
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2016

Writing English Sentences More Effectively By
Avoiding Arabian Students’ Typical Mistakes
Alaa Mohammed Alsharif
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Computer Sciences Commons, and the Linguistics Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Alsharif, Alaa Mohammed, "Writing English Sentences More Effectively By Avoiding Arabian Students’ Typical Mistakes" (2016).
Theses and Dissertations. 1108.
https://dc.uwm.edu/etd/1108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Wisconsin-Milwaukee

https://core.ac.uk/display/217189148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=dc.uwm.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1108?utm_source=dc.uwm.edu%2Fetd%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

WRITING ENGLISH SENTENCES MORE EFFECTIVELY BY AVOIDING ARABIAN

STUDENTS’ TYPICAL MISTAKES

 by

Alaa Alsharif

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

 at

 The University of Wisconsin-Milwaukee

May 2016

ii

ABSTRACT

WRITING ENGLISH SENTENCES MORE EFFECTIVELY BY AVOIDING ARABIAN STUDENTS’
TYPICAL MISTAKES

 by

Alaa Alsharif

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Susan McRoy

 In Arabic speaking countries like Saudi Arabia, English is considered as the most important

second language to be taught and used. Unfortunately, a sizeable percentage of students there

appear to still have significant difficulty learning English, possibly due to the difficulty in finding

sufficiently qualified teachers. This type of problem is self-perpetuating since the taught students

might become weak teachers in the future also. This thesis aims to address the problem of

helping Arabic students to improve their writing in English and to help them learn so that they

will make fewer mistakes in the future and possibly become better teachers themselves. It

focuses on creating methods to find the most typical mistakes made by those Arabian students in

their writing, mistakes which were determined by the author from both self-observation and a

review of related research findings (The author also saw these mistakes in the sentences used by

subjects who tried pilot versions of the software). The result of this work is usable software that

is able to detect, correct, and provide grammatical rules related to the most common mistakes

found in the written sentences of the target Arabian students, when the sentences are in the

present tense. These types are errors related to the following rules: (1) letters capitalization

rules, (2) adj-noun ordering in the sentence, (3) proper use of the verb to be, (4) punctuation

iii

placement rules, (5) the use of the articles “a” and “an” within a sentence, and (6) rules for the

possessive case.

 The software was evaluated using the author’s observation on the use of the software by

22 Arabian students and by letting them afterwards to complete a usability and usefulness

survey. The results of the evaluation suggest that Arabs will mostly like how the software treats

punctuation placing errors. Students also advised the author that it would be beneficial for the

software to address a broader range of typical mistakes.

 This work is the first to create software specifically for Arabic students of English to help

them to find their grammatical errors, provide suggested correction, and teach the student the

grammatical rules needed to correct his/her sentence.

iv

© Copyright by Alaa Alsharif, 2016
All Rights Reserved

v

Dedicated to my mother in the first place,

father,

husband,

brothers,

friends,

and all of my family members who are still alive or died recently

for encouraging me even when I was thinking to quit completing my studies.

vi

TABLE OF CONTENTS

List of Figures viii

List of Abbreviations ix

Acknowledgements x

Chapter 1: Introduction 2
1.1 Main Ides 2
1.2 Motivations 3
1.3 Contributions Toward Solving the Problem 4

1.3.1 Summary of Contribution Findings 5

Chapter 2: Background 8
2.1 Consensus Opinions 8
2.2 Closely Related Prior Work 11

Chapter 3: Design 15

3.1 Problem 16

3.2 Requirements 17

3.3 Conceptual Model 18

3.4 Executable Model 19

3.5 Evaluation 19

Chapter 4: Implementation 22

4.1 High Level Scenario of the Software 22
4.2 General Architecture 24
4.3 Low Level Scenario of the Software (Programming Work) 25
4.4 Running the Software 26
4.5 Examples 27

Chapter 5: Evaluation 34

5.1 Instruments Used for Evaluation 34
5.2 Results 35
5.3 Discussion of Evaluation 35

Chapter 6: Conclusion 42

vii

6.1 Summary 42
6.2 Importance of the Work 43
6.3 Limitations and Future Work 44

References 46

Appendix A: Usability and Usefulness Survey 47

Appendix B: Python Functions Used in Software Implementation 48

viii

LIST OF FIGURES

Figure 1: Theory towards solving the problem 15

Figure 2: User interface design 18

Figure 3: Use case diagram 23

Figure 4: Software start-up window 27

Figure 5: testing capitalization of first letter in the sentence 28

Figure 6: Testing noun-adj ordering in the sentence 29

Figure 7: Testing the need of verb “to be” with gerunds 29

Figure 8: Testing genitive construction errors 30

Figure 9: Testing Punctuation placing errors 30

Figure 10: Testing “a” and “an” errors 31

Figure 11: Help message box window 32

Figure 12: Detected Grammatical Errors in the software that are Mostly Liked by Arabian
mllmm Students 36

Figure 13: Likert Scaling Questions Results 38

Figure 14: Suggestions of Respondents 39

ix

LIST OF ABBREVIATIONS

ESL - English as a Second Language.

GUI - Graphical User Interface.

NLTK - the Natural Language Toolkit.

UAE - United Arab Emirates.

x

ACKNOWLEDGEMENTS

Though only my name appears on the cover of this thesis, a great many people have

contributed to its production. I owe my gratitude to all those people who have made this thesis

possible and because of whom my graduate experience has been one that I will cherish forever.

My deepest gratitude is to my advisor, Prof. Susan McRoy. I have been amazingly

fortunate to have an advisor who gave me the freedom to explore on my own, and at the same

time the guidance to recover when my steps faltered. Mrs. McRoy taught me how to question

thoughts and express ideas. Her patience and support helped me overcome many crisis situations

and finish this thesis. I hope that one day I would become as good an advisor to my students as

Mrs. McRoy has been to me.

Many friends have helped me stay sane through these difficult years. Their support and

care helped me overcome setbacks and stay focused on my graduate study. I greatly value their

friendship and I deeply appreciate their belief in me. I am also grateful to the Arabian students

that helped me evaluate my work.

I’m also thankful for all of the UW-Milwaukee staff in Computer Science department who

helped me through their experience.

Finally and most importantly, none of this would have been possible without the love and

patience of my family. My immediate family to whom this dissertation is dedicated to, has been

a constant source of love, concern, support and strength all these years. I would like to express

xi

my heart-felt gratitude to my family. My extended family has aided and encouraged me

throughout this endeavor.

1

Chapter 1

Introduction

2

1. Introduction

1.1 Main Ideas

When students travel to obtain an education they face many challenges, including

needing to write scholarly essays or reports in a language that may be very different from their

native language. These differences can cause them to make errors in grammar or style, which

could place their academic success at risk. This thesis aims to address this problem by creating

new software that will help prevent or correct the typical mistakes that Arab students make when

writing formal documents in English.

The potential impact of this thesis is high because of the huge number of Arab students

in the United States, dispersed over many states and cities. An important goal is that the software

be perceived as beneficial to the students who are its target audience. The author feels she has

a good understanding of what would be seen as beneficial, because she is herself an Arabic

student in an English country.

Arab students are supposed to read, write, listen, and speak English fluently to pass their

courses successfully. Each one of those four skills is very important and also complex. For

example, reading is an English skill that requires the student to scan the paragraphs, skim the

book topics, and comprehend the details and information presented in those paragraphs.

Unfortunately, time limitations forced the work in this thesis to address only one of them. The

author chose to solve the most noticeable problems related to English writing due to repeated

requests from Arab students to have something helpful for them related to improving their

3

English writing.

1.2 Motivations

Growing up in Saudi Arabia where the mother language is Arabic and the second language

is English helped the author to understand the kind of work that needed to be done to help Saudi

students with their English writing. Until this point of time in Saudi Arabia, students are still not

properly educated in their schools about how to use the English language in their lives and

studies. This problem of being not educated well in the English language has increased

dramatically in the last five years and is especially noticeable in all of the big cities. There are

many reasons for this growth; the next paragraphs will explain the most significant ones which

have motivated the work on this problem.

After finishing high school, any Saudi student who wants to complete his/her studies in

the field of engineering, medicine, or science as an undergraduate student is required to pass

about eight months of studying the English language. The Ministry of Education in Saudi Arabia

requires students to pass these English training courses because the universities focusing on

these fields of studies are using English in their curriculum. However, imagine how difficult it

must be for a beginner student to become a fluent English speaker, writer, listener, and reader

in only one year with only short English lessons daily. Most of the students are able to pass the

training course because they already know in advance what they will be asked for in their final

exams and what they should answer. However, many of them will still not really be fluent in the

English language or even good users of English. Some students will struggle and suffer greatly

until they get a chance to learn English more properly by living in an English country for a while

4

where they can learn the language truly.

The second significant reason for the weak English skills among many Arab students is

rooted in the huge number of scholarships which are paid by the government to some students

who have special characteristics. Students use the scholarships to travel to English-speaking

countries to finish their bachelor’s degree, masters, Ph.D., or all of them together. The life and

the study for those students with scholarships are even harder than those who attend English-

language institutions in their home country, because there are often higher expectations for their

English skills. However, generally these students are also inadequately prepared. Writing, being

perhaps the most essential skill for them, was thus chosen as the primary topic for the proposed

software.

1.3 Contributions Toward Solving the Problem

From the motivations provided earlier in this chapter, the author became inspired to

create an English writing program or an application that checks the grammar of the written

sentences. The application is intended to help Arab students to learn the correct structure of

writing sentences in English by avoiding the most typical mistakes done by Arab students. The

approach makes use of, the differences between the structure of the English sentences and the

structure of Arabic ones, since they are almost completely different and the opposite. The

program aims to teach Arabic students the basic correct sentence structure in English by giving

them suggestions on how the written sentence should look and explaining the grammatical rules

behind the suggested structure.

5

Creating an application that gives Arab students only instructions about the right structure of the

English sentences might seem to be boring, unattractive, and faraway of being a programmed

application. The author addresses this risk by giving students the ability to write their own

sentences and then check them for errors. To understand what are the typical mistakes, the

research will involve a survey of past work. The typical mistakes documented previously will be

the basis of the program and the main concern that the program will try to correct.

Another approach taken in this work was to make observations of the common mistakes

of Arabian friends in their English writings and conversations in their basic daily life. Observing

them was a good method to prove and validate the typical mistakes of Arabic students in writing

English which are found by the first approach.

The results of the research and observation in pointing out the weakness in Arabs’ English

writing skills directed the work to the key mistakes that should be corrected in Arabs’ sentences

using the software.

1.3.1 Summary of Contribution Findings

From observation and research, the most common mistakes of Arab students in

writing in English were found to be more diverse than what could reasonably be covered

and detected by the new software. For this reason, the software will solve only the most

common mistakes.

Specifically, the software will be able to detect mistakes like: the use of articles

such as “a” and “an”, the genitive ordering of nouns, use of punctuation, proper

6

capitalization of letters including the first letter of the first word in the sentence and the

proper nouns, as well as the use of verb to be in the sentence. Note that the program

focuses on the present tense more than the others.

Although the program may miss some corrections, users will never get wrong

suggestions because mistakes that were not detectable will be ignored. It will never say

that the sentence is correct, because it was programmed only to detect the specific

mistakes provided in the previous paragraph and nothing else. Therefore, although the

sentences will be improved, we cannot yet say that the sentence is error free.

In the next chapter, we will consider related work done in this field and past

insights into the right structure of written English sentences. After that, the remaining

chapters will answer the following questions: how effective can a software system be in

identifying and correcting typical errors, how usable, useful and satisfying will Arabic

students find such a system, and what design measures are used to create the interface.

7

Chapter 2

Background

8

2. Background

2.1 Consensus Opinions

Many experts have agreed that English language and Arabic are very different from each

other. This makes it challenging for the Arab speakers to learn English fluently. Since the rules in

forming sentences in Arabic is different in English, most Arab students still need to unlearn the

rules in writing sentences and relearn it in a new when writing in English. There is a consensus

about this hardship among Arab speakers who are learning English and the need for support or

a program that will help these students identify their mistakes and correct them.

Arabic language is from Semitic language family while English is from Germanic language.

Linguists know that the grammar of these two languages are very different and there are parts

of speech in English language that is not part of Arabic speech (“The Differences between English

and Arabic”). Therefore, it is very understandable for the beginners to be confused and they need

help to correct their common mistakes.

In a study conducted by Haifa Al-Buainain, an associate professor at the Department of

Foreign Languages at Qatar University, 40 exam scripts were analyzed from the students taking

their first Writing Course in English at the university. Using error analysis as a method to analyze

the students’ writing, Al-Buainain found out that the errors of students “systematic and

classifiable” (1). To be more specific, it was found out in this study that Arab students who are

beginners in the English writing have concerns about “structure, selection of vocabulary items,

spelling, punctuation, organization, adequacy of ideas and variety of sentence structure, logic

and strength of argument” (Al-Buainain 3). In others, the problem is not just with grammar but

9

also with selection of the appropriate words to be used and the strength in writing sentences to

create claims or arguments.

When it comes to grammar, the most common problem of the ESL (English as a Second

Language) Arab students is the proper use of verbs using the correct tense. For instance, one

student in the study conducted by Al-Buainain wrote “They always shouting and open my room”

(6). Clearly, this sentence has errors in the use of present continuous form of the verb as well as

the present tense of the verb. Due to these errors, the sentence also had a problem with

parallelism. Once the verbs are parallel, the sentence will be better as a sentence written as “They

always shout and open my room.” Although the sentence may still lack some clarity, writing it

that way makes it more grammatically correct.

Another common mistake of the ESL Arab students in writing is the omission of the verb

to be. For instance, one student wrote “I interested” instead of writing “I am interested” (Al-

Buainain 6). Since the Arabic language has no to be or its equivalent in its language, this omission

mistake is common among Arab ESL students.

Furthermore, the lack of subject/verb agreement is also rampant among Arab students

when writing in English. Since Arabic language has no subject/verb agreement, most Arab

students commit mistakes in making singular subject agree to singular verb and plural subject

agree to plural verb. For instance, one student in the same study wrote “Their market and

shopping centres has…” (Al-Buainain 7). Since the subject in the given sentence is plural, the verb

should be have instead of has. Other common errors explained in the study conducted by Al-

10

Buainain include the use of articles, writing fragments, noun modifiers, countable and

uncountable nouns, and preposition.

Another study conducted by Taiseer Mohammed Y. Hourani - this time from United Arab

Emirates (UAE) – also aimed to know the common mistakes made by Arab students. Since Arabic

is also the language in UAE, this should be the same with the common concerns faced by Arab

students in Saudi Arabia when writing English sentences. Hourani found similar grammatical

errors which are similar to what Al-Buainain found in his study. These errors include

“passivization, verb tense and form, subject-verb agreement, word order, prepositions, articles,

plurality, and auxiliaries” (Hourani).

With the similar findings of two different studies done, including the observation I had

with the Arab students around me, it can be concluded that the findings of these researchers are

validated with the observations I had and the consensus among the study results conducted

among different groups of ESL Arab students who are writing in English. The articles mentioned

include the use of “a” and “an” while the word order include the order of adjectives and nouns

in the sentence which is sometimes confusing to the students.

Meanwhile, Lina Gomaa, a language instructor who taught at Beloit College in Wisconsin

and at Misr International University in Cairo also shared her opinion about the common mistakes

that Arab students make when writing English sentences. As an educator, she based her

statement from her own experiences. According to her, there are five major trouble spots for

Arabic ESL students. These five major trouble spots include but not limited to (1) run-on

sentences, (2) redundancy, (3) Arabish, (4) punctuation, and (5) writing organization. When it

11

comes to run-on sentences, what Gomaa means is that students tend to write endless sentences

without using period. This is a typical mistake among Arab students since most of them do not

know when to put full stop. Moreover, the Arabish words is still present in papers of Arab

students since they directly translate Arabic words to English at times just like in a sentence like

“infection spreads by peace with hand” (Gomaa). In Arabic language, this is easily

understandable; however, when directly translated to English word-for-word, it does not make

a lot of sense anymore. In addition, the use of punctuation is also a common mistake among

Arabic students since Arabic language has “less limitations in the use of commas and periods than

English” (Gomaa). This coincides with the study conducted by other researchers saying that most

Arab students have problems in using punctuation properly.

2.2 Closely Related Prior Work

As of the moment, there is no available program online that is solely designed to check

the grammar of Arabic students. Most of the programs available are for all users in general,

regardless if they have a different first language or if English is already their first language. One

popular program designed to check the grammar in writing is the Instant Grammarly Checker. It

has its own website and users can download their application for free. Since it is designed for all

users in general and also caters to the native speakers of English, it has more advanced program

that can check more than 250 grammar rules and can spot the wrong spelling used depending on

the context of the sentence. Other than this, there are no other programs available online that is

specifically designed to help Arab students correct their writing using the English language.

12

The key similarities between Instant Grammarly Checker and our software include that

they both attempt to identify grammatical mistakes in users' sentences; they both look for more

than one kind of mistake at the same time, and they both give a suggested replacement sentence

to illustrate the corrections needed.

On the other hand, Instant Grammarly Checker was designed to help any non-native

English speaker or even an English speaker with low knowledge of the grammar rules. It is also

not giving instructions to users on why the suggested sentence wrote in that way. My new

software designed to correct the most typical mistakes done by Arabs, and to be more

educational and attractive program, the software gives the student grammatical rules related to

their mistakes in the sentence they wrote if there was any. The Instant Grammarly Checker

covered to many grammatical error in general compared to software created in this thesis.

Published research related to our project includes the grammar checking system KNGED,

which has been designed to diagnose grammatical errors in Chinese sentences (CHANG). The

approach used in this tool is based on a set of rules to identify common grammatical errors. The

research included a study to analyze Chinese sentences and identify syntax errors, after which

they developed an algorithm that is able to detect errors automatically and inform the student

about the error type. This system is very similar in high level goals and approach to the one made

in this thesis. The key difference is that KNGED is designed to correct the mistakes of non-Chinese

language speakers while the system in this thesis would be used to correct English mistakes done

by Arabian students.

13

Another previously published project is CALI (Computer-Assisted Language Instruction),

which is a system that was built to help English language learners by detecting the misused

grammatical rules in their sentences, hypothesizing the cause, and providing corrective

information to the student. The research done for this system is similar to the work involved in

creating the software of this thesis. As in our project, the research done in CALI is based on the

assumption that the sentences provided by language learners differ in systematic ways from that

of the native English speaker which is the same as saying that Arabic speakers are producing

English. The key difference is that the CALI system did not attempt to engage the user by

addressing learning and thus might not be as effective at preventing future mistakes.

In the following, you’ll find the design work done in the new software including

Requirements Specifications

14

Chapter 3

Design

15

3. Design

This chapter will present the process used to develop a design for the system. It will also explain

the design itself. Figure 1 illustrates the general approach to developing the design. The steps

toward solving the problem started by analyzing the problem to get the requirements. Then, a

conceptual model sketched the visual interface of the software. After that, an executable system

implemented and evaluated.

Figure 1: Theory towards solving the problem.

Problem

Requirements

Conceptual Model
(visual solution)

Executable Model
(executable software)

Evaluation

16

In what follows, we will discuss the approach in greater detail.

3.1 Problem

The problem, as has been specified, is that Arabic students make typical mistakes in

writing English sentences that make the passing of college courses difficult for them while

studying in English. The typical mistakes are as follows:

1- Arabic does not use capitalization and so students tend to avoid upper case in English as

well. For example, students are more likely to write the first letter of the first word in the

sentence with a lower case letter. They also sometimes make the same mistake with the

first letter of the cities, persons, countries, and all the proper nouns but not as the first

letter in the first word of the sentence.

2- Arabic starts the writing from right to left, which is the opposite of the English writing, so

students may reverse the ordering of the adj-noun in their English sentences. For

example: Arabs might write “I have an ID state” instead of “I have a state ID”.

3- Arabic has no verb to be or other auxiliary verbs. It is also make distinctions between the

singular and plural nouns through morphology in a way that makes the verb look different

for the singular name compared to the verb of the plural noun. Thus students commonly

omit auxiliary verbs or fail to use the proper form of the verb to be in between the words

of the English sentence.

4- Since Arabic lacks indefinite articles such as “a” and “an”, students may omit them or

choose the wrong one.

17

5- Generally, Arabic is much looser in using punctuation than in English.

3.2 Requirements

Identifying the most typical mistakes of Arab students in their English writings raised the

need to create a software that supports the following requirements:

1. A GUI (Graphical User Interface) that is easy to use.

2. The software should check for the following errors and alert the user:

a. The first letter of the first word in every new sentence should be capitalized.

b. Adjectives should be at the correct position compared to their nouns.

c. Verbs (verb to be, and auxiliary verbs) and gerunds should appear at the correct

positions in the sentence if needed.

d. Punctuation should appear at the correct position including full-stops, commas,

and question marks.

e. The use of an – a should appear correctly in the sentence if needed.

f. Possessive nouns should appear in correct ordering within the sentence.

3. A written sentence for the user is needed to represent the suggestion of what the correct

sentence should looks like. This suggestion appears as a response of checking the user

written sentence.

4. Show the user the grammatical rules they violated to let users learn from their mistakes

and to make the software more a tool to support learning than as a critic that simply checks

and corrects mistakes.

18

5. Provide the user with a help box that tells about the system, the author, and contact

method for improvement purpose.

3.3 Conceptual Model

To achieve the requirements provided above, the author developed the following

simulated interface (see figure 2).

The above interface is intended to be a sketch to be used later in the implementation

step. It contains a text box where the user should type the sentence, a check button to be

pressed after typing the sentence for checking purpose, a suggestions section where the

suggested correction for the sentence should appear if there was any mistake, the grammatical

Figure 2: User interface design.

19

rules sections where the student can learn from the mistakes he/she made, and a question

symbol that pop ups information about the software and the creator. Note that both

suggestions and grammatical rules sections should result in the response “It looks good, but

please double check that you used the correct tense throughout all the sentence.” This

comment was chosen by the author because the software will not address all the tense

grammatical mistakes. Instead, the program will initially be more focused on the present tense.

The previous figure (figure 2) was drawn using Balsamiq Mockups 3.

3.4 Executable Model

For the designed previous interface to be functioning appropriately, all the requirements

should be achieved using programmed functions intended to work in each requirement. At the

end of programming such functions, an executable software that looks like the designed widow

should detect, correct, and instruct the Arabic user in the first place to learn from their mistakes.

The next chapter will discuss the implementation step in more details.

3.5 Evaluation

 The work was evaluated in several stages. First, a pilot usability test was done for this

software by the author. Then the author conducted an observation study that involved22 Arabic

students who used the study while being observed by the author. Lastly, a written usability and

usefulness survey was completed by the same 22 subjects to measure their degree of

satisfaction, to learn what they liked in the software, and what improvements they might suggest.

20

Those evaluation measures, along with the results and the analysis of them, will be discussed

later in more detail in the evaluation chapter.

21

Chapter 4

Implementation

22

4. Implementation

Linux was used as the primary development platform for creating the software, while testing and

running the code was done using Windows. We used Python 2.7 for the implementation. Python

was chosen for this work because it includes ready to use library packages that can analyze the

natural language, including NLTK (the Natural Language Toolkit). These library packages are able

to classify, tokenize, stem, tag, and parse English words. Moreover, for the creation of the GUI,

Python has a TKInter library packages, which were helpful in designing the software interface.

In the previous -design- chapter, the author converted the requirements to a conceptual model

which captures the look of the GUI that the user should see and use. In this chapter, we consider

the executable model in detail.

4.1 High Level Scenario of the Software

As the next diagram shows, after the user provides a text and presses the “Check” button,

it initiates the system's role in helping them improve the grammar of the text. Specifically, the

system interacts to do the following: (1) detect any and all typical mistakes mentioned in the

design chapter, (2) print a response indicating either no correction found in case no errors were

detected or print the corrected version of the sentence in case there is a mistake, (3) In case of

having mistakes in the sentence, the system will also print any known grammatical rules related

to the mistake(s) occurring in the user sentence. The third interaction is intended for the

purpose of allowing the user to learn to avoid similar mistakes in the future.

23

.

Figure 3: Use case diagram.

Start up the SW

Write a sentence

Press “Check” button

Check if mistakes

exist in the sentence

Print suggestion

Good job sentence

when no mistakes
Corrected sentence if

mistakes detected

Print grammatical rules

related to mistakes

User

System

<<include>>

<<include>>

<<extend>>

Grammar Checking system

24

4.2 General Architecture

The requirements specified previously were converted to a technical requirement to help

implement the code. To make this transformation, the author specified each of the technical

requirements as the names of functions where each one of them is a solution to one or more of

the analyzed requirements.

The functions used in this software to achieve the required goals are as follows:

1- “tagsToString”: To convert the sentence tags to string.

2- “Error1”: To detect if noun is preceding an adjective.

3- “Error2A”: To detect verbs and if gerund is used without to be.

4- “Error2B”: To find whether an extraneous modal is used with ‘do'.

5- “Error3A”: To add punctuation to the sentence where it is missing, including commas

and full-stops.

6- “Error3B”: To capitalize the first letter in words at the beginning of the sentence.

7- “Error3C”: To correct the use of articles “a” and “an”.

8- “Error4”: To correct genitive construction errors.

9- “checkErrors”: The main function to check all of the errors in the provided sentence

by the user.

10- “analyse”: The function to analyze and return the suggestion as per the grammatical

error rule detected.

11- “Centre”: The function to provide the graphical user interface.

12- “helpMsg”: The function to show up the help message box.

25

4.3 Low Level Scenario of the Software (Programming Work)

Now, as we have the general overview of the software functionality, we will go much

deeper to describe the tasks that each function does.

In the very beginning, the system will attempt to recognize the sentence words given to

it by the user. The words then will be tagged with its matching part of speech in the language

using NLTK library packages.

The function “tagsToString” is used to convert the tags given to each word into a string

form to make it possible for the system to deal with the words in the provided sentence.

“Error1” in the code detects the nouns and their adjectives. Having those two kind of words in

the sentence based on the tags given to each word is used in correcting the mistakes related to

the adj-noun ordering.

The rest of the functions- “Error2A”, “Error2B”, “Error3A”, “Error3B”, “Error3C”,” Error4”-

are also applied to address different typical mistakes in English writing made by Arab students,

as stated in the design chapter. All of the tasks rely on the tags of the words; the specific details,

including the Python code that was used, are given in the appendix.

The main function that controls the rest of the error detection functions is called

“checkErrors”. This function saves the mistakes that occurred in the sentence and send the

results to the “analyse” function, which makes the corrections and prints the suggested

correction. In case no mistakes were detected, the latter function returns “It looks good as long

as your sentence is in the present tense. Good job.” This message notifies the user that no

mistakes were found as long as the sentence is in the present tense since the program is limited

to handling only the present tense correctly at this time.

26

The last two function - “Centre” and “helpMsg”- uses the TKInter library packages.

“Centre” is to provide the graphical user interface to the student or the user and “helpMsg” is to

pop-up the help window where the user can see brief information about the software.

4.4 Running the Software

To run this software, there are three Pre-requisites:

1- Python 2.7 or above should be installed in the system.

2- NLTK (Natural Language Toolkit) library packages should be installed.

3- TKInter library packages should be installed.

Note that Python is platform independent which make the implementation usable on any

kind of operating system. The author created the code on a machine running Linux and ran it

using both Linux and Windows. For the python file to be executed, one must provide the

following commands in the Command Prompt:

1- For Linux:

 chmod +x Grammar_Check.py

 ./Grammar_Check.py

2- For Windows:

 cd c:\Python27 (or to the directory where you Python is installed)

 python.exe Grammar_Check.py (or the name of your python file)

After having these steps, the software should start by showing the user interface. The

figure below (figure 4) represents the start-up window. The user will see that he/she needs to

27

type a sentence in the text box as indicated by a request above it asking the user to do that. After

typing the sentence, user can then press the “Check” button to let the system starts working on

detecting any grammatical errors.

Figure 4: Software start-up window.

In the following, we consider examples of each typical mistake mentioned in the design

chapter

4.5 Examples

We start with the first typical mistake, which involves capitalization. The relevant rule

states that “The first letter in the beginning of every new sentence should be capitalized”. The

28

screenshot in figure 5 shows how the system properly corrected the lower case letter “i” in the

first word “it”. Also, the system successfully provides the related grammatical rule for the user

that states why the sentence was corrected in this way.

.

Figure 5: testing capitalization of first letter in the sentence.

The next figures illustrate the rest of the typical mistakes. Please refer to the figure

description under each one for more clarification.

Note that the examples are sentences written randomly. Each sentence represents a

typical mistake category.

29

Figure 6: Testing noun-adj ordering in the sentence.

Figure 7: Testing the need of verb “to be” with gerunds.

30

Figure 8: Testing genitive construction errors.

Figure 9: Testing punctuation placing errors.

31

Figure 10: Testing “a” and “an” errors.

Those are all the typical mistakes illustrated with different examples. Of course there

remain some limitations related to the use of tenses other than the present. This limitation, and

any others, should be considered later as future work.

Lastly, it always important to let the user able to reach a help within the software

application. For this reason, the author provided a help button where the student can request to

see a message box with brief information about the software along with the contact email. This

characteristic is beneficial also for the author. It makes it easy to contact the users to help them

and learn more about their problems, comments, and suggestions about the work. Thus, the

author hopes to be able to improve the work later. See figure 11 for the appearance of the help

textbox message.

.

32

Figure 11: Help message box window.

Next, software evaluation will be discussed in detail.

33

Chapter 5

Evaluation

34

5. Evaluation

5.1 Instruments Used for Evaluation

To evaluate the software, the author used the results of two methods. An observation

and a survey. For both methods, the subjects were Arabian students because the software was

intended to help this population. Multiple methods were used because sometimes, people are

unable to predict or explain the problems the experience while using software using a survey,

however, makes it easier to compare results across subjects.

In the observation study, 22 Arabian students were recruited and asked to use the

software while the author noted any problems of their using it.

Afterwards, a survey was used to ask the subjects to answer items intended to assess

their perceptions of the effectiveness of created software. The survey was called “Usability and

Usefulness Survey” (See Appendix A). Using this tool, the author asked the subjects, after using

the software, about the most liked typed of grammatical errors which the software helped them

find and fix. It included an open-ended question, so the respondents were free to give their

complete and honest answers.

 The survey also included four questions using a Likert Scale from 1 to 5 with 5 being the

most positive answer while 1 being the most negative. The four questions were: (1) How

comfortable were you with the visible presentation of the documents in the interfaces? (2) How

easy was it for you to use the system? (3) How satisfied were you with the speed of the system

in providing you results? (4) How satisfied were you with the feedback the system provided to

35

help you improve your writing? At the end of the survey, subjects were asked for any suggestions

they could give to improve the usability and usefulness of the software created by the author.

5.2 Results

There were 22 Arabian students who completed the study. Subjects had different answers

in the first open-ended question. The most frequently cited preferred feature was mentioned by

about 23% (N=5) of participants Five of the respondents reported that they liked the software in

correcting the genitive construction of the sentence. Four of the respondents expressed that they

liked the system in fixing capitalization errors. Another four Arabian respondents said that they

liked the software when it corrects the placing of punctuation throughout the sentence. The

same number of students (four) liked detecting and correcting the “a” and “an” errors in their

sentences. Meanwhile, two of the students who answered the survey like the software in

detecting when they should put a question mark (“?”) for interrogative sentences. Another two

students liked the software in correcting the punctuation appearance mistakes within the

sentence. Meanwhile, only one student liked having a system that is able to correct the ordering

of adjectives-noun sequences in the sentence.

5.3 Discussion of Evaluation

Although many students had different answers, their answers can be grouped into just

five answers that include the following:

36

 Punctuation placement (8 respondents)

 Genitive construction (5 respondents)

 Capitalization errors (4 respondents)

 “a” and “an” errors (4 respondents)

 Adjective-noun ordering (1 respondent)

Figure 12: Detected Grammatical Errors in the software that are Mostly Liked by Arabian

Students.

Figure 12 above shows exactly the percentage of each error category reported as useful

in the answers of the respondents. This shows that 36%of the respondents liked how the

software fix punctuation problems. In other words, just over one third of the Arabian students

wanted a program that is able to put the missing punctuation in their English sentences, replace

the wrong punctuation with the correct one, and remove punctuation that are misplaced in the

36%

23%

18%

18%
5%

Detected Grammatical Erros in the
Software that are Mostly Liked By

Arabian Students

Punctuation placing

Genitive construction

Capitalization errors

A and an error

Adjective-noun ordering

37

sentence. This also includes a program that will put a period, question mark, or any other

appropriate punctuation mark in the sentence depending on the kind of sentence.

In addition, 23% of the 22 Arabian students who participated in the survey liked the

software fixing the genitive construction of two nouns in a sentence. Since Arabic language has

a different way of structuring nouns to show possession, this is a common mistake that most

Arabian students make once they start writing in English since they may base the way they write

on how the words are structured in the Arabic language. Therefore, it is not surprising that most

students wanted a program that corrects this kind of typical mistake.

Meanwhile, both capitalization errors and “a”- “an” errors were mentioned by 18% each.

This shows that a number of Arab students are challenged in using capital letters and “a”- “an”

in the sentence. This is also understandable because the Arabic language does not have lower

case or upper case in its writing system. Moreover, “a” and “an” or its equivalent are not present

in the Arabic language. It appears that, as expected, most Arab students would be happier if they

found a software that checks and fixes the use of “a” and “an” in their English sentence.

Furthermore, only 5%, or the smallest percentage of respondents, expressed that he/she

liked he software detecting the errors in the order of the adjective-noun pairs within their English

sentences. In the Arabic language, the adjective always comes after noun which is the opposite

in English language where the adjective comes before the noun it modifies. This difference

between the rules in grammar of the two languages may create confusion to the Arabian

students who are just beginning to learn English. Also, even those who are used to writing English

letters for a while, may make mistakes because of the opposite nature of the Arabic language.

38

Thus, it is understandable that some Arabian students would want a program that would correct

the ordering of adjectives and nouns in the sentence.

Figure 13: Likert Scaling Questions Results.

Moreover, the feedback of the survey participants about the program in general was

positive. Figure 13 above shows the results of the Likert Scaling questions with a scale of 1-5, with

5 being the most positive and 1 being the most negative answer. The third question had an

average score of 5 which means that all the respondents thought that the speed of the system of

providing results was fast. Meanwhile, the first and the second question got the same average

score of 4.95 which means that almost all the respondents became comfortable with the visible

presentation of the documents in the interface. Aside from that, they also thought that it was

easy to use the software. The fourth question had the lowest score of 4.82, although this score

still means that majority of the students were satisfied with the feedback given by the system to

help them improve their writing.

4.95 4.95

5

4.82

QUESTION 1 QUESTION 2 QUESTION 3 QUESTION 4

Likert-type Scale Questions Results

39

Figure 14: Suggestions of Respondents.

The last open-ended question asked users for suggestion to improve the system. We were

most interested in this question because it can help one to improve the software. As seen in Figure

14 above, most of the respondents said that they would like the interface to be more attractive

and that includes having a larger font size and more attractive color or attractive design in

general. This represents 37% of those 22 Arabian students who used the program. In addition,

some of them mentioned that the system should be more capable of detecting more punctuation

errors. This comprises 27% of the respondents who reported that they want the program to

detect all grammar errors if possible. Meanwhile, the same number of respondents (or another

27% of them) said that they have no suggestions for the improvement of the system and they

already like it the way it is. For the author, this doesn’t mean that they completely like the

software, but perhaps they could not provide any suggestions for improvement at the time of

participation.

Since most of the concerns were related to the attractiveness of the interface, these

respondents must have been aware that the main purpose of the program is to correct just the

27%

37%

27%

9%

Suggestions of Respondents

More detection of
grammar errors

Better design/font size

No suggestion/Liked it

Better instructions

40

typical mistakes that Arabian students commit in writing sentences in English. Furthermore, the

smallest portion of the respondents –only %9 or 2 students- mentioned the instructions or that

the suggested answers should be clearer.

In the next and final chapter, you’ll find a summary what the author did so far regarding this

software, why it was successful, and some recommended directions for future work.

41

Chapter 6

Conclusion

42

6. Conclusion

6.1 Summary

For this thesis, the author chose to focus on the problems that Arabian students face

when writing in English. This problem was chosen because the author is related to it directly since

she is an Arabic student. To identify the problem, the author began with her informal knowledge

of the most frequent mistakes made by Arabian students around her during English classes and

when she was giving them her opinion about the essays they were writing. Also, she found

confirmation of the occurrence of the same error types in published papers regarding the most

typical mistakes of Arabian students.

For this thesis, the author worked towards finding a solution or an idea of what a possible

successful solution to the problem would be. She found out that creating software to help Arabic

speakers improve their English writing would be likely to be useful, if well-accepted. To enhance

acceptability, she designed the software as more a learning tool than just one to detect and fix

the mistakes for the users.

The software was created to satisfy many requirements identified by the author after a

careful analysis of the problem. The requirements included detecting and correcting different

types of English grammatical writing mistakes. They also included the need to notify the users of

the specific grammatical rules that they need to learn to improve their writing, based on on the

mistakes they made.

The software was tested by 22 Arabian students. To evaluate the software, the author

observed the participants using the software. She looked for any unanticipated difficulties as well

43

as recording occurrences of expected ones. Subjects were also given a chance to report their

own perceptions, through a written usability and usefulness survey at the end of using the

software by the same 22 Arabian students. The answers to the questions provided in the survey

suggest that most students like these would like how the software treats the punctuation

mistakes and the errors related to the genitive construction. The results also revealed that

students were satisfied generally with the use of the software and most of the suggestions

recommend improving the efficiency of the software and the interface design, such as using a

larger font size.

6.2 The Importance of the Work

 For those students whose first language is not English, such as Arabian students, having a work

that is intended and created to help them would be valuable. Among all what had been created to help

Arabian students so far to improve their English writings, there is no such work regarding its idea. Note

that there are some available programs online that helps Arabian students learn English grammar for

writing. Some of them include complete sets of lessons from beginner level to advanced level. However,

such programs either looks like the learning courses which are available already for Arabian students in

their daily classes, or they are more grammar checking only without having the learning aspect to them.

Thus, combining all of these characteristics, including checking, fixing, and teaching, along with detecting

the most typical mistakes that Arabian students make is the primary contribution of the work.

 The work appears to be largely successful, as 27% of the participants of the usability and

usefulness survey said that they found the software to be good enough and needing no further

improvement.

44

6.3 Limitations and Future Work

 A few limitations of this work were revealed by the results of the evaluation done for the

software. The most important concern is that the software user interface needs to be more

attractive for the students to be more satisfied. The second most important limitation is the need

to expand the number of grammatical errors that the software can detect, fix, and provide

grammatical rules related to them. Arabian students have a broad range of typical mistakes and

the time limitations and the difficulty of fixing the mistakes, caused the author to focus on just a

few of them to start.

 Moreover, to design a system that can solve all the typical mistake of Arabian students,

one needs the help of an expert (or native speaker) of English because there are mistakes that a

non-native speaker might not be able to identify. For example, a non-expert might write a

sentence like “From the possible that I’m pregnant” instead of saying “I might be pregnant”,

which at the local level might look grammatically correct, but overall is not how a native speaker

would write with any normal English checker, even the ones embedded ones in commercial

programs such as Microsoft Word, this error would be missed. However, a tool targeted to

second language students might be created to identify and correct errors like this, with more

sophisticated methods.

 Based on these noted limitations, the future work recommended by the author would be

to go further in increasing the number of grammatical errors that the software can detect, solve,

and provide good learning messages. Additionally, the interface of the program should be

improved so that it works better for the eye and makes the use of the software more enjoyable.

45

 Another possible improvement would be to include a spelling checker.

Lastly, the way of presenting the grammatical rules to the students might be improved,

as this was mentioned by 9% of the survey participants.

46

References

Al-Buainain, Haifa. “Researching Types and Causes of Errors in Arabic Speakers’ Writings.”

Qatar University. 2006.

Alsaawi, Ali. “Spelling Errors Made by Arab Learners of English.” International Journal of

Linguistics 7.5(2015):55-67.

Catt, M., & Hirst, G. (1990). An intelligent CALI system for grammatical error
diagnosis. Computer Assisted Language Learning, 3(1), 3-26.

CHANG, Tao-Hsing, Yao-Ting SUNG, and Jia-Fei HONG. "Automatically Detecting Syntactic Errors
in Sentences Written by Learners of Chinese as a Foreign Language."

Gomaa, Lina. “5 Writing Trouble Spots for ESL Students of Arabic.” Teaching Community. n.d.

Web. < http://teaching.monster.com/benefits/articles/10068-5-writing-trouble-spots-

for-esl-students-of-arabic>.

Hourani, Taiseer Mohammed Y. “An Analysis of the Common Grammatical Errors in the English

Writing Made by the 3rd Secondary Male Students in the Eastern Coast of the UAE.”

British University in Dubai. 2008 June. Web.

<http://bspace.buid.ac.ae/bitstream/1234/225/1/20050055.pdf>.

"Natural Language Toolkit." NLTK 3.0 Documentation. NLTK Project. Web. 26 Nov. 2015.

“Number of Words in the English Language.” Global Language Monitor. 1 Jan. 2014. Web. <

http://www.languagemonitor.com/number-of-words/number-of-words-in-the-english-

language-1008879/>.

“The Differences between English and Arabic.” Frankfurt International School. n.d. Web.

http://esl.fis.edu/grammar/langdiff/arabic.htm

47

Appendix A:

Usability and Usefulness Survey

What types of grammatical errors were you most interested in having a system help you
find and fix?

Please rate your answers to the following questions using a scale (where 1 is lowest and
5 is highest):

1. How comfortable were you with the visible presentation of the documents?
in the interfaces? (1= not at all; 5 = completely comfortable)

2. How easy was it for you to use the system? (1 = not easy; 5 = very easy)
3. How satisfied were you with the speed of the system in providing you results? (1

= not happy; 5= extremely happy)
4. How satisfied were you with the feedback the system provided to help you

improve your writing? (1= not at all; 5 = completely satisfied)

In the space provided, please provide suggestions to improve the usability and usefulness of the
software.

Thank you,

48

Appendix B:

Python Functions Used in Software Implementation

#!/usr/bin/env python

#Import tkinter for GUI libraries
import Tkinter
from Tkinter import *
import string

#Import tkMessageBox for information and help message box
import tkMessageBox
def helpMsg():
 tkMessageBox.showinfo("About this Software", "This software is intended to be used by Arabian students to
correct their most typical mistakes in English writings. It works properly in present tense sentences. For more help,
please contact the author on alshari4@uwm.edu. Thanks.")

#Import nltk for language processing
from nltk import *

#Check to see if relevant text exists
try:
 sentence = "example sentence"
 tokens = word_tokenize(sentence)
#If it doesn't, download it
except LookupError:
 print("Downloading requisite English language processing code...")
 download('book')

#Convert a list of tuples (word, part of speech) to a sentence String
def tagsToString(tags):
 result = ""
 for x in tags:
 word = x[0]
 pos = x[1]
 if pos == '.' or word[0]=="'":
 result+=word
 else:
 result+=" "+word
 result = result.strip()
 result = " "+result
 return result

#Process text to detect if a noun is found preceding an adjective:
def Error1(tags):
 error = False
 if len(tags) < 2:
 return error

49

 adj = ['JJ']
 nouns = ['NN','NNS','NNP','NNPS','PRP','RP','DT']
 for i in range(len(tags)-1):
 currentWord = tags[i][0]
 currentPOS = tags[i][1]
 nextWord = tags[i+1][0]
 nextPOS = tags[i+1][1]
 if currentPOS in nouns and nextPOS in adj:
 tags[i] = (nextWord, nextPOS)
 tags[i+1] = (currentWord, currentPOS)
 error = True
 return error

#Process text to detect if a gerund is used without 'to be':
def Error2a(tags):
 error = False
 flag = 0
 if len(tags) < 2:
 print "Hemant 1"
 return error
 nouns = ['NN','NNS','NNP','NNPS','PRP','RP']
 verbs = ['VB','VBD','VBG','VBN','VBP','VBZ','MD']
 capitals = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

 tagsLength = len(tags) - 1
 for i in range(tagsLength):
 print "Hemant 2"
 firstWord = tags[i][0]
 print "Hemant 2a"
 print firstWord
 firstPOS = tags[i][1]
 print "Hemant 2b"
 print firstPOS
 secondWord = tags[i+1][0]
 print "Hemant 2c"
 print secondWord
 secondPOS = tags[i+1][1]
 print "Hemant 2d"
 print secondPOS
 print "for is am"
 print tags[i][0]
 print tags[i+1][0]
 if tags[i][1] in ['VBD','VBG','VBP','VBZ'] and tags[i+1][1] in ['VBD','VBG','VBP','VBZ']:
 print "in if cond"
 tags.remove(tags[i+1])
 break
 if firstPOS in nouns and tags[i][0] not in capitals:
 print "Here"
 newword = tags[i][0].capitalize()
 tags.remove(tags[i])
 tags.insert(i,(newword,'NN'))
 break
 if secondPOS in ['VBD','VBG','VBP','VBZ'] and firstPOS not in verbs:

50

 for j in range(i,len(tags)):
 print "Hemant 2e @@@@@"
 print tags[j][0]
 print tags[j][1]
 if tags[j][0] == '.':
 if firstWord in ['I']:
 print "Hemant 3"
 if tags[i+1][0] not in ['Am','am','like',
'liked','can','could','had','have','will','would','love','loved','see','saw','hate','hated',
'want','wanted','need','needed','own','owned','belong','hear','heard','smell','seem','seemed','know','knew','believe
','believed','remember','remembered','doubt','doubted','dislike','disliked','understand','understood','suspect','susp
ected','loath','loathed','forget','forgot','prefer','preferred','feel']:
 tags.insert(i+1,('am','VBP'))
 flag = 1
 error = True
 break
 elif firstWord in ['He','he','She','she']:
 print "Hemant 4"
 if tags[i+1][0] not in ['Is','is','like',
'liked','can','could','had','have','will','would','love','loved','see','saw','hate','hated','want','wanted','need','needed','
own','owned','belong','hear','heard','smell','seem','seemed','know','knew','believe','believed','remember','rememb
ered','doubt','doubted','dislike','disliked','understand','understood','suspect','suspected','loath','loathed','forget','f
orgot','prefer','preferred', 'feel']:
 tags.insert(i+1,('is','VBP'))
 flag = 1
 error = True
 break
 elif firstWord in ['They','they','We','we','You','you']:
 if tags[i+1][0] not in ['Are','are','like',
'liked','can','could','had','have','will','would','love','loved','see','saw','hate','hated',

'want','wanted','need','needed','own','owned','belong','hear','heard','smell','seem','seemed','know','knew','believe
','believed','remember','remembered','doubt','doubted','dislike','disliked','understand','understood','suspect','susp
ected','loath','loathed','forget','forgot','prefer','preferred','start','started','feel']:
 tags.insert(i+1,('are','VBP'))
 flag = 1
 error = True
 break
 elif tags[j][0] == '?':
 if firstWord in ['I']:
 print "Hemant 6"
 if tags[i+1][0] not in ['Am','am']:
 tags.insert(i,('am','VBP'))
 flag = 1
 error = True
 break
 elif firstWord in ['He','he','She','she']:
 print "Hemant 7"
 print tags[i+1][0]
 if tags[i+1][0] not in ['Is','is']:
 tags.insert(i,('is','VBP'))
 flag = 1
 error = True

51

 break
 elif firstWord in ['They','they','We','we','You','you']:
 if tags[i+1][0] not in ['Are','are','Will','will']:
 tags.insert(i,('are/will','VBP'))
 flag = 1
 error = True
 break
 if flag == 1:
 break
 return error
#Process text to find if an extraneous modal is used with 'do'
def Error2b(tags):
 error = False
 if len(tags) < 2:
 return error
 verbs = ['VB','VBD','VBG','VBN','VBP','VBZ','MD']
 do = ['do','Do','does','Does']
 for i in range(len(tags)-2):
 firstWord = tags[i][0]
 firstPOS = tags[i][1]
 secondWord = tags[i+1][0]
 secondPOS = tags[i+1][1]
 thirdWord = tags[i+2][0]
 thirdPOS = tags[i+2][1]
 if firstWord in do and secondPOS == 'MD':
 tags[i+1] = (('',''))
 error = True
 elif firstWord in do and thirdPOS == 'MD':
 tags[i+2] = (('',''))
 error = True
 while (('','')) in tags:
 tags.remove(('',''))
 return error
#Add punctuation to the sentence where it does not exist:
def Error3a(tags):
 error = False
 if len(tags) < 2:
 print "Hemant 3a 1"
 return error
 capitals = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 question
=["Who","What","Where","When","Why","How","who","what","where","when","why","how","Is","Are","is","are"
,"Do","do","Should","May","Could","should","may","could","would","Would","Does","do"]
 print "Questionmark condition"
 print tags[0][0]
 print tags[len(tags)-1][0]
 if tags[0][0] in question and tags[len(tags)-1][0] != '?':
 print "Add questionmark"
 i = len(tags) - 1
 tags.remove(tags[i])
 tags.append(('?','.'))
 error = True
 if tags[-1][1] != ('.'):

52

 for x in range(len(tags)-1,-1,-1):
 if tags[x][1] in ['.','?','!']:
 print "Hemant 3a 2"
 break
 if x != 0:
 print "Hemant 3a 3"
 x += 1
 if tags[x][0] in question:
 print "Hemant 3a 4"
 tags.append(('?','.'))
 else:
 print "Hemant 3a 5"
 tags.append(('.','.'))
 error = True
 for i in range(len(tags)-1):
 print "Hemant 3a 6"
 currentWord = tags[i][0]
 currentPOS = tags[i][1]
 nextWord = tags[i+1][0]
 nextPOS = tags[i+1][1]
 if nextPOS != 'NNP' and nextWord != "I" and nextWord[0] in capitals and currentPOS != '.':
 for x in range(i,-1,-1):
 if tags[x][1] in ['.','?','!']:
 print "Hemant 3a 7"
 break
 if x != 0:
 print "Hemant 3a 8"
 x += 1
 if tags[x][0] in question:
 print "Hemant 3a 9"
 tags.insert(i+1,('?','.'))
 else:
 print "Hemant 3a 10"
 tags.insert(i+1,('.','.'))
 error = True
 verbs = ['VB','VBD','VBG','VBN','VBP','VBZ','MD']
 fanboys = ['for','and','nor','but','or','yet','so','because','while','although','therefore','thus']
 addCommas = []
 left = False
 right = True
 for i in range(len(tags)-1):
 print "Hemant 3a 11"
 currentWord = tags[i][0]
 currentPOS = tags[i][1]
 if currentWord in fanboys:
 for j in range(i,len(tags)):
 if tags[j][1] in verbs:
 print "Hemant 3a 12"
 right = True
 break
 elif tags[j][1] == '.':
 print "Hemant 3a 13"
 break

53

 for j in range(i,-1,-1):
 if tags[j][1] in verbs:
 print "Hemant 3a 14"
 left = True
 break
 elif tags[j][1] == '.':
 print "Hemant 3a 15"
 break
 if left and right:
 print "Hemant 3a 16"
 error = True
 addCommas.append(i)
 for loc in addCommas:
 print "Hemant 3a 17"
 tags.insert(loc,(',','.'))

 removeCommas = []
 for i in range(len(tags)-1):
 if tags[i][0] == ',' and tags[i+1][0] not in fanboys:
 print "Hemant 3a 18"
 removeCommas.append(i)
 error = True
 for loc in removeCommas:
 print "Hemu"
 print tags[loc]
 del tags[loc]
 error = False
 print error
 break

 nouns = ['NN','NNS','NNP','NNPS','PRP','RP']
 print error
 for i in range(len(tags)-1):
 print error
 if tags[i][0][-1] == 's' and tags[i][0][-2] != "'" and tags[i+1][1] in nouns:
 print "Hemant 3a 19"
 tags[i] = (tags[i][0][:-1]+"'"+tags[i][0][-1],tags[i][1])
 error = True
 print tags[-3][0]
 if tags[-2][0] == 'please' and tags[-1][0] == "?":
 print "Hemant 3a 20"
 tags.insert(-2,(',','.'))
 error = True
 print error
 break
 print error
 return error
#Capitalize letters in words at the beginning of a sentence:
def Error3b(tags):
 error = False
 if len(tags) < 2:
 return error
 capitals = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

54

 punctuation = ".!?"
 nouns = ['NN','NNS','NNP','NNPS','PRP','RP']
 for i in range(len(tags)-1):
 currentWord = tags[i][0]
 nextWord = tags[i+1][0]
 if (i == 0 or currentWord == 'i') and currentWord[0] not in capitals:
 newWord = currentWord.capitalize()
 tags[i] = (newWord,tags[i][1])
 error = True
 elif currentWord in punctuation and nextWord[0] not in capitals:
 newWord = nextWord.capitalize()
 tags[i+1] = (newWord,tags[i+1][1])
 error = True
 return error
#Correct usage of A/An
def Error3c(tags):
 error = False
 if len(tags) < 2:
 return error
 a = ['a','A']
 an = ['an','An']
 vowels = 'aeiouAEIOU'
 for i in range(len(tags)-1):
 currentWord = tags[i][0]
 nextWord = tags[i+1][0]
 if currentWord in a and nextWord[0] in vowels:
 newWord = an[a.index(currentWord)]
 tags[i] = (newWord,tags[i][1])
 error = True
 elif currentWord in an and nextWord[0] not in vowels:
 newWord = a[an.index(currentWord)]
 tags[i] = (newWord,tags[i][1])
 error=True
 return error
#Correct genitive construction errors:
def Error4(tags):
 print "4"
 error = False
 if len(tags) < 3:
 print "4a"
 return error
 nouns = ['NN','NNS','NNP','NNPS','PRP','RP']
 for i in range(len(tags)-2):
 print "4b"
 firstWord = tags[i][0]
 firstPOS = tags[i][1]
 secondWord = tags[i+1][0]
 secondPOS = tags[i+1][1]
 thirdWord = tags[i+2][0]
 thirdPOS = tags[i+2][1]
 if secondWord == 'the' and firstPOS in nouns and thirdPOS in nouns:
 tags[i] = (secondWord,secondPOS)
 tags[i+1] = (thirdWord,thirdPOS)

55

 tags[i+2] = (firstWord,firstPOS)
 tags.insert(i+2,("'s", 'POS'))
 error=True
 return error
#Master function which calls all of the error checks and which
#prints the evolving structure of the sentence for debugging
def checkErrors(text):
 errors = ""
 print("Sentence:")
 print(text)
 tokens = word_tokenize(text)
 print("Tokens:")
 print(tokens)
 tags = pos_tag(tokens)
 print("Original:")
 print(tags)
 e3a = Error3a(tags)
 print("Punctuation correction:")
 print(tags)
 e3b = Error3b(tags)
 print("Capitalization correction:")
 print(tags)
 e1 = Error1(tags)
 print("Noun preceding adjective correction:")
 print(tags)
 e2a = Error2a(tags)
 print("Omission of verb 'to be' in gerund correction:")
 print(tags)
 e2b = Error2b(tags)
 print("Extraneous use of modal verb with 'do' correction:")
 print(tags)
 e3c = Error3c(tags)
 print("A/An correction:")
 print(tags)
 e4 = Error4(tags)
 print("Genitive construction correction:")
 print(tags)
 if e1:
 errors += " Adjective cannot succeed noun.\n"
 if e2a:
 errors += " Verb 'to be' is needed with a gerund.\n"
 if e2b:
 errors += " A modal verb is not needed with 'do'.\n"
 if e3a:
 errors += " Punctuation must be in its proper place. Place a comma to seperate clauses, full-stop at the end
of the sentence, and question mark at the end of questions.\n"
 if e3b:
 errors += " The beginning of sentences and proper nouns must be capitalized.\n"
 if e3c:
 errors += " Improper use of articles, use 'An' before noun starting with vowels, 'A' otherwise.\n"
 if e4:
 errors += " The genitive construction uses a possessive.\n"
 fixedText = tagsToString(tags)

56

 if errors == "":
 errors = " It looks good as long as your sentence is in the present tense. Good job."
 L6.config(fg='green')
 top.update()
 else:
 L6.config(fg='red')
 return (fixedText,errors)
#Master function which analyses text
def analyze():
 text = T1.get("1.0",END)
 fixedText, errors = checkErrors(text)
 fixedText = fixedText.split()
 for index in range(1, len(fixedText)):
 if fixedText[index] != 'I':
 if len(fixedText[index])>1 :
 if (fixedText[index][0] in string.ascii_uppercase and
 fixedText[index][1] in string.ascii_uppercase) : continue
 else :
 l = len(fixedText[index-1])
 if fixedText[index-1][l-1] != '.' :
 fixedText[index] = fixedText[index].lower()
 else :
 if fixedText[index][0] in string.ascii_uppercase :
 l = len(fixedText[index-1])
 if fixedText[index-1][l-1] != '.' :
 fixedText[index] = fixedText[index].lower()
 fixedText = ' '.join(fixedText)
 if fixedText[0] not in string.ascii_uppercase:
 if fixedText[0] in string.ascii_lowercase:
 tmp = fixedText[:1]
 tmp = tmp.upper()
 fixedText = tmp + fixedText[1:]
 #errors = checkErrors(text)
 L3v.set("\n Suggestion:\n")
 L4v.set(fixedText)
 L5v.set("\n Misused grammatical rules that may help you:\n")
 L6v.set(errors)
#Helper function which centers window
def center(win):
 win.update_idletasks()
 width = win.winfo_width()
 height = win.winfo_height()
 x = (win.winfo_screenwidth() // 2) - (width // 2)
 y = (win.winfo_screenheight() // 2) - (height // 2)
 win.geometry('{}x{}+{}+{}'.format(width, height, x, y))
#User interface code
top = Tk()
top.title("Learn English More Effectively by Avoiding Typical Mistakes")
top.geometry('800x800')
L1 = Label(top, text="\n Please type your sentence here:\n", font=("Helvetica", 14))
L1.pack(anchor=W)
T1 = tkinter.Text(top,height=4,width=60,font=("Helvetica", 14))
T1.pack()

57

L2 = Label(top, text="", font=("Helvetica", 14))
L2.pack()
B1 = Button(top, text=" Check ", command=analyze,font=("Helvetica", 14))
B1.pack()
L3v = StringVar()
L3 = Label(top, textvariable=L3v, font=("Helvetica", 14, "bold"))
L3.pack(anchor=W)
L4v = StringVar()
L4 = Label(top, textvariable=L4v, font=("Helvetica", 14), justify=LEFT, wraplength=800)
L4.pack(anchor=W)
L5v = StringVar()
L5 = Label(top, textvariable=L5v, font=("Helvetica", 14, "bold"))
L5.pack(anchor=W)
L6v = StringVar()
L6 = Label(top, textvariable=L6v, fg="red", font=("Helvetica", 12), justify=LEFT, wraplength=800)
L6.pack(anchor=W)
B2 = Tkinter.Button(top, text = "?", command = helpMsg)
B2.pack()

center(top)
top.mainloop()

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2016

	Writing English Sentences More Effectively By Avoiding Arabian Students’ Typical Mistakes
	Alaa Mohammed Alsharif
	Recommended Citation

	tmp.1466706968.pdf.8mln_

