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ABSTRACT 

LATERAL REPLACEMENT OF THE LUX OPERON IN A VIBRIO 
ISOLATED FROM THE INTESTINE OF A CORAL REEF FISH 

 
by 

Melissa Whyte 

 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Charles Wimpee 

 

In a screening of bioluminescent bacteria isolated from the intestines of coral reef 

fish, two strains (designated D6 and M1) were identified that have a luxA gene 

sequence significantly different from those of other Vibrio species. Phylogenetic 

analysis of several housekeeping genes, as well as toxR, shows that D6 and M1 

branch within a bioluminescent clade (designated the “D1 group,” isolated at the 

same time and place as D6 and M1) that is a close sister group to Vibrio harveyi. 

However, whereas the luxA genes of the D1 group are >98% identical to V. harveyi 

luxA, the luxA genes of D6 and M1 have a surprisingly low identity (86%) to the D1 

group and to V. harveyi. Strain D6 and strain D1 (a representative of the D1 group) 

were chosen for further investigation. The lux operons (luxCDABEGH) and flanking 

regions of both strains were cloned into E. coli and sequenced by primer walking. 

Although distinguishable from Vibrio harveyi, and possibly representing a new 

species, strain D1 is clearly a close relative, and has the same genes flanking the lux 

operon as V. harveyi. However, in addition to a highly divergent lux operon, the 

flanking regions of D6 are completely different from those of D1 and V. harveyi.  
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Based on differences in luxCDABEGH sequence and chromosomal context, we 

conclude that the lux operon of D6 was acquired by lateral gene transfer. PCR and 

Southern hybridizations show that D6 contains a single lux operon, so we conclude 

that this operon represents not simply a lateral transfer, but a lateral replacement of 

the original operon. We also show, in an E. coli expression system, that the lux 

operons of both D1 and D6 are up-regulated by the V. harveyi LuxR protein, 

indicating evolutionary conservation of lux gene regulation, despite the high degree 

of sequence dissimilarity between the two. These results show that we have not 

exhausted the diversity of bioluminescence genes in bacteria.    
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Introduction 

Bioluminescence 

Bioluminescence is the natural biochemical emission of light by any living organism. This 

phenomenon is widely distributed across the phylogenetic tree of life with representatives 

in more than 700 genera distributed amongst various microorganisms as well as fungi and 

animals. The vast majority are marine organisms, though there are terrestrial and 

freshwater representatives as well (Shimomura 2006). Approximately 90% of all 

organisms living at the ocean floor produce and/or are able to detect luminescence 

(Shimomura 2006), providing an obvious advantage to organisms living in an environment 

without access to sunlight. 

The origin and evolution of bioluminescence remain elusive to this day, though it is 

generally accepted that bioluminescence has evolved multiple times and in many different 

living organisms based on the diversity seen in the structure of substrates, mechanisms, 

and functions of light production in different organisms. Luciferins are the substrates in the 

light-producing reaction that actually emit light (Wilson and Hastings 1998). The structure 

of luciferins varies greatly amongst bioluminescent organisms, with some being highly 

conserved across phyla. The most common luciferins are bacterial, dinoflagellate, 

coelenterazine, and cypridina (Fig. 1). While these substrates tend to be conserved, 

luciferases and other photoproteins are often less conserved and more likely to have been 

derived from a number of different evolutionary lineages. The striking difference in the 

structure of luciferins along with the multitude of different luciferases and photoproteins 
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lends support to the hypothesis that bioluminescence has originated and evolved 

independently multiple times.  

 

Figure 1. Chemical structure of different luciferins. The chemical structure of (a) bacterial 
(FMNH2), (b) coelenterazine, (c) cypridina, and (d) dinoflagellate luciferins vary greatly.  
 
 

 
The mechanisms by which organisms luminesce are also varied amongst bioluminescent 

representatives. In bacteria, it is the binding of luciferase to its respective luciferin 

(FMNH2) in the presence of oxygen, and subsequent interaction with a nonspecific long 

chain aliphatic aldehyde that leads to the emission of light. In dinoflagellates, the luciferase 

is sensitive to pH. Exposure to a change in the concentration of hydrogen ions induces a 

conformational change in the luciferase which exposes the binding site for its luciferin 

(Schultz et al. 2005). Coelenterazine is used by many different bioluminescent organisms. 

This luciferin is synthesized from a tripeptide precursor made up of a phenylalanine and 

two tyrosine residues (Ward et al. 1994), though not all organisms that utilize 

coelenterazine are capable of synthesizing it (Haddock et al. 2001), and the exact mode of 
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biosynthesis is not well understood. The luciferin cypridina is synthesized from 

tryptophan, arginine, and isoleucine and has been linked to dietary intake (Warner & Case 

1980) as some luminescent fish utilizing this particular luciferin are incapable of producing 

the necessary amino acids and must therefore obtain them via their diet. In some fish that 

utilize cypridina, the light organ is actually an extension of the digestive system (Sugiyama 

et al. 1961), illustrating the link between bioluminescence and dietary intake in these 

organisms. 

Organisms produce light strategically and for many different reasons. In general terms, 

bioluminescence can be used as either an attractant, typically by use of a luminescent glow, 

or a deterrent, where luminescence is often in the form of a flash of light. A bright flash of 

light can be used to startle a predator, allowing the luminescent organism the opportunity 

to escape (Vallin et al. 2006, Haddock & Case 1994, Robinson et al. 2003). 

Counterillumination is another defense mechanism with luminescence being used as a 

form of camouflage. These organisms possess photophores on their ventral surface capable 

of matching the intensity of light coming from the ocean surface, counteracting any shadow 

that may have been cast. This prevents the organism from being detected by any predators 

swimming below with upward facing eyes (Johnsen et al. 2004, Herring et al. 1992, Harper 

& Case, 1999). Bioluminescence is also used as a sort of burglar alarm where a flash of light 

is emitted in an effort to attract the attention of a predator of the bioluminescent 

organism’s predator (Mensinger & Case 1992). Organisms can alternatively use 

bioluminescence as a means of attracting or illuminating prey (Pietsch 2009, Kubodera et 

al. 2007), increasing the chance of successful predation. Furthermore, intraspecies 

communication can be accomplished by use of bioluminescence and is often displayed in an 
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effort to attract a mate (Woods et al. 2007, Rivers & Morin 2008, Woodland et al. 2002, 

Ikejima et al. 2004).  

There are several different hypotheses for the origin of bioluminescence. It was originally 

thought that proto-bioluminescence may have evolved from a protein containing 

fluorescent groups that was linked to the respiratory chain (Harvey, 1922). Luciferases 

have often been implicated as the point of origin for these light generating reactions. 

Luciferases may have evolved from an enzyme originally responsible for detoxifying 

molecular oxygen at the time of the Great Oxidation Event, allowing anaerobic organisms 

the opportunity to adapt to their changing environment (McElroy and Seliger 1962). 

Alternatively, early luciferases may have utilized oxygen as an electron acceptor, increasing 

the efficiency of and capacity for energy production (Seliger 1975). It is also possible that 

luciferases evolved from flavoprotein oxygenases capable of catabolizing saturated 

aldehydes at low oxygen pressures (Seliger 1987) or from oxygenases involved in the 

metabolism of various toxic substances (Seliger 1993). As bioluminescence almost 

certainly originated multiple times, the origin, purpose, and evolution therefore most likely 

vary across different bioluminescent organisms. 

 

Bacterial bioluminescence 

Bioluminescent bacteria are exclusive to the Gammaproteobacteria and within that class 

primarily found in the genera Vibrio, Aliivibrio, and Photobacterium of the family 

Vibrionaceae. There are also a select few luminous species found in the genera 

Photorhabdus and Shewanella, of the families Enterobacteriaceae and Shewanellaceae, 
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respectively (Urbanczyk and Dunlap 2013), those these represent bacterial species that 

were previously non-luminescent and gained the ability to make light by obtaining lux 

genes, the genes necessary for light production, via lateral gene transfer. This narrow 

distribution of bioluminescence amongst bacteria argues that this feature originated once 

within the bacteria in member of the Vibrionaceae, with subsequent loss and transfer of the 

genes necessary for light production. This is further supported by the fact that all 

bioluminescent bacteria utilize the same biochemical reaction to produce light (Fig. 2). 

The vast majority of the bioluminescent bacteria are restricted to marine environments 

with the exception of Vibrio cholerae, which is capable of inhabiting brackish or fresh 

waters (Palmer and Colwell 1991), and luminous members of the genus Photorhabdus, 

which are terrestrial organisms (Fischer-Le Saux et al. 1999). Marine bioluminescent 

bacteria can be isolated from seawater, sediment, suspended particulates (Baumann and 

Baumann 1981), inanimate surfaces, macroalgae (Makemson et al. 1992), or from marine 

animals they are colonizing (Baumann and Baumann 1981). They colonize these animals as 

saprophytes, commensal symbionts, or parasites (Baumann and Baumann 1981, Dunlap 

2009). The incidence of these bacteria in seawater is quite low (0.01 – 40 cell/ml) but they 

can attain high numbers in the associations they form with animals (Nealson and Hastings 

1992). Luminous bacteria show little specificity when forming opportunistic saprophytic or 

enteric associations with marine animals (Preheim et al. 2011) but in cases of 

bioluminescent symbiosis, are highly specific to a single species of bacteria (Woodland et 

al. 2002, Dunlap et al. 2009).  
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The function of bioluminescence in bacteria is not entirely clear. The fact that the process is 

conserved even though it is energetically expensive would suggest that it is essential to the 

organism’s survival. Yet many species of the family Vibrionaceae are not luminescent and 

are not any less successful as a result (Baumann and Baumann 1981, Wollenberg et al. 

2011). In cases of bioluminescent symbiosis the bacterial benefit is clear; the bacteria are 

being provided with nutrients and the O2 necessary to produce light and in exchange are 

providing the host with luminescence, the display of which can be used to attract a mate, 

avoid a predator, or to help illuminate potential prey (Harvey 1952, Hastings and Nealson 

1981). In cases of free-living bioluminescent bacteria the function is less clear. It is possible 

that the luminescence producing reaction could aid in reoxidation of reduced coenzymes 

under conditions of low oxygen, functioning as a secondary respiratory chain when the 

concentration of oxygen is too low for the cytoplasmic membrane-associated electron 

transport chain to function (Hastings and Nealson 1981, Nealson and Hastings 1992). This 

would allow the bacteria to survive in environments like the fish intestine, a preferred 

habitat due to its rich nutrient content. It is also possible that bioluminescence is used as a 

means of dispersing the bacteria. In this case, bacteria form a luminous colony on some 

particle of decaying tissue or a fecal pellet which is detected by an animal that is attracted 

to the light. The bacteria are eaten by the animal, which brings the bacteria into the 

animal’s nutrient rich gut, within which the bacteria are able to reproduce. The bacteria 

will eventually be passed out of the animal’s digestive system, aiding in the dispersal of the 

bacteria (Hastings and Nealson 1981, Nealson and Hastings 1992). As bioluminescence 

appears to provide no selective advantage to free living bacteria, it is possible that 
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whatever function it previously carried out is no longer necessary for survival and is 

consequently in the process of being lost all together. 

 

The lux operon 

Common to all bioluminescent bacterial species is the lux operon, a core set of genes 

necessary for light production. At a minimum, the lux operon is made up of luxCDABE with 

most species also containing a number of different accessory genes (Ast and Dunlap 2004, 

Urbanczyk et al. 2007)(Fig. 3). The genes luxA and luxB code for the α and β subunits of the 

enzyme luciferase, which is the catalyst of the biochemical reaction producing bacterial 

bioluminescence, while luxC, luxD, and luxE code for the r (reductase), s (synthetase), and t 

(transferase) polypeptides of the fatty acid reductase complex, respectively. This fatty acid 

reductase complex provides the cell with the reduced long chain aliphatic aldehyde 

substrate necessary for the reaction to occur. The required FMNH2 is produced by a flavin 

reductase complex coded for by luxG, a common accessory gene of the lux operon (Meighen 

and Dunlap 1993, Lin et al 1998, Nijvipakul et al. 2008) (Fig. 2).  

 

 

 

 



 
 

8 
 

 

Figure 2. Genetic components of the biochemical reaction leading to light production in 
bacteria. The proteins necessary for biochemical reaction that causes bioluminescence in bacteria 
are coded for by a group of genes called the lux operon. A flavin reductase (coded for by luxG) 
provides the bacteria with a supply of FMNH₂. A fatty acid reductase complex (coded for by luxC, 
luxD, and luxE) is responsible for the synthesis and recycling of RCHO, a necessary aldehyde 
substrate. Luciferase (coded for by luxA and luxB) catalyzes the oxidation of reduced FMNH₂ and 
RCHO by use of O₂, emitting a blue green light (λ = 490 nm) in the process. 

 

The lux operon in luminous species of the genus Aliivibrio also contains luxR and luxI, genes 

coding for regulatory proteins involved in mediating the expression of the lux genes 

(Engebrecht et al. 1983, Schaefer et al. 1996). This is also the case in Shewanella hanedai, 

which, based on sequence similarity and gene arrangement, appears to have obtained its 

lux operon via lateral transfer of the lux genes from a member of the genus Aliivibrio (Kasai 

et al. 2007, Urbanczyk et al. 2008). These genes are typically not seen as a part of the lux 
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operon, though luxR, or some homologue, is present within the genome of all 

bioluminescent bacteria (Dunlap and Urbancyzk 2013). All luminous members of the genus 

Photobacterium, with the exception of P. leiognathi, contain luxF, which codes for a non-

fluorescent flavoprotein (Ast and Dunlap 2004). The luxF gene is the result of a gene 

duplication event of luxB. The respective LuxF protein may function by scavenging for an 

inhibitory side product of the luminescence reaction but is not necessary for light 

production (Moore and James 1995, Kaeding et al. 2007). Also found in representatives of 

Photobacterium are genes involved in the synthesis of riboflavin, in an organized group of 

genes termed the rib operon (ribEBHA), though P. phosphoreum lacks ribE (Lee et al. 1994, 

Lin et al. 2001). These two operons are under the control of the same regulatory elements 

and together form the lux-rib operon. Vibrio species harveyi and campbellii also contain 

luxH, a homologue of ribB (Swartzman et al. 1990). Since there is a copy of ribB elsewhere 

in the genome, it is not clear whether there is an advantage to this redundancy, especially 

considering that many bioluminescent bacteria lack luxH as part of the lux operon, and 

instead rely on the single copy of ribB.  
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Figure 3. Genes comprising the lux operon of various luminous bacterial species. The core 
genes of the lux operon (luxCDABE) are shown in light blue. Various other accessory genes are 
depicted in different colors. The direction of transcription of each gene is depicted by the direction 
of the arrow on which it is shown. (Adapted from Dunlap and Urbanczyk 2013) 
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Inheritance of the lux genes is said to be primarily vertical, though there are well 

documented cases of laterally transferred lux operons (Ast et al. 2007, Urbanczyk et al. 

2008). As mentioned before, based on a high degree of sequence identity and similar gene 

arrangement S. hanedai is thought to have received its operon via lateral transfer from a 

member of the genus Aliivibrio (Kasai et al. 2007). S. woodyi also seems to have been the 

recipient of lux genes transferred laterally from a species of Aliivibrio (Kasai et al. 2007). 

Phylogenetic analysis has added further support to both of these hypotheses (Urbanczyk et 

al. 2008). The lux operon in Photorhabdus luminescens was thought to have been acquired 

from an ancestor of V. harveyi (Forst et al. 1997, Meighen 1999) but phylogenetic analysis 

has not been definitive in this case (Urbanczyk et al. 2008). There are also documented 

cases of lateral transfer of lux genes amongst species of the genus Vibrio. V. chagasii was 

the recipient of the lux operon of V. harveyi (Urbanczyk et al. 2008), as was a luminous 

strain of V. vulnificus (Oliver et al. 1986). Though we know of all of these cases of lateral 

gene transfer of the lux operon, there has only previously been one reported case of the 

lateral replacement of the lux operon in any bioluminescent bacterial species, in a strain of 

Photobacterium aquimaris (Urbanczyk et al. 2012).  

 

Biochemistry of bacterial bioluminescence 

As stated before, the biochemistry of bioluminescence varies amongst different organisms. 

It is however, conserved within the bacteria. The biochemical reaction responsible for light 

production in bacteria is catalyzed by the enzyme, luciferase. Luciferase is a heterodimeric 
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protein made up of α and β subunits. Luciferase is responsible for mediating the oxidation 

of two substrates, a nonspecific long chain aliphatic aldehyde (RCHO) and a reduced flavin 

mononucleotide (FMNH₂), which emits a photon in the process (Fig. 4). The oxidant is O2, 

yielding H2O. 

    

Figure 4. The biochemical process of light production in bacteria. The biochemical reaction 
leading to light production in bacteria begins with the binding of luciferase to FMNH2 and 
subsequent interaction with O2 to form flavin-4a-hydroperoxide. Flavin-4a-hydroperoxide 
interacts with a long chain aldehyde substrate to form a highly stable intermediate which, over a 
process of slow decay, oxidizes FMNH2 and RCHO to form FMN and RCOOH, emitting light in the 
process. (Adapted from Ripp et al., 2011) 

 

This reaction begins with the binding of FMNH2 to luciferase. This complex can then 

interact with O2 to form flavin-4a-hydroperoxide. The flavin-4a-hydroperoxide interacts 

with the RCHO to form a highly stable intermediate. This highly stable intermediate 

undergoes a process of slow decay, emitting a blue-green light (hv = 490 nm) in the 

process, as well as oxidizing both substrates to produce FMN and RCOOH (Fig. 4). In this 

reaction, FMNH2 is supplied by flavin reductase, an NAD(P)H-flavin oxido-reductase 

enzyme (Fig. 4). The long chain aliphatic aldehyde is provided by a fatty acid reductase 

complex made up of three polypeptides, an NADPH-dependent acyl protein reductase, an 
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acyl transferase, and an ATP-dependent synthetase. The reaction is highly specific for 

FMNH2 but not so for the long chain aliphatic aldehyde, though its presence in some form is 

necessary and has been shown to most often be tetradacanal in vivo (Lee et al. 1990, 

Meighen and Dunlap 1993, Hastings 1995, Wilson and Hastings 1998). 

 

Transcriptional regulation of the lux operon in bacteria 

Light production is an energetically expensive process and thus needs to be under tight 

regulation. In bacteria, this is accomplished by quorum sensing. Quorum sensing provides 

bacteria with the means to regulate gene expression in response to fluctuations in the cell 

density of their immediate surroundings. Bacteria synthesize auto-inducer molecules that 

can be sensed by receptor proteins present at their inner membrane. These receptor 

proteins can then relay that signal to other proteins within the cell that can carry out some 

function in response. While the exact mechanisms of quorum sensing vary, they all follow 

this general outline. 

In V. harveyi and its close relatives, there are three different auto-inducer molecules 

involved in the regulation of light production by quorum sensing: 3-hydroxybutanoyl-HSL 

(harveyi autoinducer-1, HAI-1) which is specific to V. harveyi and other closely related 

species, (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran borate (V. harveyi 

autoinducer-2, AI-2Vh) which is an interspecies communicator capable of being both 

synthesized and detected by many different species of bacteria, and (S)-3-hydroxytridecan-

4-one (cholerae autoinducer, CAI-1) which has been shown to be present in both V. 

cholerae as well as V. harveyi, though its use outside of the genus Vibrio is currently 
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unknown. Synthesis of HAI-1, AI-2Vh, and CAI-1 are carried out by LuxM, LuxS, and CqsA, 

respectively (Cao and Meighen 1989, Bassler et al. 1993, Schauder et al. 2001, Kelly et al. 

2009). Each of these auto-inducer molecules has a corresponding histidine kinase receptor 

protein located at the inner plasma membrane. HAI-1 binds LuxN, AI-2Vh binds LuxPQ, and 

CAI-1 binds CqsS (Bassler et al. 1993, Bassler et al. 1994a, Henke and Bassler 2004). Under 

conditions of low auto-inducer concentration, LuxN, LuxPQ, and CqsS act as kinases, 

phosphorylating the phosphotransfer protein, LuxU. LuxU passes the phosphate to LuxO, a 

DNA response regulator (Bassler et al. 1994b, Bassler 1999, Lilley and Bassler 2000). 

Phosphorylated LuxO, along with the sigma factor σ54, then activates transcription of 

several small regulatory RNAs (Qrr 1-5) (Lenz et al. 2004, Tu and Bassler 2007). These 

small regulatory RNAs bind the luxR transcript, destabilizing it. LuxR is responsible for 

activating transcription of the lux operon and so by destabilizing the luxR message, 

transcription of the lux genes is blocked (Showalter et al. 1990, Swartzman et al. 1992)(Fig. 

5a). Under conditions of high concentration of auto-inducer molecules, the receptor kinase 

proteins switch their activity to that of a phosphatase, leading to dephosphorylation of 

LuxO. Dephosphorylated LuxO is no longer able to activate transcription of the small 

regulatory RNAs Qrr 1-5. Without those small regulatory RNAs binding the luxR transcript, 

the message is translated and LuxR is produced and able to activate transcription of the lux 

operon. This system has the added complexity of a negative autoregulation of LuxR and 

LuxO, as well as the post transcriptional control of LuxO by Qrr 1,5 (Fig. 5b). These 

additional regulatory mechanisms allow for the fine tuning of light production in response 

to the various environmental changes the bacterium may encounter (Waters and Bassler 

2005, Tu et al. 2010). 
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Figure 5. Quorum Sensing in Vibrio harveyi. (a) At low autoinducer concentration, receptor 
proteins act as kinases, phosphorylating LuxU. LuxU in turn phosphorylates LuxO which, along with 
σ⁵⁴, activates expression of genes coding for the small regulatory RNAs, Qrr1-5. Qrr1-5 then act 
with the small RNA chaperone, Hfq, to bind and block transcription of luxR. Without LuxR, the lux 
operon is not transcribed. (b) At high autoinducer concentration, autoinducers bind their receptors 
which act as phosphatases. These phosphatases dephosphorylate LuxO which interrupts 
transcription of the small regulatory RNAs Qrr1-5. In the absence of these small regulatory RNAs, 
luxR is transcribed and therefore LuxR is able to activate transcription of the lux operon leading to 
the production of light. (Adapted from Bassler, 2006) 
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Hypothesis 

In a screening of bioluminescent bacteria isolated from the intestines of coral reef fish, an 

isolate termed D6 was identified that has a luxA gene sequence significantly divergent from 

those of other Vibrio species (O’Grady 2008). This led to the development of two 

hypotheses: (1) either D6 represents a separate lineage, as of yet undescribed or (2) D6 is 

of a known lineage but has acquired its lux operon via lateral gene transfer from an 

unknown donor. Furthermore, if this is in fact a case of lateral gene transfer, D6 either 

contains or has lost its ancestral copy of the lux operon.  

This study investigates the means by which D6 obtained its lux operon. To test this, I will 

compare sequence and phylogenetic analysis of nucleotide sequence of the lux operon as 

well as a selection of highly conserved genes unrelated to light production in D6 with its 

close relatives, D1 and V. harveyi. I will examine conservation of regulatory elements in D6 

and D1 by testing cross-species activation of the lux operon in both strains using the 

transcriptional activator, LuxR, from V. harveyi. Finally, I will determine copy number of the 

lux operon in both D6 and D1. Sequence and phylogenetic divergence in lux genes with 

concurrent similarity in other conserved genes will indicate a lateral transfer of the lux 

operon in D6. Cross-species activation of the lux operon in D6 will add further support for a 

lateral gene transfer event. A single copy of the lux operon in D6 will indicate a lateral 

replacement of its ancestral operon with the lux operon it currently possesses. 
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Methods and Materials 

Bacterial Strains 

Bacterial strains D1 and D6 were isolated at the same place and time from the intestine of a 

coral reef fish off of Chub Cay, an island in the Bahamas. A lab strain of V. harveyi (B392) 

was used as a positive control. E. coli JM109 cells were obtained from Promega. V. harveyi 

as well as strains D1 and D6 were maintained in SWC + 30% glycerol at -80°C. E. coli JM109 

cells were maintained in LB + 30% glycerol at -80°C. 

 

Media 

Bacterial strains D1, D6 and V. harveyi were grown on Sea Water Complete (SWC) growth 

medium [per liter: 375 ml Artificial Sea Water (per liter: 58.44g NaCl, 10.15g MgCl₂, 12.3g 

MgSO4∙7H₂O, 1.49g KCl), 5g tryptone, 3g yeast extract, 3ml glycerol, 622ml dH₂O] either 

with aeration in liquid media or on plates (by adding 15g/L agar to SWC) at room 

temperature (25°C). 

E. coli JM109 cells were grown on Luria Bertani (LB) growth medium (per liter: 10g 

tryptone, 5g yeast extract, 10g NaCl) either with aeration in liquid media or on plates (by 

adding 15g/L agar to LB) at 37°C. For induction of the luxRVh expression system, LB 

containing 0.2% arabinose, 25μg/ml chloramphenicol, and 100μg/ml ampicillin was used. 

During bacterial transformation, NZY medium (per liter: 5g NaCl, 2g MgSO₄∙7H₂O, 5g yeast 

extract, 10g NZ amine) was used for cell recovery. 
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Gel electrophoresis and imaging 

Nucleic acid electrophoresis gels were made using 1% agarose dissolved in 1X TAE buffer 

(0.04M Tris-acetate, 0.001M EDTA) with an added 1μg/ml ethidium bromide. A 1kb ladder 

was used for size comparison of DNA fragments. Gels were photographed using a Kodak 

Gel Logic 100 imaging system. 

Imaging of bioluminescent bacterial colonies was done using GeneSnap 7.12. The settings 

were as follows: 5 minute exposure, high resolution, no filter, and no light. 

 

Polymerase chain reaction 

A set of existing V. harveyi primers was used to obtain portions of the nucleotide sequence 

of the lux operon and flanking regions in D1. From the obtained sequences, additional 

primers were designed to fill in any gaps. Consensus primers were designed using 

sequence from various Vibrio species in order to amplify the USORF, luxC, and moeAB in D1 

as well as USORF and moeB in D6 and luxR from D1, D6, and V. harveyi. 

Amplification of DNA fragments was done via polymerase chain reaction (PCR) using 

GoTaq polymerase (Promega) for amplification of short fragments (<2000 bp) and Phusion 

polymerase (ThermoFisher) for amplification of long fragments (>2000 bp). The reactions 

were carried out using a Bio-Rad DNA Engine Thermal Cycler. PCR products were verified 

via gel electrophoresis and subsequently purified using the QIAquick spin column 

purification system. 
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Sequence analysis 

Sequencing of amplified DNA fragments was done by Sanger Sequencing at the University 

of Chicago’s DNA Sequencing Center. DNA sequence assembly was done using Basic Local 

Alignment Search Tool (BLAST) via NCBI. Upon completion of the sequencing of the operon 

and flanking regions in D1, restriction digests were done looking for fragments of predicted 

size to confirm DNA sequence obtained was correct.  

The lux operon and flanking regions of D6 were obtained by cloning and subsequent 

sequencing of clones. Genomic DNA from D6 was digested with Sau3A and run through gel 

electrophoresis overnight at 20V. Bands of DNA approximately 20 kb in size were excised 

and purified using the QIAEX II Agarose Extraction kit per the manufacturer’s protocol. A 

plasmid pGEM3Z was digested with BamHI and subsequently dephosphorylated using 

Thermosensitive Alkaline Phosphatase (TSAP). The DNA fragments were then ligated into 

the plasmid and transformed into competent E. coli XL10 Gold cells. Blue-white screening 

was used to confirm successful insertion of the plasmid. Colony hybridization using a luxA 

probe was used to identify lux-containing clones. The chosen colonies were then grown up 

overnight in LB + ampicillin at 37°C for isolation of plasmid DNA. Plasmid DNA was isolated 

from the overnight cultures using the Wizard Plus SV Miniprep DNA Purification system 

per the manufacturer’s protocol. The insert DNA was then sequenced and assembled. 
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Phylogenetic analysis 

All phylogenetic analysis was carried out using MEGA7 (Kumar et al. 2015). The 

evolutionary history in the multilocus tree was inferred by using the Maximum Likelihood 

method based on the General Time Reversible model (Nei and Kumar 2000). The tree with 

the highest log likelihood is shown. The percentage of trees in which the associated taxa 

clustered together is shown next to the branches. Initial tree(s) for the heuristic search 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, 

and then selecting the topology with superior log likelihood value. A discrete Gamma 

distribution was used to model evolutionary rate differences among sites. The rate 

variation model allowed for some sites to be evolutionarily invariable. The tree is drawn to 

scale, with branch lengths measured in the number of substitutions per site. The analysis 

involved 19 nucleotide sequences. All positions with less than 95% site coverage were 

eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases 

were allowed at any position.  

The evolutionary history in both the ftsZ and mreB nucleotide trees was inferred by using 

the Maximum Likelihood method based on the Kimura 2-parameter model (Kimura 1980). 

The trees with the highest log likelihood are shown. The percentage of trees in which the 

associated taxa clustered together is shown next to the branches. Initial tree(s) for the 

heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood (MCL) approach, and then selecting the topology with superior log likelihood 
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value. A discrete Gamma distribution was used to model evolutionary rate differences 

among sites. The trees are drawn to scale, with branch lengths measured in the number of 

substitutions per site. The analyses involved 19 nucleotide sequences. All positions with 

less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, 

missing data, and ambiguous bases were allowed at any position. 

The evolutionary history in the luxA and topA nucleotide trees was inferred by using the 

Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei 1993). The 

trees with the highest log likelihood are shown. The percentage of trees in which the 

associated taxa clustered together is shown next to the branches. Initial tree(s) for the 

heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using the Maximum Composite 

Likelihood (MCL) approach, and then selecting the topology with superior log likelihood 

value. A discrete Gamma distribution was used to model evolutionary rate differences 

among sites. The trees are drawn to scale, with branch lengths measured in the number of 

substitutions per site. The analyses involved 16 and 19 nucleotide sequences for analysis of 

luxA and topA, respectively. All positions with less than 95% site coverage were eliminated. 

That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at 

any position. 

The evolutionary history in the ftsZ and mreB amino acid trees was inferred by using the 

Maximum Likelihood method based on the General Reversible Chloroplast model (Adachi 

et al. 2000). The trees with the highest log likelihood are shown. The percentage of trees in 

which the associated taxa clustered together is shown next to the branches. Initial tree(s) 
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for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using a JTT model, and then 

selecting the topology with superior log likelihood value. The trees are drawn to scale, with 

branch lengths measured in the number of substitutions per site. The analyses involved 19 

amino acid sequences. All positions with less than 95% site coverage were eliminated. That 

is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any 

position. 

The evolutionary history in the ftsZ and topA amino acid trees was inferred by using the 

Maximum Likelihood method based on the Le_Gascuel_2008 model (Le and Gascuel 2008). 

The trees with the highest log likelihood are shown. The percentage of trees in which the 

associated taxa clustered together is shown next to the branches. Initial tree(s) for the 

heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using a JTT model, and then 

selecting the topology with superior log likelihood value. The rate variation model allowed 

for some sites to be evolutionarily invariable. The trees are drawn to scale, with branch 

lengths measured in the number of substitutions per site. The analyses involved 16 amino 

acid sequences. All positions with less than 95% site coverage were eliminated. That is, 

fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any 

position. 

The evolutionary history in the toxR amino acid tree was inferred by using the Maximum 

Likelihood method based on the JTT matrix-based model (Jones et al. 1992). The tree with 

the highest log likelihood is shown. The percentage of trees in which the associated taxa 
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clustered together is shown next to the branches. Initial tree(s) for the heuristic search 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using a JTT model, and then selecting the topology with 

superior log likelihood value. The tree is drawn to scale, with branch lengths measured in 

the number of substitutions per site. The analysis involved 22 amino acid sequences. All 

positions with less than 95% site coverage were eliminated. That is, fewer than 5% 

alignment gaps, missing data, and ambiguous bases were allowed at any position.  

 

Cloning of the lux operon from strain D1 

DNA spanning from the USORF to moeB in D1 was amplified using phosphorylated primers 

for use as an insert into plasmid pGEM-3Z. pGEM-3Z was digested using SmaI with 

digestion being verified via gel electrophoresis. The digested plasmid was then 

dephosphorylated using Thermosensitive Alkaline Phosphatase (TSAP). The insert was 

then ligated into the dephosphorylated plasmid and transformed into competent E. coli 

JM109 cells. Blue-white screening was used to confirm successful insertion. White colonies 

were chosen and colony PCR performed using primers specific to SP6 and T7 from pGEM-

3Z. Gel electrophoresis was used to verify an insert of expected size. The chosen colonies 

were then grown up overnight in LB + ampicillin at 37°C for isolation of plasmid DNA. 

Plasmid DNA was isolated from the overnight cultures using the Wizard Plus SV Miniprep 

DNA Purification system per the manufacturer’s protocol. Purified plasmid DNA was then 

digested separately with EcoRI and PstI to verify the generation of bands of predicted size 

based on known nucleotide sequence.  
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Dual plasmid arabinose-inducible LuxRVH system 

The purified plasmid DNA was then transformed into competent E. coli JM109 cells 

containing an arabinose inducible plasmid construct with the V. harveyi luxR sequence as 

the insert. Previously purified plasmid DNA containing the lux operon from D6 and from V. 

harveyi were also transformed in E. coli JM109 cells. The cells were plated onto LB + 

ampicillin + chloramphenicol (+/- arabinose) and grown overnight at 37°C. The plates were 

photographed as described previously using the GeneSnap 7.12 program. 

 

Quorum sensing assays 

Each bacterial strain (D1, D6, and V. harveyi B392) was inoculated from a freezer stock into 

25 ml of SWC broth and grown overnight at 25°C on a shaker plate set at approximately 

180 rpm for to keep the cultures aerated. The cultures were then diluted back 1 ml into 50 

ml in SWC broth and kept at 25°C on a shaker plate set at 18 rpm for the remainder of the 

experiment. At time zero and each hour thereafter, an aliquot was removed from each 

culture and measured for optical density at 600nm using BioPhotometer plus and light 

output using Lumac Biocounter M 2010. The data generated was used to created growth 

and light curves which when overlaid, give an approximation of the cell density at which 

light production is activated via quorum sensing. Growth and light curves were generated 

using the Microsoft Office program, Excel. The entire procedure was repeated 3 times. 
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Southern hybridization 

Verification of copy number of the lux operon in D6 was done by southern hybridization. 

Genomic DNA from D1 and D6 was digested using the restriction enzymes DraI, Eco4711, 

and SnaBI. Predicted band sizes were calculated using Webcutter 2.0. The digests were run 

through gel electrophoresis overnight at 20V. The gel was then depurinated in 0.25N HCl, 

denatured in 0.5N NaOH + 1.5M NaCl, and neutralized in 1M Tris-HCl (pH 7.5) + 1.5M NaCl. 

The DNA was then transferred to a nylon membrane by capillary blot in 20 x SSC (3M NaCl 

+ 0.3M Na citrate).  DNA was then fixed to the membrane by UV crosslinker and placed in 

pre-hybridization buffer (formamide, 20 x SSC, 50 x Denhardt’s, 2ml 10mg/ml yeast RNA, 3 

ml H2O) overnight. The membrane was then moved to hybridization buffer, which contains 

everything the pre-hybridization has plus the addition of a P32 labeled probe. The probes 

used were made from the luxA sequences of D1 and D6. The membrane was then washed 

and exposed to X-ray film. This result was confirmed by PCR amplification of each 

individual lux gene in D1 and D6 using consensus primers designed using sequence from 

both D1 and D6. 
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Results 

Sequence analysis 

In order to identify the species of bioluminescent isolates D1 and D6, a group of 

housekeeping genes, along with other highly conserved genes, and the lux genes were 

sequenced and compared to sequences available in GenBank, as well as each other, using 

BLAST. Comparative analysis of the nucleotide sequence of the lux genes from D6 with 

those of D1 showed that they share in the range of 76 – 91% identity depending on the 

particular gene, and 86% identity across the entire lux operon (Table 1). These results 

were nearly identical for D6 compared with V. harveyi B392 (Table 1). These results are in 

stark contrast with those from a comparative sequence analysis of housekeeping genes, 

flanking genes, and toxR which show a high percentage of shared identity amongst all three 

bacterial strains (Table 2). The same trends in sequence identity were observed in 

comparison of amino acid sequences (Tables 3 & 4). The gene coding for the regulator of 

bioluminescence in bacteria, luxR, was also shown to share a high sequence identity 

amongst all three strains, though D1 and D6 shared a higher identity with each other (99%) 

as compared to both D1 and D6 with V. harveyi B392 (93%) (Tables 2 & 4). The fact that D6 

only significantly differs only in the sequence of its lux genes and not in that of any other 

conserved genes is indicative of a lateral gene transfer of the lux operon in D6. 
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Table 1. Shared nucleotide sequence identity in the lux genes of D1, D6, and V. harveyi B392. 
Nucleotide sequence of the lux genes in D6 was shown to be significantly divergent from that of 
both D1 and V. harveyi B392.  
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Table 2. Shared nucleotide sequence identity in a set of genes highly conserved amongst 
bioluminescent bacteria. Nucleotide sequence of all conserved genes, other than the lux genes, in 
D6 was shown to be highly similar to those of D1 and V. harveyi B392. While closely related to both, 
D6 appears to be somewhat more closely related to D1 than to V. harveyi B392. 
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Table 3. Shared amino acid sequence identity in the lux genes of D1, D6, and V. harveyi B392. 
Similar to nucleotide sequence (Table 1), the amino acid sequence of D6 was shown to be 
significantly divergent from that of both D1 and V. harveyi B392. 
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Table 4. Shared amino acid sequence identity in a set of genes highly conserved amongst 
bioluminescent bacteria. As with the nucleotide sequence analysis, analysis of the amino acid 
sequence of several highly conserved genes shows D6 being closely related to both D1 and V. 
harveyi B392. D6 again appears to be somewhat more closely related to D1 than to V. harveyi B392. 

 

 

 

The gene arrangement of the flanking regions in D6 was also found to be different than that 

of D1 and V. harveyi B392 (Fig. 6). D1 and V. harveyi B392 share the conserved 

arrangement of a highly conserved unidentified open reading frame upstream of the lux 

operon (USORF) and moeAB at the 3’ end of the lux operon. In contrast, the lux operon in 

D6 is flanked on the 5’ end by a transposase gene and on the 3’ end by parA (Fig. 6). This is 
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a gene arrangement not before seen in the flanking regions of a lux operon, indicating this 

is not the ancestral location of the lux operon and thus lends further support to the 

hypothesis that D6 obtained its lux operon by means of lateral gene transfer. 

 

Figure 6. Sequence analysis of the lux operon in D1 and D6. Sequence analysis revealed that 
while D1 and D6 share the highly conserved luxCDABEGH arrangement of lux genes found in V. 
harveyi, they share only an 86% identity at the nucleotide level. Furthermore, the lux operons of D1 
and D6 have completely different flanking regions. D6 was shown to contain both the upstream 
unidentified ORF and moeAB found in D1 and V. harveyi, though not in an arrangement previously 
seen in any Vibrio species. 

 

D6 has been shown to contain both moeB and the conserved USORF, and while they share a 

relatively high identity with D1 and V. harveyi B392 (Tables 2 & 4), they are not present in 

a gene arrangement that allows them to be amplified in the same PCR, as was done with D1. 

 

Phylogenetic analysis 

Phylogenetic analyses of luxA and of the sequenced housekeeping and other conserved 

genes was done to determine evolutionary relationship of D1 and D6. The analysis of toxR, 

ftsZ, mreB, and topA show D6 and D1 falling within the same clade (Figs. 8 & 9) whereas 
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phylogenetic analysis of luxA, a representative gene of the lux operon, shows D6 appearing 

in a clade separate from D1 and others like it (Fig. 7). As was shown with the sequence 

analysis (Tables 1-4), the distinct difference between phylogenetic grouping of D6 relative 

to D1 and V. harveyi B392 suggests that D6 is actually a close relative of D1 and V. harveyi 

and that D6 has obtained its lux operon via lateral gene transfer from some unknown 

donor. 

 

 

 

Figure 7. Phylogenetic analysis of luxA in bioluminescent bacteria. Analysis of a gene 
representative of the lux operon, luxA, shows that strain D6 (and a nearly identical strain, M1), are 
significantly divergent from other bioluminescent bacteria included in the analysis.  
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Figure 8. Phylogenetic analysis of toxR in bioluminescent bacteria. Analysis of toxR, a gene 
highly conserved amongst bioluminescent bacteria, shows that D6 is closely related to D1 and other 
members of the D1 group. 
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Figure 9. Phylogenetic analysis of multiple housekeeping genes in bioluminescent bacteria. 
Analysis done using concatenated housekeeping sequences (ftsZ, mreB, and topA) from 
bioluminescent bacteria shows that D6 is closely related to D1 and other members of the D1 group.  

 

 

Transcriptional regulation of the lux operon  

In order to determine if the regulatory elements of the lux operon in D1 and D6 were 

conserved, as would be expected of strains closely related to V. harveyi, a cross species 

induction of the lux operon was done in both D1 and D6, using LuxR from V. harveyi (Fig. 

10a). E. coli cells containing plasmids carrying luxR from V. harveyi and the lux operon from 

D1 and D6 both produced light upon induction with arabinose (Fig. 10b). This lends further 



 
 

35 
 

support to the hypothesis that D6 is closely related to both D1 and V. harveyi, with the 

exception of its lux genes, which again lends support to a lateral gene transfer of the lux 

genes in D6. 

 

 

Figure 10.  Transcriptional regulation of light production in D1 and D6. (a) Transcriptional 
regulation of the lux operon in D1 and D6 was examined using a dual plasmid arabinose-inducible 
LuxR system. Here, the luxR from V. harveyi was inserted into one plasmid containing an ara 
promoter (Wannamaker M.S. Thesis, 2013). This plasmid was then transformed into E.coli cells 
along with a second plasmid containing the lux operon of each strain (D1 and D6). (b) These cells 
were plated on selective media, grown overnight, and observed for light production. Light 
production was observed on the plates with arabinose present. This demonstrates the ability of 
LuxR protein from V. harveyi to activate transcription of the lux operon in both D1 and D6. 
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Quorum Sensing  

In order to determine whether or not D1 and D6 use quorum sensing to regulate 

bioluminescence, light production and growth were simultaneously measured. Graphs 

were generated showing the relationship of cell density to light production. In both D1 and 

D6 it was shown that production of light did not begin until the cell density reached a 

certain threshold, inferred by an increase in optical density (Fig. 11). This suggests that D1 

and D6 utilize the cell density-dependent regulatory mechanism of quorum sensing to 

regulate bioluminescence. 
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Figure 11. Quorum sensing curves for D6 and D1. The overlay of cell density with luminescence 
for both D1 and D6 show that production of luminescence does not occur until cell density 
increases. V. harveyi was used as a control and shows the expected pattern of an organism utilizing 
quorum sensing. 
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Copy number of the lux operon  

Southern hybridization was used to determine copy number of the lux operon in D1 and 

D6.  Southern hybridization of digested D6 DNA with a luxA probes made from the luxA 

sequence of D1 and a second probe made from the luxA sequence of D6 both generated a 

single signal (Fig. 12). Similarly, when the same probes were used on DNA from D1, a single 

signal was also observed and importantly, it generated the same banding pattern (Fig. 12) 

indicating that both probes are hybridizing to the same luxA sequence and as opposed to a 

second copy of luxA. A stronger signal was observed for each strain when the probe made 

with that strain’s luxA sequence was used, showing that the luxA probes are more readily 

hybridized to the luxA sequence of the strain from which they were derived. The fact that 

there is a single hybridizing band in each digest strongly argues that there is one copy of 

the lux operon present in D6 and D1.  

 

 

Figure 12. Copy number of the lux operon in D1 and D6. Genomic DNA from strains D1 and D6 
was digested using DraI, Eco47II, and SnaBI. DNA fragments were separated using gel 
electrophoresis. A southern hybridization was done using a probe made from the luxA gene from 
D6. DNA from strains D1 and D6 was hybridized with this probe. A single signal was observed for 
each digest in both D1 and D6. 
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This result was confirmed via PCR amplification using primers targeting each individual lux 

gene of D1 and D6 with perfect sequence identity. Each reaction yielded a single band in 

both D1 and D6 (Fig. 13). When these DNA fragments were sequenced, each was shown to 

be a single nucleotide sequence, with no double peaks appearing in the chromatograms 

(data not shown).  

 

Figure 13. PCR amplification of each individual lux gene in D1 and D6. Each individual lux gene 
was amplified by use of consensus primers designed from nucleotide sequence of D1 and D6. Each 
reaction yielded a single band. When amplified and sequenced, no mixed sites were seen, indicating 
a single copy of each lux gene in both D1 and D6. 
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Discussion 

Lateral transfer of the lux operon in D6 

Comparative analysis of both nucleotide and amino acid sequences from D6 and other 

members of the genus Vibrio has revealed that while D6 is highly divergent in terms of its 

lux genes, all other genes sequenced from D6 are highly similar to D1 and V. harveyi. This 

suggests that D6 does not represent a separate lineage of bioluminescent bacteria but 

rather represents a bacterial strain highly similar to both D1 and V. harveyi that has 

acquired its lux operon via lateral gene transfer from an unknown donor.  

The hypothesis of lateral gene transfer of the lux operon in D6 was further investigated by 

means of phylogenetic analysis, determination of gene arrangement of the lux operon and 

its flanking regions, exploration of the transcriptional regulation of the lux operon, and 

examination of the quorum sensing mechanism. Phylogenetic analysis of luxA, a 

representative gene of the lux operon, shows D1 in a clade with other members of the D1 

group as well as close relatives V. harveyi and V. campbellii while D6 is in a completely 

separate clade shared with only M1, an isolate nearly identical to D6 (Fig. 7). This is in stark 

contrast to the phylogenetic trees constructed using toxR (Fig. 8) or any of the sequenced 

housekeeping genes (Fig. 9) which show D6 in the same clade as D1. The fact that D6 and 

D1 are similar in all of the highly conserved sequences compared argues that D6 and D1 are 

closely related, with D6 being part of the group of isolates designated the D1 group. 

Because the lux genes in D6 do not follow this pattern and are instead highly divergent 

from D1 and its close relatives suggests that this lux operon is not ancestral to D6 and 

instead was obtained via lateral gene transfer.  
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This lateral gene transfer hypothesis was further supported by the discovered gene 

arrangement of the flanking regions of the lux operon in D6. Both D1 and V. harveyi share 

the conserved arrangement of moeAB in the 3’ flanking region of the lux operon and a 

conserved open reading frame (USORF) in the 5’ flanking region (Fig. 6). D6, however, 

displays a previously undescribed gene arrangement in the flanking regions of its lux 

operon, being flanked by a transposase gene at the 5’ end and parA at the 3’ end (Fig. 6). 

This difference in gene arrangement between D6 and its close relatives suggests that the 

lux operon in D6 is not in the ancestral location within the genome, further supporting the 

lateral gene transfer hypothesis. These flanking genes also offer possible insight into the 

means by which D6 acquired this lux operon. The parA gene flanking the 3’ end of the lux 

operon is homologous to a transcriptional regulator from lambda phage, responsible for 

maintaining latency and thus allowing propagation of phage genes (Dodd et al. 2001, Lewis 

et al. 2011), suggesting the lux operon in D6 may have been transferred in via transduction. 

There is also, however, a parA homologue present in the V. harveyi genome that is 

responsible for chromosomal partitioning (Travers et al. 2012, Shikorski et al. 2013). 

Because there is only a small amount of parA sequence available from D6, it is not possible 

to definitively say whether this particular parA gene is an ancestral to the bacterial genome 

or if it was transferred in with other phage genes during a transduction event. The 

transposase flanking the 5’ end of the lux operon in D6 offers another possible scenario. It 

is possible that this transposase is part of a composite transposon carrying the lux operon 

within a mobile genetic element. Because there is a limited amount of sequence 

downstream of the lux operon in D6, it is not possible to confidently determine if this is the 
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case, as the remaining sequence that would make up the mobile genetic element cannot be 

detected.  

The transcriptional regulator of the lux operon, LuxR, is known to be conserved amongst 

closely related bioluminescent bacterial species. It was shown that the luxR sequence of D6 

is nearly identical to that of D1 and similar but distinct from V. harveyi, again suggesting 

that D6 is more closely related to D1 and likely part of the D1 group. The similarity in 

sequence of luxR also suggests that the respective DNA binding elements are also 

conserved.  Investigation of these transcriptional regulatory elements of the lux operon in 

D6 was carried out by use of a dual plasmid expression system carrying the luxR sequence 

from V. harveyi on an arabinose-inducible plasmid and a second plasmid containing the lux 

operon of D6, and in a separate experiment, D1. This experiment showed that transcription 

of the lux operon in D6, as well as D1, is capable of being activated by the LuxR protein 

from V. harveyi (Fig. 10). This is in agreement with other studies done demonstrating the 

conservation of these regulatory elements amongst close relatives of V. harveyi 

(Wannamaker 2013). This further emphasizes that D6 is similar to D1 and V. harveyi with 

the exception of its lux genes, again suggesting the lux genes in D6 were obtained via lateral 

gene transfer. Not surprisingly, D6 and D1 were both also shown to utilize quorum sensing 

in the transcriptional control of light production (Fig. 11). The exact quorum sensing 

mechanism in D6 and D1 was not determined in this study but would likely be similar to 

that of V. harveyi, given the other demonstrated similarities between these two isolates and 

V. harveyi. 
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Lateral replacement of the ancestral lux operon in D6 

Because all known members of the D1 group are luminescent and thus contain a lux operon 

(data not shown), it is likely that D6 either contains or at one point contained but has 

subsequently lost its ancestral lux operon. It was therefore necessary to determine the 

copy number of the lux operon in D6. It was shown both by southern hybridization (Fig. 

12) and PCR amplification (Fig. 13) that there is a single copy of the lux operon in D6. This 

suggests that the lateral transfer of the lux operon in D6 was actually a replacement event 

of its ancestral lux genes.  

 

The D1 group of bioluminescent bacteria 

Through this research the emergence of a new group of bioluminescent bacteria, 

designated the D1 group, became evident. This group is made up of D1, D6, several other 

Chub Cay isolates (M1, BW1, E1, MarA, TWA, TW4, BWD, TW10, and E2), and an isolate 

from Boca Ciega Bay (T1322A). Based on both sequence (Tables 2 & 4 ) and phylogenetic 

analysis (Figs. 8 & 9), this group was shown to be similar to but distinct from V. harveyi and 

likely represents a previously undescribed bioluminescent bacterial species that is within 

the V. harveyi group.  

This discovery of not only a previously undescribed bioluminescent bacterial species but 

an entire group of this new species illustrates the fact that we are still accumulating 

knowledge of the diversity amongst bioluminescent bacteria. As sequencing technology 

improves, the resolution with which we are able to differentiate small differences between 

closely related species also improves. The D1 group is not the only recently described new 
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species of luminous bacteria; there have been several described over the last few years, 

such as Aliivibrio sifiae (Yoshizawa et al. 2010a), Photobacterium aquimaris (Yoshizawa et 

al. 2009b)Vibrio azureus (Yoshizawa et al. 2009a), Vibrio beijerinckii (Figge et al. 2011), 

Vibrio sagamiensis (Yoshizawa et al. 2010b), as well as a newly discovered Aliivibrio species 

(Whyte and Wimpee 2016). Sequence analysis of bioluminescent symbionts present in the 

light organs of various deep sea fish have revealed a new genus within the family 

Vibrionaceae, termed Candidatus Photodesmus (Haygood 1993, Hendry and Dunlap 2011). 

These bacteria are obligate symbionts and thus unable to live outside their host, making 

culturing them in the lab impossible. It is only due to the new sequencing technologies 

available that this new bioluminescent bacterial genus was able to be described. There are 

also bacterial strains that produce light in their natural habitat but not when grown in 

laboratory conditions (Nealson and Hastings 1979, Silverman et al. 1989, Nealson and 

Hastings 1992). There may therefore be more bacterial species that are naturally 

bioluminescent but due to the lack of light production when grown in laboratory 

conditions, have gone undiscovered. This suggests that as more bacterial genomes are 

sequenced, there will be an increase in our collective knowledge and understanding of 

bioluminescent bacterial diversity. 

 

Implications of lateral gene transfer in bacterial evolution 

The lux operon offers a convenient phenotype for the study of lateral gene transfer 

amongst bacteria, as it is readily visible, but the lux operon is hardly the sole example of 

lateral gene transfer in bacteria. Lateral transfer of genes is important as it can drive the 
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evolution of the recipient cell in a much more dramatic way than is possible with vertical 

genetic transfer alone (Feder 2007, Boto 2010). That being said, the process is not 

uncomplicated and simply transferring a gene to a new cell does not guarantee the gene 

will be propagated. In order to have successful lateral transfer of genes, the gene(s) in 

question need to be transferred into the genome in such a way that they do not disrupt an 

essential gene, native to the recipient cell. The laterally transferred gene then needs to be 

maintained in order to be propagated in future generations of the recipient bacterial cell, 

which typically occurs only if the newly acquired gene imparts a function for which there is 

a selective advantage. Furthermore, if the laterally transferred gene is dependent upon 

other genes for proper function the transfer of that single gene may have a lesser impact 

than that of an entire operon (Lercher and Pál 2008, Price et al. 2008) which contains all 

the genes necessary to carry out the desired cellular function.  

Whereas point mutations observed in vertical gene transfer can modify the function of an 

existing gene, laterally acquired genes can impart a completely novel function onto the 

recipient cell (Feder 2007). If this newly acquired gene provides the recipient cell with a 

selective advantage, it will outcompete those cells that did not acquire the new gene, thus 

improving the overall fitness of the recipient cell. Instances such as this can change the 

evolutionary trajectory of different bacterial species.  

The extent to which lateral gene transfer is actually impacting the evolution of bacterial 

species is still debated, as researchers do not necessarily agree on the relative incidence of 

lateral gene transfer amongst bacteria (Kurland et al. 2003, Boucher et al. 2003). 

Regardless of the incidence of lateral gene transfer, it is undeniable that it does have some 
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impact on the evolution of bacterial species. One such example of the impact of lateral gene 

transfer is antibiotic resistance. As the use of antibiotics increases in human medicine, 

horticulture, and treatment of livestock, so does the selective pressure on the spread of 

antibiotic resistance genes (Blair et al. 2015). Transfer of these antibiotic resistance genes 

allows for the recipient to thrive in an otherwise toxic environment. The simple fact that 

the recipient cell is now able to survive has allowed for the continued evolution of that 

particular bacterial cell.  

Given that the selective pressure on newly acquired genes is what typically drives the 

maintenance and propagation of said genes, the lateral transfer of the lux operon offers an 

interesting and somewhat contradictory example of successful lateral gene transfer. It has 

been shown that presence of lux genes and subsequent ability to produce light is a 

nonessential function in bacteria, as there are currently more nonluminous species in the 

family Vibrionaceae than there are luminous species (Baumann and Baumann 1981, 

Dunlap and Ast 2005) and these nonluminous members do not appear to be any less 

successful than their luminescent counterparts (Baumann and Baumann 1981, Wollenberg 

et al. 2011). The fact that bioluminescent bacteria maintain their lux genes is especially 

intriguing given that light production is an energetically expensive process (Dunlap and 

Urbanczyk 2013). There are several schools of thought as to why bacteria produce light. It 

is possible that bacterial cells produce light to increase the probability of being ingested by 

light-attracted fish, so that they might access their nutrient-rich gut (Widder 2010; Zarubin 

et al, 2012). It is also possible that the lux operon once served an essential function (e.g. 

redox balance) that is no longer necessary and as such has no deleterious effect if lost. 
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Nonetheless, this contradiction, and our ignorance as to the reason behind it, highlights the 

fact that there is more yet to learn in regards to bioluminescence in bacteria. 
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Conclusion 

The work presented in this thesis describes a case of lateral replacement of the lux operon 

in a bioluminescent bacterial isolate. Lateral transfer of the lux operon is said to be rare 

(Urbanczyk et al. 2008) and the few reported cases have predominantly been of the 

transfer of lux genes to previously non-luminescent bacterial species, such as Shewanella 

hanedai and Photorhabdus luminescens (Forst et al. 1997, Meighen 1999, Kasai et al. 2007, 

Urbanczyk et al. 2008). There is in fact only one other reported case of the lateral 

replacement of the lux operon in a bioluminescent bacterial species (Urbanczyk et al. 

2012), making this a very rare event.  

While reported cases of lateral transfer and/or replacement of the lux operon are few, it is 

possible that there are a greater number of these events that have gone undetected, 

because of the manner in which we typically study bioluminescent bacterial diversity. Our 

approach is to visually identify luminous colonies, then amplify and sequence the luxA 

gene. The strains that demand closer scrutiny are those with aberrant luxA sequences. 

Housekeeping genes or other highly conserved genes are not typically sequenced unless 

there is something about the luxA sequence that would indicate that particular isolate 

begged further examination, such as a divergent nucleotide sequence. It is therefore 

possible that there are cases of lateral gene transfer and/or replacement of the lux operon 

that have gone unnoticed because their luxA sequence was of a known bioluminescent 

bacterial species, whether or not it is the sequence that is ancestral to that particular 

isolate. Future work in this area should focus on identifying bacterial isolates based not 

only on their luxA sequence but also on that of some other highly conserved gene(s), 
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unrelated to bioluminescence. Such an approach would provide a means for detecting 

lateral gene transfer events in other bioluminescent isolates. 
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Appendix: Phylogenetic analysis of various conserved genes in 

bioluminescent bacteria 

 

 

Phylogenetic analysis of bioluminescent bacterial species using the nucleotide sequence of luxA. 
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Phylogenetic analysis of species from the genus Vibrio using the amino acid sequence of ftsZ. 
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Phylogenetic analysis of species from the genus Vibrio using the nucleotide sequence of ftsZ. 
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Phylogenetic analysis of species from the genus Vibrio using the amino acid sequence of mreB. 
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Phylogenetic analysis of species from the genus Vibrio using the nucleotide sequence of mreB. 
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Phylogenetic analysis of species from the genus Vibrio using the amino acid sequence of topA. 
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Phylogenetic analysis of species from the genus Vibrio using the nucleotide sequence of topA. 

 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2016

	Lateral Replacement of the Lux Operon in a Vibrio Isolated from the Intestine of a Coral Reef Fish
	Melissa Lee Whyte
	Recommended Citation


	tmp.1476207726.pdf.qc0R7

