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ABSTRACT 

PROBABILISTIC RELIABILITY ANALYSIS OF ELECTRIC POWER SYSTEMS WITH 

SMART GRID TECHNOLOGIES AND WATER DISTRIBUTION NETWORKS: 

MODELING, ASSESSMENT, AND COMPARISON 

 

by 

Ruosong Xiao  

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Dr. Lingfeng Wang 

 

With the rapid growth of population, the modern human society is becoming more and more 

dependent on the proper operation of critical infrastructures - the interconnected electrical power 

system, the drinking water distribution and supply system, the natural gas transmission and 

distribution system, and so forth. It has become an important issue to maintain reliable functions 

of these critical systems. As a result, comprehensive reliability evaluation is highly needed to 

quantify their reliability in an objective manner. Conventionally, deterministic criteria were used 

in reliability evaluations. However, it lacked the ability to model and quantify the stochastic 

nature of system behaviors such as component failures. In light of these facts, this thesis deploys 

probabilistic methodologies for conducting quantitative reliability modeling and assessment for 

nation’s critical infrastructures including electrical power networks incorporating smart grid 

technologies and water distribution networks. 

Power system operators are faced with the increasingly complicated operating conditions in bulk 

power systems. Yet due to the huge investment needed to build new power delivery facilities, 

cost-effective solutions such as new operational strategies are becoming more attractive and 

viable in recent years. Optimal transmission switching (OTS) and dynamic thermal rating (DTR) 
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are two such technologies which offer a potential solution to improving the power system 

reliability by more fully utilizing the existing power delivery assets. In this thesis, these two 

technologies are first discussed, which are then incorporated into the power system reliability 

evaluation procedure. Case studies are conducted on modified RTS-79 and RTS-96 systems 

using MATLAB and IBM CPLEX. The obtained simulation results have shown that with the 

enforcement of either OTS or DTR technology, the overall system reliability can be improved, 

and system reliability can be further improved if both technologies are enforced. 

The growing urban population has brought great stress to the aging drinking water distribution 

systems. It is becoming more challenging to maintain a reliable drinking water distribution 

system so as to meet the growing water demand. Thus, a comprehensive reliability evaluation of 

the aging water delivery infrastructure is of critical importance to enable informed decision-

making in asset management of the potable water sector. This thesis also proposes a probabilistic 

reliability evaluation methodology for water distribution systems based on Monte Carlo 

simulation (MCS) that takes into account both mechanical failures and hydraulic failures. 

Additionally, a C++ based software tool is developed to implement the proposed method. Case 

studies based on two representative water distribution systems are performed to demonstrate the 

effectiveness of the proposed method. 

A comparison is made between the reliability analysis of electrical power systems and that of 

water distribution systems. As interconnected capacitated networks, both systems share 

similarities in certain aspects such as component modeling and adequacy constraints. However, 

the specific features of the target systems should also be taken into consideration in the reliability 
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modeling and evaluation in order to obtain a more comprehensive and accurate estimation of the 

actual system reliability.   
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 Introduction 

1.1 Research Background  

The modern human society is highly dependent on the reliable operations of critical infrastructures 

including electrical power systems, drinking water distribution systems, sewage and drainage 

systems, natural gas transmission and distribution systems, and so forth. These complex systems 

serve as fundamental infrastructures to support our daily lives. Failures or malfunctions of these 

systems could cause severe problems such as economic loss, public health crisis or even big panic, 

riots and human deaths.  

On August 14, 2003, northeastern America experienced a catastrophic wide-area blackout. It is 

reported during nearly a week the blackout affected approximately 50 million people in areas of 

about 61,800 MW electrical load [1]. The associated economic cost was estimated to be between 

$4.5 and $8.2 billion in US [2], while gross domestic product (GDP) of the month of August in 

Canada was estimated to be down by 0.7% [1].  

On July 30, 2012, India experienced two severe power blackouts which were believed to be the 

largest in the history. The blackouts hit 20 of 28 India’s states, and nearly 600 million people, 

namely nearly half of the India’s population or 9% of the world population at that time, were left 

without power supply [3]. Hospitals stopped operating, transportation lost traffic control, and 

protests with riots took place in many places [4].  

In 2001, North Battleford in Canada experienced a drinking water crisis during which 

approximately 14,000 people were affected [5]. This outbreak has also been believed to be the 
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cause of  5,800 to 7,100 reported diarrheal illness cases at that time [6].  

More recently in January 2016, a water crisis took place in Flint, Michigan when this city chose to 

switch the main drinking water source from Lake Huron and Detroit River to Flint River since 

April 2014. Corrosive water in Flint River impaired old aging pipelines in the local drinking water 

system, releasing lead contamination in the water supply which caused severe damages to public 

health and finally led to a designated state of emergency for Genesee County. As one of the results, 

it was reported later that in groups of children in Flint, the blood-lead levels were found to rise 

from about 2.5% to as high as 5% [7].  

List of incidents related to these critical infrastructures is still growing, and all these tragedies have 

led to one truth: it is becoming more critical and urgent to improve the reliability of these critical 

infrastructures. However, in view of the fact that most of these infrastructures are large-scale 

interconnected networks, it is commonly believed to be unrealistic to mathematically model all 

aspects of these systems. Conventionally deterministic reliability criteria are adopted for the 

reliability evaluation of many systems. For example, in electric power systems, the N-1 or N-z 

criteria, which requires the whole power system to perform its full functionality to deliver 

electricity with the demanded amount and quality in the presence of one or z component failures, 

has long been used as the reliability criteria in practical system designs, planning, and operations 

[8]. Similarly in drinking water distribution system, traditionally the system is designed to be, if 

not completely reliable, highly dependable with deterministic reliability design guidelines – e.g., 

each demand point must be supplied by at least two supply paths or the system should maintain its 

reliable operation with no more than one pump failure [9]. Research about the similar concept – 

availability can also be found in [10, 11]. However, in real systems the reliability characteristics 
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of typical components, such as the widely used parameters - mean time to failures (MTTF) and 

mean time to repairs (MTTR), are mostly stochastic. Deterministic criteria fail to account for these 

stochastic characteristics, and therefore probabilistic reliability evaluation methodologies are 

preferred in order to more comprehensively evaluate the reliability performance of critical systems 

or infrastructures with high uncertainties. 

In light of these considerations, this thesis adopts the probabilistic methodology to perform 

reliability evaluation for both electric power systems incorporating the emerging smart grid 

technologies and drinking water distribution systems.  

1.2 Introduction to Reliability Analysis of Electric Power Systems Incorporating 

Cost-effective Smart Grid Technologies 

With the increasing uncertainties due to renewable energy resources integration, system load 

uncertainties, volatile weather conditions, and so forth, electric utilities are faced with an 

increasingly complex and uncertain environment for system planning and operations. In order to 

maintain the desired power system reliability while making the operation more economical, power 

utilities are in an urgent need of cost-effective technologies for power delivery network 

enhancement. While these technologies are usually considered to be too difficult to be 

implemented in practices in the past, recently with the rapid development of smart power grid, 

they are becoming more and more realistic. Several such technologies are being actively 

investigated in the recent years, including optimal transmission switching (OTS) [12], dynamic 

thermal rating (DTR) [13], network topology optimization (NTO) [14], and so forth. 
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1.2.1 Dynamic Thermal Rating 

Conventionally in the power system operation, overhead line (OHL) ratings are considered as 

static quantities which are calculated in a conservative assumed condition [15, 16].  However, in 

fact real ratings of OHLs are affected by the actual weather conditions. It has been reported that 

line ratings could increase by 10% to 30% when they are calculated accounting for real weather 

conditions. In some windy areas, this increase may even be as high as 50% [17]. Thus the DTR 

technology has been deployed to calculate actual ratings of overhead lines in terms of transmission 

line conductor thermal limitations based on real-time weather and conductor conditions. Various 

research and field tests have already been conducted to analyze the potential benefits brought by 

the DTR technology.  

In early research related to DTR [18-21], algorithms for calculating the dynamic thermal rating of 

OHLs are studied and examined. Field tests and simulations have proven the potential benefit of 

deploying DTR and associated issues on implementing DTR in real systems are also discussed. 

In [22] a practical case for DTR deployment in a UK distribution system is discussed. The DTR 

prototype system is deployed over 90 km of 132 kV OHLs and serves as long-term operating 

strategies. 

In [15] a comparison between the current application of DTR in UK and US is made. The existing 

networks, climates, load patterns and adopted standards for both of these countries are discussed 

in detail, which provides very useful information on implementing DTR in practice. 
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In [23] the potential reliability benefit brought by both OHL and underground cable DTR in a 

distribution system was investigated. The result not only shows the significant reliability 

improvement brought by DTR, but also proves the fact that DTR enforcement on OHLs has a 

greater impact than underground cables. 

In [16], the economic benefits brought by enforcing DTR on a certain power system with 

integrations of wind power was studied. The result shows that with the enforcement of DTR, more 

wind power generation can be implemented and a great economic benefits can be brought with the 

enforcement of DTR. 

Furthermore in [17] the reliability performance of DTR enforced system with wind farms 

integrated was examined. The simulation has been conducted on the IEEE 24-bus reliability test 

network consisting of 21 DTR systems and 3 integrated wind farms. And the result shows that a 

higher reliability along with a greater amount of wind power delivery can be achieved. 

However, while the effect of DTR and other smart grid technologies on the overall system 

reliability remains a compelling research topic, most existing literature showed only the impact of 

DTR. So far, very limited studies have been performed to investigate the potential benefits and 

issues when DTR and other smart grid technologies are deployed simultaneously in a power 

system. Thus it remains as a very interesting, open research topic. 

1.2.2 Optimal Transmission Switching  

In traditional power system operations, generating units are dispatched to minimize the total 

operating cost. During system operations, transmission networks are usually treated as static 
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topologies. Yet in fact, the topologies of these transmission networks could be adjusted by the 

system operator in a short time period, based on this consideration OTS was proposed in order to 

solve challenging problems. In [24], the mechanism of OTS was first introduced. Other goals of 

deploying OTS have also been studied for reducing the cost/loss [25] and cutting costs while 

satisfying the N-1 standard [26]. In [12], OTS was first formulated as a mixed integer programming 

problem to optimize the dispatch cost with DC optimal power flow (DCOPF) analysis, and in [27] 

OTS was extended to a multi-objective (MO) optimization problem for both minimizing 

generating cost and improving system reliability. The existing literature has indicated the 

significant benefits that OTS can bring to the power system. Nevertheless, the integration of OTS 

and other cost-effective technologies such as DTR have not been fully explored. 

1.3 Introduction to Reliability Analysis of Water Distribution Networks 

Water is one of the most precious resources on earth, and the drinking water distribution system is 

one of the most critical infrastructures for supporting human lives. Also, drinking water systems 

in urban areas are faced with the increasing pressure of meeting the growing demand. It has been 

reported in [24, 28] that by the year of 2025, most countries in the world will experience serious 

problems of water supply shortage. A drinking water distribution system is a complex 

interconnected system consisting of one or several water sources and a number of pipelines, valves, 

reservoirs, tanks, pumps, and other components. A normal drinking water distribution system 

should have the ability to fulfill the demands of all nodes within the service area with the required 

pressure and desired water quality. One or more failed components may impair such ability or 

even interrupt the water supply to some areas, jeopardizing human health and hindering 

firefighting services, etc. Thus, it is rather urgent to maintain a reliable drinking water system in 

the presence of various uncertainties. An objective reliability evaluation of drinking water 
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distribution systems is useful in enabling more informed decision making considering the aging 

water delivery infrastructure.  

However, comprehensive reliability evaluation of a real drinking water distribution system is a 

challenging task. Conventionally, two types of failures, i.e., mechanical failures and hydraulic 

failures, are taken into account in water distribution system reliability evaluation [29]. Mechanical 

failures refer to the system failures due to component failures such as breakage of pipelines or loss 

of pumps. Hydraulic failures refer to the system failures due to unmet user demands where the 

customer demands exceed the total water system capacity [29, 30]. To model a possible hydraulic 

failure, nodal demand variation curves or profiles are required. Typically, to analyze hydraulic 

failures, a network analysis should be performed to determine all nodal heads and pressures. 

Several useful software tools have been developed for this purpose such as KYPIPE [31] and 

EPANET [32]. Various reliability studies have been conducted considering either mechanical 

failures [33-35] or hydraulic failures [29, 36, 37]. In [38], both mechanical failures and hydraulic 

failures are taken into consideration, yet the proposed method cannot offer a systematic reliability 

performance estimation.  

1.4 Research Objectives and Thesis Layout 

This thesis seeks to develop and perform the probabilistic reliability evaluation method for the 

power system with smart grid technologies incorporated and the drinking water distribution system. 

In chapter 2 the model and the methodology for bulk power system reliability analysis 

incorporating DTR and OTS will be developed. Case studies will be conducted on two test systems 

to illustrate the effectiveness of the method. In chapter 3 the probabilistic method for reliability 

evaluation of drinking water distribution system will be presented. The methodology starts from 
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the reliability modeling of single component and then forms a comprehensive estimation method. 

A Visual C++ based simulation software tool is developed, based on which case studies are carried 

out to prove the effectiveness of the method. Then, discussions, conclusions and future work will 

be presented in chapter 4.   
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 Bulk Power System Reliability Analysis Considering DTR 

and OTS Techniques 

2.1 Introduction  

As previously discussed, smart grid technologies like DTR and OTS could all be potential 

solutions for optimizing power system operations and improving the overall system reliability. In 

this chapter the integration of these technologies into the conventional bulk power system 

reliability evaluation procedure and the effects of OTS and DTR will be studied.  

The rest of this chapter is organized as follows. Section of 2.2 gives a brief introduction about the 

DTR methodology of OHLs. Section of 2.3 discusses model and methodology of OTS. Section of 

2.4 presents the proposed reliability evaluation methodology considering OTS and DTR. Section 

of 2.5 gives the case studies and results. And section of 2.6 draws the conclusion of this chapter. 

2.2 Methodology of OHL Dynamic Thermal Rating 

Traditional ratings of OHLs are usually calculated in an assumed conservative weather condition 

where the ambient temperature is 40 °C, wind speed is 0.61m/s and full sun [39]. However, the 

OHL’s rating in practical operations can be increased in some cases, such as when the ambient 

temperature is lower or the wind speed is higher. Therefore, the dynamic thermal rating (DTR) 

method can possibly provide the ability to loosen capacity constraints of the transmission network 

and achieve an improved overall system reliability [13].  

Several standards and guidelines have already been developed for deriving line ratings in terms of 

conductor thermal ratings such as IEEE Standard 738 [39] and the standard stipulated by CIGRE 
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[40]. Since in the U.S. thermal overhead line ratings are traditionally obtained according to IEEE 

Standard 738 [39], the DTR model of OHLs in this standard is chosen as the DTR model in this 

thesis. In IEEE Standard 738, a non-steady-state heat balance equation of the overhead line is 

represented as follows: 

 𝑄𝑐 + 𝑄𝑟 + 𝑚𝐶𝑝
𝑑𝑇𝑎𝑣𝑔

𝑑𝑡
= 𝑄𝑠 + 𝐼2𝑅(𝑇𝑎𝑣𝑔) (2.1) 

 
𝑑𝑇𝑎𝑣𝑔

𝑑𝑡
=

1

𝑚𝐶𝑝
[𝑄𝑠 + 𝐼2𝑅(𝑇𝑎𝑣𝑔) − (𝑄𝑐 + 𝑄𝑟)] (2.2) 

where Qc represents the convection heat loss rate, Qr represents the radiated heat loss rate, mCp 

represents the total heat capacity of the conductor, Qs represents the heat gain from sun, R(Tavg) is 

the AC resistance of conductor at a certain average temperature of aluminum strand layers Tavg, and 

I represents the conductor current. It can be seen that in the non-steady-state case, rates of 

conductors’ temperature will increase exponentially with respect to the increase of the ambient 

temperature. 

The calculations of convection heat loss rate are listed as follows: 

 𝑄𝑐1 = 𝐾𝑑[1.01 + 1.35𝑁𝑅𝑒
0.52]𝐾𝑓(𝑇𝑠 − 𝑇𝑎) (2.3) 

 𝑄𝑐2 = 0.754𝐾𝑑𝑁𝑅𝑒
0.6𝐾𝑓(𝑇𝑠 − 𝑇𝑎) (2.4) 

where Kd represents the wind direction factor; NRe represents the dimensionless Reynolds number, 

which is determined  by conductor diameter, wind velocity and air density; Kf thermal 

conductivity of air at the average temperature of the boundary layer; Ts conductor surface 
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temperature; Ta represents the ambient temperature. And after calculating Qc1 and Qc2, the larger 

one of the two will be adopted as the value for convection heat loss rate. 

The calculation of radiated heat loss rate is listed as follows: 

 𝑄𝑟 = 17.8𝐷𝑐𝜀[(
𝑇𝑠+273

100
)4 − (

𝑇𝑎+273

100
)4] (2.5) 

where Dc represents the conductor diameter; and ε is the emissivity factor, representing the surface 

condition of the conductor. 

The calculation of rate of solar heat gain is listed as follows: 

 𝑄𝑠 = 𝛼𝐼𝑠𝑒𝑠𝑖𝑛(𝜃)𝐴 (2.6) 

where α represents the solar absorptivity factor; Ise represents the elevation corrected total solar and 

sky radiated heat intensity, which is determined by total solar and sky radiated heat intensity and 

solar altitude correction factor; θ represents the effective angle of incidence of the sun’s rays, which 

is determined by the altitude of sun, azimuth of sun and azimuth of line; A represents the projected 

area of conductor. 

The calculation of conductor electrical resistance at a certain temperature will be estimated using a 

liner interpolation given as follows: 

 𝑅(𝑇𝑎𝑣𝑔) = [
𝑅(𝑇ℎ𝑖𝑔ℎ)−𝑅(𝑇𝑙𝑜𝑤)

𝑇ℎ𝑖𝑔ℎ−𝑇𝑙𝑜𝑤
] (𝑇𝑎𝑣𝑔 − 𝑇𝑙𝑜𝑤) + 𝑅(𝑇𝑙𝑜𝑤) (2.7) 

where R(Thigh) represents a known value of conductor resistance at a high temperature; R(Tlow) 

represents a known value of conductor resistance at a low temperature. Then conductor resistance 
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value at a certain average temperature of aluminum strand layers can be calculated using this 

interpolation. 

Typically, for Drake ACSR, 1 hour (in most cases) is sufficient for temperatures of the conductors 

to reach a steady state value [39]. The heat balance equation can then be expressed as a steady-state 

form as follows: 

 𝑄𝑐 + 𝑄𝑟 = 𝑄𝑠 + 𝐼2𝑅(𝑇𝑎𝑣𝑔) (2.8) 

Then after completing calculations of each heat loss rate and heat gain rate, the actual line rating of 

OHLs in a certain hour can be expressed as: 

 𝐼 = √
𝑄𝑐+𝑄𝑟−𝑄𝑠

𝑅(𝑇𝑎𝑣𝑔)
 (2.9) 

In this study, a type of 795 kcmil 26/7 Drake ACSR conductor is chosen for all OHLs in the test 

system. The normal operating environment of OHLs is assumed to be a weather condition with an 

ambient temperature of 40 °C, full sun and a wind speed of 0.61m/s. For each hour, the ratio 

between line ratings calculated using hourly environmental parameters and ratings calculated using 

normal operating parameters will first be obtained. Then ratings of OHLs in the test system will be 

modified as the product of this ratio and the original ratings. 

2.3 Methodology of Optimal Transmission Switching 

As discussed previously, OTS can be seen as a promising technology for enabling more flexible 

and economical operations of electric power systems. In [12], OTS is formulated as a mixed integer 

programming problem with the objective for minimizing the total generation cost. In this thesis, 
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by modifying the objective function for minimizing the total load curtailment, OTS can be 

accounted for in bulk power system reliability evaluation. 

With the goal of minimizing the load curtailment, the OTS problem can be modeled as follows: 

 min ∑ 𝑃𝐶𝑑 (2.10) 

 𝜃𝑛
𝑚𝑖𝑛 ≤ 𝜃𝑛 ≤ 𝜃𝑛

𝑚𝑎𝑥 (2.11) 

 𝑃𝐺𝑔
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑔 ≤ 𝑃𝐺𝑔

𝑚𝑎𝑥 (2.12) 

 −𝑃𝐿𝑙
𝑚𝑎𝑥 ≤ 𝑃𝐿𝑙 ≤ 𝑃𝐿𝑙

𝑚𝑎𝑥 (2.13) 

 0 ≤ 𝑃𝐶𝑑 ≤ 𝑃𝐷𝑑 (2.14) 

 ∑ 𝑃𝐺𝑔𝑔∈𝐺𝑛
 − ∑ 𝑃𝐷𝑑  𝑑∈𝐷𝑛

+ ∑ 𝑃𝐶𝑑𝑑∈𝐷𝑛
 −  ∑ 𝑃𝐿𝑙𝑙∈𝐿𝐹𝑛

 + ∑ 𝑃𝐿𝑙𝑙∈𝐿𝑇𝑛
= 0 (2.15) 

 𝐵𝑙(𝜃𝑛 − 𝜃𝑚) − 𝑃𝐿𝑙 + (1 − 𝑧𝑙)𝑀 ≥ 0 (2.16) 

 𝐵𝑙(𝜃𝑛 − 𝜃𝑚) − 𝑃𝐿𝑙 − (1 − 𝑧𝑙)𝑀 ≤ 0 (2.17) 

 ∑ (1 − 𝑧𝑙) ≤ 𝑀𝑙𝑙  (2.18) 

where PCd is the load curtailment at load point d; θn is the voltage angle of bus n; θn
min and θn

max 

is the lower and upper bounds of the angle respectively; PGg is the active power output of generator 



 

 

14 

 

g; PGg
min and PGg

max are the lower and upper power output bounds for the generator; PLl is the 

power flow on line l; PLl
max is the transmission capability of line l; PDd is the load demand at load 

point d; Gn is the set of generators at bus n; Dn is the set of load demands at bus n; LFn is the set 

of lines of which the power flow is defined from bus n to another bus; LTn is the set of lines of 

which the power flow is defined from another bus to bus n; Bl is the electrical susceptance of line 

l; zl is a binary number which indicates the status of line l: if zl is 0, the line is open, otherwise it is 

closed; M is a significantly large number [41]; and Ml is the maximum number of lines that are 

allowed to be switched. 

As shown in (2.10), the OTS problem aims to minimize the total load curtailment in the power grid 

when a contingency occurs. Constraints of this programming problem are listed in expressions 

(2.11)-(2.18): expressions (2.11)-(2.14) indicate the limitations associated with the bus angle, 

generation output, power flow, and load curtailment, respectively; equation (2.15) ensures the 

power flow balance at each bus; expressions (2.16)-(2.17) refer to the power flow of a line, which 

is affected by the line switching. In expression (2.18) a limitation of maximum number of 

switchable lines is defined. 

Then in the reliability evaluation methodology of this thesis, OTS will be incorporated into the 

reliability evaluation procedure aiming to further reduce the load curtailment, if such loss of load 

exists after running an optimal power flow (OPF). For further results analysis, both the reduced 

load curtailment and the original load curtailment value will be recorded, along with the number 

of times that OTS actually takes effect. 
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2.4 Reliability Evaluation Framework Incorporating DTR and OTS 

Based on the previous discussions about DTR and OTS, as they both have the potential to improving 

the power system reliability, utilizing both technologies simultaneously could be more beneficial 

to increasing the system reliability. Since DTR requires chronological weather data, sequential 

Monte Carlo simulation (MCS) based reliability evaluation method will be used to tackle the 

problem.  

A typical sequential MCS based reliability evaluation procedure mainly contains the following 

basic steps [42]. First, component reliability characteristics should be properly modeled, and the 

related reliability parameters as well as the configuration data of the power system are needed. Then 

system states will be randomly generated using the sequential MCS method. For each randomly 

generated system state, an OPF analysis will be then conducted to calculate the amount of load 

curtailment. And after a sufficient number of system states have been sampled and analyzed, based 

on the sampled system states coupled with their corresponding curtailed loads, reliability indices 

such as loss of load probability (LOLP), expected demand not supplied (EDNS), and expected 

energy not supplied (EENS) can be calculated. These indices represent system reliability from 

different perspectives. 

With DTR being taken into consideration, static line ratings will be modified with hourly weather 

data, then the configuration data of the system will be changed with chronologically sampled system 

states thereby. And the OTS technology will take effect after running DCOPF and may affect the 

curtailed load in step III. For each sampled state, if the load curtailment calculated using DCOPF is 

larger than that later calculated using OTS, the load curtailment will then be updated with the 

smaller value and this system state will be marked as “OTS successfully enforced” in such a case. 
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So the basic procedure of the reliability evaluation considering OTS and DTR can be illustrated as 

follows: 

Step 1: Model the reliability characteristics of all generating units, transformers and transmission 

lines, etc. in the power system, gather the reliability parameters for each component and 

obtain the system configuration. 

Step 2: Gather hourly weather data and calculate the line rating ratios of each hour. 

Step 3: Generate a random state of the system using sequential MCS. 

Step 4: Modify all transmission line ratings with the calculated line rating ratio with respect to 

the current sampled state accordingly. 

Step 5: Run DCOPF and calculate the amount of load curtailment of the current system state, for 

both system configurations with and without transmission line ratings being modified. 

Step 6: If the calculated load curtailment amount in step 5 is not zero, then run OTS to minimize 

the value. If the new load curtailment amount could be reduced by OTS, save the load 

curtailment value and mark this state as “OTS successfully enforced”. If not, save new 

load curtailment amount which is the same as that of the OPF. 

Step 7: Update reliability indices. Check if any stopping criterion for MCS is satisfied. If not, go 

back to step 3. 

Step 8: Calculate the final values of all reliability indices. 
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StartStart

Gather reliability parameters of all components of the systemGather reliability parameters of all components of the system

EndEnd

Yes

No

Calculate line rating ratios with hourly weather data using DTRCalculate line rating ratios with hourly weather data using DTR

Generates a random state of system using sequential MCS Generates a random state of system using sequential MCS 

Modify all transmission line ratings with the calculated ratio, with respect to the 

current system state

Modify all transmission line ratings with the calculated ratio, with respect to the 

current system state

Run OPF analysis for both  modified and unmodified system, calculate load 

curtailment amounts

Run OPF analysis for both  modified and unmodified system, calculate load 

curtailment amounts

Zero load curtailed?Zero load curtailed?

Run OTS, calculate the load lossRun OTS, calculate the load loss

Record load loss resultsRecord load loss results

Update reliability indexUpdate reliability index

Stop criteria satisfied?Stop criteria satisfied?

No

Yes

Calculate the final values of reliability indicesCalculate the final values of reliability indices

Load curtailed reduced?Load curtailed reduced?

No

OTS successfully 

enforced  times +1

OTS successfully 

enforced  times +1

Yes

 

Figure 2-1 Flowchart diagram of reliability evaluation considering OTS & DTR 
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2.5 Case Studies 

To illustrate the effectiveness of the proposed methodology, two systems are used as the test bulk 

power systems for case studies: Test system A - IEEE RTS-79 system [43] with all capacities of 

transmission components being modified to 85% of the original values in [43] (painted in Figure 

2-2); Test system B - IEEE RTS-96 system [44] with all capacities of transmission components 

being modified to 60% of the original values in [44]. The simulation is conducted based on 

MATLAB and IBM CPLEX. Hourly weather data of Milwaukee, WI in the year 2010 [45] is used 

for calculating the actual line ratings of OHLs in this thesis, which are shown in Figure 2-2 and 2-

3. 

System reliability will be evaluated for the following four test scenarios: 

I. Base case: original system with OPF. 

II. System with OTS enforced. 

III. System with DTR enforced. 

IV. System with both OTS and DTR enforced. 

Sequential Monte Carlo simulation time has been set to be 100 years (876,000 hours) for test 

scenarios in test system A and 20 years (175,200 hours) for test scenarios in test system B. Settings 

of the simulation duration will be enough to guarantee the coefficient of variation of the EDNS 

index for both test systems to be less than 0.5%. And in order to analyze the exact benefits brought 

by DTR, OTS or the combination of these two technologies while eliminating the uncertainty 
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caused by the random sampling, all four test scenarios will be analyzed based on the same sampled 

states in each reliability evaluation process loop. 
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Figure 2-2 Test system A: one-line diagram of modified IEEE RTS-79 [43] 
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Figure 2-3 Hourly air temperature of Milwaukee, WI, 2010 [45] 

 

Figure 2-4 Hourly wind speed of Milwaukee, WI, 2010 [45] 

The values of the reliability indices for test system A obtained using the proposed reliability 

evaluation method are shown in Figure 2-4 to Figure 2-6. 
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Figure 2-5 Test system A: LOLP of four test scenarios 

 

Figure 2-6 Test system A: EDNS of four test scenarios 
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Figure 2-7 Test system A: EENS of four test scenarios 

 

Figure 2-8 Test system A: Times that OTS takes effect per year in the four test scenarios 

Since the ambient temperature in Milwaukee, WI is usually far below 40 °C, the dynamic thermal 

rating of the transmission network will very likely lead to a better system reliability performance. 

System reliability may also be improved as OTS could reduce the load curtailments in some cases.  

Figure 2-4 indicates that, by enforcing OTS or DTR in test system A, the LOLP index can be 

markedly reduced by 12.14% or 16.32%. And when both DTR and OTS are enforced, LOLP of 
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the system will be further decreased by 16.38%. Figure 2-5 and 2-6 list the system EDNS and 

EENS results. The results indicate that by enforcing OTS, DTR, and both OTS and DTR, the 

system EDNS index will decrease by 13.42%, 12.42%, and 13.42%, respectively. 

As previously described, in the reliability evaluation methodology of this study, OTS takes effect 

only when the amount of the optimized load curtailment using OTS is reduced with respect to the 

original load curtailment amount. Figure 2-7 shows the average number of times per year when 

OTS takes effect. For a 100-year Monte Carlo simulation, in average OTS takes effect for 17.96 

and 19.32 times per year with and without DTR enforced, respectively. 

The simulation has also been conducted on test system B which consists a larger number of various 

components with the transmission network more severely impaired comparing to test system A. 

The values of the reliability indices of test system B obtained using the proposed reliability 

evaluation method are shown in Figure 2-8 to Figure 2-10. And Figure 2-11 shows the average 

number of times per year when OTS takes effect in test system B. It can be seen from the results 

that the proposed methodology remarkably enhances the reliability of test system B. The LOLP 

index is reduced by 46.87%, 51.89% and 62.22% when OTS, DTR and both of them are enforced. 

And for ENDS index the reduction rate would be 19.13%, 36.43% and 37.49%. Then the average 

number of times per year when OTS takes effect is shown in Figure 2-11. With the higher number 

of the enforcement of OTS, the results shows not only the effectiveness of the proposed method, 

but also the potential benefit to large-size bulk power systems. 
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Figure 2-9 Test system B: LOLP of four test scenarios 

 

Figure 2-10 Test system B: EDNS of four test scenarios 
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Figure 2-11 Test system B: EENS of four test scenarios 

 

Figure 2-12 Test system B: Times that OTS takes effect per year in the four test scenarios 

To further demonstrate the effect of simultaneous enforcement of DTR and OTS, some example 

system states picked up from the results of test system A are listed in Table 2-1. All these example 

system states contain some level of combinations of transmission line failures and generator 

outages. By enforcing DTR, load curtailments in some system states are reduced. Then by 

enforcing OTS, load curtailments could be further decreased or even fully eliminated (e.g., in the 
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system states i, ii and iii). Although enforcing DTR and OTS simultaneously does not always fully 

eliminate the load curtailment of a deficient system state, as shown in system states iv and v, it is 

quite possible that a significant amount of load curtailment could be reduced. 

Table 2-1 Load curtailment results of example system states of test system A 

Example States Failed Components 

Load Curtailment (MW) 

 Base Case DTR Enforced DTR&OTS Enforced 

i. L30, G3, G9, G32 88.60  4.54  0 

ii. L28, G31, G32 318.25  225.80  0 

iii. L28, G6, G18, G32 195.25  102.80  0 

iv. L30, G12, G20, G32 286.38  179.72  147 

v. L28, G2, G14, G32 380.25  287.80  12 

2.6 Conclusions 

In this chapter, the study combines both OTS and DTR technologies into the power system 

reliability evaluation procedure so as to examine their impacts on the reliability of bulk power 

grids. The mechanisms of OTS and DTR are discussed, and the effects of the proposed reliability 

evaluation procedure considering OTS and DTR are investigated. The simulations are conducted 

using MATLAB and CPLEX on both IEEE RTS-79 system and IEEE RTS-96 system. The results 

show that with either OTS or DTR, the LOLP, EDNS and EENS of the power system could be 

improved. And when both technologies are enforced, reliability indices will be further improved. 

For possible future work, other scenarios such as wind power integration will be analyzed for the 

proposed methodology. And as IEEE releases a newer version of the OHL thermal rating 

calculation method [46], the methodology of DTR calculation could be updated and improved. 

Also, the OTS technology will be further explored for achieving enhanced performance.  
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 Reliability Evaluation of Drinking Water Distribution 

Systems Using Monte Carlo Simulation 

3.1 Introduction  

Reliability evaluation of drinking water distribution systems remains as an important issue. 

However, a comprehensive reliability estimation of such systems is difficult, and the related 

studies on this topic are rather limited. A probabilistic methodology for reliability evaluation 

incorporating both mechanical failures and hydraulic failures is proposed in this chapter. The 

method is developed to be able to provide both system-level and node-level reliability estimations. 

And a Visual C++ based software simulation tool is developed based on the proposed methodology 

to enable informed decision-making.  

The rest of this chapter is organized as follows. Section 3.2 presents the probabilistic reliability 

evaluation background. And in section 3.3 the methodology of reliability evaluation of drinking 

water distribution system is proposed. Case studies and simulation results are listed in section 3.4. 

And section 3.5 draws the conclusion of this chapter. 

3.2 Reliability Evaluation Background 

Probabilistic reliability evaluation theory has been well established [47] and widely applied in 

various fields such as electric power systems [8]. To evaluate the reliability of drinking water 

distribution systems, first the status of each component within the system needs to be modeled. In 

this thesis, pipes and pumps are represented by two-state models as they are physically repairable 

in most conditions. As shown in Figure 3-1, “UP” status indicates the normal condition and 

“DOWN” status represents the faulty condition of the component. These statuses vary with respect 
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to time, and the statuses of all components in the water system constitute an overall system state 

at a certain time. 

Component 1

up

down

Time

System state

0

down

updown

down down down

up

Component 2

Component n

 

Figure 3-1 Component statuses and system states 

Assuming a drinking water distribution system with a total of N repairable components, the number 

of the states of the system would be 2N. Real-world drinking water systems may consist of 

hundreds or thousands of components, leading to an enormous state space. In such cases, analytical 

methods usually rely on strong assumptions and simulation methods are a more viable choice for 

reliability analysis [9, 48]. In this thesis, a Monte Carlo Simulation (MCS) method, which has been 

widely enforced in other capacitated networks such as electric power grids [42], will be used for 

reliability evaluation of water distribution networks. 

In MCS-based reliability evaluation, the component status is sampled based on a random number 

generator. The random numbers can be generated based on the mechanism of either sequential 

MCS or non-sequential MCS. In non-sequential MCS, the unavailability of each component is 

compared with a random number that is generated within the range of [0, 1]. If the generated 
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random number is greater than the component unavailability, this component will be assumed to 

be in the “UP” status; otherwise it is in the “DOWN” status: 

 𝑆𝑖 = {
0                      if 𝑅𝑎𝑛𝑑 > 𝑈𝑖

1                      if 𝑅𝑎𝑛𝑑 ≤ 𝑈𝑖
 (3.1) 

where Si is the simulated status of component i, 0 represents the “UP” status and 1 represents the 

“DOWN” status; Rand stands for a randomly generated number within the range of [0, 1]; and Ui 

is the unavailability of component i. 

In the sequential MCS, two time chains of the component (i.e., time to failure (TTF) and time to 

repair (TTR)) will be randomly generated for determination of the status of the component. The 

component will be assumed to be in the “UP” status within the TTF, and in the “DOWN” status 

within the TTR. Then after all the TTF and TTR values are generated, system states can be 

determined for each moment. The values of TTF and TTR can be calculated as follows: 

 𝑇𝑇𝐹 =  −log (𝑅𝑎𝑛𝑑) ∙ 𝑀𝑇𝑇𝐹 (3.2) 

 𝑇𝑇𝑅 =  −log (𝑅𝑎𝑛𝑑) ∙ 𝑀𝑇𝑇𝑅 (3.3) 

where MTTF is the mean time to failure; and MTTR is the mean time to repair. 

Then for each sampled system state, a network analysis will be conducted to evaluate the system 

state with respect to the specified reliability criteria. After an adequate number of system states are 
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sampled and evaluated, the MCS may be halted, and the final results obtained are deemed 

reasonable estimates of the desired reliability indices. 

The whole reliability evaluation procedure can be summarized as shown in Figure 3-2. 

Select a physical system state

Analyze system performance for this 

physical system state

Update the system reliability indices

Stopping criteria 

satisfied ?

Calculate final reliability indices

Model physical components

Update the physical system state

No

Yes

 

Figure 3-2 Flow chart of MCS based reliability evaluation 

3.3 Methodology of Reliability Evaluation of Drinking Water Distribution System  

In the software developed based on this study, all pipelines and pumps are considered to be 

repairable components. Each pipeline may be open (denoted as the “UP” status) or closed (denoted 

as the “DOWN” status), and the pump is modeled in a similar manner. Then either a sequential or 

non-sequential MCS method can be used to sample statuses of components. For each system state, 
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the hydraulic simulator EPANET is integrated with the developed software for performing water 

flow analysis. 

Reliable water supply is dependent on the pressure, and insufficient pressure can result in water 

demand loss. For each node, the actually supplied water is calculated with respect to the pressure 

as follows [49]: 

 𝐷𝑎𝑖 = {
𝐷𝑟𝑖                      if 𝑃𝑐𝑖 ≥ 𝑃𝑚𝑖𝑛

𝐷𝑟𝑖
√𝑃𝑐𝑖

√𝑃𝑚𝑖𝑛
          if 𝑃𝑐𝑖 < 𝑃𝑚𝑖𝑛

 (3.4) 

where Dai is the actually supplied water at node i; Dri is the required water demand at node i; Pci 

is the calculated pressure at node i; P is the threshold pressure for all nodes within the system, 

which is set to be 40 psi in the following case studies.  

If the minimal pressure threshold cannot be reached, the loss of nodal demand can be defined as 

follows: 

 𝐷𝑙𝑜𝑠𝑠𝑖 = (1 −
√𝑃𝑐𝑖

√𝑃𝑚𝑖𝑛
)𝐷𝑟𝑖 (3.5) 

where Dlossi is the loss of nodal demand at node i; 

Then in this thesis, several reliability indices indicating both system-wide and nodal reliability 

performance are defined in the following. 
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The percentage of unsatisfied water demand (PUWD) index is defined as follows: 

 𝑃𝑈𝑊𝐷 =
∑ ∑ 𝐷𝑙𝑜𝑠𝑠𝑖,𝑛 𝑖𝑛

∑ ∑ 𝐷𝑟𝑖,𝑛 𝑖𝑛
 (3.6) 

 𝑃𝑈𝑊𝐷𝑖 =
∑ 𝐷𝑙𝑜𝑠𝑠𝑖,𝑛𝑛

∑ 𝐷𝑟𝑖,𝑛𝑛
 (3.7) 

where PUWD is the percentage of unsatisfied water demand index of the system; PUWDi is the 

percentage of unsatisfied water demand of node i in the system; Dlossi,n is the nodal demand loss of 

node i in the nth iteration of MCS measured in gallons per minute; and Dri,n is the water demand 

at node i in the nth MCS iteration measured in gallons per minute (gpm). 

The probability of loss of water service (PLWS) index is defined as follows: 

 𝑃𝐿𝑊𝑆 =
𝑁𝑙𝑜𝑠𝑠

∑  ∙ ∑  𝑖𝑛
 (3.8) 

 𝑃𝐿𝑊𝑆𝑖 =
𝑁𝑙𝑜𝑠𝑠𝑖

∑  ∙ ∑  𝑖𝑛
 (3.9) 

where PLWS is the probability of loss of water service index of the system; PLWSi is the probability 

of loss of water service index of node i within the system; Nloss is the number of system states in 

which there is unsatisfied nodal demand; and Nlossi is the number of system states in which the 

demand of node i is not fully satisfied. 

The expected water not supplied (EWNS) index is defined as follows: 
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 𝐸𝑊𝑁𝑆 =
∑ ∑ 𝐷𝑙𝑜𝑠𝑠𝑖,𝑛 𝑖𝑛

∑  ∙ ∑  𝑖𝑛
 ∙  0.5256 (3.10) 

 𝐸𝑊𝑁𝑆𝑖 =
∑ 𝐷𝑙𝑜𝑠𝑠𝑖,𝑛𝑛

∑  ∙ ∑  𝑖𝑛
 ∙  0.5256 (3.11) 

where EWNS is the reliability index indicating the expected water not supplied in the unit of 

millions of gallons per year; and EWNSi is the expected water not supplied of node i, which is 

measured in millions of gallons per year. 

With the quantitative reliability indices defined above, in the simulation after a reasonable number 

of iterations, both the system-level and nodal reliability indices can be obtained, which indicate 

the system or node level reliability characteristics of the water distribution network from different 

perspectives. 

3.4 Case Studies 

Case studies are performed using the developed software tool. Three data files are first loaded to 

the software: 1) the water system network file, which contains the configuration information and 

parameters of the studied water distribution system, 2) the reliability parameters file, which 

contains necessary reliability parameters of the components of the system, and 3) the water system 

demand profile file, which records the profiles of nodal demands. Then simulation options can be 

specified, including the choice of sequential or non-sequential MCS, and the maximum number of 

iterations. After running the software, a set of reliability indices results will be displayed in the 

“Reliability Evaluation Results” section. The running procedure of the developed software is 

illustrated in Figure 3-3, whose main interface is shown in Figure 3-4: 
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Figure 3-3 Procedure of the software tool 

 

Figure 3-4 Main interface of the software tool 
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Two test systems provided by EPANET are adopted as the test systems in this thesis [50]. Test 

system A comprises 40 pipes, 35 junctions and 1 tank, with a total nodal demand of 322.78 gpm. 

Test system B is a larger system which comprises 117 pipes, 92 junctions, 2 pumps, 2 reservoirs 

and 3 tanks, with a total nodal demand of 3,052.11 gpm. Topological diagrams of these two test 

systems are shown in Figs. 5-6 and nodal demand profiles are shown in Figure 3-5 and 3-6. 

 

Figure 3-5 Test system A [50] 

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

27

28
29

3031

32

33

34

35

36

26

Pump

Station

Tank



 

 

36 

 

 

Figure 3-6 Test system B [50] 

The number of iterations in MCS is set to be 10,000 in the case study to guarantee the convergence 

of reliability indices. The convergence curves for the two test systems are shown in Figure 3-7 and 

3-8, respectively. The variations of nodal demands are shown in Figure 3-9 and 3-10. 
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Figure 3-7 Nodal demand profiles for test system A (48 hours) 

 

Figure 3-8 Nodal demand profiles for test system B (24 hours) 

Then the reliability indices for these test systems can be obtained by running the software tool. As 

shown in Figure 3-9 and Figure 3-10, the convergence behavior of the EWNS index verifies that 

the specified maximum number of iterations (10,000) is sufficient to derive reasonably accurate 

reliability values for both test systems. The reliability indices for each test system using sequential 
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MCS are shown in Table 3-1 to Table 3-4. Some nodes in the system feature no water demand, so 

nodal reliability indices of these nodes are not shown in the results. 

 

Figure 3-9 Coefficient of variance of EWNS for test system A 

 

Figure 3-10 Coefficient of variance of EWNS for test system B 
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Table 3-1 Reliability indices of test system A 

PUWD PLWS EWNS (Mgal) 

0.0176088 0.965703 2.99946 

 

Table 3-2 Nodal reliability indices of test system A 

Node ID PUWD PLWS EWNS (Mgal) 

2 0.00260381 0.00239976 0.0109188 

3 0.00587857 0.00239976 0.0434396 

4 0.00934756 0.00589941 0.0394707 

5 0.00587857 0.00239976 0.0248227 

6 0.00587857 0.00239976 0.0155142 

7 0.00587857 0.00239976 0.0124113 

8 0.00875811 0.00519948 0.0416044 

9 0.00587857 0.00239976 0.0434396 

10 0.0629178 0.0593941 0.166047 

11 0.00587857 0.00239976 0.107917 

12 0.0405407 0.805819 0.342372 

13 0.0458199 0.822118 0.0483694 

14 0.00630276 0.0646935 0.00665345 

15 0.00612351 0.00249975 0.00646423 

16 0.00612351 0.00249975 0.0646423 

17 0.00612351 0.00249975 0.0646423 

18 0.0070973 0.00359964 0.074922 

19 0.00612351 0.00249975 0.0161606 

20 0.0114445 0.00789921 0.114772 

21 0.0114445 0.00789921 0.0966503 

22 0.0117014 0.0915908 0.0617626 

23 0.170523 0.931907 0.720044 
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24 0.00465387 0.00189981 0.0270205 

25 0.176835 0.965703 0.560024 

27 0.00911557 0.00819918 0.0384911 

29 0.00985238 0.0089991 0.036402 

30 0.0176098 0.0163984 0.0278845 

31 0.00551912 0.00459954 0.0495229 

32 0.00612351 0.00249975 0.054946 

33 0.0301038 0.0263974 0.0238341 

34 0.061021 0.0576942 0.0483123 

36 0.0189981 0.0189981 0.0099854 

 

Table 3-3 Reliability indices of test system B 

PUWD PLWS EWNS (Mgal) 

0.000176228 0.030497 0.298043 

 

Table 3-4 Nodal reliability indices of test system B 

Node ID PUWD PLWS EWNS (Mgal) 

15 0.000666962  0.00059994 0.000346861 

35 0.002829590  0.00319968 0.00159083 

101 0.000027337  0.0009999 0.00291934 

103 0.000034188  0.0009999 0.00256024 

131 0.000613219  0.00059994 0.0147385 

143 0.000178544  0.00019998 0.000622353 

153 0.000641868  0.0116988 0.0159395 

166 0.004242990  0.00439956 0.0062022 
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167 0.001096500  0.00089991 0.00897576 

203 0.001800400  0.00179982 0.0010122 

215 0.000399960  0.00039996 0.0193801 

217 0.002599740  0.00259974 0.0330948 

219 0.005099490  0.00509949 0.11075 

225 0.004299570  0.00429957 0.0515247 

231 0.000299970  0.00029997 0.00259831 

253 0.000899910  0.00089991 0.0257876 

 

Both sequential and non-sequential MCS give similar reliability estimation results. It can be seen 

that for both test systems, there is a certain probability that the system cannot fully fulfill all the 

nodal demands. This is due to the radial configurations within both systems: lots of nodes are 

connected to the network via only one pipeline, resulting in relatively unreliable water supplies to 

these nodes.  

For instance, in test system A, node 10 is connected to the distribution network via only node 8. 

Once the pipeline between node 8 and node 7 or the pipeline between node 8 and node 10 breaks, 

node 10 will inevitably lose all its water supply. The same phenomenon can be observed on nodes 

33 and 34, which feature a relatively poor reliability performance. On the contrary, some nodes 

such as nodes 17 and 18 have a relatively good reliability performance. From the network 

configuration, it can be seen that they are connected via multiple paths to the distribution network. 

It is possible in such cases that one or even more pipeline breaks have no impact on the water 

supply of these nodes.  
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Similarly, in test system B, while most of the other nodes are connected in a complex form, node 

219 connects to the network via only node 217. This vulnerable connection has also made the 

reliability performance of node 219 the worst among all the nodes in test system B. For the same 

reason, it can also be seen that the reliability performances of nodes 225 and 217 are relatively 

poor in test system B.  

From the above analysis, it can be summarized that a radial network usually provides poor nodal 

reliability performance. If no other factors are taken into consideration, from the design viewpoint 

of a water distribution system, a single node needs to be connected to the main network via multiple 

pipelines in order to achieve an improved reliability performance. 

3.5 Conclusions 

In this chapter a probabilistic methodology for performing quantitative reliability evaluation of 

drinking water distribution systems considering both mechanical failures and hydraulic failures is 

proposed. With the developed simulation software, case studies of reliability evaluation are 

conducted on two test systems so as to illustrate the effectiveness of the proposed method.  

For possible future work, the reliability model of individual components in the system can be 

improved. In the real world, the functionalities of various components are affected by various 

factors such as pipeline roughness and valve on/off statuses. In order to obtain a better estimation 

of the reliability performance of the system, such factors need to be taken into consideration 

comprehensively. The piped water quality could also be incorporated to define a set of more 

comprehensive reliability indicators of the contemporary drinking water system.  
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 Discussions, Conclusions and Future Work 

In the previous chapters, reliability analysis of electrical power system and water distribution 

system demonstrates some degree of similarities between these two interconnected, capacitated 

systems. At the same time. differences in the reliability analysis also arise due to their own specific 

characteristics. In this chapter findings obtained from conducting reliability analysis in both 

electrical power system and water distribution system will be discussed and briefly compared, then 

conclusion and future work of this thesis will be presented. 

4.1 Similarities between Reliability Analysis of the Electrical Power System and the 

Water Distribution System 

The reason of the effectiveness of probabilistic reliability analysis method for both systems first 

lies on the stochastic nature and similar modeling manner of the reliability characteristics of their 

components. In electric power system, as discussed in [42], the reliability characteristic of each 

component in the system can be modeled by a two-state representation. Probability for the 

component to be in either status can be calculated, and a chronological historical operating 

sequence (as used in sequential MCS method) can also be generated. In water distribution systems, 

reliability modeling of components such as pipelines is performed in a similar manner. For instance, 

the probability of failure can be determined by the time of repairing the pipe [51]. These similar 

modeling techniques lead to the similar probabilistic reliability analysis procedures as well as the 

similar statistical reliability metrics. 

Reliability analysis of both systems share quite a few similarities. Since both the electric power 

system and water distribution system are required to supply the customers with not only the 
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sufficient quantity but also the demanded quality, reliability analysis is in fact a multi-dimensional 

problem. Apparently it is more difficult to evaluate the quality since it involves more factors. As 

mentioned in [30], the quantification of the quality variation of a water distribution system is still 

a complicated issue. And currently in the field of water distribution system reliability most studies 

are mainly focused on the reliability concept raised in [52], which defines the acceptable water 

supply as the water pressure being higher than or equal to the demanded nodal pressure. In the 

power systems field, for electric utilities it is important to supply electricity to customers with both 

satisfactory quality and reliability [53]. Power quality related issues remain an active research field 

in a smart grid environment [54]. 

4.2 Differences between Reliability Analysis of Electric Power System and Water 

Distribution System 

The differences between electric power system and water distribution system are mainly due to 

their specific physical properties and operating conditions. Although the components in these 

systems can be modeled in a similar fashion, in practice these components are very different from 

each other. For example, roughness for the pipelines in water distribution systems and resistances 

for transmission lines in electrical power systems are comparable properties. However, in reality 

they have completely different definitions, and in the reliability analysis they are also treated 

differently. Resistances of transmission lines are conventionally considered as static values in the 

reliability evaluation process, but in lots of the studies about water distribution system reliability, 

pipeline roughness is considered as an important random variable to better characterize the 

probabilistic hydraulic behaviors of the system. 
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Other differences may be more at the system level. Differences in terms of operating strategies 

and network topologies could lead to different reliability performances in these systems. 

Furthermore, due to the fact that electric energy cannot be stored for a long time at a large scale 

and the nature of dynamics of electric power system, a number of electric quantities change very 

rapidly. Therefore, it has become very important to analyze the system behavior in the transient 

process. In the power system reliability field, the concept of system security is used to evaluate the 

ability of the system to respond to the disturbances during these transient processes [8]. Yet things 

are different in water distribution systems. Changes of nodal pressures are not as fast as changes 

of electrical quantities in the electric power system. In addition, water can be stored in facilities 

such as tanks and water towers for a long time.  

4.3 Conclusions and Future Work 

In this thesis, probabilistic reliability analysis of electric power system incorporating smart grid 

technologies and water distribution system are first introduced and discussed. Then, system 

reliabilities are modeled and investigated in detail. Finally, the proposed models and methods are 

validated by simulation studies with a discussion on their similarities and differences.  

Smart grid technologies such as DTR and OTS are becoming more and more practical nowadays, 

which are believed to be viable operating strategies in a smart grid environment. In this thesis, 

these two technologies are incorporated into the traditional reliability analysis procedure of electric 

power systems. Simulation results have shown that by incorporating these technologies the 

reliability of the overall power system can be enhanced. And the proposed methodology is also 

validated via extensive simulation studies. 
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As one of the nation’s critical infrastructures, reliability performance of the water distribution 

system has always been highly concerned. In this thesis, a probabilistic reliability analysis method 

using Monte Carlo simulation is proposed. Case studies are performed to give the estimation of 

the overall reliability of two test water systems, and also to illustrate the effectiveness of the 

proposed method. 

Although in this thesis the probabilistic reliability analysis method has been successfully applied 

in the electric power system and the water distribution system, what this thesis presents is by no 

means the final answer or the best solution to the reliability analysis in these fields. There is still 

room for further extending the proposed models and algorithms. With a deep understanding of 

reliability modeling at both component and system levels in other domains, the models and 

methods developed in this thesis are also promising to be extended to other engineering fields. 
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