on the assumptions of conditional independence 

between features and normal distribution of feature values, and relies on large amounts of data to 

accurately model feature value distributions (Bao & Intille, 2004; Witten & Frank, 2005).  

However, this simple classifier often yields good performance in activity recognition in spite of 

these assumptions not being met (Caby et al., 2011). 

Another example of each feature having equal influence on the classification decision is 

nearest-neighbor instance-based learning (IB1) (Witten & Frank, 2005).  In this algorithm, the 

training data is stored, and the distance (typically Euclidean) between the features of each 

instance of the training data set and the features of a given test instance are calculated.  The 

classification for the test instance is identified as the class of the training instance that is the 

shortest distance away.  While IB1 is a simple and effective algorithm, a major problem with 

instance-based learning is that it is slow, with a time proportional to the number of training 

instances times the number of testing instances.  Speed is an issue particularly when there are a 

large (>10) number of features.  Additionally, noise within the training data can corrupt the 

classification.  A solution to this problem is to use a k-nearest-neighbor (kNN) approach, where a 

small value for k is chosen, and then the k nearest neighbors for each test instance vote to 

determine the test instance class. 

 

Numeric prediction.  Numeric prediction is a special case of machine learning that 

occurs when the outcome is numeric and all of the features are numeric.  During training, all of 
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the features are given weights so that when the weights are multiplied by the value of the feature 

and added together the result is the predicted value of the outcome class (Witten & Frank, 2005).  

In simple regression, only one feature is used in the prediction model, namely the feature that has 

the greatest influence on the outcome class.  Linear regression involves a linear combination of 

all of the features. 

 

Evaluation.  Testing classification algorithms involves building a model with training 

data and testing it on an independent data set.  Ideally, there would be separate training and 

testing data sets, both of which contain a large number of instances.  However, the amount of 

data this requires is often impractical.  A common solution for smaller data sets is to use 10-fold 

cross validation repeated for a pre-defined number of runs, typically 10 (Witten & Frank, 2005).  

With 10-fold cross validation, the entire data set is randomly split into 10 folds of approximately 

the same size.  Training is done using nine of the folds, and testing is done on the fold that was 

not involved in training.  For one run, the process is repeated so each fold serves as the test data 

set exactly once.  In subsequent runs, the data set is divided into 10 different folds, with training 

and testing done according to the same procedure.  In total, a 10-fold cross validation with 10 

runs yields 100 model building and testing events. 

Each time a model is tested, there are a number of ways to evaluate model performance.  

For linear regression, performance can be evaluated using absolute or relative measures of error, 

as well as the correlation between the predicted and actual values of the test data (Witten & 

Frank, 2005).  Absolute measures of error (e.g. mean absolute error, root mean squared error) 

quantify the error in prediction using units of the predicted value.  Low values for absolute 

measures of error indicate good model performance.  Mean absolute error is the average 

magnitude of the difference between actual and predicted values.  Root mean squared error is the 
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square root of the average squared difference between actual and predicted values.  Relative 

measures of error (e.g. relative-absolute error, root relative squared error) compute the prediction 

error of the regression model as a percentage of the prediction error of a simple model.  The 

simple model is usually the mean of the actual values.  It is hoped that the model produced by 

linear regression performs better than simply predicting all values to be the mean, and so relative 

measures of error compare the size of the error from the regression model to the size of the error 

if the mean was predicted in each case.  Low values for relative measures of error indicate good 

model performance.  Relative-absolute error is the total absolute error in the regression model 

divided by the total absolute error when using the mean as the predictor, multiplied by 100.  Root 

relative squared error is the square root of the total squared error in the regression model divided 

by the total squared error when using the mean as the predictor, multiplied by 100.  Rather than 

quantifying an error value, the correlation coefficient is the correlation between the actual values 

and the predicted values.  A high correlation coefficient indicates good model performance.  

There are differences in how each of these measures evaluate performance.  The root squared 

errors (both absolute and relative) have a greater weight for large differences due to the squared 

error term.  Additionally, the relative error measures depend on the variability in the actual data, 

which makes it difficult to compare performance across different data sets. 

Binary classification – assigning data to one of two classes – has a different set of metrics 

used to evaluate model performance that depend on whether the correct classification was made 

(Witten & Frank, 2005).  A common way to depict model performance is through a confusion 

matrix (Figure 18), where the columns represent the predicted class (negative or positive) and the 

rows represent the actual class (negative or positive).  The cells of the confusion matrix contain 

the number of instances that correspond to true negatives (actual negative, predicted negative), 
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false positives (actual negative, predicted positive), false negative (actual positive, predicted 

negative), and true positive (actual positive, predicted positive) (Chawla, 2010).  Since reporting 

a set of four values to evaluate a model can be cumbersome, additional measures have been 

developed to provide a comprehensive picture of the model performance.  Classification 

accuracy (Table 29) is a simple and common way to evaluate performance as it reports the 

percent of correct classifications (Bersch et al., 2014).  A limitation to using the classification 

accuracy exists for imbalanced data sets, which are situations when the classification categories 

are not equally represented in the data.  This is illustrated in an example where the majority class 

occurs close to 100% of the time.  A classification model that simply chooses the majority class 

would therefore be correct close to 100% of the time without considering any of the features 

within the data (Bersch et al., 2014; Chawla, 2010).  Imbalanced data sets are common among 

real world machine learning problems (Chawla, 2010), so alternatives to classification accuracy, 

such as recall, precision and F-measure (Table 29), are necessary for evaluating classification 

performance.  Recall is a measure of the percent of positive cases identified, while precision 

measures the percent of correct positive predictions.  F-measure combines the tradeoff between 

precision and recall and presents an overall measure of performance for imbalance data sets 

(Chawla, 2010).  Overall, the goal is to improve recall without hurting precision.  However, the 

measure of performance chosen should depend on the impact of the problem.  For example, a 

good recall score occurs when the number of false negatives is small, while a good recall score 

occurs when the number of false positives is small.  When detecting the risk of tripping, it could 

be argued that it is better to avoid false negatives (predicting no risk of tripping when the risk 

exists) than to avoid false positives (predicting a risk of tripping when there is no risk).  In that 

case, recall is a more important measure of classification performance. 
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  Predicted Negative Predicted Positive 

Actual Negative True Negative False Positive 

Actual Positive False Negative True Positive 

Figure 18. Confusion matrix (adapted from Chawla (2010)). 

 

Table 29 

Measures of Binary Classification Performance in Machine Learning and Clinical Terms 

   

  Measure Formula 

Machine 

Learning 

Classification Accuracy (TP+TN)/(TP+FP+TN+FN) * 100 

Recall (TP)/(TP+FN) 

Precision (TP)/(TP+FP) 

F-measure (2*TP)/(2*TP+FP+FN)   

Clinical 

Sensitivity (TP)/(TP+FN) 

Specificity (TN)/(TN+FP) 

PPV 
(sensitivity*prevalence)/         

(sensitivity*prevalence+(1-specificity)*(1-prevalence))   

Note. TP = true positive; TN = true negative; FP = false positive; FN = false negative; PPV = 

positive predictive value. 

   

 

 Clinically, diagnostic tests are evaluated in a similar way to the binary classification 

results from machine learning, albeit with a different vocabulary.  Sensitivity is the same as 
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recall, or the percent of positive cases identified.  A common complement to sensitivity is 

specificity, or the percent of negative cases identified.  In clinical terms, precision is represented 

as the positive predictive value, or the probability that a positive result is actually true.  The 

positive predictive value is the ratio of true positives to the total number of positive test results.  

Generalization of the positive predictive value beyond the sample population depends on the 

prevalence of classification being identified within the target population (Table 29).  The 

prevalence can be included in the equation for positive predictive value if the prevalence within 

the sample is not the same as the target population (Altman et al., 2000). 

Another measure of performance for a classification algorithm is its computational load.  

Computational load is based on the time for processing the algorithms.  The time can be 

considered in two stages: the time required for the data preprocessing – including segmentation 

and windowing – and feature extraction, and the time required for classification (Bersch et al., 

2014).  A greater time means a greater computational load.  This can be an important factor 

when considering a machine learning algorithm, particularly one that is to be used in real time. 

 While measures of performance are useful for evaluating a particular machine learning 

algorithm, it is often necessary to compare performance across multiple algorithms.  However, 

problems arise when attempting to use traditional statistical tests for this task (Demšar, 2006).  

The results of a machine learning algorithm typically include many (100 for a 10-fold cross 

validation run 10 times) iterations of training and testing a model.  Since the same data is used 

multiple times in this type of analysis, estimations of variance may be biased.  Therefore, only 

the performance score and not the variance of the performance score can be used from the results 

of repetitive testing on a single data set.  Variance can only be considered for differences in 
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performance across independent data sets, and so the number of data sets in a comparison is 

considered the sample size.   

In spite of this limitation, several non-parametric tests can be used to compare 

performance across multiple machine learning algorithms.  The sign test is a way of comparing 

performance for pairs of classification algorithms (Demšar, 2006).  For each data set, the 

classifier that had the best performance is recorded.  The null hypothesis for equal performance 

is that both algorithms would “win” on an equal number of data sets.  An algorithm is considered 

significantly better with p < 0.05 if the number of wins is greater than 𝑁 2⁄ + 1.96√𝑁/2, where 

𝑁 is the total number of data sets.  According to this formula, significance at p < 0.05 can be 

determined with a minimum of five data sets.  Another method of comparing performance for 

pairs of classification algorithms is the Wilcoxon signed ranks test, which is a non-parametric 

alternative to the paired t-test (Demšar, 2006).  The absolute value of the difference in 

performance between the two algorithms (|algorithm 1 – algorithm 2|) is ranked, and the ranks 

are then summed separately for the positive (algorithm 1 > algorithm 2) and negative (algorithm 

2 > algorithm 1) and differences.  The smaller of the two sums is then used to compute a z-

statistic based on the number of data sets.  The Friedman test is an omnibus test for multiple 

comparisons, and is considered a non-parametric analog to repeated-measures ANOVA (Demšar, 

2006).  The Friedman test is also based on ranking the performance of the algorithms on each 

data set. The average ranking is included in the test statistic.  Follow up tests for a significant 

Friedman test are all pairwise comparisons using the Nemenyi test, where a pair of classifiers is 

significantly different if the difference in their average ranks is greater than a critical difference 

(Demšar, 2006). 
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Movement Applications.  There are several ways this data mining framework has been applied 

to human gait classification.  Data from a motion capture system that tracked a series of markers 

representing key anatomical landmarks during walking was classified into one of five conditions: 

normal, hemiplegia, Parkinson’s disease, back pain or leg pain.  Several machine learning 

algorithms were used, including support vector machines, decision tree, k-nearest neighbors, 

random forest, naïve Bayes, neural network, and majority class.  All but the majority class, 

which was the baseline algorithm, had above 90% accuracy when classifying types of patients 

(Pogorelc, Bosnic, & Gams, 2012).  Examples of this technique on classifying data from 

wearable devices include: correctly identifying walking, running and ascending or descending 

stairs from an insole device (Zhang et al., 2005), detecting walking events and walking speed 

from triaxial accelerometers place on both shanks (Dobkin et al., 2011), distinguishing idiopathic 

toe walking from normal gait by analyzing accelerometer data at the heel (Pendharkar et al., 

2012), and classifying the MFC of young and older adults (Begg, Palaniswami, & Owen, 2005).  

Several pattern recognition algorithms applied to accelerometer data have been used to classify 

older adults at risk for falling, however, the risk of falling again was not determined by actual 

prospective falls, and the accelerometer system contained 10 sensors distributed over the body 

(Caby et al., 2011).  A novel application of this technology suggests data mining algorithms 

applied to a single accelerometer signal may be used to accurately predict joint kinematics for 

stroke patients with gait deficits.  Successful classification of joint kinematics could then be used 

to identify adaptations that should be made (e.g. greater knee flexion during swing), to reduce the 

likelihood of falling. 
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Appendix B: Protocol Summary 

 

Instructions: Each Section must be completed unless directed otherwise. Incomplete forms will 

delay the IRB review process and may be returned to you. Enter your information in the colored 

boxes or place an “X” in front of the appropriate response(s). If the question does not apply, 

write “N/A.” 

SECTION A: Title 

 

A1. Full Study 

Title: 

 

 

 

SECTION B: Study Duration 

 

B1. What is the expected start date? Data collection, screening, recruitment, enrollment, or 

consenting activities may not begin until IRB approval has been granted. Format: 07/05/2011 

12/1/2015 

 

B2. What is the expected end date? Expected end date should take into account data analysis, 

queries, and paper write-up. Format: 07/05/2014 

12/1/2016 

 

SECTION C: Summary 

 

C1. Write a brief descriptive summary of this study in Layman Terms (non-technical 

language): 

Gait deficits are a common and costly problem among stroke patients, and they increase 

a person’s risk for falling.  In this study, the gait of stroke patients, older adults with and 

without a history of falls, and younger adults will be analyzed with 3D motion capture 

equipment and using portable, wearable inertial sensors.  The goals of this project are to 

identify gait patterns that are associated with an increased risk of falling, and to detect 

poor gait patterns in stroke patients using signals from the accelerometer sensors.  If the 

goals of the proposed project are met, it may be possible to determine when a stroke 

patient is at an increased risk of falling, thus improving their quality of life and 

longevity.   

 

 

C2. Describe the purpose/objective and the significance of the research: 

Purpose 

The purpose of the proposed studies is to understand the gait characteristics that 

influence foot clearance and the ability to avoid obstacles that could present a tripping 

hazard.  The final goal is to use data mining techniques to detect these falls-related gait 
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abnormalities among stroke patients using a portable inertial sensor.  This will be 
achieved through the following specific aims: 

 

Aim 1: To identify the relationship between joint coordination patterns and minimal foot 

clearance during walking for chronic stroke patients and healthy controls. 

This objective will be accomplished by using vector coding to quantify the 

coordination between the sagittal plane joint motions of the lower extremity, as well as 

determining the minimal foot clearance during normal walking for stroke patients and 

healthy controls.  It is expected that abnormal coordination patterns and those with high 

variability will be associated with lower and more variable foot clearance.    

 

Aim 2: To determine characteristics of gait that enable stroke patients and healthy 

controls to successfully avoid an unexpected object that could present a tripping hazard. 

This objective will be accomplished by recording kinematics during walking trials 

where participants will have to react to an object that unexpectedly impedes the normal 

trajectory of the foot.  Joint coordination patterns, joint angles, minimal foot clearance 

and functional balance and gait scores will be compared for those who are successful 

and unsuccessful at avoiding an unexpected object.  It is hypothesized that participants 

who do not avoid the object will have more variable joint coordination, reduced sagittal 

plane joint angles, lower and more variable foot clearance, and poor functional gait and 

balance scores. 

 

Aim 3: To detect gait abnormalities and the risk of tripping for stroke patients and 

healthy controls using patterns in accelerometer signals. 

This objective will be accomplished by simultaneously recording joint kinematics 

and lower extremity accelerations during the typical gait of stroke patients and healthy 

controls.  Pattern recognition algorithms will be used to create a model that classifies a 

training subset of the accelerometer signals according to the gait patterns observed in a 

kinematic analysis (e.g.  reduced knee flexion, out-of-phase knee and hip coordination).  

This model will be tested on a different subset of the accelerometer signals, and a 

comparison between the pattern-recognized gait profile and the actual joint kinematics 

will be made.  It is expected that stroke patients’ lower extremity accelerations, as 

recorded by a portable accelerometer, have distinct and predictable patterns based on 

specific deviations from normal gait. 

 

Significance  

Falls remain a significant problem for stroke patients, and each patient’s risk of 

falling may be based on unique gait deficits.  Identifying the characteristics of gait that 

control foot clearance and those that are associated with the ability to avoid obstacles 
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while walking can inform rehabilitation techniques and interventions designed to reduce 
the risk of falls.  Developing a convenient way to monitor an individual’s gait with 

wearable sensors and data mining techniques could eventually be used to predict falls 

risk in real-time, and allow for the patient to make corrections to prevent falling. 

 

 

 

 

 

C3. Cite the most relevant literature pertaining to the proposed research: 

Falls are a major problem for recovering stroke patients, with higher incidences of 

falls for stroke patients than the general elderly population (Batchelor et al., 2012).  

However, interventions have been unsuccessful in preventing falls for stroke patients 

(Batchelor et al., 2010; Batchelor et al., 2012; Batchelor et al., 2012; Dean et al., 2012; 

Verheyden et al., 2013).  Due to a variety of sensorimotor impairments, patients 

recovering from a stroke typically experience gait deviations that may present a risk for 

falling, such as spatiotemporal asymmetries and abnormal joint kinematics that could 

limit foot clearance (Balaban & Tok, 2014; Kim & Eng, 2003; Olney & Richards, 1996; 

Woolley, 2001). 

Insufficient clearance between the foot and the walking surface or an obstacle may 

result in a trip, one of the greatest causes of falls (W. P. Berg et al., 1997; Blake et al., 

1988; Overstall et al., 1977; Robinovitch et al., 2013; Tuunainen et al., 2014).  As such, 

the magnitude of minimum foot clearance (MFC) is often studied.  Low MFC and high 

MFC variability is suspected to increase risk of falling (Begg et al., 2007).  A low MFC 

value indicates that the foot passes close to the walking surface during swing phase, and 

high variability in MFC height suggests an increased probability that the foot will come 

in contact with the walking surface.  MFC is dependent on the extent to which the swing 

leg shortens during gait.  Gait adaptations to accommodate varying walking surfaces 

(Gates et al., 2012) and perform everyday tasks while walking (Schulz et al., 2010) 

include concurrent changes in joint kinematics and MFC height.  Similarly, MFC 

variability is correlated with joint angle variability (Mills et al., 2008).  Therefore, an 

understanding of how the joints of the lower extremity are controlled during walking 

will provide insight about how MFC is achieved.   

Joint coordination can allow the same goal, such as foot clearance, to be reached 

with each stride cycle, even if the strategy for achieving adequate MFC is different.  For 

example, patients with knee osteoarthritis exhibit similar MFC height as a control group, 

but the knee flexion, hip abduction and ankle adduction angles were different between 

the groups (Levinger et al., 2012).  This evidence supports the theory that the lower 

extremity joints are coordinated to achieve the planned distal endpoint trajectory of the 

limb (Karst et al., 1999).  In healthy gait, coordination between the joints of the lower 

extremity enables foot clearance while the leg advances during swing (Moosabhoy & 

Gard, 2006).  Since lack of coordination in the lower extremity has been observed in 

stroke patients (Barela et al., 2000; Little et al., 2014; Moosabhoy & Gard, 2006; Rinaldi 

& Monaco, 2013), investigation of the coupling of joint segments in stroke patients may 

yield information regarding the kinematic strategies required to achieve adequate MFC 

during walking. 
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Despite the obvious consequences of inadequate foot clearance and the incidence of 
falls, it is unclear how joint kinematics, coordination and MFC relate to the ability to 

avoid unexpected obstacles that could present a tripping hazard.  There is a push to 

investigate task-specific falls risk perturbations in an effort to further understand the 

mechanisms of falls and identify potential interventions that could reduce the incidence 

of falls (Grabiner et al., 2014).  Experiments that challenge the ability to avoid an 

obstacle will help identify which kinematic and coordination patterns are relevant to the 

risk of tripping. 

While abnormal joint kinematics and intralimb joint coordination patterns are 

common among stroke patients, the effect of hemiparesis caused by the stroke is 

different for each patient (Jonsdottir et al., 2009).  This underscores the conclusion 

reached by Begg et al. (2007) that an individual-based approach to evaluate a patient’s 

risk of tripping is better than a group-based approach.  The gold standard for detecting 

individual components of a gait disorder requires the use of motion capture technology, 

typically found in research labs.  More commonly, a stroke patient will receive a gait 

analysis in a clinical setting under trained supervision.  However, the frequency of falls 

for stroke patients within the first six months following discharge from rehabilitation 

highlights the need for gait supervision when patients are ambulating on their own 

(Forster & Young, 1995; Mackintosh et al., 2005; Wagner et al., 2009).  The ability to 

identify in real-time when a stroke patient may be at risk for a fall may reduce the 

number of falls in this population.   

Wearable sensors are becoming a common way to reliably monitor and evaluate 

health-related indices (Appelboom et al., 2014; Bassett, 2012; Dobkin, 2013).  Although 

there have been several efforts to quantify joint kinematics outside of a research or 

clinical setting using wearable inertial sensors, most current methods only identify foot 

clearance, not the lower extremity kinematics or coordination patterns that may 

contribute to changes in foot clearance (Hamacher et al., 2014; Mariani et al., 2012; 

McGrath et al., 2011).  Other methods designed to provide accurate information about 

joint kinematics require the placement of several sensors on multiple body segments 

(Seel et al., 2014; Slajpah et al., 2014), which may be difficult for the general population 

to effectively adopt.   

Data mining techniques contain the tools to identify patterns and associations in 

various types of health-related data (Chawla & Davis, 2013).  For quantifying 

movement, pattern recognition algorithms are applied to the accelerometer signals from 

wearable devices to classify different activities, such as walking, running, climbing stairs 

and sitting (Moncada-Torres et al., 2014).  The ability to use similar data mining 

techniques to classify different walking patterns based on accelerometer signals could 

eliminate the need to directly measure joint kinematics for people with gait deficits.  It 

would be beneficial if a single wearable inertial sensor could be used to detect specific 

abnormalities in lower extremity joint kinematics and coordination patterns that 

influence MFC, particularly for clinical populations such as stroke patients. 
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SECTION D: Subject Population 

Section Notes… 

 D1. If this study involves analysis of de-identified data only (i.e., no human subject 
interaction), IRB submission/review may not be necessary. Please review the UWM 

IRB Determination Form for more details. 

 

D1. Identify any population(s) that you will be specifically targeting for the study. 

Check all that apply: (Place an “X” in the column next to the name of the special 

population.) 

 Existing Dataset(s) X 
Institutionalized/ Nursing home 

residents recruited in the nursing home 

X UWM Students of PI or study staff  
Diagnosable Psychological 

Disorder/Psychiatrically impaired 

X 
UWM Students (but not of PI or study 

staff) 
 Decisionally/Cognitively Impaired 

http://dx.doi.org/10.1310/JB16-V04F-JAL5-H1UV
https://pantherfile.uwm.edu/groups/sa/usa/irb/Website/Forms%20and%20Templates/Determination%20of%20UWM%20IRB%20Submission.doc
https://pantherfile.uwm.edu/groups/sa/usa/irb/Website/Forms%20and%20Templates/Determination%20of%20UWM%20IRB%20Submission.doc
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Non-UWM students to be recruited in 
their educational setting, i.e. in class 

or at school 
 

Economically/Educationally 

Disadvantaged  

X UWM Staff or Faculty  Prisoners  

 Pregnant Women/Neonates  
International Subjects (residing 

outside of the US)  

 
Minors under 18 and ARE NOT wards 

of the State 
 Non-English Speaking 

 
Minors under 18 and ARE wards of 

the State 
 Terminally ill 

X 
Other (Please identify): People with 

chronic stroke 

 

D2. Describe the subject group and enter the total number to be enrolled for each 

group. For example: teachers-50, students-200, parents-25, student control-30, student 

experimental-30, medical charts-500, dataset of 1500, etc.  Then enter the total number 

of subjects below.  Be sure to account for expected drop outs.  For example, if you need 

100 subjects to complete the entire study, but you expect 5 people will enroll but “drop 

out” of the study, please enter 105 (not 100).  

Describe subject group: Number: 

People with chronic stroke 10 

Older adults with a history of falls 12 

Older adults with no history of falls 12 

Young adults 12 

  

  

TOTAL # OF SUBJECTS: 46 

TOTAL # OF SUBJECTS  

(If UWM is a collaborating site for a multi institutional project): 
 

 

D3. For each subject group, list any major inclusion and exclusion criteria (e.g., age, 

gender, health status/condition, ethnicity, location, English speaking, etc.) and state the 

justification for the inclusion and exclusion criteria: 

Chronic stroke 

 Inclusion: experienced a stroke more than 6 months earlier; able to walk without 
an assistive device for 5 minutes at a time 

 Exclusion: cognitively impaired and unable to follow a three-step command 
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 Justification: People with chronic stroke are at risk of falling, so investigating 
gait deficits within this population may be key to reducing the risk of falls.  To 

participate in the tasks involved in this study, all participants must be able to 

walk without an assistive device for 5 minutes at a time, and must not be 

cognitively impaired so they can successfully follow all of the directions for 

completing the study. 

Older adults with a history of falls 

 Inclusion: age 65 and older; able to walk without an assistive device for 5 
minutes at a time; have fallen in the last six months, with a fall being defined as 

unintentionally coming to rest on the ground [1] 

 Exclusion: cognitively impaired and unable to follow a three-step command 

 Justification: Older adults with a history of falls are likely to fall again, so 

investigating gait deficits within this population may be key to reducing the risk 

of recurring falls.  To participate in the tasks involved in this study, all 

participants must be able to walk without an assistive device for 5 minutes at a 

time, and must not be cognitively impaired so they can successfully follow all of 

the directions for completing the study. 

Older adults with no history of falls 

 Inclusion: age 65 and older; able to walk without an assistive device for 5 
minutes at a time; have not fallen in the last six months, with a fall being defined 

as unintentionally coming to rest on the ground [1] 

 Exclusion: cognitively impaired and unable to follow a three-step command 

 Justification: To identify gait deficits associated with older adults who have 

fallen, it is important to make comparisons to the gait patterns of older adults 

who have not fallen. To participate in the tasks involved in this study, all 

participants must be able to walk without an assistive device for 5 minutes at a 
time, and must not be cognitively impaired so they can successfully follow all of 

the directions for completing the study. 

Young adults 

 Inclusion: age 18-45 

 Exclusion: cognitively impaired and unable to follow a three-step command  

 Justification: To identify gait deficits associated with older adults and those who 
have fallen, it is important to make comparisons to the gait patterns of younger 

adults who have a lower risk of falling.  To participate in the tasks involved in 

this study, all participants must be able to walk without an assistive device for 5 

minutes at a time, and must not be cognitively impaired so they can successfully 

follow all of the directions for completing the study. 

 

Reference for Inclusion Criteria 

[1] Senden R, Savelberg HHCM, Grimm B, Heyligers IC, Meijer K. Accelerometry-

based gait analysis, an additional objective approach to screen subjects at risk for falling. 

Gait Posture 2012;362:296-300. 

 

SECTION E: Study Activities: Recruitment, Informed Consent, and Data Collection 

Section Notes… 
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 Reminder, all recruitment materials, consent forms, data collection instruments, etc. 
should be attached for IRB review. 

 The IRB welcomes the use of flowcharts and tables in the consent form for complex/ 
multiple study activities. 

 

In the table below, chronologically describe all study activities where human subjects 

are involved. 

 In column A, give the activity a short name. Please note that Recruitment, Screening, 

and consenting will be activities for almost all studies. Other activities may include: 

Obtaining Dataset, Records Review, Interview, Online Survey, Lab Visit 1, 4 Week 

Follow-Up, Debriefing, etc. 

 In column B, describe who will be conducting the study activity and his/her training 

and/or qualifications to complete the activity.  You may use a title (i.e. Research 

Assistant) rather than a specific name, but training/qualifications must still be 

described. 

 In column C, describe in greater detail the activities (recruitment, screening, consent, 

surveys, audiotaped interviews, tasks, etc.) research participants will be engaged in. 

Address where, how long, and when each activity takes place. 

 In column D, describe any possible risks (e.g., physical, psychological, social, 

economic, legal, etc.) the subject may reasonably encounter. Describe the safeguards 

that will be put into place to minimize possible risks (e.g., interviews are in a private 

location, data is anonymous, assigning pseudonyms, where data is stored, coded data, 

etc.) and what happens if the participant gets hurt or upset (e.g., referred to Norris 

Health Center, PI will stop the interview and assess, given referral, etc.). 

A. Activity 

Name: 

B. Person(s) 

Conducting 

Activity 

C. Activity Description 

(Please describe any forms 

used): 

D. Activity Risks and 

Safeguards: 

Recruitment 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

A Recruitment Flyer will be 

posted around the UWM 

campus, in public locations, 

and at local nursing homes to 

encourage potential 

participants to contact the 

investigators about 

participation. 

N/A 
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Sharon Feldmann 

- Manager, 

SCIC/Neuro 

Rehab at Froedert 

Hospital, licensed 

Physical 

Therapist, 

trained in IRB 

practices at 

Froedert 

Hospital 

Additionally, flyers will be 

distributed to patients at 

Froedert Hospital who are 

eligible to participate.  

Protected Health 

Information (history of 

stroke, ability to walk for 5 

minutes at a time without an 

assistive device, and no 

cognitive impairment) will 

be obtained by therapist 

with access to a patient’s 

medical history.  That 

patient will then be given 

information about the study, 

and can choose to contact 

the investigators at UWM 

about participation in the 

study. 

Screening 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

Participants will be given the 

Screening Questionnaire to 

determine if they are eligible 

for the study, and their 

eligible group. 
N/A 

Obtaining 

Consent 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

Participants will be informed 

about the study and asked for 

consent to participate via the 

Consent Form. 
N/A 

Demographic 

and Fear of 

Falling 

Questionnaire 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

Participants will be given a 

Questionnaire to gather 

demographic information 

(height, weight, age, sex, 

dominant side), as well as 

information about their 

walking ability, falls history.  

Fear of falling will be 

assessed using the Frenchay 

Activities Index (Schepers et 

al., 2006), Swedish 

Since private 

information will be 

collected, there is a risk 

of breach of 

confidentiality. (Very 

unlikely) 

 

All data will be stored 

in a locked filing 

cabinet in a locked 

room.  All data will be 
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modification of the Falls 

Efficacy Scale (Hellstrom & 

Lindmark, 1999), and the 

Activities-specific Balance 

Confidence scale (Powell & 

Myers, 1995).  Additionally, 

stroke patients will be asked 

about the nature of their 

stroke.  If needed, help will be 

provided for completing the 

surveys. 

given a letter and 

number that is uniquely 

associated with each 

participant.  This code 

will not contain any 

partial identifiers (i.e. 

last four digits of SSN) 

and will be stored in a 

separate locked office 

in a locked filing 

cabinet.  No identifiers 

will be stored with the 

research data. Only 

those individuals with 

an active role in this 

study will have access 

to the research data and 

identifying 

information. When all 

participants have 

completed active 

participation in the 

study and data 

collection is completed, 

the code will be 

destroyed.  All 

appropriate measures to 

protect private 

information will be 

taken. 

Mini-Mental 

State 

Examination 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

Participants will be given the 

Mini-Mental State 

Examination (Savin et al., 

2014) to assess their ability to 

understand and perform the 

tasks required to complete the 

study 

N/A 

Fugl-Meyer 

Lower 

Extremity 

Motor 

Evaluation 

Thomas 

Almonroeder – 

Completed IRB 

training, Doctor 

of Physical 
Therapy, 

Research 

Assistant in 

The motor function of the 

participants’ lower extremity 

will be assessed by a licensed 

physical therapist using the 

Fugl-Meyer scale (Sanford et 
al., 1993). 

There is a risk of 

muscle soreness or 

injury such as muscle 

strain or muscle 

tightness as a result of 

the testing. (Unlikely) 
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Neuromechanics 

Lab 

To reduce the above 

risks, practice trials 

will be performed prior 

to data collection to 

allow participants to 

become familiar with 

each procedure prior to 

performing a maximal 

effort trial. Participants 

will be allowed to stop 

at any point if they feel 

uncomfortable.  If 

participants are injured 

while participating in 

this research study, 

they will initially be 

provided care by the 

investigator(s), who are 

all trained in first aid 

and CPR. Students will 

then be referred to the 

Norris Health Center 

for follow-up care. 

Non-students will be 

referred to their 

primary care physician 

and will be responsible 

for all expenses 

incurred.  In the case of 

an emergency, 911 will 

be called. 

Functional 

Gait and 

Balance 

Evaluation 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

Each participant’s functional 

gait and balance ability will 

be evaluated with the 

activities in the Functional 

Evaluation, consisting of the 

Mini-BESTest (Franchignoni 

et al., 2010), Functional Gait 

Analysis (Wrisley et al., 

2004), Performance-Oriented 

Assessment of Mobility 

(Tinetti, 1986), and fast 

walking speed (Oken et al., 

2008; Richards & Olney, 

1996) scales.  Participants 

will wear a gait belt, and the 

There is a risk of 

muscle soreness or 

injury such as muscle 

strain or muscle 

tightness as a result of 

the testing. (Unlikely) 

There is a risk of 

falling during tasks that 

challenge gait and 

balance ability. 

(Unlikely) 

 

To reduce the above 

risks, practice trials 

will be performed prior 
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evaluator will provide contact 

guard assistance, holding onto 

the belt in case the participant 

loses their balance during the 

tasks. 

to data collection to 

allow participants to 

become familiar with 

each procedure prior to 

performing a maximal 

effort trial. Participants 

will be allowed to stop 

at any point if they feel 

uncomfortable.  

Participants will wear a 

gait belt, and the 

evaluator will provide 

contact guard 

assistance, holding onto 

the belt in case 

participants lose their 

balance during the 

tasks that challenge gait 

and balance ability.  If 

participants are injured 

while participating in 

this research study, 

they will initially be 

provided care by the 

investigator(s), who are 

all trained in first aid 

and CPR. Students will 

then be referred to the 

Norris Health Center 

for follow-up care. 

Non-students will be 

referred to their 

primary care physician 

and will be responsible 

for all expenses 

incurred.  In the case of 

an emergency, 911 will 

be called. 

Strength 

Assessment 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

A pair of electrodes (Vermed, 

NeuroPlus, Bellows Falls, 

VT, USA) will be applied to 

the skin over each of three 

muscles (rectus femoris, 

tibialis anterior, and medial 

gastrocnemius) of each leg.  

Prior to electrode placement, 

There is a risk of 

muscle soreness or 

injury such as muscle 

strain or muscle 

tightness as a result of 

the testing. (Unlikely) 

There is also a risk of 

minor skin irritation 
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the skin will be shaved (if 

necessary) and rubbed with 

alcohol.  Muscle activity will 

be wirelessly recorded 

(Noraxon, DTS EMG, 

Scottsdale, AZ, USA) from 

each pair of electrodes.  To 

quantify the maximum 

amount of muscle activation 

and isometric force that can 

be produced by each muscle, 

a series of maximal 

contraction exercises will be 

performed.  Participants will 

be seated and will try to 

extend their knee, and plantar 

flex and dorsiflex their ankle 

while being met with 

resistance from a 

dynamometer (BTE 

Technologies, Inc., PrimusRS, 

Hanover, MD, USA).  This 

series of exercises will be 

performed three times for 

each muscle. 

due to the spray tape 

adhesive or tape. 

(Unlikely) 

 

To reduce the above 

risks, practice trials 

will be performed prior 

to data collection to 

allow participants to 

become familiar with 

each procedure prior to 

performing a maximal 

effort trial. Participants 

will be allowed to stop 

at any point if they feel 

uncomfortable.  If 

participants are injured 

while participating in 

this research study, 

they will initially be 

provided care by the 

investigator(s), who are 

all trained in first aid 

and CPR. Students will 

then be referred to the 

Norris Health Center 

for follow-up care. 

Non-students will be 

referred to their 

primary care physician 

and will be responsible 

for all expenses 

incurred.  In the case of 

an emergency, 911 will 

be called. 

Overground 

Walking 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

Retroreflective markers will 

be applied over the skin to the 

trunk, pelvis and both legs at 

biological landmarks.  A force 

plate (Bertec Corp., 

Columbus, OH, USA) will 

record force data while the 

electrodes on the skin record 

muscle activity and a 10-

camera motion analysis 

system (Motion Analysis, 

There is a risk of 

muscle soreness or 

injury such as muscle 

strain or muscle 

tightness as a result of 

the testing. (Unlikely) 

There is also a risk of 

minor skin irritation 

due to the spray tape 

adhesive or tape. 

(Unlikely) 
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Inc., EVART 4.6, Santa Rosa, 

CA, USA) will track three-

dimensional position data of 

the retroreflective markers 

throughout the trial.  

Additionally, inertial sensors 

containing a tri-axial 

accelerometer (GT3X; 

ActiGraph Corp., Pensacola, 

FL) will be worn on both 

wrists, thighs just above the 

knee, and legs just above the 

lateral ankle, and the right, 

center and left pelvis to record 

accelerations at 100 Hz. Data 

will be collected as each 

participant walks at their 

normal walking pace for 

about 10 meters, with one foot 

landing completely inside the 

force plate.  This will be 

repeated for 10 trials on each 

leg.  

 

To reduce the above 

risks, practice trials 

will be performed prior 

to data collection to 

allow participants to 

become familiar with 

each procedure prior to 

performing a maximal 

effort trial. Participants 

will be allowed to stop 

at any point if they feel 

uncomfortable.  If 

participants are injured 

while participating in 

this research study, 

they will initially be 

provided care by the 

investigator(s), who are 

all trained in first aid 

and CPR. Students will 

then be referred to the 

Norris Health Center 

for follow-up care. 

Non-students will be 

referred to their 

primary care physician 

and will be responsible 

for all expenses 

incurred.  In the case of 

an emergency, 911 will 

be called. 

Treadmill 

walking 

Lauren Benson – 

Completed IRB 

training, 

Constructed study 

design, Research 

Assistant in 

Neuromechanics 

Lab 

The same data that is 

collected during the 

overground trials will also be 

recorded as the participant 

walks at their normal walking 

pace on a treadmill (C964i; 

Precor, Woodinville, WA, 

USA) while attached through 

a harness to a fall-arrest 

system.  Two conditions will 

be tested: Normal walking, 

and avoiding an unexpected 

obstacle.  To ensure 

participants are looking 

There is a risk of 

muscle soreness or 

injury such as muscle 

strain or muscle 

tightness as a result of 

the testing. (Unlikely) 

There is also a risk of 

minor skin irritation 

due to the spray tape 

adhesive or tape. 

(Unlikely) 

There is a risk of 

falling during the 

treadmill conditions. 
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straight ahead, participants 

will be required to complete a 

concurrent visual task.  An 

arrow will appear on a screen 

positioned at eye level 1 m 

from the treadmill.  The 

participants will be asked to 

report the direction the arrow 

is pointing.  The verbal 

response and the time to 

produce a response will be 

recorded using custom 

software (Matlab v8.0.0.783, 

Mathworks, Inc., Natick, MA, 

USA), and a new arrow will 

appear one second after their 

response.  To control for the 

effects of doing this dual 

motor and visual task, 

participants will also 

complete the visual task for 

one minute while sitting, and 

will walk without performing 

the visual task for one minute 

while all biomechanical data 

are recorded. For normal 

walking with the visual task, 

kinematic, EMG and 

accelerometer data will be 

recorded continuously for one 

minute.  For the obstacle 

avoidance conditions, 

participants will be instructed 

to avoid the obstacle as well 

as they can.  The obstacle will 

be a lightweight piece of foam 

cut to length, width and height 

dimensions of 20 x 16 x 6 cm 

(Airex AG, Balance-pad, CH-

5643 Sins, Switzerland).  

Similar to the process outlined 

by Weerdesteyn, et al. (2003), 

at random toe-off events, the 

foam will be placed on the 

belt of the treadmill so that 

the obstacle will appear in 

 

To reduce the above 

risks, practice trials 

will be performed prior 

to data collection to 

allow participants to 

become familiar with 

each procedure prior to 

performing a maximal 

effort trial. Participants 

will be allowed to stop 

at any point if they feel 

uncomfortable.  The 

fall-arrest system will 

prevent participants 

from falling to the 

ground during the 

treadmill trials, and the 

emergency stop on the 

treadmill will be 

activated in case 

participants stumble.  

The unexpected 

obstacle is a 

lightweight soft foam 

that can be kicked out 

of the way or will 

compress if stepped on.  

If participants are 

injured while 

participating in this 

research study, they 

will initially be 

provided care by the 

investigator(s), who are 

all trained in first aid 

and CPR. Students will 

then be referred to the 

Norris Health Center 

for follow-up care. 

Non-students will be 

referred to their 

primary care physician 

and will be responsible 

for all expenses 

incurred.  In the case of 
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front of the foot that is in 

swing.  The height of the 

obstacle will be 6-cm above 

the treadmill belt.  

Considering typical minimal 

foot clearance for most 

elderly adults has been 

reported to be up to 5 cm 

(Begg et al., 2007), using a 6-

cm obstacle should require the 

participant to react to the 

object to avoid coming in 

contact with it.  This is also 

within the range of obstacle 

heights used in previous 

studies of obstacle avoidance 

in stroke patients (Said, 

Goldie, Patla, & Sparrow, 

2001).  If the foot does come 

in contact with the side of the 

block of foam, the obstacle 

will be kicked away so that 

the progress of the foot is not 

actually impeded.  If the foot 

steps down on the obstacle, 

the block of foam will be 

crushed to only minimally 

disturb the participant’s gait 

cycle.  As soon as the foot 

clears or comes in contact 

with the obstacle, the block of 

foam will slide off of the 

treadmill so that the obstacle 

will be removed during the 

stance phase of walking.  The 

participant will continue to 

walk on the treadmill for up to 

a minute at a time while 

kinematic, EMG and 

accelerometer data is 

collected continuously and the 

obstacle is presented at 

random toe-off events.  This 

will be repeated as necessary 

until the obstacle is presented 

for a total of ten trials on both 

an emergency, 911 will 

be called. 
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the affected and unaffected 

sides.  The outcome of each 

trial will be classified as a trip 

if the foot comes into contact 

with the obstacle, and not a 

trip if the foot clears the 

obstacle.  This will be 

detected by tracking the 

location of retroreflective 

markers attached to the 

obstacle, and identifying any 

changes in velocity of the 

markers relative to the 

treadmill belt speed, or by 

detecting the intersection of 

the foot segment with the 

shape of the foam block. If a 

fall occurs requiring the 

participant to rely on the 

support of the harness and 

fall-arrest system, the 

treadmill will be stopped 

immediately.  The order of the 

treadmill conditions will be 

randomized to avoid a fatigue 

effect.  Additionally, each 

participants’ rating of 

perceived exertion will be 

taken before each condition, 

and the participant will be 

allowed to rest between 

conditions until their rating of 

perceived exertion is at or 

below 9 – very light (Borg, 

1970). 

References for Methods 

[1] Schepers VPM, Ketelaar M, Visser-Meily JMA, Dekker J, Lindeman E. Responsiveness 

of functional health status measures frequently used in stroke research. Disabil Rehabil 

2006;2817:1035-40. 

[2] Hellstrom K, Lindmark B. Fear of falling in patients with stroke: A reliability study. Clin 

Rehabil 1999;136:509-17. 

[3] Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J 

Gerontol A Biol Sci Med Sci 1995;50A1:M28-34. 

[4] Savin DN, Morton SM, Whitall J. Generalization of improved step length symmetry from 

treadmill to overground walking in persons with stroke and hemiparesis. Clinical 

Neurophysiology 2014;1255:1012-20. 
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[5] Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-

Meyer Assessment for Testing Motor-Performance in Patients Following Stroke. Phys 

Ther 1993;737:447-54. 

[6] Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using psychometric 

techniques to improve the Balance Evaluation Systemâ€™s Test: the mini-BESTest. 

Journal of rehabilitation medicine : official journal of the UEMS European Board of 

Physical and Rehabilitation Medicine 2010;424:323-31. 

[7] Wrisley DM, Marchetti GF, Kuharshy DK, Hitney SL. Reliability, internal consistency, 

and validity of data obtained with the Functional Gait Assessment. Phys Ther 

2004;8410:906-18. 

[8] Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J 

Am Geriatr Soc 1986;342:119-26. 

[9] Oken O, Yavuzer G, Ergocen S, Yorgancioglu ZR, Stam HJ. Repeatability and variation 

of quantitative gait data in subgroups of patients with stroke. Gait & Posture 

2008;273:506-11. 

[10] Richards CL, Olney SJ. Hemiparetic gait following stroke. Part II: Recovery and 

physical therapy. Gait Posture 1996;42:149-62. 

[11] Weerdesteyn V, Schillings AM, van Galen GP, Duysens J. Distraction affects the 

performance of obstacle avoidance during walking. J Mot Behav 2003;351:53-63. 

[12] Begg RK, Best R, Dell'Oro L, Taylor S. Minimum foot clearance during walking: 

Strategies for the minimisation of trip-related falls. Gait Posture 2007;252:191-8. 

[13] Said CM, Goldie PA, Patla AE, Sparrow WA. Effect of stroke on step characteristics of 

obstacle crossing. Arch Phys Med Rehabil 2001;8212:1712-9. 

[14] Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 

1970;22:92-8. 

 

 

E2. Explain how the data will be analyzed or studied (i.e. quantitatively or qualitatively) 

and how the data will be reported (i.e. aggregated, anonymously, pseudonyms for 

participants, etc.): 

All data will be aggregated and stored anonymously so it is not possible to connect an 

individual with their data. 

 

Aim 1: 

The coordination and variability of coordination will be calculated for the relative sagittal 

plane motion of the hip and knee, hip and ankle, and knee and ankle.  The stride cycle will 

be split into six sub phases, and the coordination and variability will be averaged across 

each sub phase.   Minimum foot clearance and minimum foot clearance variability will be 

determined using two methods.  In the first method, minimal foot clearance will be 

defined as the vertical displacement from the ground of the toe marker at the point of 

greatest horizontal velocity of the toe marker.  The second method will determine minimal 

foot clearance through Principle Components Analysis of the vertical toe marker position 

waveform during swing phase.  The instantaneous distance between the hip and toe will 

be divided by the instantaneous height of the hip joint to determine the normalized limb 

length.  The greatest percent reduction in normalized limb length during swing represents 

the maximal limb shortening.  The mean and standard deviation of the maximal limb 
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shortening will be taken across all trials for each walking condition.  Multiple regression 
will be used to determine the relative contributions of the joint coordination variables in 

predicting foot clearance as determined by minimal foot clearance or maximal limb 

shortening.   

 

Aim 2: 

The data from the obstacle avoidance trials will be split into trials where a trip occurred 

and trials where a trip did not occur.  A multivariate analysis of variance (MANOVA) will 

be used to determine how kinematic characteristics of the strides that result in tripping 

differ from those where a trip was avoided.  If the MANOVA indicates a significant 

difference between the tripping and non-tripping trials, follow-up independent t-tests will 

be done for all dependent variables to determine significant kinematic markers of tripping 

risk.  Two additional MANOVAs will be performed to determine if measures of fear of 

falling, and functional gait and balance evaluations, or muscle activity and isometric 

strength can discriminate those who come in contact with the unexpected obstacle from 

those who successfully avoid the obstacle.  The participants will be split into groups of 

those who came in contact with the obstacle at least once, and those who avoided the 

obstacle every time.  For the first analysis, the dependent variables will be scores for the 

functional evaluations.  For the second analysis, the dependent variables will be each 

participant’s mean force output from each of the MVC trials, and mean muscle activity for 

each muscle during each of the sub phases of the stride cycle.  In either analysis, if the 

MANOVA indicates a significant difference between participants who come in contact 

with the obstacle and those that avoid it, follow-up independent t-tests will be done for all 

dependent variables to determine which functional evaluations or muscle properties 

significantly identify tripping risk.   

 

Aim 3: 

The Apriori association mining algorithm will be used to determine how the 

accelerometer signals are associated with joint kinematics and joint coordination by 

identifying sets of items or features within the dataset, and then determining inferences 

from the identified sets.  For each association, the confidence will be reported as the 

probability of observing the kinematic features from the given set of accelerometer 

features.  Additionally, accelerometer signals will be used to predict the trials where the 

foot came in contact with the object versus those where the object was avoided by using 

the accelerometer signals.  Several different algorithms will be employed to classify the 

accelerometer features, including SVM, decision tree, and Bayesian network.  The 

performance of the different algorithms will be compared, as well as the performance of 

the algorithms for different accelerometer locations, or combinations of locations, on the 

body. 
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SECTION F: Data Security and Confidentiality 

Section Notes… 

 Please read the IRB Guidance Document on Data Confidentiality for more details and 
recommendations about data security and confidentiality. 

 

F1. Explain how study data/responses will be stored in relation to any identifying 

information (name, birthdate, address, IP address, etc.)?         Check all that apply. 

 

 [__] Identifiable - Identifiers are collected and stored with study data. 

 [__] Coded - Identifiers are collected and stored separately from study data, but a key 

exists to link data to identifiable information. 

 [X] De-identified - Identifiers are collected and stored separately from study data 

without the possibility of linking to data.  

 [__] Anonymous - No identifying information is collected. 

 

If more than one method is used, explain which method is used for which data. 

 

 

F2. Will any recordings (audio/video/photos) be done as part of the study? 

 

 [__] Yes 

 [X] No [SKIP THIS SECTION] 

 

If yes, explain what activities will be recorded and what recording method(s) will be used. 

Will the recordings be used in publications or presentations? 

 

 

F3. In the table below, describe the data storage and security measures in place to prevent 

a breach of confidentiality. 

 In column A, clarify the type of data. Examples may include screening data, 

paper questionnaires, online survey responses, EMG data, audio recordings, 

interview transcripts, subject contact information, key linking Study ID to subject 

identifiers, etc. 

 In column B, describe the storage location. Examples may include an office in 

Enderis 750, file cabinet in ENG 270, a laptop computer, desktop computer in 

GAR 420, Qualtrics servers, etc. 

https://pantherfile.uwm.edu/groups/sa/usa/irb/Website/Guidelines/UWM%20IRB%20Data%20Confidentiality%20Guidance.docx
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 In column C, describe the security measures in place for each storage location to 

protect against a breach of confidentiality. Examples may include a locked office, 

encrypted devices, coded data, non-networked computer with password 

protection, etc.  

 In column D, clarify who will have access to the data. 

 In column E, explain when or if data will be discarded.   

A. Type of 

Data 

B. 

Storage 

Location 

C. Security 

Measures 
D. Who will have access 

E. 

Estimated 

date of 

disposal 

Paper 

questionnaires 

Filing 

cabinet in 

Enderis 

132 

The filing cabinet 

will be locked 

Directors of the 

Neuromechanics Lab and 

their research assistants 

12/1/16 

Raw EMG, 

kinematic, 

kinetic and 

accelerometer 

data 

Desktop 

computer 

in Enderis 

132 

The computer is 

password 

protected, the 

data will be de-

identified with no 

key connecting 

subject names 

with subject 

numbers 

Directors of the 

Neuromechanics Lab and 

their research assistants 

N/A 

Processed 

EMG, 

kinematic, 

kinetic and 

accelerometer 

data 

Desktop 

computer 

in Enderis 

132 

The computer is 

password 

protected, the 

data will be de-

identified with no 

key connecting 

subject names 

with subject 

numbers 

Directors of the 

Neuromechanics Lab and 

their research assistants 

N/A 

     

 

F4. Will data be retained for uses beyond this study? If so, please explain and notify 

participants in the consent form. 

No. 

 

SECTION G: Benefits and Risk/Benefit Analysis 
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Section Notes… 

 Do not include Incentives/ Compensations in this section. 

 

G1. Describe any benefits to the individual participants.  If there are no anticipated 

benefits to the subject directly, state so.  Describe potential benefits to society (i.e., further 

knowledge to the area of study) or a specific group of individuals (i.e., teachers, foster 

children).  

There are no direct benefits to the individual participants.  There are potential benefits to 

society and in particular to those at risk of falling if the outcomes of this study indicate 

ways to prevent falls. 

 

G2. Risks to research participants should be justified by the anticipated benefits to the 

participants or society.  Provide your assessment of how the anticipated risks to 

participants and steps taken to minimize these risks (as described in Section E), balance 

against anticipated benefits to the individual or to society. 

The risks to participants are minimal.  Participants will be informed that they may 

discontinue their participation within this study at any time. Participants may experience 

minor muscle soreness as a result of the biomechanics testing. Participants may suffer 

musculoskeletal injury such as muscle strain as a result of the biomechanics testing. 

Participants may also experience minor skin irritation due to the spray tape adhesive 

(very unlikely).  There are no anticipated psychosocial or privacy risks due to 

participation in the study.  Because participants are required to be able to walk without 

assistive devices for 5 minutes at a time, they will be accustomed to the type of activity 

performed during the testing session.  The fall-arrest system will prevent participants 

from falling to the ground during the treadmill trials, and the emergency stop on the 

treadmill will be activated in case participants stumble.  The unexpected obstacle is a 

soft foam that can be kicked out of the way or will compress if stepped on, reducing the 

negative effects its presence may have on a participant’s walking ability.  First-aid 

medical treatment will be provided in the unlikely event of physical injury resulting from 

participation in this study.  In case of basic first-aid, all research personnel involved are 

trained in basic first-aid and CPR and will provide appropriate care.  In the event that 

some emergency treatment may be necessary, 911 will be called as a standard operation 

procedure and the subject will be individually responsible for the cost(s) associated with 

that treatment.  If this event is unexpected, a full report will be submitted to the IRB.  All 

data will be stored in a locked filing cabinet in a locked room.  All data will be given a 

letter and number that is uniquely associated with each participant.  This code will not 

contain any partial identifiers (i.e. last four digits of SSN) and will be stored in a 

separate locked office in a locked filing cabinet.  No identifiers will be stored with the 

research data. Only those individuals with an active role in this study will have access to 

the research data and identifying information. When all participants have completed 

active participation in the study and data collection is completed, the code will be 

destroyed.  All appropriate measures to protect private information will be taken. 

Given the minimal risks for participating in this study, and the steps that will be taken to 

reduce the risk of injury or a breach of confidentiality, the potential benefits to society 
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outweigh these risks.  This study has the potential to lead to a reduced number of falls, 
particularly for people at risk of falling. 

 

SECTION H: Subject Incentives/ Compensations 

Section Notes… 

 H2 & H3. The IRB recognizes the potential for undue influence and coercion when 

extra credit is offered. The UWM IRB, as also recommended by OHRP and APA Code 

of Ethics, agrees when extra credit is offered or required, prospective subjects must be 

given the choice of an equitable, non-research alternative. The extra credit value and 

the non-research alternative must be described in the recruitment material and the 

consent form. 

 H4. If you intend to submit to Accounts Payable for reimbursement purposes make 
sure you understand the UWM “Payments to Research Subjects” Procedure 2.4.6 and 

what each level of payment confidentiality means (click here for additional  

information).  

 

H1. Does this study involve incentives or compensation to the subjects? For example cash, 

class extra credit, gift cards, or items. 

 

 [X] Yes 

 [__] No [SKIP THIS SECTION] 

 

H2. Explain what (a) the item is, (b) the amount or approximate value of the item, and (c) 

when it will be given. For extra credit, state the number of credit hours and/or points. (e.g., 

$5 after completing each survey, subject will receive [item] even if they do not complete the 

procedure, extra credit will be award at the end of the semester): 

Participants will receive a $50 gift card at the completion of the data collection. 

 

H3. If extra credit is offered as compensation/incentive, please describe the specific 

alternative activity which will be offered. The alternative activity should be similar in the 

amount of time involved to complete and worth the same number of extra credit points/hours. 

Other research studies can be offered as additional alternatives, but a non-research alternative 

is required.   

 

 

H4. If cash or gift cards, select the appropriate confidentiality level for payments (see 

section notes): 

http://www4.uwm.edu/bfs/procedures/acctp/upload/2-4-6-Research-Subjects.pdf
http://www4.uwm.edu/bfs/procedures/acctp/upload/2-4-6-Research-Subjects.pdf
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[X] Level 1 indicates that confidentiality of the subjects is not a serious issue, e.g., 

providing a social security number or other identifying information for payment 

would not pose a serious risk to subjects. 

 For payments over $50, choosing Level 1 requires the researcher to collect 

and maintain a record of the following: The payee's name, address, and 

social security number, the amount paid, and signature indicating receipt 

of payment (for cash or gift cards). 

 When Level 1 is selected, a formal notice is not issued by the IRB and the 

Account Payable assumes Level 1. 

 Level 1 payment information will be retained in the extramural account 

folder at UWM/Research Services and attached to the voucher in 

Accounts Payable.  These are public documents, potentially open to public 

review. 

 

[__] Level 2 indicates that confidentiality is an issue, but is not paramount to the study, 

e.g., the participant will be involved in a study researching sensitive, yet not 

illegal issues. 

 Choosing a Level 2 requires the researcher to maintain a record of the 

following: The payee's name, address, and social security number, the 

amount paid, and signature indicating receipt of payment (for cash or gift 

cards). 

 When Level 2 is selected, a formal notice will be issued by the IRB. 

 Level 2 payment information, including the names, are attached to the PIR 

and become part of the voucher in Accounts Payable. The records retained 

by Accounts Payable are not considered public record. 

 

[__] Level 3 indicates that confidentiality of the subjects must be guaranteed. In this 

category, identifying information such as a social security number would put a 

subject at increased risk. 

 Choosing a Level 3 requires the researcher to maintain a record of the 

following: research subject's name and corresponding coded identification.  

This will be the only record of payee names, and it will stay in the control 

of the PI. 

 Payments are made to the research subjects by either personal check or 

cash. Gift cards are considered cash. 

 If a cash payment is made, the PI must obtain signed receipts. 

 If the total payment to an individual subject is over $600 per calendar 

year, Level 3 cannot be selected. 

  

 If Confidentiality Level 2 or 3 is selected, please provide justification.  
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SECTION I: Deception/ Incomplete Disclosure (INSERT “NA” IF NOT APPLICABLE) 

Section Notes… 

 If you cannot adequately state the true purpose of the study to the subject in the 
informed consent, deception/ incomplete disclosure is involved. 

 

I1. Describe (a) what information will be withheld from the subject (b) why such deception/ 

incomplete disclosure is necessary, and (c) when the subjects will be debriefed about the 

deception/ incomplete disclosure. 

N/A 
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Appendix C: Recruitment Flyers 
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Appendix D: Consent Forms 

Version 1 

UNIVERSITY OF WISCONSIN – MILWAUKEE 

CONSENT TO PARTICIPATE IN RESEARCH 
 

THIS CONSENT FORM HAS BEEN APPROVED BY THE IRB FOR A ONE YEAR PERIOD 

 

1. General Information 

 

Study title: Identifying Gait Deficits In Stroke Patients Using Inertial Sensors 

 

Person in Charge of Study (Principal Investigator):  
 The Principal Investigator (PI) for this study is Kristian O’Connor, PhD., a faculty member 

in the Department of Kinesiology.  The co-PI on this study is Lauren Benson, a PhD student 

in the Department of Kinesiology.   
 

2. Study Description 

 

You are being asked to participate in a research study.  Your participation is completely 

voluntary.  You do not have to participate if you do not want to. 
 

Study description: 

 The purpose is to understand the walking characteristics that influence the risk of falling, 

and to detect walking characteristics using portable sensors. 

 This investigation may reduce the number of falls in stroke patients and people at risk for 
falling. 

 The goals of this study are: to identify the relationship between walking mechanics and foot 
height during walking; to determine characteristics of walking that enable people to 

successfully avoid an unexpected tripping hazard; and to detect the risk of tripping using 

accelerometer signals. 

 The study is being done at UW Milwaukee, where there will be 46 participants.  

 Participants will be tested during one 2-hour session. 
 

 

 

 

 

 

 

 

 

 

3. Study Procedures 
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What will I be asked to do if I participate in the study? 

If you agree to participate you will be asked to go to the Neuromechanics Laboratory at UW 

Milwaukee (Enderis Hall, Room 132) for one testing session.  

You will be asked to wear clothing appropriate for physical activity; however, clean, tight-fitting 

shorts will be provided for you during the testing session.  The tasks you perform include: 

1. You will be given a questionnaire to collect demographic information, as well as 

information about walking ability, falls history, and fear of falling.  Additionally, stroke 

patients will be asked about the nature of their stroke.  (10 minutes) 

2. You will be evaluated on your ability to understand and perform the tasks required to 

complete the study.  (5 minutes) 

3. You will be asked to put on tight-fitting shorts and a generic pair of athletic shoes, which 

will be provided for the testing session.  (5 minutes) 

4. Your ability to produce specific movements and reflexes in your legs will be assessed by 

a licensed physical therapist.  (10 minutes) 

5. Your walking and balance ability will be evaluated with a variety of walking and balance 

tasks.  (20 minutes) 

6. Electrodes will be applied to the skin above three muscles on each leg.  Prior to electrode 

placement, the skin in that area may need to be shaved, and it will be rubbed with 

alcohol.  These electrodes will track your muscle activity, but you will not feel anything 

or be harmed in any way by the electrodes.  (10 minutes) 

7. You will perform three sets of three distinct motions with each leg (straighten knee, bring 

toes up, bring heel up) against resistance, trying to activate your muscles as much as 

possible for 5 seconds at a time.  (10 minutes) 

8. Markers will be applied to your head, trunk, pelvis and both legs at specific landmarks.  

The location of these markers will be recorded as you stand still.  (10 minutes) 

9. Lightweight, portable sensors will be attached to your wrists, ankles, thighs and hips.  (5 

minutes) 

10. You will walk at your normal pace along a 10-m walkway 20 times while movement and 

muscle activity data are recorded.  (15 minutes) 

11. You will perform a visual task, which will require you to say the direction an arrow is 

pointing while arrows are presented randomly.  (5 minutes) 

12. You will be secured in a fall-arrest system that will prevent you from falling.  After 

acclimating to the treadmill and choosing a comfortable walking speed, you will walk at 

your chosen pace on a treadmill for up to 3 minutes at a time in three different conditions. 

The order of the conditions will be randomized and include: 

a. Normal walking 

b. Walking while performing the visual task 

c. Walking and avoiding an unexpected obstacle while performing the visual task 

You will be allowed to rest whenever you feel it is necessary.  Movement and muscle 

activity data will be recorded during each trial.  (15 minutes) 
  

 

 

4. Risks and Minimizing Risks 
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What risks will I face by participating in this study? 

Physical risks 

 Muscle soreness as a result of the testing. (Unlikely) 

 Injuries such as muscle strain or muscle tightness as a result of the testing session. 

(Unlikely) 

 Injuries such as bruises or cuts due to the risk of falling while walking overground or on 
the treadmill.  (Unlikely) 

 Minor skin irritation due to the spray tape adhesive or tape. (Unlikely) 
Psychological, social, economic risks 

 None 
Protection of Physical Risks: 

To reduce the above risks, practice trials will be performed prior to data collection to allow you 

to become familiar with each procedure prior to performing a maximal effort trial. You will be 

allowed to stop at any point if you feel uncomfortable.  You will wear a belt with handles during 

the functional evaluations, and the evaluator will hold onto the handles in case you lose your 

balance during the tasks that challenge your walking and balance ability.  The fall-arrest system 

will prevent you from falling to the ground during the treadmill trials, and the emergency stop on 

the treadmill will be activated in case you stumble.  The unexpected obstacle is a lightweight soft 

foam that can be kicked out of the way or will compress if stepped on.  If you feel any soreness 

or irritation while participating in this study, please tell the investigators as soon as possible. If 

you are injured while participating in this research study, you will initially be provided care by 

the investigator(s), who are all trained in first aid and CPR. Students will then be referred to the 

Norris Health Center for follow-up care. Non-students will be referred to their primary care 

physician and will be responsible for all expenses incurred.  

 

Risks to Privacy and Confidentiality:   

Since your private information will be collected for this study, there is always a risk of breach of 

confidentiality. (Very unlikely) 

 

Protection of Risks to Privacy and Confidentiality: 

All data will be stored in a locked filing cabinet in a locked room.  All data will be given a letter 

and number that is uniquely associated with you.  This code will not contain any partial 

identifiers (i.e. last four digits of your SSN) and will be stored in a separate locked office in a 

locked filing cabinet.  No identifiers will be stored with the research data. Only those individuals 

with an active role in this study will have access to the research data and only the PI and Co-PI 

will have access to identifying information. When all participants have completed active 

participation in the study and data collection is completed, the code will be destroyed.  All 

appropriate measures to protect your private information will be taken. 
 

 

5. Benefits 

 

Will I receive any benefit from my participation in this study? 

There are no benefits to you other than to further research.  The information which is obtained 

may be useful scientifically and possibly helpful to others. 
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6. Study Costs and Compensation 

 

Will I be charged anything for participating in this study? 

You will not be responsible for any of the costs from taking part in this research study.  You are 

responsible for your own transportation to and from UWM and for any parking costs for the 

testing session. 
 

Are subjects paid or given anything for being in the study? 

There is no compensation for participating in this study. 
 

7. Confidentiality 

 

What happens to the information collected? 

All information collected about you during the course of this study will be kept confidential to 

the extent permitted by law. We may decide to present what we find to others, or publish our 

results in scientific journals or at scientific conferences.  Only the PI and co-PI will have access 

to the information.  However, the Institutional Review Board at UW-Milwaukee or appropriate 

federal agencies like the Office for Human Research Protections may review this study’s records.  

The confidentiality of your data and information will be safeguarded as outlined in “Risks & 

Minimizing Risks” section under the “Protection of Risks to Privacy and Confidentiality” 

header. 

 
 

8. Alternatives 

 

Are there alternatives to participating in the study? 

There are no known alternatives available to you other than not taking part in this study.  
  

 

 

 

 

9. Voluntary Participation and Withdrawal 

 

What happens if I decide not to be in this study? 

Your participation in this study is entirely voluntary. You may choose not to take part in this 

study.  If you decide to take part, you can change your mind later and withdraw from the study. 

You are free to not answer any questions or withdraw at any time. Your decision will not change 

any present or future relationships with the University of Wisconsin- Milwaukee. If you choose 

to withdraw, we will use the information collected about you to that point.  If you are a student, 

your refusal to take part in the study will not affect your grade or class standing. 
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10. Questions 

 

Who do I contact for questions about this study? 

For more information about the study or the study procedures or treatments, or to withdraw from 

the study, contact: 

Kristian O’Connor, PhD 

Department of Kinesiology 

Enderis 471 

P.O. Box 413 

Milwaukee, WI 53201 

414-229-2680 

 

Who do I contact for questions about my rights or complaints towards my treatment as a 

research subject? 

The Institutional Review Board may ask your name, but all complaints are kept in confidence. 

 

Institutional Review Board 

Human Research Protection Program 

Department of University Safety and Assurances 

University of Wisconsin – Milwaukee 

P.O. Box 413 

Milwaukee, WI 53201 

(414) 229-3173 
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11. Signatures 

 

Research Subject’s Consent to Participate in Research: 

To voluntarily agree to take part in this study, you must sign on the line below.  If you choose to 

take part in this study, you may withdraw at any time.  You are not giving up any of your legal 

rights by signing this form.  Your signature below indicates that you have read or had read to 

you this entire consent form, including the risks and benefits, and have had all of your questions 

answered, and that you are 18 years of age or older. 

 

_____________________________________________ 

Printed Name of Subject/ Legally Authorized Representative  

 

_____________________________________________ _____________________ 

Signature of Subject/Legally Authorized Representative Date 

 

 

Principal Investigator (or Designee) 

I have given this research subject information on the study that is accurate and sufficient for the 

subject to fully understand the nature, risks and benefits of the study. 

 

_____________________________________________ _____________________ 

Printed Name of Person Obtaining Consent Study Role 

 

_____________________________________________ _____________________ 

Signature of Person Obtaining Consent Date 
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Version 2 

UNIVERSITY OF WISCONSIN – MILWAUKEE 

CONSENT TO PARTICIPATE IN RESEARCH 
 

THIS CONSENT FORM HAS BEEN APPROVED BY THE IRB FOR A ONE YEAR PERIOD 

 

1. General Information 

 

Study title: Identifying Gait Deficits In Stroke Patients Using Inertial Sensors 

 

Person in Charge of Study (Principal Investigator):  
 The Principal Investigator (PI) for this study is Kristian O’Connor, PhD., a faculty member 

in the Department of Kinesiology.  The co-PI on this study is Lauren Benson, a PhD student 

in the Department of Kinesiology.   
 

2. Study Description 

 

You are being asked to participate in a research study.  Your participation is completely 

voluntary.  You do not have to participate if you do not want to. 
 

Study description: 

 The purpose is to understand the walking characteristics that influence the risk of falling, 

and to detect walking characteristics using portable sensors. 

 This investigation may reduce the number of falls in stroke patients and people at risk for 
falling. 

 The goals of this study are: to identify the relationship between walking mechanics and foot 
height during walking; to determine characteristics of walking that enable people to 

successfully avoid an unexpected tripping hazard; and to detect the risk of tripping using 

accelerometer signals. 

 The study is being done at UW Milwaukee, where there will be 46 participants.  

 Participants will be tested during one 2-hour session. 
 

 

 

 

 

 

 

 

 

 

 

3. Study Procedures 
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What will I be asked to do if I participate in the study? 

If you agree to participate you will be asked to go to the Neuromechanics Laboratory at UW 

Milwaukee (Enderis Hall, Room 132) for one testing session.  

You will be asked to wear clothing appropriate for physical activity; however, clean, tight-fitting 

shorts will be provided for you during the testing session.  The tasks you perform include: 

13. You will be given a questionnaire to collect demographic information, as well as 

information about walking ability, falls history, and fear of falling.  Additionally, stroke 

patients will be asked about the nature of their stroke.  (10 minutes) 

14. You will be evaluated on your ability to understand and perform the tasks required to 

complete the study.  (5 minutes) 

15. You will be asked to put on tight-fitting shorts and a generic pair of athletic shoes, which 

will be provided for the testing session.  (5 minutes) 

16. Your ability to produce specific movements and reflexes in your legs will be assessed by 

a licensed physical therapist.  (10 minutes) 

17. Your walking and balance ability will be evaluated with a variety of walking and balance 

tasks.  (20 minutes) 

18. Electrodes will be applied to the skin above three muscles on each leg.  Prior to electrode 

placement, the skin in that area may need to be shaved, and it will be rubbed with 

alcohol.  These electrodes will track your muscle activity, but you will not feel anything 

or be harmed in any way by the electrodes.  (10 minutes) 

19. You will perform three sets of three distinct motions with each leg (straighten knee, bring 

toes up, bring heel up) against resistance, trying to activate your muscles as much as 

possible for 5 seconds at a time.  (10 minutes) 

20. Markers will be applied to your head, trunk, pelvis and both legs at specific landmarks.  

The location of these markers will be recorded as you stand still.  (10 minutes) 

21. Lightweight, portable sensors will be attached to your wrists, ankles, thighs and hips.  (5 

minutes) 

22. You will walk at your normal pace along a 10-m walkway 20 times while movement and 

muscle activity data are recorded.  (15 minutes) 

23. You will perform a visual task, which will require you to say the direction an arrow is 

pointing while arrows are presented randomly.  (5 minutes) 

24. You will be secured in a fall-arrest system that will prevent you from falling.  After 

acclimating to the treadmill and choosing a comfortable walking speed, you will walk at 

your chosen pace on a treadmill for up to 3 minutes at a time in three different conditions. 

The order of the conditions will be randomized and include: 

a. Normal walking 

b. Walking while performing the visual task 

c. Walking and avoiding an unexpected obstacle while performing the visual task 

You will be allowed to rest whenever you feel it is necessary.  Movement and muscle 

activity data will be recorded during each trial.  (15 minutes) 
  

4. Risks and Minimizing Risks 

 

What risks will I face by participating in this study? 

Physical risks 
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 Muscle soreness as a result of the testing. (Unlikely) 

 Injuries such as muscle strain or muscle tightness as a result of the testing session. 

(Unlikely) 

 Injuries such as bruises or cuts due to the risk of falling while walking overground or on 
the treadmill.  (Unlikely) 

 Minor skin irritation due to the spray tape adhesive or tape. (Unlikely) 
Psychological, social, economic risks 

 None 
Protection of Physical Risks: 

To reduce the above risks, practice trials will be performed prior to data collection to allow you 

to become familiar with each procedure prior to performing a maximal effort trial. You will be 

allowed to stop at any point if you feel uncomfortable.  You will wear a belt with handles during 

the functional evaluations, and the evaluator will hold onto the handles in case you lose your 

balance during the tasks that challenge your walking and balance ability.  The fall-arrest system 

will prevent you from falling to the ground during the treadmill trials, and the emergency stop on 

the treadmill will be activated in case you stumble.  The unexpected obstacle is a lightweight soft 

foam that can be kicked out of the way or will compress if stepped on.  If you feel any soreness 

or irritation while participating in this study, please tell the investigators as soon as possible. If 

you are injured while participating in this research study, you will initially be provided care by 

the investigator(s), who are all trained in first aid and CPR. Students will then be referred to the 

Norris Health Center for follow-up care. Non-students will be referred to their primary care 

physician and will be responsible for all expenses incurred.  

 

Risks to Privacy and Confidentiality:   

Since your private information will be collected for this study, there is always a risk of breach of 

confidentiality. (Very unlikely) 

 

Protection of Risks to Privacy and Confidentiality: 

All data will be stored in a locked filing cabinet in a locked room.  All data will be given a letter 

and number that is uniquely associated with you.  This code will not contain any partial 

identifiers (i.e. last four digits of your SSN) and will be stored in a separate locked office in a 

locked filing cabinet.  No identifiers will be stored with the research data. Only those individuals 

with an active role in this study will have access to the research data and only the PI and Co-PI 

will have access to identifying information. When all participants have completed active 

participation in the study and data collection is completed, the code will be destroyed.  All 

appropriate measures to protect your private information will be taken. 
 

 

5. Benefits 

 

Will I receive any benefit from my participation in this study? 

There are no benefits to you other than to further research.  The information which is obtained 

may be useful scientifically and possibly helpful to others. 
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6. Study Costs and Compensation 

 

Will I be charged anything for participating in this study? 

You will not be responsible for any of the costs from taking part in this research study.  You are 

responsible for your own transportation to and from UWM and for any parking costs for the 

testing session. 
 

Are subjects paid or given anything for being in the study? 

You will receive a $50 gift card as compensation for participating in this study. 
 

7. Confidentiality 

 

What happens to the information collected? 

All information collected about you during the course of this study will be kept confidential to 

the extent permitted by law. We may decide to present what we find to others, or publish our 

results in scientific journals or at scientific conferences.  Only the PI and co-PI will have access 

to the information.  However, the Institutional Review Board at UW-Milwaukee or appropriate 

federal agencies like the Office for Human Research Protections may review this study’s records.  

The confidentiality of your data and information will be safeguarded as outlined in “Risks & 

Minimizing Risks” section under the “Protection of Risks to Privacy and Confidentiality” 

header. 

 
 

8. Alternatives 

 

Are there alternatives to participating in the study? 

There are no known alternatives available to you other than not taking part in this study. 
  

 

 

 

 

9. Voluntary Participation and Withdrawal 

 

What happens if I decide not to be in this study? 

Your participation in this study is entirely voluntary. You may choose not to take part in this 

study.  If you decide to take part, you can change your mind later and withdraw from the study. 

You are free to not answer any questions or withdraw at any time. Your decision will not change 

any present or future relationships with the University of Wisconsin- Milwaukee. If you choose 

to withdraw, we will use the information collected about you to that point.  If you are a student, 

your refusal to take part in the study will not affect your grade or class standing. 
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10. Questions 

 

Who do I contact for questions about this study? 

For more information about the study or the study procedures or treatments, or to withdraw from 

the study, contact: 

Kristian O’Connor, PhD 

Department of Kinesiology 

Enderis 471 

P.O. Box 413 

Milwaukee, WI 53201 

414-229-2680 

 

Who do I contact for questions about my rights or complaints towards my treatment as a 

research subject? 

The Institutional Review Board may ask your name, but all complaints are kept in confidence. 

 

Institutional Review Board 

Human Research Protection Program 

Department of University Safety and Assurances 

University of Wisconsin – Milwaukee 

P.O. Box 413 

Milwaukee, WI 53201 

(414) 229-3173 
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11. Signatures 

 

Research Subject’s Consent to Participate in Research: 

To voluntarily agree to take part in this study, you must sign on the line below.  If you choose to 

take part in this study, you may withdraw at any time.  You are not giving up any of your legal 

rights by signing this form.  Your signature below indicates that you have read or had read to 

you this entire consent form, including the risks and benefits, and have had all of your questions 

answered, and that you are 18 years of age or older. 

 

_____________________________________________ 

Printed Name of Subject/ Legally Authorized Representative  

 

_____________________________________________ _____________________ 

Signature of Subject/Legally Authorized Representative Date 

 

 

Principal Investigator (or Designee) 

I have given this research subject information on the study that is accurate and sufficient for the 

subject to fully understand the nature, risks and benefits of the study. 

 

_____________________________________________ _____________________ 

Printed Name of Person Obtaining Consent Study Role 

 

_____________________________________________ _____________________ 

Signature of Person Obtaining Consent Date 
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Appendix E: Questionnaires and Forms 

Screening Questionnaire 
 

 
Please answer the following two questions to the best of your ability.  Eligible participants will answer 

“yes” to the first question and “no” to the second question. 

 

 Yes    No Can you walk for five minutes at a time without the use of an assistive device? 

 

 

 Yes    No Are you cognitively impaired such that you cannot follow three-step commands? 

 

 

 

Please answer the following questions to determine the study group for which you may be eligible. 

  

 Yes    No Have you experienced a stroke more than six months ago? 

 [If “yes”, you qualify for the stroke group.  If “no”, continue to the next question.] 

 

 

 Yes    No Are you between the ages 18-45?  
 [If “yes”, you qualify for the young adult group.  If “no”, continue to the 

next question.] 
  

  

 Yes    No Are you age 65 or older? 

 [If “yes”, continue to the next question.  If “no”, you are not eligible to participant 

in this study.] 

 

 

 Yes    No Have you fallen (defined as unintentionally coming to rest on the ground) in the 

last six months? 

 [If “yes”, you qualify for the falls history group.  If “no”, you qualify for the no 

falls history group.] 

 

 

 

Comments/Notes: 

_____________________________________________________________________________________ 

 

_____________________________________________________________________________________ 

 

_____________________________________________________________________________________ 
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Demographic Questionnaire 

 

 

Age  

Gender  

Height  

Weight  

Dominant side (left or right)  

Do you have any difficulties 

when walking?  If so, what? 
 

Do you use an assistive device 

or orthotic or brace when 

walking?  If so, what? 

 

Can you walk for 5 minutes at a 

time without an assistive device? 
 

How many times have you fallen 

in the last 6 months?  (A fall is 

defined as unintentionally 

coming to rest on the ground.) 

 

 

 

 

Stroke Patients Only 

Type of stroke (ischemic or 

hemorrhagic) 
 

Time since stroke   

Location of lesion   

Affected side   

Dominant side before stroke  
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Frenchay Activities Index (FAI) 
In the last 3 months, how often have you undertaken: 

Preparing main meals 

Never  Less than once a week  1-2 times per week  Most days 

 

Washing up after meals 

Never  Less than once a week  1-2 times per week  Most days 

 

Washing clothes 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

Light housework 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

Heavy housework 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

Local shopping 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

Social occasions 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

Walking outside for > 15 minutes 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

Actively pursuing a hobby 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

Driving a car/going on a bus 

Never  1-2 times in 3 months  3-12 times in 3 months  At least weekly 

 

In the last 6 months, how often have you undertaken: 

Travel outing/car ride 

Never  1-2 times in 6 months  3-12 times in 6 months  At least weekly 

 

Gardening 

Never  1-2 times in 6 months  3-12 times in 6 months  At least weekly 

 

Household maintenance 

Never  Light    Moderate   Heavy/All necessary 

 

Reading books 

None  1 in 6 months   Less than 1 in 2 weeks         More than 1 every 2 weeks 

 

Gainful work 

None  Up to 10 hours/week  10-30 hours/week  Over 30 hours/week 
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Swedish Modification of the Falls Efficacy Scale (FES-S) 
 

 
 

 

 

On a scale of 0-10, how confident are you that 

you do the following activities without falling? 
Confidence 

Get in and out of bed  

Get on and off the toilet  

Personal grooming  

Get in and out of chair  

Get dressed and undressed  

Take a bath or a shower  

Go up and down stairs  

Walk around neighborhood  

Reach into cupboards/closets  

Housecleaning  

Prepare simple meals  

Answer the telephone  

Simple shopping  

 

 

  

10 9 8 7 6 5 4 3 2 1 0 

Completely 

confident 
Fairly 

confident 
Not confident 

at all 
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Activities-specific Balance Confidence (ABC) 
 

 
 

 

How confident are you that you will not lose 

your balance or become unsteady when you… 
Confidence 

Walk around the house  

Walk up or down stairs  

Bend over and pick up a slipper from the front of a 

closet floor 
 

Reach for a small can off a shelf at eye level  

Stand on your tip toes and reach for something 

above your head 
 

Stand on a chair and reach for something  

Sweep the floor  

Walk outside the house to a car parked in the 

driveway 
 

Get into or out of a car  

Walk across a parking lot to the mall  

Walk up or down a ramp  

Walk in a crowded mall where people rapidly walk 

past you 
 

Are bumped into by people as you walk through the 

mall 
 

Step onto or off of an escalator while you are 

holding onto a railing 
 

Step onto or off of an escalator while holding onto 

parcels such that you cannot hold onto the railing 
 

Walk outside on icy sidewalks  

 

100% 90 80 70 60 50 40 30 20 10 0% 

Completely 

confident 

No confidence 
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Mini-Mental State Examination 
 

 

Questions Possible Score 

“What is the year?  Season?  Date?  Day of the week?  Month?” 5  

“Where are we now: State?  County?  Town/city?  Building?  

Floor?” 
5  

The examiner names three unrelated objects clearly and slowly, 

then asks the patient to name all three of them.  The patient’s 

response is used for scoring.  The examiner repeats them until 

patient learns all of them, if possible.  [flag, water, shirt] 

Number of trials: ___________ 

3  

“I would like you to count backward from 100 by sevens.” (93, 

86, 79, 72, 65, …) Stop after five answers. 

Alternative: “Spell WORLD backwards.” (D-L-R-O-W) 

5  

“Earlier I told you the names of three things.  Can you tell me 

what those were?” 
3  

Show the patient two simple objects, such as a wristwatch and a 

pencil, and ask the patient to name them. 
2  

“Repeat the phrase: ‘No ifs, ands, or buts.’” 1  

“Take the paper in your right hand, fold it in half, and put it on 

the floor.” (The examiner gives the patient a piece of blank 

paper.) 

3  

“Please read this and do what it says.”  (Written instruction is 

“Close your eyes.”) 
1  

“Make up and write a sentence about anything.”  (This sentence 

must contain a noun and a verb.) 
1  

“Please copy this picture.”  (The examiner gives the patient a 

blank piece of paper and asks him/her to draw the symbol below.  

All 10 angles must be present and two must intersect.) 

 

1  

TOTAL 30  
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Functional Evaluation 

 
Task Description Possible Score 

Sitting down 

Unsafe (misjudged 

distance, falls into 

chair) 

0 

 
Uses arms or not a 

smooth motion 
1 

Safe, smooth motion 2 

Sitting Balance 
Lean or slides in chair 0 

 
Steady, safe 1 

Arises: “Cross your arms across your 

chest. Try not to use your hands unless 

you must. Do not let your legs lean 

against the back of the chair when you 

stand. Please stand up now.” 

Unable without help 0 

 

Able, uses arms to 

help 
1 

Able without using 

arms 
2 

Attempts to rise 

Unable without help 0 

 
Able, requires > 1 

attempt 
1 

Able to rise, 1 attempt 2 

Immediate standing balance (first 5 

seconds) 

Unsteady (swaggers, 

moves feet, trunk 

sway) 

0 

 Steady but uses walker 

or other support 
1 

Steady without walker 

or other support 
2 

Standing balance 

Unsteady 0 

 

Steady but wide stance 

(medial heels > 4 

inches apart) and uses 

cane or other support 

1 

Narrow stance without 

support 
2 

Nudged (subject at max position with 

feet as close together as possible, 

examiner pushes lightly on subject’s 

sternum with palm of hand 3 times) 

Begins to fall 0 

 
Staggers, grabs, 

catches self 
1 

Steady 2 

Eyes closed (at maximum position) 
Unsteady 0 

 
Steady 1 

Turning 360° 

Discontinuous steps 0 
 

Continuous steps 1 

Unsteady (grabs, 

swaggers) 
0 

 

Steady 1 
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Task Description Possible Score 

Rise to toes: “Place your feet shoulder 

width apart. Place your hands on your 

hips. Try to rise as high as you can onto 

your toes. I will count out loud to 3 

seconds. Try to hold this pose for at 

least 3 seconds. Look straight ahead. 

Rise now.”  

[allow 2 attempts, score best] 

< 3 s 0 

 

Heels up, but not full 

range (smaller than 

when holding hands), 

OR noticeable 

instability for 3 s 

1 

Stable for 3 s with 

maximum height 
2 

Stand on one leg: “Look straight ahead. 

Keep your hands on your hips. Lift your 

leg off of the ground behind you without 

touching or resting your raised leg upon 

your other standing leg. Stay standing 

on one leg as long as you can. Look 

straight ahead. Lift now.” 

[allow 2 attempts each side, score best 

attempt from worst side] 

Unable 0 

 

< 20 s 1 

20 s 2 

Compensatory stepping correction - 

forward: “Stand with your feet shoulder 

width apart, arms at your sides. Lean 

forward against my hands beyond your 

forward limits. When I let go, do 

whatever is necessary, including taking 

a step, to avoid a fall.”  

[hands on shoulders, shoulders and hips 

in front of toes] 

No step, OR would 

fall if not caught, OR 

falls spontaneously 

0 

 

More than one step 

used to recover 

equilibrium 

1 

Recovers 

independently with a 

single, large step 

(realignment step 

OK) 

2 

Compensatory stepping correction - 

backward: “Stand with your feet 

shoulder width apart, arms at your sides. 

Lean backward against my hands 

beyond your backward limits. When I 

let go, do whatever is necessary, 

including taking a step, to avoid a fall.”  

[hands on scapulae, hips behind heels] 

No step, OR would 

fall if not caught, OR 

falls spontaneously 

0 

 

More than one step 

used to recover 

equilibrium 

1 

Recovers 

independently with a 

single, large step 

2 

Compensatory stepping correction - 

lateral: “Stand with your feet together, 

arms down at your sides. Lean into my 

hand beyond your sideways limit. When 

I let go, do whatever is necessary, 

including taking a step, to avoid a fall.”  

[test both sides, score lowest]  

Falls, or cannot step 0 

 

Several steps to 

recover equilibrium 
1 

Recovers 

independently with 1 

step (crossover or 

lateral OK) 

2 
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Task Description Possible Score 

Stance (feet together); eyes open, firm 

surface: “Place your hands on your hips. 

Place your feet together until almost 

touching. Look straight ahead. Be as 

stable and still as possible, until I say 

stop.”  

Unable 0 

 

< 30 s 1 

30 s 2 

Stance (feet together); eyes closed, foam 

surface: “Step onto the foam. Place your 

hands on your hips. Place your feet 

together until almost touching. Be as 

stable and still as possible, until I say 

stop. I will start timing when you close 

your eyes.”  

Unable 0 

 

< 30 s 1 

30 s 2 

Incline - eyes closed: “Step onto the 

incline ramp. Please stand on the incline 

ramp with your toes toward the top. 

Place your feet shoulder width apart and 

have your arms down at your sides. I 

will start timing when you close your 

eyes.”  

Unable 

 
0 

 

Stands independently 

< 30 s OR aligns with 

surface 

1 

Stands independently 

30 s and aligns with 

gravity 

2 

Timed up & go with dual task: “When I 

say ‘go’, stand up from chair, walk at 

your normal speed across the tape on the 

floor, turn around and come back to sit 

in the chair.” 

“Count backwards by threes starting at 

_________.  When I say ‘go’, stand up 

from chair, walk at your normal speed 

across the tape on the floor, turn around 

and come back to sit in the chair.  

Continue counting backwards the entire 

time.” 

Stops counting while 

walking OR stops 

walking while 

counting 

0 

 

Dual task affects 

either counting OR 

walking (>10%) 

when compared to 

without dual task 

1 

No noticeable change 

in sitting, standing or 

walking for dual task 

compared to without 

dual task 

2 

 TUG time  

 
Dual task 

time 
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Task Description Possible Score 

Gait level surface: “When I say go, walk 

at your normal speed from here to the 

mark” 

[10 m, time middle 6 m] 

 

Cannot walk 6 m 

without assistance, 

severe gait deviations 

or imbalance, 

deviates greater than 

15 in outside 12-in 

walkway 

0 

 

Walks 6 m, slow 

speed, abnormal gait 

pattern, evidence for 

imbalance, deviates 

10-15 in outside 12-in 

walkway 

1 

5.5-7 s, uses assistive 

device, slower speed, 

mile gait deviations, 

deviates 6-10 in 

outside 12-in 

walkway  

2 

< 5.5 s, no assistive 

devices, good speed, 

no evidence for 

imbalance, normal 

gait pattern, deviates 

0-6 in outside 12-in 

walkway 

3 

 Time 1  

 Time 2  

 Time 3  

Fast walking speed: “When I say go, 

walk as fast as you safely can from here 

to the mark” 

[10 m, time middle 6 m] 

 Time 1  

 
 Time 2  

 Time 3  

 

 

ALSO FILL OUT EVALUATION ON NEXT PAGE  
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Task Description Possible Score 

Gait evaluation: Initiation 

of gait 

Any hesitancy or multiple attempts 

to start 
0 

 

No hesitancy 1 

Gait evaluation: Step 

length and height 

Right swing foot does not pass left 

stance foot with step 
0 

 

Right foot passes left stance foot 1 

Right foot does not clear floor 

completely with step 
0 

 

Right foot completely clears floor 1 

Left swing foot does not pass right 

stance foot with step 
0 

 

Left foot passes right stance foot 1 

Left foot does not clear floor 

completely with step 
0 

 

Left foot completely clears floor 1 

Gait evaluation: Step 

Symmetry 

Right and left step length not equal 

(estimate) 
0 

 

Right and left step appear equal 1 

Gait evaluation: Step 

Continuity 

Stopping or discontinuity between 

steps 
0 

 

Steps appear continuous 1 

Path (estimated in relation 

to 12-in width) 

Marked deviation 0 

 
Mild/moderate deviation or uses 

walking aid 
1 

Straight without walking aid 2 

Trunk 

Marked sway or uses walking aid 0 

 

No sway but flexion of knees or 

back, or spreads arms out while 

walking 

1 

No sway, no flexion, no use of 

arms, and no use of walking aid 
2 

Walking stance 

Heels apart 0 

 
Heels almost touching while 

walking 
1 
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Task Description Possible Score 

Change in gait speed: “Begin 

walking at your normal speed.  

When I say ‘fast’, walk as fast as 

you can.  When I say ‘slow’, walk as 

slowly as you can.” 

[3 steps each] 

Cannot change speeds, 

deviates greater than 15 

in outside 12-in 

walkway, or loses 

balance and needs 

assistance 

0 

 

Makes only minor 

adjustments to walking 

speed, or accomplishes a 

change in speed with 

significant gait 

deviations, deviates 10-

15 in outside 12-in 

walkway, or changes 

speed but loses balance, 

but is able to recover 

1 

Is able to change speed 

but demonstrates mild 

gait deviations, deviates 

6-10 in outside 12-in 

walkway, or no gait 

deviations but unable to 

achieve a significant 

change in velocity, or 

uses an assistive device 

2 

Able to smoothly change 

walking speed without 

loss of balance or gait 

deviation.  Shows a 

significant difference in 

walking speeds.  

Deviates 0-6 in outside 

12-in walkway. 

3 
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Task Description Possible Score 

Gait with horizontal head turns: 

“Begin walking at your normal 

speed.  When I say ‘right’, turn your 

head and look to the right.  When I 

say ‘left’, turn your head and look to 

the left.  Try to keep walking in a 

straight line.” 

[3 steps each; 2 turns each side] 

Severe disruption of gait, 

loses balance, stops, 

needs assistance, deviates 

greater than 15 in outside 

12-in walkway 

0 

 

Performs head turns with 

moderate change in gait 

velocity, slows down, 

deviates 10-15 in outside 

12-in walkway, but 

recovers 

1 

Performs head turns 

smoothly with slight 

change in gait velocity, 

deviates 6-10 in outside 

12-in walkway, or uses 

an assistive device 

2 

Performs head turns 

smoothly with no change 

in gait.  Deviates 0-6 in 

outside 12-in walkway. 

3 

Gait with vertical head turns: “Begin 

walking at your normal speed.  

When I say ‘up’, tip your head up.  

When I say ‘down, tip your head 

down.  Try to keep walking in a 

straight line.” 

[3 steps each; 2 turns each direction] 

Severe disruption of gait, 

loses balance, stops, 

needs assistance, deviates 

greater than 15 in outside 

12-in walkway 

0 

 

Performs head turns with 

moderate change in gait 

velocity, slows down, 

deviates 10-15 in outside 

12-in walkway, but 

recovers 

1 

Performs head turns 

smoothly with slight 

change in gait velocity, 

deviates 6-10 in outside 

12-in walkway, or uses 

an assistive device 

2 

Performs head turns 

smoothly with no change 

in gait.  Deviates 0-6 in 

outside 12-in walkway. 

3 
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Task Description Possible Score 

Gait and pivot turn: “Begin walking 

at your normal speed.  When I say 

‘turn and stop’, turn as quickly as 

you can to face the opposite 

direction and stop.” 

[time after saying ‘turn’] 

Cannot turn safely, 

requires assistance to 

turn and stop 

0 

 

Turns slowly, requires 

verbal cueing, or requires 

several small steps to 

catch balance following 

turn and stop 

1 

Turns safely in > 3 s and 

stops with no loss of 

balance, or turns safely in 

< 3 s and stops with mild 

imbalance, requires small 

steps to catch balance 

2 

Turns safely < 3 s and 

stops quickly with no 

loss of balance 

3 

Step over obstacle: “Begin walking 

at your normal speed.  When you 

come to the shoe box, step over it, 

not around it, and keep walking.” 

[2 boxes at 6 m, 9 in. total height] 

Cannot perform without 

assistance 
0 

 

Is able to step over one 

shoe box but must slow 

down and adjust steps to 

clear box safely.  May 

require verbal cueing. 

1 

Is able to step over one 

shoe box without 

changing gait speed, no 

evidence of imbalance 

2 

Is able to step over two 

shoe boxes without 

changing gait speed, no 

evidence of imbalance 

3 

Gait with narrow base of support: 

“Walk with arms folded across 

chest, feet aligned heel to toe in 

tandem.” 

[count steps up to 10] 

< 4 steps or cannot 

perform without 

assistance 

0 

 4-7 steps 1 

7-9 steps 2 

10 steps with no 

staggering 
3 
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Task Description Possible Score 

Gait with eyes closed: “Walk 

at your normal speed with 

your eyes closed” 

[time after ‘go’; 6 m (20 ft)] 

Cannot walk 6 m without 

assistance, severe gait deviations 

or imbalance, deviates greater 

than 15 in outside 12-in 

walkway, or will not attempt 

task 

0 

 

Walks 6 m, slow speed, 

abnormal gait pattern, evidence 

for imbalance, deviates 10-15 in 

outside 12-in walkway.  > 9 

seconds 

1 

Walks 6 m, uses assistive device, 

slower speed, mild gait 

deviations, deviates 6-10 in 

outside 12-in walkway.  7-9 s 

2 

Walks 6 m, no assistive devices, 

good speed, no evidence of 

imbalance, normal gait pattern, 

deviates 0-6 in outside 12-in 

walkway.  < 7 s 

3 

Ambulating backwards: 

“Walk backwards until I tell 

you to stop.” 

[6 m (20 ft)] 

Cannot walk 6 m without 

assistance, severe gait deviations 

or imbalance, deviates greater 

than 15 in outside 12-in 

walkway, or will not attempt 

task 

0 

 

Walks 6 m, slow speed, 

abnormal gait pattern, evidence 

for imbalance, deviates 10-15 in 

outside 12-in walkway 

1 

Walks 6 m, uses assistive device, 

slower speed, mild gait 

deviations, deviates 6-10 in 

outside 12-in walkway 

2 

Walks 6 m, no assistive devices, 

good speed, no evidence for 

imbalance, normal gait pattern, 

deviates 0-6 in outside 12-in 

walkway 

3 

Steps: “Walk up these stairs 

as you would at home (i.e. 

using the rail if necessary).  

At the top, turn around and 

walk down.” 

Cannot do safely 0 

 
Two feet to a stair, must use rail 1 

Alternating feet, must use rail 2 

Alternating feet, no rail 3 
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Lower Extremity Fugl-Meyer 

 
Test Item Description Possible Score 

Reflex Activity  

Achilles 

No reflex activity can be 

elicited 
0 

 

Reflex activity can be elicited 2 

Patellar 

No reflex activity can be 

elicited 
0 

 

Reflex activity can be elicited 2 

Flexor Synergy (in 

supine)  

Hip flexion 

Cannot be performed at all 0  

Partial motion 1 

Full motion 2 

Knee flexion 

Cannot be performed at all 0  

Partial motion 1 

Full motion 2 

Ankle 

dorsiflexion 

Cannot be performed at all 0  

Partial motion 1 

Full motion 2 

Extensor Synergy 

(in side lying)  

Hip extension 

Cannot be performed at all 0  

Partial motion 1 

Full motion 2 

Adduction 

Cannot be performed at all 0  

Partial motion 1 

Full motion 2 

Knee extension 

Cannot be performed at all 0  

Partial motion 1 

Full motion 2 

Ankle plantar 

flexion 

Cannot be performed at all 0  

Partial motion 1 

Full motion 2 
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Test Item Description Possible Score 

Movement 

combining 

synergies (sitting: 

knees free of chair)  

Knee flexion 

beyond 90 

No active motion 0  

From slightly extended 

position, knee can be flexed, 

but not beyond 90 

1 

Knee flexion beyond 90 2 

Ankle 

dorsiflexion 

No active flexion 0  

Incomplete active flexion 1 

Normal dorsiflexion 2 

Movement out of 

synergy (standing, 

hip at 0) 

Knee flexion 

Knee cannot flex without hip 

flexion 
0 

 

Knee begins flexion without 

hip flexion, but does not reach 

to 90, or hip flexes during 

motion 

1 

Full motion as described 2 

Ankle 

dorsiflexion 

No active motion 0  

Partial motion 1 

Full motion 2 

Normal Reflexes 

(sitting)  

 

[This item is only 

included if the 

patient achieves a 

maximum score on 

all previous items, 

otherwise score 0] 

Knee flexors 

Patellar 

Achilles 

At least 2 of the 3 phasic 

reflexes are markedly 

hyperactive 

0 

 

One reflex is markedly 

hyperactive, or at least 2 

reflexes are lively 

1 

No more than one reflex is 

lively and none are 

hyperactive 

2 

Coordination/speed 

- Sitting: Heel to 

opposite knee (5 

repetitions in rapid 

succession)  

Tremor 

Marked tremor 0  

Slight tremor 1 

No tremor 2 

Dysmetria 

Pronounced or unsystematic 

dysmetria 
0 

 

Slight or systematic dysmetria 1 

No dysmetria 2 

Speed 

Activity is more than 6 

seconds longer than 

unaffected side 

0 

 

2-5.9 seconds longer than 

unaffected side 
1 

Less than 2 seconds 

difference 
2 
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Strength Evaluation 

 

 

Exercise Trial Right Leg Left Leg 

Knee extension 

Trial 1   

Trial 2   

Trial 3   

    

Plantar flexion 

Trial 1   

Trial 2   

Trial 3   

    

Dorsiflexion Trial 1   

 Trial 2   

 Trial 3   
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Rating of Perceived Exertion 
 

 

6 

7  Very, very light 

8  

9  Very light 

10 

11 Fairly light 

12 

13 Somewhat hard 

14 

15 Hard 

16 

17 Very hard 

18 

19 Very, very hard 

20 
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Appendix F: Visual Task Performance Factor Analysis 

A factor analysis was done in an attempt to reduce the number of variables representing 

the visual task performance construct.  Factors were extracted using Principle Axis Factoring 

with a varimax rotation and Kaiser normalization.   

The factors extracted during the factor analysis of the visual task performance measures 

accounted for 69.73% of the variance (Table 30).  Factor 1 represented the response time during 

the obstacle condition, while factors 2 and 3 represented response time during walking.  Factor 4 

represented the percent of correct responses during the obstacle condition.  Group differences in 

visual task performance were evaluated using the highest-loading variable for each of the four 

extracted factors: number of responses and mean time for the walking condition, and mean time 

and percent correct for the obstacle condition.   

 

Table 30 

Extracted Factors and the High Loadings (> 0.5) of Each Measure of Visual Task Performance 

in Two Walking Conditions Relative to Baseline Performance 

Condition Variable 
Factor 

1 2 3 4 

Treadmill Walking 

Number of responses  -0.720    

Mean time   0.574 0.705  

Max time   0.842   

Min time  0.573     

Percent correct         

Obstacle 

Number of responses -0.802 -0.567     

Mean time 0.903      

Max time 0.875       

Min time        

Percent correct       0.912 
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Appendix G: Accelerometer Feature Extraction Principal Components Analysis 

 Principal Components Analysis was used to identify major modes of variation within the 

swing phase sagittal plane lower extremity joint angles and the accelerometer signal during 

swing in each of the three axes.  Visual inspection of the retained principal components (PCs) of 

the hip, knee and ankle waveforms revealed the PCs relevant to each peak joint angle and range 

of motion (Table 31).  Each stride for all participants and all walking conditions (N = 20093) was 

given a score for each of the retained angle and accelerometer PCs.  Bivariate correlations were 

done for each angle-accelerometer pair of PCs.  For each relevant angle PC, the accelerometer 

PCs with the greatest correlation coefficients were chosen as features for that angle.  The chosen 

accelerometer PCs were interpreted with discrete variables that could be extracted from the 

accelerometer signal (Table 32). 

 

Table 31 

Retained PCs of the Swing Phase Sagittal Plane Joint Angles 

   

Joint PC Feature Represented 

Hip 
1* Magnitude throughout swing 

2* Range of motion 

Knee 

1* Magnitude throughout swing 

2* Range of motion 

3 Timing of peak 

4 Magnitude at beginning and end of swing 

Ankle 

1* Magnitude throughout swing 

2* Range of motion 

3 Timing of peak 

4* Magnitude at end of swing 

* PC is relevant to angle peak or range of motion. 
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Table 32 

Retained PCs of the Swing Phase Accelerometer Signals Correlated with Peak and Range of 

Motion Angle PCs 

    

Axis PC Feature Represented Feature Discrete Variables 

X 

1 Magnitude throughout swing Mean, Max 

2 Timing of peak Mean First 50%, Value at 50%, 75% 

3 Timing of peak Mean First 50%, Value at 50%, 75% 

Y 

1 Magnitude/timing of peak Max 

2 Magnitude of peak and at end of swing Max, Value at 100% 

3 Timing of peak Value at 50 

4 One peak or two peaks Number of Peaks 

Z 

1 Magnitude throughout swing Mean, Max 

2 Magnitude/timing of peak Value at 60%, 80% 

3 Magnitude of trough Min, Value at 50% 

4 Number of oscillations Zero Cross Rate 

6 Timing of peak Mean First 25% 

Note. Percentages refer to percent of swing. 
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Appendix H: Trip Prevalence Calculation 

 The prevalence of trips among older adults (age 65 and older) was calculated based on 

the reported number of trips in four studies (W. P. Berg et al., 1997; Blake et al., 1988; 

Robinovitch et al., 2013; Talbot et al., 2005).  For each study, prevalence was calculated at the 

number of participants that tripped divided by the total number of participants (Table 33).  The 

prevalence was averaged across all four studies to get a mean prevalence of tripping for older 

adults.  In two cases, the number of participants that tripped was estimated based on the 

assumption that the average number of falls per faller was the same rate as the number of trips 

per tripper.   

 

Table 33 

Calculation of Prevalence of Trips Based on Studies Reporting Number of Trips for Older Adults 

         

Study 

Number of 

Incidents 
  Number of Participants   Prevalence 

of trips 
Falls Trips   Fallers Trippers Total   

Blake et al. (1988)         147 1042   0.14 

Berg, et al. (1997) 91 31a  50 17b 96  0.18 

Talbot et al. (2005)     125 589  0.21 

Robinovitch et al. (2013) 227 48   130 27c 371   0.07 

Average               0.15 

a 34% of falls were classified as a trip. 
b Average number of falls per faller: 91/50 = 1.82;                                                             

  Estimated number of participants that tripped: 31/1.82 = 17. 
c Average number of falls per faller: 227/130 = 1.75;                                                         

  Estimated number of participants that tripped: 48/1.75 = 27. 
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