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ABSTRACT 

 

MAKING TEST BATTERIES ADAPTIVE BY USING MULTISTAGE TESTING 

TECHNIQUES 

by 

  

Wen Zeng 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Cindy M. Walker 

The objective of this dissertation research is to investigate the possibility to improve both 

reliability and validity for test batteries under the framework of multi-stage testing (MST). Two 

test battery designs that incorporate MST components were proposed and evaluated, one is a 

multistage test battery (MSTB) design and the other is a hybrid multistage test battery (MSTBH) 

design. The MSTB design consists of three tests: The first test used the AMI (approximate 

maximum information) method as the routing strategy; and as for the second and third, the 

“On-the-Fly” strategy (OMST) was employed. The MSTBH design also consists of three tests; 

the first two are administered via MST while the third one via CAT.  

This dissertation presents a new test battery design by combining the strengths from 

different testing models. To improve estimation precision, each subsequent test in the test battery 

for an examinee was assembled according to the examinee’s previous ability estimate. A set of 

simulation studies were conducted to compare MSTB, MSTBH with two baseline models for 

both measurement accuracy and test security control under various conditions. One of the 

baseline models is a MST design consisting of three MST procedures without borrowing 

information from each other’s; the other is a computerized adaptive test battery (CATB) design 

consisting of 1 to 3 CAT procedures, being the second and the third procedures borrowing 
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information from the previous ones. The results demonstrated that the test battery designs 

yielded better measurement accuracy when considering previous subtest score as a predictor for 

the current subtest. All designs yielded acceptable mean exposure rates, but only the CATB 

design had ideal pool utilization. Finally, the discussion section presents some limitations on 

current studies 
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I. INTRODUCTION 

 

Under the Race to the Top initiative, two promising testing models have been endorsed: 

linear tests and Computer-based tests (CBT). Over the past few decades, paper and pencil (P&P) 

was the most commonly used format of linear tests. With the development of the computer, CBT 

has become popular in current testing systems. CBT can be either linear or adaptive. During a 

linear CBT test, all examinees take the same items and the ability of each examinee is going to 

be obtained by examinees’ performance on these items, which leads to less accurate estimates. 

During an adaptive CBT test, examinees take different items according to their ability levels. 

Thus, adaptive CBTs have been widely used in recent assessment tests because they show more 

efficient and precise measurement of examinees’ performance (Hendrickson, 2007; Lord, 1980). 

Computerized Adaptive Testing (CAT) and Multistage Testing (MST) are two major test models 

in adaptive CBTs. In particular, a CAT is designed to select each item from an item pool 

according to each examinee’s current ability estimate, and then update that estimate after each 

item response. In other words, the administration test algorithm of this procedure is framed to 

adapt at the item level to choose an item with a difficulty parameter that is near the current 

estimate of an examinee’s ability. Ability estimates are updated after each item response, and this 

step is repeated until a stopping criterion is met. In practice, many applications have adopted 

CAT designs because it can provide the more precise measurement for all examinees than linear 

tests can provide (Hendrickson 2007; Lord 1974; Wainer, Kaplan, & Lewis, 1992). Another 

important CBT model is MST. The main difference between MSTs and CATs is that in a MST, 

examinees always receive a set of pre-assembled items that are matched to their provisional 
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ability estimates (Hendrickson, 2007), but in a CAT, only a single item is selected to match the 

ability estimates. 

Usually, a MST is composed of several stages, and, within each stage, several bundles of 

items are pre-assembled before test administration. Each module is constructed based on item 

difficulty levels so that the information for a particular ability level can be maximized. Once all 

of the modules are pre-assembled, the modules in different difficulty positions can be bundled 

together in a unit called “panel”. Figure 1 illustrates a 1-3-3 MST design (e.g., Luecht, Brumfield 

& Breithaupt, 2006; Zenisky, 2004). It is a MST design that includes three stages and ten parallel 

panels. Each panel includes seven modules varying difficulty. In addition, there are seven 

available pathways for each examinee; they are 1M+2H+3H, 1M+2H+3M, 1M+2M+3H, 

1M+2M+3M, 1M+2M+3E, 1M+2E+3M and 1M+2E+3E. Specifically, “1” represents first stage, 

“2” and “3” represent second and third stage, respectively. The E, M, and H represent the 

difficulty level easy, medium, and hard, respectively. To prevent examinees from making 

extreme jumps between difficulty levels, 1M+2H+3E and 1M+2E+3H pathways are not possible 

paths. There can be many parallel panels in MST. However, once a panel is selected for 

administration to an examinee only those items within that particular panel will be administered 

to that examinee.  During test administration, each examinee is administered one of the parallel 

panels starting with a module of medium difficulty in stage 1 at random. This stage is called the 

routing stage. After the first module is finished, one of the modules in stage 2 is administered 

depending on the examinee’s current proficiency estimation. As shown in Figure 1.1, there are 

three modules (2H, 2M, and 2E) in stag2, varying by their item difficulties. Once stage 2 is 

finished, similar routing process will be used for routing examines from stage 2 to stage 3. The 

final ability estimate for each examinee is based on his or her responses to the whole test. The 
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unique feature of pre-assembling items at the stage-level allows better test quality control while 

sustaining the measurement advantages of CATs (Patsula 1999; van der Linden & Glas 2010). 

Therefore, considerable attention has been paid to MST designs. 

 

Figure 1.1: Structure of a 1-3-3 MST Design 

To conduct the performance of different test models, several studies have compared the 

benefits of CATs and MSTs (e.g., Kim & Plake, 1993; Luecht et al., 1996; Patsula, 1999). 

Previous studies concluded the major advantage of a CAT is that more efficient latent trait 

estimates are obtained with fewer items than would be required in linear tests, but the major 

advantage of a MST is that it provides a relatively lower chance of getting unreliable ability 

estimates when estimating examinees’ latent traits based on a group of items. Since each kind of 

test model has its advantages and disadvantages, rather than selecting between only CAT and 

Module 
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MST, researchers have been trying to find a new framework to overcome the limitations and 

improve the benefits of these two models at the same time. Zheng and Chang (2014) proposed a 

multistage assembly paradigm called “On-the-Fly” multistage (OMST) adaptive testing, which 

merges a CAT and a MST into one big flexible framework. In an OMST, instead of assembling 

all modules and panels before the test, a group of items is contiguously selected based on 

examinees’ current ability estimate and administered together after the selection. One OMST can 

include multiple stages according to the administration goal. Figure 1.2 illustrates the general 

process of an OMST obtains three stages. First, each examinee is administered one of the 

preassembled module that provides moderate difficulty level, and then the initial ability estimate 

is updated based on the responses of the certain module. Second, after completing stage 1, an 

individualized module is assembled at stage 2 for the examinee, based on his or her initial ability 

estimate. Third, the stage3 is assembled based on the examinee’s updated ability estimate from 

stage 2. Finally, repeating this process until the whole test completed. As stage length decreases, 

an OMST transforms smoothly from a MST to an adaptive format, and researchers treat this kind 

of design as a hybrid design. Given that not much information about an examinee’ s ability level 

can be provided at the beginning of a test, there are substantial measurement errors in the early 

stages of a CAT. In an OMST, rather than maximizing test information for each single item, 

optimizing the test information within an interval around the provisional ability estimate can 

decrease measurement errors, especially those obtained early in the test administration phase.   
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Figure1.2: General Procedure of OMST Strategy, Zheng & Chang (2014) 

 

Test batteries can also be realized for testing programs in which a set of tests has to be 

administered in a single session, but the testing time has to remain constant (e.g., Boughton, Yao, 

& Lewis, 2006; Yao & Boughton, 2007). The major advantage of utilizing test batteries is that 

several tests measuring different subjects can be administered simultaneously to provide profile 

scores within a single session. The Armed Services Vocational Aptitude Battery (ASVAB) is a 

well-known example of test battery designs. It is a multiple aptitudes battery that measures ten 

distinguished subtests (abilities) to predict future academic success in the military. After several 

years of evaluation, the CAT-ASVAB was one of the first large-scale adaptive test batteries. 

While changing the testing model from linear to adaptive in a test battery adds a layer of 

complexity, in terms of the development and evaluation of a new score scale, it also allows the 

combined benefits of less testing time and greater score accuracy.  

Collateral information (Stout et.al., 2003) is an important statistical notion in many 

CATB types of research, which can be explained as the suspected information about an 
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examinee's ability measured by one test that is suspected based on the examinee’s responses to 

items on other tests. Since many test batteries include a cluster of different subjects but strongly 

related, such as a battery consisting of a mathematics subtest and a logical skill subtest, the 

amount of collateral information among these subtests can be substantial and these correlations 

should not be ignored (van der Linden, 2010). Therefore, the collateral information among 

different subtests is useful component to improve measurement accuracy in test batteries. 

Moreover, the amount of collateral information relates to the strength of the correlation among 

the tests within the battery. These high correlations imply that the performance on one test is a 

good predictor of ability for the remaining tests (Wang et al., 2012). Some other positive findings 

associated with the use of test batteries include the enhanced feasibility of administration, 

decreased testing cost, and reduced examinees’ testing burden (e.g., Boughton, Yao, & Lewis, 

2006; Yao & Boughton, 2007).   

Since MST has become one of the most prominent testing models used in large-scale 

state assessments, it is interesting and important to extend such study to battery formats. 

Therefore, the primary purpose of this study was to investigate the possibilities to making test 

batteries adaptive by using multistage testing techniques. Although many testing programs have 

effectively used both CATs and MSTs, the usage of using these procedures within the context of 

administering test batteries is not well developed.  Another purpose of this dissertation was to 

investigate if the reliability and validity of the administration of a test battery could be improved 

by utilizing different testing models. Two battery designs were constructed; a MST battery 

design (MSTB) and a hybrid MST battery (MSTBH) design.  The MSTB design was 

administered using three highly correlated tests with multistage design. The MSTBH also 
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consisted of three tests. However, the first two tests were administered as multistage tests while 

the third one was administered as an adaptive test.  

II. LITERATURE REVIEW 

The following literature review describes the background and previous researches 

relevant to this dissertation. The first section involves an overview of conceptions and 

technologies that related to traditional CAT and MST designs. The second section focuses on 

introducing the practical issues that need to be address in adaptive test designs. The third section 

reviews the development of test batteries and some issues that emerged from large-scale 

implementation. The final section summarizes some previous studies and emphasizes the 

research questions of this dissertation.  

According to Lord (1970), the most effective test should provide neither too difficult nor 

too easy items for examinees. To obtain certain goal, researchers are continuously looking for 

applied testing models for educational scale testing. Among them, numerous studies proposed 

the performance of using CATs and MSTs. In the following section, commonly used techniques 

in CAT designs will be reviewed first; subsequently the development of MST designs will be 

described.  

Computerized Adaptive Testing (CAT) 

A CAT is a prominent testing model of test administration that has been widely applied 

in large-scale educational assessment, such as the Graduate Management Admission Test 

(GMAT) and the National Council of State Boards of Nursing (NCLEX). The main difference 

between a CAT and a linear test is that each item in a CAT is selected sequentially according to 

the current performance of an examinee; while in a linear test, each examinee takes the same 

preassembled items in the same order, and the final estimate of ability is based on the answers of 
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these items. Based on the adaptive feature, the item selection process of CAT tailors a test to 

each examinee according to his or her ability level. Particularly, if the examinee answers an item 

correctly, the next item should be more difficult. Otherwise, the next item should be easier. On 

the one hand, CATs reflect several distinct features compared to linear tests. First, they provide 

higher or equivalent measurement precision with shorter tests when compared with conventional 

linear tests, especially for examinees with extreme ability levels (e.g., Lord, 1974; Loyd, 1984; 

Weiss, 1982). On the other hand, CATs also have some potential problems, such as lacking the 

review opportunity for examinees within tests; and requiring relatively complicated item 

selection algorithms to satisfy content balance and control item exposure rates for test security 

(e.g., Hambleton, Swaminathan, & Rogers 1991; Hendrickson 2007; Vispoel 1998; Wainer & 

Kiely 1987). Several components need to be considered when designing CATs, including having 

a feasible item pool, appropriate item selection algorithms, and ability estimation methods. 

Item Pool Framework 

In a computer-based test, an item pool contains numerous items that are calibrated based 

on a particular distribution (Weiss & Kingsbury, 1984). An ideal items pool is designed for 

examinees of average ability levels and as well as those have extreme ability levels. According to 

Bergstrom & Lunz (1999) and Parshall et al. (2002), many components can influent item pool 

size, including content areas, test length, the size of examinee population, and many 

psychometric properties of items.  

Item Selection Algorithms and Ability Estimate Methods 

The Maximum Fisher Information method (MFI, Thissen & Mislevy, 2000) is one of the 

most commonly used item selection method in CAT designs. The main goal of this method it is 

to accumulate as much test information (TI) as possible in the most efficient manner (Parshall et 
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al., 2002). During the processing of MFI, an item j will be selected if it obtains the maximum 

Fisher item information on the corresponding 𝜃 scale, defined as  

𝐼𝑗(𝜃) =
[
𝜕𝑃𝑗(𝜃)

𝜕𝜃
]

2

𝑃𝑗(𝜃)[1 − 𝑃𝑗(𝜃)]
 

(1) 

 

 

In addition, since the contribution of each item to the total information is additive, then the 

Fisher test information is equal to the sum of all Fisher item information, which is denoted as 

𝑇(𝜃) = ∑ 𝐼𝑗(𝜃)

𝑛

𝑗=1

     (2) 

To maximize Fisher information is to match the item difficulty parameter directly with the latent 

trait level of a test taker. The MIF approach has become one of the most popular item selection 

algorithms for the last three decades. Alternative selection algorithms for item selection include 

the approximate Bayes procedure (Owen, 1969, 1975), the maximum global information 

criterion (Chang & Ying, 1996). The ability estimation methods in CAT designs include 

maximum likelihood estimation (MLE; Birnhaum, 1968), expected a posteriori (EAP; Bock & 

Mislevy, 1982), maximum posteriori (MAP; Samejima, 1969). Among them, MLE and EAP are 

two most commonly used methods.  

 

Maximum Likelihood Estimate (MLE) Method 

In the 3PL-IRT (Birnbaum, 1968) model, the probability of a correct response on a 

dichotomously scored item i at ability level theta is defined by  

𝑃𝑖(𝜃) = 𝑐𝑖 +
1 − 𝑐𝑖

1 + exp [−𝐷𝑎𝑖(𝜃 − 𝑏𝑖)]
 (3) 
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where D is the scaling constant equal to 1.702, and 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 are the discrimination parameters, 

difficulty parameter, and guessing parameter of item i, respectively. To introduce random error, 

this probability was compared against a randomly generated value between 0 and 1 from the 

uniform distribution. An examinee received a score of 1 if the random value was less than or 

equal to the probability; otherwise the examinee received a score of 0. The likelihood estimation 

is obtained by maximizing the following likelihood: 

L(θi) = P(Y|θi) = ∏ Pij(θi)
YijQij(θi)

1−Yij

j

 (4) 

where L(θi) denote the probability of observing the set of item response; Yij denotes the 

response matrix, which contains the response of each item;  

Yij = {
1, if the examinee i gave correct response on item j

0, otherwise,
    (5) 

 

In addition, 𝑃𝑖𝑗(𝜃𝑖) denotes the conditional probability of examinee i answering item j 

correct given that the examinee’s ability level is 𝜃𝑖 , in contrast, 𝑄𝑖𝑗(𝜃𝑖) represents the 

conditional probability of examinee i answering item j incorrect given that the examinee’s ability 

level is 𝜃i.  

To search for the solution of theta that maximizes the likelihood, first, taking the natural 

logarithm on both sides of Equation (4) gives 

L=Log [(θ|u)]=∑ ∑ Yij
J
j=0 logPij(θ)m

i=1  (6) 

The Newton-Raphson equation for estimation ability at iteration t is given by  

[θ̂]t = [θ̂]t−1 −
L′

L′′
 (7) 
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Expected A Posteriori (EAP) Method 

The EAP method uses the mean of the posterior distribution as examinees’ ability 

estimates. It follows the Bayes’ theorem: posterior distribution ∝ likelihood function×prior 

distribution (Chen & Choi, 2009).  

P(θ|u) =
P(u|θ)P(θ)

∫ 𝑃
1

−1
(u|θ)dθP(θ)

 (8) 

where P(𝜃) represents the prior information of 𝜃 and  𝑃(𝜃|𝑢) is the posterior distribution of 

given u which is frequency data of two variables. 𝑃(𝑢|𝜃) is the same likelihood function L in 

the ML method. 

Then, the EAP (i.e., the mean of the posterior distribution) can be simply expressed as: 

 ρEAP = ∫ θP(θ|u) dθ
1

−1

 (9) 

Then, Equation (9) can be re-expressed as: 

P(θ|u) =
P(θ)P(u|θ)

∑ 𝑃𝑘
𝑖=1 (𝜃𝑖)P(u|𝜃𝑖)

 

 

(10) 

ρEAP̂ = ∑ 𝜃𝑖P(𝜃𝑖|u)
𝑘

𝑖=1
 

(11) 

Both the MLE procedure and the EAP procedure have been applied in the studies of many CATs 

(e.g., Chang & Ying, 1999; Chen et al., 1997).  

Multistage Testing (MST) 

A MST is a compromise between a CAT and a traditional linear test (Jodoin et al., 2006), 

in which the adaptive feature occurs at the level of stages instead of the level of individual items. 

Therefore, MSTs have become a prominent testing model, especially since some assessments 

have switched from CAT versions to the MST versions, such as the National Assessment of 
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Educational Progress (NAEP) and the Graduate Record Examinations (GRE). After various 

research and development, it has been determined that MSTs have some advantages over CATs. 

First, since a MST’s routing algorithm only happens between stages, it allows examinees to go 

back to review questions within their current stage. Therefore, examinees may feel less stress 

during the test. Second, rather than simply relying on the adaptive algorithm, the pre-assembled 

structures of stages and modules in MSTs allow test developers to review items prior to test 

administration (e.g., Wainer & Kiely, 1987; Luecht & Nungester, 1998; Wainer, 1990). As 

Wainer & Kiely (1987) summarized “(multistage) testlets are a scheme that can maintain the 

CAT advantages while still using the wisdom of experts.” However, compared to CATs, MSTs 

also have some disadvantages, such as less accuracy in proficiency estimation and less efficiency 

(e.g., Kim & Plake 1993; Loyd 1984; Luecht and Nungerster 1998).  

Important Components of Building MSTs 

Modules, panels, and pathways are the three basic components of any MST design 

(Luecht, 2000). In particular, a module is composed of a set of items that stand on particular 

content specifications or reliability requirements (Wainer & Kiely, 1987), such as content 

balancing or maximizing the test information function at a particular theta value. After grouping 

items into different modules based on distinguishing difficulty levels, distinct modules are 

further grouped into different paths to optimize parallel forms for all possible routes. These 

routes refer to panels. Usually, one MST can have several parallel panels that contain different 

items but reflect the same objective ability level. Pathways are all possible sequences of certain 

modules to which examinees may assign (Luecht & Nungester; 1998). When pre-assembled all 

modules and panels, the adaptive nature of MSTs allows the routing decision between stages to 

occur through different pathways. For instance, if an examinee gets a high estimated ability level 

after finishing the first module, he or she will be routed to a pathway leading to a relatively hard 



 13 

module at next stage. Otherwise, he or she will be routed to a pathway leading to a relatively 

easy module at next stage.  The first stage of a MST design can be referred to as the routing 

stage (Kim & Plake, 1993), and increasing the length of the first-stage modules is an effective 

way to reduce proficiency estimation errors. Similar to the design of a CAT, there are various 

decisions that need to consider before implementing a MST. Overall, the complicated framework 

of any particular MST design starts with determining a wide variety of test design elements, 

including the number of stages, the number of alternative modules and items in each stage, and 

the difficulty anchor and target information setting(e.g., Breithaupt, Ariel, & Veldkamp 2005; 

Zheng et al., 2012). 

Number of Stages  

Two-stage and three-stage designs are the two commonly used MST structures. For 

example, a two-stage design structure includes one routing stage and one measurement stage for 

each examinee. During the administration process, since there is only one decision point about 

how to route examinees, it is possible that some examinees are unable to recover if the decision 

is made inappropriately (Zenisky, Hambleton, & Luecht, 2010).  Therefore, unitizing a three- or 

four-stage design structure, instead of a two-stage structure, in a MST is an appropriate way to 

overcome this disadvantage (Pastula, 1999; Hendrickson, 2007), but the increase the number of 

stages should be done under the control of balancing the content specifications and the 

complexity of the test structure (Luecht et al., 1996; Luecht & Nungester, 1998).  

Length of Modules and Number of Items 

 Patsula (1999) found that increasing the number of modules from three to five in later 

stages could increase the accuracy of ability estimation, but at the expense of increasing the 

complexity of the MST. Therefore, to balance the measurement precision with the complexity of 
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the test structure, it is important to consider the number of modules per stage in MST designs.  

According to Loyd (1984) and Kim & Plake’s (1993) findings, administering a longer first-stage 

module can provide more information in the routing decision for the following stages, which 

results in a positive impact on the measurement precision of MST designs. In summary, the 

length of the modules should vary across the stages, depending on the specifications of a test.  

As noted in Figure 1.1, the three stages 1-3-3 structure is a common implementation of a MST 

design. 

Anchor Points for Modules 

Modules are groups of items that built together to meet specific anchor points. Among 

them, the test information functions (TIFs) is a commonly used target anchor points format. 

Since it is hard to control the TIF at every point along the ability scale, test developers always 

focus on deciding a few discrete ability points to identify certain critical ability levels (van der 

Linder & Boekkooi-Timminga, 1989). In classification tests, the final classification boundaries 

provide natural anchors points, such as easy, moderate and hard modules (Luecht & Nungeter, 

1998). Thus, the TIF values can be set to maximize the information at those boundaries. The 

most commonly used approach is to maximize the TIF at the corresponding difficulty anchors 

through assembling several alternative forms for each module sequentially. The optimized TIF 

values are calculated by averaging all the values of the assembled alternative forms (Luecht 

2000; Luecht & Burgin 2003; Zheng et al. 2012). Choosing appropriate methods for technique 

design is the next important component of MST designs. This includes the selection of test 

assembly methods, panel assembly methods, and routing methods. 

Test Assembly Methods  

The automatic test assembly (ATA) process is commonly used for module assembly. The 
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primary goal of ATA algorithms is to optimize the information obtained for examinees by 

matching their estimate of ability to the average item difficulty within the module. There are two 

kinds of ATA methods: linear programming methods (e.g., van der Linden, 2005) and heuristic 

methods (e.g., Swanson & Stocking, 1993; Luecht, 1998; Cheng & Chang, 2009). Linear 

programming methods try to find a single optimization procedure to assemble all test forms 

simultaneously. In contrast, the heuristic methods separate test assembly into several local 

optimization problems, and sequentially solve them one by one (Acherman, 1989). Among all 

heuristic methods, the normalized weighted absolute deviation heuristic method (NWADH;) has 

been readily adapted to build multiple test forms for MSTs (e.g., Luecht & Nungester, 1998; 

Patsula, 1999; Hambleton & Xing, 2006; Jodoin et al., 2006; Zheng et al., 2012). The unique 

feature of the NWADH is that it treats all constraints as targets and normalizes the deviations for 

each constraint (Yan et al., 2014). The statistics constraints usually include item-test correlations 

and information functions, which are functionally, related to one or more target measurement 

properties for specific test (Luecht & Hirsch, 1992; Stocking, Swanson, & Pearlman, 1993). The 

non-statistical constraints represent the test-level constraints that built the test specifications, 

such as the required frequencies or proportions of item from different subject areas, item type 

codes, and item author identification codes. The main advantage of normalization is that dividing 

the di variables by their sum over all eligible items transforms the absolute different function into 

a proportional quantity. Hence, many different types of criterion can be treated simultaneously to 

minimize the potential effects. 

For a test includes n items, i=1,2 ,.., I denote one of the I items in the item bank; j=1,2,..,J 

denote one of the J items needed to be selected into each optimization model; n=1,2,.., N denote 

one of the N constraints; 𝑇𝑛 denotes all the constraints target function of the test. Therefore, to 

select the 𝑗𝑡ℎ item to the test, the item selection process is managed to maximize the objective 
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function.  

∑ eixi

I

i=1

 (12) 

and Equation 12 is explained through Equation 13 to Equation 18. 

∑ xi = j

I

i=1

 (13) 

xi1 = xi2 = ⋯ = xij−1=1 (14) 

xi ∈ {0,1}, i=1,…,I (15) 

The local normalized absolute deviation for each candidate item t in the remaining item 

pool is calculated by 

ei =1-
di

∑ dii∈Rj−1

 , i∈ Ri−1 (16) 

and 

di=|（
T−∑ ukxk

I
k=1

n−j+1
) − ui| i∈ Ri−1 (17) 

where 𝑅𝑖−1 is defined as a set of indexes for the remaining items in the item pool after 

excluding the selected items.  𝑑𝑖 is defined as the absolute difference between the candidate 

item’s contribution under the control of constraint T and the contribution necessary for each 

remaining item to achieve the target, then the item with the smallest normalized absolute 

deviation,  𝑒𝑖, will be selected into the test. As each new item is selected, the current value of 

the target function after removing previously selected item is calculated by  

T − ∑ ukxk
I
k=1

n − j + 1
 (18) 
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Panel Assembly Methods  

Two major strategies for achieving parallelism across panels are referred to as the 

“bottom-up” approach and the “top-down” approach (Luecht & Nungester, 1998). In the 

“bottom-up” panel assembly approach (e.g., Luecht, Brumfield & Breithaupt, 2006), parallel 

forms of each module are first assembled and then mixed-and-matched to build parallel panels, 

which results in panels that are constructed according to module-level specifications (Keng, 

2008) to satisfy statistical targets. Hence, all modules are independent of one another and 

exchangeable regarding the statistical specifications (e.g., item difficulty, item discrimination, 

module information) across panels.  In the “top-down” approach, all panels are built based on 

test-level specifications (e.g., content coverage), which means that modules are dependent on one 

another and must be combined to satisfy the specification table for the whole test. In addition to 

use the “bottom-up” or “top-down” approach individually, they can be utilized together in one 

design as well (e.g., Guo et.al, 2012). If both statistical and non-statistical constraints are 

imposed in one MST design, the “bottom-up” approach can be used to assemble the test 

regarding the statistical constrain such as, test information function; therefore, modules at the 

same difficulty level are exchangeable based on the modules information to match the statistical 

constraints. Meanwhile, the “top-down” approach can be used to assemble the test in terms of the 

non-statistical constrain such as the content specification.   

In MSTs, in addition to assigning modules and panels appropriately, it is also important 

to ensure a balanced representation of content and exposure control when assembling a MST. To 

control the distribution of item characteristics, there may need to be a large number of constraints 

to identify all item properties and algorithms for item selection must incorporate all of these 

constraints. The content balancing will occur at the module-level if use the “bottom-up” method. 
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The content balancing will occur at the test-level by obtaining the proportional distribution of 

each content area if use the “top-down” method. Therefore, in the case of a MST, test developers 

can preassemble test forms to control both statistical and non-statistical constraints by taking 

advantage of assembly processes from both linear tests and CATs, prior to test administration.  

Routing Methods  

The main propose of routing in MSTs is to classify examinees to different next-stage 

modules based on their current performances. The approximate maximum information method 

(AMI; Leucht, Brumfield, & Breithaupt, 2006) is a commonly used routing strategy in MST 

designs. This method is analogous to the maximum information criteria used in CAT designs, 

which routes examinees to a module providing the maximum information at the corresponding 

theta scale. The main goal of using the AMI method is to identify the optimal decision point (θ) 

on the theta scale for module selection by calculating the cumulative test information functions 

(TIFs). This procedure routes examinees to a module that will provide the maximum 

information. If an examinee’s current ability estimate is higher than the optimal decision point θ, 

then the module located at a higher difficulty level provides more information. Likewise, if an 

examinee’s current ability estimate is lower than optimal decision point θ, then the module 

located at a lower difficulty level provides more information. Given that the way to route each 

examinee appropriately is an important topic in MST designs; more studies that are systematic 

need in the future (Stark & Chernyshenko, 2006).  

Ability Estimate Methods 

The same methods that CATs always use, such as MLE and EAP, can be applied to 

MSTs as well. Numerous studies have conducted these two methods in MST researchers (e.g. 

Davis & Dodd, 2003; Kim & Plake, 1993; Hambleton & Xing, 2006; Jodoin, 2003).  
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Practical Issues to be Addressed  

As pointed out by Chang (2004), security gaps caused by item-sharing activities among 

examinees are obviously, especially after the Kaplan-ETS incident happened in 1994 (Davey & 

Nering, 2002). Afterwards, researchers also found that the results obtained from the GRE-CAT 

did not produce reliable scores for thousands of examines in early 2000 (e.g., Carlson, 2000 & 

Merritt, 2003). Therefore, with the wide recognition and implementation of the 

computer-administered test, test security has been a major concern in large-scale educational 

assessments. Usually, researchers apply item exposure rate and item usage rate to evaluate the 

test security statement of a test. The item exposure rate is defined as the ratio of the number of 

times an item is implemented to the total number of examinees (Stocking & Lewis, 1998); the 

item usage rate is calculated the ratio of the number of items are administered and the total 

number of items in certain item pool. 

During the selection of CAT tests, items that contain high discriminant parameters 

(a-parameters) always selected to maximize precision in estimating ability, and this leads to 

uneven item exposure rates across all items because certain items with higher a-parameters tend 

to be used more often than others (Chang & Zheng, 2007). This may lead to examinees that take 

the test earlier may share information with those who take it later, which may increase the risk 

that items may expose to many examinees before they take the test. Thus, addressing test 

security issues in adaptive tests administrations is of great importance. For years, researchers 

have proposed that item exposure control and content balancing as the two main ways of helping 

to improve test security in adaptive tests.  
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Item Exposure Control 

When using information-based item selection methods, some items might seldom 

be unexposed, whereas other might never be exposed. Hence, items with high exposure rates can 

decrease test security because these items may become popular to subsequent examinees. To 

address this issue, researchers proposed several exposure control procedures (e.g. McBride & 

Martin, 1983; Sympson & Hetter, 1985; Chang & Ying, 1996). Among them, the 

Sympson-Hetter method (SH, Sympson & Hetter, 1985) is one of the most popular methods, 

which can present reliable results for reducing over-exposure in CAT designs (Chang & Ying, 

1999). The unique characteristic of the SH method is that it distinguishes item selection process 

from item administration process through pre-setting an maximum exposure rate to limit the 

exposure rates of all items. For CAT designs without considering the SH method, the probability 

of selecting an item equals to the probability of administrating certain item. However, when 

applying the SH method to CAT designs, the maximum exposure rate of all items is calculated to 

determine if the selected item should be administered to the test. For example, in the maximum 

fisher information item selection method with using SH algorithm, if the selection of item j for a 

randomly sampled examinee denotes as 𝑆𝑗, then the administration of item j for this examinee 

denotes as 𝐴𝑗 . Therefore, at a specific ability interval P(𝐴𝑖) represents the probability of 

administering item i, P(𝑆𝑖)  represents the probability of selecting item i, and P(𝐴𝑗|𝑆𝑗) 

represents the probabilities of administering an item given its selection. Following the Equation 

19, if item i meet this relationship between probabilities, it will be administered to the examinee. 

Otherwise, item i+1 will be evaluated. The main strength of this method is that it is able to 

maintain the maximum item exposure rates at a desirable level without sacrificing too much 

measurement precision.  

http://www.digopaul.com/tw/english-word/unexposed.html
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P(𝐴𝑖) = P(𝐴𝑗|𝑆𝑗)P(𝑆𝑖) (19) 

 

Item Pool Stratification  

Items with high a-parameters close to the examinee’s true ability and provide the most 

information (Hambleton & Swaminathan, 1991). Therefore, item with high a-parameters are 

always been administered during the selection process, which lead to the overexposure for these 

items.  To prevent overexposure of high a-parameter items and increase the item usage rate of 

less often-administered items, Chang and Ying (1999) first suggested the a-stratified selection 

method (AST) to control item exposure rates. Davey and Nering (2002, p. 181) wrote the 

following: “Highly discriminating items are like a tightly focused spotlight that shines intensely 

but casts little light outside a narrow bean. Less discriminating items are more like floodlights 

that illuminate a wide area but not too brightly. The idea is to use the floodlights early on to 

search out and roughly locate the examinee, and then switch to spotlights to inspect things more 

closely.”  This vivid explanation reflects the affirmation of using a-stratified method. Also, 

evenly selecting all items in an item pool is a significant way to improve test security. The main 

purpose of this method is to force items with a low discrimination parameter to be administered 

at the beginning of the test where the accuracy of the ability estimation is low, thus saving highly 

discriminating items to be administered at the end of the test where the estimation accuracy 

increases.  The item pool is partitioned into n strata by the a-parameter, with the smallest and 

the largest a- parameter items. 

Step1. The item pool is partitioned into n strata by the a-parameter, with the first and last strata 

containing, respectively, the largest and the smallest a items. 
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Step2. Accordingly, the testing process is also partitioned into k stages to match the n item strata. 

Step3. At the k-th stage, several items are selected from the k-th stratum. The examinee’s ability 

is updated by the MLE. Then items of difficulty parameter equal to the estimated ability are 

selected and administered as the next item. 

Step4. Step 3 is repeated for k = 1 through k = n stages. 

To further satisfy other constraints in a practical testing situation, researchers explored 

the a-stratified design to also control the difficulty parameter (b-parameter), which is called 

“a-stratified with b blocking” (Chang, Qian, & Ying, 1999).  The basic idea of this method is to 

force each stratum of the a-stratified design to have a balanced distribution of b-parameter 

values.  Moreover, to protect items from being overexposed to examinees, items are selected 

and administered based on controlling content balance such as Yi and Chang (2003)’s method 

that blocks content effect by a pre-stratification process; Cheng, Chang and Yi (2007)’s 

procedure specifically deals with content balancing in CATs.  

Evaluation Index 

Researchers have suggested a variety of statistical indices to quantify test security, such 

as item exposure rate, item usage rate, and item overlap rate. Recently, Wang, Zheng and Chang 

(2014) proposed the use of the “standard deviation” (SD) to quantify the security of multistage 

testing. The major difference between quantifying test security for a CAT, as opposed to a MST, 

is that CATs select every item adaptively based upon examinees’ previous performance while 

MSTs select preassembled modules and then administers the modules adaptively as a unit. 

Therefore, CATs and MSTs can have different SDs for the distribution of test overlap rate even 

if they have the same mean. Therefore, reporting the standard deviation of test overlap rate is a 
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more reliable index for quantifying test security for both CATs and MSTs (Wang et.al, 2013). In 

particular, a larger SD implies that certain groups of examinees share a larger number of 

common items than other groups. If this occurs, examinees may have an unfair advantage if they 

take the test later. Otherwise, a small SD indicates that item sharing between any two examinees 

is consistent, and thus few examinees will profit by taking the test later. Hence, the SD of test 

overlap rate represents a reliable index to measure test security for adaptive administrations.  

Development of New Test Model 

On-the-Fly Multistage Test (OMST) 

In a MST, by utilizing the adaptive feature between each stage, it can provide examinees 

with shorter tests and fewer burdens. What’s more, it allows examinees to skip or change 

question answers within each stage (Zheng et al., 2014). However, a MST may not provide 

satisfactory trait estimates for those examinees at the extreme ability groups. In addition, the 

usage of a MST reflects less secure than the use of a CAT because when items are administered 

in bundles, in a MST, examinees of similar ability may share the same panel and pathway items. 

While the wide application of CATs and MSTs have been proposed, there is no single design 

that can adequately serve all assessments universally, and the appropriateness of different testing 

designs must be evaluated case by case (Yan, Lewis, & von Davier, 2014). To overcome the 

limitations and gain the benefits of using MST, Zheng and Chang (2011) designed a new 

framework by combining the features of MSTs and CATs, which they refer to as “On-the-fly” 

multistage testing (OMST). The main advantage of using OMSTs is that it maintains the 

multistage structure of the classical MST design, but examinees receive more individualized tests 

at the same time (Zheng et al., 2014). In terms of measurement accuracy, since the selection 

process is adaptive, in terms of test security control, since the selection process is on the fly, it is 
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less likely that two examinees will share the same items OMSTs than in MSTs. The unique 

framework of OMSTs is providing various potential research directions for further test 

development, which opened a new avenue for more flexible hybrid adaptive test designs to meet 

new measurement challenges.  

Development of Test Battery Design 

In the wake of developing a testing model, the test battery is another important test 

format, in which different subjects could be administrated in one test. Transforming a testing 

program from a linear to an adaptive format is a feasible way to increase test efficiency and 

estimate accuracy, which also happens in a test battery setting. As demonstrated in the study by 

Brown and Weiss (1977), Gialluca, and Weiss (1979), test batteries stand to profit substantially 

from administering in an adaptive setting. Through utilizing the adaptive feature of a CAT, 

researchers have found that test batteries delivered via adaptive feature have shown great 

improvement in estimation accuracy and test efficiency when compared to linear form test 

batteries. For example, the CAT-ASVAB was one of the first adaptive test battery administered. 

The official report indicated that the newly CAT version ASVAB took about half the time of the 

linear form ASVAB. Therefore, more research need to be address practical issues such as further 

improving measurement efficiency, content validity, and test security of test battery designs.  

As Stout et al. (2003) pointed out: “Collateral information refers to the additional 

estimation information derived from variables that are distinct from, but correlated with, the 

studied relevant variable of interest.”  It is not common to use collateral information in the 

traditional linear testing model, but it is relatively straightforward to incorporate the collateral 

information as a prior for estimating ability in an adaptive test because of its adaptive feature. 

Since test batteries usually measure a set of related but distinct abilities in the real world, these 

correlations are important during the assembly process (Van der Linden, 2008). In other words, 
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utilizing these correlations could be understood as incorporating the collateral information 

among subtests. Some assessments procedures calibrate the items and make use of collateral 

information to estimate all sub-scores in one large iterative estimation system, such as the 

National Assessment of Educational Progress (NAEP, Mislevy, Johnson, & Muraki, 1992). 

Therefore, researchers noted that the impact of these correlations could be used in the context of 

the test battery to improve its measurement precision. Overall, previous literature proposed two 

types of approaches to incorporating collateral information. First, as demonstrated in studies by 

Brown and Weiss (1977), predicting the current subtest score using the previous subtest score 

can help to reduce estimation error. Stout et al. (2003) further emphasized the advantages of 

borrowing information from previous subtests to improve pretest item calibration through 

ordering subtests according to their inter-correlation matrix. In particular, the two subtests that 

have the highest bivariate correlation are selected as the initial two subtests, and then the subtest 

that has the highest multiple correlations with the two initial subtests is selected as the third 

subtest, and repeating this procedure until all subtests are selected. Van der Linden (2010) 

introduced an approach to optimize individualized subtest sequence for each examinee through 

utilizing a multidimensional normal distribution as a prior distribution. Although this approach 

introduces a more flexible framework for a test battery setting, it is less favorable in practical 

applications because it is easy to lead to unknown context effects if the order of subtests of each 

examinee is flexible. Moreover, using this approach may increase test anxiety for examinees 

because of the unpredictable order of subtests. Previous studies also noted that directly 

borrowing collateral information from a previously administered test is a simple and 

straightforward way to improve measurement precision for the entire battery of tests (e.g., Brown 

& Weiss, 1977; Stout et al., 2003; Wang et al., 2013).  
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Summary of Previous Studies 

Many studies have investigated computer-based testing from different aspects. Some of 

them emphasized the outperformance of using MST by comparing it with CAT and linear tests; 

while others investigated the performance of using combined different measurement approaches 

in one test design, such as hybrid testing designs and test battery designs. The following parts 

provide an overview of this research. The first part contains one study that comparing CATs and 

MSTs. The second part discusses some studies that conducting the development of hybrid 

designs and test battery designs. The third part reviews some new approaches for addressing test 

security.  The final part describes the goals of this dissertation followed by a summarization of 

previous studies.  

For years, researchers published different MST framework designs (e.g., Lord, 1971; 

Kim & Plake, 1993). Hedrickson (2007) proposed a comprehensive summary to explain the 

advantages and disadvantages of using multistage tests, as compared to linear tests and 

item-level CATs. Besides describing concepts and structures for the test models, this study also 

indicated some impotent components for building a MST, such as, how to decide the number of 

stages, and how to assemble the test appropriately. To summarize, the advantages of using 

MSTs, as compared to linear tests, include offering score that are more reliable, more precise 

measurement accuracy and more efficient testing time management. Moreover, two major 

advantages of MSTs, as compared to CATs, include providing more accurate estimates of test 

scores; allowing examinees to skip or revisit the completed items within a stage. However, the 

two main disadvantages of MSTs when compared to CATs include requiring more items to 

obtain the same measurement accuracy as CATs; requiring a lot of time on assembling modules 

for test developers before the administration.  
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Zheng et al. (2014) presented the “On-the-Fly assembled multistage testing” (OMST), 

which maintains the advantages and offsets the disadvantages of individual MSTs and CATs. 

The unique feature of OMSTs is that the adaptive process occurs between stages instead of at the 

item level. This study not only compared OMSTs with CATs and MSTs theoretically, but also 

conducted a simulation study to investigate measurement accuracy and test security of these 

three frameworks. Eight simulated conditions were explored that varied regarding the 

constrained item selection approach used (0-1 programming selection vs. heuristic selection), 

exposure control algorithm (SH vs. MSH), and item pool stratification (stratified vs. 

non-stratified). During the administration process of an OMST, a pre-assembled module with 

moderate difficulty level was randomly administered to each examinee at the first stage and the 

provisional ability estimate was calculated based on the response to the items of the selected 

module. Then, a group of items was assembled together at the second stage to match this 

provisional ability estimate. After examinees completed the second stage, repeating this process 

until the whole test was terminated. The item pool used in this study consisted of 352 

multiple-choice items retired from a large-scale computerized adaptive English language 

proficiency test, which contains eight content categories, and all examinees were calibrated using 

the 3PL-IR model. The results indicated that in this study, OMSTs not only provided comparable 

measurement accuracy to both CAT and MST design but also decrease the item exposure rate 

when controlled by the SH method.  Besides these practical values, the unique feature of 

OMSTs opened a door for hybrid designs.  

To explore the possibly of different hybrid designs, Wang et al. (2015) investigated the 

measurement properties of administering a test using a MST step and a CAT step in one test, 

referred to as Hybrid Adaptive Testing (HAT). To illustrate the applicability of this hybrid 

design, this study proposed some the use of principles that influenced the further development, in 
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terms of measurement precision, of various HAT designs. To verify the performance of different 

number of steps, different stage-length, and different transition points from the MST step to the 

CAT step , a simulation study was conducted to compare these three designs: a combined MST 

and CAT design (PMCAT), a combined OMST and CAT design (FMCAT), and a CAT design. 

The PMCAT design was composed of a pre-assembled MST step and a CAT step that used a 

predetermined transitions point setting. The FMCAT design consisted of an On-the-Fly 

multistage testing step and a CAT step with an automatic transition point. 22 simulated 

conditions were conducted that varied in terms of the length of the MST step (20 or 30 items), 

the number of stages (Descending Two-Stage, Ascending Two-Stage, Descending Three-Stage) 

and the stage length combination in the MST step. The item pool used in all of the designs 

considered included 600 multiple-choice items that were calibrated using the 3PL-IRT model. 

Several criteria were considered to evaluate the estimation accuracy and efficiency, such as the 

root mean square error (RMSE) of the theta estimates and the correct classification rate (CCR). 

The results indicated that both the FMCAT and the PMCAT improved the item selection 

process, especially during the early stage of a CAT. Therefore, merging CATs and MSTs opened 

a new door for adaptive testing designs.   

Wang et al. (2013) conducted a study to investigate the performance of a CAT in a test 

battery setting. They explored the impact of using collateral information in the context of a CAT 

battery and proposed several different ways to incorporate collateral information in a test battery 

design. The main purpose of this study is to investigate the performance of applying different 

collateral information strategies to CATB designs.  In particular, a simulation study was 

conducted to investigate different ordering of subtests, entry points for estimation, and different 

estimation methods. The item pool used for all of the designs considered consisted of three item 

pools that measured three different subject areas, which were calibrated by the 3PL-IRT model. 
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The total test length of the CATB was 60 items, resulting in 20 items for each test. Through 

evaluating the subtests and total-test correct classification rates (CCR), the results indicated that 

utilizing collateral information improved the classification accuracy in the context of a test 

battery design. Specifically, directly borrowing ability estimation from the previous subtest as a 

prior was the most reliable and simplest method for using collateral information. In addition, 

either Bayesian estimation procedures or MLE performed quite well when utilizing the collateral 

information.  

To address the test security issue in computer-based test designs, researchers have paid 

much attention to the development of ideal item selection algorithms. Typically, many item 

selection methods are based on providing maximum information for an examinee’s current 

estimated trait level. However, these methods always select items for administration that have 

high discrimination parameters, which may lead to the overexposure of these items. Chang and 

Ying (1999) first published the design and analysis of the item-pool stratification method with 

constraining the a-parameters.  In this study, they proposed a notable process of item selection 

that administers items with relatively lower a-parameters early in the test administration and 

employed those with higher a-parameters later in the test administration. Simulation studies were 

conducted to compare this method with some CAT designs based on other stratification methods 

such as SH method varied in test length (short and long test lengths).  The results indicate that 

the item-pool stratification method successfully equalized item exposure rate for all items by 

decreasing rates for items that have high possibility to be overexposed and by increasing rates for 

those have high possibility to be underexposed. Chang et al (2001) and Chang and Yi (2003) 

continually extended the a-stratified method by adding difficulty parameters (b-parameters) or 

content blocking. The a-stratified with b blocking method separates item pool into several strata 

according to items’ a-parameter values with blocking their b-parameters across all strata. In 



 30 

Chang’s study, a simulation study was conducted to compare the performances of different 

a-stratified methods, in terms of both measurement accuracy and test security control. This study 

used 360 item parameters obtained from the GRE item pool, a fixed test length of 40 items, and 

3000 examinees simulated from a standard normal N (0, 1) distribution. MLE was used to 

estimate the examinees ability using both methods. The results indicated that with stratifying 

a-parameter, these new approaches provided an efficient solution to reduce item exposure rate. 

Moreover, the a-stratified with c blocking method is designed to consider extra content balances. 

In Chang and Yi (2003)’s study, some simulation studies were conducted to explain the 

advantages of using this new approach. Through comparing the performance of using three item 

selection methods: the a-stratified method, the a-stratified with a b-blocking method and the 

maximum Fisher information method with Sympson-Hetter exposure control. The results 

demonstrated that the modified a-stratified method resulted in better item usage balance and 

measurement precision in a situation where content balancing was required for the test. In sum, 

the aforementioned a-stratified methods provided the development of stratification methods of 

CAT designs.  

Lately, Guo et al. (2013) investigated the effect of using the a-stratified method with 

extra content blocking in the test assembly procedure of different MST forms. The primary goal 

of this study was to investigate the performance of using stratification method by building a 

MST component. Two MST structures including different stage lengths were simulated to 

compare to a traditional linear form test. All conditions were generated from an item pool that 

consisted of 600 polytomous items from an actual large-scale test. Within the MST design, ten 

parallel panels were assembled using the heuristic method. After the whole test was finished, 

each examinee was then classified into one of five classification categories, based on the range in 

which the final ability estimate fell. This study also investigated the feasibility of using these two 
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panel assembly algorithms together for a large-scale classification test. In this study, there were 

one statistical constraint and two non-statistical constraints imposed during the test assembly 

procedure. The non-statistical constraints included a content coverage constraint in which all 

pathways needed to have at least one item from each of the five content categories. To maintain 

both the statistical constraints and the non-statistical constraints, a combination of bottom-up and 

top-down assembly algorithms for a large-scale classification test was used by using a revised 

version of the NWADH heuristic method. In particular, the “bottom-up” approach was used to 

assemble the test in terms of the test information function; therefore, modules at the same 

difficulty level were exchangeable based on the modules information to match the statistical 

constraints. This study incorporated the “top-down” strategy to satisfy the content and answer 

key specification in this study.  Through comparing the measurement precision and test security 

control, the results not only confirmed the outperformance of MSTs to linear tests but also 

indicated the possibility of utilizing combined assembly algorithm (“bottom-up” and “top-down” 

) in MST designs.  

Statement of Question 

Reviewing previous studies, lots of them focused on investigating the performance of 

different computer-based testing modes, such as CATs, MSTs. On the one hand, the 

development of CAT designs is primarily based on psychometric advantages, such as more 

accurate ability estimates. On the other hand, the development of MSTs are primarily based on 

non-psychometric advantages, such as more administrative control over content and the ability 

for examinee to review items (Mead, 2006; Hendrickson, 2007). Additionally, previous studies 

also conducted the performance of utilizing a combination of different testing frameworks 

(CATs and MSTs) (e.g., Zheng et al. 2012). Besides that, some studies have focused on test 

battery designs, which explored the possibility to improve both reliability and validity for test 
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batteries by utilizing the adaptive feature (e.g., Wang et al., 2012). Test security is a big concern 

in the areas of computer-based assessment and adaptive testing. Of the literature reviewed, 

Patsula (1999) and Jodoin (2003) proposed that CATs with conditional exposure control 

procedures performed better than the various MST designs in both measurement characteristics 

and exposure control, when considering exposure control as a manipulated condition.  In 

comparing the security of various conditions, different a-stratified designs outperformed the use 

of stratification methods in MSTs, CATs or hybrid designs. (e.g., Chang & Ying, 1996; Davey & 

Nering, 2002; Leung, Chang & Hau,1999; Yi & Chang, 2000). Researchers also explored the 

issues of the multistage test security control in various directions (e.g., Lee, Lewis & von Davier, 

2011; Below & Armstrong, 2008; Edwards, Flora, & Thissen, 2012).  

To summarize, the goal of this dissertation was to investigate the performance of two 

battery-based multistage testing designs under different manipulated test conditions (e.g., module 

length and estimation method). It is expected that the new measurement techniques can reflect 

great practical values, and utilizing the collateral information from previously administered 

test(s) is a reliable approach to obtaining estimation accuracy for either classical or hybrid test 

battery designs. One battery design was administered using three MST models; another battery 

design was administered using a hybrid model, which consisted of two MST models and one 

CAT models. For each test in both batteries, a sequential testing design was employed to utilize 

collateral information between tests. Each subsequent test in the battery for an examinee was 

assembled according to the examinee’s previous ability estimate. Research questions addressed 

by this study included: 1) How does the MST battery design compare to the hybrid MST battery 

design, in terms of measurement precision and test security control? 2) What’s the impact of 

collateral information on measurement accuracy (estimation accuracy and classification accuracy) 

of MST battery designs? 3) What effect does the On-the-Fly routing strategy have on the 



 33 

measurement accuracy (estimation accuracy and classification accuracy) and test security 

properties of MST battery designs? All designs were compared concerning estimation accuracy 

and efficiency, as well as test security control.  

 

III. METHODOLOGY 

 

Design of Overview  

Two test battery designs incorporating MST components were investigated for the 

possibility of improving both reliability and validity. One is a MSTB design and the other is a 

hybrid design. The MSTB design consists of three tests and each is administered via MST. For 

the first test, AMI is used as the routing strategy, which denotes the MST procedure in this study; 

and as for the second and third, the “On-the-Fly” strategy is employed, which denotes the OMST 

procedure. The hybrid battery design also consists of three tests; the first two are administered 

via MST while the third one via CAT. The AMI strategy is used in the first test, and the 

“On-the-Fly” strategy is used in the second test. To improve estimation precision, each 

subsequent test in the battery for an examinee was assembled according to the examinee’s 

previous ability estimate. For making a reasonable comparison, two baseline models were 

considered in the simulation study, one is a MST design consisting of three MST procedures 

without borrowing information from each other’s; the other is a CATB design consisting of 1 to 

3 CAT procedures, being the second and the third procedures borrowing information from the 

previous ones. Since NWADH has been successfully used in MST designs (e.g., Luecht & 

Nungester, 1998; Patsula, 1999; Hambleton & Xing, 2006; Jodoin et al., 2006), this assembly 

algorithm was used to pre-assemble test forms in this study. The “top-down” and “bottom-up” 
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strategies were used together to assemble all panels in terms of both statistical and non-statistical 

constraints. Additional factors include the following two manipulated conditions: 1) two 

estimation methods: MLE and EAP, 2) three different module lengths: 6-6-12,12-6-6, and 8-8-8. 

All tests investigated in this study fixed at 24 items. Table 3.1 depicts all of the designs 

considered in this study.  Then, the following sections describe the details of each design one by 

one.   

Table 3.1: General Framework of All Designs 

Test 

Order 

Test 

length 

Comparison Model Baseline Model 

MSTB MSTBH MST CATB 

M 

M 

24 MST MST MST 

 

CAT 

 I 

I 

24 OMST OMST MST 

 

CAT 

 R 

R 

24 OMST CAT MST 

 

CAT 

 Item Pool Framework 

All items investigated in this study were generated from three item pools that measure 

mathematics, information and reading skills (denoted by M, I, R respectively).  Each item pool, 

or test in the battery, included five content categories. These item parameters were generated 

from a retired large-scale test used for certification purposes.  Specifically, each item pool was 

composed of 600 dichotomous items. All of the items were calibrated using the 3PL-IRT model.  

Table 3.2 and Table 3.3 present the distribution of item parameters and numbers of items in each 

content category. See Table1, M test is more difficult than the L and R tests. Table 3.3indicates 

the high inter-correlations of the examinees’ response among each test, but these correlations do 

not equal to 1.   

 



 35 

Table 3.2: Descriptive Statistics for Three Item Pools 

Mathematics (M) 

Variable N Mean SD Minimum Maximum 

a 

b 

c 

600 

600 

600 

1.120 

0.008 

0.144 

0.341 

1.778 

0.081 

0.278 

-4.465 

0.0076 

2.531 

5.439 

0.498 

Information (I) 

Variable N Mean SD Minimum Maximum 

a 

b 

c 

600 

600 

600 

0.901 

-0.127 

0.119 

0.321 

1.582 

0.071 

0.052 

-3.533 

0.005 

2.701 

4.799 

0.500 

Reading (R) 

Variable N Mean SD Minimum Maximum 

a 

b 

c 

600 

600 

600 

0.998 

-0.778 

0.105 

0.336 

-1.353 

0.071 

0.202 

-4.640 

0.005 

2.581 

3.078 

0.500 

 

Table 3.3: Item Parameter for Each Content Constraint 

Mathematics (M) 

Item Pool N a b c 

Content1 163 0.97 -1.85 0.10 

Content2 22 1.14 0.01 0.18 
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Content3 142 1.23 0.96 0.18 

Content4 132 1.11 0.03 0.14 

Content5 141 1.21 1.18 0.16 

Information (I) 

Item Pool N a b c 

Content1 242 0.77 -1.29 0.09 

Content2 128 0.94 0.01 0.13 

Content3 91 1.06 0.93 0.14 

Content4 73 0.99 0.96 0.16 

Content5 66 0.99 1.21 0.15 

Reading (R) 

Item Pool N a b c 

Content1 183 1.05 -1.60 0.08 

Content2 73 0.98 -0.22 0.13 

Content3 121 0.95 -1.10 0.10 

Content4 145 0.98 -0.54 0.11 

Content5 78 1.00 0.65 0.13 

 

Table 3.4: Inter-correlation of three tests 

 Math Information 

Reading 0.75 0.77 

Math 
 

0.80 

 

Test Sequence 

To investigate any test sequence usage effect, the CAT battery design proposed by Wang 

et al. (2012) investigated the performance of different combinations of a test sequence. If all 

subtests are highly correlated with each other and these values are very close, the distinct 

permutations of subtests do not show significant difference on evaluating measurement precision. 
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Therefore, in this study, the subtests orders of all design were determined by their 

inter-correlation matrix. Since the M and I tests contain the highest correlation, the M test was 

delivered first, then both I and R tests were delivered afterward.  

Manipulated Conditions 

Module Length. According to research conducted by Loyd (1984) and by Kim and Plake (1993), 

longer routing stages are associated with better measurement precision for MST designs. 

Specifically, administering a longer first-stage module provides more information for the routing 

decision in subsequent stages. Therefore, it is of interest to investigate if the outperformance of 

initial test could be used in a test battery for better performance in subsequent tests.  To explore 

this idea, different conditions that varied in terms of the length of the first-stage module were 

considered in the MST procedure of all designs. Specifically, three different conditions were 

explored: (1) A longer first module (12-6-6); (2) A shorter first module (6-6-12); and, (3) 

Equivalent modules (8-8-8).  

Estimation Method. Two estimation methods, MLE, and EAP, were considered in this study, 

which differ in intermediate ability updating and final ability estimation.  

Data Generation 

The data generation process of this study included two steps. First, item parameters were 

generated from a retired item pool from a real working certification test. Then, response data for 

every item and for each examinee were simulated based on these parameters. According to the 

experiences from previous studies, there were ten replications for each condition of this study, 

and each replication included 10,000 examinees. Therefore, the total true ability of 100,000 

examinees for each item pool were simulated from a standard normal distribution N (0,1) 

truncate within (-3.5,3.5) because many real tests such as the IQ test scores all follows an 
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approximated normal distribution. To prevent any confounding effect brought by outliers, the 

truncated distribution is placed as the setting are given in some theoretical papers which used the 

same item pools as our study (e.g., Zheng et al., 2012; Guo et al., 2013 ). The same set of true 

abilities was used across all conditions. For each simulated examinee j, the probability of 

responding correctly to a particular item i was computed based on the examinee’s theta value, 

a-parameter, b-parameter and c-parameter according to the 3PL-IRT.  

Test Battery Simulation Study 

Multistage Test Battery (MSTB) Design 

The proposed MSTB design was composed of three tests, M, I, and R, and each test 

length was fixed at 24 items. At the beginning of the test battery, a MST procedure was first 

utilized, and then two OMST procedures were used. Figure3.1 illustrates the MSTB design that 

was used which consisted of three tests (M, I, and R).  It represents the condition followed by 

the test sequence of M, I and R. The first test-M was delivered using the MST methodology, in 

which examinees were routed to the module to the next stage via the AMI method. After 

finishing the M test, the final ability estimate of an examinee scoring on M test was treated as the 

initial ability estimate of certain examinee on I test. See Figure 3.1, 𝜃𝑖_𝑀 denotes the final 

ability estimate of examinee i on M test, and 𝜃𝐼𝑛𝑖_𝑖_𝐼 denotes the initial estimate of examinee i 

on I test. Then, the second test- I in the test battery was delivered by the OMST procedure, in 

which multiple stages were assembled on the fly. First, a number of items were sequentially 

selected as the stage 1 based on the value of 𝜃𝐼𝑛𝑖_𝑖_𝐼, and administered together, and the 𝜃𝑖_1 was 

administered based on the response for stage1’s items. Then, several groups of items were 

sequentially selected based on the provisional ability estimate and administered together after the 
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whole I test has been assembled. After completing the I test, the R test was repeatedly delivered 

by the OMST procedure.  

 
Figure 3.1: Construct of the MSTB Design. 

 

MST Procedure Design 

Test Structure  

Each MST procedure of the battery-based design employed the 1-2-4 structures. The 

1-2-4 structure means that there are one, two, and four modules in stage 1, stage 2 and stage 3 

respectively. The reason for using this structure was that the goal of the large-scale assessment 

conducted in this study was to classify examinees into five ability levels after finishing each 

subtest. Specifically, the MST procedure starts with one medium difficulty level (M) module in 

the first stage; stage 2 contains one high module and one low module; while stage 3 contains four 

modules represent high-high (HH), high (H), low (L), and low-low (LL) respectively. Each test 
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length includes 24 items for illustrative purposes. Figure 3.2 presents the general structure of this 

model.  

 
Figure 3.2: Structure of 1-2-4 MST test 

 

Test Construction Targets and Constraints 

The very important first step of test assembly design is to find the optimal information of 

each module.  In this dissertation, the optimal information of each module was defined as the 

target information function (TIF). According to the purpose of the large-scale test used in this 

study, the item pool was divided into five groups based on four quintiles points according to the 

true theta scale. The anchor point of each module was obtained by taking the average of the 

anchor point values of its sub-routes. The final anchor points (stage3) of M test peaked at 

(-0.832, -0.269, 0.245, 0.825), then the corresponding anchor points of modules in stage 1 and 

stage 2 peaked at (-0.55，0.535) and (-0.007) respectively.  
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Module and Panel Assembly 

The main goal of the module assembly in this MST procedure is to maximize each 

module’s information at its corresponding anchor point, in which the module information equals 

the sum of the Fisher information of all items within the module. According to the previous 

description, examinees were classified into five ability groups based on the four anchor points 

(θs) in stage3. The NWADH method combined with “bottom-up” and “top-down” approaches 

was used to the assembly steps in this study. Module assembly was completed in three steps: (1) 

calculating the target information function (TIF) on the anchor points (θ) of each module was 

calculated by using the maximum information method. (2) Computing the current FI for all items 

of the current item bank at the corresponding θ position, as well as the absolute deviation 

between the target FI and the current FI for each item. (3) Choosing the candidate item contains 

the highest information to satisfy the non-statistical constraint. Overall, this study considered six 

constraints: the TIF value at the θ anchor of the module, and five content constraints on the five 

content categories. The “bottom-up” strategy was used to satisfy the statistical constraint- test 

information foundation (TIF) considered, and the “top-down” constrain was used to satisfy the 

non-statistical constraint- each pathway must contain as least one item from each content 

category. In this case, Equation 17 can be expressed as: 

di,n=|（
Tn−∑ ukxk

I
k=1

n−j+1
) − ui,n| i∈ Ri−1 

(20) 

where 𝑑𝑖,𝑛 is computed for the TIF value at the corresponding θ anchor, 𝑢𝑖,𝑛 denote the 

attribute associated with constraint n of item i. For the statistical constraint on TIF at the 

corresponding θ ,n=1. For the non-statistical constraints on the content categories, n = 2, 4, …, 6, 

and assume the minimum number of each category equals to 1, 𝑇𝑛=1 in this case.  
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After modules assembled, we got a module pool, which includes all parallel module 

forms. Figure 3.3 represents the test information curves for each module under the condition of 

“12-6-6”, in particular, ten parallel module information curves were assembled for the module at 

stage1. Moreover, five parallel module forms were assembled for each module at stage1, and 

three parallel module forms were assembled for each module at stage3. The next step is to 

assemble panels from these modules. This study used a combined “bottom-up” and “top-down” 

panel assembly approach to assemble ten parallel panels to match both the statistics constraints 

and non-statistics constraints. Through unitizing the “bottom-up” strategy, the assemble modules 

at the same difficulty level were interchangeable in terms of the TIF. Moreover, the “top-down” 

strategy was used to maintain the non-statistics constraint that each pathway has at least one item 

from each of the five content categories in the assembled test. Since the content balance 

constraint was a test-level constraint, many of the mixed-and-matched panels could not satisfy 

this constraint. Finally, we obtained ten parallel panels in which all pathways satisfied all of the 

constraints. Figure 3.4 indicates the module information curves together with the cut-off points 

in the three-stage model.  
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Figure 3.3: Module Information Curves for the three-stage MST under “12-6-6” condition. 
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Figure 3.4: Module Information Curves in a panel for the three-stage MST under “12-6-6” 

condition 

 

 

Routing Method 

 

The MST procedure used the AMI method as the routing rule.  After examinees finished 

items in stage1, an individualized cutoff point 𝜃 is determined as the intersection on the target 

information function curves (TIF) of the candidate modules for each panel according to the 

standard numerical analysis root-finding techniques (Luecht et al, 2006). After determining the 

cutoff value, the examinee was routed the module in the next stage that can provide the highest 

information, and the 𝜃 routing strategy was implemented to the routing process. In this study, 

during the process of routing examinees from stage1 to stag2 in the M test, first, one candidate 

cutoff  𝜃 was determined corresponding to the intersection of the TIF curves I (1M + 2L) ∩I 

(1M + 2H). If the examinee’s provisional ability estimate is higher than the corresponding cut 

point 𝜃, the module located at a higher difficulty level can provide more information. Otherwise, 



 45 

the module located at a lower difficulty level can provide more information. Repeating this 

process to determine the cutoff point for each of the possible routing panel after examinees 

finished the second stage. Based on the 1-2-4 structure, there were three candidate cutoff points 

θ1, corresponding to the intersection of the TIF curves I (2L + 3LL) ∩I (2L+ 3L) ∩I (2L+ 3H), 

and θ2, corresponding to the intersection of the TIF curves I (2H + 3HH) ∩I (2H+ 3H) ∩I (2H+ 

3L). Figure 3.5 shows the pathway information curves of the ten parallel panels for the 

three-stage MST model.  

 
Figure 3.5: Pathway Information Curves in the three-stage MST module under “12-6-6” 

condition 
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Estimation Methods 

For the first MST test in the battery, each examinee got a randomly assigned panel, and 

the MLE was use to update examines’ ability estimate. The estimation started by treating the 

final estimation from the previous test as the initial estimate of ability.  

Test Administration 

After assembling the panels and modules, each examinee was administered a test through 

MST procedure utilizing the following steps: 

Step1: Randomly assign one of the ten panels to each examinee.  

Step2: Estimate the provisional ability for each examinee based on item responses from the 

first-stage module.  

Step3: Route each examinee to the second-stage module (L or H) that provides the maximum 

information, based on the test information function, for that examinee’s provisional estimate of 

ability. Then estimate a new provisional ability for each examinee based on their item responses 

from the second-stage module. 

Step4: Repeat Step3 to route each examinee to a suitable module at the third-stage.  

Step5: Calculate the final estimate of ability for each examinee based on the entire set of 

responses to all modules in the subtest.  

OMST Procedure Design 

According to the OMST paradigm represents in Figure 3.1, a group of items is 

sequentially selected based on the provisional ability estimate and administered together after the 

whole I test has been assembled. Similar to the MST procedure design, each pathway of the 
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OMST must contain at least one item from each of the five content categories. The OMST 

algorithm for the I test is generalized as followed:  

Step1: Consider the initial ability estimate 𝜃𝐼𝑛𝑖_𝑖_𝐼 for examinee i on the I test as the final 

estimate of ability from M test. Then, n items of the I test whose information functions yield 

maximum information is selected simultaneously as the first stage for i. In this OMST paradigm, 

the test is divided into six stages, and each stage includes six items, n =6.  

Step2: Check the content balance against the content constraint. If any content category 

constraint missing, an item replacement algorithm is used to choose item(s) from the remaining 

item pool based on the information criterion. The item replacement algorithm is composed of 

one selection step and one determination step. First, randomly selected an item i from the 

missing content category. Then, n items from the remaining item pool that belong to category k 

(k=1…5) are selected and the Fisher information function is maximized at the current ability 

estimate. Finally, determine if item j does not belong to any of the missing categories and replace 

item j by item i if this does not result in other content categories becoming deficient.  

Step3: A provisional ability estimate is calculated based on these items’ 𝜃𝑖_1. Then, a number of 

items are selected and administered as the stage2’s items according to the initial estimated 

ability.  

Step4: Repeat Step3 until finishing the entire test and estimate the final ability of the examinee 

according to the entire set of responses. 

The administration of the battery continues the same process through the third test, R, until the 

whole test battery administered. 
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Hybrid MSTB (MSTBH) Design 

The proposed MSTBH design also consisted of three tests. The first test was 

implemented via MST while the second and the third were implemented as an OMST and a CAT 

procedure, respectively. The MST and OMST procedures followed the same processes as the 

MSTB design did. To investigate the performance of combining MSTs and CATs into one 

battery design, after finishing the first two tests, a single CAT test was conducted for the third 

test in which each item was selected through the maximal Fisher information method. Figure 3.6 

indicates the general construct of the MSTBH design. Similar to the MSTB, each subsequent test 

of an examinee in the test battery was assembled and administered according to the examinee’s 

final ability estimate obtained based on responses to the previously administered test. 

 

Figure 3.6: Construct of the MSTBH design 
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Baseline Models Simulation Study 

CATB Design 

In particular, the CATB design refers to the administration of three tests separately, using 

the typical CAT methodology. For making a reasonable comparison, the test battery tied three 

tests (M-I-R) together by utilizing the final estimate of ability for an examinee from the previous 

test(s) as the initial estimate of ability for the subsequent test. Within each test, an item with the 

largest information at the updated ability location was selected for administration, and at least 

one item from each category was chosen to achieve content balance. The MFI method was used 

as the item selection method, and the MLE method was used as the estimation method for each 

test. To make a fair comparison, the stopping rule of each CAT procedure is finishing the whole 

test. MST Design  

The MST baseline model consisted of three unconnected tests, each of which was 

administered independently via multistage testing. All design details are identical to what 

described before. Table 3.6 illustrates the backward process (from stage3 to stage1) of 

calculating anchor points for each test. 

 

Table 3.6: Anchor Points for Each Test 

 stage3 stage2 stage1 

M (-0.832, -0.269,0.245,0.825) (-0.550, 0.535) (-0.007) 

I (-0.864, -0.265, 0.253,0.827) (-0.560, 0.540) (-0.01) 

R (-0.844, -0.247,0.243,0.829) (-0.540, 0.536) (-0.002) 
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Data Analysis 

Measurement Precision 

The evaluation criteria used to compare each of the test administrations were estimation 

accuracy and efficiency. Specifically, to evaluate estimation accuracy, the root mean square error 

(RMSE) of  𝜃 estimates is computed, 

RMSE = √∑ (θî − θi)
2N

i=1

N
 (21) 

Where N is the number of examinees, 𝑁𝑗 is the number of examinees in ability group 

j(j=1…5), θ is the true value of the examinee ability and 𝜃 is the estimated ability. When the 

objective of a MST is to classify examinees, it is important to maximize CCR (Weissman, 

Dmitry, and Ronal, 2007). Therefore, the correct classification rate (CCR) and the conditional 

classification rate (Conditional CCR) were used to evaluate classification accuracy in this study. 

Accordingly, for the purposes of this study, which was based on an actual live exam, each 

examinee was classified into one of the five classification categories used in the actual test 

environment, based on the range where the final θ estimate fell in. Specifically, the CCR value is 

computed by dividing the number of examinees correctly classified by the total number of 

examinees, and the conditional CCR is computed by dividing the number of examinees classified 

within each final classification category by the total number of examinees in each classification 

category.  

Test Security 

Item exposure rate and item usage rate are two commonly used indexes in adaptive 

applications. The standard deviation (SD) of the test overlap (Wang et al., 2013), was used as the 

index of test security control. According to their findings, a large SD test overlap indicates that it 
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is possible for a group of examinees that have the same ability to share more common items than 

other groups. In addition, when the mean overlap is the same between MSTs and CATs, MSTs 

always represent larger SD test overlap than CATs. Hence, calculating the SD test overlap can 

add important information to the test security profile.  

The SD of test overlap rate of MST designs is   

σMST =
1

T
√∑

Nt − 1

𝑁𝑡
2

T

t=1
  (22) 

where T (1,…, t) represents the number of stages of the MST design, and Nt = ∑ Pit
St
i=1  

represents all forms of module at stage t. If different forms (𝑃𝑖𝑡) of different modules (𝑆𝑡) 

including in stage t are equally likely to be selected, the SD of test overlap rate of certain MST is 

calculated by Equation 22.  

The SD of the test overlap rat for a CAT for the same test is 

𝜎𝐶𝐴𝑇 =
𝑆 − 𝐿

𝑆√𝑆 − 𝐿
 

 

(23) 

where S represents the total number of item in the item pool, L represents the test length. 

 

IV. RESULTS 

 

In this study, the proposed MST battery (MSTB) design consists of three different but 

correlated tests, each of which is administered using MST. To improve measurement precision, 
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ability information obtained from previous test(s) in the battery were used to adaptively connect 

the three tests in the battery.  Since NWADH has been successfully used in MST designs (e.g., 

Luecht & Nungester, 1998; Patsula, 1999; Hambleton & Xing, 2006; Jodoin et al., 2006), this 

assembly algorithm was used to pre-assemble test forms in this study. The “top-down” and 

“bottom-up” strategies were used together to assemble all panels in terms of both statistics and 

non-statistics constraints. An OMST strategy was used as a routing strategy for the MSTB design.  

To make a fair comparison, the proposed hybrid MSTB design (MSTBH) also consists of three 

tests: the first two tests are implemented via MST whereas the last one is implemented as a CAT. 

For both battery designs, an adaptive battery is used by considering an examinee’s final theta 

estimate from the previously administered test as the initial theta of the current test. In order to 

verify the feasibility of the design, a simulation study was conducted to compare the MSTB and 

the MSTBH with two baseline models. An MST design which is the administration of three tests 

separately using MST models, and a CATB design which is the administration of three tests 

sequentially, such that the second and third CAT tests make use of the ability estimates from the 

previous CAT as their initial estimates. 

The simulation results for the two proposed test battery designs and the two baseline 

designs across different conditions. There are two sets of evaluation indexes here. In the first set, 

the four designs were compared on measurement precision, including REMS, overall CCR, and 

conditional CCR, after examinees finished each subtest under different conditions. In the second 

set, some test security properties were evaluated through calculating the mean item exposure rate, 

item usage rate, and the SD of test overlap rate. All reported statistics were averaged across ten 

replications; each replication contained 10,000 observations. Furthermore, two estimation 
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methods (MLE and EAP) were used cross all test battery designs. Here are some definitions of 

some notations of this study. 

1-2-4 MST: a design that allocates one module in stage 1, two modules in stage 2, and four in 

stage 3. 

12-6-6: a 1-2-4 MST design contains one, two, and four modules in stage 1, stage 2 and Stage 3 

respectively, administering a longer first-stage module with 12 items in each module at stage1, 

and 6 items in each module at stage2 and 3.  

6-6-12:  a 1-2-4 MST design that administers 6 items in each module at both stage 1 and stage 2, 

and 12 items in each module at stage 3.  The designs would allow us to investigate whether 

administering shorter modules at early stages and longer module at last stage increases 

efficiency.  

8-8-8: a 1-2-4 MST design, that administers modules with the same length.   

Measurement Precision 

Table 4.1 presents RMSE and overall CCR across all designs under different conditions, 

in which (𝜃�̂�) represents the final ability estimate based on the response for all items of M test; 

( 𝜃�̂� )  represents the final ability estimate based on the response for all items of I test; 

(𝜃�̂�) represents the final ability estimate based on the response for all items of R test. As 

described in the methodology part, the four proposed designs all include three tests - M, I, and R. 

As presented in Table 4.1, a MST was administered at the beginning of each of the three MST 

designs, MSTB, MSTBH, and MST. On the other hand, CATB started with a CAT procedure. 

Table 4.1 indicates that administering a MST at the beginning of testing increases estimation 

accuracy and classification accuracy, not only MST yields the lowest RMSE (0.309), but also the 
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highest CCR (0.701). When examinees moved to do the second test, which is I test, an OMST 

procedure with borrowing estimation information from previously administered test was 

administered to both the MSTB and MSTBH designs. Then, the CATB design was used, which 

uses a CAT procedure treating examinees’ initial estimates of the current test (𝜃𝐼𝑛_�̂�) as their final 

estimates from the previous test (𝜃�̂�). As to the MST design, it still applied a MST procedure to 

the I test.  To evaluate the performance of using different estimation methods, two conditions 

were presented here: One is an OMST procedure that using MLE as the estimation method 

(OMST-MLE) and the other is an OMST procedure that using EAP as the estimation method 

(OMST-EAP).  

Table 4.1 indicates that administering an OMST followed by a MST improves 

measurement precision.  According to the descending order, the I test administered by the 

OMST-EAP procedure provided the best estimation accuracy in predicting examinees’ true 

ability (𝜃𝐼), as it had the lowest RMSE (0.245) and the highest CCR (0.744). The I test 

administered by the OMST-MLE one provided the second highest CCR and lowest RMSE, and 

the I test administered by the CAT procedure with borrowing previous estimation information 

provided the third best estimation accuracy.  However, administering a MST for the I test 

provided the worst estimation accuracy, with the highest RMSE (0.367) and the lowest CCR 

(0.662). When examinees finished the second test and moved to the third test, an R test, MSTB 

delivers an OMST at the end of the battery as well. Note that MSTBH administered a CAT at the 

end of the battery. Therefore, this is a hybrid design to use both MST and CAT.  The MST and 

CATB designs employed the same procedures in their previous two tests. The results indicate 

that administering an OMST procedure that incorporating previous estimation information at the 

end of the MSTB design increases estimation accuracy of the R test. Administering a CAT 
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procedure that incorporates previous estimation information at the end of the MSTBH design 

increases estimation accuracy of the R test as well, but the improvement was not as large as that 

of MSTB. The comparison between utilizing EAP and MLE shows that using EAP method 

yields better measurement precision, and it not only had the lowest RMSE (0.220), but also the 

highest CCR (0.766).  

In sum for all the three designs, MSTB, CATB, MST, if the information obtained from 

their previous estimation procedures can be utilized as initial predictors, measurement precision 

of ability estimates can be greatly improved. In addition, all the designs performed similarly 

across three module length conditions, which may indicate that having a longer testing length in 

the initial testing stage will not improve efficiency in comparison with that using shorter testing 

length.  

Table 4.1: RMSE and CCR of the estimated θ 

MSTB Design 

Estimation 

 

 

 

 

 

 

Test Order Design 12-6-6 

12 

6-6-12 8-8-8 

RMSE CCR RMSE CCR RMSE CCR 

M (θM)̂ MST 

 

0.309 0.701 0.300 0.707 0.305 0.705 

I (θI)̂ OMST-MLE 

MLE 

0.305 0.722 0.308 0.717 0.303 0.718 

 OMST-EAP 

MLE 

0.245 0.744 0.247 0.740 0.248 0.738 

R(𝜃𝑅 )̂ OMST-MLE 

MLE 

0.368 0.662 0.356 0.666 0.357 0.673 

 OMST-EAP 

MLE 

0.220 0.766 0.220 0.767 0.248 0.767 

MSTBH Design 

0.334 

0.687 

0.323 

0.688 

0.330 

0.685 

M (θM)̂ MST 

MLE 

0.309 0.701 0.300 0.707 0.305 0.705 

I (θI)̂ OMST-MLE 

MLE 

0.305 0.722 0.308 0.717 0.303 0.718 

 OMST-EAP 

MLE 

0.245 0.744 0.247 0.740 0.248 0.738 

R(𝜃𝑅 )̂ CAT-MLE 

MLE 

0.310 0.683 0.308 0.687 0.311 0.687 

 CAT-EAP 

MLE 

0.284 0.695 0.288 0.694 0.286 0.691 

MST Design 

M (θM)̂ MST 0.309 0.701 0.300 0.707 0.305 0.705 

I (θI)̂ MST 0.368 0.662 0.356 0.666 0.357 0.673 

R(𝜃𝑅 )̂ MST 0.334 0.687 0.323 0.688 0.330 0.685 

CATB Design 

M (θM)̂ CAT 0.344 0.688 0.344 0.688 0.344 0.688 

I (θI)̂ CAT 0.362 0.669 0.361 0.669 0.361 0.669 
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Based on the real administration goal of the proposed test, examinees were categorized into 

five ability groups after they finished each subtest according to their ability estimate ( θM̂,  θÎ,  θR̂). 

To evaluate the measurement precision for the different test designs considered, the conditional 

CCRs were calculated to see if the examinees had been classified into the correct ability groups. 

Figures 4.1 to 4.3 illustrate the conditional CCRs for each subtest. Specifically, five subgroups 

were formed to compute the conditional CCRs on the true θ value: the lowest (Group1) about 20% 

(i.e., 𝜃𝑀< -0.832), the medium (Group2) about 20% (i.e., -0.832≤ 𝜃𝑀 < -0.269), the medium 

(Group3) about 20% (i.e., -0.269≤ 𝜃𝑀< 0.245), the medium high (Group4) about 20% (i.e., 

0.245≤ 𝜃𝑀< 0.825) and the highest (Group5) about 20% (i.e., 𝜃𝑀≥ 0.825). Similarly, for the I 

test, the lowest (Group1) about 20% (i.e., 𝜃𝐼< -0.864), the medium (Group2) about 20% (i.e., 

-0.864≤  𝜃𝐼  < -0.265), the medium (Group3) about 20% (i.e., -0.265≤ 𝜃𝐼< 0.253), the medium 

high (Group4) about 20% (i.e., 0.253≤ 𝜃𝐼 < 0.827) and the highest (Group5) about 20% (i.e., 

𝜃𝐼≥ 0.827). Finally, for the R test, the lowest (Group1) about 20% (i.e., 𝜃𝑅< -0.844), the medium 

(Group2) about 20% (i.e., -0.844≤ 𝜃𝑅 < -0.247), the medium (Group3) about 20% (i.e., -0.247≤ 

𝜃𝑅 < 0.243), the medium high (Group4) about 20% (i.e., 0.243≤ 𝜃𝑅< 0.829) and the highest 

(Group5) about 20% (i.e., 𝜃𝑅  ≥ 0.829). Figure 4.1 depicts the conditional CCR rates across all 

designs under the condition of “12-6-6”.  For the graph in the right side, the black dash curve 

represents the MST procedure that was administered at the beginning of each of the three MST 

designs, MSTB, MSTBH and MST. The red broken curve represents a CAT that was 

administered at the beginning of the CATB design. As this graph represents, there is not a 

R(𝜃𝑅 )̂ CAT 0.320 0.680 0.319 0.680 0.319 0.680 

 
Note: 𝜃�̂� represents the final ability estimate based on the response for all items of M test;𝜃�̂� represents the final 

ability estimate based on the response for all items of I test; 𝜃�̂� represents the final ability estimate based on the 

response for all items of R test 
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significant difference between these two curves across all ability groups. It implies that at the 

beginning of all proposed designs, the MST performed similarly to the CAT in classifying 

examinees into their corresponding ability groups. The middle graph of the Figure 4.1 shows the 

conditional CCR curves for all designs when the I test was applied to the examinees. Here, the 

blue curve presents the conditional CCR curve across all ability groups when administering an 

OMST with the MLE estimation method to the MSTB design. The green curve presents the 

conditional CCR curve across all ability groups when administering an OMST with the EAP 

estimation method to the MSTB design. Each curve represents showed a U-shaped. As can be 

shown in this graph, at the middle of the ability scale the difference of these four curves was 

obviously. However, at the higher and lower end of the ability scale the difference of all curves 

was practically negligible. Specifically, the blue curve performed similarly to the red and black 

curves, in terms of measurement precision for extreme proficiency examinees, but was 

considerably more precise at measuring examinees with average abilities. The green curve 

performed better than the red and black curves across all ability groups, but was less precise than 

the blue curve at measuring examinees with average abilities. The right graph includes the 

conditional CCR curves for all designs after the R test was administered. The purple curve of this 

graph represents a CAT using MLE estimation method of the MSTBH design. The light blue 

curve represents a CAT using EAP estimation method of the MSTBH design. The results 

indicate that the two OMST procedures (blue and green curves) that used either of the two 

estimation methods, continued to perform well, in terms of classifying examinees of average 

ability. Interestingly, the black curve performed better than either the red or the light blue one for 

groups 1 and group 2, but performed worse for groups 3, 4, and 5. Besides that, the blue curve 

performed similarly to the red and black curves, in terms of measurement precision for extreme 

proficiency examinees (group1 and group 5), but was considerably more precise at measuring 
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examinees with average abilities (group2, group3, and group4). The green curve performed 

better than the red and black curves across all ability groups, but was less precise than the blue 

curve at measuring examinees with average abilities. When the MSTBH assigned a CAT-EAP, 

instead of an OMST, at the end of the battery, the purple curve performed worse classification 

accuracy than the blue and green ones.  Conditioning on module length, all test designs 

depicted in Figures 2 and 3 performed similarly, in terms of measurement accuracy at the 

extremes, with less accuracy and more differences near the center of the ability distribution. All 

designs (battery and non-battery) differed only slightly for the examinees at extremes. However, 

the measurement accuracy of the MSTB design was considerably better for examinees of 

average ability, especially when using EAP estimation method. Moreover, changing the module 

length of the initial MST did not result in a noticeable impact on measurement precision for the 

tests considered in this study. 

 

Figure 4.1: Conditional CCR curves under “12-6-6” condition across all design. 
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Figure 4.2: Conditional CCR curves under “6-6-12” condition across all design. 

 

Figure 4.3: Conditional CCR curves under “8-8-8” condition across all design. 

Test Security Properties  

Table 4.2 presents the mean, SD, and maximum exposure rates for the final estimated 𝜃s 

(i.e., 𝜃�̂�, 𝜃�̂�, 𝜃�̂�) across all deigns under different condition. To evaluate the mean exposure 

situation for each subtest, the item exposure rate for each item was computed, and then the mean 

item exposure rate was computed by averaging all item exposure rates. To evaluate how well 

these designs controlled over-exposure of popular items; the standard deviation and maximum 

item exposure rates among all items were reported as well.  
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Table 4.2 indicates that administering a CAT at the beginning of testing decreases item 

exposure situation, yields the lower mean item exposure rate (0.04). When examinees moved to 

the second test, which is I test, an OMST procedure with borrowing estimation information from 

previously administered test was administered to both the MSTB and MSTBH designs. 

Administering an OMST followed by a MST doesn’t improve the item exposure control. 

According to the descending order, the I test administered by the OMST-MLE procedure 

provided the largest maximum item exposure rate (0.76), which is three times higher than that 

obtained from the MST procedure. The I test administered by the OMST-EAP one provided the 

second highest maximum item exposure rate, and the I test administered by the CAT procedure 

provided the third highest maximum item exposure rate. Administering a MST for the I test 

provided the best item exposure rate, with the lowest max item exposure rate (0.219). According 

to Cheng & Chang (2009), the item exposure rate for every item should not exceed 0.20 in one 

item pool. Therefore, both the MSTB and MSTBH designs results in serious over-exposure of 

certain items in this case because all the values mentioned before are larger than 0.2. Same as the 

measurement precision evaluation, all the designs performed similarly across three module 

length conditions.   

 

Table 4.2: Statistics of Item Exposure Rates 

MSTB Design 

Estimation 

 

 

 

 

 

 

Test Order Design 12-6-6 

12 

6-6-12 8-8-8 

Mean SD Max Mean SD Max Mean SD Max 

M (θM)̂ MST 

 

0.173 0.096 0.229 0.099 0.036 0.211 0.103 0.045 0.197 

I (θI)̂ OMST-MLE 

MLE 

0.123 0.171 0.761 0.122 0.169 0.746 0.122 0.169 0.744 

 OMST-EAP 

MLE 

0.126 0.149 0.669 0.125 0.149 0.663 0.125 0.149 0.666 

R(𝜃𝑅 )̂ OMST-MLE 

MLE 

0.121 0.165 0.648 0.122 0.165 0.650 0.122 0.165 0.651 

 OMST-EAP 

MLE 

0.124 0.145 0.586 0.123 0.145 0.587 0.124 0.145 0.588 

MSTBH Design 

0.334 

0.687 

0.323 
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M (θM)̂ MST 

MLE 

0.173 0.096 0.229 0.099 0.036 0.211 0.103 0.045 0.197 

I (θI)̂ OMST-MLE 

MLE 

0.123 0.171 0.761 0.122 0.169 0.746 0.122 0.169 0.744 

 OMST-EAP 

MLE 

0.126 0.149 0.669 0.125 0.149 0.663 0.125 0.149 0.666 

R(𝜃𝑅 )̂ CAT-MLE 

MLE 

0.040 0.048 0.402 0.040 0.048 0.401 0.040 0.048 0.398 

 CAT-EAP 

MLE 

0.040 0.045 0.363 0.040 0.045 0.365 0.040 0.045 0.364 

MST Design 

M (θM)̂ MST 0.173 0.096 0.229 0.099 0.036 0.211 0.103 0.045 0.197 

I (θI)̂ MST 0.097 0.030 0.219 0.095 0.042 0.250 0.100 0.048 0.241 

R(𝜃𝑅 )̂ MST 0.095 0.037 0.242 0.090 0.032 0.161 0.096 0.039 0.206 

CATB Design 

M (θM)̂ CAT 0.040 0.027 0.137 0.040 0.026 0.137 0.040 0.026 0.137 

I (θI)̂ CAT 0.041 0.046 0.474 0.040 0.046 0.474 0.040 0.046 0.474 

R(𝜃𝑅 )̂ CAT 0.040 0.045 0.354 0.040 0.045 0.354 0.040 0.045 0.354 

Note: 𝜃�̂� represents the final ability estimate based on the response for all items of M test;𝜃�̂� represents the 

final ability estimate based on the response for all items of I test; 𝜃�̂� represents the final ability estimate based 

on the response for all items of R test 

 

 

To evaluate test security properties, Table 4.3 presents the item usage rates for the 

different designs.  The results indicate that when utilizing the CAT procedure under either 

battery design (CATB) or hybrid design (MSTBH) leads to the desired patterns of item usage 

rate across conditions, which is almost 100%. This implies that all 600 items in the item pool 

were, administered at least once, indicating good item pool usage when test security is of 

concern. However, this is not true when utilizing either only the MST algorithm under the 

battery design (MSTB) or the non-battery design (MST) desirable item exposure property. Only 

43% of the items were used for the MST design and only 33% for MSTB design, which is a 

much worse item usage rates than was obtained for the CATB and MST designs.  

Table 4.3: Item Usage Rate 

  MSTB   

Test Order  12-6-6 6-6-12 8-8-8 

M (θM)̂ MST 

 

0.43 0.44 0.39 

I (θI)̂ OMST-MLE 

MLE 

0.32 0.32 0.32 

 OMST-EAP 

MLE 

0.31 0.31 0.31 

R(𝜃𝑅 )̂ OMST-MLE 

MLE 

0.32 0.32 0.32 

 OMST-EAP 

MLE 

0.32 0.31 0.32 
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  MSTBH   

M (θM)̂ MST 

MLE 

0.43 0.44 0.39 

I (θI)̂ OMST-MLE 

MLE 

0.32 0.32 0.32 

 OMST-EAP 

MLE 

0.31 0.31 0.31 

R(𝜃𝑅 )̂ CAT-MLE 

MLE 

1.00 1.00 1.00 

 CAT-EAP 

MLE 

0.99 0.99 0.99 

  MST   

M (θM)̂ MST 0.43 0.44 0.39 

I (θI)̂ MST 0.41 0.42 0.40 

R(𝜃𝑅 )̂ MST 0.42 0.44 0.41 

  CATB   

M (θM)̂ CAT 1.00 1.00 1.00 

I (θI)̂ CAT 0.99 1.00 0.99 

R(𝜃𝑅 )̂ CAT 0.99 0.99 0.99 

 

In many cases, MSTs generate a larger SD than CATs, which reflects less control of test 

security (Wang et al., 2014). This is because items are administered in bundles in a MST, which 

results in certain groups of examinees sharing 100% of common items, even if there is a small 

mean overlap rate. A small SD overlap rate means that the number of items shared between any 

two examines is rather uniform, which decreases the possibility of examinees be exposed to 

items before taking them. Therefore, the SD overlap rate provides useful information to evaluate 

test security. To capture the entire profile of the test overlap rates, the conditional SDs of the test 

overlap was computed to evaluate the test security properties in the simulated tests considered in 

this study. Figure 4.4 presents the conditional SD overlap rates for all designs under the 

condition of “12-6-6”. Figure 4.5 presents the conditional SD overlap rates for all designs under 

the condition of “6-6-12”, Figure 4.6 presents the conditional SD overlap rates for all designs 

under the condition of “8-8-8”.  

As the description of Figure4.1 to Figure4.3, different color curves represent all deigns 

under different condition. In general, these figures illustrate very similar patterns across the 
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different module-length conditions. When examinees completed the first test under the MST 

design there was a much larger SD test overlap rate for all ability groups on this first test, the M 

test, when compared to the CAT design. This finding is consistent with Wang et al. (2013)’s 

conclusion that MSTs usually have larger SD test overlap than CATs. When a OMST was 

administered to the I test of the MSTB design, the SD overlap culver indicated better overlap 

properties than the MST procedure of the MST design, but still not as good as what was obtained 

from the CAT procedure of the CATB design. In the middle of all designs, when administering 

an OMST to the I test, for any two randomly selected examinees, fewer item were shared 

between them when compared to administer a MST procedure. However, more items were 

shared between certain examinees when compared to administer a CAT procedure, on average.  

The left graph of Figure 4.4 indicates that when administering a CAT at the end of the test 

battery design. This graph shows several different forms of a curve. The MST one provides a 

U-shaped curve, indicating the conditional SDs for examinees with extreme abilities were larger 

than the conditional SDs for examinees of average ability. For the two MSTB designs, lower SD 

overlap rates were observed for examinees of low or average ability, while higher SD overlap 

rates were observed for examinees of medium to high ability. In conclusion, if every item in an 

item pool has an equal probability of being selected then the SD overlap rate is minimized, 

which can lead to an ideal security scenario. 
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Figure 4.4: Conditional SD overlap curves under 12-6-6 among best conditions 

 

 

Figure 4.5: Conditional SD overlap curves under 6-6-12 among best conditions 

 

 

Figure 4.6: Conditional SD overlap curves under 8-8-8among best conditions 

 

In sum, when examinees moved to the second test, the MST procedure generated larger 

overall and conditional SDs compared to those obtained from the CAT procedure. Moreover, the 
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conditional SD values are likely to be larger than the overall SD. This is because when 

examinees have similar abilities, they tend to receive similar items or modules. In summary, no 

matter which ability group is considered, the SDs obtained from using a CAT design was the 

smallest. Merging CATs and MSTs into a hybrid test should improve the accuracy of early stage 

ability estimates (Wang et al., 2015).  This study further demonstrated that the hybrid design 

could improve the overall measurement precision of a MSTB. As the order of the tests in the 

battery changes, the measurement precision of an MSTB can be further improved upon when the 

“On-the-Fly” routing strategy is employed, especially for examinees of average ability. 

Therefore, the overall measurement precision of the MSTB is considerably greater than the two 

baseline models (MST and CATB) when the sequential test(s) can borrow information from the 

previously administered test. The overall test security results obtained from the CATB and MST 

designs are consistent with the idea that a CAT usually provides greater test security than an 

MST. The MSTB design, however, did not perform, as robustly, in terms of controlling test 

security, as its SD test overlap did not increase to the same levels as the two baseline models and 

the MSTBH design for the extreme ability groups.    

V.  DISCUSSION 

 

Conclusions 

The current study investigated four test designs: MST, CATB, MSTB, and MSTBH 

under the 3PL IRT models across different conditions. Simulation studies were conducted for all 

the conditions on each of which ten replications were carried out 10,000 simulated examinees on 

each replication. Two sets of criterion indices were calculated to evaluate measurement precision 

and test security, i.e., 1) The precision of the classification decision, including overall correct 
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classification rates, conditional correct classification rate, and root means square error (RMSE); 

and 2) The test security properties, including mean item exposure rate, item usage rate, overall 

and conditional overlap rates were calculated across each condition. The results pertaining to the 

three research questions are presented in the following.  

1) How does the MSTB design compare to the MSTBH design, regarding measurement 

precision (estimation accuracy and classification accuracy) and test security control? 

Through comparing the performance of MSTB and MSTBH designs in terms of 

measurement accuracy, the difference between these two designs mainly occurred when 

examinees moved to the third test, when the OMST procedure was applied to the MSTB design 

and the CAT procedure was applied to the MSTBH design. The results indicated that applying 

the OMST to the MSTB design yielded higher measurement accuracy, higher correct 

classification rate, and lower RMSE across varied conditions. In terms of test security, applying 

the OMST procedure didn’t yield reasonable item exposure control.  Applying a CAT 

procedure to a MSTBH design provided better exposure rates (both mean and maximum) the 

MSTB design.  However, neither design controlled the maximum exposure rate below 0.2. 

Furthermore, both the MSTB and the MSTBH yielded worse item usage rates than that of the 

CATB and MST designs, with the MSTBH resulting in better SD overlap rates. 

2) What is the benefit of utilizing collateral information on measurement accuracy 

(estimation accuracy and classification accuracy) of MST battery designs?  

The results indicated that the overall measurement precision of the MSTB and MSTBH 

designs with utilizing collateral information is considerably better than the MST design which 

does not borrow information from the previously administered tests. In terms of measurement 
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precision, the results indicate that utilizing the collateral information in the test battery design 

can improve the classification accuracy. Specifically, directly borrowing previous subtest 

estimation as a prior, which is a straightforward and effective method to reduce the estimation 

error for those examinees who have average abilities. However, in terms of test security 

properties, the method would not reduce item exposure rates. 

3) What effect does the “On-the-Fly” routing strategy have on the measurement accuracy 

(estimation accuracy and classification accuracy) and test security control properties of 

the MST battery designs? 

The performance of a MST battery can be greatly improved when the “On-the-Fly” 

design is used as a routing strategy. As the number of tests in the battery increase, the advantages 

of using a MSTB become obvious, especially for extreme ability groups. However, employing 

the “On-the-Fly” strategy to the MST battery design did not maintain the maximum item 

exposure rate under an ideal level.  

The comparison among different module-length conditions suggests that administering a 

longer routing stage of the first MST at the beginning of the test battery did not show the 

outperformance of improving estimation precision for the following subtests. In addition, the 

comparison between whether to utilize MLE or EAP estimation methods on test battery designs 

indicates that under the conditions where collateral information is employed, using EAP method 

was more stable than the MLE method in estimating examinees’ abilities. The study also found 

that both the MSTB and MSTBH designs yielded better measurement accuracy, especially for 

improving the correct classification rate in the middle range of the ability scale. Although all 

battery designs yielded acceptable mean exposure control properties across different conditions, 

they were not able to meet the ideal specified maximum exposure control rate and maintain 
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excellent pool utilization. Therefore, certain types of exposure control mechanisms need to be 

considered in future study. 

One interesting finding of the study is that there is a connection between the maximum 

item exposure rate and RMSE. Specifically, minimizing the item exposure rate of a test results in 

a larger RMSE. Regarding exposure control properties, the CATB design was relatively robust to 

changes in underlying conditions and resulted in the lowest maximum exposure rates and highest 

item usage rates.  However, the design did not result the best measurement accuracy. On the 

other hand, the MSTB design performed in an opposite fashion --- higher item exposure rates 

and better measurement accuracy. Therefore, the improvement of test security control may lead 

to sacrificing measurement accuracy.   

Limitation and Directions for Future Research 

The results of the current study may raise a number of new research questions. While test 

battery designs can increase measurement precision, it is not clear how to better control item 

expense under such designs, and therefore, future research should be conducted in this regard. As 

previously described, one major reason for unevenly distributed item exposure rates is that the 

item selection process does not items evenly. Another reason is that the use of maximum 

information to select items results in more frequently selecting high discriminating items

Many theoretical and empirical studies have shown that it is possible to build an item selection 

algorithm in Computerized Adaptive Testing that keeps a good balance between high test 

security and high measurement accuracy. It will be interesting and important to extend these 

methods to MSTB designs. Actually, many aspects of the a-stratified procedure (Chang and Ying, 

1999) for controlling item exposure still need to be studied in the context of test battery designs. 

In addition to pre-stratifying the item pool, controlling the proportion of each item being 
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administered is another solution that has been used to address test security issues in adaptive 

designs, such as the SH method, which distinguishes item selection process from item 

administration process.   Hence, in future studies, different exposure control strategies should 

be investigated in the context of test battery designs, in particular in a situation where 

information from previously administered tests is borrowed for the next test.   

As MST has become a prominent testing mode in large-scale educational assessment, such 

as the Law School Admissions Test (LSAT), the Test of English as a Foreign Language (TOEFL) 

and the National Assessment of Educational Progress (NAEP), more and more research needs to 

be done to address practical issues that can further improve measurement efficiency, content 

validity, and test security.  Another limitation of the current study is that all the items 

considered in the study were stand-alone single items in the assembly process of the test battery 

designs.  In real large scale testing, many tests are formed by both single stand-alone items and 

testlets (or item groups). A testlet (Wainer & Kiely, 1987) refers to a set of items that measure a 

content area and these items can administer the trait of certain content area together. For example, 

items within each set may all pertain to a common passage in a reading comprehension test. To 

make a versatile MST design, various non-statistical constraints, including item type constraints 

should be considered during the assembly process. This is especially important, given that 

testlets may yield better testing efficiency (Wainer, Bradlow, &Wang, 2007). If a MST included 

both single items and testlets, it would be interesting to investigate how the assembly and 

management algorithms can support different item formats in one test.  
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