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ABSTRACT 

NUMERICAL SIMULATION OF SLOW DRYING IN POROUS MEDIA USING PORE 

NETWORK MODEL 

by 

Zhenyu Xu 

The University of Wisconsin – Milwaukee, 2016 

Under the Supervision of Professor Krishna M Pillai 

 

In our first model, an internal and external coupled solver is presented to simulate the slow 

drying of a porous medium placed adjacent to a laminar flow of air in a slit. The porous medium is 

represented by a 20 × 20 pore-network model: the invasion-percolation algorithm is employed to 

simulate moisture redistribution; water-vapor migration in empty network is estimated using the 

purely diffusive approach. The external flow-field, unchanged during the drying simulation, is 

computed in the beginning using the Navier-Stokes equations. Subsequent water-vapor transport 

is modeled using a convection-diffusion type transport equation. A unique pore-to-cell meshing 

method and a novel unified (implicit) computational framework coupling the outer and the inner 

processes are proposed. Multi-scale problems in both space and time appear when solving the 

internal and external field simultaneously. To accurately simulate this kind of problem by aiming 

to minimize computation effort, the following aspects of the simulation are studied: space 

discretization schemes, numerical algorithms, mesh microstructure, and time-step refinement. The 

space discretization schemes tested in this paper include the Hybrid and the Hayase QUICK 
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schemes. The numerical algorithms tested to solve the drying process include the 

operator-splitting and a non-operator-splitting algorithm. Different mesh densities are tested along 

the directions parallel to and normal to the outer flow- porous-medium interface. Different 

time-steps are tested to find a suitable time-step for both the internal and the external computations. 

The external air velocity has some impact on the drying in the initial stages. Significantly, the 

microstructure of the pore-network is found to have a strong influence on drying. 

In our second pore network model (which is based on our first model), the film effect is 

included and a novel logistic equation is used to relate the pore network variables with the external 

field variables. For migration of water vapors, the model accounts for both advective and diffusive 

transport in the external flow field while including diffusion in the dry part of the pore network. 

By conducting a parametric study on the drying of a 40 × 40 square network placed next to 

a slit flow, it is discovered that (a) higher hydraulic diameter of the throats leads to higher drying 

rates and longer constant drying-rate periods; (b) the drying time increases and the drying rate 

decreases as the throat cross section changes from a triangle to a square to a hexagon to a circle, 

which can be correlated to the weakening of the film effect; (c) increasing the external flow 

velocity (that leads to changing the Peclet number from 1 to 1000) has little effect on the drying 

rates and times; (d) increasing the external air humidity from 30% to 70 % leads to a large decrease 

in the drying rates and the consequent increase in the overall drying times. 

The developed model is then used to simulate the drying of several thin porous media (40 ×
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40 , 80 × 20 , and 160 × 10 ) with different aspect ratios placed either aligned-with or 

perpendicular-to a uniform 2-D flow. Plots of drying rates and drying times against the network 

saturation are studied. The presence of film during most of the drying period ensures that the 

surface pores are at saturated vapor pressure. As a result, the sharpest concentration gradients, 

which also control the drying rates, lie adjacent to the exposed surfaces. Consequently, the 

concentration gradients in the outer flow fields are very mild and play insignificant role in the 

drying of porous media. Hence, we reach a surprising conclusion—the orientation of thin porous 

media in the outer flow field is found to be irrelevant for drying. But expectedly, the higher 

exposed-area versus total volume ratio leads to faster drying. However, these conclusions should 

be examined further by future 3D simulations since a 2D simulation may underestimate the 

influence of external flow field on the drying of porous media. 

Finally, the model is applied to the dual-porosity porous media. The drying simulation of a 

square-shaped and dual-porosity pore network is compared with a previously published 

experimental study. Two cases of small-pores side open and large-pore side open are considered. It 

is observed that though the simulation results of the 12 × 12  network fail to match the 

experimental drying curves completely, important features of the drying process (such as complete 

emptying of large pores before the onset of drying in the small pore region of the large-pores side 

open case) are achieved. Next the drying of the same square-shaped, dual-porosity domain using a 

much refined 100 × 100 network is carried out in a uniform air flow after keeping either the 
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large-pores or the small-pores side open. The former leads to faster drying and complete emptying 

of the large pores before the small pores. The latter witnesses the phenomenon of capillary 

pumping. Using the same refined network, the case of all side open is also studied. Changing the 

throat cross-section from circle to square leads to much faster drying. Introduction of 

microstructural irregularity in the network by randomly changing throat diameter and changing the 

coordination number of pores does not affect the drying rate and drying time significantly.  
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1 INTRODUCTION 

A porous medium is either a material containing pores or a collection of particles/fibers 

which when put together have pores between them. The skeletal, solid portion of such media is 

called the “matrix” or “frame”. The tiny voids, created between particles/fibers or carved out in 

the frame, are called pores, which are typically filled with gas or liquid (Dullien, 1991). Very 

often, the fluid transport is of interest in most applications, hence we are interested only in those 

porous media that have interconnected pores. Many materials fall in the category of porous 

media, for example, sponge, soil, sand, rock, cement, bone, wood, fabric, paper, food and 

ceramics. Research in porous media is of significant scientific and commercial interest in a 

number of industrial applications including composites processing, coating, food processing, 

production of building materials, pulp and paper industry, and pharmaceuticals. Drying of porous 

media is one such research topic. 

The simulation methods for porous media problems can be classified into two major 

categories: the continuum methods, and the discrete methods. The continuum methods (or models) 

treat the porous media as a continuous material with volume-averaged macroscopic properties 

(Bear, 1988), while ignore the porous media’s pore-scale structure and attributes. This method is 

useful in large space-scale problems but its accuracy heavily depends on the selection of 

macroscopic properties, which must come from experiments or pore-level simulations. The 
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volume averaging continuum method is one of the proven and effective techniques for predicting 

such flow and transport coefficients using the closure formulation to upscale from the pore scale to 

the macro scale (Quintard & Whitaker, 1993). 

On the other hand, the discrete method ‘goes into’ the porous media such that the pore-scale 

structures and processes inside the porous media are taken into account. The discrete method is 

usually employed to simulate small space-scale problems or to determine the macroscopic 

properties for the continuum models. 

There are two major problems while modeling with the discrete methods: firstly, the 

representation of the geometry of a porous medium, and secondly, the modeling of transportation 

physics inside them. 

1.1 Idealization of Pore Structures 

There are several idealized models of pore structures, which can be broadly categorized into 

three categories: pore network, array of solid particles, and hierarchical pore structure (Wikipedia, 

2016).  

Pore network model, as its name implied, is a network of pores interconnected by capillary 

throats. Array of solid particles model, literally, is a pack of particles close to each other. In 

hierarchical pore structure (Suzuki, et al., 2003), for example, the porous media is firstly 

idealized as a pack of larger-level particles, and each particle is further modeled as a pack of 
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smaller-level particles, etc. (Mao, et al., 2008). 

Each of these three categories has its unique characteristics and has advantages over the 

others when modeling certain types of porous media. For example, array of solid particles is 

naturally suitable for modeling sand. Choosing the right idealization models is the first step 

towards an accurate simulation. 

Pore-network (P-N) model, as shown in Figure 1, is created after extracting the skeleton of 

pore space from the porous media. The pore space forms a network-shaped structure, composed 

of joints and capillaries. The joints are called pores, and capillaries are called throats. 

 

Figure 1. Pore network model 

By changing the shape and size of the pores and throats, pore-network model can be used to 

model a broad range of porous media, such as fabrics, soil, open-cell ceramics, etc. This thesis 

focuses on studies involving pore-network models. Hence, all the following mathematical or 

physical descriptions are based on the pore-network model. 

1.2 General Description of the Drying Process of Pore Network 

If a pore network filled with liquid has some openings to the surroundings, the liquid inside 
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will usually start drying up, and gradually all of the pores space will be occupied by the invading 

gas. The drying process and the involved physical phenomena are described in general terms as 

below (Yiotis & Boudouvis, 2003). (Because the liquid we talked about is usually water, and 

the invading gas is usually air, so the terms liquid and water, gas and air will be used 

interchangeably in this thesis.) 

 

Figure 2. General description - drying of porous media 

As we all known, the water-air interface is a boundary in dynamic equilibrium, where the 

number of water vapor molecules leaving the liquid phase equals the number of returning 

molecules. At this interface, the water vapor concentration (equal to the saturated vapor 

concentration, which is a function of temperature) reaches its peak value. If the surrounding 

concentration is lower than the saturated concentration, the vapor molecules on the interface will 
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diffuse into the environment. Because the vapor molecules diffuse into the far space, more vapor 

molecules have to come from the liquid phase to keep the interface concentration saturated. As 

more and more water molecules cross the interface and go into vapor phase, the water will start 

drying up.  

It is the same scenario for porous media (Figure 5) during the drying process. Imagine a 

pore network initially filled with liquid. At the openings of the network, which is also the initial 

water-air (or drying) front. The water molecules escape from the liquid phase into the air phase, 

and then diffuse into the farther surroundings. As this process continues, the water-air drying 

front starts to recede deep into the porous medium, but diffusion of water vapor away from the 

front does not stop even in the tiny pore spaces. The water contained in pores of the porous 

medium keeps diminishing until it finally dries up. If a wind is blowing over the pore openings 

into the ambient, the bulk movement of the air will speed up the carrying-away of water vapor to 

the farther spaces through advection and accelerate the drying process. 

During the drying process inside a porous medium, the liquid phase is also flowing and 

redistributing itself. Liquid pressure difference in different throats will drive the liquid phase 

from larger throats to smaller throats, such that the drying front inside a porous medium rarely 

recedes uniformly. The fronts at larger throats are usually observed to be receding quickly, while 

the fronts at smaller throats keep relatively stationary. This is because the capillary pressure 

behind a liquid-gas interface scales as 
𝛾
𝑟⁄  where 𝛾 is the surface tension while r is the throat 



6 

radius, because of which the narrower throats have larger capillary pressures compared to the 

larger throats. This difference in the suction pressures leads to redistribution of the liquid phase 

from the larger throats to smaller ones during drying. Hence, liquid columns in smaller throats 

are kept stationary by the higher capillary pressures, while the columns in larger throats decrease. 

In fact, this is the basis behind the invasion-percolation (I-P) algorithm used for modeling the 

motion and breakup of drying front inside a porous medium during drying (Prat, 1993). 

Besides the throat sizes, the hydrophobicity of the network material, and the cross-section 

shape of the throats also have influence on liquid redistribution during drying. In addition, the 

gravity and liquid viscosity also play important roles in the liquid flow. 

Furthermore, the recession pattern of the water-air drying interface inside the throats is 

usually not like that of a flat area perpendicular to the throat axis. Instead, the liquid in the 

middle area of the throat recedes easily, while the liquid along the lateral corners of the throat 

tends to remain sticking longer. These liquid wedges along the throat corners are called liquid 

films or film fingers. During the drying process, the bulk liquid recedes first, leaving the film 

fingers to thins out slowly. In fact, the fin fingers are often channels for the liquid to travel from 

the drying front into the dried up portions of the network and aid in the passage of water vapors 

into the outside air. As shown in Figure 2, the liquid flows from the bulk liquid region behind the 

drying front into the film region, and from the tips of the films, the liquid evaporate into the gas 

phase. Then the vapor is transported away from the porous media by advection and diffusion into 
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the surrounding airflow. 

1.3 Definitions in Pore Network Model 

From being wet to dry, the pores and throats of the pore-network experience a series of 

changes in their status. Initially they are filled with the liquid; and then bulk liquid retreats, and 

they are occupied by the films; after the films thin out, they are fully occupied by air. At each 

stage, different fluids and transportation mechanisms apply. For this reason, we differentiate the 

pores and throats at different stages by defining them as follows (Figure 3). 

 

Figure 3. Pore network definitions 

The definitions related to the pore network model: 
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 Liquid Throat (LT): the throat having the bulk liquid. 

 Film Throat (FT): the throat with no bulk liquid, but having the film liquid. 

 Gas Throat (GT): the throat that is completely dry and taken over by the gas. 

 Liquid Pore (LP): the pore is filled with the liquid (usually, all the throats connected to 

such pores are LTs or Liquid Throats.) 

 Film Pore (FP): the pores have no bulk liquid but the liquid inside the film; usually, 

among all its connected throats, there is at least one throat which is a film throat, and 

there are no gas throats.  

 Gas Pore (GP): the pores fully taken by the gas; usually, there is at least one gas throat 

connecting with a gas pore. 

 Cluster: a group of pores and throats, which share the same ‘Liquid’ status and are thus 

filled with the liquid, and are geometrically connected to each other. 

 Cluster Labeling: the process of dividing all the ‘liquid’ pores and throats of the network 

into different clusters. 

1.4 Literature Review 

One of the earliest discrete methods is the pore network model developed by Nowicki, and it 

was used to determine the macroscopic properties a certain porous medium (Nowicki & Davis, 
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1992). Prat developed a pore network model based on the invasion-percolation (I-P) algorithm to 

simulate slow drying under isothermal conditions (Prat, 1993), in which the capillary and gravity 

forces were taken into account. This model was then used by Laurindo and Prat to study phase 

distributions and drying rate of porous media during the drying process. Comparison between the 

numerical and experimental results showed good match for the phase distributions (Laurindo & 

Prat, 1996), while for the drying rate and drying time, trends agreed with each other only 

qualitatively. The total drying time obtained through numerical simulations was several times 

larger than the experimental drying time (Laurindo & Prat, 1998).  

Since then, many efforts have been made to improve the P-N model. The film effect has been 

added onto the P-N model (Yiotis, et al., 2004) (Prat, 2007). more and more physical phenomena 

are added on to the P-N model to improve it, including the film effect (Yiotis, et al., 2004) (Prat, 

2007) and the viscous effect (Metzger, et al., 2007) (Metzger & Tsostas, 2008). And ignoring of the 

film effect was found to be the major reason responsible for the earlier-mentioned huge errors in 

the drying rates and drying times (Yiotis & Tsimpanogiannis, 2007). Besides, studies on the 

viscous effect show that when this effect is significant, the liquid-saturated portion of the pore 

network breaks into much more numerous, smaller clusters than the situations when the viscous 

effect is negligible. On the other side, these research efforts also verified that the I-P algorithm is 

valid when the viscous effect is small (Metzger & Tsostas, 2008). Beyond that, the thermal effect 

had also been studied (Huinink, et al., 2002). 
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These P-N models for drying yield some interesting insights when applied to the dual-scale 

porous media (Pillai, et al., 2009). Thin porous media, because of its special geometrical 

characteristics, yield some distinct transportation features of its own when they are simulated by 

the P-N models (Vafai, 2015). 

With the introduction of a discrete approach in drying using the P-N model, some other 

problems also surface, for example, how to handle the coupling between the pore-scale P-N model 

and the lab-scale outside field, and how to simulate the coupling between a slow 

diffusion-dominated evaporation inside the network and a fast convection-dominated outside flow 

(Balhoff, et al., 2007) (Zenyuk, et al., 2015). (There are multi-scale problems existing in both 

space and time when solving the internal and external field simultaneously. The dimensions of 

pores are usually in microns, while the dimension of the whole porous medium is in tens of 

centimeters or even larger. The time to dry out a throat in the pore-network model could take 

dozens of minutes, while the time for the flow to sweep around the whole porous medium and take 

away the moisture is usually measured in seconds.)  

Most early P-N model simulations on drying use a stand-alone porous medium without 

properly considering the surrounding environments. The mass transport between porous media 

and the outside environment is through an assumed constant-thickness concentration boundary 

layer (CBL) on the open side of the porous media. Through this boundary layer, the vapor molar 

concentration changes from a higher 𝐶 value near the openings to the lower environmental 
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value 𝐶∞ at the other side of the boundary layer. The mass transfer flux density, 𝑒, is calculated 

by 

 𝑒 = 𝜌𝑔𝐷
𝐶 − 𝐶∞
𝛿∞

 (1) 

where 𝜌𝑔, 𝐷 are the gas phase density and diffusion coefficient of water vapor, respectively. 

However, the actual CBL thickness is always changing with time and position, so the drying 

rate calculated in this way has unpredictable errors. Hence in recent years, more and more 

researchers are taking the outside flow-field simulation around the porous media into 

consideration during drying (Yiotis & Tsimpanogiannis, 2007) (Shaeri, et al., 2013). The turbulent 

flow effect around the porous medium is also taken into account. In these studies, the pore 

network and external fields are calculated using a split method. The detailed algorithm of the 

Beyhaghi’s method can be summarized in Figure 4 (Beyhaghi, et al., Under Review). 

For each drying step, the external water-vapor concentration field is calculated from a 

steady advection-diffusion equation given a 

 𝒖 ∙ 𝛻𝐶 = 𝐷𝛻2𝐶 (2) 

where 𝒖, 𝐶, 𝐷 are the velocity vector, vapor molar concentration, and diffusion coefficient of 

liquid vapor. The algorithm of this split method is complex because one needs to calculate the 

concentration twice in each sub-step. 
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Figure 4. Schematic of Beyhaghi’s method 

1.5 Scope and Objective 

Based on all these previous research efforts, the research work in this thesis is arranged as 

given below. 
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The first effort presents a new fully-coupled method and a new code implementation to 

simulate the slow drying problem of a porous medium (represented by a pore-network model) 

placed in a laminar air flow. The algorithm is more concise than the ones given in previous 

publications and can calculate the concentration changes in the pore network and external field 

simultaneously in real-time. In this work, factors having the potential to influence the simulations 

are studied further, such as: numerical algorithms, space discrete schemes, time step selection, 

mesh density at the interface of the external field and the network, the boundary layer above the 

open side of porous media, and the flow speed. 

The adding of the film effect shortens the evaporation time by a factor of six (Laurindo & Prat, 

1998), which makes the multi-scale problem addressed in this paper less serious. As a result, this 

first effort deliberately ignores the film effect so as to exaggerate the multi-time-scale problems. 

The idea is that if the treatments for multi-scale problems works for this exaggerated case, it 

should work well for other cases as well when other mitigating effects are added.  

For the second effort, we inherited the fully-coupled, implicit method based drying code from 

our first model and added the crucial film effect onto its P-N model in order to make it more 

realistic.  

The new model is used to study the drying of porous media when placed in a laminar flow 

field. This thesis will study the influence of microstructure, including the throat cross-section 

shape and throat size, on drying. By changing the aspect ratio of the pore network, drying of thin 
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porous media is studied. The effect of external wind direction and speed, the environmental vapor 

concentration, and the porous media openings are studied. At the end, the new model is applied to 

both regular and irregular dual-scale porous media. The results are compared with the published 

experimental results. We believe this is the first and only the effort of this kind done till date. 

The scope and objectives of this thesis are summarized as follows: 

1. Develop a fully-coupled implicit model without the film effect to study the influential factors in 

the multiscale pore-network drying problems. 

2. Include the film effect onto the method developed above. 

3. Implement both methods using C++ with object-oriented programming (OOP) technology. 

(The developed software is named as PORODRYTM) 

4. To apply the new model to study the effect of pore-network microstructure, the drying in thin 

porous media, the drying in dual-scale porous media, and the effect of irregular pore network. 

1.6 Outline of the Thesis 

Based on the thesis synopsis presented above and the studies carried out during the PhD 

program, the contents of this thesis are arranged in the following way: 

Chapter 1:  The background and previous research work on modeling drying using the P-N 

models were discussed. The coupling between the pore-level drying dynamics with 
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the external lab-scale flow field is chosen as the research direction for the thesis. 

Chapter 2:  The coupled method is formulated for predicting liquid redistribution and vapor 

transport inside the porous media and vapor transport in the external flow field. Here, 

the pore-network model without film effect is used to solve the drying problem. 

Chapter 3:  The implementation of the formulations in Chapter 2 is validated through a wide 

range of comparisons with the previous theoretical and experimental results. 

Chapter 4:  The methods described in Chapter 2 is used to study some topics, including mesh 

refinement, time step selection, influence of wind speed, and influence of 

microstructure. 

Chapter 5:  The film effect is added to the formulation of Chapter 2, and the fully-coupled method 

is reformulated. 

Chapter 6:  The methods described in Chapter 5 is tested under different numerical settings. 

Chapter 7:  The methods described in Chapter 5 is applied to study the influence of pore-network 

microstructure on drying. 

Chapter 8:  The methods described in Chapter 5 is applied to study drying in thin porous media. 

Chapter 9:  The methods described in Chapter 5 is applied to study drying in dual-scale porous 

media. 

Chapter 10:  The summary and conclusions of the current research is discussed; concerns and 
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future research directions is presented. 
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2 FORMULATION I: P-N MODEL FOR DRYING 

WITHOUT THE FILM EFFECT 

The simulation of any isothermal drying of porous media in laminar flow can be de-coupled 

into two stages: the flow simulation of the external field, and the evaporation simulation in both 

the external flow-field and within the pore-network. The reason for such a decomposition is stated 

in the following section. 

2.1 Modeling of the External Flow Field 

The external region of a drying porous medium is a normal lab-scale flow field where the 

Navier-Stokes (N-S) equations for incompressible laminar flow apply. Under isothermal 

conditions, the energy equation can be ignored, so only the mass and momentum conservation 

equations are considered. 

Mass Conservation:  

 𝛻 ∙ 𝒖 = 0 (3) 

Momentum Conservation:  

 𝜌𝑔 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ 𝛻𝒖) = −𝛻𝑝 + 𝜇𝑔𝛻

2𝒖 (4) 

Here 𝒖 is the velocity vector, 𝑝 is the pressure, 𝜌𝑔 and 𝜇𝑔 are the density and dynamic viscosity 
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of the gas.  

The gas considered is a mixture of dry air and water vapor. Theoretically, the gas density and 

viscosity will change with vapor concentration. But in our cases, this change can be ignored. For 

example, the humid air density can be expressed as 

 𝜌𝑔 =
(𝑝𝑎 − 𝑝𝑣)𝑀𝑑 + 𝑝𝑣𝑀𝑣

ℛ𝑇
 (5) 

where 𝑝𝑎 , 𝑝𝑣  are the atmosphere pressure and vapor partial pressure, respectively; 𝑀𝑑 =

0.028964 𝑘𝑔/𝑚𝑜𝑙 and 𝑀𝑣 = 0.018016 𝑘𝑔/𝑚𝑜𝑙 are the molar mass of dry air and water vapor, 

respectively; ℛ = 8.314 𝐽/(𝐾 ∙ 𝑚𝑜𝑙) is the universal gas constant. Evaluating this equation 

using the standard atmosphere table, we can confirm that at any place on the earth with altitude 

below 4500 meters and with temperature below 40℃, the variation of humid-air density is well 

below 5% no matter how large the vapor concentration. The viscosity shares the same fate 

(Tsilingiris, 2008). Hence there is no need to simulate the external flow at each time-step during 

the entire drying process. Instead, the flow field is calculated only once at the beginning of the 

evaporation simulation. 

The SIMPLE algorithms are used to solve equations (3) and (4) numerically. Two space 

discretization schemes, the Hybrid scheme and the Hayase QUICK scheme (Patankar, 1980) 

(Versteeg & Malalasekera, 2007), are tested for the convection term. As for the diffusion item, the 

central scheme is used. 
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2.2 Evaporation Modeling 

There are two evaporation regions: the external flow field, and the internal pore-network. 

Continuum hypothesis is applicable to both these regions. 

The continuum hypothesis applied to the lab-scale external field is obvious, but not so for the 

pore network. Inside the micro-meter size pore-network throats, the Knudsen number ( 

𝐾𝑛 = 𝜆 𝛿∗⁄ , where 𝜆 is the molecule mean free path, and 𝛿∗ is the representative physical length 

scale) is calculated to be well below 10−3 by dividing the air molecule mean free path by the 

throat mean diameter (Shaeri, 2012). And if the throats are still filled with water, the Knudsen 

number will be even smaller because the molecular mean free path of water molecule is smaller. So, 

during the drying process, the Knudsen number is always far smaller than 1, which ensures the 

applicability of the continuum hypothesis inside the pore network model. 

2.3 Physics of Evaporation in the External Flow Field 

Using the continuum hypothesis, the evaporation outside is modeled using the unsteady 

convection-diffusion type conservation equations for molar concentration of vapor: 

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷(

𝜕2𝐶

𝜕𝑥2
+
𝜕2𝐶

𝜕𝑦2
) (6) 

Here 𝐶 is the vapor molar concentration and 𝐷 is the wet-phase mass diffusivity for water. 

(Some papers (Shaeri, et al., 2012) have also used the vapor pressure as the variable, the 
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relationship between vapor molar concentration and vapor pressure following the ideal gas law 

𝐶 =
𝑝𝑣
ℛ𝑇 ⁄ .) 

2.3.1 Physics of Modeling Evaporation in Pore Network 

As the drying progresses, the pore network model begins to witness the intrusion of the 

outside gas phase into the hitherto fully-saturated liquid region. With time, patches of both the gas 

and liquid regions appear in the pore-network model. In the gas region, the mass is transported 

mainly by gas diffusion; in the liquid region, the mass is redistributed mainly by capillary-pressure 

driven liquid flow (Prat, 1993). 

Previous research has shown that the gravity, viscous and film effects have important 

influences on the drying pattern and drying rate of the pore-network model (Prat, 1993) (Yiotis & 

Stubos, 2001). Without the inclusion of the film effect, the total drying time predicted by the 

simulations is usually six times larger than seen in the experiments. The adding of the film effect 

corrected this error significantly, so among all these P-N developments, the most significant is the 

adding of the film effect. However, this doesn’t bring any intrinsic changes to the multi-scale 

problem, but only makes it less serious in the time scale. So, to serve this chapter’s purpose of 

studying the factors influencing the multi-scale problem better, the film effect is ignored 

deliberately. If this proposed method is applicable to the large time-scale difference between the 

pore-network and external field simulations without the film effect, it should work for the smaller 

time-scale difference between the two after the adding of the film effect. In the present work, we 
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assume the network is laid horizontally, so the gravity is also neglected (Laurindo & Prat, 1996) 

(Laurindo & Prat, 1998). By making these simplifications, we put our work’s emphasis on the 

mass-transfer process between the P-N model and the outside field, and the numerical methods 

employed to solve them. 

In the pore-network gas region, the convection effect is ignored due to the tiny geometry 

inside the pore-network and the resulting negligible velocities (Shaeri, et al., 2013). `And because 

the pores have no volume, mass flux in gas pores with unknown vapor pressures follows the 

concentration balance equation 

 ∑𝑚𝑖𝑗̇

𝑗

=∑𝑀𝐷
𝐴𝑖𝑗

𝛿𝑖𝑗
(𝐶𝑗 − 𝐶𝑖)

𝑗

= 0 (7) 

where 𝑀 is the molar mass of the vapor, and 𝐴𝑖𝑗, 𝛿𝑖𝑗 and 𝑚𝑖𝑗̇  are the throat area, throat length 

and the mass flux, respectively, between the pores 𝑖 and 𝑗. 

In the pore-network liquid region, because of all the simplifications we made, the liquid 

redistribution simply follows the I-P rule presented in (Prat, 1993). 

The liquid (gage) pressure for the wetting liquid considered (water) is related to the surface 

tension through the Laplace’s Law as 

 𝑝𝑙 ∝ −
𝛾

𝑅
 (8) 

where 𝑝𝑙 is the liquid pressure, 𝛾 is the surface tension, and 𝑅 is the radius of the throat. This 
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implies that a larger throat has a smaller negative (suction) pressure and vice versa, and this larger 

pressure difference between the larger and smaller throats will always pump liquid from the larger 

throats to the smaller ones. 

When the network is drying, it will be invaded by air, and the liquid phase will be divided into 

many liquid clusters by the gas phase, a mixture of air and liquid vapor. Each cluster dries through 

all of its liquid-gas interfaces, the so called menisci throats, but no matter where the evaporation 

happens, the liquid in the largest throat of each cluster’s menisci will be pumped by liquid pressure 

differential to supply the liquid to the smaller throats. Hence the largest throat on the interface of 

each cluster will always be emptied first. This rule is called the I-P rule and the process of finding 

clusters and their menisci during each time-step is called cluster labeling. 

2.4 Coupled Solution for Vapor Concentrations in the External 

Field and Pore-Network 

Previous researchers solved the evaporation equations for the outside flow field and pore 

network separately (Shaeri 2012) (Shaeri, et al., 2013) (Beyhaghi, et al., Under Review). In this 

work, we align the outside field cells with the pore network model’s pores and throats, as shown in 

Figure 5. Schematic grid layout for the coupled solution for vapor concentrations in the external 

flow-field and pore network, and propose a novel approach of solving concentrations in the two 

regions simultaneously. We can combine equations (6) and (7), and solve them using a fully 
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coupled method. The combined equation actually has a form similar to that of equation (6): 

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=∑𝑀𝐷

𝐴𝑖𝑗

𝛿𝑖𝑗
(𝐶𝑗 − 𝐶𝑖)

𝑗

 (9) 

in which, the pores too are treated as finite volume cells, as in the external field cells; the main 

difference is that the volume of pores is zero, and the velocity inside the pore-network is also 

neglected. Another difference is that when calculating the right side diffusion term, the diffusion 

not only happens between two neighbor cells or between two neighbor pores, but also happens 

between cells and pores as shown in Figure 5.  

 

Figure 5. Schematic grid layout for the coupled solution for vapor concentrations in the external 
flow-field and pore network – without film effect 



24 

When 𝑖  indexes an external cell, 𝑗  could index either a neighboring external cell or a 

neighboring pore, or, when 𝑖 indexes a pore, 𝑗 could index either a neighboring pore or an 

external neighboring cell. The P-N opening pores can be offset slightly inward to avoid putting 

them right on the face of the external cells, which is not helpful when calculating the flux between 

the pore and cells.  

In this coupled approach, the convection terms are discretized by the Hybrid scheme or 

Hayase QUICK scheme, and the diffusion terms are discretized by the central scheme. 

2.4.1 Operator-Splitting Algorithm 

Because of the concern about generating false diffusion at high Peclet-Number conditions 

(Muralidhar, et al., 1993), the operator-splitting algorithm is also tested to solve equation (9), 

which is transformed from a one-step algorithm into a two-step algorithm as follows: 

The first step is to calculate the changes in vapor concentration due to the convection terms 

only: 

 
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 0 (10) 

And the second step is to calculate the same changes due to the diffusion term only: 

 
𝜕𝐶

𝜕𝑡
=∑𝑀𝐷

𝐴𝑖𝑗

𝛿𝑖𝑗
(𝐶𝑗 − 𝐶𝑖)

𝑗

 (11) 
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Note that the evaporation from the pore-network only happens in the diffusion step. 

In the operator-splitting algorithm, the first and the second steps can be switched; which one 

goes first, the convection equation or the diffusion equation, will influence the calculation stability 

and the results itself. In this paper, we tested all the three methods: the non-operator-splitting 

algorithm, the convection-diffusion-splitting algorithm, and the diffusion-convection-splitting 

algorithm, and the results are analyzed in the following sections.  

2.5 Non-Dimensionalization of Equations 

In this thesis, we used the dimensionless forms of all the above-given equations to do the 

calculation in order to reduce truncation errors as the non-dimensionalization process keeps the 

variable values close to unity and prevent very small values to appear during computations. 

However, the characteristic or reference values are chosen so that they are suitable for both the 

external lab-scale and internal pore-scale regions. But the derived dimensionless numbers have no 

physical meaning apart from rendering our calculations unit-less, because no combination of 

characteristic values can be found to simultaneously reflect the features of the external air flow, the 

external evaporation, the internal liquid flow and the internal evaporation. 

In this thesis, two common dimensionless numbers will be used: 

 Reynolds Number: 𝑅𝑒 =
𝜌∗𝑈∗𝑙∗

𝜇∗
 (12) 
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 Peclet Number: 𝑃𝑒 =
𝑈∗𝑙∗

𝐷∗
 (13) 

The symbols with ∗ superscript represent the characteristic values. These values are different 

from the ones used in the field computations and are chosen to reflect the physics features and will 

be specified for each case. 

2.6 Summary of Algorithm 

The algorithm for the whole simulation can be described as follows: 

1. Solve equations (3) and (4) to get the external flow field. Assume that the flow field 

variables, the outside velocity and pressure, are fixed during the following steps. Initialize 

the liquid-saturation distribution in the pore-network, and the vapor concentration 

distribution in the gas region. 

2. Do cluster labeling for the pore-network. 

3. For each cluster, calculate the drying flux and then the time needed to empty the largest 

meniscus throat—find out the minimum value among them for all the clusters, and set it as 

the time step. 

4. Implicitly solve equation (9) to get the vapor concentration distribution. Repeat the 

calculation for Step 3 above and compare the result with the previous time-step obtained in 

Step 3. If the difference between them is smaller than the convergence criterion, then 

proceed to step 5; otherwise set a new time-step and do this step again. 

5. Empty the throat using the time step calculated in step 4. 

6. Check the saturation of the pore-network. If it is still wet, then go back to step 2; otherwise 

finish the computation.  
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For a better comparison with the Beyhaghi’s method, the new algorithm is depicted in Figure 

6. A careful comparison will show that it is more concise than the previous method. 

 
Figure 6. Schematic of drying algorithm presented in this work 

3 VERIFICATION OF NUMERICAL SIMULATION 

We designed four different verification cases to validate different aspects of our numerical 

solution and its code implementation, and these are summarized in Table 1.  
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Table 1. Summary of verification cases 

Verification Case # General Description 

1 Slit flow; 𝑅𝑒 = 1000 

2 Backward-step flow; 𝑅𝑒 = 805 

3 

Advection of Gaussian (bell-shaped) solute concentration profile 

in flow; 𝑃𝑒 = 1 , 𝑃𝑒 = 100 

4 

Drying of a 20 × 20 pore-network with one side open to the 

constant environment vapor concentration 𝐶∞ = 0. 

Verification 1 is a 2-D incompressible laminar slit-flow, where there is a theoretical result 

available for comparison. Verification 2 is a 2-D backward-step flow, and the results are compared 

with a previous experiment and simulation (Lee, 1998). These two cases are chosen to verify our 

N-S equations solver for the outside flow-field, which is the first step of our proposed algorithm. 

Verification 3 is to simulate a transient 1-D species advection problem such that the results are 

compared with a theoretical solution (Muralidhar, et al., 1993). This is used to test the accuracy of 

the solver for solving equation (9) using the operator-splitting method based on equations (10) and 

(11). Verification 4 uses the results of a previous pore-network model (Shaeri, 2012) to examine 

our I-P algorithm implementation and thus establish the accuracy of our P-N simulation.  
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3.1 Slit Flow 

Verification 1 is using a 2-D incompressible laminar flow in a slit between two parallel plates 

to test the N-S solver with its Hayase QUICK scheme and SIMPLER algorithm. To simulate a 

fully-developed slit flow, the periodic boundary conditions are set on the inlet and outlet sides of 

the tunnel, and the inlet side is given a higher pressure while the outlet side is given a lower 

pressure. No-slip wall boundary conditions are applied on the top and bottom sides, as shown in 

Figure 7. 

 

Figure 7. A schematic describing the geometry and boundary conditions of the considered 2-D slit flow 

In this verification, the distance between slits 𝐻 = 0.1 𝑚; the tunnel length is set equal to 𝐻; 

pressure difference between the inlet and outlet is 0.0003276 𝑃𝑎; the fluid is air with its density 

as 𝜌𝑎𝑖𝑟 = 1.204 𝑘𝑔/𝑚3, and dynamic viscosity as 𝜇𝑎𝑖𝑟 = 1.813 × 10
−5 𝑃𝑎 ∙ 𝑆. 

The analytical solution to this problem is: 

 u(y) = (−
𝑑𝑝

𝑑𝑥
)
𝐻2

8𝜇
[1 − (

𝑦

𝐻
2⁄
)2] (14) 
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According to equation (14), the peak velocity for this case is 0.2259 𝑚/𝑠 while the average 

velocity is 𝑈𝑎𝑣𝑔 = 0.1506 𝑚/𝑠. As expected, the peak velocity is 1.5 times the average velocity. 

The Reynolds Number 𝑅𝑒 = 𝜌𝑎𝑖𝑟𝑈𝑎𝑣𝑔𝐻 𝜇𝑎𝑖𝑟⁄ = 1000. 

 

Figure 8.  Velocity profile comparison between theoretical and numerical results 

The comparison between the numerical and theoretical results is presented in dimensionless 

form in Figure 8. The numerical results agree perfectly with the analytical results, thus establishing 

the accuracy of our numerical solution for steady-state laminar flow in 2-D. 

3.2 Backward-Step Flow 

Verification 2 is using a 2-D incompressible laminar flow in backward-step geometry, as 

shown in Figure 9, to test the N-S solver with its hybrid scheme and SIMPLE algorithm.  

The backward step geometry is chosen, because it is widely studied through experiments and 
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numerical simulations. By doing this verification, we can examine the ability of our 

implementation to capture the detachment of channel flow at the back of the step and subsequent 

re-attachment. 

 
Figure 9. A schematic of the backward-step flow geometry 

As shown in Figure 9, the tunnel height after the step, 𝐷, is 0.03 𝑚; the tunnel height before 

the step is 𝐷/2. The tunnel walls have no-slip wall boundary conditions. The flow’s inlet average 

velocity is 𝑈𝑎𝑣𝑔 = 0.4041 𝑚/𝑠 and the fluid is air just the same as that in Section 3.1. So the 

Reynolds number 𝑅𝑒 = 𝜌𝑎𝑖𝑟𝑈𝑎𝑣𝑔𝐷 𝜇𝑎𝑖𝑟⁄ = 805 . To make the results comparable to the 

experiment and simulation by (Lee & Mateescu, 1998), the inlet velocity is not uniform—instead 

it is assigned the fully-developed velocity distribution calculated from equation (14). 

Figure 10 shows the velocity contour of our numerical simulation. Note that there are three 

cross sections after the step; their locations are 𝑥 = 5𝐷, 𝑥 = 6𝐷, 𝑥 = 7𝐷, and they are marked 

respectively as black, red and blue lines. Their colors correspond with the colors used in Figure 11, 

which shows the velocity profiles at the said cross sections. 
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Figure 10. Velocity contour for the backward-step flow  

 

Figure 11. Numerically obtained backward-step flow velocity profiles at different cross-sections 

In Figure 11, the lower left corner at 𝑌 = 0 is the velocity near the lower wall of the tunnel. 

We observe that the velocity turns from negative to positive right between section 𝑥 = 6𝐷 and 

𝑥 = 7𝐷, which implies that the reattachment point is located between these two sections. This 

result is almost identical to the numerical results presented by Lee & Mateescu and is only a little 

off from their experimental result of 7𝐷. This means our numerical implementation of the outside 
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flow involving complex flow-circulation and flow-reattachment physics is quite accurate, and it 

allows us to believe that our external-flow simulation can handle much more complex flow 

geometries than currently used. 

3.3 Advection of a Gaussian Concentration Distribution  

Verification 3 uses a 1-D salute transport problem with analytical solution to compare with 

the results from our code to examine the accuracy of the operator-splitting solver of equations (10) 

and (11). This is a 1-D advection problem along the x axis as shown in Figure 12. We set an initial 

Gaussian or bell-shaped concentration distribution on the left side of the 1-D domain. As time goes 

by, the Gaussian distribution will dissipate and will be pushed to the right due to fluid flow from 

the left side.  

 
Figure 12. Schematic description of the code verification carried out by using the advection of Gaussian 

concentration distribution 

The results of this problem can be calculated by numerically solving equations (10) and (11). 

Its theoretical solution (Muralidhar, et al., 1993) is given as: 
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If the Initial distribution is described as 

 𝑡 = 0,  𝐶(𝑥,  0) = 𝑒−𝛼(𝑥−𝑥0)
2
 (15) 

in which 𝛼 is a constant parameter for controlling the width of the bell-shaped curve and the 𝑥0 is 

a constant locating the center of the curve. The analytical solution to this problem is given as 

 
𝐶(𝑥, 𝑡) =

1

2
√
𝑃𝑒

𝜋𝑡
𝑒(
𝑥
2
−
𝑡
4
)𝑃𝑒∫ 𝐹(𝑥,  𝑦,  𝑡)𝑑𝑦

𝑥

0

𝐹(𝑥,  𝑦, 𝑡) = 𝑒−𝛼
(𝑦−𝑥0)

2−
𝑦𝑃𝑒
2 × [𝑒−(𝑥−𝑦)

2𝑃𝑒
4𝑡 − 𝑒−(𝑥+𝑦)

2𝑃𝑒
4𝑡 ]

 (16) 

 

Figure 13. Advection of Gaussian concentration distribution (Left 𝑷𝒆 = 𝟏, right 𝑷𝒆 = 𝟏𝟎𝟎): a 
comparison of the numerical solution with the analytical solution 

Figure 13 compares the analytical solution, equation (16), with the numerical results obtained 

from solving equations (10) and (11) for two different Peclet number values. We observe that at the 

higher 𝑃𝑒 with advection dominant, the curves seem to be translating downstream with the flow. 

However, at lower 𝑃𝑒 with diffusion dominant, the curves seem to be rooted on the left side and 

seem to be merely stretching with time. But both sets of curves show a decay in the maximum 
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height with time, the lower 𝑃𝑒 being more so. But it is heartening to note that the numerical 

results match perfectly with the analytical solutions for the considered high and low 𝑃𝑒 cases. 

3.4 Verification of the I-P Algorithm Based Network Drying Module 

To validate our I-P algorithm based numerical code for simulating drying inside the 

pore-network, we compared our results with the results obtained by our previous, 

independently-developed code (Shaeri, 2012). 

 
Figure 14. Verification of drying physics implementation (left: calculation domain; right: drying 

time-vs-network saturation plot) 

This is a 20 × 20 network with one side open to the environment of constant species (water 

vapor) concentration set equal to 0, as shown in Figure 14. The left side shows that initially the 

network is filled with liquid, colored as red; and the environment concentration is set as a constant 

of 0, colored as blue. The right side plots the drying time-vs-network saturation. The network 

saturation is defined as the ratio of the liquid mass present currently in the network versus the 

liquid mass corresponding to the fully-saturated network. The results from the present code match 
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perfectly with the results obtained from the previous code, thereby established the accuracy of our 

numerical implementation of the I-P algorithm.  
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4 RESULTS FROM FORMULATION I AND 

DISCUSSIONS 

By doing these four previously-mentioned verifications, we examined the most critical solver 

in our algorithm, i.e., the solver of equation (9). The results were good, so it is reasonable to 

believe that the results of the whole simulation would be accurate to a large extent. The validated 

numerical implementation of the proposed algorithm is now used to study the slow drying 

problems of porous media in laminar flow. 

The topics studied in this chapter include mesh refinement, time-step selection, space 

discretization schemes, operator-splitting/non-operator-splitting algorithms, influence of Peclet 

Number, and influence of pore-network structures. 

4.1 Problem Description & Calculation Domain 

To study all the topics stated above, a calculation domain of pore-network laying under a slit 

is designed (Figure 15). The top of the porous medium opens to the external flow field. The dry air 

comes from the left side and flows laminarly toward the right side, and taking away the water 

vapors coming out of the porous medium. 

There are two major reasons for choosing this geometry. Firstly, the slit flow has an analytical 

solution (velocity) for comparison. Secondly, the disturbance by the porous medium to the flow 

field is minimized, so the vapor concentration boundary-layer thickness is easy to control, which 



38 

gets thicker as the inlet velocity decreases. Despite this simplicity in simulation domain, it is 

possible for us to answer some important questions about the outside-inside coupling in drying 

simulations. 

 

Figure 15. Simulation domain and problem description 

The pore network has 20 × 20 pores, and there are 820 throats connecting the pores. The 

throat lengths are set to a constant value of 5 × 10−4 𝑚. The whole pore network is of the size 

0.0105 𝑚 × 0.0105 𝑚 while the slit-tunnel height is set to 0.0105 𝑚. 

Note that the solver for pore network is 3D, which is required to simulate throats with 

different cross-sections, such as circle, hexagon, square, and triangle. However, the external field 

solver is 2D. To couple these two together, a thickness equal to the length of the throats is assigned 

to the external cells (Figure 15). 

The throat diameter was randomly assigned with its average being 9 × 10−5 𝑚. The specific 

diameter of each throat was assigned by a random function designed by us which was controlled 
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by two input parameters: the random seed number (RSN), and the maximum variation percentage 

(MVP) (which is the maximum a throat diameter can deviate from its average value).  

The liquid inside the pore-network is water. The environment is set as the sea level and the 

room temperature at 20℃. Under these conditions, the fully-saturated-vapor concentration is 

𝐶𝑠𝑎𝑡 = 0.9592 𝑚𝑜𝑙 𝑚3⁄ . The external field has a flow coming from the left side, the velocity 

distribution is fully developed slit-flow which could be calculated from equation (14), in which 

(−
𝑑𝑝

𝑑𝑥
)
𝐻2

8𝜇
 is related to the average velocity which in turn is controlled by the Peclet Number. The 

inlet-velocity average is variable, but the vapor concentration of inlet air is set to be a constant at 

𝐶∞ = 0.2878 𝑚𝑜𝑙 𝑚3⁄ = 0.3 × 𝐶𝑠𝑎𝑡. 

Table 2. Material properties and parameter values used in the present work 

Air Density 𝜌𝑔 1.204 𝑘𝑔/𝑚3 

Air Viscosity 𝜇𝑔 1.813 × 10−5 𝑃𝑎 ∙ 𝑠 

Water Density 𝜌𝑙 998.2 𝑘𝑔/𝑚3 

Water Viscosity 𝜇𝑙 1.002 × 10−3 𝑃𝑎 ∙ 𝑠 

Water Vapor Mass Diffusivity 𝐷 2.119 × 10−5 𝑚2/𝑠 

Saturated Concentration 𝐶𝑠𝑎𝑡 0.9592 𝑚𝑜𝑙/𝑚3 

Surface Tension 𝛾 7.266 × 10−2 𝑁/𝑚 

For all the following cases, the average slit-flow inlet velocity is specified by Peclet Number. 
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The characteristic length used to calculate the Peclet number is the width of the pore-network 

(which is also the slit width), the characteristic velocity is the average inlet velocity, and the 

characteristic mass diffusivity is that of water: 

𝑃𝑒 =
𝑈∗𝑙∗

𝐷∗
=
𝑈𝐼𝑛𝑙𝑒𝑡𝐴𝑣𝑔𝑙

∗

𝐷
 

The values of various material properties used in these calculations are summarized in Table 

2. These values are also used in all the rest simulations in this thesis if not specified 

specifically. 

For all the following cases in this chapter, the default values of the parameters of the random 

number generator function are: RSN value is 1, MVP value is 5%. And the Environment 

Concentration 𝐶∞ = 0.2878 𝑚𝑜𝑙/𝑚
3; the Reference Length used when talking about Reynolds 

number is 𝑙∗ = 0.0105 𝑚. 

4.2 Mesh Refinement Study 

Our previous research on coupling network model with the outside flow required a very fine 

outside mesh for simulation, in which several outside cells were required to be adjacent to each 

inside throat at the interface (Beyhaghi, et al., Under Review). This requirement is rather 

restrictive, so we examine this aspect again in another way. The previous work refined the mesh in 

both 𝑋 and 𝑌 directions at the same time. In this paper, we instead refine the mesh one direction 

at each time in order to find out which direction’s refinement influences the results the most.  
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Considering that the CBL thickness is very critical to the drying rate simulation (Beyhaghi, et 

al., Under Review), the 𝑌 direction mesh is refined first because it is related to the concentration 

boundary layer development. And later the 𝑋 direction mesh is refined. For both these cases, the 

Peclet number is set to a large value, 1000. 

The results of the 𝑌 direction refinement are as shown in Figure 16. It is clear from the left 

graph that the 𝑌 direction mesh refinement is very critical to drying rate, especially to the drying 

rate of the early drying period. The 𝑌 direction mesh refinement has some influence on the total 

drying time, but the influence is not significant because only the early drying period is influenced 

by this numerical experiment. 

 

Figure 16. Results of mesh refinement in the 𝒀 direction, 𝑷𝒆 = 𝟏𝟎𝟎𝟎 (Note: X04Y40 means use 
parameter 04 for 𝑿 direction meshing, and use 40 for Y direction meshing. Higher number implies 

denser mesh) 

Figure 17 shows the results of 𝑋 direction mesh refinement. We observe that the 𝑋 direction 
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refinement has negligible influence on the drying rate, even during the early drying period. As for 

the drying time, it remained almost unchanged. It is clear that the 𝑋 direction refinement does not 

influence the results significantly and hence can be avoided. 

 
Figure 17. Results of mesh refinement in the 𝑿 direction, 𝑷𝒆 = 𝟏𝟎𝟎𝟎 

 

Figure 18.  Results of Mesh Refinement in 𝒀 direction, 𝑷𝒆 = 𝟏 
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Figure 19. Results of Mesh Refinement in 𝑿 direction, 𝑷𝒆 = 𝟏 

We also examined the same thing for 𝑃𝑒 = 1; the results, as shown in Figure 18 and Figure 

19, show the same trend as mentioned above. Comparing Figure 18 and Figure 16, we can also 

observe that the difference between 𝑃𝑒 = 1 𝑋01𝑌40 and 𝑃𝑒 = 1 𝑋01𝑌20 is smaller than the 

difference between 𝑃𝑒 = 1000 𝑋04𝑌40 and 𝑃𝑒 = 1000 𝑋04𝑌20. This means that a coarser 

mesh is acceptable when computing the low Peclet-Number cases. 

The final mesh chosen is as shown in Figure 20: it is less dense than the mesh used in 

Beyhaghi’s work (Beyhaghi, et al., Under Review). And from the results, we conclude that only 

mesh refinement normal to the concentration boundary layer is critical to the evaporation results. 

And the mesh refinement influences the drying rate of the early period much more than that of the 

late period. 
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Figure 20. The final chosen mesh for the coupled inner-outer flow drying simulation 

4.3 Time Step Selection 

After doing the space mesh refinement, we ask if the time step refinement will have any effect. 

It is well known that the time for the network to dry out one throat (which is on the order of the 

time step for the internal drying simulation) is much longer than the time needed for the flow to 

sweep across the whole length of the porous medium. The question is whether we need to use finer 

time-steps for the external evaporation simulation compared to those for the internal drying 

simulation? 

We examined this by using time sub-steps: we can set the external-field time-step exactly the 

same as the time to dry out one throat or set it to the latter’s half by setting the number of sub-steps 

to be one or two, respectively. Figure 21 shows the results of both these cases, and they are exactly 

the same. This means that refining the time-steps for the concentration transport equation for the 
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outside flow is unnecessary. The success may be attributed to the implicit time-marching 

algorithm proposed in this paper. 

 

Figure 21. Time step selection 

4.4 Influence of Schemes for Space Discretization 

This group of cases, we compared the Hybrid scheme with the Hayase QUICK scheme. 

These schemes were used to discretize the advection terms of equation (9). As shown in Figure 22, 

they both yielded identical results. 

This comparison shows that for a simple case like drying in laminar flow between two slits, 

both Hybrid and QUICK schemes can get satisfactory results. This study will be carried chapter 5 

again when the film effect is added and when the geometry is more complicated. 
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Figure 22. Comparison between the hybrid and QUICK schemes, 𝑷𝒆 = 𝟏𝟎𝟎𝟎 

4.5 Operator-Splitting Method vs Non-Operator-Splitting Method 

In this section, we compare two drying cases for 𝑃𝑒 = 1000 : One using the 

operator-splitting method and the other using a non-operator-splitting method, which implicitly 

solves the equation (9) as a whole. 

Operator-Splitting method is widely adopted in high Peclet-Number mass transfer problems 

to increase numerical stability (Muralidhar, et al., 1993). Our implementation of the 

operator-splitting algorithm is also tested in the verification sections. However, from the results 

shown as in Figure 23, both the methods yield almost identical results, except the 

operator-splitting method is not as stable as the non-operator-splitting method used here. 

Note that the operator-splitting method used in this comparison first calculates the convection 
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terms and then the diffusion terms. Another operator-splitting method, obtained by changing the 

order to first diffusion-then convection, was also tried, but the drying rate was found to be 

scattered over an undesirably large range, so it is not displayed here.  

 
Figure 23. Effect of using the operator-splitting scheme for Pe=1000 

The non-operator-splitting method adopted here turns out to be better than operator-splitting 

method when solving equation (9) in both the external and internal domains. The reason may be 

that the physics of both domains are different: the external field has both convection and diffusion, 

while the pore-network has only diffusion. We will follow this recommendation in our future 

implementations of the proposed drying algorithm. 

4.6 Influence of Peclet Number 

In this numerical experiment, four cases are tested. All the other settings are the same except 
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for the Peclet Number: the dimensionless number is increased from 1 to 1000 by increasing the 

inlet velocity. 

 

Figure 24． Influence of Peclet number on the drying kinetics 

From the results as shown in Figure 24, we can see that total drying time is shortened slightly 

when the Peclet Number is higher. This is reasonable because increasing the Peclet number implies 

stronger advection and faster transport of moisture away from the wet porous medium. Another 

explanation is that the concentration boundary layer will be thinner (i.e., CBL thickness will be 

smaller); as a result, the concentration change from the wall to the upper limit of the concentration 

boundary layer will be sharper than in the lower Pe case. Hence the porous medium will dry up 

faster. Note that the mass-flux out of the porous medium, reflected in the drying rate, also follow 

this trend: larger the Peclet Number, larger the mass flux. 

However, the difference in the total drying time is not so large—this is because the mass flux 
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difference only varies much during the early period of drying. When the drying front progresses 

deep into the pore-network, the resistance offered by the empty network for vapor transport 

dominates the overall drying and hence the influence of increasing Pe decays with time (which 

corresponds to the decrease in network saturation). 

 

Figure 25. Phase distribution of different time step (Notes: 1: top raw: 𝑷𝒆 = 𝟏; bottom raw: 𝑷𝒆 = 𝟏𝟎𝟎𝟎; 
2: from left to right, time step 100, 300, 500, 700, 820; 3: the white line in the outside flow field shows the 

position of the concentration boundary layer (CBL). 

Now we compare the effect of the two Peclet numbers on saturation distribution inside the 

network as well as on the CBL. The phase distributions of these two cases are quite similar for 

different times, as shown in Figure 25, because the network microstructures for these two cases are 

the same. But the outside vapor concentration distributions are different because of the differences 

in their Peclet numbers: the larger Peclet number has a thinner CBL. 
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4.7  Influence of Pore-Network Structure 

In this section, we keep all other settings constant, and only change the microstructure of the 

pore-network by changing the RSN and MVP values mentioned above, as shown in Table 3. The 

results are shown in Figure 26. 

Table 3. Influence of random-number-generator parameters on the pore-network structure (Nomenclature: 

the case P1DR5 implies RSN=1 and MVP=5) 

 Random Seed Number (RSN) 

Maximum Variation Percentage (MVP) 

of the Throat Diameter 

P1DR5 1 5 

P2DR10 2 10 

P1DR0 1 0 (Uniform Diameter) 

It is clear that, of all our parametric studies done till now, the network microstructure 

influences the drying rate and drying time the most. A uniform network dries almost 25% faster 

than its non-uniform counterpart. Hence the pore-level microstructure is the most important 

parameter affecting any drying pore network. 
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Figure 26. Influence of pore-network structure on drying kinetics 

4.8 Conclusions 

This chapter broadly studied the factors influencing the multi-scale problem of isothermal 

slow-drying simulation of a porous medium in laminar flow. And we can draw the following 

important conclusions: 

1. Mesh refinement is important in the direction normal to the concentration boundary layer 

formed in the outer flow. 

2. The influence of the space discretization schemes on the drying simulation is negligible. 

3. Time-step refinement for the outside concentration boundary layer has no influence on the 

proposed simulation. 

4. The outside air velocity influences the drying of a porous medium, especially at the initial 
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stage, but the overall impact is not as large as imagined, especially when the pore-network 

is deep. 

5. The micro-structure of the pore-network, in terms of throat diameter distribution, 

influences the drying the most. 
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5 FORMULATION II: P-N MODEL FOR DRYING WITH 

FILM EFFECT 

In the previous three chapters, we developed and examined the new fully-coupled, implicit 

algorithm for predicting drying in porous media placed in a laminar air flow. In this chapter, the 

algorithm will be developed further to include the crucial film effect without adding further 

complexity to the overall drying algorithm. The external flow field calculation is exactly the same 

as stated in chapter 2. The mechanisms of predicting vapor transport in the external field is also the 

same. The only difference is in modeling of the evaporation physics after adding the film effect. 

5.1 Physics of Evaporation in Pore-Network 

During drying, the network will be invaded by air, and the liquid phase will recede away from 

the open interface, leaving a liquid film climbing in the corners of the throats, as shown in Figure 

27. How far the film extends into the dried region depends on many factors including the liquid 

properties, porous-media material properties, throat size, and cross-sectional shape of the throats 

(Yiotis & Boudouvis, 2003) (Prat, 2007). During the drying process, the pore network will have 

the gas regions (where the throats and pores are completely devoid of liquid and filled with 

mixture of air and water vapor), the film regions (similar to the gas region with the exception of 

liquid films being present at throat corners), and the fully-saturated liquid regions (where throats 

and pores are full of liquid). 
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In the gas region of the pore network, diffusion is still the unique mass transportation 

mechanism as stated in chapter 2.  

In the liquid region of the pore network, the liquid flow still follows the I-P rule under most 

circumstances (Prat, 1993), even when film effect is considered. 

 

Figure 27. A typical set of “fingers” created by the liquid film climbing at the corners of a square 
cross-section throat 

In the film region of the pore network, mass transfer is mainly through flow in liquid films 

because mass flux through diffusion in air is zero. (The vapor concentrations at the center of 

throats correspond to the saturated vapor pressure and hence remain unchanged along throat 

lengths due the tiny space where the film fingers exist (Prat, 2007)). 

There are usually two kinds of films existing in throats: the large one existing at the corner of 



55 

throats, and the thin films existing between film ‘fingers’ (Figure 28). The mass transport through 

thin films is usually ignored because their thickness is on the order of a few nanometers.  

 
Figure 28. Cross section of various throats showing thin films existing between the thicker films attached 

to the corners  

The liquid motion in the corner-film fingers follows the Poiseuille Law as 

 
𝑄𝐹 = −

𝐴𝐶𝑟
2

𝛽𝜇𝑙

𝑑𝑝𝑙
𝑑𝛿

 (17) 

where 𝑄𝐹 is the volume flux, 𝐴𝐶 = 𝑟2𝜓4 is the cross-section area of the corner when there is no 

round corner and 𝜓4 = [
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝛼
𝑐𝑜𝑠(𝛼 + 𝜃) −

𝜋

2
+ 𝛼 + 𝜃], liquid pressure 𝑝𝑙 = −

2𝛾𝑐𝑜𝑠𝜃

𝑟
, 𝑟 is the 

curvature radius of the film as shown in Figure 28 and 𝜇𝑙  is the liquid viscosity. 𝛽  is the 

geometrical factor of the considered cross-section (Zhou, et al., 1997) and is described as 

 𝛽 =
12𝑠𝑖𝑛2𝛼(1 − 𝜓5)

2

(1 − 𝑠𝑖𝑛𝛼)2𝜓5
2

(𝜓1 −𝜓5𝜓2)(𝜓3 − (1 − 𝜓5)(𝑅𝐶 𝑟⁄ ))2

(𝜓1 − 𝜓5𝜓2 − (1 − 𝜓5)(𝑅𝐶 𝑟⁄ )2)3
 (18) 

where 𝜓1 = 𝑐𝑜𝑠2(𝛼 + 𝜃) + 𝑐𝑜𝑠(𝛼 + 𝜃)𝑠𝑖𝑛(𝛼 + 𝜃) 𝑡𝑎𝑛 𝛼 , 𝜓2 = 1 − 𝜃 (𝜋 2⁄ − 𝛼)⁄ , 𝜓3 =

cos(𝛼 + 𝜃) /𝑐𝑜𝑠 𝛼, 𝜓5 = (𝜋 2⁄ − 𝛼) 𝑡𝑎𝑛 𝛼. 𝛼 is the half of the corner angle while 𝜃 is the 

contact angle, as shown in Figure 29. 

If the throat corner is rounded with radius 𝑅𝐶, then the film finger cross section area 
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 𝐴𝐹 = 𝐴𝐶 − 𝑅𝐶
2𝜓4(0) (19) 

where 𝜓4(0) is the value of 𝜓4 when 𝜃 = 0.  

 

Figure 29. Geometrical details of a typical corner film 

On combining equation (17) and (18), we get the volume flux going from a pore through a 

single film finger as 

 𝑄𝐹 =
𝜅𝛾𝑟2

𝜇𝑙

𝑑𝑟

𝑑𝛿
 (20) 

where 𝜅 = 𝜓4 𝛽⁄ . 

By incorporating equation (20) with equation (7), we get a unified mass-balance equation 

which works for pores in both the film and gas regions: 
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∑�̇�

𝑗

=∑�̇�𝐹

𝑗

+∑�̇�𝐺

𝑗

=∑
𝑁𝜅

3

𝜌𝑙𝛾

𝜇𝑙

𝑟𝑖
3 − 𝑟𝑗

3

𝛿𝑖𝑗
𝑗

+∑𝑀𝐷𝐴𝑖𝑗
𝐶𝑖 − 𝐶𝑗

𝛿𝑖𝑗
𝑗

= 0 

(21) 

At the liquid-film interface (i.e., the interface of the liquid and film regions), the film 

curvature radius at the throat reaches its highest value 𝑅𝑀 =
𝑅0

𝜒
  where 𝑅0 is the radius of the 

largest inscribed sphere in the throat (Figure 28) and 𝜒 is a geometry factor that can be expressed 

(Prat, 2007) as 

 𝜒 = 𝑐𝑜𝑠𝜃 + √
(𝜃𝑐 − 𝜃 + 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃)

𝑡𝑎𝑛𝜃𝑐
 (22) 

The liquid-film interface can be tracked using the I-P algorithm while ignoring the viscous effects 

in the bulk liquid region. And there exist situations in which the viscous effects can be neglected in 

the bulk liquid, but not in the film (Prat, 2007). 

At the film-gas interface (i.e., at the interface of the film and gas regions), the film radius is 

zero and the gas mole concentration corresponds to that of the saturated vapor. To save the effort of 

explicitly tracking the film-gas interface, we introduce two constants for the network: 𝜑1 =
𝑁𝜅

3

𝜌𝑙𝛾

𝜇𝑙
, 

and 𝜑2 = 𝑀𝐷𝐴𝑎𝑣𝑔. Here we need make a convenient but error-introducing assumption [which is 

also being used by other researchers (Yiotis, et al., 2004) (Prat, 2007)] which is assuming 𝐴𝑖𝑗 

being equal to 𝐴𝑎𝑣𝑔 such that 𝐴𝑎𝑣𝑔 is calculated from the median value of throat radius for the 

whole network. Then the conservation of mass as applied at various pores leads to  
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 ∑�̇�

𝑗

=∑
(𝜑

1
𝑟𝑖
3 + 𝜑2𝐶𝑖) − (𝜑1𝑟𝑗

3 + 𝜑2𝐶𝑗)

𝛿𝑖𝑗
𝑗

=∑
𝜙
𝑖
− 𝜙

𝑗

𝛿𝑖𝑗
𝑗

= 0 (23) 

Here 𝜙𝑖 is a function of the film curvature radius, 𝑟𝑖, and the mole concentration, 𝐶𝑖. By solving 

for 𝜙 in the pore network field, the mass transport can be calculated without considering the 

movement of the film-gas interfaces. 

Only one boundary condition is needed to solve equation (23), which is at the interface 

between liquid and film regions. At this interface, 

 𝜙𝐵𝑢𝑙𝑘 = 𝜑1𝑅𝑀,𝑎𝑣𝑔
3 + 𝜑2𝐶𝑠𝑎𝑡 (24) 

Here 𝑅𝑀,𝑎𝑣𝑔 =
(𝑅𝑀,𝑚𝑎𝑥 + 𝑅𝑀,𝑚𝑖𝑛)

2
⁄  is the pore-network average of the maximum 

film-curvature radius. 

5.2 Dimensionless Analysis 

To do the dimensionless analysis on equation (23), we can get two capillary numbers, one 

for bulk liquid (𝐶𝑎) and the other for film 𝐶𝑎𝐹, defined as 

 

𝐶𝑎 =
𝜇𝑙
∗𝐷∗

𝛾∗𝛿∗

𝐶𝑎𝐹 =
3𝜇𝑙

∗𝐷∗

𝑁𝜅𝛾∗𝛿∗

 (25) 

where 𝜇𝑙
∗, 𝐷∗, 𝛾∗, and 𝛿∗ are the reference values of the viscosity, mass diffusivity, surface 

tension and length, respectively. If we choose 𝛿∗ to be the diameter of throats,  𝐶𝑎 can reflect 
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the ratio of viscous to capillary forces in the bulk liquid. While inside the film, a geometrical 

3
𝑁𝜅⁄  is added to reflect the condition in the film. 𝜅 is a very small number related to the 

cross-section shape of the throat, and is 2.086 × 10−2 for triangle, 1.893 × 10−3 for square, 

and 8.817 × 10−5 for hexagon. These values usually make 𝐶𝑎𝐹 hundreds of times larger than 

𝐶𝑎 which implies that the viscous effect in film flow is much larger than in the bulk liquid. So 

there exist situations in which the viscous effects can be neglected in the bulk liquid but not in 

the film (Prat, 2007). 

5.3 Fully-Coupled Implicit Solution for Vapor Concentration in 

External Flow-Field and Pore Network 

Calculating mass transport in the external field needs solving for concentration 𝐶 in the 

external field, while calculating the same inside the pore network requires solving for 𝜙 in the 

network. Previous researchers solved the outside and inside concentration fields using the 

time-marching explicit method (Yiotis & Boudouvis, 2003) (Prat, 2007), which is sensitive to the 

selection of time step. However, this is a multi-scale problem only temporarily. The time needed 

for emptying each throat in the pore network is usually much higher than the time needed for 

significant changes to happen in the outside flow field. 

This effort seeks a novel way to implicitly solve both the fields simultaneously. The first 

effort is in finding the relationship between 𝜙 and 𝐶. When the film radius is zero, 𝜙 increases 
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with 𝐶. But when the film radius is non-zero, 𝐶 stays at its saturated value while 𝜙 increases 

with the film radius. This trend is depicted as a piece-wise curve in Figure 30. 

 

Figure 30. Relationship between dimensionless 𝝓 and 𝑪: the real relationship, and the 3 approximated 
relationship by setting different coefficient 𝒄 = 𝟐, 𝟑, 𝟒 in Eq. (26) 

To avoid using small time-steps to catch the sharp break point of the piece-wise curve shown 

in Figure 30, some approximation curves are proposed using the logistic function: 

 𝐶 =
2

1 + 𝑒
−
𝑐𝜙
𝜑2

− 1 (26) 

Here a coefficient 𝑐 is being used to control the shape of the curve. Figure 30 depict changes in the 

approximation curve when 𝑐 is set equal to 2, 3 and 4. With this relationship, the pore network 

field and the outside field can be solved implicitly in a fully coupled manner by solving Eq. (6), 

(23), and (26) together.  

The connection between the flow-field cells and the pore-network pores is the same as 

chapter 2, as shown in Figure 5. And their formulations are also similar to the one described in our 
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previous work (Xu & Pillai, Under Review), the only difference is that when the pore-network 

pores are considered, the 𝜙 value is calculated instead of the vapor concentration 𝐶 (Figure 31). 

 

Figure 31. Coupling of the outside-flow node cells and the P-N pores – with film effect 

 

 

 

 

 

 

 



62 

6 EXAMINATION OF THE PROPOSED NUMERICAL 

METHOD 

6.1 Testing the Approximation for the Relationship between 

Concentration, C, and 𝝓 

Before studying the other cases, the above-mentioned approximation for the relationship 

between 𝐶 and 𝜙 is tested with the drying of a 40 × 40 pore network which is placed adjacent 

to a fully developed tunnel flow. The network consists of throats with square cross-sections: the 

throat length is 500𝜇𝑚  and the randomly-distributed hydraulic diameter range is 5𝜇𝑚 ± 2.5%. 

As shown in Figure 32, the slit width is 2𝑐𝑚 with the external flow field 𝑃𝑒 = 500. 

 

Figure 32. A 𝟒𝟎 × 𝟒𝟎 pore network put by side of, and open to, a slit flow during drying 

When studying drying problems, the most important results are the drying rate and drying 
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time, hence we compared these results when using different value for coefficient 𝑐. Figure 33 

shows that the drying rate-vs-network saturation and the network saturation-vs-drying time curves 

almost overlapped for these cases. (The network saturation is the ratio between the remaining 

liquid mass and the original liquid mass. Hence it is a measure of the amount of moisture left in a 

P-N or a porous solid.) 

 
Figure 33. A comparison of the evolution of drying rate and drying time for different approximations for 

the parameter C 

As shown in Figure 30, the approximation curves are quite close to the real piece-wise linear 

curve. If all the three approximation curves generate the same results, it is not hard to conclude that 

the real piece-wise linear curve will also generate similar results. For the rest of this thesis, 

coefficient c = 3 is used. 
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6.2 Modified Drying Algorithms 

 

Figure 34. Modified drying algorithm 

As stated in chapter 5, the drying algorithm after including the film effect can be exactly the 

same as the one used in chapter 2. The only difference is to calculate 𝜙 instead of 𝐶 when solving 
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the transient vapor-concentration equation. All calculations done with this algorithm are found to 

be satisfactory. 

Here we present another algorithm, which is modified from the original one given earlier. On 

comparing the original algorithm (Figure 6) with the modified one given here (Figure 34), we note 

that only one non-iterative step is added: the second step. This step is used to initialize the external 

field with the liquid-saturated openings of the pore-network at saturated vapor-pressure 

conditions. 

 

Figure 35. A comparison of the predicted drying rates obtained using the original drying algorithm and 
the modified algorithm 

The comparison is shown in Figure 35 where the drying rates predicted by these two 

algorithm are indistinguishable from each other. Only at the beginning of the drying process did 

the drying-rate plot change from a decreasing curve to a straight line. These two algorithms 

actually represent two different physical conditions. The original one involves inserting the porous 
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medium in the external flow field with a uniform (initial) vapor concentration. While the modified 

one is placing the pore network in the external flow field with the fully-developed (initial) vapor 

concentration distribution.  

It is clear that both algorithms provide virtual identical predictions. There are no particular 

drawbacks with the either algorithms, but we just used the modified version to calculate all the 

rest of the simulations. 

6.3 Time Step Selection 

This study is similar to the study conducted in section 4.3. After the film effect is added, we 

ask if the time step refinement will have any effect. We note that the time needed for the network to 

dry out one throat (which is on the order of the time step needed for the internal drying simulation) 

is still much longer than the time needed for the flow to sweep across the whole length of the 

porous medium. The question is whether we need to use finer time-steps for the external 

evaporation simulation compared to those for the internal drying simulation?  

As shown in Figure 36, the drying rate and drying time calculated from all types of sub 

time-steps overlapped with each other; only the drying rate calculated from “SubStep=1” is 

slightly different from the other results at the later stage of the drying process. This maybe because, 

at the later stage, the time-scale difference between the external-field and pore-network 

computations is larger because it takes longer to dry out one throat when the drying rate decreases 
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after the drying front has receded into the porous medium. 

 

Figure 36. Effect of different sub time-steps on the drying characteristics of pore network (For example, 
“SubStep=5” means that the drying time step is divided into 5 sub steps) 

However, when the film effect is not considered, this deviation did not occur. So it is possible 

that the newly-proposed logistic function also contributed some errors. In any case, for the 

remaining simulations, the sub time step is set equal to 3. 

6.4 Comparisons between Spacial Discretization Schemes 

This study compared the Hybrid scheme and Hayase QUICK scheme on a square network 

with hydraulic diameters of the throats falling in the range 10𝜇𝑚 ± 5%. The velocity contours are 

shown in Figure 37. It is apparent that there are only very slight differences between them. The 

maximum velocity in the field is 0.0134m/s for the Hybrid scheme and 0.0135m/s  for the 

QUICK scheme. The wake created after the square using the Hybrid scheme is slightly smaller and 
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shorter than the one created using the QUICK scheme. However, one can hardly notice these 

differences in the flow field. 

 

Figure 37. Velocity field comparison (left: hybrid scheme; right: QUICK scheme) 

 

Figure 38. A comparison of the drying characteristics as predicted by three different spatial 
discretization schemes 

As shown in Figure 38, the legend entry “Hybrid” means using the Hybrid scheme when 

calculating the outer flow-field and vapor concentration distribution; the legend “QUICK” means 

using the Hayase QUICK scheme for the same; while the legend “Hybrid/QUICK” means using 
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the Hybrid scheme when calculating flow field and using the Hayase QUICK scheme when 

calculating the vapor concentration distribution. Since the velocity contours overlapped for the 

schemes, it is not surprising that the drying rate and drying time plots overlapped with each other 

too. Hence it was concluded that there is no need to explore this issue any further, and for the 

remaining cases of this article, all calculations are performed using Hybrid scheme. 
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7 IDENTIFYING FACTORS INFLUENCING THE FILM 

EFFECT 

According to Eq. (17) to (22), the extension of film is influenced by its throat diameter, throat 

cross section shape. However, this study will find out more factors which may influence the film 

extension except the intrinsic characteristics of the network, such as the external conditions.  

To simplify the situations and make the influential factors stand out, this study is tested in a 

40 × 40 pore network which is put by side a fully developed slit flow as shown in Figure 32. The 

networks consist of throats with 500𝜇𝑚 length, whose hydraulic diameter and cross section 

shape vary. The external velocity and humidity also vary. 

7.1 Influence of Throat (Hydraulic) Diameter 

This study compared the drying of network under conditions of external 𝑃𝑒 = 10, and 

external humidity 50%. The average diameter of the network changes from 1𝜇𝑚 to 10𝜇𝑚. The 

throat diameter varies in a range of ±5% around the average diameter. 

From Figure 39, we can see that the network with larger throat diameter has larger drying rate 

and longer constant drying rate period. This is because the exposure area to the outside of a 

larger-diameter network is larger, and the film of a larger-diameter throat extends farther than a 

smaller throat. As the equations in chapter 5 implied, the throats with larger diameter also have 

larger 𝑅𝑀, which will help to support longer film fingers along the corners. So the constant drying 
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rate period is longer. Apart from this, the larger throats have larger exposure area, which makes the 

drying rate larger. For these two reasons, even as the networks with larger throats have more liquid, 

they still dry out more quickly. 

 
Figure 39. Influence of throat diameter on film effect 

Figure 40 shows the contour of case 𝐷 = 5𝜇𝑚 respectively at 600, 1600, and 3200 steps. 

Note that the film extension of 1600 time steps is much shorter than the film extension of 3200 

time steps. And the iso-film-radius bars also show us that: the film changing gradient of 1600-step 

is more abruptly than that of 3200-step. We will explain this phenomenon further in following 

sections. 
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Figure 40. Phase distribution and film radius distribution of case 𝑫 = 𝟓𝝁𝒎 (upper row: the phase 

distribution and outside concentration; lower row: the corresponding film radius) 

7.2 Influence of Throat Cross Section Shape 

This study compared the drying rate when the throat cross section changes among Circle, 

Hexahedral, Square, and Triangle. The throat diameter of this study is fixed at 10𝜇𝑚 ± 5%. The 

external conditions are 𝑃𝑒 = 10, and humidity is equal to 50%. 

As shown in Figure 41, the triangle network has largest initial drying rate because it has 

largest exposure area when the average hydraulic diameter is the same. Triangle network also has 

longest constant-drying-rate period, which can be explained by Eq. (18). The film extension of 

triangle throat is so long that the constant drying rate period extend all the way to the end. 
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Figure 41. Influence of throat cross section shape 

Circle throat network has no film effect, because it has no corners to hold the film fingers. 

Hexagon network is already very close to circle network, so its constant-drying-rate period only 

holds for a short period. 

7.3  Influence of External Conditions 

In this study, we used two sets of simulations to examine the influence of external conditions. 

In the first set, a square cross-section network with hydraulic diameter falling in the range 5𝜇𝑚 ±

5% is used. The outside Peclet number changes from 1 to 1000, and far field humidity changes 

from 30% to 70%.  

The results of the first set are shown in Figure 42, We note that both the Peclet number and 

humidity influences the pore-network drying controlled by the film effect. Lower humidity makes 
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the drying rate significantly higher while the constant-drying-rate period much shorter. However, 

the Peclet number seems have only a slight influence on the drying process, which is rather 

difficult to believe. 

 
Figure 42. Influence of external conditions on the film effect for pore diameter = 𝟓𝝁𝒎 ± 𝟓% 

Hence, we did a second set of simulations, and this time a square network with hydraulic 

diameter equal to 10𝜇𝑚 ± 5% is used. The outside conditions change in the same way as they did 

in the first set. 

The results of the second set are shown in Figure 43. The influence of Peclet number has 

increased a bit compared with the first set. Higher Peclet number makes the drying rate higher 

while constant-drying-rate period shorter too.  

This is because Lower humidity and higher Peclet number all bring higher drying flux. When 

the drying flux is higher, a steeper changing film radius is required to transport enough liquid to 
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support that film extension. When the bulk liquid retreat into the inner part of the network, it will 

be harder for the big-flux condition to support that film, so the constant-drying-rate period is 

shorter.  

 
Figure 43. Influence of external conditions on the film effect for pore diameter = 𝟏𝟎𝝁𝒎 ± 𝟓% 

These phenomena coincide with the results shown in Figure 40. At 1600 step, the film tips are 

closer to the outside, which means higher drying flux, so the film extension is shorter and film 

radius changing gradient is steeper. At 3200 step, the film tips retreat into inner part of the network, 

so the film tips are farther away from the outside, which means lower drying flux, thus the film 

extension can be longer and film radius changing gradient is gentler. 

To understand why the Peclet number has more influence on a network with bigger throats, 

one should refer to Figure 15. Note that the thickness of the outside finite volume is fixed. The 

network with smaller throats contains less liquid mass and has smaller exposure area. The changes 
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in the external vapor concentration under this condition are already very small, no matter how 

large the wind speed is. Only when there is enough vapor in the external flow field, can a larger 

wind speed bring a significant difference in the drying rate. However, a further 3D study is needed 

to corroborate this further. 

7.4 Summary & Conclusions 

By conducting a parametric study on the drying of a square network placed next to a slit flow, 

it is discovered that (a) higher hydraulic diameter of the throats leads to higher drying rates and 

longer constant drying-rate periods; (b) the drying time increases and the drying rate decreases as 

the throat cross section changes from a triangle to a square to a hexagon to a circle, which can be 

correlated to the weakening of the film effect; (c) increasing the external flow velocity (that leads 

to changing the Peclet number from 1 to 1000) has little effect on the drying rates and times; (d) 

increasing the external air humidity from 30% to 70 % leads to a large decrease in the drying rates 

and consequent increase in the overall drying times. 
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8 STUDIES IN DRYING OF THIN POROUS MEDIA 

Drying of thin porous media has been the subject of many research efforts and is still an active 

topic (Sander, 2007). Science pertaining to it is applicable to numerous industrial areas, such as 

paper producing, food processing, and coating (Jayas, et al., 1991) (Prabhanjan, et al., 1995).  

Here we study drying in our pore network positioned at the center of a flow field. By 

changing the parameters such as the environmental conditions, the aspect ratio of the pore network, 

and the openings of the sides of the pore network to the flow field, the effects of interactions 

between the pore network and outside flow field on the former’s drying characteristics are studied. 

The basic form of the pore network considered here is a regular 40 × 40 grid; the throat 

cross section is square with hydraulic diameter randomly falling in the range 5𝜇𝑚 ± 5%; the 

throat length is set at 500𝜇𝑚. The liquid saturating the network is water. The transformed thin 

version of this network, representing different thin porous media, with grid sizes of 80 × 20 and 

160 × 10 representing two different aspect ratios will also be studied. 

8.1  Square Pore Network Drying in a Flow Field 

Square pore network has equal faces on each side that are normally kept closed (i.e., allowing 

no evaporation), so studying the drying rate and drying time by opening its different sides to the 

flow field is of special interest. The position of pore network in the flow field is shown in Figure 44 

which presents a velocity distribution corresponding to 𝑃𝑒 = 10. The humidity of the flowing air 
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is set at 50%. Note that the flow pattern shown using streamlines remains unchanged during the 

following cases involving different sides of the square kept open for drying. 

 

Figure 44. Velocity field around a square-shaped pore network at 𝑷𝒆 = 𝟏𝟎 (left: velocity contour; right: 
velocity contour and stream lines) 

8.1.1 Group 1 Simulations: One Side Open 

In our first set of simulations, we seal three sides of the square-shaped network and open only 

one side. The N and S sides are symmetrical; so only E, N, and W side openings are studied. The E 

side is facing the wake, the W side is facing the incoming flow stream, and the N side is facing the 

top.  

From Figure 45, we can see the mutual dependence of the drying rate, network saturation and 

drying time for different openings. Surprisingly, the total drying times for the three cases are 

almost identical. However, the drying rates for the three cases are different: The W case has a 

higher drying rate for a longer duration, but it drops below those for the N and E cases with time. It 

would be interesting to link the drying rates to the concentration boundary layer (CBL) thicknesses; 
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however, in order to check the length of this presentation, we will restrict that discussion to the 

subsequent cases. In fact, the study of CBL in the following cases will provide a natural 

explanation for the drying rates seen here.  

 

Figure 45. Study of drying of the square-shaped pore network when its one side is kept open, 𝑷𝒆 =
𝟏𝟎, 𝒂𝒊𝒓 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = 𝟓𝟎% 

 Note that the CBL is defined as a curve where the difference between the liquid-surface 

saturated vapor concentration and the local vapor concentration is 99% of the difference between 

the liquid-surface saturated vapor concentration and the environment vapor concentration. 

8.1.2 Group 2 Simulations: Multiple Sides Open 

In this group of study, three cases are tested: open N+S sides, open E+W sides, open all sides. 
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Figure 46. Changes in the liquid phase distribution (within the network) and CBL with time: open N+S 
sides (the outermost of the iso-concentration lines, the white lines, marks the location of the CBL 

boundaries) 

Figure 46 shows the phase distribution inside the network and the outside CBL. In the picture, 

the red pores are fully saturated with liquid, and the green ones are those filled with corner films. 

One single large liquid cluster breaks up into smaller clusters as the drying front makes inroads. 

The overall liquid content of the network, given by the parameter network saturation and 
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proportional to the area under clusters, decreases with time. As one can see, the film covers the 

empty network almost all the way till the final steps of the drying process. As a result, the pores 

opening into the outer flow show the saturated concentration (i.e., vapor concentration 

corresponding to the saturated vapor pressure). Consequently, the CBL stays virtually unchanged 

for a long time. And this period is the constant drying-rate period, as shown by the long flat line in 

the beginning of Figure 45, left. Although the boundary of the CBL is distant from the opening 

sides of the pore network, the concentration gradient between throat openings and the boundary is 

very small—large concentration changes happen just near the throat. (Note that typically the 

maximum and minimum concentrations of the external field are quite close to each other in value, 

for example, as shown in the legend of Figure 46.) 

Since the flow described by Figure 44 is symmetrical at the top and bottom, the network 

drying rate (as seen by liquid distribution within the P-N) seems to be almost symmetric. 

The similar situation also happens when we consider the open E+W sides, as shown in Figure 

44 (right) shows that the flow in front of the square P-N is ‘squished’ while the flow at the back is 

‘stretched’ in terms of the streamline pattern. As a result, the backside CBL is farther away from 

the pore openings as compared to the front side CBL. However, this does not mean that the 

concentration gradient is larger in the front and hence there is higher evaporation rate. As 

mentioned earlier, the largest gradients seem to exist near the open throats which seem to remain 

unchanged in the front and the back. In fact, the liquid distribution within the P-N (Figure 47) 
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shows that the front part of the network is depleting rather slowly compared to the back part. 

 

Figure 47. Changes in the liquid distribution (within the network) and CBL with time: open E+W sides 
(the outermost of the iso-concentration lines, the white lines, marks the location of the CBL boundariess)  

Opening all sides is almost like adding the previous two cases. The CBL is enlarged and 

maintained for a long period, as shown in Figure 48. The drying front moves in from all the four 
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sides. However, the liquid distribution within the network is not symmetric—it seems like a 

diagonally-aligned patch towards the end of the drying period. 

 

Figure 48. Changes in the liquid distribution (within the network) and CBL with time: open all sides (the 
outermost of the iso-concentration lines, the white lines, marks the location of the CBL boundaries)   

It is interesting to note that in the considered cases of open N+S sides, open E+W sides and 
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open ENWS, the ‘empty’ network is still covered with films till the very end. This implies the total 

drying rate is proportional only to the open surface available for drying, with the pattern of liquid 

distribution in terms of liquid-cluster formations seeming to have very little impact. This seems to 

be evident in Figure 49, where the drying rate for the open-all-side case is only a little bit smaller 

than the adding of the drying rates for the open-N+S-sides and the open-E+W-sides cases. This 

fact is corroborated by the fact that the drying time for the open-all-sides case is around half of the 

drying time corresponding to opening of any two sides.  

 

Figure 49. Drying characteristics of the square pore network when the multiple sides are opened 
together.  

8.2 Drying of Thin Porous Media 

In this study, the throat attributes of the pore network considered till now do not change. Only 

its aspect ratio is transformed to create a thin porous medium. The outside conditions, pertaining to 
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velocity and humidity away from the network, also remain the same. In the following cases, the 

conditions that are studied are: opening all sides, opening the long sides, and opening the short 

sides. 

8.2.1 Group 3 Simulations: Aspect Ratio=4:1 

Here, we study the situation when the domain aspect ratio is 4: 1.  The corresponding flow 

field around it is shown in Figure 50.  

 

Figure 50. Flow around a thin porous medium – horizontal, 4:1 (left: velocity distribution; right: 
streamline plot) 

Figure 51 shows the liquid phase distribution within the network and CBL at different times. 

It shares some common characteristics with the corresponding figure for the square pore network, 

i.e., the film covers the network for a long time (almost till the end of drying) and the CBL stays 

unchanged for a long period. 
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Figure 51. Changes in the liquid phase distribution (within the network) and CBL with time– horizontal, 
4:1 
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The case of drying of a thin porous medium kept vertically in the flow field is also studied. 

The flow field surrounding the pore network is as shown in Figure 52. Now since the area facing 

the flow is larger, a wider wake is created in the flow field.  

 

Figure 52. Flow around a thin porous medium – vertical, 4:1 (left: velocity distribution; right: streamline 
plot) 

As seen in Figure 53 the pattern of concentration distribution and CBL location is completely 

different form the last case. But despite this obvious difference, surprisingly, the pattern of drying 

of pore network remains quite similar to the one seen in Figure 51. As before, the sharpest gradient 

in concentrations happen very near the pores—there is negligible gradients in the outer flow field. 

This once again indicates that the drying is affected by the length of the opened faces rather than by 

the outer flow field.  
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Figure 53. Changes in the liquid phase distribution (within the network) and CBL with time– vertical, 4:1 
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Figure 54 shows the drying rate and drying time for the pore network when opening all sides 

and opening two sides. Since the outer flow field is playing a minimal role in drying unlike the 

length of open faces, we observe that the drying rate remains virtually unaffected whether the 

orientation of the pore network is horizontal or vertical. However, it seems to be directly 

proportional to the length of open faces. (Note that the drying rates for the open-short-sides, 

open-long-sides and open-all-sides cases are approximately in the ratio 1:4:5 which matchs the 

lengths of their respective open faces.) The overall drying times of the network are inversely 

proportional to the drying rates: the open-short-sides, open-long-sides and open-all-sides cases 

have their corresponding drying times in a reducing order.  

 

Figure 54. Drying characteristics of the thin pore network with 4:1 aspect ratio when the multiple sides 
are opened 
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8.2.2 Group 4 Simulations: Aspect Ratio=16:1 

Similar to the previous case, a thin porous media with aspect ratio 16:1 and with all its sides 

open is inserted in the flow field and its drying studied. First Figure 55 shows the velocity 

distribution and a plot of streamlines around it. Because of the long, slender shape of the 

obstruction, the effect on the uniform flow field is quite small and the wake is quite narrow. 

 

Figure 55. Flow around a thin porous medium – horizontal, 16:1 (left: velocity distribution; right: 
streamline plot) 

Figure 56 shows the corresponding progress with time of liquid-phase distribution inside the 

pore network as well as the vapor concentration distributions. As expected, the CBL remains 

virtually unchanged till the very last. The saturation pattern is virtually the same along the length 

of the slender pore network—the drying front has invaded uniformly along the whole length, the 

empty network is wholly occupied with the film, and the liquid phase is increasingly confined to a 

narrow band along the center line. The interesting part is that at the final stage of drying, all the 

other parts of the porous medium are dry except for a small oval spot of liquid saturation at the 



91 

center of the rear half. Because the pore network is long in one direction, the length-wise retreating 

of the film is well observed towards the end of the drying process. 

 

Figure 56. Changes in the liquid phase distribution (within the network) and CBL with time– horizontal, 
16:1 

Figure 57 and Figure 58 are about putting this thin porous medium vertically in the flow field. 

As expected, a large wake is formed behind the slender pore network. The pattern of concentration 

distribution and CBL location is quite similar to the earlier case of in Figure 53. However, unlike 
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the previous case, two wet spot are observed inside the pore network at the final stages of drying. 

One can also observe the shrinking of two elliptical film regions around these wet spots. 

 

Figure 57. Flow around a thin porous medium – Vertical, 16:1 (Left: velocity distribution, Right: 
streamline plot) 

Figure 59 compares the cases of opening all sides or two long sides or two short sides. The 

trend is similar to the one seen in the previous experiment (Figure 54); in fact, the results have 

become more extreme with the increasing aspect ratio. The drying rate and drying time plots for 

the open-all-sides and open-long-sides come closer as the length of the short side becomes smaller. 

The drying rates and times for the open-short-sides are extremely different from the former two 

cases. This clearly indicates that the effect of side walls on drying has now become insignificant. 
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Figure 58. Changes in the liquid phase distribution (within the network) and CBL with time– vertical, 
16:1 
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Figure 59. Drying characteristics of the thin pore network with 16:1 aspect ratio when multiple sides are 
opened  

8.3 Comparison Between Different Aspect Ratios 

As we saw in our studies, a square 40 × 40 pore network can be transformed into a 80 × 20 

network (4:1 aspect ratio) or a 160 × 10 network (16:1 aspect ratio).  

A comparison of the drying rates and drying times yield some interesting insights. Figure 60 

allows us to conclude that a larger aspect ratio has a better drying rate and a shorter drying time. 

Let us look for an explanation this. The 160 × 10 porous medium has 336 opening (surface) 

pores and 3030 full (internal) throats. The 40 × 40 porous medium has 156 opening (surface) 

pores and 3120 full (internal) throats. The ratio of the full-throats count by the opening-pores count 

for the 160 × 10 network is around 9, while this value for the 40 × 40 network is 20. Note that 

this 20/9 ratio is almost equal to the drying-time ratio between the two cases. From this point of 
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view, the thin porous media dry faster because they have more exposed edges and less volume. In 

other words, the area to volume ratio for a body has to be higher in order to achieve faster drying 

characteristics. 

 

Figure 60. A Comparison of drying characteristics of pore networks with different aspect ratios (W and H 
represent the P-N width and height, respectively) 

It is also important to note that the drying characteristics for thin porous media do not change 

much whether they are aligned with the flow or standing perpendicular to it.  

8.4 Summary & Conclusions 

This chapter used the model developed in chapter 5 to study pore networks with different 

aspect ratio positioned in the flow field. The presence of film during most of the drying period 

ensures that the surface pores are at saturated vapor pressure. As a result, the sharpest 

concentration gradients, which also control the drying rates, lie adjacent to the exposed surfaces. 



96 

Consequently, the concentration gradients in the outer flow fields are very mild and play 

insignificant role in the drying of this porous media. Hence orientation of thin porous media in the 

outer flow field is irrelevant for drying. 

The studies also show that the thin porous media have larger drying rates and shorter drying 

times because of their larger exposure-area versus volume ratios. 
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9 DRYING OF DUAL-POROSITY PORE NETWORK 

Now we will start our work on modeling drying dual-scale or dual-porosity porous media 

saturated with water. 

9.1  A Comparison with Experiment 

In this study, our simulation results will be compared with the results from a drying 

experiment done earlier in a dual-porosity pore network (Pillai, et al., 2009). The lower half of the 

network is composed of randomly distributed square throats ranging in D between 0.1~0.2 𝑚𝑚, 

and the upper half is composed of randomly distributed square throats ranging in D between 

0.7~0.8 𝑚𝑚. The throat length and thickness are the same at 1𝑚𝑚. 

The experiment (Figure 61) is conducted under the conditions of environmental humidity 

being at 6%, and with the wind speed caused by fan-induced external circulation being unknown. 

In the simulation we set the environmental humidity to be 6% and did the simulations under two 

different air velocities corresponding to Peclet number being 100 and 400 respectively. (We used 

the hydraulic diameter of the network to calculate the Peclet number.) When the large-pore side is 

open and the external 𝑃𝑒 = 400, the total drying time of simulation is 14.59 hours, which comes 

close to the experimental results of 14.16 hours. When the small-pore side is open and the external 

𝑃𝑒 = 100, the total drying time of simulation is 30.30 hours, which is close to the experimental 

results of 31 hours. Because the experiments were conducted under 3D conditions while our 
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simulation is 2D, it is hard to mimic the exact external conditions. So we manipulate the external 

conditions through changing the circulation speed to find a suitable setting for better drying-time 

agreement. A 3D study should be carried out in the future to clear this point. 

 

Figure 61. Dual-porosity experiment setup (A: picture; B: a schematic describing elements of the setup; 
picture comes from (Pillai, et al., 2009) ) 

As shown in Figure 62, we considered four different cases by altering Pe between the two 
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values and by opening the small-pores or large-pores sides. Interestingly the drying rates for all the 

four cases are constant from the beginning of the drying till the end. This is because since the 

throat size is relatively large for the chosen 12 × 12 pore network, long enough film fingers are 

generated extending all the way till the network boundary during the entire drying process. 

 

Figure 62. Prediction of drying rate and drying time as a function of network saturation for the 𝟏𝟐 × 𝟏𝟐 
dual-porosity pore network 

As stated in (Pillai, et al., 2009), the experimental network has a large uncontrollable 

machining error of 10𝜇𝑚. Moreover, the randomly-assigned throat dimensions were carefully 

matched in the experiments and the simulations of this published study. Since we cannot duplicate 

the exact same network for our current simulation, the liquid-phase distributions at different times 

will not have an exact match between experiments and the current simulation. But we compared 

the phase distribution at a critical time, when half of the throats are dry. As we can see from Figure 

63, the simulation results match well with those of the experiments, especially in the case of 
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opening the large-pores side. This should be treated as a partial validation of our simulation. 

 

Figure 63. Phase distribution of simulations - 𝟏𝟐 × 𝟏𝟐 dual porosity pore network (A1: simulation 
results when the large-pores side is open with 𝑷𝒆 = 𝟒𝟎𝟎; A2: experimental results when the large-pores 
side is open; B1: simulation results when the small-pores side is open with 𝑷𝒆 = 𝟏𝟎𝟎; B2: experimental 

results when small side open; A2 and B2 are coming from (Pillai, et al., 2009) ) 

We also compared the dimensionless plots of drying mass versus drying time as shown in 

Figure 64. The experimental results are obtained from (Pillai, et al., 2009). If the film effect is 
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considered, because the drying rate is constant during the entire drying process, the plot of drying 

mass vs drying time is a straight line. However, if the film effect is not considered, the drying rate 

changes as the drying progresses, and hence the obtained plot is a curve. Especially in the case of 

opening the small-pores side, the characteristic bilinear curve is observed. 

 

Figure 64. Dimensionless drying mass vs drying time – comparing with the experiment 

From Figure 64 we can see, the experimental results are actually closer to the simulation 

results when the film effect is ignored. (This is true as far as the trends are concerned; however, the 

total drying time predicted by the film-less simulation is inaccurate by an order of magnitude.) 

This phenomenon may due to two reasons. Firstly, our film effect model assumes a constant 

film radius when it is close to bulk liquid at the saturation front; and the value is usually chosen to 

be the average 𝑅𝑀 of all the throats (refer to Eq. (22)). This assumption works well when the 

largest and smallest throats are in a narrow range. In the case of dual-scale porous media, as 
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implied by its name, the 𝑅𝑀 of the largest throat and 𝑅𝑀 of the smallest throat are in two different 

scale. However, we still use the average value of to 𝑅𝑀 represent all the throats, which actually 

diminished the difference between the two scales. Secondly, the pore network in the experiment 

may have machining errors. Because the film effect model shows that even the smallest throats of 

0.1𝑚𝑚 in this network will generate a long enough film to sustain a constant drying rate through 

the entire drying process. As discussed in the previous section as well as in (Prat, 2007), the throat 

cross section shape has a major influence on the resulting film effect. If the cross section of the 

throats changes from square to hexahedral due to the machining error, or if there are any round 

corners existing in square cross-sections, the film effect, as shown in Figure 41, may be decreased 

significantly. So we cannot exclude the possibility that the network machining errors may be the 

cause of the above-mentioned deviations. 

9.2 Square Pore Network in the Center 

Here we study the drying of a dual-porosity pore network positioned at the center of a 

uniform flow field. By the opening sides of the pore network to the flow field, the interactions 

between the pore network and the outside field is initiated and the resultant drying process studied. 

The basic form of the pore network is 100 × 100; the throat length is 500𝜇𝑚; the throat 

hydraulic diameter of the lower (smaller-pores) portion of the network range in 5𝜇𝑚 ± 5%, and 

of the higher (larger-pore) portion range in 10𝜇𝑚 ± 5%. 
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Figure 65. Velocity field around square pore-network, 𝑷𝒆 = 𝟏𝟎 (left side: velocity contour; right side: 
stream lines) 

The position of pore network in the flow field is as shown in Figure 65. This is the 

surrounding velocity distribution for 𝑃𝑒 = 10. The environment humidity is set at 50%.  

9.2.1 Group 1 Simulations: One Side Open 

In our first group of simulations, we seal three sides of the network and open only one side. 

The north (top) side of the network is the larger-throat side, while the south (bottom) side is the 

smaller-throat side. We used networks made either of the square cross-section throats or the 

circular cross-section throats. The latter, for their characteristic of not allowing any film effect, are 

used to compare with the previous ‘film-less’ simulation done by (Pillai, et al., 2009). 

Figure 66 shows the drying rates and drying times of all the cases considered in this study. 

Observe that when the film effect exists in the networks with square cross-section throats, the 

drying time is exponentially less than that for the corresponding networks with circular 

cross-section throats. Also note that the drying time for opening the large-pores side of the square 
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network is shorter than that for opening the smaller-pores side. 

 

Figure 66. Drying of dual porosity networks with one side open  

 

Figure 67. Studying the drying characteristics of a dual-porosity network – with/without film effect 

To compare with the previous research on drying of a dual-porosity network, we also plotted 

the chart of drying mass vs drying time for cases without the film effect in Figure 67. This shows 
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exactly the same trend as observed in (Pillai, et al., 2009): the curve corresponding to opening the 

large-pores side is smoother, while the curve corresponding to opening the small-pores side 

generates a bilinear trend reported by Pillai et al. In addition, because of the film effect, the 

drying-rate difference is decreased—the two curves in the right figure are closer compared to the 

left figure. Also note that the difference in slopes of the two linear segments of the bilinear curve 

corresponding to the small-pores side open is smaller after including the film effect. 

It is also important to notice the huge difference in the time scales involved—the drying of the 

circular cross-section throat network is in thousands of hours compared to the tens of hours needed 

to dry a square cross-section throat network! This basically highlights the incredibly important role 

played by liquid films in slow drying of porous media.  

Let us now study the drying of the two types of dual-porosity networks in greater detail. 

Figure 68 shows the drying of the case when opening the larger-pores side—as shown in the figure, 

the larger pore region dries out completely before the drying front starts penetrating the smaller 

region region. This is similar to the observations reported in (Pillai, et al., 2009) for a network with 

no films and a constant-thickness CBL.  
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Figure 68. Evolution of liquid-phase distribution and CBL with time in the dual-porosity network using 
square throats with film effect—the large-pores side is open (The outermost constant concentration 

curve is the CBL.) 

However, when the smaller side is open, it is a different scenario altogether (Figure 69). Even 

before the pores in the outer small-pore region fully dry up, the drying front starts penetrating the 

inner large-pore region. As postulated by (Pillai, et al., 2009), the phenomenon of ‘capillary 

pumping’ is at work—in a liquid cluster spanning the smaller and larger pores, the liquid migrates 

from the latter into the former as the capillary pressure is larger in the smaller pore region. As a 
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result, the larger pore region empties even as the smaller pore region exhibits small change in the 

liquid-phase distribution. 

 

Figure 69. Evolution of liquid-phase distribution and CBL with time in the dual-porosity network using 
square throats with film effect—the small-pores side open (The outermost constant concentration curve 

is the CBL.) 

On comparing the two above-mentioned cases, we can find that the influence of the 

larger-pore side open to the outside is more significant because more liquid is transported out from 

the porous medium into the outer flow field. (Note that the drying rate in the former is much higher 
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as shown by Figure 66 and Figure 67.) 

Also the fact that the larger pores dry out completely before the small pores allows one to 

infer that such a system can be used to design an incense or an insect-control vapor delivery system: 

the outer pores can be filled with one type of evaporating liquid compared to the inner pores such 

that the first type is delivered first to the outer air field before the second type kicks in. 

9.2.2 Group 2 Simulations: Influence of Irregularity in Pore Geometry 

 

Figure 70. Dual-porosity pore network (left: regular; right: irregular) 

In this group, all together three cases are tested. The first case uses uniform diameter: the 

throat diameters in the small pores region is set uniformly to 5𝜇𝑚; and the throat diameters in the 

larger pores region is set uniformly to 10𝜇𝑚. The second case uses random diameters, which are 

in the range 5𝜇𝑚 ± 5% and 10𝜇𝑚 ± 5%, respectively, for the lower smaller-pores region and 

the upper larger-pores region. The third case uses random diameters as the second case. In 
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addition, the third case also varies the throat lengths as well as the number of throats connected to 

various pores (which is also called the coordination number for any given node or pore) (Figure 

70). Note that, unlike previously, all these three cases in the present study open all their four sides 

to the outside flow. 

 

Figure 71. Distributions of liquid-phase clusters and concentration contours – regular network, random 
throat diameters 
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Figure 72. Distributions of liquid-phase clusters and concentration contours – irregular network, 
random throat diameters 

Figure 71 shows the liquid-phase distribution inside the network and the surrounding 

concentration contours for the second case. Figure 72 shows the liquid-phase distribution and the 

surrounding concentration contours for the third case. On comparing these two cases, we can see 
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that the irregularity did not bring too many differences in the drying patterns observed within the 

network as well as in the CBL formation outside it. 

 

Figure 73. Study of changes in drying rate and drying time of a dual-porosity network due to the 
introduction of geometrical irregularity 

Figure 73 studies the differences in drying rates and drying times between the three cases. 

This comparison shows that the introduction of irregularity is not influencing the drying behavior 

significantly. This corroborates the findings of Figure 71 and Figure 72 where not much difference 

in the drying patterns of two of these cases is observed. However, the irregularity does bring a big 

difference to the liquid mass contained within the network, hence the drying time for the irregular 

network is correspondingly longer. 

9.3 Summary & Conclusions 

This chapter applied the model developed in chapter 5 to study the drying in a dual-scale 
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porous media. At first, the drying simulation of a square-shaped and dual-porosity pore network is 

compared with a previously published experimental study. Two cases of small-pores side open and 

large-pore side open are considered. It is observed that though the simulation results of the 12 ×

12 network fail to match the experimental drying curves completely, important landmarks in the 

drying process (such matching of overall drying times and complete emptying of large pores 

before the onset of drying in the small pore region of the large-pores side open case) are achieved. 

Next the drying of the same square-shaped, dual-porosity domain using a much refined 100 ×

100 network is carried out in a uniform air flow after keeping either the large-pores or the 

small-pores side open. The former leads to faster drying and complete emptying of the large pores 

before the small pores. Using the same refined network, the case of all side open is studied using 

the same dual-porosity and square domain. Changing the throat cross-section from circle to square 

leads to much faster drying. Introduction of microstructural irregularity in the network by 

randomly changing throat diameter and changing the coordination number of pores does not affect 

the drying rate and drying time significantly.  
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10 SUMMARY AND CONCERNS 

This thesis developed a fully-coupled implicit method to study the drying of porous media in 

laminar flows.  

Firstly, a model without film effect is developed and then the film effect is added to it. A novel 

logistic equation is used to relate the pore network variable, 𝜙, with the external field variable, 𝐶. 

A broad range of studies are carried out, including the studies on numerical algorithm, 

microstructure of pore network, and the environmental factors. The model is also applied to drying 

of thin and dual-scale porous media. Some interesting insights are discovered. 

The model developed in this thesis can also be used to study more factors influencing the 

drying process, for example, the liquid properties, the contact angle, the round corner radius of the 

throats, etc. These studies are not performed limited to the size of this thesis, but they are all 

interesting immediate future working directions. 

When it comes to new models, we find that the most interesting future work directions needs 

to be in 3D drying simulation and development of a new film effect model. Note that 3D 

simulation is preferred when one wants to study the influence of the external flow. 

A new film effect model, which abandons the assumption of constant film radius across all 

liquid-film interfaces, needs to be developed. The current film effect model is broadly used by 

previous researches, but it is not good when it is applied to the dual-scale porous media. 
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APPENDIX: MATHEMATICAL MODELS 

The mathematical model as described in the main body is presented here in dimensionless 

form. 

For the external flow field: 

{
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The external flow field is solved using the implicit method. 

For the evaporation without film effect: 

{
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For the evaporation with film effect: 

{
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In which, 𝐶𝑖 is related with 𝜙
𝑖
 at the porous media openings: 



115 

𝐶𝑖 =
2

𝜙
𝑖
(1 + 𝑒

−
𝑐𝜙𝑖
𝜑2 )

𝜙
𝑖
− 1 

The evaporation is solved using an implicit time marching method. 

The dimensionless variables are defined as: 

𝑢 =
𝑢

𝑈∗
, 𝑣 =

𝑣

𝑈∗
, 𝑥 =

𝑥

𝛿∗
, 𝑦 =

𝑦

𝛿∗
, 𝜌𝑔 =

𝜌𝑔

𝜌∗
, 𝜇𝑔 =

𝜇𝑔

𝜇∗
, 𝑅𝑒 =

𝜌∗𝑈∗𝛿∗

𝜇∗
, 𝐶 =

𝐶

𝐶∗
, 𝐴 =

𝐴

𝐴∗
, 𝜙 =

𝜙

𝜙∗
, 

𝑃𝑒 =
𝑈∗𝛿∗

𝐷∗
 

The other reference values are defined using basic reference value: 

 𝑈∗ =
𝛿∗

𝑡∗
, 𝑝∗ = 𝜌∗𝑈∗2, 𝐴∗ = 𝛿∗2, 𝑡∗ =

𝜌∗𝛿∗
2

𝐷∗𝑀∗𝐶∗
, 𝜙∗ = 𝑀∗𝐷∗𝐴∗𝐶∗ 

The basic reference values are chosen to be: 

𝛿∗: the average throat diameter of the pore network; 𝜌∗: the liquid density; 𝜇∗: the liquid 

viscosity; 𝑀∗: the liquid molar density; 𝐷∗: the liquid mass diffusivity; 𝐶∗: the saturated vapor 

concentration. 
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