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ABSTRACT 

POINT OF USE BIOSAND FILTERS OF THE RURAL DOMINICAN REPUBLIC 

by, 

Kurtis Quamme 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Shangping Xu 

 
  The point of use biosand filter (BSF) is used globally as a drinking water treatment 

solution. In this research, point of use BSFs were inoculated with active biosand from the 

Linnwood Drinking Water Treatment plant slow sand filter beds (Milwaukee, Wisconsin) and 

with sands collected from point of use filters operating in the Dominican Republic. These filters 

were maintained with varying source waters (surface water, groundwater, or tap water to 

simulate chlorination encountered in the field). The microbial community of filters with varied 

influents and biosand inoculum were analyzed quantitatively by sequencing and qPCR. Filter 

efficacy and microbial community were found to be largely a function of source water and 

pretreatment conditions. Filters were intermittently challenged with E. coli as a fecal indicator 

bacteria and bacteriophage MS2 as a surrogate for pathogenic virus to evaluate filtration 

efficiency. This research suggests that the point of use BSF should not be used in conjunction 

with chlorinated source waters. Chlorination may inhibit biofilm colonization and allow for 

interstitial survival or growth of pathogenic bacteria. Based on the non-dimensional scaling 

analysis of genome sequencing data, the interstitial microbial community of the BSF could be 

grouped into four categories as a function of source waters: biosand filters in the Dominican 

Republic, laboratory filters maintained with tap water, groundwater, or with Lake Michigan 

water as influent. The microbial community within active biosand collected in the field was not 

retained under laboratory conditions. 
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Chapter 1: Introduction 

 1.1: Water Treatment and Public Health in the Developing World  

Globally, an estimated 663 million people lack access to an improved source of drinking 

water, while 2.4 billion lack access to improved sanitation facilities. Access to improved 

drinking water sources in the developing world has made significant progress in the last 15 years, 

climbing from 70% to 90% coverage (WHO, 2015). While Millennium Development Goals of 

halving the proportion of the human population without access to improved drinking water 

sources have been met, sanitation and hygiene have not matched these improvements.  The 

World Health Organization’s definition of an improved source includes: household connection, 

public standpipe, borehole, protected dug well, protected spring, or rainwater collection. This 

definition provides infrastructure guidelines required to meet development goals but lacks water 

quality guidelines. Communities receiving water from an improved source may continue to 

suffer from contaminated drinking water, perpetuating waterborne illness. Improved drinking 

water sources throughout the Dominican Republic are often contaminated with fecal coliform 

(Baum et al., 2014). Point of use drinking water filtration bridges the gap between improved 

drinking water sources and water quality required for human safety.   

 

 1.2: Drinking Water of the Rural Dominican Republic  

In 2012, 24% of rural residents in the Dominican Republic lacked access to an improved 

drinking water source (WHO, 2012). Field surveys suggest that these estimations may be 

conservative as direct access to water in the home is exceptionally rare, the nearest source is 

often contaminated, and communities often lack a central water supply (Vásquez et al., 2012; 
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Witter and Carasco, 1996). Water hauling is often necessary from improved sources and may 

take place in storage devices contaminated with coliform from previous hauling or other sources. 

 Drinking water resources of the Dominican Republic are largely managed by the Instituto 

Nacional de Aguas Potables y Alcantarillados (INAPA), a government institution created in 

1962. In addition to government institutions of the Dominican Republic, groups including 

USAID and Rotary Club have contributed to drinking water infrastructure development.  

 In La Romana Province, Corporación del Acueducto y Alcantrillado de la Romana 

(CORAAROM) or “La Romana Water and Sewerage Company” is responsible for local drinking 

water and sewerage treatment. CORAAROM was established in 1998. In conjunction with 

United States Agency for International Development (USAID), INAPA began plans to 

decentralize control over rural drinking water supply during the 1990’s. This practice was 

intended to empower local communities with control over drinking water systems and associated 

skills in hygiene and system management (Lockwood, 2001). Decentralized rural systems are 

largely managed by unpaid volunteers who may not have the funds or communication tools that 

are required to implement or maintain centralized drinking water treatment or distribution 

systems. In many cases, drinking water distribution systems are prone to failure due to a lack of 

maintenance (Schweitzer, 2009). Under the decentralized drinking water supply model, INAPA 

created a systems management branch (INAPA-AR). Rather than fundamental construction and 

management position, INAPA-AR serves as advisory group over system design and assessment 

of NGO projects to encourage overall project sustainability. Throughout the bateyes, government 

institutions, NGOs and members of the press are often denied access to private property without 

specific permission from the Centro Romano sugarcane company. 



 
	
  

	
   3	
  

Following the 2010 earthquake, United Nations natural disaster relief teams were sent to 

assist the redevelopment throughout Haiti. It is believed that a cholera outbreak originated from 

UN workers’ latrine, which quickly spread across Haiti causing an estimated 700,000 cholera 

infections and 8,500 deaths between 2010 and September of 2014 (Kean, 2014). Haiti’s lack of 

sanitation, combined with a limited number of health workers created extensive risk for 

continued transmission of the cholera outbreak. Antibiotics are the most effective and rapid cure 

for cholera; however, health professionals remain concerned for antibiotic resistance. While 

cholera can be treated with consistent rehydration and rest, patients without consistent access to 

safe drinking water may experience chronic gastroenteritis (Tauxe et al., 2011). Employing a 

global cost benefit analysis to cholera outbreaks, Jeuland et al., (2009) suggests that vaccinations 

may not be justifiable in cases where communities have pre-emptively begun treating source 

waters with the biosand filter (BSF). Preventative water and sanitation treatments may be more 

cost-effective than post-infection care for cholera and other etiologic agents for gastroenteritis.  

Considering global access to safe drinking water as a function of both physical 

availability and socioeconomic availability, Haiti is ranked last of 174 countries analyzed 

(Lawrence et al., 2002). With highly mobile migrant Haitian workers frequently crossing the 

border from Haiti to the Dominican Republic, the need for drinking water treatment throughout 

the rural Dominican Republic is needed to prevent further transmission of disease and the 

resulting burden placed on hospitals across Hispaniola.  
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CHAPTER 2: BACKGROUND 

2.1: BSF Operation and Efficacy 

Drinking water treatment in many developing countries is an exceptional challenge as 

funding for installation and maintenance is difficult with a non-dependable tax base and unstable 

government. Due to a lack of funding and education with respect to sanitation and hygiene, 

centralized drinking water treatment systems are often infeasible or poorly maintained. Point of 

use water treatment systems is a low cost, low maintenance, and readily replaceable alternative. 

Of the point of use treatment systems available, BSFs have low implementation cost, significant 

pathogen reductions, minimal maintenance requirements, ability to treat a wide range of source 

waters, and strong continued use as compared to other technologies (Sobsey et al., 2008).  

Point of use biosand filtration has proven a promising technology for treatment of 

drinking water since its first implementation in the early 1990’s. The household scale BSF is 

gravity driven, capable of producing 20-40 liters of filtered drinking water per day. BSF efficacy 

is dependent upon the temporal biological maturation of the filter as pathogen reductions become 

increasingly efficient with aging (Elliot et al., 2011). While some studies have quantified 

reductions in viruses, most have focused on fecal indicator bacteria.  

Several operational parameters are instrumental for microbial reductions in the BSF 

system including 1) hydraulic loading rate 2) residence time 3) biological maturation, 4) source 

water chemistry and nutrient stoichiometry, 5) sand size / sorting and 6) overall filter 

dimensions. Of the parameters that are critical to BSF efficacy, the microbiome is perhaps one of 

the least studied and understood. Studies that have investigated metagenomics of the BSF have 

done so in the laboratory environment but never under field conditions (Wang, 2014).  The 
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primary goal of his research was to investigate the removal efficiency of fecal indicator 

bacterium Escherichia coli and surrogate single strand RNA bacteriophage MS2 under varying 

influent conditions. The variation in the microbial community within a spectrum of BSFs were 

characterized with genome sequencing. 

 Although the BSF system is a simple technology, a number of factors may affect filter 

efficacy. Without instruction in proper operation and maintenance, users may operate the BSF 

under adverse conditions. For example, excessive hydraulic loading rates do not allow for 

substantial residence time during which pathogens interact with the interstitial microbial 

community, being subjected to heterotrophic grazing and hydrolysis processes. Adding source 

water at a low residence time is shown to adversely affect the performance of the BSF (Elliot et 

al. 2008; Wang et al., 2014). In many cases, the BSF is scraped excessively to restore flow rates, 

leading to a loss of biomass in the schmutzdecke, and/or a removal of filtration sand causing a 

loss of pore volume. Moving the BSF after installation may also disturb the sand and hinder 

biofilm development. In cases where the BSF becomes clogged and scraping at the surface 

cannot restore flow it may be necessary to replace filtration media entirely.  

Source water chemistry and microbiology may control BSF development, filter efficacy, 

taxonomy and richness of the interstitial microbial community. The complex relationship 

between source water chemistry and microbial ecology is little understood. Recent work has 

shown that the microbial ecology of slow sand filters is a function of many parameters including 

development time, depth, distance to surface / outflow pipe, and has established correlations with 

water quality parameters including ammonia, nitrate, nitrite, and orthophosphate. Key genera and 

evenness of the microbial community may optimize filtration efficiency to an unknown extent 

(Haig et al., 2015). Key genera for pathogen reductions in the point of use BSF are yet to be 
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identified. While many studies have focused on the metagenomics of municipal scale slow sand 

filters, fewer have quantified the microbial communities of the point of use BSF. There are 

several functional differences between the point of use and constant flow slow sand filter, 

including a stagnant residence period and a lack of drying / backwash treatments in point of use 

systems.  

This research was carried out with special concern for the batey region of southern 

Dominican Republic where Rotary Club International has installed approximately 6,000 BSF 

systems in rural homes where source waters are intermittently chlorinated. Occupants of these 

homes are Haitian migrant workers living in homes owned by the sugarcane company. With a 

typical home in the bateyes housing a family of five to seven, it is reasonable to estimate that 

some 20-30,000 inhabitants are dependent upon the intermittently chlorinated BSF for drinking 

water treatment. As communication with the property owners and chlorinators of source water is 

difficult, it is important to develop a scientific understanding of the efficacy of intermittently 

chlorinating the BSF system.   

Previous research conducted in the rural Dominican Republic has shown that 

socioeconomic disparities between Dominican and Haitian neighborhoods in the Dominican 

Republic extend to drinking water quality. Source water in Haitian neighborhoods are 4.25 times 

more likely to be contaminated with E. coli and 4.68 times more likely to be contaminated with 

coliform (Rogers-Brown et al., 2015). In this study, 88% of Haitian neighborhoods consumed 

source water contaminated with coliform. Due to sociopolitical and socioeconomic disparities 

combined with a lack of access on private land to government organizations, little is known 

regarding the drinking water quality, sanitation, and public health of these communities.  



 
	
  

	
   7	
  

2.2: History and Applications of the Point of Use Biosand Filter 

 Throughout a series of case studies, the point of use BSF has shown consistent reductions 

in diarrheal disease, E. coli concentrations, and turbidity as compared to control groups. 

Skepticism remains, however, as to the validity of statistically controlled field trials in which 

incidences of diarrheal disease are prone to household responses with communication 

transcending cultural and socioeconomic boundaries between researchers and users. Placebo may 

likewise play a role in skewing survey results.  

 The occurrence of diarrheal disease across 75 households utilizing the BSF in Bonao, 

Dominican Republic (approximately 150 km northwest of La Romana) was shown to be 0.53 

times the odds of diarrheal disease as compared to 79 control households (Stauber et al., 2009). 

This study, carried out in central Dominican Republic, is the only publication investigating the 

point of use BSF in the rural Dominican Republic.  

 A study investigating the impact of the Hydraid BSF in rural Honduras found a 45% 

decrease in diarrheal disease for children less than five years old in households using the BSF to 

purify drinking water. While these results were not statistically significant, households utilizing 

the BSF showed consistently improved drinking water quality with respect to E. coli 

concentrations and turbidity (Fabiszewski de Aceituno et al., 2012).  

  Throughout Guatemala, application and proper maintenance of the biosand filter showed 

a decline in the frequency of diarrheal disease, in conjunction with access to an improved water 

source and proper hygiene practices (Divelbiss et al., 2013).  

 A cluster randomized control study in rural Ghana found that households utilizing the 

point of use BSF showed a 60% reduction in incidences of diarrheal disease, on average, a 97% 

removal of E. coli, and 67% turbidity reductions. This study further investigated the role of post-
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filtration water storage; when filtrate was stored, average E. coli removal declined from 97% to 

85%, suggesting coliform growth or re-contamination within storage vessels (Stauber et al., 

2012).  

 Similarly, an investigation of 189 households in rural Cambodia found decreased 

incidences of diarrheal disease in homes having plastic BSF intervention as compared to control 

households. However, this study suggests that diarrheal diseases may continue despite BSF 

intervention, extending sanitation issues beyond point of use treatment (Stauber et al., 2012).  

   

2.3: Biofilm Development 

Aquatic biofilms may form in an array of environmental conditions including the piping 

or distribution system, sewage system, among various natural aquatic habitats (submerged rock, 

sand, concrete, algae, timber, etc.). With respect to the fine sand filtration system the 

development of biofilm is subject to mechanical straining effects and the stratification of 

nutrients, dissolved oxygen and redox potential. While many studies have identified distinct 

shifts of microbial community composition with depth of freshwater lakes, this process is less 

clear within the slow sand filter.  

Upon reaching a substrate, bacteria may alter gene expression from motility toward 

attachment. During attachment, extracellular polymeric substances (EPS) composed of 

carbohydrates, proteins, and humic substances are formed at the cell surface and contribute to 

further cell aggregation processes. During endogenous decay, EPS may form soluble microbial 

products (SMPs), which can be further utilized heterotrophically as electron donors. By this 

process, the microbial community produces a biochemical cycle with production and 

assimilation of SMPs resulting from metabolic activity and decay (Kang et al., 2014).   
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 Development of biofilm is considered as three-step process:  

1) Adhesion  

2) Colonization  

3) Detachment 

The biofilm community is a function of environmental conditions including temperature, 

salinity, pH of feed solution, nutrient concentration and stoichiometry, flow velocity, substrate 

and pre-disinfection. In conjunction with adhesion and detachment, the community is in a state 

of constant flux. Modifying source water chemistry, pretreatment or nutrients can quickly drive 

quantifiable alteration of the biofilm microbial community (Boon et al., 2011). 

In our special concern for chlorination throughout the bateyes, tap water is used in 

laboratory to simulate chlorination in the field. However, with the addition of phosphate as 

coagulant and chloramine disinfectant as opposed to hypochlorite in the Milwaukee municipal 

distribution system, some experimental differences may arise between laboratory and field 

condition biofilm development. Additionally, while this approach of maintaining filters subjects 

the microbial biome to relatively constant levels of chloramine, chlorine concentrations in the 

field are in flux with the intermittent addition of unknown hypochlorite concentrations. 

A review of biofilm development under chlorine, chloramine, and high phosphate 

concentration in drinking water distribution system has been carried out (Batte et al., 2003). This 

analysis, in accordance with prior work, shows that Gram-negative bacteria are predominant in 

the chlorinated feed water biofilm community, whereas Gram-positive bacteria are predominant 

in the monochloramine disinfected feed water community. Chlorination reduced Alpha, Beta, 
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and Gammaproteobacteria gradually, to a lesser extent than other bacteria groups targeted by 

fluorescent in situ hybridization (FISH), eventually leading to a predominantly Proteobacteria 

community. The authors suggest that Proteobacteria’s resistance to disinfection is enhanced by 

chlorine and hindered by monochloramine. In addition to disinfection investigations, the authors 

concluded that the addition of phosphate did not result in higher cell densities, but lead to a 

greater proportion of Gammaproteobacteria. In some cases, multispecies biofilms may inhibit 

disinfection of opportunistic pathogens (Berry et al., 2006). In a hospital hot water distribution 

system following on site monochloramine treatment, Betaproteobacteria relative abundance was 

decreased and shifted toward stronger abundances of primarily Firmicutes, Alphaproteobacteria, 

and Gammaproteobacteria (Baron et al., 2014). Established E. coli biofilms in chlorinated 

distribution systems may proliferate in distribution systems (Williams and Brown-Howland, 

2003). 

Li et al. (2010) also examined the influence of phosphate addition on the microbiome of 

biologically active carbon filtration systems and found that the relative abundance of 

Betaproteobacteria was increased significantly with the addition of phosphorus under both bench 

and pilot scale conditions.  

 

Chapter 3: Materials and Methods 

 3.1: Hydraid Point of Use Biosand Filters 

Over the course of this research, 30 HydrAid BSFs were ordered from Cascade 

Engineering (Michigan). These filters consist of 41 cm fine filtration sand, 5 cm separation sand, 
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and 7 cm underdrain gravel. The filters are gravity fed with approximately 5cm head overlying 

the filtration sand. The filters were installed following the manufacturer instructions: 

1) Leveling the surface of the filter with shims 

2) Fully saturating media during installation 

3) Adding underdrain gravel 

4) Adding separation gravel 

5) Adding filtration sand (2 bags) 

a. In cases where an inoculum was introduced to the sand surface, the volume of 

inoculum was displaced from bags of provided sand volumetrically 

Pore volume of the filters was estimated by adding source water used for installation in 

2L increments until the media was nearly saturated, at which point a graduated cylinder was used 

to add water until reaching the sand surface. Therefore, pore volume estimations do not include 

the 5cm head overlying the sand layer, but does include the volume of the outflow pipe at the 

corresponding head level.  

  3.1.1: Characterization of Porous Media  

Component Depth (cm) Porosity (%) 

Overlying Head 5 N/A 

Filtration Sand 41 35.6 

Separation 
Gravel 

5 49.9 

Underdrain 
Gravel 

7 46.1 

Table 1: Filtration media depth and porosity. 
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Where porosity is measured as: 

θ =
Saturated  Mass− Dry  Mass

Saturated  Mass   x  100% 

Bulk Density:  

𝜌! =
Mass  of  Dry  100  mL  Sample  (g)

100  cm!  

Sand Sieving: 

Uniformity Coefficient = !!"
!!"

 

Average Grain Size (D!") = Where (% Passing = % Collected) 

 

 Porosity 
(%) 

Uniformity 
Coefficient 
(𝐃𝟔𝟎/𝐃𝟏𝟎) 

Average Grain Size 
(𝝁𝒎) 

Dry 
Bulk Density 

(g/𝒄𝒎𝟑) 
HydrAid Sand 35.6 2.83 321 1.62 

Good Samaritan 
Hospital 

Installation Sand  

37 6.76 412 1.60 

Table 2: Filtration sand characteristics.  

Sieve data shows that the Hydraid filtration sand delivered with filters is superior to 

filtration sand obtained by the Good Samaritan Hospital (La Romana). The filtration sand is of 

smaller mean diameter, better sorted, lower porosity and greater density. These properties are 

critical for improving adsorption at pore scale. Typically, local sands available for filter 

installation are less ideal for filtration than homogenized quarry sand sources.  
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3.2: Field Results from the Dominican Republic 

 3.2.1 Sites 

 Fieldwork was carried out from November 17-20 2014 in conjunction with water and 

health employees from the Good Samaritan Hospital (La Romana, Dominican Republic). These 

workers are responsible for the installation and maintenance of filters, as well as correspondence 

with community water leaders (typically one woman per batey is elected as a water 

correspondent). These bateyes lie within the San Pedro de Macoris and La Romana basin. The 

principal aquifer in this region, extending from the eastern-most coast of the Dominican 

Republic along the southern coastal plain as far as San Cristobal, is the Quaternary Reefal 

Limestone aquifer system (Gilboa, 1980). While the Gilboa publication of 1980 plots 

groundwater vectors from the Quaternary Reefal Limestone aquifer system flowing south to the 

Caribbean Sea, it additionally recognizes that saltwater intrusion has created additional stress on 

coastal aquifers with urban centers pumping excessively to supplement the tourism industry. The 

Good Samaritan Hospital well, used as a backup when the city of La Romana distribution system 

is impeded, is experiencing elevated salinity levels as a result of saltwater intrusion. It is 

estimated that groundwater wells within the Quaternary Reefal Limestone aquifer system are 

cased between 50-150 m depth and are expected to yield 15-250 m!×hr!! (Bilboa, 1980). While 

data regarding the quantity and certainly the quality of groundwater within the Dominican 

Republic is limited, Bilboa shows a number of wells in the region of our batey surveys cased at 

depths between 25-100 m. These shallow water table depths in conjunction with the high 

conductivity, high porosity, karstic fracture properties of a reef-limestone aquifer system suggest 

that the region’s groundwater sources are at high risk of contamination from pathogens as well as 

agricultural byproducts including fertilizers, pesticides and herbicides. Throughout the bateyes, 
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untreated pits dug into the soil are often used as latrines. At batey Como Quiera, wastewater was 

observed flowing over the soil surface from a nearby latrine. Untreated wastewater latrines 

extending several feet below soil surface limit sorption of fecal colloids during infiltration to the 

water table causing high risk of fecal-oral pathogen transmission.  

By correspondence with members of batey households, there are typically five to seven 

people in each household and BSFs were operated with a hydraulic loading rate of two to three 

five gallon buckets per day (approximately 40-60 L ×  d!!). Households often housed livestock 

including chickens, horses and dogs. Water is typically hauled from the nearby distribution pipe, 

carried to the home and stored until water is required, at which point a charge is added to the 

BSF. Storage in possibly contaminated, often uncapped devices coupled with presence of 

livestock in the home reflects the possibility of fecal contamination between collection and point 

of use. None of the households reported sicknesses related to water, and in some cases water was 

both filtered and boiled. For all field sites visited herein, source water was obtained from large 

storage tanks gravity fed to a central distribution pipe. Tanks were groundwater fed or in some 

cases, trucked in from another unknown source.  



 
	
  

	
   15	
  

 
Figure 1: Sites visited during fieldwork in Southeastern Dominican Republic. 
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Figure 2: Filter “A1” 

Site A: Batey Tentación (November 17, 2014) 

 

The following are coliform counts from the first batey visited (Batey Tentación) referred 

to as batey “A” with biosand effluent counts being labeled as A1, A2, and so on. All microbe 

counts herein are performed using 100mL samples through 0.45 µm filters plated upon MOD 

mTEC agar (with exception of Rio Chavón dilution factors): 

Sample E. coli (CFU/ 
100mL) 

Other Total 
[CFU/100mL] 

Source A 1 11 12 
A1 0 13 13 
A5 2 TNTC TNTC 
A6 0 2 2 
A8 0 TNTC TNTC 

Table 4: E. coli concentrations at Batey Tentación. 

The outflow pipe at Batey 22 (adjacent to the reservoir tank serving Batey 22 and Batey 

Tentación) was also surveyed for general chemistry parameters using test strips:  

 

 

 Approx. 
Value 

pH 7.4 

Alkalinity 200 ppm 

Cl- 0 ppm 

	
  

	
  

	
  

	
  

	
  

Table 3: Water 
chemistry at Batey 
Tentación. 
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 Approx. 
Value 

pH 7.0 
Alkalinity 200-240 

ppm 
Cl- 0 ppm 

Table 5: Batey 22 water 
chemistry. 
 

 

 

 

 

 

Site B: Batey Como Quiera (November 17, 2014) 

Source Approx. 
Value 

pH 8 

Alkalinity 220 ppm 

Cl- 2-3 ppm 

Table 6: Batey Como Quiera water chemistry. 

Sample E. coli [CFU / 
100mL] 

Other [CFU / 100mL] Total 
[CFU/100mL] 

Source B 0 31 31 
B1 0 TNTC TNTC 
B2 4 37 41 
B3 16 TNTC TNTC 
B4 2 TNTC TNTC 

Table 7: Batey Como Quiera E. coli and coliform counts. 

	
  

Figure 3: Outflow at 
Batey 22 

Figure 4: Batey 22 
source tank serving 
Batey 22 and Batey 
Tentación	
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Figure 5: Macro-
invertebrates in B4 
effluent	
  

The source water for Batey Como Quiera appears to be heavily contaminated with high 

coliform counts. Once again, increased E. coli and coliform counts in the effluent of household 

BSF pose substantial risk to human health. Test strips indicate the fairly recent addition of 

chlorine to the source water (2-3 ppm) likely as bleach (high source water pH with white/yellow, 

flat precipitates often showing in the sand filtration material). Filter #B4 produced several live 

macro-invertebrates in the effluent and was discontinued by the user due to fouling. An untreated 

sewage effluent sample was also taken here for DNA extraction. 

Additional samples (November 17, 2014) 

Samples were taken from Rio Chavón, the Good Samaritan Hospital Cistern, and the 

Casa de Campo tap water: 

Sample E. coli 
[CFU/100mL] 

Other Total 
[CFU/100mL] 

E. coli  [CFU/ 100mL] 

RioChavón1mL 1 34 3500 100 
RioChavón10mL 4 TNTC TNTC 40 
RioChavón100m

L 
18 TNTC TNTC 18 

Good Samaritan 
Cistern 

1 TNTC TNTC 1 

Casa De Campo 
Tap 

0 67 67 0 

Table 8: E. coli and coliform counts for Rio Chavón, Good Samaritan Hospital Cistern, 
and Tap water at Casa de Campo. 
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Site C: Batey 105 (November 18, 2014) 

 

 For Batey 105, chlorine test strips indicated a concentration of ≈ 0  ppm. 

Sample 

E. coli  

[CFU / 100 mL] Other 
Total 

[CFU/100mL] 

Source C - - - 

C1 4 TNTC TNTC 

C3 8 TNTC TNTC 

Table 9: E. coli and coliform counts at Batey 105. 

Batey 50 was also visited on the 18th although the BSFs were not operating at this batey. 

River water (used for bathing, livestock), a nearby spring, and the source water (a leaking source 

tank) were plated for E. coli and coliform. 

 

Sample 
E. coli [CFU / 100 

mL] 
Other [CFU / 100 

mL] 
Total 

[CFU/100mL] 

Batey 50 
Source 0 TNTC TNTC 

Batey 50 
Spring 87 TNTC TNTC 

Batey 50 River TNTC TNTC TNTC 

Table 10: E. coli and coliform counts at Batey 50. 
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Figure 7: Batey 50 
Spring sample on 
MOD mTEC agar. 

	
  

 

Site D: Batey Gayo (November 18, 2014)	
  

 Chlorine strips for Batey Gayo indicated a chlorine concentration of ≈ 0  ppm.   

Sample 
E. coli [CFU / 

100mL] 
Other [CFU / 100 

mL] 
Total 

[CFU/100mL] 

Source D 0 267 267 

D1 0 TNTC TNTC 

Table 11: E. coli and coliform counts at Batey Gayo. 

	
   Batey Palo Blanco was surveyed November 19th for only DNA extraction and biosand 

collection. Biofilm growth at the surface of BSFs was exceptional here as compared to other 

bateyes, despite the source water having about 2 ppm Cl-. Water levels above the biolayer were 

appropriate at Palo Blanco (about 2 inches), suggesting that filters are properly maintained.  

3.3: Filter Seeding 

3.3.1 Linnwood Drinking Water Treatment Plant (Milwaukee, WI) 

 Twelve filters were initially installed and seeded with 800 mL of inoculum sand from 

slow sand filter bed number 21 at the Linnwood Drinking Water Treatment Plant (Milwaukee, 

Figure 6: Batey 50 
River Sample on 
MOD mTEC agar	
  

Figure 8: River sample at Batey 
50 
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WI). Biosand from the treatment plant was collected from the filter bed using non-sterile 

methodology including shoveling of the overlying anthracite layer and coring with a steel pipe. 

Slow sand filtration at the Milwaukee plant is precluded with flocculation, sedimentation and 

ozonation prior to reaching slow sand reactor beds. Seeds were stored on ice then at 4℃ and used 

to inoculate triplicate filters fed with influents of Lake Michigan surface water (Bradford Beach, 

Milwaukee, WI), dolomitic groundwater (Lapham Hall, Milwaukee, WI), and Milwaukee 

municipal tap water supplemented with 4 mg×  L!!  humic  acid. Seeding was accomplished by 

displacing HydrAid sands provided with the filter volumetrically (800mL HydrAid sands 

replaced with 800mL biosand sample at the surface of the filter). Initial biosand samples were 

stored on ice, and sequencing was performed of the initial consortia sampled from the filtration 

bed.  

3.2.2 Dominican Republic Biosand Inoculum 

 Biosand samples were collected in the Dominican Republic using sterile spatulas to 

collect approximately 50 mL active biosand at the surface of each filter being operated in the 

home. Biosand samples were collected from 17 homes in four different bateyes throughout 

southeastern Dominican Republic. Inoculum sands were composited by bateyes in which filters 

appeared to be operating efficiently (Batey Tentación and Batey Gayo), and those in which 

filters were less effective (Batey Como Quiera and Batey 105). These designations were based 

on comparing E. coli counts of influent and effluent. In many cases, BSF effluents showed 

higher concentrations of E. coli than source water samples. Biosand samples were stored on ice 

during return to Milwaukee, and stored at 4 ℃ until seeding. Filters were seeded with duplicates 

for each sand compilation and each influent type (municipal tap water and groundwater) using 
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100mL of inoculum sand added to the surface of the filter, displacing stock sand provided by 

Hydraid. DNA from each inoculum sand compilation was extracted. 

 3.5 Laboratory Filter Sand DNA Sampling 

 DNA extractions were taken from filters on an approximately weekly basis from depths 

of 10.2, 20.4, and 30.6cm beneath sand surface from a three-way stop-cock attached to a ½ inch 

PVC sampling port. For each filter, two ½ inch holes were drilled on-center at each depth, PVC 

valves attached, and 3 way valve installed onto the PVC valves perpendicular to the outflow 

pipe. Approximately 2 mL of sand was extracted from each depth of the filter (1 mL from each 

side) for every sampling event, stored on ice and returned to the lab, where 1 gram samples of 

sand were weighed, then stored at -80℃ for DNA extraction and sequencing.  

 3.6 Filtration Methodology 

 An E. coli strain isolated from the berm of Bradford Beach (saturated sand) by the 

McLellan lab was stored in a freezer vial at -80℃. One loopful of cells was taken from the -

80℃  stock and streaked upon LB plates, which were then incubated overnight at 37℃. A loopful 

of plated cells was transferred to 25 mL Miller LB broth in a sterile 50 mL centrifuge tube and 

incubated on a shaker with moderate agitation for 16 hours. Cells were then centrifuged at 4,000 

RPM for 10 minutes at 4℃,  supernatant poured, re-centrifuged in 10mM NaCl, supernatant 

poured, and vortexed to ensure separation of cells from LB broth. Centrifugation in 10mM NaCl 

was completed three times to ensure separation of biomass from LB broth. The resulting density 

of E. coli cells in 10 mM NaCl was quantified using UV Spectrophotometric absorbance at 

wavelength of 220 nm. After adjustment, a cell suspension with OD!!" in the range of 0.65-0.7 
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was diluted by a factor of fifty, and 10 mL aliquots were added to each 20L filter charge for 

filtration. The resulting initial concentration of E. coli cells was on the order of ≈   10! CFU / L.  

 Initial E. coli concentrations were evaluated by adding the cell aliquot to the 20L charge, 

the carboy was shaken (overturned 3-4 times), and a 500 mL sample was poured from the carboy 

prior to adding the spiking solution to the filter. Triplicates withdrawn from the 500 mL sample 

were plated on mTEC agar plates and incubated at 35℃ for 2 hours, then at 44.5℃ for 22 hours 

following EPA method 1603 (EPA, 2009). Coliform forming units (CFU) per liter is calculated 

as:   

CFU
L =

CFU
Sample  Volume  (mL)   ×

1,000  mL
L  

Influents from the previous day are stored at room temperature with filters until the next 

day, such that E. coli reductions during the 24-hour residence time of the filter are attributed to 

filtration mechanisms rather than overnight survivorship.  

 Effluents from each BSF were collected in 13L carboys during filtration experiments. 

Once 13L was collected, the carboys were capped, well shaken, and a 500mL sample was poured 

and stored at 4℃ until plating. Effluents were plated on modified mTEC media in triplicates of 

0.01mL, 0.1mL, 10 mL, or as single 100 mL plates depending on the expected concentration 

following EPA method 1603 (EPA, 2009). Effluent samples were stored for re-plating at 4℃. 

 For the introduction of bacteriophage MS2 to tap water maintained filters in the 

laboratory, the same three day filtration protocol was followed with influent concentrations of 

MS2 of approximately 10! plaque forming units (PFU) / L. MS2 concentrations were analyzed 

by double layer plate count method established by EPA method 1602 (EPA, 2001).  
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 3.7 Enumeration of interstitial E. coli cells by eluent and plate count method  

Upon disassembly of the BSFs, a groundwater filter seeded with biosand from the 

Linnwood treatment plant (Filter G1) was spiked with E. coli cells, which were allowed to 

permeate the porous matrix for 24 hours (following the filtration protocol). Sand samples were 

then collected from the surface, and in 10cm increments throughout the sand layer. One-gram 

sand samples were placed into 10 mL MOPS NaCl buffer solution, sonicated for ten minutes, 

briefly vortexed, and plated 9 mL of solution was plated on mTEC agar plates for E. coli 

enumeration in depth-adsorption isotherms (Liu and Li, 2008). Using this methodology, CFU / g 

sand is calculated as follows: 

CFU
g  Sand =   

CFU
9  mL  MOPS  NaCl     ×   

10  mL  MOPS  NaCl
g  Sand  

The surface sample (0 cm depth) showed TNTC E. coli concentrations and was re-plated 

using 0.1 g of sand in the same methodology.  
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Figure 9: E. coli adsorption isotherm at depths from 0 to 40 cm below sand surface 

Results of this analysis show that the first ten centimeters of filter depth containing the 

schmutzdecke is critical for the adsorption of pathogens.  

3.8 Filter Installation Dates and Treatments 

 Dominican 
Tap  

(AD Sand) 

Dominican 
Tap  

(BC Sand) 

Dominican 
Groundwater 

(AD Sand) 

Dominican 
Groundwater 

(BC Sand) 

Tap 
Water 

(Linnwood 
Sand) 

Groundwater 
(Linnwood 

Sand) 

Lake 
Michigan 

(Linnwood 
Sand) 

Seed Date 1/15/2015 1/15/2015 1/28/2015 1/28/2015 10/10/2014 10/13/2014 10/10/2014 

# Filters 2 2 2 2 3 3 3 
Inoculum 
Volume 
(mL) 

100 100 100 100 800 800 800 
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Treatment 20 l × d-1 + 
4 ppm 

humic acid  

20 l × d-1 + 
4 ppm 

humic acid  

20 l × d-1 20 l × d-1 20 l × d-1 + 
4 ppm 

humic acid  

20 l × d-1 20 l × d-1 

Table 12: Filter inoculum and treatments. 

 

3.9 Colorimetry: Nutrients and Turbidity of Source Water and Effluent   

Colorimetry was performed periodically as an indication of nitrification / denitrification 

processes, orthophosphate assimilation and turbidity reductions. Colorimetry was performed 

using a Hach DR890 colorimeter with corresponding reagent packets. Turbidity is performed 

using an unfiltered 10 mL sample blanked with deionized water. Nutrient samples are filtered 

through a 0.45  µμm  membrane prior to analysis. Nitrate analysis is performed on a 10mL sample 

using a filtered sample without reagent as a blank. Orthophosphate analysis is carried out using a 

25mL sample size blanked by sample without reagent.  

3.10 Illumina MiSeq Sequencing and qPCR 

qPCR analysis of cell density (copy numbers per gram of sand) was carried out by Dr. 

Jen Fisher, using a Total Bacteria Assay following Øvreås and Torsvik (1998) for DGGE end-

point PCR in soils. The PCR assay amplifies the V3 region of 16S rRNA gene from positions 

338 to 518 based on E. coli numbering. A standard curve was produced based on the Nitrospira 

16S rRNA gene sequence. Thermoprofile for the qPCR assay was as follows: 

-95 ℃ for 10:00 

-40 cycles of 0:15 at 95 ℃ 

-0:15 at 53℃ 
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-0:15 at 72℃ 

25 µμl reaction volumes with 12.5 µμl Power SYBR Master Mix (Life Technologies, Grand 

Island, NY, USA) forward and reverse primers (100 nM final concentration), 5  µμl of DNA 

template, and molecular grade water was the balance volume. Conversion to obtain copy 

numbers per gram of sand was 15 where (CN/rxn x 15 = CN/g sand). 

 

4.0 Experimental Results 

4.1 Filter Flow Rates 

 Flow rate largely dependent upon filter source waters. While tap water and groundwater 

maintained filters showed little decline in flow rates with maturity, filters maintained with Lake 

Michigan water as influent quickly declined in flow rates and showed greater variation in flow 

rate among replicates.  



 
	
  

	
   28	
  

 

Figure 10: Mean flow rates in BSFs seeded with Linnwood Drinking Water Treatment Plant 

inoculum sands grouped by influent type (+/-) 1 StDev (n=3).  
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Figure 11: Mean flow rates in BSFs seeded with Dominican Republic inoculum sands grouped 

by influent type.  
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4.2 E. coli Reductions  

  4.2.1 Tap Water Maintained BSFs with Dominican Republic Inoculum Sand 

For the following filtration plots, inoculum sands from the Dominican Republic are 

represented as triangles for bateyes A and D (or “good” inoculum) and as squares for bateyes B 

and C (or “bad” inoculum), with the exception of mean reductions where filters are grouped.  

 

 

FIGURE 12: E. coli reductions one day after initial spiking in chlorinated BSFs seeded with 

inoculum sands from the Dominican Republic. 

Plotting filtration efficiency for each tap water maintained filter on an individual basis, 

there are no discernable trends in filtration efficiency among batey inoculum sand groupings.  
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Figure 13: Mean (n=4) E. coli reductions during spiking in chlorinated BSFs seeded with 

inoculum sands from the Dominican Republic. 

In a series of three day spiking events, BSFs seeded with inoculum sand from the bateyes 

and maintained with tap water influent showed declining filtration efficiency with continued 

exposure to E. coli. By the third day after the initial spike, reductions often become negative for 

tap water maintained BSFs. Furthermore, it is unclear whether any maturation trend exists in 

filtration efficiency. 
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Figure 14: E. coli reductions during spiking beginning day 71 of filter maturity in chlorinated 

BSFs seeded with inoculum sands from the Dominican Republic.  
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Figure 15: E. coli reductions during spiking beginning day 119 of filter maturity in chlorinated 

BSFs seeded with inoculum sands from the Dominican Republic.  

Filter DT2 was discontinued at day 120 due to irreversible clogging. 

One month after the final spiking period for tap maintained filters seeded with inoculum 

from the Dominican Republic, culturable E. coli continued to be found in the effluent at high 

concentrations for up to one month despite the filters having returned to a chlorinated influent 
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source following the spiking procedure. 

 

Figure 16: E. coli concentrations during recovery from spiking beginning day 186 of filter 

maturity in chlorinated BSFs seeded with inoculum sands from the Dominican Republic.  

 4.2.2 Groundwater Maintained BSFs with Dominican Republic Inoculum Sand 

Grouping all reduction data, slight maturation trends can be found in filtration efficiency 

for BSFs maintained with groundwater.  This maturity trend is easily recognizable when 

considering only E. coli reductions after the initial spiking event (one day after spiking).  
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Figure 17: E. coli reductions one day after initial spiking in chlorinated BSFs seeded with 

inoculum sands from the Dominican Republic.  

Taking groundwater maintained BSFs with Dominican Republic inoculum sand and 

grouping average reduction data from the four filters, these filters maintain filtration efficiency 

over the course of the three-day spiking period. In general, groundwater maintained filters are 

more consistent in achieving E. coli reductions as compared to tap water maintained BSFs. After 

three days of exposure, filtration efficiency commonly maintained a 1 to 2log reduction.  
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Figure 18: mean (n=4) E. coli reductions during spiking in groundwater maintained BSFs 

seeded with inoculum sands from the Dominican Republic.  

While the overall E. coli reductions during the spiking process were more efficient than 

filters maintained with tap water, the groundwater maintained BSFs were slightly more gradual 

in recovering from spiking events.  
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Figure 19: E. coli reductions during spiking beginning day 72 of filter maturity in groundwater 

maintained BSFs seeded with inoculum sands from the Dominican Republic.  
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Figure 20: E. coli reductions during spiking beginning day 119 of filter maturity in groundwater 

maintained BSFs seeded with inoculum sands from the Dominican Republic.  
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Figure 21: E. coli reductions during spiking beginning day 188 of filter maturity in groundwater 

maintained BSFs seeded with inoculum sands from the Dominican Republic.  
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Figure 22: E. coli concentrations during recovery from spiking beginning day 122 of filter 

maturity in groundwater maintained BSFs seeded with inoculum sands from the Dominican 

Republic. 

4.1.3 Linnwood Treatment Plant Seeded Tap Water Maintained BSF 

Filters seeded with Linnwood Drinking Water Treatment Plant inoculum sand were 

spiked with E. coli at days 134 and 200 of filter maturation for groundwater maintained filters, 

and days 137 and 203 for filters maintained with tap water.  



 
	
  

	
   41	
  

 

Figure 23: E. coli reductions one day after initial spiking in chlorinated BSFs seeded with 

inoculum sands from the Linnwood drinking water treatment plant.  
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Figure 24: E. coli reductions one day after initial spiking in groundwater maintained BSFs 

seeded with inoculum sands from the Linnwood drinking water treatment plant.  

As experienced with tap water maintained filters seeded with inoculum sand from the Dominican 

Republic, tap water maintained filters seeded with inoculum sand from the Linnwood Drinking 

Water Treatment Plant quickly lost affinity for E. coli reductions during the spiking period.  
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Figure 25: mean (n=3) E. coli reductions during spiking starting day 200 of filter maturity in 

chlorinated BSFs seeded with inoculum sands from the Linnwood drinking water treatment 

plant.  

Similar to groundwater maintained BSFs seeded with inoculum from the Dominican 

Republic, Linnwood treatment plant seeded groundwater BSFs maintained filtration efficiency 

throughout the three-day spiking period, plateauing to approximately 1log reduction after three 

days exposure to E. coli.  
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Figure 26: mean (n=3) E. coli reductions during spiking starting day 200 of filter maturity in 

groundwater maintained BSFs seeded with inoculum sands from the Linnwood drinking water 

treatment plant.  
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 4.1.5 E. coli Survivorship in Source Waters 

 In order to understand the effect of chlorinated source water on bacteria survivorship, a 

20L segment of source waters were spiked with E. coli and plated on MOD mTEC agar in 0.1 

mL increments following EPA method 1603. The treatments were 20L tap water with 4 mg/L 

humic acid, 20L deionized water with 4 mg/L humic acid, and dolomitic groundwater.  

 

 

Figure 27: Culturable E. coli survivorship in 20L carboys with varying source waters: tap water 

with 4 mg/L humic acid, deionized water with 4 mg/L humic acid, and groundwater.  
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While deionized water and groundwater maintained survivorship over the course of 90 

minutes, chlorinated municipal tap water survivorship had reached 0.6% survivorship after five 

minutes and 0% survivorship after 15 minutes. For filters maintained with tap water, chlorination 

may contribute to culturable E. coli counts in the effluent once the filters are returned to tap 

water after spiking (immediately following each three day spiking period).  

4.2 Bacteriophage MS2 Reductions in Chlorinated BSFs 
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Figure 28: Bacteriophage MS2 reductions during spiking in chlorinated BSFs seeded with 

inoculum sands from the Dominican Republic. DT1 = “good” (AD) inoculum, DT3 and DT4 = 

“bad” (BC) inoculum. 

 Bacteriophage reductions in the fully mature tap water maintained BSF ranged from a 

minimum of 0.285 log reduction (48%) for filter DT4 on day two after spiking, to a maximum of 

1.02 log reduction (90.48%) for filter DT1 on day three after spiking.  

4.4 Source Water and Effluent Chemistry 

 4.4.1 Lapham Hall Tap Water and Groundwater 

 General water chemistry parameters for tap water and groundwater used to maintain 

filters taken January 16, 2015: 

Parameter Groundwater Tap Water 

pH 7.30 7.65 

Turbidity 8 1 

PO4 (mg/L) 0.00 1.97 

NO3 (mg/L) 1.4 1.8 

Table 13: General water chemistry of groundwater and municipal tap source waters.  

4.4.2 Bradford Beach, Lake Michigan BSF 

One unseeded BSF was maintained with source water from the south end of Bradford 

Beach. Source water and effluent were analyzed for pH, dissolved NO!, dissolved 

orthophosphate, turbidity, and 𝐴!"#. The filter was periodically spiked with high concentration 

(≈ 10!  CFU×L!!) E. coli and the effluent evaluated for filtration efficiency. While sand samples 
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were not taken for sequencing, this filter allows for a baseline representation of filter 

development when maintained with surface water, the assimilation of nutrients, and the overall 

dynamics of organic matter in the BSF system.  

 

Figure 29: Flow rate of BSF maintained with Lake Michigan water during maturation.   
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Figure 30: Influent and effluent E. coli concentrations in BSF maintained with Lake Michigan 

water. High concentration spiking occurred during days 6-44 and days 76-78 of filter maturity.    

During the first 44 days of filter maturity in which the BSF was spiked with E. coli, 

filtration efficiency varied from 0.22 – 1.65 log10 reduction. During days 76-78, filtration 

efficiency grouped more closely in the range of 1.15-1.40 log10 reduction.  



 
	
  

	
   50	
  

 

Figure 31: E. coli log reduction values during spiking in BSF maintained with Lake Michigan 

water. High concentration spiking occurred during days 6-44 and days 76-78 of filter maturity.    
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Figure 32: Bradford Beach BSF dissolved orthophosphate concentrations.  
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Figure 33: Orthophosphate difference (Influent – Effluent) in BSF maintained with Lake 

Michigan water in mg/L.  

 Accumulation of dissolved orthophosphate to the filtration media or assimilation by 

microbes is the overall trend found in the difference between influent and effluent 

concentrations. The highly negative value on day one of filter maturation may be due to the 

washout of silt from filtration media interfering with absorbance measurements.  
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By integration of the above orthophosphate data, total accumulation of orthophosphate 

within the Bradford Beach BSF can be calculated. After 110 days of maturation, the BSF had 

accumulated approximately 47 mg orthophosphate where: 

Total  Accumulated  PO! mg = [d PO!   
mg
L ×  20L]

!

!

 

Where n = total number of 20 L charges added to the filter.  
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Figure 34: Total accumulation of dissolved orthophosphate in BSF maintained with Lake 

Michigan water.  

 

Figure 35: Bradford Beach BSF nitrate concentrations.  

While turbidity of Bradford Beach fluctuates throughout the summer months, the BSF 

produced effluent with a maximum of 7 NTUs.  
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Figure 36: Source water and effluent turbidity for BSF maintained with Lake Michigan water.  

Overall, trends for pH show that the influent has a higher pH than the effluent of the 

Bradford Beach BSF. This suggests that with microbial respiration, CO! levels increase driving 

acidification of filter effluent.  
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Figure 37: pH of influent and effluent of BSF maintained with Lake Michigan water.  

Absorbance at 254 nm wavelength was used as an indicator of organic matter 

concentrations for both Bradford Beach source water and BSF effluent. Fluctuations in organic 

matter concentrations between the influent and effluent were strongest in the first 50 days of 

filter maturation, eventually leveling out to near equivalence.  



 
	
  

	
   57	
  

 

Figure 38: Absorbance at 254 nm of influent and effluent of the Bradford Beach BSF.  
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Figure 39: Approximation of dissolved organic matter concentrations for influent and effluent of 

BSF maintained with Lake Michigan water.  

Using humic acid in deionized water as a standard, a calibration curve was produced to 

develop a general relationship between A254 and organic matter concentrations.  
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Figure 40: Calibration curve for Absorbance at 254 nanometers versus humic acid concentration 

in deionized water.  

At day 77 of filter maturity, E. coli reductions in the Bradford Beach BSF were examined 

over the course of one pore volume. This data, similar to prior research, shows deviations in the 

log reduction values for E. coli throughout the filtration process. Grab samples taken from BSF 

effluent vary in E. coli concentrations depending on the location where the water parcel was 

stagnant during the 24-hour residence period (Elliot et al., 2008).  

y = 74.146x – 0.2094 
R2 = 0.99751 
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Figure 41: Reduction of E. coli over 20L in BSF maintained with Lake Michigan water.  

5.0 Microbiome of the BSF 

5.1 Illumina MiSeq 16S rRNA Sequences  

Sequencing results were grouped by 10 major phyla, 25 most abundant families, and 25 

most abundant taxa. Horn index for multi-dimensional scaling was applied to sequencing data in 

order to group the microbiome of filters in the laboratory and in the field by community 

similarity. The Horn index shows distinct differences in the microbiome of filters operating in 



 
	
  

	
   61	
  

the Dominican Republic and the laboratory, and significant differences between filters 

maintained with Lake Michigan water versus groundwater and tap water.  

 

Sample ID Type Location Depth Treatment 

Linnwood filter bed inoculum Milwaukee 0.5 m Lake water 

BateyA- biosand filter1 inoculum Batey, DR surface Chlorinated water 

BateyA-biosand filter5 inoculum Batey, DR surface Chlorinated water 

BateyB-biosand filter3 inoculum Batey, DR surface Chlorinated water 

BateyB-biosand filter4 inoculum Batey, DR surface Chlorinated water 

BateyC-biosand filter1 inoculum Batey, DR surface Chlorinated water 

BateyC-biosand filter2 inoculum Batey, DR surface Chlorinated water 

BateyC-biosand filter3 inoculum Batey, DR surface Chlorinated water 

BateyC-biosand filter4 inoculum Batey, DR surface Chlorinated water 

BateyD-biosand filter1 inoculum Batey, DR surface Chlorinated water 

BateyD-biosand filter2 inoculum Batey, DR surface Chlorinated water 

BateyD-biosand filter4 inoculum Batey, DR surface Chlorinated water 

Rio Chavon source water La Romana, DR N/A - 

Hospital Cistern 

municipal water 

 

La Romana, DR 

 

N/A 

 

Municipal water 

 

BSF L1-A a experiment UWM A Lake water 

BSF G1-A a experiment UWM A Groundwater 

BSF G-A experiment UWM A Groundwater 

BSF G-B experiment UWM B Groundwater 

BSF G-C experiment UWM C Groundwater 

BSF L-A experiment UWM A Lake water 

BSF L-B experiment UWM B Lake water 

BSF L-C experiment UWM C Lake water 
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BSF DTBC2 a experiment UWM A Tap water 

BSF DGBC1 b experiment UWM B Groundwater 

BSF DGBC2 b experiment UWM B Groundwater 

BSF DTAD1 b experiment UWM B Tap water 

BSF DTAD1 c experiment UWM C Tap water 

BSF DTAD2 a experiment UWM A Tap water 

BSF DGAD2 a experiment UWM A Groundwater 

BSF DGAD2 B experiment UWM B Groundwater 

BSF DGAD2 c experiment UWM C Groundwater 

Table 14: Biosand filter samples sequenced by Illumina MiSeq. 

Depths A, B, and C refer to ports installed at 10.2, 20.4, and 30.6 cm below sand surface, 

respectively.  
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Figure 42: 10 most abundant phyla. 
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Figure 43: 25 most abundant families. 
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Figure 44: 25 overall most abundant taxa.  
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FIGURE 45: NMDS ordination of sequencing data by Horn Index group by influent water.  
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In accordance with prior research, Proteobacteria were most abundant members of the 

microbial community (Wang et al., 2014; Haig et al., 2015; Liao et al., 2013). Filters maintained 

in the laboratory with tap water showed highest relative abundance of Proteobacteria overall. For 

laboratory filters maintained with tap or groundwater, Proteobacteria accounted for >80% of 

total sequences. Proteobacteria are Gram (-), primarily aerobic or facultative anaerobes. Alpha 

and Betaproteobacteria are the most common classes encountered in the epilimnion of freshwater 

lakes (Newton et al., 2011).  

Alphaproteobacteria families included Sphingomonodaceae, Rhodobacteraceae, and 

Rhizobiaceae. Sphingomonodaceae appear to be exceptionally dominant members of the 

microbial community under chlorinated conditions: both in tap water maintained filters in the 

laboratory and filters operating in the Dominican Republic. Sphingomonodaceae are ubiquitous 

in the environment and have been isolated from freshwater samples, marine environments, 

contaminated soils, and deep aquifers (Jogler et al., 2011). Sphingomonodaceae have been 

demonstrated as increasingly dominant members of community composition under chlorinated 

conditions rather than chloraminated conditions (Hwang et al., 2012). Sphingomonodaceae have 

been correlated with slow sand filter removal efficiency (Haig et al., 2015) and may form 

biofilms under chlorinated conditions (Hong et al., 2010). The Shinella genus of the 

Rhizobiaceae family accounted for a large proportion of the microbial community in laboratory 

filters maintained with groundwater in the laboratory. The presence of Rhizobiaceae in 

groundwater maintained filters may reflect a lack of ammonia as some free-living species of 

Rhizobiaceae are capable of dissimilatory nitrate reduction to ammonia (Poehlein et al., 2016).  

Families within the Betaproteobacteria class included Comamonadaceae, 

Rhodocyclaceae, and Burkholderiaceae. Comamonadaceae, followed by Rhodocyclaceae, were 
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the most abundant families overall. Comamonodaceae are aerobic, mobile via flagella, and curve 

or rod-shaped. Comamonodaceae have been isolated from freshwater, soil, groundwater, and 

activated sludge (Rosenberg et al., 2014). Rhodocyclaceae are aerobic or denitrifying, rod-

shaped, and typically prefer oligotrophic conditions. The Burholderiaceae genus contains 

pathogens of both plants and animals. Burkholderiaceae are rod-shaped, motile, obligate aerobes.  

Rhodocyclaceae were increasingly dominant in laboratory filters maintained with groundwater 

and seeded with inoculum from the Dominican Republic. In filters maintained with groundwater 

and seeded with biosand from the Linnwood treatment plant, Rhodocyclaceae were less 

dominant members of the microbial community while the relative abundance of 

Comamonodaceae increased.  

Among Gammaproteobacteria, the predominant families were Pseudomonodaceae, 

Bradyrhizobiaceae, Caulobacteraceae, Phyllobacteriaceae, Erythrobacteraceae, and 

Chromatiaceae. The Pseudomonas genus of the Pseudomonodaceae was shown as the third most 

abundant taxa overall. The Pseudomonas genus includes a number of opportunistic pathogens, 

such as enterotoxigenic P. aeruginosa.  

 Firmicutes were the second most abundant phylum encountered and comprise a greater 

proportion of the microbial community in filters maintained with groundwater rather than tap 

water. The abundance of Firmicutes in these filters may be explained by the stress responses to 

chlorination or a lack of nutrients. Firmicutes are Gram positive and capable of producing 

endospores under stress and desiccation. Firmicutes were more dominant in field conditions as 

compared to laboratory conditions maintained with tap water. Firmicutes may proliferate under 

free chlorine disinfection (Gomez-Alvarez et al., 2012). Unidentifiable phyla comprised the 

greatest relative abundance of microbial communities of BSF in the field followed by lake water 
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maintained filters. Clostridiaceae was the most abundant family of Firmicutes (ranked number 12 

in overall family abundance), followed by the Peptococcaceae family (ranked number 17 in 

overall family abundance). Clostridiaceae include the spore-forming Clostridium species, which 

may be highly resistant to disinfection (Hwang et al., 2012). Clostridium have been identified as 

a major component of groundwater samples (Maamar et al., 2015). Peptococcaceae are 

chemoorganotrophic, non-spore forming, anaerobic, spherical cocci.  

Planctomycetes were the third most abundant phylum, comprising a greater overall 

proportion of community abundance under field conditions and in filters maintained with surface 

water. Previous research has shown an increase in growth of Planctomycetes during algae 

blooms in marine environments, which may be attributed to Planctomycetaceae’s ability to 

degrade algal polymers (Pizzetti et al., 2011). Planctomycetes have been isolated from a variety 

of freshwater, brackish, marine, and soil environments ranging from oligotrophic to eutrophic. 

Planctomycetes have also been isolated from macroalgae biofilms. Recently, interest has grown 

in Planctomycetes due to a number of characteristics typically found in only eukaryotic cells 

including membrane-bounded cell compartments and the ability to carry out endocytosis (Lage et 

al, 2013). Planctomycetes have uniquely compartmentalized cells enclosed in a single or double 

bilayer. The paryphoplasm contains no ribosomes and lies between the intracytoplasmic 

membrane (an internal membrane) and the cytoplasmic membrane. The inner pirellulosome 

region contains ribosomes and the nucleoid, enclosed by the intracytoplasmic membrane. 

Freshwater Planctomycetes reproduce by budding structures (Fuerst and Sagulenko, 2011). In 

many Planctomycete genera, cell growth buds in non-cellular stalk structures from a central 

space (Fuerst, 1995).  Until recently, it was believed that Planctomycetes lacked peptidoglycan in 

the cell wall entirely. However, peptidoglycan has been isolated from the Planctomycete cell 
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wall and the Planctomycete genome contains genes required for peptidoglycan synthesis (Jeske 

et al., 2015).  

Bacteroidetes phylum (or Cytophaga-Flexibacter-Bacteriodes group) is the fourth most 

abundant phylum encountered overall. This phylum is highly diverse, comprised of Gram 

negative, rod shaped bacteria, which have been isolated from freshwater, marine, soil, skin, and 

gut environments. Bacteroidetes, together with Firmicutes, are important members of the human 

gastrointestinal tract and may account for over 98% of the total overall gut microbiota of 

mammals detected by rRNA sequencing. The Bacteroides group occupies a wide range habitats 

and biological niches, acting as polymeric organic matter degraders both in the environment and 

gastrointestinal tract. While gastrointestinal Bacteroidetes consist primarily of the Bacteriodia 

class, Flavobacteria, Cytophagia, and Sphingobacteria classes are most common in 

environmental habitats (Thomas et al., 2011). Similarly to their role in the mammalian 

gastrointestinal tract, environmental Bacteroidetes degrade a diverse range of complex 

polysaccharides and proteins. Some members of the Bacteriodes genus including B. fragilis are 

opportunistic pathogens of anaerobic infections upon escaping the gastrointestinal tract and host 

robust antibiotic resistance mechanisms (Wexler, 2007).  

Acidobacteria were the fifth most abundant phylum, found in BSFs operating in the field 

and in surface water maintained BSFs to a greater extent than laboratory BSFs maintained with 

groundwater or tap water. Acidobacteria have been isolated from freshwater lakes and sediments, 

soils and (Newton et al., 2011). Although they are found ubiquitously in the environment, the 

functional role of Acidobacteria has not been heavily studied. 
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 Verrucomicrobia were the sixth most abundant phylum. Verrucomicrobia are Gram (-), 

heterotrophic, and non-motile. While typically accounting for a minor proportion of the 

freshwater microbial community, Verrucomicrobia make major contributions to polysaccharide 

hydrolysis (Martinez-Garcia et al., 2012).  

 Actinobacteria followed the Verrucomicrobia phylum in abundance. Actinobacteria may 

proliferate in freshwater lakes (Newton et al., 2007). Actinobacteria are Gram positive, aerobic, 

and noted for high G and C content in their DNA.  

 The Chlamydiae phylum was encountered primarily within filtration sands of BSFs 

operating in the bateyes. The Chlamydiae phylum is comprised of obligate intracellular 

pathogens of eukaryotes, having a two part lifecycle as infectious particle form or 

intracytoplasmic reproductive form (Baron, 1996).  

 5.2 Interstitial Biomass by qPCR Copy Numbers 

A total bacteria assay was performed by the McLellan lab following Øvreås and Torsvik 

(1998) DGGE end-point PCR for soils. 16s rRNA copy numbers were typically higher at shallow 

sand depths of the BSF. Inoculum type and influent water also showed changes number of copy 

numbers. The Dominican Republic “good” inoculum showed higher copy numbers than 

Dominican Republic “bad” inoculum for filters maintained with both tap water and groundwater. 

Filters maintained with lake water and seeded with inoculum sands from the Linnwood treatment 

plant showed highest overall copy numbers.  
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Figure 46: qPCR copy numbers for filters grouped by depth, influent water, sand inoculum, and 
over time.  
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Figure 47: Interstitial and source water biomass by qPCR copy numbers.  
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 Overall, the number of 16s rRNA copy numbers was a function of both source water and 

inoculum. Filters maintained with lake water show a greater number of copy numbers (by at least 

one order of magnitude) at all filter depths. Groundwater maintained filters show a greater 

number of copy numbers than tap water maintained filters. Filters seeded with a “good” (AD) 

inoculum had a greater number of copy numbers than “bad” (BC) inoculated filters under both 

chlorinated (tap water) and un-chlorinated conditions. Filters seeded with inoculum sands from 

the Linnwood Drinking Water Treatment Plant produced a greater number of 16S rRNA copy 

numbers than both “good” and “bad” inoculum sands from the Dominican Republic. It appears 

that this inoculum sand from the slow sand filtration beds was more robust than sands 

encountered in the point of use biosand filter.  

6.0 Conclusions  

 In scenarios where source waters may be intermittently chlorinated, the point of use BSF 

is not recommended for use. In such a case, low biomass interstitial microbial community may 

not provide sufficient sorption or microbial competition to effectively remove pathogens from 

source waters with repeated exposure. Additionally, the research suggests that the BSF may 

serve as a source of pathogens under chlorinated conditions for several weeks following 

exposure to highly contaminated source water. While groundwater maintained filters continue to 

show pathogens in the effluent long after exposure to high concentration source water, 

chlorinated filters fail to provide any significant pathogen reductions after only three days 

exposure to pathogens. Additionally, bacteriophage filtration shows different patterns than E. 

coli filtration under chlorinated conditions. While E. coli shows a strong initial reduction at day 

one of the three day spiking window, bacteriophage MS2 shows a small (≈ 0.6log  )  initial 

reduction which remains fairly consistent over the three day spiking window.  
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 This research highlights shortcomings of water policy and communication throughout the 

bateyes. The BSFs funded by Rotary Club and installed by the Good Samaritan Hospital, 

although proving ineffective in the removal of pathogens from source waters, have provided a 

fundamental groundwork for water treatment and sanitation. This is a critical first step in 

improving sanitation conditions, and has been successful in establishing water correspondents for 

each village responsible for correspondence with the Good Samaritan Hospital. Drinking water 

treatment is most dependable as a multilevel process in which the failure of one component is 

reinforced by the resilience of another. Chlorination, while effective for the removal of 

pathogens, is unlikely to be a consistent process throughout the bateyes. Chlorination in 

conjunction with the BSF has proven ineffective. Abiotic filtration systems including the ceramic 

filter will remain unhindered when chlorination is present, and continue to provide treatment 

when chlorination is absent from source waters. Low turbidity source waters as encountered 

throughout the bateyes are ideal for continued operation of ceramic filters.  

 Based on NMDS ordination, this research shows that the microbial community of the 

BSF is a function of source water characteristics (chemistry, biomass, and pre-treatment) and to a 

lesser extent is affected by introduction of a biologically active biosand inoculum at the filter 

surface. To what extent the biosand inoculum community changes over time or contributes to 

filter maturation remains unclear. In general, NMDS ordination clearly groups the microbiome of 

filters in four distinct categories dependent upon source water: BSF maintained with surface 

water, groundwater, tap water, and finally BSF microbiome encountered throughout the bateyes.  

Using qPCR copy numbers as a proxy, interstitial biomass is most robust under surface 

water source, followed by groundwater source, and finally chlorinated source water. qPCR 

results suggest that inoculums obtained from the Dominican Republic which appeared to be 
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performing “well” showed greater biomass (one order of magnitude greater copy numbers) after 

being maintained under chlorinated conditions than inoculum designated as “poor” performing in 

the field. “Well” performing inoculums sands may have better adapted to chlorinated source 

water conditions, maintaining resilience after inoculation to laboratory BSFs. 

 To more accurately maintain the microbiome of BSFs encountered in the field, source 

water chemistry must be carefully monitored to prevent shifting of inoculum community from 

field conditions. Further, to simulate field scale chlorination, dosing with NaHClO! may 

appropriate rather than maintaining with municipal water supply as monochloramine disinfected 

waters contain an excess of ammonia.  

 While controlled laboratory conditions tend to provide predictable behavior and filtration 

efficiency, the lack of education and intricacies of communication in developing countries 

transcend difficulties in sanitation and hygiene. The unpreventable pretreatment by chlorine prior 

to exposure to the BSF by the sugarcane company, the over-scraping of filter surfaces leading to 

a loss of filtration media, excessive hydraulic loading of filters up to 100 liters per day, and 

storage of food products at the surface of the filter encountered during field work raises further 

precautions for the successful design of point of use filtration systems.  

7.0 Future Work 

 In order to determine the viability of inoculating fresh filters with active inoculum sands, 

additional factors must be considered, including a threshold volume of inoculum or proportion 

relative to filter pore volume, and community scale comparison of source waters against 

interstitial biofilm. While these results suggest that the overall community composition of 

inoculum sands are not maintained in the filter over time, a more robust inoculum sand may 
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provide an improved substrate for cell attachment and biofilm formation, or the community may 

shift as a reflection of the community structure of influent waters. The extent to which the 

microbial community of an inoculated filter deviates from the microbial community of the 

inoculum sand is largely a function of water chemistry parameters, including pretreatment, 

trophic status, pH and DOC.  

 To produce an inoculum resistant to chlorination, some bacterial taxa are of interest for 

chlorine resistance and prevalence in freshwater biofilms. These bacteria groups include the 

Sphingomonodaceae family, which is found in this study to comprise a major proportion of the 

bacterial community composition in chlorinated filters. Sphingomonodaceae have been isolated 

from chlorinated drinking water distribution system biofilms in many cases. Some species of the 

Mycobacterium genus (within theActinobacteria phylum) are likewise resistant to disinfection 

due to cell wall complexity, and have been isolated from drinking water distribution system 

biofilms (Liu et al., 2012). Mycobacterium may play a critical role in disinfected biofilm 

formation through the production of EPS (Gomez-Alvarez et al., 2012). However, the 

Mycobacterium genus contains many pathogenic species including agents for leprosy and 

tuberculosis. Strains of interest for biofilm development under chlorinated conditions create 

challenges to preventing the proliferation of potentially pathogenic agents.  
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APPENDIX 

 

Appendix A: Growth Media and Chemical Preparation 

LB Broth: for plating E. coli from -80℃ 

 -Autoclave 15 minutes at 15 PSI 

TSB + Streptomycin / Ampicillin: broth for overnight E. coli inoculation of C3000 

(F!"#) Host Strain 

 -To 900 mL 𝐻!O add 30g TSB 

 -Dilute to 1L 

 -Autoclave 15mins at 15 PSI 

 -Add 10 ML Streptomycin / Ampicillin Stock 

Streptomycin / Ampicillin Stock: 

-Dissolve 0.15 g Ampicillin Sodium salt and 0.15 g Streptomycin Sulfate in 100 

mL Water 

-Filter through sterile 0.22 µm membrane  

LB Agar: for overnight E. coli inoculation of “Berm” strain 

 -Autoclave 15 minutes at 15 PSI 
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Modified mTEC Agar: for enumeration of E. coli 

 -Autoclave 15 minutes at 15 PSI 

0.7% Triptic Soy Agarose  

To 250 mL deionized water: 

 -Add 7.5g Bacto Triptic Soy Broth 

 -Add 1.75g Agar  

 -Autoclave 15 minutes at 15 PSI 

Phosphate Buffered Saline 

To 800 mL deionized water: 

 -8g NaCl 

 -0.2g KCl 

 -1.44g Na!HPO! 

 -0.24g KH!PO! 

 -Adjust pH to 7.4 with HCl and dilute to 1L 

 -Autoclave 15 minutes at 15 PSI 

Appendix B: Microbial Stock Cultures  

E. coli C3000 (𝑭𝑨𝑴𝑷): Host for Bacteriophage MS2 
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-ATCC # 15597 

  Bacteriophage MS2 

   -ATCC # 15597-B1 

  “Berm” E. coli: 

-E. coli strain isolated by McLellan lab from berm region of Bradford 

Beach, Milwaukee, WI.  

-Stored at -80℃ until inoculation 
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