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ABSTRACT 

 
LATE PREHISTORIC LITHIC ECONOMIES IN THE PRAIRIE PENINSULA:  

A COMPARISON OF ONEOTA AND LANGFORD IN SOUTHERN WISCONSIN AND 
NORTHERN ILLINOIS 

 
by 

 
Stephen W. Wilson 

 
 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Robert J. Jeske PhD  

 

This thesis is an examination of the environmental settlement patterns and the organization of 

lithic technology surrounding Upper Mississippian groups in Southeastern Wisconsin and 

Northern Illinois. The sites investigated in this study are the Washington Irving (11K52) and 

Koshkonong Creek Village (47JE379) habitation sites, contemporaneous creekside Langford and 

Oneota sites located approximately 90 kilometers apart. A two-kilometer catchment of 

Washington Irving is compared to that of the Koshkonong Creek Village to clarify the nature of 

environmental variation in Langford and Oneota settlement patterns and increase our 

understanding of Upper Mississippian horticulturalist lifeways. Lithic tool and mass debitage 

analyses use an assemblage-based approach to understand the lithic economies at each site, 

accounting for procurement and manufacturing strategies and assemblage diversity and 

complexity.  
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CHAPTER 1 

INTRODUCTION 

The Oneota and Langford cultural traditions are aspects of the Upper Mississippian 

pattern of the Late Prehistoric period in the Eastern Woodlands. While Langford has been used 

to describe a geographically well-defined archaeological culture in Northeastern Illinois, the term 

Oneota has often been used to describe a larger archaeological culture with much variation that 

extends across several states in the Midwest of the United States and Canada (Griffin 1960a; 

Hall 1962; McKern 1942; Overstreet 1995, 1997). However, localities with a distinct Oneota 

assemblage have been established across Wisconsin (Overstreet 1997). The Lake Koshkonong 

locality is the concern of the investigation into the Oneota archaeological culture in this study. 

Research Goals  

The Washington Irving (11K52) and Koshkonong Creek Village (47JE379) sites (Figure 

1.1) will serve as study sites for the research into Langford and Oneota village environments, 

lithic manufacture and tool use. Both village sites are situated within creek environments and are 

contemporaneous, making the sites ideal for a comparative analysis. The focus of this thesis is 

the relationship between local environment and the lithic assemblages at late prehistoric 

archaeological sites. A central aspect of the lithic analysis is based on understanding the lithic 

economies employed by Langford and Oneota inhabitants within their local environments. 

However, the focus of this thesis will also be to examine the way in which site location 

influences the organization of lithic technology for Late Prehistoric groups.  

Settlement Locations 

The first part of this thesis is a description of the environmental contexts of the 

Washington Irving and the Koshkonong Creek Village sites. However, the methods used in this  
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Figure 1.1: Location of the Washington Irving and Koshkonong Creek Village sites in Northeastern 
Illinois and Southeastern Wisconsin. 
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thesis differ from previous examinations of Oneota and Langford settlement patterns (e.g., Bird 

1997; Jeske 1990; Overstreet 1976, 1978; Rodell 1983; Sasso 1989).  A model was created of the 

environmental setting around the Washington Irving site using GIS to manipulate variables such 

as the agricultural potential of the land, the composition of environmental zones and the 

subsequent ecotone areas (after Edwards 2010). The purpose of modeling the site was to update 

Hunter’s (2002) model at a two-kilometer radius and contextualize the site location. A catchment 

analysis allows for quantifiable variables to be the basis for an examination of settlement patterns 

and the surrounding environment.  

A model of the Koshkonong Creek Village site was previously constructed by Edwards 

(2010) and is used in this thesis to describe the site’s location. Additionally, a descriptive 

comparative catchment analysis was conducted with the purpose of comparing the sites 

locations. Specifically, the catchment analyses will be used to answer several research questions 

(after Edwards 2010:14): What were the environmental contexts of the sites? Were the sites 

located with access to sufficient arable land?  

Lithic Assemblages  

The second part of this thesis investigates the lithic economies and stone tool 

assemblages at the Koshkonong Creek Village and Washington Irving sites. The macroscopic 

analysis of the lithic assemblages from the study sites includes a mass analysis of the debitage 

and an individual analysis of the lithic tools. The assemblages investigated in this thesis are from 

the 2012 and 2014 field seasons at KCV and from the 1984 and 1985 field seasons at 

Washington Irving. Both assemblages consist of lithic artifacts recovered from excavated 

contexts, including features and the plow zone. The nature of each lithic assemblage is discussed 

with the following questions in mind: What raw materials were site occupants using to 
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manufacture stone tools? What is the quality of the raw material used? Were the raw materials 

heat altered before being flaked? What stages of stone tool production were happening at the 

sites? All of these questions regarding the production of stone tools are vital to understanding the 

lithic economy of the inhabitants of KCV and Washington Irving and can be answered using an 

assemblage-based methodology. Through a comparison of the lithic assemblages from KCV and 

Washington Irving, we can further understand the cultural variations of Upper Mississippian 

groups like Oneota and Langford.  Is the lithic technology at KCV similar to that at Washington 

Irving? Are there interregional differences in the economic choices groups make regarding stone 

tool production?  

Thesis Organization 

Chapter Two is a discussion of the cultural history of the Oneota and Langford traditions 

and a review of the literature surrounding the Upper Mississippian groups.  Chapter Three is a 

discussion of the methods and methodology surrounding the catchment analysis of the study 

sites. The origins of catchment analysis are discussed, as well as optimal foraging theory, the 

theoretical framework in which catchment studies are grounded. Additionally, the definition of 

vegetation types, adapted from Goldstein and Kind (1983), and the methods of reconstructing the 

prehistoric vegetation of the catchment area are discussed.  

Chapter Four is a description of the study sites. Archaeological investigations, excavation 

and prior research at the sites are discussed. Finally, the site locations are described using the 

two-kilometer catchments modeled in GIS. The environmental model of KCV was adapted from 

Edwards’ (2010) thesis. Chapter Five is the descriptive catchment analysis of the two sites. The 

environmental zones, ecotones and arable land of the sites are compared as to attempt to better 

understand Oneota and Langford site settlement behaviors.  Non-economical factors such as site 
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elevations and distances to important resources are also described and discussed. A resource pull 

analysis (Jochim 1978) was conducted to characterize the economical areas that influence site 

placement. 

Chapter Six is a discussion of the theoretical perspectives and methods framing the 

macroscopic analysis of the lithic assemblages. The organization of technology approach 

highlights many aspects of Upper Mississippian lifeways that may otherwise be obscured. 

Additionally, the assemblage-based schema and methods of data collection for this thesis are 

outlined (see Jeske 2014 for lithic recording schema). Chapter Seven is dedicated to describing 

the lithic tools and debitage from each site.  

Chapter Eight is a comparative approach that examines the differences between the lithic 

tool and debitage assemblages at the study sites. Several aspects of the assemblages are 

investigated, such as raw material procurement and modification, lithic tool form, morphology 

and use, the proportion of lithic debitage to tools and the organization of lithic economies within 

an environmental context.   

Finally, Chapter Nine is the summary and conclusions of the research presented in this 

thesis. Broader impacts of the research are discussed and avenues for future research are 

suggested.   
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CHAPTER 2 

ONEOTA AND LANGFORD ARCHAEOLOGICAL TRADITIONS 

The Oneota and Langford traditions are regional expressions of Upper Mississippian 

culture that are at least partially contemporaneous (Jeske 1989b, 2003; Lurie 1992). Many 

scholars have debated the origins of both traditions in the past without complete agreement (cf. 

Boszhardt 1998, 2004; Brown et al. 1967; Emerson 1999; Fowler 1952; Gibbon 1982, 1986; 

Griffin 1960a, 1960b; Hall 1962, 1986; Henning 1995; Jeske 1989b, 1992b; Markman 1991; 

Overstreet 1997, 2009; Theler and Boszhardt 2000, 2006). This section briefly explores the 

discussions that scholars have had regarding the relationship of Upper and Middle Mississippian 

culture groups and the transition of Woodland and Mississippian patterns. 

Upper Mississippian Pattern 

The name Upper Mississippian was first used by McKern (1931:386) to refer to a 

particular ceramic style typical of the Grand River material culture in Wisconsin and named after 

the portion of the river flowing between Wisconsin, Minnesota and Iowa. However, Gibbon 

(1970:281) suggested that the term “Upper Mississippian” was used by McKern to denote a 

likely center of the cultural tradition rather than define its geographical boundaries. The term 

Upper Mississippian is used to include several defined archaeological cultures, such as Oneota, 

Fort Ancient, Fisher and Langford traditions (Hall 1962, 1986).  

Origin of Upper Mississippian Lifeways 

An early interpretation by Griffin (1960a, 1960b:26) suggested the changing climate 

around A.D. 1200 may have been a catalyst for an Old Village Mississippian migration and a 
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shift of complex Middle Mississippian lifeways to Upper Mississippian lifeways. Upper and 

Middle Mississippians were once considered to be related; however, Hall (1962:5-6) argued that 

Upper Mississippian groups lacked certain characteristics, such as temple mounds or diverse art 

forms, that are distinctive of Middle Mississippian groups.  While Hall (1986:365-366) 

suggested Upper and Middle Mississippian groups share numerous characteristics suggestive of 

contact and interaction, or even a shared ancestry, he acknowledged that the term Upper 

Mississippian was outdated and implied that those groups are more closely related to Middle 

Mississippian cultures or to each other than to the Woodland archaeological cultures.  

Conversely, many scholars have postulated that Upper Mississippian groups derived from 

Late Woodland societies rather than Middle Mississippians (Boszhardt 2004; Egan-Bruhy 2014; 

Gibbon 1972, 1980; Jeske 1989b, 1992b; Richards and Jeske 2002; Theler and Boszhardt 2006). 

Jeske (1989b, 1992b) hypothesized that an Upper Mississippian cultural transformation occurred 

as a result of Late Woodland horticultural practices alongside a shift in social relations between 

large and small neighboring groups. Jeske wrote: 

As Late Woodland groups in the Mississippi and lower Illinois valleys developed 
Mississippian lifeways, coalescing into a larger and more complex political and social 
units, the northern groups would quite likely have been marginalized. The nature of 
interactions between northern and southern groups is unknown, but the differences in 
population sizes would have left the northern groups at a disadvantage in any economic 
and social interaction [Jeske 1992b:65]. 

 
Upper Mississippian societies are often marked by localized occupations with large 

portions of the landscape marked without occupation (Emerson 1999; Richards and Jeske 2002). 

While Jeske (1992b:62) argued that structure of Upper Mississippian groups into separated 

localities may have been due to strategies of maintaining social boundaries and an ethnic 

identity, Emerson (1999:37) suggested the presence of distinct buffer zones or “no-man's lands” 
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between contemporaneous groups suggests the presence of warfare and violence among 

Mississippian groups. Jeske (1999b) also argued for a World Systems perspective where the 

threat of military coercion may have been part of a multidimensional relationship between 

Middle and Upper Mississippian groups.  

Oneota and Langford 

Oneota and Langford are contemporaneous, neighboring Upper Mississippian traditions 

(Jeske 1989b). Several scholars have argued that Oneota and Langford traditions can easily be 

identified and distinguished by their distinct ceramic assemblages (Brown et al. 1967; Jeske 

2000:287). Conversely, some archaeologists have argued that Langford and Oneota ceramic 

assemblages may not suggest distinct cultural groups. Berres (2001) suggested Oneota and 

Langford groups should be considered as one single Upper Mississippian tradition, as pottery 

from both Langford and Oneota sites contain motifs indicative of Oneota culture only, 

suggesting the Langford tradition is simply a phase of the Oneota tradition (Berres 2001:141).  

However, Jeske (2003a:179) rejected Berres’ conclusions and suggested Langford and Fisher 

phase Oneota ceramics were not designed, manufactured, and used by a single, unified cultural 

entity.  To support his case, Jeske argued four points: 

The lack of Fisher ceramics from the Fox, Des Plaines, and DuPage River valleys, and 
from upland sites in northern Illinois, indicates some form of territorial boundary 
maintenance. Not only were Fisher and Langford ceramics used by people who 
maintained some form of spatial discreteness, these people followed different subsistence 
and settlement strategies. In addition, there is evidence that differential technologies were 
utilized to exploit their environments (Jeske 1989b). Finally, the scant radiocarbon data 
for Fisher sites indicates that Langford and Fisher are not exactly coeval, although they 
certainly overlap in age [Jeske 2003a:179]. 

Furthermore, Jeske (2003a:179) suggested the presence of Langford sherds at Oneota 

sites and shell-tempered sherds at Langford sites on the margins of the Langford territory 
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indicates some form of cultural interaction between the two cultural groups. In support of this 

conclusion, Schneider (2014) also noted the Lake Koshkonong locality has strong association to 

groups in northern Illinois.  The Crescent Bay Hunt Club, Koshkonong Creek Village and 

Schmeling sites have yielded several Fisher ware vessels commonly found in northern Illinois.  

While Emerson (1999) argued that Langford exhibited a higher level of hierarchical 

organization than Wisconsin Oneota groups, Foley-Winkler (2011) concluded Langford and 

Oneota burial practices suggest an egalitarian socio-political organization despite a significant 

amount of variation among sites. While Langford mound burials are more common than among 

Oneota groups, there are known Oneota mounds located in south-central Wisconsin, and at the 

Fisher site in northern Illinois (Langford 1927). Non-mound burials are also common in Oneota 

sites, such as sites in the Lake Koshkonong Locality, and are found at several Langford sites 

such as the Zimmerman and Washington Irving sites (Brown 1961; Jeske 2000).  

Likewise, Emerson (1999), Foley-Winkler (2011) and Jeske (2000, 2003a) also suggest 

that violence was a significant part of Langford tradition lifeways. Foley-Winkler concluded that 

violence is present more frequently at Langford sites than Oneota sites. Further, she suggested 

violence may have been more localized and restricted when compared to Oneota sites in the 

Central Illinois valley such as Norris Farms #36 (see Milner et al. 1991). Other recent research 

regarding the stress adaptations of both Langford and Oneota (e.g., Emerson et al. 2010; 

Edwards and Jeske 2015; McTavish 2014, 2015) suggest that these groups were under significant 

physical and social stress. 

It is evident that Langford has been widely accepted as a distinct cultural tradition in the 

archaeological literature surrounding Upper Mississippian research (see Brown et al. 1967; 

Faulkner 1973; Fowler 1952; Griffin 1946; Jeske 1989b, 1990, 2000; 2003a; Lurie 1992). The 
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remainder of this chapter is a further discussion of the Oneota and Langford traditions separately 

within an Upper Mississippian framework. 

Oneota Cultural Tradition 

People of the Oneota tradition occupied much of the Midwest for seven or eight 

centuries. Compared to other Oneota traditions, the southeastern Wisconsin Oneota tradition is 

one of the longest-lived Oneota regional continuities (Hall 1962:108) and spans the course of 

600-800 years (Boszhardt 2004; Overstreet 1997).  The term Oneota was first used by Charles R. 

Keyes (1929) to describe the culture associated with archaeological sites in Iowa:  

A very distinctive culture that occupied solidly the valley of the Upper Iowa River 
valley…is unidentified at this time and is called for the present the Oneota, after the old 
name of the river where it remains the most continuous [Keyes 1929:140]. 

Keyes (1929:141) originally distinguished Oneota tradition from other groups by their 

use of shell-tempered, unpolished ceramics, small triangular bifaces and simple flake scrapers. 

He also noted that Oneota sites are often situated open on high river terraces or wide prairie 

bluffs. 

Oneota in the Archaeological Record 

Often regarded as a “pottery culture” (Gibbon 1982, 1986), Oneota artifacts are most 

recognizable in the archaeological record by their distinct ceramic style (Hall 1962; Overstreet 

1997). Gibbon (1986:319-321) described typical Oneota pottery vessels as globular jars with 

wide mouths and flaring rims that were often decorated. The clay was smoothed with a paddle 

and tempered with mussel shell before firing, differing from Woodland style pottery, which is 

often decorated with cord wrapping. However, there are regional differences among Oneota 
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pottery types, such as Grand River, Lake Winnebago, Orr, and Carcajou, mostly commonly 

varying in shoulder decoration or the addition of grit temper with shell. 

Common Oneota chipped stone tools are small triangular projectile points, scrapers, 

knives, drills and perforators (Gibbon 1986). Expedient stone tools and unrefined bifacial tools 

are common, likely to be more efficient with the fair and poor quality local raw material (Sterner 

2012). However, Gibbon (1986:328) acknowledged that a stone tool assemblage is not diagnostic 

of an Oneota occupation, as many prehistoric groups in the Midwest used small triangular 

projectile points, scrapers and other tools.  

Apart from tempering clay for pottery, shell was used for various tools and ornaments, 

such as spoons, hoes, scrapers, fish lures, and pendants. Copper tools and ornaments such as 

beads and pendants are commonly found at Oneota villages, but in low frequencies (Gibbon 

1986). 

Early Oneota settlements are often described as including several different house types, 

such as wigwams, rectangular, and pit houses, with longhouses adopted after A.D. 1400 

(Hollinger 1995; Overstreet 1997). Benches were often built around the inside walls of house 

with a fireplace set in the middle of the floor (Gibbon 1986).  However, Moss (2010) concluded 

that longhouse structures were a significant part of the architecture at the Crescent Bay Hunt 

Club site, and at this time, it appears that they date between A.D. 1200-1400.  

Pits have been observed in basin, bell-shaped, and cylindrical forms and were often used 

for food storage. Garbage such as broken pottery vessels and animal bone was often thrown into 

the pits after they had been used for storage (Gibbon 1986). While not common during early 

Oneota occupations, Overstreet (1997) noted that the construction of palisades became more 
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common among Oneota groups as time went on. However, recent reevaluation of several Oneota 

sites at Lake Koshkonong call into question evidence for palisades (Schneider 2015). 

Oneota cemeteries in southeastern Wisconsin are generally characterized by non-mound 

burials (Birmingham and Eisenberg 2000; Foley-Winkler 2004, 2011). However, mounds have 

been associated with several Grand River phase Oneota sites (Foley-Winkler 2011; Overstreet 

1997).  John A. Jeske (1927) reported numerous mounds at the Walker-Hooper site, while 

Overstreet (1981) reported burials at the Pipe site within a small knoll, either natural or modified. 

There are several examples of Oneota mound burials in Illinois, such as the Fisher site (Langford 

1927), a Fisher Phase Oneota site, and the Norris Farms #36 (Milner et al. 1991), a Bold 

Counselor Phase Oneota site. Oneota burial practices were commonly placed on their backs in an 

extended position, but evidence of bundle burials, semi-seated and semi-flexed positions have 

also been observed. Individual burials are most common; children are occasionally found with 

adults in the same burial (Foley-Winkler 2004, 2011). Pottery vessels, projectile points, shell 

spoons, pipes and other artifacts have been recovered from burial contexts (Gibbon 1986).   

Oneota on the Landscape 

Oneota groups relied on agricultural practices, such as growing corn, squash, and other 

less important crops (Brown 1982; Gibbon 1986). In a comparative analysis of Late Prehistoric 

Upper Great Lakes populations, Egan-Bruhy (2014:67) suggested that Oneota groups placed less 

importance on maize and squash than Middle Mississippian groups, but favored the exploitation 

of wild rice as well as nuts, acorn and barnyard grass.  

Overstreet (1978) suggested that Oneota sites are often situated on fine sandy loams and 

other soils that are ideal for horticulture; Jeske (1989b) further noted that Oneota groups 
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commonly placed sites near mature floodplains with regularly inundated soils. Hunting, fishing, 

trapping and the gathering of wild plants and mussels were also important subsistence practices 

(Gibbon 1986). Edwards (2010) and Rodell (1984) concluded that Oneota sites in the Lake 

Koshkonong locality were all located in the vicinity of some form of aquatic environment.  Such 

a site location allowed site occupants to exploit wetland resources while reducing pursuit time, 

yet remain nearby savannas for hunting upland game. 

Wisconsin Oneota Localities 

Overstreet (1978, 1997) originally defined seven distinct localities of Oneota habitation 

sites around Wisconsin. However, Schneider (2015) indicates that two additional localities are 

now recognized, one near the Waupaca River and potentially another one in northeastern 

Wisconsin (also see Overstreet 2009). Wisconsin Oneota localities encompass a large portion of 

the state, with significant areas across the landscape without occupation, separating these 

localities (Emerson 1999; Richards and Jeske 2002). The La Crosse and Lake Pepin localities are 

situated in western Wisconsin along the Mississippi River valley. The remaining localities are 

located in eastern Wisconsin and include the Green Bay, Wolf River, North Lakes, Middle Fox 

River Passageway, Grand River, and the Lake Koshkonong localities (Figure 2.1).  

Wisconsin Oneota Chronology 

The temporal boundaries of the Oneota tradition are controversial (cf. Boszhardt 2004; 

Overstreet 1995:33) but are circa A.D. 1050 to 1650 (Schneider 2015).  In 1962, Hall introduced 

a temporal system based on three horizons to distinguish varying Oneota traditions. These 

periods are named the Emergent, Developmental, and Classic horizons. Overstreet (1978, 1997) 

later expanded on Hall’s framework to include a fourth horizon, named the Historic horizon. 
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Figure 2.1 Localities of Wisconsin Oneota occupations (map by Edwards). 
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However, some scholars advocate that distinct temporal horizons often imply an association 

between groups within the divisions, and often hinder the ability to recognize the variation in 

material culture between sites and between localities (Hart and Brumbach 2003:747).  

Overstreet (1995, 1997) suggested several criteria to be adequate evidence to distinguish 

the Emergent horizon, ranging from circa A.D. 950 to 1150, to later Oneota occupation horizons. 

Such criteria include the frequency of undecorated ceramics, pit house structures, and the low 

frequency of end scrapers. The Developmental horizon, ranging from circa A.D. 1150 to 1350, 

has been distinguished from the Emergent horizon by an increase in the decoration on pottery, 

such as trailed or punctate shoulder designs, as well as the addition of wigwam architecture and 

evidence of bipolar stone tool manufacturing.  

By the Classic horizon, ranging A.D. 1350 to 1650, undecorated vessels are rare and bone 

tools such as bison scapula hoes become more ubiquitous. Lithic technology exhibits the 

exploitation of poor quality raw material as well as a higher frequency of end scrapers to 

triangular points (Overstreet 1995). Research of the Historic horizon, post-A.D. 1650, involves 

the suggestion of an association between the Oneota with the historic Winnebago (or Ho-

Chunk); however, this conclusion is unclear and has been debated by scholars (see Green 1993; 

Griffin 1960a; Hall 1995; Overstreet 1995; Richards 1993, 2003). 

Origin of Wisconsin Oneota 

Overstreet (1997) identified two models for the origin of Oneota tradition in Wisconsin: 

an in situ development model and a migration model. The in situ development, or transformation 

model, assumes that local Late Woodland people adopted new sedentary life-ways centered on 

the increased agricultural use of corn.	
  Conversely, the migration model does not directly connect 
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Late Woodland and Oneota cultures but rather suggests people who were already in possession 

of a corn-based agricultural life-way became more sedentary in village type communities.  

Many scholars have concluded that Oneota in southeastern Wisconsin emerged as a fully 

recognizable complex and does not coincide with a migration model, although the topic has been 

debated thoroughly (see Boszhardt 1998, 2004; Gibbon 1982, 1986, 1986; Griffin 1960a; Hall 

1962, 1986; Henning 1995; Jeske 1992b; Overstreet 1997, 2009; Theler and Boszhardt 2000, 

2006). Scholars in opposition of the in situ model proposed the lack of evidence of interaction 

between Woodland and Oneota population suggests a migration and replacement model 

(Overstreet 1995). However, others have argued a fully developed Oneota tradition must have 

been developed before A.D. 950, and the lack of evidence for any such occupation suggests a 

Woodland population transition (Boszhardt 2004:23).  

Langford Cultural Tradition 

The Langford tradition is a regional expression of Upper Mississippian that emerged 

circa A.D. 1100 to 1450, and is mainly restricted to the upper Illinois River valley and its 

tributaries (Birmingham 1975; Emerson 1999; Foley-Winkler 2011; Hunter 2002; Jeske 1989b; 

1990; 2000).  

There has been much scholarship on Langford tradition within the past several decades. 

Initial investigations had shown a linear distribution of Langford sites, such as the Gentleman 

Farm (Brown et al. 1967), Fisher (Langford 1927; Griffin 1946), Robinson Reserve (Fowler 

1952), and Zimmerman sites (Brown 1961), located exclusively along the Illinois and Des 

Plaines rivers. After early discussions of Langford site locations and radiocarbon dates (Jeske 

1989b, 1990; Jeske and Hart 1988), Bird (1997:56) noted that more recent archaeological 

research has 1) expanded the geographical boundaries of the Langford tradition occupation, 2) 
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added sites located on upland environmental settings, 3) increased understanding of the duration 

of the tradition with radiocarbon dating, and 4) allowed for the reconstruction of subsistence 

practices with the recovery of floral and faunal remains from flotation. 

James Brown (1961:75) was the first to use the term “Langford” as a descriptor for an 

archaeological tradition. Prior to that, Langford was used to describe the ceramic style recovered 

from the Fisher site (11WI5), named and defined in John W. Griffin’s (1946:13-25) Master’s 

thesis. The analysis describes the ceramic assemblage from the multicomponent Fisher site, and 

subsequently defined and named the grit tempered ceramic series in honor of George Langford, 

the first archaeologist to excavate the site. Langford (1927:158) visited the site intermittently 

beginning in 1898 and made his first “close external examination” in 1912. Langford reported 

that the ceramics were a mixture of decorated and undecorated, with temper being both shell- 

and grit.  Most vessels were globular in form with sharp necks and low rims. John W. Griffin 

noted that grit-tempered Langford ceramics were decorated less often than the shell-tempered 

Fisher ceramics from the site.	
  

Langford in the Archaeological Record 

While Langford pottery is distinctive from Fisher and Oneota ware by the use of a mafic 

grit temper (see Faulkner 1972; Hunter 2002; Jeske 1989b, 1990; Lurie 1992), many scholars 

have noted that Langford ceramics are otherwise very similar to Oneota pottery. Vessels are 

commonly globular in shape with surface treatment that varies from cordmarked to smooth or 

smoothed-over cordmarked. Rims are often undecorated but examples of notched rims have been 

observed, and shoulder decorations are often of trailing or chevron designs (Jeske 1989b).  
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While Jeske (1989b:109) suggested that Langford and Oneota lithic assemblages are 

largely identical in terms of typology, the assemblage-based analysis produced in this thesis 

provides a better understanding of the lithic economies of each group.  Langford is often 

characterized by a lithic economy of small triangular point manufacture and bipolar reduction 

(Jeske 2000:265). Other common lithic tools include stemmed and generalized bifaces (including 

crude humpback bifaces), bifacial drills, unifacial scrapers and utilized flakes (Fowler 1952; 

Jeske 1989b, 1990; Lurie 1992).  

Bipolar reduction seems to have been an important part of Midwestern lithic technology, 

and was used to produce of blanks from small nodules and recycle increasingly scarce raw 

material (Binford and Quimby 1963; Goodyear 1993; Jeske 1992a; Jeske and Lurie 1993; 

LeBlanc 1992; Shott 1989). Scholars (e.g.,  Jeske 1992a; Shott 1999) noted that the 

morphological descriptions of lithic pieces should not imply a fixed category of function or 

meaning. Following a long-standing discussion in Upper Mississippian literature concerning 

humpbacked artifacts (cf. Brown 1967; Munson and Munson 1972), Jeske (1992a) argued that 

rather than define humpbacks as a functional type, they should be seen as the product of bipolar 

blank production with a low degree of refinement that results in a fairly crude bifacial tool.  

Munson and Munson (1972:35) argued that humpbacks were a form of knife separate from 

triangular points, and astutely observed that humpbacks were not recovered from Middle 

Mississippian sites to the south nor Oneota sites to the north of the Langford-Huber region of 

northern Illinois.  They tentatively suggested a cultural tradition explanation for this distribution. 

Jeske noted that a lack of discrete characteristics to differentiate humpback from Madison 

bifaces suggests no real distinction between the two types, and suggests that the distribution of  
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the form has more to do with raw material package size than function or cultural traditions 

(Figure 2.2).   

Figure 2.2 A continuum of triangular bifaces from Washington Irving, from refined Madison points 
(upper left) to crude humpback bifaces (lower right) (adapted from Jeske 1992a). 

 

Floral and faunal assemblages suggest an economy of horticultural practices as well as 

hunting, fishing and gathering of wild plants. Based on preliminary evidence, Emerson et al. 

(2005) suggested that Langford groups engaged heavily in maize agriculture, similar to that of 

Middle Mississippian groups in the American Bottom. However, while maize has been recovered 

fairly ubiquitously across Langford sites, the extent of the contribution of maize to the diet is 

ambiguous as its remains are found in low densities (Jeske 2000). Evidence suggests maize was 

supplemented by hunting and gathering of wild plants such as hickory nuts, wild fruits, with little 
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evidence for the use of Eastern Agricultural Complex plants present at Oneota and Middle 

Mississippian sites (Egan-Bruhy 2014).  It has been suggested “maize was probably a dietary 

supplement in the Langford diet, augmenting a generalized hunting-gathering economy focused 

on wetland resources” (Jeske 1990:225). Bioarchaeological research at the Material Service 

Quarry site, a Langford site in the Upper Illinois River Valley, however, suggests that Langford 

maize consumption was comparable to that of populations in the American Bottom (Emerson et 

al. 2010).  

McTavish (2014, 2015) reported that the Washington Irving site and other Langford sites 

show patterns of local resource acquisition with an emphasis on large upland mammal hunting as 

well as substantial bone processing. A variety of bone, shell and antler tools have been recovered 

at Langford sites. Awls, needles, projectile points, pressure flakers, pendants and ear-spools are 

common Langford tools made of bone, shell and antler. While elk or bison scapula hoes are 

common bone tools recovered from Oneota sites, they have not been discovered in Langford 

contexts; Jeske (1990, 2000) proposed the utilization of digging sticks and the lack of scapula 

hoes may suggest a divergence in the agricultural practices between Oneota and Langford 

groups. 

Langford Mortuary Patterns 

Langford sites are characterized by mound and non-mound burials (Foley-Winkler 2011, 

Jeske, Foley-Winkler et al. 2003). While the absence of mounds is a common characteristic of 

Oneota burials in southeastern Wisconsin, some Langford sites exhibit mound burials, such as 

the Robinson Reserve (Fowler 1952; Lurie 1992), Gentleman Farm (Brown et al. 1967), and 

Material Service Quarry sites (Bareis 1965). However, there are several village sites that do not 
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contain mound burials, such as the Zimmerman (Brown 1961) and Washington Irving (Jeske 

1990, 2000). 

Langford Landscapes 

Langford land use was complex, and included multiseasonal villages, small camps, and 

burial sites.  Based on data from across northern Illinois and northwest Indiana (e.g., Craig and 

Galloy 1996; Emerson 1999; Faulkner 1972; Jeske 1990; Lurie 1992; Markman 1991; Michalik 

1982), Jeske (2000) stated: 

The organization of settlements seems to have been somewhat hierarchical, with large, 
semi-permanent (or perhaps permanent) villages of 2-5 ha in the larger valleys (e.g., 
Fisher, Plum Island, Zimmerman); smaller, seasonally occupied sites of ½ - 2 ha found in 
smaller valleys and adjacent uplands (e.g., Robinson Reserve, Cooke, Reeves); and very 
small (circa 100-300 m2) special activity or extractive camps arc found in marginal, inter-
fluvial upland environments (e.g., Kuzwon, Kuzteau, Gazebo). Washington Irving is 
somewhat of an exception, in that it is a 4 ha site located on a small creek, approximately 
2 km from a major river [Jeske 2000:265]. 

 

Langford Spatial Boundaries and “Localities” 

The Langford tradition is essentially spatially confined to northern Illinois (Jeske 1990, 

2000; Lurie 1992), although some Langford outliers extend into Indiana, east Central Illinois, 

and southeastern Wisconsin. Faulkner (1972:58,122) investigated and identified Langford in the 

archaeological record at several sites in northwestern Indiana based on the Langford ware 

ceramics; however, the sherds were recovered in the context of Fisher and Huber occupations. 

Similarly, a Langford occupation was identified along the Milwaukee River in Milwaukee 

County in Wisconsin based on Langford Plain and Langford Trailed vessels recovered from the 

site (Gregory et al. 2000). Brown et al. (1967:36) noted that a single Langford ware sherd was 

recovered from the Aztalan site, a Middle Mississippian occupation, while Hall (1962:70,92-93) 
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noted that several Langford grit tempered sherds that account for one or two vessels were 

recovered from the Carcajou Point site along Lake Koshkonong, a multicomponent site (see 

Jeske, Hunter et al. 2003). 

Bird (1997:132-142) outlined six distinct localities in the Lower Lake Michigan area. She 

notes that these localities were designed to establish a framework for consistency in the 

presentation of archaeological data. Additional, Bird defined 12 tentative phase designations 

across the six localities. The phases were attempts to outline patterns of settlement systems, 

architecture, mortuary practices, ceramics types and lithic technology.  However, similar to her 

temporal designations, Bird (1997:135) herself noted that locality designations are limited by the 

lack of data and quality of data from radiocarbon dates.  

Langford Chronology 

The Langford tradition is a regional expression of Upper Mississippian that emerged 

circa A.D. 1000-1100 until circa A.D. 1400-1450, (Birmingham 1975; Jeske 2000), although the 

majority of Langford sites date in the range of A.D. 1200 to 1350 (Emerson 1999; Jeske 1989b, 

2000). Along with localities, Bird (1997:134-135) proposed a horizon model of the Upper 

Mississippian Langford sequence. Using a tri-modal distribution of calibrated radiocarbon dates 

from Langford ceramics, she divided the Langford tradition into three “horizons”: Early 

Langford from A.D. 973 through 1034, Middle Langford from A.D. 1110 through 1357, and 

Late Langford from A.D. 1426 to 1504.   

However, Jeske (2000) cautioned against creating discrete temporal phases based on the 

current Langford ceramic data, as there is no clear evidence for a strong connection between 

chronology, space and ceramic types within the Langford tradition.  He also further argued it is 
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currently “premature to attempt a formal division of Langford into archaeological phases” (Jeske 

2000:268). It has been argued that many more radiocarbon dates from well-controlled 

archaeological contexts will be required to develop a robust Langford chronology in Northern 

Illinois (Emerson et al. 2005; Jeske 2003a). 

Origin of Langford 

As with the Oneota tradition, many scholars have suggested that the Langford tradition 

emerged in situ from preceding Late Woodland groups in the region (Brown et al. 1967; Fowler 

1952; Jeske 1989b, 1990, 1992b; Markman 1991). However, Emerson (1999) noted that there 

has been no agreement on how the transformation occurred.  

As with the Woodland-Mississippian transition hypothesis, scholars have suggested 

Langford may have originated from a lack of integration with other surrounding groups. 

Conversely, other scholars have interpreted Langford groups as descendants of the Middle 

Mississippian culture, either from a migration of peoples or a transmission of cultural beliefs and 

lifeways (Emerson 1999).  Considering the difference between Oneota and Langford pottery, 

Jeske (1989b, 1992b) suggested that the grit/shell tempered dichotomy began when Late 

Woodland groups came into contact with Middle Mississippian and nearby Oneota groups, and 

subsequently integrated into a larger Oneota group in northern Illinois. Additionally, he 

suggested that:  

Other groups in the more remote, smaller river valleys such as the Fox and Des Plaines 
were more isolated and were not completely enculturated in broader Oneota traditions. 
Those groups retained traditional grit temper even while employing many Oneota style 
attributes in their ceramics. The retention of grit temper by Langford groups is seen as a 
stylistic marker, reflecting a level of sociocultural integration, and not as a strictly 
functional aspect of ceramic technology [Jeske 1989b:115]. 
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It has been suggested that Langford groups were living on a constricted landscape, as 

their asymmetrical interaction with neighboring Middle Mississippians would have prompted 

increased levels of violence and increased territorial boundedness (Emerson 1999:12). However, 

it is very clear that Langford groups were separate from neighboring groups such as Oneota and 

Middle Mississippians, but maintained a degree of interaction with these groups (Jeske 1989b, 

1992b, 2003a).  
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CHAPTER 3 

CATCHMENT ANALYSIS METHODS AND METHODOLOGY 

 For the research in this thesis, the Washington Irving site was modeled using Geographic 

Information Systems (GIS) to update the previous model of the site (see Hunter 2002). Hunt 

(1992:306) acknowledged that the use of GIS, over traditional forms of catchment analysis, 

allows for the creation of complex and manageable models of the landscape associated with 

archaeological sites and is enhanced by the data management capabilities of the GIS software. 

The examination of the Washington Irving site settlement and the comparison of 

settlement patterns of Langford and Oneota Upper Mississippian traditions are based on an 

optimal foraging theory framework. Optimal foraging theory originates from economic, 

biological, and ecological concepts and has often been modified for archaeological research to 

better understand how environmental context effects human behavior (Jochim 1976, 1983; Smith 

and Winterhalder 1981). The goal of many optimal foraging studies has been to identify the 

composition of faunal assemblages to reconstruct the available resource base of prehistoric 

groups; however, some studies have emphasized the underlying bases for economic decision-

making (Keene 1981:7). The catchment analysis presented in this thesis is grounded in an 

economic-based optimal foraging framework. In this section, the literature surrounding optimal 

foraging theory in an archaeological context will be briefly discussed (also see Jochim 1976; 

Keene 1981; Moore and Keene 1983; Winterhalder and Smith 1981). 

Optimal Foraging Theory 

Early archaeological research in optimal foraging studies often made connections 

between animal behavior and human behavior to understand foraging strategies among 
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prehistoric groups (Keene 1983). Jochim’s (1976) research on prehistoric groups has been 

regarded as an important foundation for understanding resource exploitation, settlement location, 

and demographic organization among foragers based on the behavioral and distributional 

characteristics of available resources (Keene 1981:8). 

Optimal foraging models have attempted to create hypotheses regarding the optimal 

strategies for particular situations in three areas: optimal diet, optimal group size, and optimal 

foraging space (Keene 1983; Winterhalder 1981). In many optimal foraging studies, 

understanding behavior within an optimization framework requires a currency or cost-benefit 

measure that is important to the goals of an organism or group. Keene (1981:9) suggested that 

the correct currency to employ in optimal foraging studies is the net rate of energy intake over 

time, often defined as efficiency. However, Jochim (1983:160) acknowledged that viewing 

efficiency isolated from other factors is not sufficient for optimization models, as groups often 

seek to achieve several simultaneous goals that are equally significant and possibly conflicting.  

While efficiency has been a central focus of many optimal foraging models, additional 

influences, such as nutrients, technological maintenance costs, costs of information gathering, 

non-food yields, risk, and social factors have been thoroughly studied (Jochim 1988).  

Linear program modeling commonly used in economics, ecology and other fields, has 

also been used in anthropological optimal foraging studies. Keene (1981:14) defines linear 

programming as a “plan” or “schedule of activities” that best fulfills the specific goal of a group 

among all feasible alternatives. Linear programming can be a detailed way to understand 

population settlements and resource exploitation as well as predict the time of year and the extent 

to which particular resources were exploited. Conversely, Winterhalder (1981:13) suggested that 

the potential use of optimal foraging studies in anthropology requires generality, and argued that 



 

 27 

models based on realism and generality are often comparative. He noted that it is necessary to 

“simplify complex adaptive systems so that they retain essential and interesting (i.e., nontrivial) 

features, but at the same time become analytically tractable” (Winterhalder 1981:18). Linear 

programming modeling is beyond the scope of this research, as it requires additional data 

collection regarding the costs, values, and availability of each resource (Keene 1981:24-39).   

For the purposes of this thesis as a comparative study between Langford and Oneota 

traditions, Winterhalder’s (1981) advocacy for generality has been followed while economic 

efficiency (minimizing effort while maximizing productivity) is assumed to be the main factor of 

settlement location. It can be assumed that Upper Mississippian diet was economically feasible 

and relatively efficient within cultural and environmental constraints (after Edwards 2010:51; 

also see Jochim 1976:6-7).  Christenson (1982) distinguished economy and efficiency, defining 

economy as the management of resources and efficiency as the rate of energy input to output 

over time. Given the constrains on the procurement of raw materials from the environment 

placed on Upper Mississippian horticulturalists, the assumption of economic efficiency can be 

used to study Oneota and Langford groups.  

Under these assumptions, Edwards (2010; after Jochim 1976) suggested Upper 

Mississippian settlements would need to be situated in locations that allowed for the exploitation 

of local resources efficiently.  Considering the resource availability throughout northern Illinois 

and southeastern Wisconsin, he suggested optimally-placed settlements would be located near 

combined resource areas, such as wetlands near arable land, but also near forest ecotones for 

optimizing the chance of successful hunting as well as access to fuel. An optimal foraging model 

of economic efficiency provides the theoretical framework for resource exploitation and 
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settlement location within the catchment areas around the Washington Irving and Koshkonong 

Creek Village sites. 

Catchment Analysis 

The concept of a catchment developed from the analogy of an area drained by a river, and 

continued as a term to suggest “an area which supplies one particular component of the site 

record” (Vita-Finzi 1978:25). In an archaeological context, the identification of site exploitation 

territory is the main utility of catchment analysis. However, it has been acknowledged that 

catchment analyses can be used to compare sites. Jarman et al. (1973) wrote: 

Site catchment analysis has been found useful in comparing the location of sites. Where 
several contemporaneous sites are available it is instructive to see whether their territories 
have resources or properties in common, or indeed whether any sites or groups of sites 
can be considered economically complimentary to each other [Jarman et al. 1973:63]. 

 

 In early attempts to understand such catchment areas, scholars initially emphasized the 

distance around a site; however, time soon became an important aspect of catchment as scholars 

noted that uneven and broken landscape produce boundaries that do not conform to the 

previously utilized circular shape based on distance (Roper 1979; Vita-Finzi 1978).  In terms of 

economy, Vita-Finzi and Higgs (1970) recognized that the area nearest the site would be most 

utilized, while exploitation of resources decreases as the distance from a site increases. They 

wrote: 

Other things being equal, distance from the site has a bearing on this: the further the area 
is from the site, the less it is likely to be exploited, and the less rewarding is its 
exploitation (unless it is peculiarly productive) since the energy consumed in movement 
to and from the site will tend to cancel out that derived from the resource. Beyond a 
certain distance the area is unlikely to be exploited from the site at all: in terms of the 
technology available at the time, its exploitation becomes uneconomic. [Vita-Finzi and 
Higgs 1970:7] 
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Hunter (2002:59-60) acknowledged that terrain, natural obstructions and enriched 

methods of travel (such as canoes on a waterway) allow for the exploitation of resources to be 

accessed more complexly than by pedestrian travel time. Such consideration would suggest that 

catchment analysis to require an amorphous boundary around the site rather than a circular one 

(e.g., Gallagher and Stevenson 1982). However, Hunter, along with several other scholars (see 

Edwards 2010; Michalik 1982; Roper 1979; Tiffany 1982; Vita-Finzi and Higgs 1970), argued 

that simpler circular catchment areas are sufficient. Michalik (1982:40) noted that a circular 

catchment is a heuristic device, as it “does not represent the actual catchment of a site” and 

should not be taken as an exact representation of all economic activities that took place at the 

site. Hunt (1992) also discussed the shortcomings of site catchment analyses, questioning the 

accuracy of identifying ecosystems and the true shape of a group’s procurement pattern. 

While a non-circular catchment may provide a more realistic approximation of the natural 

boundaries of sites and site exploitation areas, circular catchments have been chosen for previous 

catchment analyses of Upper Mississippian sites (see Edwards 2012; Hunter 2002; Michalik 

1982). In an effort to understand the utilization of resources around a site economically, Vita-

Finzi and Higgs (1970) were the first to employ a series of concentric rings to create a catchment 

for their study area. At each ring, the proportion of resources utilized was reduced, so within the 

first catchment ring, resources were 100 percent utilized while 50 percent were utilized in the 

second, larger catchment ring.  

In their research, both Michalik (1982) and Hunter (2002) implemented a single ring one-

mile radius, as it was assumed that a one-mile catchment was a sufficient area to provide 

adequate information on the environmental factors affecting the site. Other scholars have 

implemented larger circular catchment areas. Roper (1979:121) suggested that hunter-gatherer 
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and forager populations utilize a distance of 10 kilometers from basecamp settlements, while 

agriculturalists do not normally travel very far from their fields. Similarly, Kelly’s (1995:144) 

Marginal-Value Theorem suggests that forager populations at base camp typically inhabit the 

area until an effective foraging area of approximately six kilometers is exhausted. Recently, 

Stencil (2015) produced a catchment analysis of the Finch site (47JE902), a multicomponent 

prehistoric site situated southeast of Lake Koshkonong; as his research was focused on the 

foraging behaviors of the earlier prehistoric populations living at the site, Stencil utilized a 10-

kilometer catchment area.  

As horticultural practices that include foraging and gathering are important aspects of this 

study regarding Upper Mississippian populations, a smaller two-kilometer catchment area was 

used.  Following the methods of these previous scholars, this analysis has employed a circular 

catchment, as it facilitates comparisons among sites and is optimal in determining the vegetation 

distribution around a site. As the catchment model of the Koshkonong Creek Village site 

(created by Edwards 2010) is used to compare with the catchment area of the Washington Irving 

site, a double catchment of one-kilometer and two-kilometer areas was implemented.  

Alongside a catchment analysis, a resource pull analysis was conducted within the one- 

and two-kilometer catchment areas surround the sites. The use of double catchments of one- and 

two-kilometer areas is based on Jochim’s (1976:50) idea of resource pull. He suggested that an 

uneven distribution of resources and their effect on settlement distributions are important 

considerations when conducting a spatial analysis. The more resources that can be accessed most 

economically will exhibit a pull on human settlements, and those resources will attract 

inhabitants to establish settlements nearby.  Edwards (2010) further suggested that a site would 

be placed in the best location to exploit the widest variety of high pull resources. When the idea 
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of resource pull is applied to a catchment analysis, we should expect the smaller catchments 

(once kilometer in this study) to have a disproportionate amount of the high pull resources 

compared to a larger catchment (two kilometers).  

Vegetation Zones 

Hunter (2002) used soil types outlined from a soil survey map (see Goddard 1979) to 

delineate the boundaries of four vegetation zones around the Washington Irving site: woodland, 

prairie, wet prairie and wetland (methods after Michalik 1982; Tiffany 1982). However, the 

definitions of vegetation types used in this study are the same used by Edwards (2010) in his 

study of the Oneota Lake Koshkonong locality, and were also used by ARG (1985:19-32) and 

Jeske (1999:31-34), adapted from Goldstein and Kind (1983). For this catchment analysis, I have 

utilized five main types of vegetation zones to characterize the environment around the site: 

forest, prairie, savanna, wetland and aquatic.  

Forest 

Forest vegetation has often been defined as an area that is at least 50 percent covered 

under a tree canopy (ARG 1985). Forest areas would have provided valuable faunal resources to 

prehistoric populations, such as rabbits, squirrel, deer and elk (Goldstein and Kind 1983), as well 

as nuts and fruit from fruit-bearing trees (Jeske 1999a). 

While Goldstein and Kind (1983:29) outlines several types of forested vegetation zones, 

they argued that various forest area “tend to blend into each other and division are largely 

arbitrary.” Similarly, Jeske (1999a) suggested that the resources found in the several types of 

forest areas are very similar and only require viewing them as a single zone for understanding 

resource potential. 
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Prairie  

A prairie landscape is defined as grassland with less than one tree per acre (ARG 1985).  

Goldstein and Kind (1983) indicate prairie as the least economically productive of their 

vegetation zones.  However, Jeske (1999) suggests that may not be the case for this region. 

Prairies would have provided ragweed, goosefoot, sunflower, amaranths, and sumpweed, as well 

as rabbits, grouse, deer and bison, coyote and elk, particularly on the edges of prairie/forest or 

prairie/savanna environments (Jeske 1999a:31-32) 

In her catchment analysis of the Washington Irving site, Hunter (2002) noted that the site 

was located around a wet prairie, or grassland that is seasonally wet. As with forest areas, Jeske 

(1999a:30) argues that wet prairies and dry prairies can be viewed as one larger type, as the 

vegetation and resource potential for the two are comparable. However, wet prairies are 

considered wetland environments in this study (after Edwards 2010:66). 

The environment around the site is not clearly identified. Based on the GLO plat map 

(Milburn 1840), Washington Irving could have been located on a prairie; however, the 

surveyor’s field notes suggest the site was located on an oak savanna. White (1994) noted that 

savanna and prairie were often synonymous terms in early literature by Illinois surveyors. As per 

the GLO field notes, this study has suggested the site to be situated in an oak savanna. 

Savanna/Oak Opening 

A savanna, also called an oak opening, oak savanna or oak barren, is defined as an area 

with at least one tree per acre but less than 50 percent of acreage under tree canopy (Curtis 1959; 

cited in Jeske 1999a). An oak opening would have made ideal farmland for Oneota groups, as the 

soil would have not had a prairie-like thick roots, making cultivation easier (Jeske 1999a; Moran 
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1980). Furthermore, diffuse tree coverage of a savanna could be easily cleared, unlike in a 

forested area, making for a more ideal place for horticulture (Goldstein and Kind 1989; Jeske 

1999a). Apart from farming, an oak opening environment would have provided valuable 

resources to inhabitants. Food bearing plants in savannas include a wide variety of seed and fruit 

bearing species, while faunal resources would have included deer, elk, turkey, rabbits and 

squirrels (Goldstein and Kind 1983:31; Jeske 1999a:32). 

Wetland 

Wetlands are defined as areas that are under water for all or a significant part of the year 

(Jeske 1999a). Goldstein and Kind (1982:21) suggested four types of wetland zones: lowland 

hardwoods, swamp conifers, grassland swamps and marshes. However, scholars have noted the 

difficulties interpreting wetlands based on GLO maps and field notes, as all types are often 

referred to as either swamps or marshes, and are poorly delineated (Goldstein and Kind 1983; 

Jeske 1999a). For this study all of the various bottomland vegetation zones are categorized as a 

single wetland zone (after Edwards 2010; Jeske 1999a). Fauna found within the wetlands include 

animals associated with upland habitats (e.g., deer), but also include aquatic and semi-aquatic 

animals (e.g., fish, muskrat, turtles). Plant resources such as sumpweed and wild rice would have 

been very abundant in wetland area (Jeske 1999a:37). 

Aquatic 

In this study, an aquatic environmental zone includes open water areas, such as lakes, 

rivers and creeks (after Edwards 2010). The only aquatic environment within the 2-kilometer 

catchment of Washington Irving is Jelkes Creek. Aquatic zones would have provided several 

types of resources, such a variety of fish and aquatic mammals (e.g. beavers and muskrats), as 
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well as larger upland animals in search for water.  While Jeske (1999a:33) lumped wetland and 

aquatic environmental areas into a single zone, Edwards (2010:66-67) separated wetland and 

aquatic zones because of the different resources availability and transportation potential. As the 

catchment area of the Washington Irving site with the Koshkonong Creek Village are the focus 

of this comparative study, Edwards methods are followed, and Jelkes creek is considered an 

aquatic environment zone separate from wetlands.  

Reconstructing the Prehistoric Vegetation  

The reconstruction of the prehistoric environment for this catchment analysis involve 

several datasets, such as General Land Office (GLO) survey maps and field notes (Milburn 1840; 

Reede 1842) as well as soil survey descriptions and maps (Goddard 1979; Hopkins et al. 1917).  

Using GLO survey maps and field notes to reconstruct the presettlement vegetation of an area is 

a commonly accepted method that has been utilized since 1907 (Keene 1981:51); however, they 

must be used with caution and placed in the context of the surveyor’s mission and available 

technology (Bourdo 1956; Jeske 1988; King 1978; Wood 1976). Soil survey data has been used 

in conjunction with GLO data in more recent Upper Mississippian research (see Edwards 2010; 

Goldstein and Kind 1983; Hunter 2002; Michalik 1982; Tiffany 1982). 

The Kane County soil surveys from the 1979 and 2004 publications utilize “soil series” to 

describe the soils throughout the county (see Goddard 1979, Deniger 2004). First published in 

1937, the Soil Survey Manual outlines and defines “soil series”, a group of soils having horizons 

similar in differentiating characteristics and arrangement in the soil profile and developed from a 

particular type of parent material, and “soil types”, a subdivision of the soil series based on the 

texture of the subsurface soil (Clark 1957:179-181). While Edwards (2010) used the USDA Soil 

Series Descriptions (Staff, n.d.) to understand the original native vegetation of the catchment 
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areas around Lake Koshkonong, the soil survey conducted in 1917 (see Hopkins et al. 1917) for 

Kane County, Illinois predates the United States Soil Survey and Classification system and does 

not utilize soil series. Rather, the soil classification schema simply identifies a soil type by 

texture and color throughout a soil profile and describes the soils drainage capabilities. Soils 

were categorized into four soil classes: Upland Timber soils, Upland Prairie soils, Terrace soils 

and Swamp/Bottomland soils.   

The 1917 soil survey was used to recreate the vegetation of the catchment area, as it is the 

earliest known soil survey of the area and does not include any disturbed soil areas due to 

urbanization like more recent surveys (see Goddard 1979; Deniger 2004). The soil survey 

describes the site to be situated on terrace soils, defined as soils that often occur along streams 

and formed during glacial melting. Ice would carry and deposit large amounts of gravel or sand 

along their courses, with finer material later deposited to form the present topsoil (Hopkins et. al 

1917:38).  The site and its surroundings are located on a “brown silt loam over gravel” type soils, 

described as one of the best terrace soil types with practically perfect drainage and ideal for 

agriculture. However, Moran (1980:9) notes that the terrace and bottomland type soil 

classifications used are of a geological construct and could represent prairie, savanna, forest or 

wetland prehistoric vegetation. Consequently, the environmental zones on terrace and 

bottomland soils types were reconstructed from GLO maps and field notes. 

Moran (1980:10) also suggested that the wooded areas to the west of the Fox River may 

actually be better described as oak savanna rather than hardwood forest or “timber”, as noted by 

GLO surveyor’s maps. Unlike the plat map, the GLO surveyor’s field notes indicate that trees 

may have covered less than 50 percent of the landscape, suggesting a savanna environment. 

Moran (1980:68) hypothesized that some savannas are actually the degraded remnants of forests; 
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he further noted that that savanna environments are commonly found on forest soils, which 

suggests a forest with a higher density and diversity of tree species persisted long enough to 

produce a forest soil profile before being reduced by landscape fires. 

Hunter’s (2002:74) model of the environment surrounding the Washington Irving site is 

similar to the model in this thesis; however, there are several distinctions. First, Hunter’s model 

of the environment surrounding Washington Irving suggests the site is situated in woodland, with 

forest and savanna environmental zones not differentiated. However, based on the descriptions of 

the terrace soils present within the two-kilometer catchment area and the GLO surveyor’s field 

notes, the prehistoric landscape has been interpreted to be a savanna. This discrepancy can most 

likely be attributed to the schema used by Hunter to classify separate vegetation zones. In this 

study, the environmental zone in which the site is located has been categorized as oak opening.  

Second, Hunter (2002:74) suggested the site was located adjacent to a wet prairie. As 

noted previously, wet prairie type environmental zones have been classified as a wetland zones 

(Edwards 2010; Jeske 1999a). Categorized by Hopkins et al. (1917:44) as a bottomland “black 

mixed loam”, the soil that lies directly west of the site is a very fertile soil that drains well. It is 

likely that Hunter’s classification of wet prairie is correct. However, for the purposes this study, 

it has been categorized as a wetland. 

Geographic Information Systems/Science Methodology 

Environmental Zones  

GLO plat maps for the Dundee and Elgin townships in Kane County, Illinois (Milburn 

1840; Reede 1842) were georeferenced in ArcGIS and the soil survey map (Hopkins et al. 1917) 

was digitized into polygon features. After the soil data were symbolized to represent the 
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vegetation based on the survey notes, these two sources were used in conjunction with the GLO 

survey notes to produce a model of prehistoric vegetation zones.  

The soil based vegetation map and the original GLO maps were compared on every 

section line.  Some sections are based on vegetation records from the GLO surveyor’s maps and 

notes and others are based on soil survey data. Jeske (1999a:33) recognizes the variable detail in 

documentation by GLO surveyors within and around vegetation areas, such as openings within 

forest boundaries and open edges around wetlands. When the recorded vegetation by the 

surveyor matched the vegetation type from the soil survey, soil data were used because it is more 

precise.  If there were discrepancies between the two, the GLO vegetation types were used 

because the vegetation was actually observed on the section line and recorded by a surveyor, 

reducing accuracy issues with soil data. When the two vegetation maps did not line up, they were 

manually merged by moving points, merging, clipping, etc. in ArcGIS (methods after Edwards 

2010). 

For the interior of sections, data from the soil based vegetation map were used, as 

surveying techniques did not require surveyors to deviate from a section line. As such, there are 

no notes for the interior of sections and many small areas of vegetation were likely missed and 

not documented (Edwards 2010; Jeske 1999a; Moran 1980). As swamp and marsh bottomlands 

were incompletely documented by GLO maps and field notes, the soil data were used 

exclusively to determine wetland vegetation in the catchment area, on section lines and in the 

interior of sections. The only wetland zones in the catchment area are “peat loams”, described as 

occupying “low, swampy areas that have an almost constant supply of water” (Hopkins et al. 

1917:41). 
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Ecotones 

After the environmental zones of the catchment area were created from the GLO survey 

and soil survey data, ecotones were created. An ecotone has been defined as “a transition 

between two or more diverse communities…a junction zone or tension belt which may have 

considerable linear extent but is narrower than the adjoining community areas” (Odum 

1959:278).  Ecotones are important to understanding human-land relationships as they are 

typically more productive and contain more biodiversity than the individual communities that 

compose them, although how much more is dependent upon multiple factors (cf. Fitting 1966; 

Ghiselin 1977; Lachavanne and Juge 1997; Risser 1995; Schiemer and Zalewski 1991). 

In ArcGIS, the ecozones features were first converted from polygons to lines, and 250-

meter polygons buffers were generated to model the ecotone areas around environmental zone 

boundaries. Several of the Extract and Overlay toolsets in the Analysis ArcToolbox were used to 

create the ecotones. Clip, intersect, union and erase tools were used to manipulate the features to 

model the intersecting ecotones of the catchment area (after Edwards 2010).  

Agricultural Potential 

Along with ecozones and ecotones, a model of the agricultural potential was also created 

of the two-kilometer catchment area.  Agricultural potential was determined to be good, fair or 

poor. The agricultural potential of the catchment area was modeled by assessing three criteria: 

soil quality, soil drainage, and slope (Edwards 2010).  

Soil qualities including loams and silts were considered to be the best soil types for 

tilling, as well as loamy sands, silty loams, sandy loams, and silty sands. Soils that were 

primarily a clay component are considered poor for cultivation. Prairie environments were 
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immediately discounted as potential area for cultivation because of the extensive root systems of 

prairie soils (after Edwards 2010:73-74). The majority of soils in the catchment area are silty 

loams, with some wetland areas of deep peat soils (Hopkins et al. 1917). 

The soil surveyors also assessed the drainage capabilities of soil types (see Hopkins et al. 

1917). Soils classified as well drained or moderately well drained were considered good for 

agriculture. Those that were classified as somewhat poorly drained were considered fair. Certain 

soils were determined to excessively drain and were considered poor for agriculture; if the soils 

drain too quickly, plants are not likely to get enough water for cultivation (Edwards 2010:74). 

The 1979 soil survey data were used in conjunction with the 1917 survey to model the 

slope of the catchment area for determining agricultural potential. This survey was used for 

several reasons.  The 1979 dataset contains slope information that the 1917 soil survey does not 

contain, and also contains fewer areas of disturbed soil than more recent surveys (Deniger 2004).  

While the survey has disturbed soil areas due to urbanization that makes vegetation 

reconstruction difficult, the slope of the landscape for the majority of the catchment area could 

be modeled. The majority of disturbed soils were small areas encompassed by larger areas of 

uniform slope; these areas were assumed to have a similar slope as the directly surrounding area 

and feature classes were created accordingly. Areas classified as zero to six percent slope were 

rated as good, and six to twelve percent slope were rated as fair. Areas with greater than twelve 

percent slope were considered to be too steep for plant cultivation (after Edwards 2010). Once 

the slope of the area was modeled, all three criteria of agricultural potential were considered for 

creating the agricultural potential model.  

Resource Pull 

Based on Jochim’s (1976) assumptions of uneven distribution of resources and their 
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effect on settlement patterns, a resource pull analysis was conducted. The entire two-kilometer 

catchment area was given a score based on the economic potential of the environmental zone, the 

agricultural productivity, and the number of ecotones present. Regarding the economic potential 

of resource zones, savannas and wetlands scored a four, creeks and lakes scored a two, and 

prairie scored a one. The number of environmental zones within an ecotone determined its 

resulting score. The highest possible score for an ecotone was four, and the least possible was 

zero (methods after Edwards 2010). 

Within ArcGIS, resource pull areas were determined using the Union Overlay tool in 

ArcToolbox. By using Union Overlay, a new shapefile was produced from the three input 

features (ecozones, ecotones, and agricultural potential), with all of their attributes saved into the 

shapefiles four new attribute fields. Using the variable coding schema, the field calculator tool 

was used to add the scores into a single resource pull score. The lowest possible score was one, 

and a maximum possible score was twelve. After totaling the variable scores into single resource 

pull score, a map was symbolized and exported.  

Modeling the Koshkonong Creek Village Environment 

The methods of modeling the prehistoric environment surrounding the Washington Irving 

site were derived from Edwards’ (2010) reconstruction of the environment around the Oneota 

sites in the Lake Koshkonong Locality. Excluding the minor differences in methods previously 

outlined throughout this chapter, the methods outlined in this chapter are congruent with those 

used by Edwards to recreate the environment surrounding the Koshkonong Creek Village. The 

maps of KCV produced in the previous chapter were created using the respective GLO plat maps 

and field notes (Burnham 1836; Land 2005; Miller 1833) and soil survey data (Glocker 1979; 

Staff, n.d.) from Jefferson County, Wisconsin. For a comprehensive description of the 
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reconstruction of the prehistoric environment at KCV, see Edwards (2010). 

Expectations 

Jeske (1990:224) suggested that Langford site placement is related to a combination of 

variables that include the efficient exploitation of multiple ecozones and the availability of 

tillable soils and hardwoods for fuel and construction material. As such, we can expect the 

Washington Irving site to be placed around several environments with access to wooded 

resources and arable land. 

In her comparison of the Crescent Bay Hunt Club site with Washington Irving, Hunter 

(2002:96) demonstrated that Oneota and Langford groups “preferred two different 

microenvironments at the edge of the prairie peninsula.”  Likewise, other scholars have 

previously suggested that Langford groups cultivated drier terrace soils near upland resources 

while Oneota typically settled on alluvial or marsh soils (Jeske 1989b; Lurie 1992). However, 

Keyes (1929:141) originally noted that Oneota sites are often located on river terraces or wide 

prairies, while Sasso (1989:250) suggested that Oneota village sites in the La Crosse locality 

were commonly situated on well-drained terraces. While we can expect the site location and the 

surrounding landscape around Washington Irving to reflect this pattern, the main goal of this the 

comparative catchment analysis is to examine the idea that the two Upper Mississippian groups 

preferred different environmental settings, and if so, how they differed. 

While Hunter’s (2002) research focused on the difference between Langford and Oneota 

site placements, the focus of this study is to understand the environments of seemingly similar 

occupied areas. Hunter (2002:88) previously suggested that Washington Irving was situated on a 

landscape with more optimal growing conditions for corn than the Crescent Bay Hunt Club; 
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However, Edwards (2010) suggested that the environment around the Koshkonong Creek Village 

site would have had significantly more arable land than the area surrounding the Crescent Bay 

Hunt Club site. Based on these previous environmental analyses, it is expected that KCV and 

Washington Irving had plenty of arable land. 
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CHAPTER 4 

THE STUDY SITES 

The following chapter provides a discussion of the Washington Irving and Koshkonong 

Creek Village sites. These are not the only Langford and Oneota sites within the area; however, 

the sites have been chosen for this study because their similar locations along a creek 

environment allows for comparison between Langford and Oneota habitation sites in the 

northern Illinois and southeastern Wisconsin region. Following a summary of the previous 

excavations and research conducted at each site, a full environmental description generated from 

the models created in ArcGIS will be discussed. 

The Washington Irving Site (11K52) 

The Washington Irving site is a Langford village habitation site located in northeastern 

Illinois in the Fox River valley along Jelkes Creek, a tributary of the Fox River (Figure 4.1). The 

earliest documentation of the site was during the early 19th century (see Bird 1989; Jeske 1990).  

In 1823, Captain Stephen Long was the first to document the site. Upon crossing the Fox River 

and discovering the site, the expedition: 

…discovered a number of mounds, which appear to have been arranged with a certain 
degree of regularity. Of these we counted twenty-seven. They vary from one to four feet 
and a half in height, and from fifteen to twenty-five in length; their breadth is not 
proportioned to their length, as it seldom exceeds six to eight feet. They are placed at 
unequal distances, which average about 20 yards, and are chiefly upon the brow of the 
hill; but some of them stand at a greater distance back. Their form appears to have been 
originally oval; and the slight depression in the ground observed sometimes on both sides 
of the mound, seems to indicate has been raised by means of earth collected in its 
immediate vicinity [Keating 1824:179-180]. 
 
Stephen H. Long’s expedition notes indicate a slightly different description of the 

discovery. He wrote of no less than 26 mounds situated upon a rising ground about 250 yards  
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Figure 4.1 Location of the Washington Irving site in Kane County, Illinois. 
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west of the Fox River. He described the mounds as measuring “20 to 30 feet in length, about 10 

[feet] broad and from 3 to 5 [feet] high” (Kane et al. 1978:138). Based on a U.S. General Land 

Office plat map from 1836, the site was described as a concentration of 27 ancient mounds 

within a 40-acre parcel of land (Milburn 1840, Figure 4.2). However, when the site was first 

investigated in 1982, there were no mounds visible in the present day soybean field that occupied 

the space (Jeske 1990, 2000).  

Figure 4.2: General Land Office plat map of the Washington Irving site (Milburn 1840). 
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Archaeological Investigations at Washington Irving 

In 1983, a walkover survey was conducted of the Washington Irving site by the Elgin 

Community College field school. Seven artifact concentration areas were identified, consisting 

of mostly lithic debris and tools, as well as pottery sherds and plow shatter. Several field schools 

from the Fox Valley Campus of the Center for American Archaeology also conducted a total 

surface pick-up survey of the area (Jeske 2000).  Based on the initial surveys of the field, Jeske 

(1990, 1992a) suggested what Long termed “mounds” were actually collapsed late prehistoric 

earthlodges. 

In 1984, field school crews from Elgin Community College as well as Judson College 

and Harper College returned to conduct excavation in the areas of largest artifact concentration. 

A total of 38 2-x-2-m units were excavated and indicated a significant Langford occupation. 

While there was little cultural material below the plowzone, 12 features and four postmolds were 

discovered. Of the 12 features, 11 of them were excavated and all of them were interpreted as 

pits or hearths. In 1985, the same field schools returned to the site for further excavation to focus 

on the cluster of features that were initially interpreted as household units discovered during the 

previous field season. John Doershuk and April Sievert supervised excavations at the site under 

the overall direction of Robert Jeske (1990).  A large block was opened to identify the possible 

house floor of the earth lodge. In total, an additional 26 2-x-2-m units were dug with 21 features 

and postmolds excavated (Jeske 2000, Figures 4.3 and 4.4).  

In 1993, a final survey was conducted at Washington Irving and confirmed the original 

site boundaries laid out a decade prior. The Icabod site was discovered only 240 meters west of 

the Washington Irving site; however, further research has not been conducted there. Botanical  
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Figure 4.3 Location of 1984 and 1985 excavation units and total surface pickup units (after Jeske 
2000:276). 

 

remains, archaeozoological data, feature distribution, and the presence of earth lodges suggest 

the site was an extensive horticultural village, possibly occupied year-round (Bird 1997; Egan 

1985; Jeske 1990, 2000; Lurie 1992; Yerkes 1985). 
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Figure 4.4. Planview of block excavation units and features at the Washington Irving site, 1985 field 
season (after Jeske 2000). 

 

Previous Research at Washington Irving  

To date, thirteen radiocarbon dates have been taken from the Washington Irving site. Five 

radiocarbon dates from wood charcoal suggest an occupation circa A.D. 1260 to A.D. 1450 

(Table 4.1; see Jeske 1990; calibrations from Stuiver and Reimer 1986). However, more recent  
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Table 4.1. Radiocarbon Dates from the Washington Irving site (derived from Stuiver and Reimer 
1986). 

Material 
14C 
age ± Calibrated 

1 sigma % Calibrated 
2 sigma % Reference Lab # 

Wood 
Charcoal 440 70 1412-1516 

1596-1618 
.87 
.13 

1328-1341 
1395-1640 

.02 

.98 Jeske 1990 Beta 12587 

Wood 
Charcoal 710 70 

 
1225- 1232 
1244-1313 
1357-1388 
 

.04 

.70 

.26 
1189-1405 1 Jeske 1990 ISGS 1444 

Wood 
Charcoal 720 70 1223-1305 

1363-1385 
.83 
.17 

1169-1175 
1181-1399 

.01 

.99 Jeske 1990 ISGS 1437 

Wood 
Charcoal 420 70 

 
1423-1521 
1578-1582 
1591-1620 

 
.78 
.02 
.20 

1407-1642 1 Jeske 1990 Beta 12588 

Wood 
Charcoal 710 60 1252-1310 

1360-1387 

 
.74 
.26 
 

1213-1398 1 Jeske 1990 Beta 19885 

Maize 650 20 1291-1306 
1363-1385 

.4 

.6 
1284-1318 
1352-1390 

.44 

.56 
Richards and 
Jeske 2015 ISGS A1205 

Maize 655 25 1288-1306 
1363-1385 

 
.46 
.54 
 

1281-1320 
1350-1391 

.47 

.53 
Richards and 
Jeske 2015 ISGS A1201 

Nutshell 670 25 1283-1302 
1367-1382 

.60 

.40 
1277-1315 
1356-1389 

.57 

.42 
Richards and 
Jeske 2015 ISGS A1206 

         

Nutshell 800 20 1224-1256 1 1212-1269 1 Richards and 
Jeske 2015 ISGS A1202 

Nutshell 810 25 
 
1218-1256 
 

1 1182-1269 1 Richards and 
Jeske 2015 ISGS A1204 

Residue, 
Langford Plain 880 20 1155-1209 1 

1049-1084 
1124-1136 
1150-1217 
 

.19 

.03 

.78 
 

Richards and 
Jeske 2015 ISGS A1080 

Residue, 
Langford Plain 1005 20 998-1003 

1012-1031 
.09 
.91 

988-1041 
1108-1116 

.98 

.02 
Richards and 
Jeske 2015 ISGS A1081 

 

radiocarbon dates suggest an earlier and longer occupation between A.D. 1000 and A.D. 1400 

(Richards and Jeske 2015).  

While the site was heavily disturbed by many years of plowing, Jeske (2000) determined 

features uncovered during the 1984 and 1985 field seasons to be portions of two subterranean 

house floors. While most of the cultural material recovered comes from the plowzone, a fraction 
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of the cultural assemblage was recovered from feature contexts. Virtually all of the ceramic 

assemblage recovered from excavation has been confidently assigned as Langford ceramics 

(Jeske 2000:279). The lithic assemblage suggests a generalized economy of inexpensive raw 

materials and bipolar reduction (Jeske 1990, 2000). While the lithic assemblage was 

preliminarily discussed by Jeske (1990, 2000), Chapter 7 of this thesis will be an in-depth 

discussion of the macroscopic analysis of lithics at Washington Irving. 

Maize was ubiquitous at the site; other plant remains include cucurbits and American 

lotus well as other floral material such as wild rice, goosefoot and a variety of seeds and nuts that 

suggest extensive resource exploitation (Egan 1985; Jeske 2000). Hunter (2002) suggested a 

wide-ranging faunal resource base; about half of the faunal assemblage consisted of mammal 

resources, while fish composed approximately a quarter of the assemblage, with the remainder of 

the assemblage composed mostly of reptile and bird resources (by NISP) (Hunter 2002; Yerkes 

1985).  

Early Survey of the Area 

The General Land Office (GLO) Survey for the state of Illinois began as early as 1804 

and was completed by 1856 (Hutchison 1988:246).  By the time of European settlement in 

northeastern Illinois circa 1820, the landscape consisted of prairie, oak-dominated savanna and 

eastern deciduous forests. Along with Milburn (1840), Moran (1980) and Jeske (2000), 

ecologists Bowles and McBride (2003) reconstructed the pre-European settlement composition 

of vegetation and landscape patterns using the original maps and vegetation notes from the U. S. 

Public Land Survey of Kane County. They concluded that the mixed prairie and timber 

vegetation pattern in northeastern Illinois began to develop during the hottest and driest part of 
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the Holocene (around 6,000 and 8,000 years ago) when fires and prevailing winds would have 

eliminated timber in fire-prone areas of the landscape (Bowles and McBride 2003:7). While 

landscape fire processes may have been a significant factor in shaping the pre-European 

settlement vegetation patterns of northeastern Illinois (Bowles and McBride 2003:10), Edwards 

(2010:66) similarly noted many scholars suggest fires, both natural and cultural in origin, were 

important for creating and maintaining a prairie landscape in southeastern Wisconsin and around 

Lake Koshkonong (see Goldstein and Kind 1983; Theler and Boszhardt 2006). 

The U.S. General Land Office map of the area, dated 1838, simply shows the site as 

being a cluster of 27 ancient mounds, located about 250 yards west of the Fox River along Jelkes 

Creek (Milburn 1840). Jeske (2000:271) suggested that the creek is an old meander scar of the 

Fox River that was probably cut off from the main channel of the river within the last 7,000 to 

10,000 years. The Upper Mississippian settlement at Washington Irving would have been 

situated along the smaller creek rather than a larger river. The site is depicted on the GLO map as 

located on a prairie landscape, surrounded by timber. However, the GLO surveyor’s field notes 

suggest that the site is located in an oak savanna.  

The earliest known soil survey of Kane County, Illinois was published in 1917. 

According to the introductory note within the report, the survey and publication was designed to 

provide “a discussion of important fundamental principles to help the farmer and landowner 

better understand the meaning of the soil fertility invoice for the lands in which he is interested” 

(Hopkins et. al 1917) (Figure 4.5). 

Over a half-century after the first soil survey publication, a Kane County soil survey was 

released by the U.S. Department of Agricultural. The 1979 soil survey was prepared for various  
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Figure 4.5: Map of early soil survey in the vicinity of the Washington Irving site (Hopkins et al. 1917). 

uses and “land-planning programs”, such as soil management practices, land use, conservation 

and development (Goddard 1979:ix), and provided a more detailed and comprehensive soil 

information. The survey was updated further a quarter-century later by a more extensive soil 

survey designed to update the preceding survey to provide “additional soil information and larger 

maps which show the soils in greater detail” (Deniger 2004:13). 
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As the most recent soil surveys have a large amount of soil disturbance, the model of the 

prehistoric environmental zones and subsequent catchment analysis of the Washington Irving 

site was created using the earliest survey available (see Hopkins et al. 1917).  The remainder of 

this chapter will further discuss environmental surroundings and resource potential of the 

Washington Irving site based on a one- and two-kilometer catchment modeled of the site. 

Methodology regarding the modeling of environment has been previously outlined in Chapter 

Three.  

Description of the Washington Irving Site Location 

Environmental Zones  

The Washington Irving site is located in a savanna environment. Approximately 83% of 

the one-kilometer catchment area is savanna, with a slightly lower proportion (77%) accounting 

for the larger two-kilometer catchment (Figure 4.6, Table 4.2). The site entire site is located on a 

savanna landscape as well as a wetland environment; based on GLO notes, it is likely that the 

wetland environment around the site was a seasonally wet-prairie type environment. 

Table 4.2. Environmental Zones within Washington Irving Catchments. 
Washington Irving  Savanna  Prairie  Wetland  Lake  Creek  Total  
1 km - Total Area (m²) 2,620,388 0 507,799 0  11,392  3,139,579 
1 km - Proportion  83% 0% 16% 0% <1% 100% 
2 km - Total Area (m²)  9,694,211 1,144,574 1,641,318 0 71,378 12,551,481 
2 km - Proportion  77% 9% 13% 0% 1% 100% 

 

Over tripling in size at the larger catchment, wetland environments account for 16% of 

the one-kilometer catchment area and 13% of the two-kilometer catchment area. Wetland areas 

are located along the creek and to the northeast of the site, as well as dispersed to the south and 

west of the site by nearby prairie environments. Prairies represent 9% of the  
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Figure 4.6 Map of the environmental zones around the Washington Irving site. 
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two-kilometer catchment area around the site; however, there are no prairie environments located 

within the one-kilometer catchment. Jelkes Creek represents less than 1% of the site around the 

one-kilometer catchment, and only 1% of the two-kilometer catchment area. 

Ecotones  

While primarily surrounded by savanna environments, the Washington Irving site is 

situated in a diverse community of ecotones (Figure 4.7, Table 4.3). The site is located entirely 

within a water/wetland/savanna ecotone and represents 39% of the one-kilometer catchment 

area, the highest represented ecotone.  

Table 4.3. Ecotones within Washington Irving Catchments. 

Washington Irving Water/Wetland  Water/Prairie  
1 km - Area of Ecotones (m²) 0  0  
1 km - Proportion of Catchment  0%  0% 
2 km - Area of Ecotones (m²)  10,822  0  
2 km - Proportion of Catchment  <1%  0%  
 Water/Savanna  Wetland/Prairie  
1 km - Area of Ecotones (m²) 14,598 0 
1 km - Proportion of Catchment  <1% 0% 
2 km - Area of Ecotones (m²) 45,590 0 
2 km - Proportion of Catchment  <1% 0% 
 Wetland/Savanna  Prairie/Savanna  
1 km - Area of Ecotones (m²) 576,859 16,239 
1 km - Proportion of Catchment  18% 1% 
2 km - Area of Ecotones (m²) 2,288,049 2,213,717 
2 km - Proportion of Catchment  18% 18% 
 Water/Wetland/Prairie Water/Wetland/Savanna  
1 km - Area of Ecotones (m²) 0 1,208,883 
1 km - Proportion of Catchment  0% 39% 
2 km - Area of Ecotones (m²)  0 2,518,605 
2 km - Proportion of Catchment  0% 20% 
 Water/Prairie/Savanna  Wetland/Prairie/Savanna  
1 km - Area of Ecotones (m²) 0 6,023 
1 km - Proportion of Catchment  0% <1% 
2 km - Area of Ecotones (m²)  0 1,607,870 
2 km - Proportion of Catchment  0% 13% 
 Water/Wetland/ 

Prairie/Savanna  
TOTAL  

1 km - Area of Ecotones (m²)  0 1,822,602 
1 km - Proportion of Catchment  0% 58% 
2 km - Area of Ecotones (m²)  2,160 8,686,813 
2 km - Proportion of Catchment  <1% 69% 
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Figure 4.7 Map of the ecotones near the Washington Irving site. 
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Wetland/savanna ecotones represent 18% of the one-kilometer catchment area. 

Water/savanna and wetland/prairie savanna ecotones each represent less than 1% of ecotone 

areas, while there are no water/wetland ecotones. The absence of water/wetland ecotones is due 

to the overlap of the savanna components within the catchment area, as Jelkes Creek runs 

through a wetland area, which is directly surrounded by savanna within the 250-meter ecotone 

buffer and is characterized within the larger water/wetland/savanna ecotone.  

The one- and two-kilometer catchment areas are similar but differ in the proportions of 

ecotones. The water/wetland/savanna and wetland/savanna ecotones continue to represent the 

highest proportion of ecotones (20% and 18% respectively) over the two-kilometers area; 

however, prairie/savanna and wetland/prairie ecotones account for a higher proportion (18% and 

13% respectively) than exhibited by the smaller catchment.  Water/wetland, water/savanna and 

water/wetland/prairie savanna ecotones account for very low proportions (less than 1% each) of 

the two-kilometer catchment, while water/prairie, wetland/prairie, water/wetland/prairie and 

water/prairie/savanna ecotones do not exist within the one- and two-kilometer catchment areas.  

Agricultural Potential  

Washington Irving was settled near a large amount of arable land (Figure 4.8, Table 4.4).  

Within the one-kilometer catchment, over half (60%) of the land would have been arable, while 

50% was good quality, and 10% was fair quality. Within the two-kilometer catchment area, 63% 

of the land would have had a potential for agriculture, more than quadrupling the amount of 

arable land within the one-kilometer catchment. The majority of arable land is located to the east 

of the site, as well as west and south across Jelkes Creek away from the wetland environments. 
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Figure 4.8 Map of the arable land surrounding the Washington Irving site. 
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Table 4.4. Arable Land within Washington Irving Catchments.  
Washington Irving Good  Fair  Total Arable  Poor  
1 km - Total Area (m²) 1,572,137 307,587 1,879,724 1,259,855 
1 km - Proportion  50% 10% 60% 40% 
2 km - Total Area (m²)  7,264,841 626,647 7,891,488 4,659,993 
2 km - Proportion  58% 5% 63% 37% 
 

The Koshkonong Creek Village Site (47JE379) 

The Koshkonong Creek Village site is a prehistoric Oneota site located on a modern farm 

near Lake Koshkonong in Jefferson County in southeastern Wisconsin (Figure 4.9). Located 

along the shores of Lake Koshkonong and the Rock River (Overstreet 1997:253), KCV is one of 

several Oneota habitation site located in the Lake Koshkonong locality. It was first documented 

in the early twentieth century by amateur archaeologists Stout and Skavlem (1908:95-96), who 

described it as a “small village site”, located approximately 500 feet of the Hemphill farm. Their 

discoveries at the site included various ceramic potsherds, points, axes and celts, and various 

other artifacts. Skeletal remains of two individuals were uncovered at the site by an agricultural 

plow. They also found several concentrated areas containing mussel shells that were interpreted 

as refuse pits and other areas containing burnt lithic material that were interpreted as hearths.	
   

In addition to the village site, Stout and Skavlem (1908) report several mounds associated 

with the site. They noted: 

Close to the village site on the W. D. Hemphill farm (E ½, S. E. ¼ Sec. 7) were two 
conical mounds. These are now nearly leveled. In one Mr. Hemphill found the skeletons 
of two children. To the east on the adjoining farm was once a conical mound and about a 
quarter of a mile further to the east are traces of another. [Stout and Skavlem 1908:58]  
 
Along with the conical mounds located near the village, they also mention two other 

mound groups not associated with KCV that are removed from the current boundaries of the site.  
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Figure 4.9 Location of the Koshkonong Creek Village site in Jefferson County, Wisconsin (after Edwards 
2010).	
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They wrote of one isolated, well-preserved linear mound west of the village, and three nearly 

leveled linear mounds north of the creek (Stout and Skavlem 1908:58).  

Archaeological Investigations at the Koshkonong Creek Village 

In 1986, the University of Wisconsin-Milwaukee conducted a survey at the site as part of 

the Lake Koshkonong Survey (Musil 1987). Musil recorded the Koshkonong Creek village site 

outlined by Stout and Skavlem (1908) on the Weisensel farm and subsequently renamed the site 

Twin Knolls. In her survey, she identified three artifact concentration areas and established site 

boundaries that cover approximately nine and a half acres. 

UW-Milwaukee returned to KCV in 2008 as a field school to conduct a walkover survey 

of the site. It was determined that the site boundaries extend further than previously established 

during the initial survey, covering 13 acres. Two artifact concentration areas were delineated that 

overlap two of the original concentrations that Musil recorded and 459 artifacts were recovered 

(Cowell et al. 2008).  

During the 2010 field season, the UW-Milwaukee field school returned to KCV to 

conduct additional pedestrian surveys as well as the first subsurface excavation. The artifacts 

uncovered from the 2010 field season support the previous interpretations of the site boundaries 

and concentrations from the 2008 field survey. Along with some historic artifacts, 686 

prehistoric artifacts were recovered from the 2010 survey, with 163 recovered from pedestrian 

survey and 523 from the 68 shovel tests excavated. Based on the findings from shovel testing, 

three 2-x-2-m test excavation units were excavated. A total of 214 prehistoric artifacts—mostly 

lithics—were recovered from the test excavations with no features uncovered (Pater et al. 2010). 

In 2012, UW-Milwaukee returned to the site to exclusively focus on the concentration 

areas defined during the surveys of 1986 and 2008 and excavated 40 square meters within the 
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Oneota component of the site. Ten 2-x-2-m units were excavated in a block to identify features 

beneath the plow zone. A total of 48 features were excavated, comprising 37 postmolds, four 

basins, two cylindrical pits, two shallow basins, a wall-trench, a heavily disturbed hearth, and a 

large post or small pit. A single feature, possibly a small pit, was not excavated because of its 

location, extending under a back dirt pile. All excavated features were bisected by a trench to 

expose a profile and the remainder of the feature fill was collected for flotation. The pattern of 

postmolds indicate at least one, but potentially two, house structures within the excavated area 

(Edwards and Spott 2012).  

In 2014, UW-Milwaukee returned to KCV for further survey and excavation. The 2014 

KCV pedestrian survey covered approximately 12 acres of agricultural fields at the site and 

produced 103 lithic tools and 265 pieces of debitage in several concentration areas east of the 

2012 and 2014 excavation areas (Ahlrichs et al. 2014). Excavation units were placed southeast of 

the 2012 excavation units with the goal of locating the southern portion of the long house 

discovered during the previous field season. A total of 45 m² were excavated with 14 features 

and over 60 postmolds uncovered, including part of the eastern wall of the previously discovered 

longhouse and segments of two other possible structures, as well as several small basins and 

large cylindrical pits, initially thought to be refuse pits. As with the 2012 excavation, features 

were photographed, mapped and bisected, with half of the soil matrix collected for flotation 

(Edwards 2014). 

Previous Research at KCV  

To date, only two radiocarbon dates are available for the site (Table 4.5). The first sample 

was from residue on the inside of a Grand River Plain rim sherd and dates to calibrated A.D. 

990-1045 at two sigmas (Edwards and Spott 2012). The second radiocarbon date was from  
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Table 4.5. Radiocarbon Dates from the Koshkonong Creek Village Site (Edwards and Spott 2012; 
Edwards, personal communication). 

Material 14C age ± 
Calibrated 1 
sigma 

% Calibrated 2 
sigma 

 % Lab # 

Residue, 
Grand River 1000 20 

999-1002 
1013-1035 
 

.06 

.94 
 

989-1104 
1099-1119 
1142-1146 

.92 

.07 

.01 
ISGS A2272 

Residue, 
Busseyville 605 

 
 
20 

 
1307-1328 
1341-1363 
1385-1395 

 
.41 
.41 
.17 

1299-1370 
1380-1403 

.78 

.21 ISGS A2320 

 

residue on a smoothed over Busseyville Grooved Paddle Trailed sherd.  The most probable two 

sigma calibrated date is circa A.D. 1300 -1370 (p=0.78) with a smaller probability of A.D. 1380-

1405 (p=0.21) (Edwards, personal communication). From the two radiocarbon dates from the 

site, the time of occupation aligns with the dates from the nearby Schmeling and the Crescent 

Bay Hunt Club sites (Edwards 2014) and support previously tentative dates for the site (Cowell 

et al. 2008; Musil 1987). 

In a preliminary analysis of the lithic assemblages from the 1986, 2008 and 2010 field 

seasons, Doyle (2012) concluded that stone tools from KCV appear to resemble an Upper 

Mississippian tool economy based on speed and efficiency, manufacturing tools with free-hand 

and bipolar techniques with fair and poor quality materials. Carpiaux and Edwards (2014) 

conducted a preliminary analysis of the 2012 ceramic assemblage and concluded that the 

assemblage fits well into the expectation of a Lake Koshkonong Oneota site, although they 

advocate for additional analysis with a larger sample size. Edwards and Spott (2012) provided a 

preliminary feature analysis of the site and outlined the ceramic, faunal, and copper assemblages 

from excavation at the site. 

Relatively little research has been completed on the Koshkonong Creek Village site 

compared to other Oneota sites around Lake Koshkonong (but see Carpiaux and Edwards 2014; 



 

 64 

Cowell et al. 2008; Doyle 2012; Edwards 2010, 2014; Edwards and Spott 2012; Edwards and 

McTavish 2012; McTavish and Edwards 2014; Musil 1987; Pater et al. 2010; Van de Par et al. 

2015). Recently, the Crescent Bay Hunt Club has been a major focus of research in the Lake 

Koshkonong locality. Master’s theses, doctoral dissertations and other academic works by 

Edwards (2010), Foley-Winkler (2004, 2011), Hunter (2002), Jeske (2003, editor), Jeske et al. 

(2006), Moss (2010), Olsen (2003), and Sterner (2012) provide descriptions of Oneota settlement 

patterns, mortuary practices, lithic economies and subsistence practices.  

Early Survey of the Area 

Survey for the state of Wisconsin was conducted between 1832 and 1866 (Wisconsin 

Board of Commissioners of Public Land 2005). Miller in 1833 and Burnham, Mullett and Brink 

throughout 1835 and 1836 surveyed the sections within the townships to the northwest of Lake 

Koshkonong (Burnham 1836; Miller 1833). The nearly leveled mounds associated with the 

Koshkonong Creek Village site (Stout and Skavlem 1908:58) are not noted on the GLO plat map 

or sketch maps (Figure 4.10).  

 Based on General Land Office survey notes, Robert Finley (1976) produced a map of the 

original vegetation cover for the entire state of Wisconsin at a 1:500,000 scale (Figure 4.11). 

This vegetation map has been used in previous research regarding Oneota settlement and 

subsistence patterns (see Rodell 1983). However, in a comparison of the map produced by Finley 

and the GLO plat map produced by Burnham (1836), Edwards (2010) showed that the map 

created by Finley is not suitable for the reconstruction of environmental zones and boundaries 

because of its small scale. Finley failed to record Koshkonong Creek as well as several other 

wetland features and misrepresented the forest boundaries around the region compared to the 

areas that are found on the GLO map. Edwards acknowledged that the differences between the  
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Figure 4.10 GLO sketch map of Lake Koshkonong and Koshkonong Creek (Burnham 1836) 

 

soil survey maps and GLO maps may be due in part to the nature of the GLO survey and its lack 

of data from the interior of the sections. 

Along with other Oneota sites in the Lake Koshkonong locality, Edwards (2010) 

successfully created a model of the environmental zones around the Koshkonong Creek Village 

using a combination of GLO maps and survey notes and soil survey data (see Burnham 1836; 

Glocker 1979; Miller 1833). 
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Figure 4.11: Original vegetation cover for the state of Wisconsin based on GLO notes (Finley 1976). 
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Description of the Koshkonong Creek Village Site Location 

Environmental Zones  

Savanna environments largely dominate the site area (Figure 4.12, Table 4.6). Savanna 

accounts for 84% of the two-kilometer catchment area, with a slightly higher proportion (88%) 

accounting for the one-kilometer catchment. The entire site is located within a savanna 

environment. Wetland environments are the second most common, accounting for 12% of the 

two-kilometer catchment area, mainly located along the creek as well as to the north and 

northeast of the site. Prairie environments, as well as the creek itself, account for the remainder 

of the environmental zones. Prairie represents 6% of the one-kilometer catchment, but is only 

represented by 2% of the two-kilometer catchment. The creek represents 2% of the site around 

both one- and two-kilometer catchment areas (Edwards 2010). 

Table 4.6. Environmental Zones within Koshkonong Creek Village Catchments (after Edwards 2010).  
KCV  Savanna  Prairie  Wetland  Lake  Creek  Total  
1 km - Total Area (m²) 2,747,716  199,414  118,405  0  74,598  3,140,132  
1 km - Proportion  88%  6% 4% 0%  2%  100%  
2 km - Total Area (m²)  10,488,508  310,649  1,469,804  0  290,070  12,559,033  
2 km - Proportion  84% 2%  12%  0%  2%  100%  
 

Ecotones  

The Koshkonong Creek Village is located within a diverse environment.  There are four 

different ecotone areas located within the sites boundaries, and the site is surrounded by a variety 

of other ecotones (Figure 4.13, Table 4.7). Prairie/savanna and water/wetland/prairie/savanna 

ecotones represent the largest proportion of ecotones (15% and 14% respectively) within the 

one-kilometer catchment. The remaining wetland/savanna, water/wetland/savanna, 

water/prairie/savanna water/savanna and water/wetland/savanna ecotones represent similar 

proportions (7, 8, 9, 10 and 11%, respectively) (Edwards 2010). 
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Figure 4.12 Map of the environmental zones around the Koshkonong Creek Village site (after Edwards 
2010). 
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Figure 4.13 Map of the ecotones near the Koshkonong Creek Village site (after Edwards 2010). 
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Table 4.7 Ecotones within Koshkonong Creek Village Catchments (after Edwards 2010).  

KCV Water/Wetland  Water/Prairie  
1 km - Area of Ecotones (m²) 0  0  
1 km - Proportion of Catchment  0%  0%  
2 km - Area of Ecotones (m²)  0  0  
2 km - Proportion of Catchment  0%  0%  
 Water/Savanna  Wetland/Prairie  
1 km - Area of Ecotones (m²) 313,785  0  
1 km - Proportion of Catchment  10% 0%  
2 km - Area of Ecotones (m²) 814,405  0  
2 km - Proportion of Catchment  6%  0%  
 Wetland/Savanna  Prairie/Savanna  
1 km - Area of Ecotones (m²) 218,730  479,604  
1 km - Proportion of Catchment  7% 15%  
2 km - Area of Ecotones (m²) 3,119,603  911,210  
2 km - Proportion of Catchment  25%  7%  
 Water/Wetland/Prairie Water/Wetland/Savanna  
1 km - Area of Ecotones (m²) 0  248,729   
1 km - Proportion of Catchment  0% 8% 
2 km - Area of Ecotones (m²)  0  1,844,493   
2 km - Proportion of Catchment  0%  15% 
 Water/Prairie/Savanna  Wetland/Prairie/Savanna  
1 km - Area of Ecotones (m²) 292,450  334,703  
1 km - Proportion of Catchment  9%  11% 
2 km - Area of Ecotones (m²)  497,942  657,542  
2 km - Proportion of Catchment  4% 5% 
 Water/Wetland/ 

Prairie/Savanna  
TOTAL  

1 km - Area of Ecotones (m²)  451,359  2,339,360  
1 km - Proportion of Catchment  14% 74%  
2 km - Area of Ecotones (m²)  1,029,228  8,874,423  
2 km - Proportion of Catchment  8%  71%  
 

Within the two-kilometer catchment, wetland/savanna ecotones are most common (25%), 

with water/wetland/savanna ecotones accounting for 15% of the catchment area. Collectively, 

ecotones represent 74% of the one-kilometer catchment and 71% of the two-kilometer 

catchment. Edwards (2010:108) suggested the winding nature of Koshkonong Creek lengthened 

the transitional boundaries between environmental zones, resulting in more ecotone coverage. 

Agricultural Potential  

The Koshkonong Creek Village was settled near a large amount of land with the potential 

for agriculture (Figure 4.14, Table 4.8).  Within the one-kilometer catchment, over two-thirds  



 

 71 

Figure 4.14 Map of the arable land surrounding the Koshkonong Creek Village site (after Edwards 2010).  
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(68%) of the land would have been arable, with 37% being of good quality, and 31% being of 

fair quality. Within the two-kilometer catchment area, over half of the landscape (58%) would 

have had a potential for agriculture, more than doubling the amount of arable land than within 

the one-kilometer catchment. Unlike at a one kilometer, there is a higher proportion of fair 

quality arable land (31%) than that of good quality (27%) at the two-kilometer catchment. Arable 

land is primarily to the south and southwest of the site, as well as north across Koshkonong 

Creek (Edwards 2010). 

Table 4.8. Arable Land within Koshkonong Creek Village Catchments (after Edwards 2010).  
KCV  Good  Fair  Total Arable  Poor  
1 km - Total Area (m²) 1,169,905  963,659   2,133,564  1,006,569  
1 km - Proportion  37%  31%  68%  32%  
2 km - Total Area (m²)  3,406,921  3,926,079  7,333,000  5,227,530  
2 km - Proportion  27% 31%  58% 42% 
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CHAPTER 5 

DISCUSSION OF THE CATCHMENT ANALYSIS 

At first glance, the Washington Irving and Koshkonong Creek Village sites appear to be 

located in similar environments. These basic similarities were the basis for the initial research 

questions proposed in this thesis.  Research questions regarding the Langford and Oneota 

occupations and settlement patterns include: 1) What were the environmental settings of the 

Washington Irving and Koshkonong Creek Village sites? 2) Were they situated in similar 

environmental contexts? 3) Are the sites situated in a location with plenty of agricultural 

potential?  4) How do the sites and their locations fit into our current understanding of Oneota, 

Langford, and Upper Mississippian settlement patterns?  

The environmental settings of each site were previously discussed in Chapter Four. To 

answer the remaining questions, this chapter will be a discussion of the catchment analysis 

produced from the data generated from the models of the Washington Irving and Koshkonong 

Creek Village sites (Figures 5.1 and 5.2). These figures combine the data presented in Figures 

4.6, 4.7, and 4.8, and 4.12, 4.13, and 4.14, respectively. By comparing the proportions of 

environmental zones of the one- and two-kilometer catchment areas, a better understanding of 

the site’s environmental similarities can be gained. In an investigation of the ecotones around the 

one- and two-kilometer catchment areas, the economic potential of the environments around 

each site can be examined. 
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Figure 5.1: Map result of the Washington Irving catchment analysis. 
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Figure 5.2: Map result of the Koshkonong Creek Village catchment analysis (after Edwards 2010). 
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Catchment Analysis  

Environmental Zones  

From an examination of the relative proportions of the environmental zones surrounding 

the sites, it appears that the sites are situated in comparable settings with little variation among 

them (Figures 5.3 and 5.4). KCV is surrounded by far more savanna than the other sites in the 

Lake Koshkonong locality (Edwards 2010).  The Washington Irving site exhibits similar 

proportions of environmental zones to KCV, particularly wetland and savanna zones.  

Within the one-kilometer catchment, the sites show similarly high proportions of savanna 

ecozones, representing 82% of Washington Irving’s catchment area and 88% of the Koshkonong 

Creek Village one-kilometer catchment. However, the sites also suggest some variation within a 

one-kilometer catchment. While a prairie landscape represents 6% of the ecozone within one 

kilometer of KCV, there is no prairie ecozone situated within a kilometer of Washington Irving. 

Conversely, a wetland ecozone represents 16% of Washington Irving’s one-kilometer catchment 

area, while 4% of the one-kilometer catchment around KCV is represented by wetland. 

Within the two-kilometer catchment area, the sites also appear to be located in similar 

environments and suggest less variation than the within the one-kilometer catchment area. 

Washington Irving and KCV are situated near of 13% and 12% proportion of wetland ecozones, 

respectively. However, KCV is situated near a slightly higher proportion of savanna (84%) than 

at Washington Irving (77%). Conversely, Washington Irving is situated near a higher proportion 

of prairie (9%) than KCV (2%).  

The similar proportions of wetland zones at two kilometers suggest the inhabitants would 

have had similar access to wetland and upland resources. Because of KCV’s more inland  
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Figure 5.3 Comparison of Environmental Zones at 1 kilometer. 
 

 
Figure 5.4 Comparison of Environmental Zones at 2 kilometers. 
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location, Edwards (2010) hypothesized that Koshkonong Creek Village site inhabitants may have 

exploited a higher degree of upland and riverine resources than inhabitants of site located nearer 

to Lake Koshkonong. However, given the environmental similarities between Washington Irving 

and KCV, it can be hypothesized that an analysis of faunal and floral assemblages could indicate 

many similarities in subsistence practices.  

Ecotones  

Both sites appear to be situated around comparable locations regarding their surrounding 

ecotone areas (Figures 5.5 and 5.6). However, there is variation among ecotone composition and 

proportions that distinguish the two site locations, primarily within the one-kilometer catchment 

area.  Within one-kilometer, the sites suggest different proportions of ecotone coverage as well 

as the composition of environments within ecotones. While 58% of the one-kilometer catchment 

around Washington Irving is represented by ecotones, ecotone areas cover 74% of the one-

kilometer catchment around KCV. The most distinct difference between the two sites is the 

ecotone composition within the one-kilometer catchment area. While KCV has a fairly even 

distribution of proportions over the ecotone areas, the Washington Irving site’s one-kilometer 

catchment area has a large proportion of water/wetland/savanna ecotone (39%) followed by 

wetland/savanna ecotone (18%) with a very low proportion of other ecotones represented; 

conversely, a water/wetland/savanna ecotone (8%) and wetland/savanna ecotone (7%) exhibit 

notably lower proportions within KCV’s one-kilometer catchment. A prairie/savanna ecotone 

accounts for 15% of the one-kilometer catchment around KCV, while the same ecotone only 

represents 1% of the one-kilometer area around Washington Irving. Both water/prairie/savanna 

(9%) and wetland/prairie/savanna (11%) ecotones are represented at KCV’s one-kilometer area, 

but these ecotone areas do not occur at Washington Irving’s one-kilometer catchment. 
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Figure 5.5 Comparison of ecotone proportions at 1 kilometer. 
 

 
Figure 5.6 Comparison of ecotone proportions at 2 kilometers. 
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At two kilometers, the sites exhibit a similar proportion of overall ecotone coverage. 

Around Washington Irving, ecotone areas cover 69% of the area, while 71% of the area around 

KCV is represented by ecotones. Unlike the differences within the one-kilometer catchment area, 

Washington Irving and KCV appear to exhibit similar proportion of several ecotones within the 

two-kilometer catchment. The areas surrounding the sites were primarily wetland/savanna and 

water/wetland/savanna ecotones, collectively covering 38% and 40% of sites catchment areas, 

respectively.  

However, similar to the one-kilometer catchment area, there are some differences in the 

ecotone composition that make up the two-kilometer catchment areas of each site. 

Approximately 18% of Washington Irving’s two-kilometer catchment is a prairie/savanna 

ecotone, while the same ecotone only accounts of 7% of KCV’s two-kilometer area. Similarly, a 

higher proportion of wetland/prairie/savanna ecotone represents Washington Irving’s two-

kilometer catchment than is represented within KCV’s catchment (13% compared to 5%). 

Conversely, a higher proportion of the wetland/savanna ecotone is represented at KCV than is 

represented within Washington Irving’s two-kilometer area (25% and 18%, respectively). Within 

KCV’s catchment, the water/savanna and water/wetland/savanna/prairie ecotones represent 6% 

and 8% of the total area, respectively, while the same ecotones proportions to the total two-

kilometer catchment within Washington Irving are less than 1%. The water/prairie/savanna 

ecotone composed 4% of KCV’s two-kilometer catchment, but does not exist within either of 

Washington Irving’s catchments. 

While these aspects differentiate the ecotone distribution between the two sites, the total 

area of ecotone coverage around both two-kilometer catchment areas is similar; 69% of 

Washington Irving’s catchment area is represented by ecotones, while 71% of KCV’s catchment 
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area is represented by ecotones. The discrepancy in ecotone proportions between the two sites 

are likely due to the overlapping of two ecotones that share a similar environmental zone (e.g. 

water/savanna ecotone overlapping a water/wetland ecotone); where there are higher proportions 

of three-zone ecotones within Washington Irving’s catchment, two- and four-zone ecotones are 

represented in a higher proportion within KCV’s catchment. In sum, the ecotone context of the 

sites indicates convergence rather than divergence. 

Agricultural Potential 

To understand the agricultural potential around Washington Irving and the Koshkonong 

Creek Village sites, the proportions of arable land at the sites were investigated. At both sites, a 

difference was observed in the amount arable land rated good and fair between one- and two-

kilometer catchment areas (Figures 5.7 and 5.8). The amount of total arable land accounts for 

good and fair soil types, while poor soils were not deemed arable. Within the one-kilometer 

catchment area, the Washington Irving site had a substantial 50% of the catchment area 

considered good, with 10% deemed fair for a total of 60% arable land and 40% deemed poor. 

While the Koshkonong Creek Village site had less soil classified as good in quality (37%), fair 

soils accounted for 30% of the land, forming a combined 68% of total arable land, with 32% 

deemed poor.  

Within the two-kilometer catchment areas, the sites suggest similar proportions of total 

arable and poor quality land areas. Washington Irving exhibited a slightly higher proportion of 

arable to non-arable land, with 63% of the two-kilometer surrounding area considered arable, 

and the remaining 37% deemed non-arable. Likewise, KCV exhibited 57% or arable land to 43% 

non-arable land. However, the most notable difference between the agricultural potential of the 

sites within two-kilometers is the proportions of good and fair quality soils. Washington Irving  
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Figure 5.7 Comparison of arable land at 1 kilometer. 
 

 
Figure 5.8 Comparison of arable land at 2 kilometers. 
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has far more good quality soils (58%) than is available around KCV (27%); however fair quality 

land surrounding the Washington Irving site (5%) was notably lower than the proportions 

observed at KCV (31%). 

While the proportion of arable to non-arable land seems generally similar and consistent 

between the sites, what do the proportions of good and fair quality soils indicate about site 

settlement patterns? Edwards (2010:131) argued that a much higher proportion of good quality 

soil within the one-kilometer catchment area indicates a site was strategically placed near high 

quality arable land. He proposed that isolated areas of good quality land would have been 

actively sought out and settled to take advantage of its agricultural potential (although a resource 

pull analysis may be more representative of an economical site location and is discussed later in 

this chapter).  While this concept applies to KCV, the same pattern does not emerge at 

Washington Irving. The amount of good and fair arable land that surrounds KCV increases from 

58% to 68% between the two- and one-kilometer catchment areas; conversely, more good and 

fair quality land was present at the two-kilometer radius of the Washington Irving site (63%) 

than at the one-kilometer catchment (60%). However, as soil draining capabilities were not as 

strictly notated in the early survey used to model the Washington Irving site, it may not be 

appropriate to compare good and fair quality arable land between the sites; rather, for this 

particular comparative analysis, it may be more accurate to simple compare arable and non-

arable land. 

The higher proportion of wetlands within the one-kilometer catchment area of 

Washington Irving is likely the main factor for a lower proportion of arable land. While the 

wetland soils were deemed to have no agricultural potential because of their poor drainage, they 

would have had provided access to other valuable resources at a close distance to the site. 
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The large proportion of arable land surrounding both sites suggests that both sites would 

have had enough potential to sustain a horticulturalist lifeway. While bioarchaeological evidence 

suggests that Langford people engaged in similar levels of maize consumption as “agriculturalist 

Mississippians” of the American Bottom (Emerson et al. 2005:100), inhabitants at KCV and 

other Koshkonong Oneota sites also had adequate arable land to effectively grow maize 

(Edwards 2010). Flannery (2009:92) argued that a Mesoamerican village with approximately 80 

hectares of arable land would have been enough to grow and feed 350 people on a diet primarily 

of maize. More relevantly, Schroeder (1999) indicates that the average yield for historic Native 

American maize agriculture in Eastern North America was approximately 19 bushels of corn 

(approximately 630kg) per acre.  She also indicated historic Native American households on 

average tended gardens of approximately 0.6 acres in size, which would have yielded each 

family nearly 380kg or 1,592,200 calories worth of maize each year. Assuming a daily caloric 

need of 2000 calories per person per day, each family plot would provide a family of four with 

approximately 55% of their necessary food intake (Jeske, personal communication, 2016).  Since 

arable land around both Washington Irving and KCV within the one-kilometer catchment totals 

circa 500 acres, both sites easily had enough arable land to sustain several hundred occupants.  

Non-economic Factors  

While environmental zones, ecotones and arable land is the main focus of this catchment 

analysis, several other factors are worth investigating.  Edwards (2010; citing Jochim 1976) 

recognized the significance of comparing the elevation of a site and distances from sites to 

economically important environmental features as they influence the habitability of an area. He 

wrote: 

Settlements must be placed in areas that satisfy the physical needs of the residents while 
also conforming to non-economic needs of the culture. It is outside the scope of this 
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project to examine most non-economic factors of settlement placement, however, it is 
important to consider the elevation of a site and the nature of the soils around it. While 
not necessarily economic in nature, these factors deal directly with the habitability of an 
area and cannot be ignored when considering factors that determine settlement placement 
[Edwards 2010:133]. 

The following section will be a discussion of these factors, such as site elevation and 

surround elevations, as well as distance to well-drained soils, water sources and ecotones. 

Elevation 

Apart from environmental zones, ecotones and arable land, several distance-based 

variables were also considered. Using the USGS topographic maps of the Busseyville and Elgin 

Quadrangles, the elevations of the sites were determined, both at the boundaries, with the 

average of the highest and lowest elevations, and at the centroid of the sites (Figures 5.9 and 

5.10, Table 5.1). Using both data are important, as the highest and lowest can help show the 

variation in elevation, while the centroid elevation measurement may be a more accurate 

representation due to modern erosion around the site boundaries (after Edwards 2010).  

Table 5.1 Elevations of the sites. 
 Feet Meters Average Centroid 
Site Highest Lowest Highest Lowest Feet Meters Feet Meters 
Washington 
Irving 750 736 229 224 743 226 745 227 

Koshkonong 
Creek Village 820 800 250 244 810 247 810 247 

 

Both the Washington Irving and Koshkonong Creek Village sites are situated on high 

ground adjacent to a creek environment. As Edwards (2010) suggested about KCV, Washington 

Irving also appears to be situated on high ground that would give site inhabitants some protection 

from flooding. Koshkonong Creek is approximately 10 meters below the centroid of the KCV, 

while Washington Irving is similarly situated approximately 5 to 10 meters above Jelkes Creek. 

The Washington Irving site is situated on an upland terrace, surrounded by higher ground  
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Figure 5.9 Topography of the land surrounding Washington Irving. 
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Figure 5.10 Topography of the land surrounding the Koshkonong Creek Village. 



 

 88 

that rises approximately 15 meters to the east of the site and at least 40 meters west of Jelkes 

Creek. Similarly, there is higher ground that rises over 15 meters above the site to the west of 

KCV. Interestingly, the Crescent Bay Hunt Club site is also situated on an approximate 8-meter 

slope that crests 700 to 800 meters to the west, while the Schmeling site is on nearly 15-meter 

slope that crests one kilometer to the west.  Carcajou Point is located on a more modest 5-meter 

slope that crests one kilometer to the northwest. The degree to which these site locations were 

designed to protect from western winds is an interesting question compared to how they enhance 

a defensive position, as the sites are fairly well concealed from enemies. 

Distance to Well-Drained Soils  

Both Washington Irving and KCV are located on well-drained or moderately well drained 

soil (Table 5.2). As the sites were located at relatively high elevations, it is therefore not likely 

that the sites would have remained wet long after a rain or flooding episode. Apart from the well-

drained and moderately well drained soils on which the sites are located, the sites are within a 

close proximity to arable land with good and fair drainage. Jochim (1976) noted that settling on a 

well-drained area would have been vital for the comfort and health of the site inhabitants, as 

living and sleeping on dry land would have been a central consideration. 

Table 5.2. Distance to Important Resources (in meters). 
Resources Washington Irving Koshkonong Creek Village 
River/Lake 
Creek 
Wetland 

2775 
139 
48 

3044 
134 
400 

Ecotone 0 0 
Well-Drained Soil 0 0 
 

Distance to Water Sources  

As water is an important resource to all prehistoric groups, site distance to water is an 

important variable to consider in examining site location. There are two primary sources of water 
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within the catchment areas of Washington Irving and KCV: Jelkes Creek and Koshkonong 

Creek, respectively, and the various wetlands ecozones that surround the sites. Both sites are 

located directly adjacent to creeks, both located about an eighth of a kilometer away from Jelkes 

and Koshkonong Creeks. However, the sites are somewhat removed from major bodies of 

waters. Jelkes Creek is a tributary of the Fox River, which is located less than three linear 

kilometers away from the Washington Irving site. Similarly, KCV is located approximately three 

linear kilometers away from Lake Koshkonong.  

Distance to Ecotone  

Both sites were situated within close proximity to multiple ecotone areas. The centroid of 

the Koshkonong Creek Village is located in a water/prairie/savanna ecotone, while the boundary 

of the site overlaps with several other ecotones. The entirety of the Washington Irving site 

boundary is located within a water/wetland/savanna ecotone. While situated in different 

ecotones, this suggests that inhabitants of both Washington Irving and KCV were very well 

positioned to exploit the various resources of the diverse ecotones around the sites. 

Resource Pull Analysis  

This resource pull analysis was designed to determine areas that had the strongest 

economic pull within the one- and two-kilometer catchment areas at both KCV and Washington 

Irving (after Edwards 2010; Jochim 1976). Resource pull scores were tallied from three 

categories at any given location with values attributed to the productivity of the environmental 

zones present, the number of environmental zones within an ecotone and the quality of arable 

land (Table 5.3).  
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Table 5.3 Description of values for resource pull analysis variables (after Edwards 2010). 
 Productivity Scores 
Variables 0 1 2 3 4 
Environmental n/a Prairie Water n/a Savanna/Wetland 
Ecotones  0 Ecozones 1 Ecozone 2 Ecozones 3 Ecozones 4 Ecozones 
Arable Land Non-Arable n/a Fair n/a Good 

 

For the purposes of this analysis, Values 9 through 12 are considered high pull, while five 

through eight are considered medium pull; as a score of one is not a possible in this schema, 

scores two through four are considered low resource pull. From an economic  

perspective, it can be expected that high score resource pull zones would be located in higher 

proportions within a one-kilometer catchment, suggesting the sites were placed near the richest 

areas for resource and agricultural potential (Edwards 2010).  The resource pull zones of both 

study sites were examined at one- and two-kilometer catchment areas (Figures 5.11, 5.12, 5.13, 

5.14; Tables 5.4 and 5.5). 

Table 5.4 Resource Pull Analysis Score Distribution (Proportion of 1 km Catchment).  
 Low Medium High  

 2 3 4 5 6 7 8 9 10 11 12 Total 
Washington 
Irving 0% 0% 15% 0% 13% 19% 23% 0% 11% 19% 0% 100% 

Koshkonong 
Creek Village 0% 2% 6% 3% 22% 7% 33% 5% 16% 5% 2% 100% 

 

Table 5.5 Resource Pull Analysis Score Distribution (Proportion of 2 km Catchment).  
 Low Medium High  

 2 3 4 5 6 7 8 9 10 11 12 Total 
Washington 
Irving 1% 6% 9% 1% 9% 15% 24% 1% 21% 14% 0% 100% 

Koshkonong 
Creek Village 0% 1% 9% 2% 25% 10% 28% 8% 13% 4% 1% 100% 

 

A comparison of the proportions of high pull zones suggests that resource pull area 

proportions are similar within the one- and two-kilometer catchment radii. However, there is 

some variation. The Washington Irving site exhibits very similar proportions (15%) of low pull  
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Figure 5.11 Map result of the Washington Irving resource pull analysis. 

 



 

 92 

 
Figure 5.12: Map result of the Koshkonong Creek Village resource pull analysis (after Edwards 2010). 
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Figure 5.13: Proportion of Resource Pull Scores at 1 kilometer. 

 

 
Figure 5.14: Proportion of Resource Pull Scores at 2 kilometers. 
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areas between one- and two-kilometer catchments. Similarly, 7% of the one-kilometer catchment 

area around KCV has low pull, and rises to 10% within the entire two-kilometer catchment. 

Within a one-kilometer radius, the high pull areas represent 28% of KCV’s total area, and 

decreases 26% within the two-kilometer radius. However, while KCV follows the  

expectation that high pull areas are represented in higher proportions within the one-kilometer 

catchment than at two kilometers, the Washington Irving site exhibits a higher proportion of high 

pull areas within the two-kilometer catchment (36%) than at one-kilometer (30%). 

Edwards (2010) initially hypothesized that the lack of a distinct pattern may be caused by 

the small amount of high pull resource zones altogether. Following Edwards (2010), the total 

area ranked as each score at one kilometer was investigated as a proportion of the total area 

within two kilometers with the same score (Table 5.6).  

Table 5.6 Resource Pull Analysis Score - Distribution of Resources as proportion of 2 km. 
 Low Medium High 

1 km Proportion of 
Whole 

2 3 4 5 6 7 8 9 10 11 12 

Washington Irving 0% 0% 43% 16% 34% 32% 24% 15% 13% 34% 0% 
Koshkonong Creek 
Village n/a  80% 17%  29%  23% 16%  29%  16%  30%  33%  87%  

 

A majority of high value resource zones with scores 11 and 12 are located within the one-

kilometer catchment.  High pull scores of 11 and 12 at KCV are represented in proportions (33% 

and 87% respectively) that support the initial expectation. While score 12 areas do not exist 

within one kilometer of Washington Irving and are poorly represented within two kilometers at 

Washington Irving (only 1610 m²), fully 34% of score 11 areas are located within the one-

kilometer catchment.  The result of this investigation supports the expectation that high score 

resource pull zones should be located in higher proportions within a one-kilometer catchment.  
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Overall, this catchment analysis supports the hypothesis that the Washington Irving and 

Koshkonong Creek Village sites appear to have been located similarly near rich areas for 

resource extraction with access to wetland, upland and creek resources while remaining in close 

proximity to a sufficient amount of arable land. 

Summary and Discussion 

The investigation of environmental zones and arable land around the catchment areas 

revealed that the Oneota and Langford occupants at the sites would have had access to many 

diverse resources as well as the potential to engage in substantial agricultural practices. The 

purpose of investigating the ecotones surrounding the sites’ catchment areas was to determine 

the economic potential that would have been accessible to the site inhabitants. However, with 

seven different ecotones, the issue is quite complex and there is no way to determine if one 

ecotone is more economically important than others (after Edwards 2010:128). Nonetheless, the 

analyses suggest that the two sites exhibit similar ecotone proportions within the two-kilometer 

catchment area.  

This study was not designed to demonstrate that site locations were specifically chosen 

compared to other potential locations; rather, it is a simple characterization of the site locations 

according to a set of environmental variables. A formal statistical analysis (such as a weighted 

Log Ratio Analysis, or wLRA) was not conducted for the comparative analysis of the study sites. 

The purpose of creating the catchment model of the Washington Irving site was to update 

Hunter’s (2002) model at a two-kilometer radius and contextualize the site location. The current 

model serves as a validation of the earlier one-mile catchment model.  However, this study 

suggests that Hunter’s (2002:96) argument that Oneota and Langford groups “preferred two 

different microenvironments at the edge of the prairie peninsula” is not necessarily correct. 
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However, we should expect that particular conclusion since KCV was chosen for study because 

it is a locational outlier compared to other Oneota sites at the Koshkonong Locality.  In effect, 

the work here does not invalidate Hunter’s argument in general, but it does caution us that site 

placement models must be nuanced and contextualized. 

Lithic Economies in an Environmental Context 

The previous chapters have been dedicated to creating a detailed view of the Washington 

Irving and Koshkonong Creek Village site environments. The following chapters in this thesis 

are the descriptions and analysis of the lithic tool and debitage assemblages from the sites. 

Environment and lithic technology, particularly raw material procurement, are fundamentally 

connected within a larger site settlement pattern and economy. The assemblage-based lithic tool 

and debitage analyses presented in the following chapters allow for a discussion regarding the 

organization of technology and lithic economics of the site occupants. It has been argued that 

energetic efficiency is the most optimal solution for a group when there are constraints on raw 

materials within a cultural-environment (Jeske 1992a; Torrence 1989b; discussed in-depth in the 

following chapter). The economic strategies surrounding stone tool manufacture can be better 

understood based on our understanding of those constraints.  

While this comparative catchment analysis allows for the contextualization of resource 

availability and utilization, subsistence practices and lithic economies cannot be directly equated. 

Brose (1978:97) noted that “the relationship between stone tool industries and subsistence 

activities cannot be explained simply in terms of the available lithic sources or the [specialized or 

general] economy practiced at any specific site.” Nonetheless, the subsistence economy inferred 

from the floral and faunal record at both sites allows us to make hypotheses about the need for 
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particular adaptations of lithic economy employed at the sites. In this case, the preliminary faunal 

analyses from both sites suggest stress adaptation practices. The presence of deer remains under 

two years of age at KCV (Van de Par et al. 2015) and a high degree of bone processing at 

Washington Irving (McTavish 2014) both suggest dietary stress possibly due to resource 

exhaustion.  

Jeske (2003b) suggested violence and the maintenance of social and political 

relationships require energy that often lessens the amount of time and energy budgeted for 

material procurement and tool manufacture. Further, Jeske (2011) noted: 

The optimal mix [of resource use] will change depending upon limiting factors, and that 
change should result in technological variation across space and through time, depending 
upon the environment. This variation in technology includes not only differences in raw 
material selection, but the diversity and complexity of tools manufactured and used, the 
levels of energy expended in manufacturing tools, the intensity of tool use, and tool 
discard rates [Jeske 2011:6]. 
 

The microenvironments of the sites have been observed to be generally similar and 

suggest site inhabitants had comparable access to upland, wetland and aquatic resources and 

plenty of arable land. However, this catchment study has not accounted for raw material 

procurement. Significant differences in lithic procurement and manufacturing strategies would 

indicate there is a difference in other environmental constraints, such as the quality, availability 

and accessibility of raw material, as well as stressors from the social and political landscape, 

which are not directly apparent from the environmental catchment analysis alone.  
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CHAPTER 6 

MACROSCOPIC METHODS OF ANALYSIS 

Many scholars have argued the way in which a group organizes technology is directly 

related to settlement patterns, social strategies, the acquisition of food resources and the 

environment, as well as other activities in a cultural system (Bamforth 1986; Jeske 1989a, 1992a; 

Ricklis and Cox 1993; Shott 1986; Torrence 1983). The focus of an organization of technology 

framework is to understand the behaviors surrounding technology, such as stone tool 

procurement, selection, manufacture, use, maintenance, reuse and discard (Andrefsky 1994; 

Bamforth 1986; Kelly 1988; Nelson 1991; Shott 1986).  

Organization of Technology 

Lewis Binford has been credited as the first archaeologist to implement the concept of 

technology as a way to understand the variation of behavior across an archaeological assemblage 

(Nelson 1991). In a study of the technologies used by the Nunamiut in Alaska, Binford (1977:24) 

concluded that an analysis of a social group’s technology can be useful for understanding the 

“dynamics of behavior” of the group, and further argued that the current approaches for studying 

the variability of lithic assemblages were in need of “rethinking” (Binford 1979:271).   

In his efforts to rethink lithic variability, Binford (1979) introduced viewing stone tools in 

terms of curation and expediency. Tools that have been curated have been defined as tools made 

useful for multiple tasks, made with the expectation of future use, maintained through a number 

of uses, transported from place to place, or recycled for other uses when necessary. Conversely, 

expedient tools have been defined as tools that are made, used and discarded in a practical or 

temporary fashion (Bamforth 1986; Binford 1979). 
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Following up on Binford’s (1979) curated and expedient tool dichotomy, Torrence (1983) 

introduced the idea of a time-stress that shapes the strategies of scheduling different activities 

based on time constraints. Torrence’s framework was intended to derive information from a 

lithic assemblage in order to predict the effects of time budgeting and further inferring about a 

groups settlement patterns and mobility. In the archaeological record, she suggested that time-

stress could be observed in an assemblage’s diversity and complexity. While groups with an 

increase of time-stress are expected to decrease the diversity and complexity of a tool 

assemblage, it is expected that decrease in a groups time-stress would exhibit an increase the 

diversity and complexity of a tool assemblage.  

While Torrence’s (1983) main focus was on time-stress and mobility, she also recognized 

that efficiency played a role in the organization of a group’s technology. She wrote that when it 

is expected for a group to maximize their use of time efficiently, one could observe the effect it 

has on other related behaviors. Bamforth (1986) argued that a group’s mobility was not 

necessarily the main factor in understanding their technological organization. Instead, he 

proposed that efficient tool procurement, manufacture, and use were critical to understanding 

many aspects of technological organization. Rather than claiming technology affects the 

activities performed by a group, Bamforth (1986:39) stressed that technology is organized 

around the requirements of an activity or activities that causes variation in all aspects of tool 

manufacture and use. 

Theoretical Models and Optimization 

While recognizing that mobility may have been an important determinate in the 

organization of lithic technology among groups (see Binford 1977, 1979; Jeske 1987; Kelly 
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1988; Lurie 1989; Shott 1986; Torrence 1983), there has also be a focus of understanding other 

possible determinants of technological organization (see Andrefsky 1994; Bamforth 1986; Bleed 

1986; Jeske 1989a, 2003b; Lurie 1989; Kelly 1988). Torrence (1989b) recognized that a range of 

models with much variation have been implemented by archaeologists to observe an organization 

of lithic technology. She wrote: 

There are major disagreements about both the choice or currency (i.e. what problems are 
being addressed by or otherwise influence behavior) and whether the function of the tool 
or the way technology adapts itself to external constraints should have primacy in 
constructing an optimal model [Torrence 1989b:2]. 

However, Torrence (1989b) suggested that these different models are worth exploring, as 

they highlight issues and areas of study where increased attention to theory building is necessary. 

Ricklis and Cox (1993:444) wrote that lithic efficiency is not constant, but dynamic within a 

cultural system and fluctuates based on the demands of the overall adaptive behavior of a group. 

As such, lithic organization should be expected to change when other behavioral aspects of a 

cultural system changes.  

Several archaeologists have stressed that energetic efficiency can often be assumed the 

most optimal solution when the emphasis is placed on understanding a behavior based on the 

environmental and time constraints rather than how the currency can be optimized (Nelson 

1991:61; Torrence 1989b:2-3). Similarly, Jeske (1987:11) acknowledged that optimization 

models work best when a highly limiting economic factor is in operation, such as water holes in 

desert environments or spatially limited raw material outcrops. While mobile groups had 

previously been the focus on technological study, several scholars had begun to ask questions 

about less mobile groups and how to view their organization of technology (see Bamforth 1986; 

Jeske 1989a, 1992a, 2003b; Lurie 1989), and suggested that with less mobility and increased 
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sedentism, a group would be expected to increase their technological efficiency or become more 

economical (Jeske 2003b:225).  

Energy Efficiency, Economy and Technology 

Over the past several decades, archaeologists have frequently used an economic model to 

explore the organization of technology (see Andrefsky 1994; Bamforth 1986; Jeske 1989a, 

1992a; Lurie 1989; Morrow and Jefferies 1989; Torrence 1983, 1989a, 1989b). For groups that 

have a constraint on raw material resources, an economic model can be used to view the 

behaviors of a group through their technological organization.  Economy is the management of 

resources and refers to use of raw material; to be more economical means to increase 

management of raw material with the goal of increased the yield of the resource (Jeske 1987:3). 

In this framework, a group’s organization of technology will be determined by their need to 

maximize “efficiency” and their “economy” (Jeske 1989a:37).  

In similar fashion to Binford (1979) regarding curation and expediency, Jeske (1992a) 

outlined a dichotomous spectrum of economies that can be expected from a lithic assemblage. A 

specialized lithic economy is commonly indicated by a more complex and diverse stone tool 

assemblage, with more evidence efficient activity, such as the resharpening and reuse of tools. 

Conversely, it can be expected for a generalized lithic economy to show evidence of less energy 

being put into the procurement and manufacture of tools because of stressors or competing 

activities. The tools and the debitage from a site will reflect a generalized economy by being a 

larger assemblage, showing less evidence of the resharpening of tools and consisting primarily of 

local raw materials. 
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Bamforth defined efficiency as energy expended as well as the return on the energy 

expended (1986:39). His efficiency model of technological organization argues that an efficient 

technological organization allows for all aspects of tool manufacture and use to be completed 

with a minimum amount of effort. As time and energy are limited resources, it is expected that 

groups invest in efficient behavior regarding technological activities, such as lithic procurement, 

and tool manufacture, use and discard (Jeske 2003b:226) 

The concepts of efficiency and economy have often been discussed together when 

regarding the organization of lithic technology. However, following Christenson (1982), Jeske 

(1987, 1989) made a distinct effort to distinguish the two concepts. He defined “economy” as the 

management of resources and defined “efficiency” as the ratio of input to output, where a higher 

output per unit of input represents a higher efficiency. While economy is about raw material, 

efficiency is about time. Differentiating between economy and efficiency is important because 

while a certain activity might be efficient for completing a certain task, it may be less 

economical in terms of utilization of raw material. Sterner (2012:87-88) outlined how bipolar 

reduction (Figure 6.1) is both economical and efficient, as it efficiently removes several flakes 

from a core that can later be made into tools while economically recycling exhausted bifaces or 

small chert cobbles into bipolar flakes and cores.  However, not all activities are both economical 

and efficient.  

Using an economic model to study the lithic assemblages of Upper Mississippian 

horticulturalist groups is beneficial because of their constraints on the procurement of raw 

materials from the environment. Energetic efficiency is often assumed to be the most optimal 

solution when there are constraints on raw materials, the environmental and time (Torrence  
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Figure 6.1: Freehand and Bipolar Percussion (after Jeske and Lurie 1993:147). 

1989b).  Based on that efficiency, the economic strategies regarding stone tool manufacture 

employed by groups can be better understood. 

Assemblage-Based Approach 

The methods that connect the theory of an organization of technology approach have 

often been referred to as an assemblage-based approach (see Blodgett 2004; Jeske 1987; Lurie 

and Jeske 1990; Park 2004; Sterner 2012; Winkler 2011). The lithic assemblage recovered from 

a site will reflect the economizing choices that social groups make regarding how time and 

energy is used in tool production (Jeske 1987:2). By using an assemblage-based approach to 

view tool production as part of a larger set of cultural activities rather than an isolated activity, 

we can better understand the economy and economizing behaviors that organized a group’s 

technology (Jeske 2003b; Sterner 2012). 
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By implementing an organization of technology framework, it allows me to ask questions 

about the degree of efficiency expended by groups engaged in stone tool manufacture and 

maintenance (Jeske 1987, 1989a, 1992a, 2003b).  The methods adopted from Lurie and Jeske 

(1990) is rooted in this economic model of viewing stone tool production. The assemblage-based 

approach will allow me to observe debitage in terms of its economic value rather than simply a 

byproduct of lithic production (Jeske 2003b). 

Many previous lithic analyses that have been produced at the University of Wisconsin-

Milwaukee have implemented such an approach (see Ahlrichs et al. 2014; Blodgett 2004; Doyle 

2012; Park 2004; Sterner 2012; Winkler 2011). The lithic analysis presented in this thesis will 

implement a similar organization of technology approach. Based on the lithic assemblages from 

KCV and Washington Irving sites, the following macroscopic analysis focuses on the 

understanding the strategies and economizing behaviors implemented by the Oneota and 

Langford group by observing how they organized their lithic technology. 

Methods of Data Collection and Analysis  

The lithic assemblages from excavations at KCV and Washington Irving were analyzed 

using an adapted version of the Lithic Documentation and Schema (Jeske 2014; see Appendices 

A and B) developed by Lurie and Jeske (1990). There are several advantages to using this 

recording method. First, the classification variables within the schema allow for information to 

be gathered regarding the stone tool economy, as well as functional and stylistic information of a 

lithic assemblage. This is distinctly different from a morpho-functional based typological 

framework, which often causes incorrect assumptions and misinterpretations about stone tool 

utilization (Flenniken and Raymond 1986; Jeske 1989a; Odell 1979; Yerkes 1983). Second, the 

schema was designed for the recovery of the maximum amount of information with the least 
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input of time and energy, as well as produce datasets that facilitate comparisons among sites 

(Jeske 2014). The lithic assemblages began with a mass analysis of all lithic debitage, followed 

by the individual analysis of the tools.   

A mass analysis allows for tool production strategies to be interpreted, such the 

procurement strategies, major reduction techniques, and heat-treatment strategies to improve 

flaking quality (Andrefsky 2005). Jeske and Lurie’s (1990) schema also includes a more detailed 

individual debitage analysis that allows for every piece to be observed on numerous attributes. 

However, the collection of data during an individual debitage analysis takes significantly more 

time (Ahler 1989:85; Odell 2004:121). Conversely, the mass debitage analysis was designed to 

quickly process large datasets. 

Mass Analysis of Lithic Debitage 

The lithic tool and debitage assemblage from the 2012 field season at the Koshkonong 

Creek Village were previously sorted upon beginning the data collection for this thesis. Various 

lab volunteers from the University of Wisconsin-Milwaukee sorted the lithics from other artifacts 

from the 2014 field season after the conclusion of the field school excavations, while the author 

sorted debitage from tools. The lithic assemblages from the 1984 and 1985 field seasons at 

Washington Irving were previously sorted and analyzed by the author. The entire lithic tool and 

debitage assemblage from Washington Irving, including lithics from total surface pickup, 

plowzone, and excavated and flotation recovery contexts from features have been examined and 

previously discussed in the literature (see Jeske 1990, 2000). The present analysis of the 

Washington Irving tool assemblage is designed to be directly comparable to the lithic 

assemblage from the Koshkonong Creek Village. Since flotation context materials have not been 

fully processed from KCV, lithics from flotation context from Washington Irving were subject to 
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sampling; only lithic debitage larger than 12.5mm was examined from Washington Irving, as ½ 

inch mesh screen was used at the site during excavation. The following methods outline the steps 

taken to analyze the lithic assemblages from both study sites.  

The first step in the analysis of the lithic assemblage was the sorting of tools from the 

debitage; as the tools and debitage from the 2012 assemblage from KCV and both field seasons 

at Washington Irving were sorted prior to this study, only the 2014 lithic tool and debitage 

assemblage from KCV needing sorting. Any lithic piece that showed evidence of modification 

by chipping, battering, or use-wear was categorized as a tool. Each tool was given a number, 

placed into artifact bags, labeled with its provenience information, and set aside for an individual 

analysis.   

The debitage from each provenience context was divided into three categories: flake, 

flake-like, or non-flake. Any piece that exhibited two or more attributes of a flake was 

categorized as a “flake”. The attributes of a flake include: the presence of a striking platform, a 

bulb of percussion, ripples/rings of force, or a typical termination type, such as feather, step, or 

hinge. Any piece that exhibited one and only one of these attributes were categorized as “flake-

like”. “Non-flake” pieces, also know as shatter, are those that have none of the attributes of a 

flake (after Lurie and Jeske 1990). 

Once the lithic debitage was sorted into flake, flake-like and non-flake categories, they 

were further sorted, counted and weighed (in grams) by size grade. The debitage was placed in 

one of four size grades: less than 8 mm, 8 to 12.5 mm, 12.5 to 25 mm, or greater than 25 mm. 

The final two variables that were observed and recorded for the debitage groups were the amount 

of cortex on a piece and the presence of heat alteration (after Jeske 2014). All the data was 

collected and catalogued in a Microsoft Excel spreadsheet. 
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By observing and recording these variables, a mass debitage analysis allows for the 

interpretation of the activities and strategies surrounding the lithic economy at a site. Sorting 

debitage by size grade and recording the presence of cortex may help characterize the stage of 

lithic reduction occurring at a site, or at a specific location within a site. As stone tool production 

is a reductive technology, a high frequency debitage of a smaller size grade suggests later stages 

of lithic reduction, while a higher frequency of size grade 4 debitage suggests earlier stages of 

lithic reduction. Similarly, the presence of cortex at a high frequency of debitage can imply 

initial stages of lithic reduction (Andrefsky 2005; Odell 2004). Recording the presence of heat 

alteration within the debitage assemblage can further characterize the lithic economy used by the 

site inhabitants. Evidence of heat alteration indicates a strategy was applied to improve the 

flaking quality of poor quality raw materials (Kooyman 2000; Rick 1978). 

Individual Analysis of Lithic Tools  

Following the mass debitage analysis, an individual analysis of the lithic tools was 

conducted (see Jeske 2014; Appendix B). The lithic analyses began with recording provenience 

information as well as metric variables such as length, width, thickness and weight. Weight was 

not recorded for tools determined to be either broken or incomplete. Other attributes recorded 

mostly reflect information about the tool regarding manufacture, function and style. Comment 

categories were used to describe the common morpho-functional tool type associated with a 

piece as well as any other exceptional feature worthy of notice (after Jeske 2014; Jeske and Lurie 

1990). 

Several categories regarding tool material were observed and recorded. Raw material 

types and quality were identified with the use of a comparative collection housed at the UW-

Milwaukee Archaeological Research Laboratory, while a manuscript on file at UW-Milwaukee 
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regarding lithic raw materials from Wisconsin was used to help determine whether raw materials 

were locally accessible (Winkler et al. 2009). Ferguson and Warren’s (1992) article Chert 

Resources of Northern Illinois: Discriminant Analysis and an Identification Key was helpful in 

determining the raw materials from the Washington Irving assemblage.  

The comparative collection was also used to determine the presence of absence of heat 

treatment. Changes in color, commonly a red, pink or yellow color, and an increase in luster are 

the most common indicators of heat alteration (Rick 1978:57-58). The amount of cortex 

observed on the surface of tools was also recorded. Cortex amounts were recorded as 0%, 

present but less than 50%, between 50% and 100%, and 100% cortical surface. 

Categories regarding tool manufacture were also recorded. The basic forms of tools were 

categorized into several types: edge- or functional-unit only, unifacial, bifacial, multifacial, 

nonfacial, prismatic blade or bladelet, or unknown. The location of edge modification was also 

recorded and classified as either unifacial, bifacial, both unifacial and bifacial, or not applicable. 

Regarding the method of modification, tools categorized as either flaked, battered, both flaked 

and battered, use-wear only, or not applicable. Regarding bifacial tools only, refinement quality 

of a tool was classified as crude, medium, refined, cannot determine, while, non-bifacial tools 

were classified as not applicable. Tool refinement was based on the considerations of flake scar 

size along tool edges, the regularity of tool outline, and thickness of the bifacial tool.  

Characteristics of tool morphology were observed and recorded. The completeness 

category refers to the completeness of the functional unit of a tool, recorded as broken, whole, 

cannot determine and not applicable (for fragments without functional units). Conversely, the 

element present category refers to the entire element of a tool present, not just the functional unit 

of a tool. Elements present were categorized as including the distal end, mid-section, proximal 
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end, an indeterminate end section, all elements, or cannot determine. For tools with distal ends 

present, distal end morphology was further recorded, classified as either blunt, pointed, not 

applicable (for pieces without distal ends), or cannot determine.  

Several variables were recorded regarding the edge of tools. Reworking or reuse, 

classified as either present, absent or possible, refers to the resharpening to a tool. Rework has 

been determined by factors such as abrupt changes in tool outline or retouch around a tool edge, 

or retouch on a broken edge may also be used as indicators of rework. The position of retouch or 

use of a tool was also recorded as being either on the end, side, end and side or cannot determine, 

or not applicable for unretouched pieces. 

Variables regarding edge configuration were also recorded. The number of edges (up to 

four edges) and edge angles were recorded as 0 to 45 degrees, 46 to 75 degrees, or greater than 

75 degrees, with measurements were taken 5 mm back from the edge of the functional unit. Edge 

configurations were recorded as smooth, serrated, denticulate, notched, or not applicable. For 

whole and almost whole tools, the hafting element variable was recorded as present, possible, 

absent, not applicable, or modified for hafting by thinning and/or grinding the tool base. Tool 

projections, defined by intentional retouch or by wear on an unretouched area that extends out 

from the body of the piece, were recorded as present, possible or absent. The modification of 

projection was recorded as present (having been formed by intentional retouch), absent (having 

been defined on the basis of wear) or not applicable. 
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CHAPTER 7 

DESCRIPTION OF THE LITHIC ASSEMBLAGES 

The Washington Irving Debitage Assemblage 

A total of 1,641 pieces of debris from the Langford component at Washington Irving was 

subjected to mass debitage analysis.  The pieces were divided into size grades 1 through 4 (Jeske 

2014; Appendix A):  

Size Grade 1: Less than 8 mm  
Size Grade 2: 8 mm to 12.5 mm  
Size Grade 3: 12.5 mm to 25 mm  
Size Grade 4: Greater than 25 mm  
 

However, for the purpose of comparing the lithic assemblage to that from the 

Koshkonong Creek Village, size grade 1 and 2 debitage recovered from excavation were not 

included in this study. At the present time, flotation recovery contexts from the excavations at 

the Koshkonong Creek Village have not been completely processed. Therefore, the lithic 

assemblage recovered from at Washington Irving was subject to sampling. As ½ inch mesh 

screens where used to recover materials during excavation, only pieces of debitage 12.5mm and 

large (size grade 3 and 4) were included in this analysis (Table 7.1). 

Table 7.1.  Totals and percentages of the Washington Irving lithic debitage based on size grade. 
Type n of 

Pieces 
Weight 
(g) 

% of 
Total  

n with 
Cortex  

% with 
Cortex  

% of Total 
w/ Cortex  

n with 
HT  

% with 
HT  

% Total 
w/ HT  

3 1229 1148.2 74.9% 302 24.6% 62.0% 190 15.5% 70.1% 
4 412 2487.6 25.1% 185 44.9% 38.0% 81 19.7% 29.9% 
Total 1641 3635.8 100% 487 29.7% 100% 271 16.5% 100% 
 

Apart from size grade divisions, the debitage assemblage was also divided into the flake 

type categories: Flake, flake-like, and non-flake. Non-flakes or shatter debris were the most 
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common, with 38% of the pieces (n=622) falling into this category (Table 7.2). Flake and flake-

like pieces exhibit similar frequencies in the debitage assemblage, representing approximately 

31% (n=512, n=507) of both assemblages. Many of the flake-like pieces were recorded as such 

because they were missing either platforms or terminations, or did not have other features like 

rings of force or bulbs of percussion. A majority of the lithic debitage was debris shatter, 

showing no characteristics of lithic reduction such as a striking platform, bulb or percussion, 

ripples or discernible termination and was categorized as non-flakes. 

Table 7.2.  Totals and percentages of the Washington Irving lithic debitage based on type. 
Type n of 

Pieces 
Weight 
(g) 

% of 
Total  

n with 
Cortex  

% with 
Cortex  

% of Total 
w/ Cortex  

n with 
HT  

% with 
HT  

% Total 
w/ HT  

Flake 512 407.9 31.2% 104 20.3% 21.4% 84 16.4% 31.0% 
Flake-Like 507 730.0 30.9% 136 26.8% 27.9% 82 16.2% 30.3% 
Non-Flake 622 2497.9 37.9% 247 39.7% 50.7% 105 16.9% 38.7% 
Total 1641 3635.8 100% 487 29.7% 100% 271 16.5% 100% 

 

Nearly 30% (n=487) of the total debitage assemblage showed evidence of cortex 

remaining of the surface of a piece. Approximately half of size grade 4 debitage (n=185) showed 

cortex on the surface of the material, while about a quarter of size grade 3 debitage (n=302) had 

cortex present. This trend is expected. As a piece of lithic material is reduced, there will be less 

cortex remaining on the debitage as well as the core being worked (Ahler 1989:90; Andrefsky 

2005:115; Odell 2004). The presence of heat-altered material represents around 16% of the 

debitage assemblage regardless of division by debitage type or size grade, indicating that the 

heat-treatment of raw materials was a strategy used to improve flaking quality (Kooyman 

2000:65). 

As previously reported (see Jeske 1990, 2000), bipolar reduction and free-hand lithic 

manufacturing techniques were implemented by the occupants of the Washington Irving site. 

However, a formal bipolar debitage analysis with blind testing (e.g., Jeske and Lurie 1993) was 
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beyond the scope of this research. In previous renditions, Jeske’s (2014) mass debitage analysis 

schema included a variable to record number of bipolar pieces per size grade; however, the 

schema has since abandoned the category. Jeske and Lurie (1993:145) argued that it is not 

possible to distinguish the two techniques by dividing the debitage assemblage into free-hand 

and bipolar categories for analysis, as an analyst will likely combine the products of the two 

techniques. Nonetheless, bipolar cores and tools are present in the lithic tool assemblage and 

indicate an occurrence of bipolar manufacture. Apart from flake stone tools, several 

hammerstones were recovered that have pits and striations, suggesting they have been used for 

bipolar reduction (Jeske 2000).  

The Washington Irving Tool Assemblage 

The lithic assemblage from the 1984 and 1985 excavations at Washington Irving includes 

101 chipped stone tools. Photographs of the tools by morpho-functional type are located in 

Appendix C (Plates 1-8). The lithic tool and debitage assemblages sampled for this thesis 

suggests a debitage-to-tool ratio of approximately 16:1. As ½ inch mesh screens were used 

during excavation, the inclusion of size grade two pieces (8mm to 12.5mm) from flotation to the 

assemblage sampled in this thesis would result in a debitage-to-tool ratio at Washington Irving 

that is considerably higher. Hunter (2002:86) reported a debitage-to-tool ratio around 20:1, 

accounting for approximately 2,400 “analyzable” flakes. However, the tabulation record from the 

excavations displays approximately 10,000 pieces of debitage recovered, although, a large 

majority are small, size grade 1 pieces. Using this data, the debitage-to-tool ratio is 

approximately 100:1. The Washington Irving site exhibits a high debitage-to-tool ratio, yet varies 

depending on the sampling strategy employed. 



 

 113 

Raw Material 

The majority of the lithic tool assemblage is composed of Silurian chert (n=74, 73%; 

Table 7.3). Much of the material is locally available Joliet formation Silurian, accessible in 

northeastern Illinois throughout natural outcrops along the Des Plains and DuPage Rivers, as 

well as in the Fox River valley in Kane County (Ferguson and Warren 1992). There is an 

exposure of Silurian chert on the Fox River approximately 10 km south of the site (Jeske, 

personal communication, 2016). Kullen (2011) noted that large exposures would have been the 

main, local source of the material for prehistoric groups in northeastern Illinois. The raw material 

is nearly white in color and, while not abundantly fossiliferous, contains many more fossils than 

other Silurian formation cherts (Willman 1973:19-20). Joliet formation Silurian was available 

from outcrops exposed in ravines, from deposits in streambeds and as inclusions in glacial till 

(Kullen 2011). 

Table 7.3. Percentage and number of tools by raw material type from Washington Irving. 
Raw Material  n  %  
Silurian 74 73.3% 
Unknown 22 21.8% 
Burlington 3 3.0% 
Hixton 1 1.0% 
Moline 1 1.0% 
TOTAL 101 100% 
 

Tools made from Burlington represented a small proportion of the assemblage (n=3, 3%). 

Burlington chert varies in color from white, tan and brown, and when heat-treated is often pink, 

orange or red in color, occasionally exhibiting banding. The Burlington exposure located in 

west-central Illinois would have provided the most accessible source of the material for 

southeastern Wisconsin and northern Illinois populations; however, there are also exposures of 

the material in eastern Missouri and southeastern Iowa (DeRegnaucourt and Georgiady 
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1998:172-173). Ferguson and Warren (1992:12) note that Burlington commonly has a waxy 

luster but recognize that dull-lustered Burlington can often resemble Joliet formation chert. 

One tool (1%) was made of Hixton Silicified Sandstone, a material of fair to high quality. 

The only source known is located at Silver Mound in western Wisconsin (Carr and Boszhardt 

2010). Silicified stone breaks conchoidally and is brittle enough to be flaked into different shapes 

with sharp edges (Andrefsky 2009). Likewise, one tool (1%) was made of Moline chert. 

Originating from northwestern Illinois, Moline is a high quality, glossy raw material (Sterner 

2012). One tool of good quality was initially thought to be Knife River, but appears to be similar 

to some unknown chert types found in the area (Ahlrichs, personal communication, 2015). Knife 

River chert is distinctively dark brown in color and non-local to the area, with several quarries 

found along the Knife River valley in several counties in North Dakota (Clayton et al. 1970:282). 

In total, approximately three-quarters (n=74) of the lithics from Washington Irving were 

made of locally available Silurian with only five tools (5%) being of known non-local material 

(Table 7.4). Likely a local material, the remaining tools (n=22) represent unknown glacial till. If 

the tools categorized as unknown material are considered local, the proportion of tools made 

from local material represents an overwhelming majority of the lithic tool assemblage (n=96, 

95%).  

Table 7.4. Percentage and number of tools by local vs. non-local material from Washington Irving. 
Material Type n  %  
Local 74 73.3% 
Non-Local  5 5.0% 
Unknown 22 21.8% 
TOTAL 101 100%  
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The majority of lithic tools from Washington Irving were made from fair quality material 

(n=75, 74%). Approximately 22% (n=22) of the tools were categorized as being poor quality raw 

materials. Tools of good quality raw material represent only 4% (n=4) of the assemblage. The 

frequencies of locally available and fair and poor quality raw materials suggest that little time 

and energy was spent making traveling or trading for good quality chert (Jeske 1992a). 

The amount of tools with some cortex suggests that early stages of lithic reduction were 

possibly occurring at Washington Irving. Approximately three-quarters of the tools (n=74) had 

no cortex remaining on the surface while the remaining one-quarter of the tools (n=27) had less 

than 50% cortex on the tool. No tool had more than 50% on the surface covered with cortex.  

As indicated by the debitage assemblage, heat alteration was a strategy employed at 

Washington Irving to help improve the quality of poor and fair raw materials.  Approximately 

14% of the assemblage (n=14) showed the presence of heat alteration, with an additional 12% 

(n=12) possibly having been heat-treated. One tool (1%) was burned and another tool (1%) was 

too small to determine the presence of heat alteration. The remaining 72% of the tools (n=73) 

were not thermally altered. 

Tool Morphology and Modification 

There were several basic tool forms in the Washington Irving assemblage (Table 7.5). 

Over half of the tools (55%, n=56) were bifacially modified, with 19% of the tools (n=19) being 

edge-only and 17% being multifacial (n=17). Only 6% of the tools (n=6) were unifacially 

modified. Three of the tools were categorized as prismatic blades; Jeske (2000) reported that the 

full assemblage including tools from survey contained of a small percentage of pseudo-bladelets, 

which suggests flake reduction from bipolar cores. The frequency of tool forms from this sample  
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Table 7.5. Percentage and number of tools in each Basic Form category from Washington Irving. 
Basic Form n  %  
Bifacial 57 56.4% 
Unifacial  6 5.9% 
Multifacial 17 16.8% 
Edge-Only  18 17.8% 
Prismatic Blade/Bladelet 3 3.0% 
TOTAL 101 100%  
 
 

of the assemblage is consistent with that of the entire tool assemblage (including TSP recovered 

artifacts) previously documented by Jeske (2000). 

Whole tools, or tools with complete functional unit present, represent just over half of the 

lithic assemblage from Washington Irving (n=55, 55%).  Broken tools, or tools with one or more 

functional units interrupted by a break, accounts for approximately 37% (n=37) of the 

assemblage. The remaining nine tools (9%) did not contain functional units were scored as Not 

Applicable. A majority of tools recovered had all elements present (63%, n=64). These include 

whole tools as well as cores without functional units. The remaining tools were not complete, 

with 11 tools (11%) having only the distal end present, 17 tools (17%) having the proximal 

present, 5 tools (5%) having only the mid-section present, and 3 tools (3%) having an 

indeterminate end section present. 

Regarding the method of tool modification, over one-third of tool assemblage from 

excavations at the Washington Irving site was modified by flaking (37%, n=37; Table 7.6).  

Approximately 32% of the assemblage (n=32) was modified by flaking and battering, while 18% 

of the assemblage (n=18) was modified by battering only. Modification by use-wear only was 

present on 14% (n=14) of the tools in the assemblage. A higher frequency in battering technique 

of manufacture may suggest a high degree of bipolar percussion in the manufacture of lithic 

tools. Jeske (1990:230) suggested that humpback bifaces and triangular bifaces show similar  
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Table 7.6. Percentage and number of tools in each Method of Modification category from 
Washington Irving. 
Method of Modification n  %  
Flaked 37 36.6% 
Flaked and Battered 32 31.7% 
Battered 18 17.8% 
Use-wear Only  14 13.9% 
TOTAL 101 100%  

 

evidence of bipolar reduction techniques and differ morphologically based on raw material 

quality and fracturing during reduction.  

Few pieces showed evidence of retouch. While 74 of the tools (73%) did not show any 

evidence of reuse or retouch, six tools (6%) showed evidence of retouch, and 21 (21%) tools 

were categorized as possibly being reworked. There were no tools in the assemblage that showed 

evidence of projections, or the intentional retouch or wear on an unretouched area that extends 

out from the body of a piece. However, this is also most likely due to sampling bias, as Jeske 

(2000) noted in his original analysis that a small frequency of bifacial drills that were recovered 

from the site. While the absence of any evidence of reuse or possible reuse may be due to the 

lack of ability to recognize it, a low frequency of rework is expected in assemblages that are 

indicative of a generalized lithic economy that produces crudely refined pieces and expediently 

made tools (Jeske 1992a). 

Of the bifacially modified tools (n=57), a majority of the tools were of either crude 

refinement (60%, n=34) or medium refinement (25%, n=14). Two tools (4%) were determined to 

be refined and sevens tool (12%) were too small to determine the level of refinement. As with 

the procurement of raw material, it appears that little time was spent refining tools; rather, the 

focus was to expediently create (although not necessarily discard) functional tools (Jeske 1992a). 

However, the frequencies of basic tool forms suggest that while expedient edge-only tools were 
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part of the lithic economy to inhabitants, some time and energy may have been spent making 

bifacial tools. 

Hafting elements were mainly absent or not applicable among the tools in the 

assemblage. A total of 11 tools (11%) showed evidence of obvious marked constrictions or 

notched hafting elements, while 17 tools (17%) showed possible evidence of hafting. These 

triangular bifacial points had either straight or concave bases with only slight indications of 

possible hafting elements, and could be defined as Madison points in common point typology. 

However, contracting-stemmed, expanded-stemmed and side-notched hafting elements are also 

present.  

Washington Irving Tools based on Morpho-Functional Categories 

This section is a discussion of the lithic tool assemblage as tool types using a morpho-

functional typology (Table 7.7). As the goal of the schema is to produce datasets that facilitate 

comparisons among sites (Jeske 2014), traditional tool typologies were considered. As noted by 

Sterner (2012), the use of morpho-functional categories persists in a vast amount of literature and 

is required to a to be comparable to other lithic tool analyses. 

 
Table 7.7. The Washington Irving lithic assemblage categorized by a morpho-functional typology. 
Morpho-functional Category n  %  
Unidentified Tool 48 47.5% 
Triangular Point 34 33.7% 
Multifacial Core 9 8.9% 
Scraper 4 4.0% 
Knife 3 3.0% 
Hafted Bifacial Points 3 3.0% 
TOTAL 101 100%  
 
Triangular Points/Madison Points 

Triangular points represent 31% (n=31) of the lithic tool assemblage recovered from 

excavation at Washington Irving (Table 7.8, Plate 1). Madison points, including humpbacks,  
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Table 7.8. Measurements of projectile points from Washington Irving.  
Triangular Point Type Measurement n  Mean  SD 
Madison Points (excluding humpbacks) Length (mm) 4 24.5 5.3 
 Width (mm) 7 17.2 2.9 
 Thickness (mm) 13 4.1 1.5 
 Weight (g) 2 3.3 3.5 
 
Humpback Length (mm) 7 25.2 3.6 
  Width (mm) 12 18.1 1.9 
 Thickness (mm) 13 7.3 1.6 
 Weight (g) 7 2.7 1.7 
     
Unclassified Triangular Bifaces Length (mm) 3 28.7 3.3 
 Width (mm) 4 21.1 4.3 
 Thickness (mm) 5 7.3 1.4 
 Weight (g) 3 3.5 1.3 
 
 

represent 84% of all of the triangular projectile points, and account for 26% (n=26) of the entire 

tool assemblage. All Madison points in the tool assemblage are bifacial in form. Excluding 

humpbacks, Madison points represent 42% (n=13) of triangular projectile points. Justice 

(1987:224) defined Madison points as a straight sided or slightly concave isosceles triangular 

arrowhead, with a range of variation of excurvature at the base. However, for the purposes of this 

study, triangular points have been separated into Madison and humpback types and discussed 

separately, as they exhibit several differences.  Five of the tools within the projectile point 

assemblage were categorized as unclassified points (24%). Several of the triangular projectile 

points could not be categorized because they were broken or crude. However, one of the tools 

was a refined biface made of Hixton Silicified Sandstone with only the midsection remaining. 

Humpback Triangular Bifaces  

Humpback bifaces are crudely manufactured pieces that have many step fractures that 

result in a hump-like feature on one face of the tool (Jeske 1992a). By definition, many of the 

humpback triangular points recovered at Washington Irving fall into the ambiguous category of 
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Madison point. While Jeske (1992a:476) noted there is a lack of distinct characteristics 

separating humpback from Madison bifaces, they are worth noting separately as they have been 

identified as being associated with bipolar reduction techniques. A total of 13 humpback 

triangular points were recovered at the Washington Irving site, also representing 42% of the total 

triangular point assemblage and half of the Madison point assemblage (Plate 2). An 

overwhelming majority of the Madison and humpback triangular points were broken; however, a 

t-test shows the thickness of the two point types are significantly different; on average, more 

traditional Madison points are approximately three millimeters thinner than humpback triangular 

points. 

In her high-power use-wear analysis of a small sample of humpback bifaces (after Keeley 

1980), April Sievert (Hohol 1985) suggested the tools were used for a variety of purposes on a 

variety of materials. One Madison humpback had polish and striations on the tip, while hafting 

wear was observed on the basal corners of another. Wood polish was observed on a humpback 

that appeared to have been used for boring.  On one tool, an unidentified weak polish was 

observed on the highest side of the hump. Due to the course grain and light color of the tools, 

only one-third of the tools examined showed polish. However, it is possible that more humpback 

tools were utilized but showed no evidence of wear.   

Other Formal Tools  

Several formal bifacial tools were recovered (Table 7.9, Plate 3). Three bifacial tools had 

distinct hafting elements; one tool was an expanded-stemmed, one tool was a contracting-

stemmed, and one was a side-notched. All three tools were broken and could not be categorized 

into any further point typology.  
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Table 7.9. Measurements of formal bifacial tools from Washington Irving.  
Formal Bifacial Tools Measurement n  Mean  SD 
Knives Length (mm) 2 45.9 0.1 
 Width (mm) 3 23.1 4.2 
 Thickness (mm) 3 8.7 3.0 
 Weight (g) 2 9.0 4.0 
     
Unidentified Hafted Bifaces Length (mm) 0 N/A N/A 
  Width (mm) 1 22.8 N/A 
 Thickness (mm) 2 6.0 0.8 
 Weight (g) 0 N/A N/A 
 

 Three tools were classified as knives (3%, Plate 4). Each knife exhibited different 

morphological characteristics. All three tools were bifacial in form; one is a large biface broken 

near the base, one is a large biface with evidence of resharpening, and one was a possibly a 

bifacial preform worked into a knife. Only five tools were classified as scrapers, all of which 

were classified as end and side scrapers (5%; Table 7.10, Plate 5). However, hide-scraping 

activities can be interpreted from edge-only unidentified tools that show transverse motion use 

with hide or meat polish. The final three formal tools (3%) appear to be the tip of knives, drills or 

projectile points, etc. The tools were classified as formal, as they were clearly worked bifacially 

into a point; however, because they are so incomplete, they could not be identified as any 

specific tool type. 

Table 7.10. Measurements of scrapers from Washington Irving.  
Scraper Type Measurement n  Mean  SD 
End and Side Scrapers Length (mm) 5 30.7 8.6 
 Width (mm) 5 21.1 5.8 
 Thickness (mm) 5 7.4 3.3 
 Weight (g) 5 4.7 2.8 
 

Bipolar and Free-Hand Cores 

A total of nine cores (9%) were recovered from the tool assemblage (Table 7.11). Of 

these tools, seven bipolar cores were recovered from the lithic tool assemblage (10%, Plate 6).  
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Table 7.11. Measurements of multifacial cores from Washington Irving.  
Multifacial Core Type Measurement n  Mean  SD 
Bipolar Cores Length (mm) 7 27.0 6.1 
 Width (mm) 7 18.8 5.1 
 Thickness (mm) 7 12.0 3.9 
 Weight (g) 7 6.3 4.2 
 
Freehand Cores  Length (mm) 2 31.6 7.1 
  Width (mm) 2 13.0 2.5 
 Thickness (mm) 2 11.5 2.9 
 Weight (g) 2 6.2 4.2 
 

The remaining two cores recovered from the lithic tool assemblage did not show any evidence of 

bipolar reduction (Plate 7). Cores were classified as bipolar if striking platforms were present at 

both ends of the flake scars present on the core (after Sterner 2012). Crushed platforms and 

battering are commonly present at both ends of the core due to the nature of bipolar percussion, 

with multiple strikes of the hammer stone against an anvil (Kooyman 2000:56).  Jeske and Lurie 

(1993) suggested that bipolar reduction is an economizing strategy to reduce poor quality raw 

material when good quality material is unavailable. There were several multifacial lithic tools 

that may once have been cores—opposed to flakes or blanks—that appeared to have a utilized 

edge and were subsequently categorized as unidentified multifacial tools, as their function was 

not fully apparent. 

Unidentified Tools  

A total of 47 lithic tools (47%) from the assemblage did not fit into any of the formal 

typological categories and were categorized as Unidentified (Table 7.12, Plate 8). Additionally, 

there were 15 unidentified bifacial tools (32%), eight unidentified multifacial tools (17%) and 

three unidentified unifacial tools (6%).  Of these unidentified tools, nearly half were expedient 

edge-only tools (n=21, 45%). Three “pseudo-bladelets” (Jeske 2000:279) recovered were 

considered edge-only tools, as they showed signs of use wear or microflaking and were likely  
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Table 7.12. Unidentified tool forms from Washington Irving.  
Modification Type Measurement n  Mean  SD 
Edge-Only Length (mm) 20 26.8 7.0 
 Width (mm) 21 17.5 6.0 
 Thickness (mm) 21 6.5 3.4 
 Weight (g) 20 3.3 4.0 
 
Bifacial Length (mm) 8 29.5 4.4 
  Width (mm) 9 20.1 5.1 
 Thickness (mm) 14 6.9 1.5 
 Weight (g) 8 4.4 2.9 
     
Multifacial Length (mm) 8 26.5 6.1 
  Width (mm) 8 19.1 4.9 
 Thickness (mm) 8 10.6 4.5 
 Weight (g) 8 5.3 4.5 
     
Unifacial  Length (mm) 2 23.0 0.3 
 Width (mm) 2 14.8 1.6 
 Thickness (mm) 3 6.1 2.7 
 Weight (g) 1 2.2 N/A 
 

formed from bipolar cores than prepared blade cores.  Absent from the Washington Irving site 

and other Langford sites, prepared blade cores are the most important factor in distinguishing 

blade production (Odell 1994).  Prepared cores are commonly observed in contexts that include 

Clovis, Hopewell, Neolithic Mesoamerica, the California Channel Islands, Alaska and the 

Northwest Coast, as well as large earthwork sites such as Poverty Point and Cahokia (Odell 

1994; Parry 1994). 

Summary of Washington Irving Lithics 

The results of the analysis of the lithic tools recovered from feature and plowzone 

contexts at Washington Irving support the findings initially reported by Jeske (2000), who noted 

a similar frequency of tool forms and suggested bipolar reduction as a major form of the site 

inhabitant’s economy. Furthermore, the Washington Irving lithic assemblage exhibits similarities 

to other Langford sites such as the Robinson Reserve (Lurie 1992:96-99), LaSalle County Home 

(Jeske 1998:30-45) and Zimmerman sites (Park 2004:157-161) with a prevalence of bipolar 
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reduction techniques, a moderate production of triangular bifacial tools (including humpback 

bifaces), and the procurement of fair and poor quality local raw material.  

The remainder of this chapter is an in-depth description of the tool and debitage 

assemblages from the Koshkonong Creek Village. Successively, a comparative analysis of the 

Washington Irving and Koshkonong Creek Village lithic assemblages are discussed in Chapter 8.  

The Koshkonong Creek Village Debitage Assemblage 

A total of 681 pieces of debris from the Oneota component at the Koshkonong Creek 

Village was subjected to mass debitage analysis and were divided into size grades 1 through 4 

(Table 7.13). Only lithic pieces recovered from ¼ inch dry screen contexts were subject to 

analysis, as the majority of the assemblage collected for flotation has not yet been processed or 

sorted. Over half of the debitage assemblage was size grade 3 (61%, n=414). Size grade 2 and 4 

represent 18% (n=119) and 21% (n=144), respectively.  

Table 7.13.  Totals and percentages of the KCV lithic debitage based on size grade. 
Type n of 

Pieces 
Weight 
(g) 

% of 
Total  

n with 
Cortex  

% with 
Cortex  

% of Total 
w/ Cortex  

n with 
HT  

% with 
HT  

% Total 
w/ HT  

1 4 0.5 0.6% 2 50.0% 1.3% 1 25.0% 0.5% 
2 119 40.05 17.5% 17 14.3% 10.6% 36 30.3% 18.0% 
3 414 358.6 60.8% 85 20.5% 53.1% 125 30.2% 62.5% 
4 144 610.4 21.1% 56 38.9% 35.0% 38 26.4% 19.0% 
Total 681 1009.5 100% 160 23.5% 100% 200 29.4% 100% 

 

About a quarter of the total debitage assemblage (24%, n=160) showed evidence of 

cortex remaining of the surface of a piece. Approximately 39% of size grade 4 debitage (n=56) 

showed cortex on the surface of the material, while about a fifth of size grade 3 debitage (21%, 

n=85) had cortex present. Size grade 2 pieces showed even less frequency of cortex (14% n=17). 

Only four pieces of debitage were smaller than 8mm (size grade 1, less than 1%), half of which 
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had cortex. This is likely due to sampling error. These proportions are expected due to the nature 

of lithic core reduction. The presence of heat alteration was noted in 29% (n=200) of lithic 

debitage from KCV. Between size grades 1, 2, 3 and 4, similar proportions of heat treatment 

represent the debitage assemblage at 25% (n=1), 30% (n=36), 30% (n=125) and 26% (n=38), 

respectively.  

As with the Washington Irving assemblage, the debitage assemblage was also divided 

into the flake type categories: Flake, flake-like, and non-flake (Table 7.14). Non-flake shatter 

debris was the most common, with approximately 40% of the pieces (n=269) falling into this 

category. Flake-like pieces represent 38% (n=256) of the debitage assemblage. The remaining 

23% (n=156) of the debitage were categorized as flakes.  

Table 7.14.  Totals and percentages of the KCV lithic debitage based on type. 
Type n of 

Pieces 
Weight 
(g) 

% of 
Total  

n with 
Cortex  

% with 
Cortex  

% of Total 
w/ Cortex  

n with 
HT  

% with 
HT  

% Total 
w/ HT  

Flake 156 60.8 22.9% 19 12.2% 11.9% 49 31.4% 24.5% 
Flake-Like 256 196.5 37.6% 45 17.6% 28.1% 82 32.0% 41.0% 
Non-Flake 269 752.1 39.5% 96 35.7% 60.0% 69 25.7% 34.5% 
Total 681 1009.5 100% 160 23.5% 100% 200 29.4% 100% 

 

Non-flake pieces exhibit the highest proportion of cortex (36%, n=96), while flake-like 

and flake pieces with cortex are represented in lower proportions, 18% (n=45) and 12.2% (n=19) 

respectively.  Debitage classified as flakes exhibit a higher proportion of heat alteration (37%) 

than flake-like and non-flake pieces (28% and 27%, respectively). 

Chi-square tests show no significant relationship between the debitage type and heat 

alterations. While a chi-square test suggests a significant relationship between the cortex and 

debitage type (where cortex is overrepresented in non-flake pieces while flake and flake-like 

pieces are underrepresented), a phi coefficient of 0.168 suggests a weak association. Chi-square 
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tests on large samples are not a reliable indicator of statistical significance and require further 

testing (Drennan 2009:190). 

The Koshkonong Creek Village Tool Assemblage 

The lithic assemblage from the 2012 and 2014 excavations at the Koshkonong Creek 

Village includes 93 chipped stone tools. Photographs of the tools by morpho-functional type are 

located in Appendix C (Plates 9-15). The debitage-to-tool ratio from the assemblage is 

approximately 7:1. Doyle’s (2012) preliminary investigation of lithics recovered from survey at 

Koshkonong Creek Village exhibited a debitage-to-tool ratio of about 4:1, while Ahlrichs et al. 

(2014) reported a debitage-to-tool ratio of less than 3:1. These ratios are quite low, likely due to 

the nature of pedestrian survey; the debitage-to-tool ratio from excavated contexts represents a 

more comparable sample of debitage to compare to lithic assemblages from other prehistoric 

sites. 

Raw Material 

The majority of the lithic tool assemblage is composed of Galena chert (n=57, 61%; 

Table 7.15). Galena outcrops are located in south-central and southwestern Wisconsin, south of 

the Wisconsin River (Rosebrough and Broihahn 2005; Winkler et al. 2009), as well as 

northwestern Illinois, southeastern Minnesota, and northeastern Iowa. However, Galena has been 

known to occur as far east as Rock and Jefferson counties in Wisconsin (Winkler et al. 2009). 

Galena chert is gray in color and abundant with fossils, with a medium-fine to fine in texture and 

dull luster.  

Approximately 16% (n=15) of the tool assemblage was made of local Silurian chert. 
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Table 7.15. Percentage and number of tools by raw material type from KCV. 
Raw Material n  %  
Galena 57 61.3% 
Silurian 15 16.1% 
PDC- Oneota 10 10.8% 
Unknown 8 8.6% 
Burlington 2 2.2% 
Hixton Silicified Sandstone 1 1.1% 
TOTAL 93 100% 
 

Unlike the Joliet formation Silurian chert prevalent at the Washington Irving site, Silurian 

recovered at KCV is a local material of the Niagara formation, found in outcrops in pink color 

when heat treated, dull and chalky in texture with abundant fossils, and is commonly found in 

nodular bands in bedrock, streambed deposits and as glacial till (Winkler et al. 2009). 

Approximately 11% (n=10) of the tools from KCV were made of Lower Prairie du Chien 

chert, or Oneota chert. Prairie du Chien chert occurs in two main chert formations, the Oneota 

and the Shakopee formations. Shakopee is in the upper part of the Prairie du Chien formation, 

while Oneota is in the lower part of the Prairie du Chien. Oneota formation chert is often 

mottled, swirled or marbled in appearance, a trait not common in most other cherts in Wisconsin. 

In the eastern extent of its formation, Prairie du Chien is commonly orange in color, while in the 

western part of the Prairie du Chien formation can be gray. While difficult to knap, Prairie du 

Chien often benefits from heat alteration and can become more pinkish in color (Winkler et al. 

2009). 

Galena, Silurian, and Oneota chert represent locally available raw materials (Table 7.16). 

The remaining tools made from exotic non-local materials. Burlington represented a small 

proportion of the assemblage (n=2, 2%). As discussed in the previous section of this chapter, 

Burlington chert exposures are located in west-central Illinois, eastern Missouri and southeastern 

Iowa and would not have been a local resource to groups in southeastern Wisconsin  
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Table 7.16. Percentage and number of tools made from local vs. non-local raw material from KCV. 
Material Type n  %  
Local 82 88.2% 
Non-Local  3 3.2% 
Unknown 8 8.6% 
TOTAL 93 100%  
 

(DeRegnaucourt and Georgiady 1998). Only one tool (1%) was made of Hixton Silicified 

Sandstone, also a non-local resource, with the only known location of the material located in 

western Wisconsin (Carr and Boszhardt 2010). 

Nearly 9% (n=8) of tools were made of unknown glacial till chert. If the tools categorized 

as unknown material are considered local, the proportion of tools made from local material 

represents an overwhelming majority of the lithic tool assemblage (n=90, 97%). 

An overwhelming majority of lithic tools from KCV were made from fair quality 

material (89%, n=83). Approximately 9% (n=8) of the tools were categorized as being poor 

quality raw materials. Only two tools were made of good quality raw material (2%), both made 

of non-local Burlington. It is evident that little time and energy was spent to acquire good quality 

chert as locally available fair quality raw materials dominate the lithic tool assemblage (after 

Jeske 1992a). 

The amount of tools with some cortex suggests that early stages of lithic reduction were 

occurring at KCV. About three-quarters of the tools (n=70, 75%) had no cortex remaining on the 

surface of tools, while the less than one-quarter of the tools (n=21, 23%) had less than 50% 

cortex on the tool. Only two tools (2%) had more than 50% on the surface covered with cortex.  

As suggested by the debitage assemblage, heat treatment was a strategy employed at 

KCV to help improve the quality of poor and fair raw materials. Approximately half of the lithic 
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tool assemblage (51%, n=47) showed no evidence of heat treatment. Approximately 34% of the 

assemblage (n=32) showed the presence of heat alteration, while an additional 13 tools (14%) 

were categorized as possibly having been heat-treated. Only one tool (1%) was burned. 

Tool Morphology and Modification 

There were four basic forms of tools in the assemblage recovered from KCV (Table 

7.17). Over half of the tools (53%, n=49) were edge-only tools. Bifacial and unifacial tools 

account for 23% (n=21) and 15% (n=14) of the tool assemblage (n=22) respectively. Only 9.7% 

of the tools (n=9) were multifacial in form. There were no prismatic blades or pseudo-bladelets 

recovered.   

Table 7.17. Percentage and number of tools in each Basic Form category from KCV. 
Basic Form n  %  
Bifacial 22 23.7% 
Unifacial 14 15.1% 
Multifacial 9 9.7% 
Edge-Only 48 51.6% 
TOTAL 93 100% 
 

Regarding the method of tool modification, over half of tool assemblage from KCV was 

modified by flaking (57%, n=53; Table 7.18).  Tools modified by flaking and battering and well 

as tools modified by use-wear only equally represent 19% of the tool assemblage (n=18). Four 

tools (4%) were modified by battering only.  

Table 7.18. Percentage and number of tools in each Method of Modification category from KCV. 
Method of Modification n  %  
Flaked 53 57.0% 
Flaked and Battered 18 19.4% 
Battered 4 4.3% 
Use-wear only 18 19.4% 
TOTAL 93 100% 
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Whole tools with complete functional units present represent nearly two-thirds of the 

lithic assemblage at KCV (n=61, 66%).  Broken tools with one or more functional units 

interrupted by a break accounts for about a quarter of the tool assemblage (26%, n=24). Eight 

tools (9%) did not contain functional units and were scored as Not Applicable. Three-quarters of 

the tool recovered (74%, n=69) had all elements present, which include whole tools and cores 

without functional units. The remaining tools were broken, with eight tools (9%) having only the 

distal end present, six tools (7%) having the proximal present and six tools (7%) having only the 

mid-section present. Four tools (4%) were scored as end section present, with the end 

indistinguishable between distal and proximal. 

An overwhelming majority of tools showed no evidence of retouch or reuse. While 85 of 

the tools (91%) did not show any evidence of reuse, three tools (4%) showed evidence of 

retouch, and five tools (5%) tools were categorized as possibly being reworked. One of these 

tools includes a knife reworked from what may have been a scavenged projectile point. No tools 

in the assemblage showed evidence of projections, or the intentional retouch or wear on an 

unretouched area that extends out from the body of a piece; however, the base of a drill reworked 

from a triangular point was recovered. As discussed previously, a low frequency of rework is 

expected in assemblages that are indicative of generalized lithic economies based on informal 

and expedient tools made of poor and fair quality raw material (Jeske 1992a). 

Hafting elements are not common among tools at the Koshkonong Creek Village. A total 

of 77 tools (76%) were scored not applicable or as absent of hafting elements. Fourteen tools 

(14%) showed evidence of obvious hafting elements, marked constrictions or notched hafting 

elements, while only two tools (2%) showed possible evidence of hafting.  
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Of the bifacially modified tools (n=25), a majority of the tools were of categorized as 

having medium refinement (67%, n=14), while five tools (24%) were defined as having crude 

refinement. Only one tool categorized as refined (5%). Only one bifacial tool was too small and 

broken to determine the level of refinement. Given these frequencies of medium and crudely 

refined tools, it appears that the focus of the lithic economy at KCV was to create expedient and 

functional tools rather than formal tools. However, the presence of basic tool forms such as 

Madison points also indicates some time and energy may have been spent making unifacial and 

bifacial tools (Jeske 1992a). 

Koshkonong Creek Village Tools Based on Morpho-Functional Categories  

As with the Washington Irving tool assemblage, the tools from the Koshkonong Creek 

Village were also subject to categorization based on a morpho-functional typology (Table 7.19). 

Table 7.19. The KCV lithic assemblage categorized by a morpho-functional typology. 
Morpho-functional Category n  %  
Unidentified Tool 54 58.1% 
Triangular Point 23 24.7% 
Multifacial Core 8 8.6% 
Scraper 5 5.4% 
Drill 1 1.1% 
Knife 1 1.1% 
Unidentified Formal Tool 1 1.1% 
TOTAL 93 100% 
 

Triangular Points/Madison Points 

Triangular points represent 26% (n=24) of the lithic tool assemblage recovered from the 

Koshkonong Creek Village (Table 7.20, Plate 9). Further, Madison points represent all of the 

triangular projectile points in the tool assemblage. Unlike the lithic tool assemblage at 

Washington Irving, no humpback triangular bifaces were recovered from KCV. However,  
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Table 7.20. Measurements of projectile points from KCV.  
Triangular Point Type Measurement n  Mean  SD 
Madison Points Length (mm) 9 18.8 3.7 
 Width (mm) 12 12.5 1.2 
 Thickness (mm) 18 3.3 0.7 
 Weight (g) 9 0.6 0.2 
 

Madison points in the KCV tool assemblage were manufactured from several different blanks. 

Five Madison points (20%) were unifacial in form, while one Madison point was worked as an 

edge only. The remaining three-quarters of Madison points (75%, n=18) were bifacial in form. 

Other Formal Tools  

Only five tools were classified as scrapers (6%; Table 7.21, Plate 10), three of which 

were classified as end and side scrapers, while two were end scrapers. Several unidentified 

expedient flake tools are unifacially worked and may represent scraping activities, although can 

not be considered scrapers by edge morphology alone. Only one tool was morpho-functionally 

classified as a knife (1%; Table 7.22, Plate 11). However, as with expedient scrapers, it is likely 

many of the unidentified edge-only expedient tools show microscopic traces of cutting materials 

in a longitudinal motion. The knife, made of local Oneota formation Prairie du Chien chert, 

shows evidence of resharpening on one or more edges. The tool was likely a scavenged Kramer 

Table 7.21. Measurements of scrapers from KCV.  
Scraper Type Measurement n  Mean  SD 
End Scraper Length (mm) 1 31.6 N/A 
 Width (mm) 1 17.8 N/A 
 Thickness (mm) 1 6.7 N/A 
 Weight (g) 1 4.3 N/A 
     
End and Side Scraper Length (mm) 3 32.0 6.0 
 Width (mm) 3 18.3 4.5 
 Thickness (mm) 3 6.9 1.5 
 Weight (g) 3 4.3 3.4 
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Table 7.22. Measurements of formal bifacial tools from KCV.  
Formal Bifacial Tools Measurement n  Mean  SD 
Knife Length (mm) 1 45.9 N/A 
 Width (mm) 1 28 N/A 
 Thickness (mm) 1 12.1 N/A 
 Weight (g) 1 11.8 N/A 
     
Drill Length (mm) 1 15.8 N/A 
  Width (mm) 0 N/A N/A 
 Thickness (mm) 1 3.6 N/A 
 Weight (g) 0 N/A N/A 
 

projectile point, diagnostic of Late Archaic and Early Woodland periods (Justice 1987:184). 

Only one tool was classified as a drill (1%; Plate 12), likely reworked from a Madison point. 

While the drill bit projection is broken from the base and was not recovered during excavation, 

the base exhibits marked constricted hafting similar to that of triangular Madison points. 

One unknown tool (2%) was bifacially worked and broken, interpreted as the tip of a 

knife, drill or projectile point, etc. While clearly worked bifacially and formal in type, the tool 

could not be identified as any specific tool type and was too broken to measure. 

Bipolar and Free-Hand Cores 

A total of eight cores (8%) were recovered from the lithic tool assemblage (Table 7.23). 

Of these tools, five freehand cores were recovered from the lithic tool assemblage (63%; Plate  

Table 7.23. Measurements of multifacial cores from KCV.  
Multifacial Core Type Measurement n  Mean  SD 
Freehand Cores Length (mm) 5 32.1 10.6 
 Width (mm) 5 23.4 10.2 
 Thickness (mm) 5 15.8 7.9 
 Weight (g) 5 13.4 14.9 
 
Bipolar Cores  Length (mm) 3 23.9 6.5 
  Width (mm) 3 16.6 6.1 
 Thickness (mm) 3 8.2 3.6 
 Weight (g) 3 4.8 3.7 
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12). The remaining three cores recovered from the lithic tool assemblage were bipolar (38%; 

Plate 14). Evidence of bipolar manufacture consists of crushed platforms and battering both ends 

of the core due to the nature of bipolar percussion, with multiple strikes of the hammer stone 

against an anvil (Kooyman 2000:56). As discussed previously, Jeske and Lurie (1993) suggested 

that bipolar reduction is used to reduce small and poor quality raw material. 

Unidentified Tools  

A total of 54 lithic tools (58%) from the assemblage did not fit into any formal 

typological category and were categorized as Unidentified (Table 7.24, Plate 15). Of these tools, 

an overwhelming majority were expedient edge-only tools (n=45, 83%). Additionally, there were 

seven unifacially modified unidentified tools (13%). Bifacial and multifacial forms account for 

one unidentified tool each (n=1, 2%).   

Table 7.24. Unidentified tool forms from KCV.  
Modification Type Measurement n  Mean  SD 
Edge-Only Length (mm) 42 26.3 8.3 
 Width (mm) 43 19.0 5.3 
 Thickness (mm) 44 6.1 3.0 
 Weight (g) 42 3.4 3.8 
 
Bifacial Length (mm) 0 N/A N/A 
  Width (mm) 0 N/A N/A 
 Thickness (mm) 1 6.5 N/A 
 Weight (g) 0 N/A N/A 
     
Multifacial Length (mm) 1 17.5 N/A 
  Width (mm) 1 11.8 N/A 
 Thickness (mm) 1 5.9 N/A 
 Weight (g) 1 1.1 N/A 
     
Unifacial  Length (mm) 4 23.7 3.5 
 Width (mm) 4 17.6 2.6 
 Thickness (mm) 5 5.0 2.1 
 Weight (g) 4 2.5 1.8 

 

Summary of KCV Lithic Assemblage  

The results of the Koshkonong Creek Village lithic tool and debitage analysis support the 
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findings initially reported by other Koshkonong Oneota researchers. Prior research has suggested 

that expedient flake tools are more prominent in the lithic tool assemblage at KCV. Doyle (2012) 

and Ahlrichs et al. (2014) reported that the tool assemblage recovered from past field seasons 

(survey in 1986, 2008, 2010 and 2014, excavation in 2012) exhibit a 3:1 expedient-to-formal tool 

ratio. Similarly, Sterner (2102) reported an approximately 2:1 expedient-to-formal tool ratio 

from the 2004 excavations at the Crescent Bay Hunt Club. The frequencies of formal-to-

expedient tool forms between the Washington Irving site and the Koshkonong Creek Village will 

be further discussed in the following chapter. 

Further, the assemblages from excavated contexts from two field seasons increases our 

understanding of the lithic technology at the site. Ahlrichs et al. (2014) suggested that KCV 

likely had specialized early stage lithic production areas that were not identified in the 2012 

excavations; the 2012 excavation area at KCV may be an outlier in terms of lithic production, as 

there was far less debitage with evidence of heat alteration and cortex remaining on the surface 

of pieces as suggested by the lithics recovered from survey.  

Ahlrichs et al. (2014) predicted that there were likely areas where early stages of tool 

production occurred, indicated by evidence of heat treatment, bipolar blank production and the 

initial removal of cortex.  This analysis (representing the 2012 and 2014 excavation over a larger 

area of the site) is a seemingly better representation of the site as a Koshkonong Locality Oneota 

village, with generally similar frequencies of cortex and heat treated debitage within the 

assemblage as to the 2004 debitage assemblage from the Crescent Bay Hunt Club (Sterner 2012). 
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CHAPTER 8 

COMPARATIVE ANALYSIS OF THE LITHIC ASSEMBLAGES 

This chapter is a discussion of the comparative analysis of the lithic assemblages from the 

study sites and the subsequent interpretation within the context of the sites on the Upper 

Mississippian landscape. Specifically, comparisons between lithic raw material procurement and 

modification, lithic tool manufacture and form, and the proportion of lithic debitage to tools are 

investigated. The comparative analysis was conducted and interpreted using chi-square tests in R 

using an alpha level of 0.05. As small differences may appear to be statistically significant when 

the sample size (n) becomes large enough, phi coefficients were calculated when testing the 

debitage assemblages to test the effect size for chi-square tests (Drennan 2009). Based on 

previous research of Upper Mississippian lithic economies, it is expected that the two lithic 

assemblages investigated are generally similar and suggestive of an economy based on energetic 

efficiency, while varying levels of economizing behavior may suggest varying degrees of raw 

material availability or stress adaption from the social and political landscape. 

Jeske (2003b) outlined several lines of inquiry for his comparison of Late Woodland and 

Mississippian occupants of the LaSalle County Home site in the Upper Illinois River Valley in 

northern Illinois. Of the lithic assemblages, Jeske examined several aspects that suggest 

economizing approaches, such as debitage-to-tool ratios, local vs. non-local raw material 

utilization, quality of raw materials, intensity of tool use, tool breakage and tool scavenging. 

While designed to compare groups from different prehistoric periods, these lines of inquiry can 

provide valuable insight in the study of contemporaneous Upper Mississippian groups. Along 

with these characteristics, other aspects of the two assemblages are compared, such as frequency 
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of heat alteration and presence of cortex, method of modification, proportions of tool form and 

the degree of bifacial refinement. Finally, the sites are compared and interpreted within the 

context of their respective physical and cultural surroundings. 

Lithic Raw Material Procurement and Modification  

The distribution of debitage type throughout the Washington Irving and KCV 

assemblages exhibit statistically similar frequencies (Figure 8.1). For an analogous comparison 

with Washington Irving, only size grade pieces 3 and 4 from KCV were considered. The relative 

frequencies of non-flake type pieces from Washington Irving and KCV are statistically similar 

(38% and 40% respectively). While a chi-square test reports a significant difference in the 

relative frequencies of flake and flake-like pieces at Washington Irving (31% of each 

assemblage) and KCV (23% and 37%, respectively), the low phi coefficient (0.061) suggests 

there is no association between flake types and the significant may be due to the large sample 

size (Table 8.1). Flake and flake-like pieces are indicative of free hand reduction, while flakes 

from bipolar reduction are commonly categorized as either flake-like or non-flake (Winkler 

2011).  The discrepancy in relative frequencies is not very interesting as standardized residuals 

suggest there is no significant difference in the frequency of non-flakes pieces between the 

assemblages while flake-like pieces can represent either type of free hand or bipolar reduction. 

Table 8.1. Crosstabulation of Debitage Type from the Washington Irving and KCV sites. 
 Flake Flake-Like Non-Flake TOTAL 

 
Washington Irving 512 (31.2%) 507 (30.9%) 622 (37.9%) 1641 
Koshkonong Creek 
Village 154 (22.6%) 236 (34.7%) 291 (42.7%) 681 

TOTAL 666 (28.7%) 743 (32.0%) 913 (39.3%) 2322 
χ2=17.3498, df=2, p=0.00017, phi coefficient=0.061 
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Figure 8.1: Frequencies of lithic debitage types at the study sites. 

 

Presence of Cortex 

The frequencies of cortex remaining on the surface of tools as well as the presence of 

cortex on pieces of debitage are similar between the assemblages (Figure 8.2).  Approximately 

27% of the Washington Irving tool assemblage represents tools with cortex, while 25% of tools 

at KCV have cortex (Table 8.2). Similarly, 30% of debitage from Washington Irving have 

cortex, while the frequency of KCV debitage with evidence of cortex remaining on pieces is 

25%. Again, only size grade 3 and 4 pieces of debitage from KCV were used in the comparison 

of debitage with the assemblage from Washington Irving to avoid sampling bias. While a chi-

square test suggests a statistically different frequency of cortex on debitage, the phi coefficient is 

extremely small (0.042) and suggests little or no association (Table 8.3). Similar proportions of 

cortex on pieces in the tool and debitage assemblages suggest initial stages of lithic reduction 

were occurring at the sites (Ahler 1989; Andrefsky 2005; Odell 2004). 
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Figure 8.2: Frequencies of cortex present on debitage and tools at the study sites. 

 

Table 8.2. Crosstabulation of Presence of Cortex from tools at Washington Irving and KCV. 
 Absent 0-50% >50% TOTAL 

 
Washington Irving 74 (73.3%) 27 (26.7%) 0 (0.0%) 101 
Koshkonong Creek 
Village 70 (75.3%) 21 (22.6%) 2 (2.2%) 93 

TOTAL 144 (74.2%) 48 (24.7%) 2 (1.0%) 194 
χ2=2.602, df=2, p=0.2723 

 
 
Table 8.3. Crosstabulation of Presence of Cortex from debitage at Washington Irving and KCV. 
 Present Absent TOTAL 

 
Washington Irving 1154 (70.3%) 487 (29.7%) 1641 
Koshkonong Creek Village 417 (74.7%) 141 (25.3%) 558 
TOTAL 1571 (71.4%) 628 (28.6%) 2199 

χ2=4.4408, df=1, p=0.0464, phi coefficient=0.042 
 

Evidence of Heat Treatment 

The heat treatment of raw material is an economizing practice utilized by groups at both 

Washington Irving and the Koshkonong Creek Village and is evident in both the lithic tool and 

debitage assemblages. Heat treatment often improves flaking quality of poor or fair quality chert 

(Andrefsky 2005; Kooyman 2000; Rick 1978; Whittaker 1994). Chi-square tests suggest a 

significantly higher frequency of heat alteration among debitage at KCV than at Washington 
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Irving (Figure 8.3, Table 8.4), while a medium phi coefficient (0.146) suggests the significance 

is not simply the result of a large sample size (Drennan 2009). When burned tools are 

categorized as heat-altered and when heat alteration cannot be determined are omitted (one case), 

the lithic tool assemblages also suggest more heat treatment at KCV (35%) than at Washington 

Irving (15%; Table 8.5). Further, if tools that were considered possibly heat-treated are 

considered as such, the proportion of heat-altered tools at KCV and Washington Irving increases 

to 50% and 27%, respectively. However, when tools observed as possibly heat-treated are 

considered as such at Washington Irving but are considered not heat-treated at KCV, the tool 

assemblages appear statistically similar (χ2=1.2471, df=1, p=0.2641).  

 
Figure 8.3: Frequencies of heat alteration at the study sites. 

	
  

Table 8.4. Crosstabulation of Heat Treatment from debitage at Washington Irving and KCV. 
 Present Absent TOTAL 

 
Washington Irving 271 (16.5%) 1379 (83.5%) 1641 
Koshkonong Creek 
Village 200 (29.4%) 481 (70.6%) 681 

TOTAL 471 (20.3%) 1851 (79.9%) 2322 
χ2=49.1796, df=1, p=2.34e-12, phi coefficient=0.146 
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Table 8.5. Crosstabulation of Heat Treatment from tools at Washington Irving and KCV. 
 Present Possible Absent TOTAL 

 
Washington Irving 15 (15.0%) 12 (12.0%) 73 (73.0%) 100 
Koshkonong Creek 
Village 33 (35.5%) 13 (14.0%) 47 (50.5%) 93 

TOTAL 48 (24.8%) 25 (13.0%) 120 (62.2%)  193 
χ2=12.1855, df=2, p=0.0023 

 

Local vs. Non-Local Raw Material Utilization 

Local raw material utilization is a major part of the lithic economies at the Washington 

Irving and Koshkonong Creek Village sites (Figure 8.4). Locally available raw materials 

represent 73% of the tools at Washington Irving and 83% of the KCV tool assemblage; non-local 

or exotic cherts only represent 5% and 3% of the assemblages, respectively. A chi-square test 

suggests the relative frequencies between the assemblages are statistically similar (Table 8.6). 

Further, when one considers the unidentified raw materials as local, locally available raw 

materials represent an overwhelming majority of tool assemblages at Washington Irving (94%) 

and KCV (97%). The unknown type cherts are likely locally available pebble cherts (Sterner 

2012; Winkler 2011). 

 
Figure 8.4: Local vs. non-local raw material utilization at the study sites. 
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Table 8.6. Crosstabulation of Local v Non-Local Raw Material at Washington Irving and KCV. 
 Local Non-Local Unknown TOTAL 

 
Washington Irving 74 (73.3%) 5 (5.0%) 22 (21.8%) 101 
Koshkonong Creek 
Village 77 (82.8%) 3 (3.2%) 13 (14.0%) 93 

TOTAL 151 (77.8%) 8 (4.1%) 35 (18.0%) 194 
χ2=2.5483, df=2, p=0.3652 

 

Quality of Raw Material 

The expectation that Upper Mississippian groups heavily utilized poor and fair quality 

raw materials (Jeske 1992a, 2003b) is supported by the lithic tool assemblages recovered from 

both sites (Figure 8.5). An overwhelming majority of both Washington Irving and KCV are 

represented by fair quality raw materials (74% and 89%, respectively). While not common, good 

quality raw materials also represent a similar proportion of both tool assemblages (4% and 2%, 

respectively). However, there is a significant difference between the frequency of poor and fair 

quality raw materials (Table 8.7). Poor quality raw materials were recovered at a higher 

frequency at Washington Irving (22%) than at KCV (9%). This is likely due to the largely poor 

quality Joliet Formation Silurian chert available to the Washington Irving site inhabitants.  Of the 

22 tools classified as poor quality, 82% were made of Joliet Silurian (n=18). 

Table 8.7. Crosstabulation of Raw Material Quality from the Washington Irving and KCV sites. 
 Good Fair Poor TOTAL 

 
Washington Irving 4 (4.0%) 75 (74.3%) 22 (21.8%) 101 
Koshkonong Creek 
Village 2 (2.2%) 83 (89.2%) 8 (8.6%) 93 

TOTAL 6 (3.1%) 158 (81.4%) 30 (15.5%) 194 
χ2=7.2876, df=2, p=0.026 
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Figure 8.5: Frequencies of raw material quality of tools at the study sites. 

 

Method of Modification 

There are some significant differences in the method of modification of tools (Figure 8.6, 

Table 8.8). Over half of the KCV tool assemblage (56%) was modified by flaking while 

modification by flaking represents 37% of the tools from Washington Irving. Conversely, 18% 

of tools at Washington Irving were modified by battering only (without flaking), significantly 

more than at KCV (4%).  Battering suggests pounding or crushing on either the edges of the 

body of a piece, indicative of bipolar reduction techniques (Lurie and Jeske 1990).  

Table 8.8. Crosstabulation of Method of Manufacture from the Washington Irving and KCV sites. 
 Flaked Flaked and 

Battered 
Battered Use-Wear 

Only 
TOTAL 
 

Washington Irving 37 (36.6%) 32 (31.7%) 18 (17.8%) 14 (13.8%) 101 
Koshkonong Creek 
Village 52 (55.9%) 19 (20.4%) 4 (4.3%) 18 (19.4%) 93 

TOTAL 89 (45.9%) 51 (26.2%) 22 (11.3%) 32 (16.5%) 194 
χ2=14.946, df=3, p=0.0019 
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Figure 8.6: Frequencies of manufacturing methods at the study sites. 

 

Approximately 32% of the Washington Irving assemblage was modified by flaking and 

battering, a slightly higher frequency than reported at KCV (20%). Conversely, modification by 

use-wear only was more prevalent on tools at KCV (19%) than at Washington Irving (14%). 

While the frequencies vary between assemblages, a chi-square test suggests the difference in 

frequencies of modification by flaking and battering and use-wear only are not statistically 

significant. However, the statistically different frequencies of battering may suggest bipolar 

reduction may have been more prevalent at Washington Irving, while the statistically different 

frequencies of flaking suggest more free hand reduction at KCV. 

Lithic Tool Form, Morphology, Use and Discard 

Bifacial v. Edge-Only Tool Forms 

In the previous chapter, morphological characteristics of the lithic tools from both 

assemblages were described. When comparing the two assemblages based on the basic forms of 

tool recovered from the sites, several differences are observed (Figure 8.7). The relative  
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Figure 8.7: Frequencies of tool forms at the study sites. 

 

frequencies of multifacial tools between the assemblages differ but indicate no statistical 

significance (Table 8.9). However, the proportions of bifacial, unifacial, edge-only tools at the 

sites are significantly different from each other. While bifacial tools compose 23% of the tool 

assemblage, the majority of tools recovered at KCV were edge-only in form (53%), suggesting a 

focus on the efficient manufacture and use of raw materials with the production of expedient 

flake tools. Conversely, edge-only tools represent 21% of the Washington Irving assemblage. 

The majority of tools were bifacial in form (56%).  

Table 8.9. Crosstabulation of Basic Form from the Washington Irving and KCV sites. 
 Bifacial Unifacial Multifacial Edge-Only TOTAL 

 
Washington Irving 57 (56.4%) 6 (5.9%) 17 (16.8%) 21 (20.8%) 101 
Koshkonong Creek 
Village 21 (22.6%) 14 (15.1%) 9 (9.7%) 49 (52.7%) 93 

TOTAL 78 (40.2%) 20 (10.3%) 26 (13.4%) 70 (36.1%) 194 
χ2=33.204, df=3, p=2.918e-07 

 

While the tools at Washington Irving indicate that a higher degree of energy was placed 

in manufacturing bifaces, many of them are crude in form and may have been expediently 
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manufactured, particularly evident by the humpback type biface (Hohol 1985; Jeske 1992a).	
  

Approximately 60% of bifaces were categorized as crudely refined, with an additional 25% 

considered medium refined (Figure 8.8). The standardized residuals of a chi-square test suggest 

the relative proportions of medium and crudely refined bifaces at Washington Irving are 

significantly different than at KCV (Table 8.10). The relative proportions of refined bifaces 

appear to be similar. 

 
Figure 8.8: Frequencies of the degree of refinement of bifaces at the study sites.	
   
 

 

Table 8.10. Crosstabulation of Bifacial Refinement from the Washington Irving and KCV sites. 
 Refined Medium Crude C/D TOTAL 

 
Washington Irving 2 (3.5%) 14 (24.6%) 34 (59.6%) 7 (12.3%) 57 
Koshkonong Creek 
Village 1 (4.8%) 13 (61.9%) 6 (28.6%) 1 (4.8%) 21 

TOTAL 3 (3.8%) 27 (34.6%) 40 (51.3%) 8 (10.3%) 78 
χ2=12.7421, df=3, p=0.0052 

 

While bifacial tools dominate the Washington Irving assemblage, a similar frequency of 

triangular points recovered at both sites. Interestingly, bifacial unidentified tools represent of 

32% (n=15) of the unidentified tools at Washington Irving, while only one unidentified tool (2%) 
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at KCV was bifacially modified.  Conversely, edge-only tool forms account for more of the 

unidentified tools at KCV (83%, n=45) than at Washington Irving (45%, n=21). Kelly (1988) 

noted the benefits of bifacial tool manufacture: 

The ‘bifacialness’ of some tools gives them the potential to be long use-life tools. A 
bifacially flaked edge can have a fair amount of cutting power (though less than an 
unretouched flake of the same material) yet the less acute angle of a biface's edge makes 
it more durable than an unretouched flake. A completely flaked bifacial tool has a similar 
microtopography along all its edges; should the tool edge break or become dulled, it can 
be resharpened relatively easily and continue to be useful. Within limits set by the raw 
material, a bifacial form simultaneously gives a tool sharpness, durability, and the 
potential to be resharpened [Kelly 1988:718]. 

The potential for resharpening and a longer use-life of bifaces may suggest a different 

degree of expediency in stone tool use and discard.  

Expedient vs. Curated Tools 

 The concepts of expedient tools, tool curation and the organization of lithic technology 

have been thoroughly discussed in the Chapter Six. For the purpose of this study, pieces that did 

not match any formal tool type were considered unidentified expedient tools. Based on the 

previous definition, 47% of the tools at Washington Irving are considered expedient while 53% 

are considered formal. At the Koshkonong Creek Village, 58% of tools are expedient while 42% 

are formal. The proportions of expedient and formal tools support the findings from the lithic 

assemblage from KCV as well as from the Crescent Bay Hunt Club. Sterner (2012:93) reported 

that approximately 60% of the tools are expedient, while the remaining 40% were more formal 

morpho-functional types.  

While considered formal by definition, Jeske (1989a, 1992a) argued that humpbacks 

should be seen as a manufacturing type rather than a morpho-functional type as they are the 

result of groups efficiently making do with poor quality or scarcely available raw materials for 
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tool manufacture. Jeske also suggested humpbacks were used efficiently (although not 

necessarily expediently) as knives, scrapers, projectile points, or for a combination of uses. From 

this perspective, humpback tools, as well as crude and medium refined Madison points, could be 

considered expedient in terms of manufacture and curated in terms of use and discard. Kelly 

(1988) suggested bifaces are less expedient as they allow for more resharpening and can be used 

as cores. As with curated tools, bifaces may suggest an increase in time-stress due to other 

scheduling constraints, as they need to be produced well in advance of their use unlike edge-only 

flake tools (after Torrence 1983:12). Further, Jeske (1992a:476) argued that bifacially formed 

tools might be more adequate and desirable to groups with extreme constraints on raw material.  

Bamforth (1986:49) noted that classifying tools as curated or expedient is often 

oversimplified and is not extremely useful, as there are different degrees and ways of curating 

tools. While the comparison of the two lithic tool assemblages suggests a similar level of 

expediency, a higher frequency of bifaces at Washington Irving indicates an economy based on 

tool resharpening and reuse to save precious raw material by extending the use-life of tools, 

indicating more stress and constraints on raw material procurement.  

Further, it is interesting that humpbacks are only found at Washington Irving but not at 

the Koshkonong Creek Village, a pattern that has been acknowledged between Langford and 

Oneota lithics for several decades. Munson and Munson’s (1972) initial hypothesis that 

humpbacks relate to historic tribal connections is no longer accepted. Further, use-wear analyses 

of humpbacks and bipolar tools do not suggest the tools are used exclusively as projectile points 

(Hohol 1985; Jeske and Sterner-Miller 2015). Rather, this study supports Jeske’s (1992a) 

hypothesis that humpbacks are a result of the economical conservation poor quality raw material 

due to constraints on procurement.  
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Intensity of Tool Use 

For the purpose of this study, intense tool use is defined as evidence for extensive or 

complete use. Jeske (2003b:235) initially expected Mississippian groups to utilize tools more 

efficiently than Woodland groups by creating more functional units or edges on a tool. In the 

comparison of the tools from the study sites, the expectation that groups engaged in a similar 

intensity of tool use is supported.  A chi-square test suggests there is no significant difference 

between the numbers of edges on tools at the sites (Table 8.11). However, while an overall chi-

square test suggests the assemblages are similar, the standardized residuals suggest there are 

significantly more tools with three edges at Washington Irving than at KCV (Figure 8.9). 

 
Figure 8.9: Frequencies of number of tool edges on tools at the study sites.	
   

 

Table 8.11. Crosstabulation of Number of Edges from the Washington Irving and KCV sites. 
Number of Edges Zero One Two Three Four TOTAL 

 
Washington Irving 9 (8.9%) 28 (27.7%) 25 (24.8%) 35 (34.7%) 4 (4.0%) 101 
Koshkonong Creek 
Village 8 (8.6%) 37 (39.8%) 28 (30.1%) 19 (20.4%) 1 (1.1%) 93 

TOTAL 17 (8.8%) 65 (33.5%) 53 (27.3%) 54 (27.8%) 5 (2.6%) 194 
χ2=7.6987, df=4, p=0.103 
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The Washington Irving and KCV assemblages exhibit similar frequencies of tools with 

no functional units or edges (approximately 9% for each assemblage) while a higher proportion 

of tools at KCV are tools with one or two edges (39% and 31%, respectively) than at Washington 

Irving (28% and 25%, respectively). Jeske (2003b) acknowledged that a high frequency of tools 

with more than two edges is likely due to Mississippian tools being hafted more frequently (also 

see Odell 1994:104). While not initially expected, these findings support Jeske’s argument given 

the higher frequency of bifacial tools at Washington Irving compared to KCV, which exhibits a 

higher proportion of edge-only flake tools. 

Tool Breakage 

A chi-square test suggests the relative frequencies of broken and whole tools at the sites 

are similar (Figure 8.10). Excluding tools recorded as N/A, about 40% of tools from Washington 

Irving were recorded as broken, while broken tools represent approximately 28% of the tool 

assemblage at KCV (Table 8.12). Jeske (2003b:236) suggested that Woodland groups discarded 

tools before they are broken or extensively used more often than Mississippian populations. This 

expectation originates from the concept that Upper Mississippian populations were under more 

stress and needed to be more economical with the materials that were available to them. 

Table 8.12. Crosstabulation of Tool Completeness from the Washington Irving and KCV sites. 
 Whole Broken TOTAL 

 
Washington Irving 55 (59.8%) 37 (40.2%) 92 
Koshkonong Creek 
Village 61 (71.8%) 24 (28.2%) 85 

TOTAL 116 (65.5%) 61 (34.5%) 177 
χ2=2.303, df=1, p=0.129 
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Figure 8.10: Frequencies of tool breakage at the study sites.	
   

 

Due to the higher frequency of edge-only tools at KCV, less breakage among tools is not 

necessarily unexpected, as expediently made tools are often discarded expediently. Keeley 

(1982:803) suggested that tools, especially hafted tools, are only replaced when they become 

dysfunctional after they are exhausted or broken. This would shape our expectation to assume 

the Washington Irving site should exhibit a higher proportion of broken tools than at KCV. 

Again, while the frequency of broken tools is higher at Washington Irving than KCV, a chi-

square test indicates there is no significant difference in the relative frequencies of tool breakage.  

Tool Scavenging 

Only one tool at KCV was interpreted as scavenged. While evidence of rework suggests a 

knife, the tool may have been a hafted Kramer projectile point, diagnostic of the Late 

Archaic/Early Woodland period (Justice 1987:184). No whole tools were confidently identified 

as scavenged at the Washington Irving site; however, three broken bifaces with refined hafting 

elements (one each of expanded-stemmed, contracting-stemmed, and side-notched hafts) 

suggests tool scavenging, as refined stemmed bifaces are not ubiquitously recovered at Langford 
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sites (Jeske 1990b). Lurie (1992:98) also noted the presence of a reworked stemmed biface at the 

Robinson Reserve site. Jeske (2003b: 236) noted we should expect Mississippian groups to 

utilize scavenged tools due to the constraints on the procurement of raw material. Despite a small 

sample of tools, the reuse of scavenged tools appears to be a part of lithic technology at both the 

Koshkonong Creek Village and Washington Irving sites.  

Proportion of Lithic Debitage to Tools 

Debitage-to-Tool Ratios 

The debitage-to-tool ratio from Washington Irving assemblage sampled in this thesis is 

approximately 16:1 (1,641 pieces of debitage and 101 tools). Jeske et al. (2006) reported other 

Langford sites in northern Illinois to exhibit high debitage-to-tool ratios; the Robinson Reserve 

and LaSalle County Home sites exhibit ratios of 50:1 and 55:1, respectively, while the 

Zimmerman site exhibits a much higher 100:1 ratio. However, these ratios are of lithic material 

from ¼ inch screened contexts (Jeske 1998:8; Jeske and Hart 1988:21; Lurie 1992:95-96). As 

previously discussed, ½ inch mesh screens were used during excavation and would increase the 

debitage count for this sample. 

The debitage-to-tool ratio from the Koshkonong Creek Village assemblage is 

approximately 7:1 (681 pieces of debitage and 93 tools). This ratio resembles the findings at the 

neighboring Crescent Bay Hunt Cub site, exhibiting a low ratio from multiple field seasons. 

From the 2006 excavations at Crescent Bay, Jeske et al. (2006) report a debitage-to-tool ratio of 

17:1, with an excavation strategy of screening only a small sample of plow zone contexts using 

¼ inch mesh. Likewise, during excavations in 2002, Jeske et al. (2003:72-74) reported a high 

debitage-to-tool ratio of approximately 46:1 from screened contexts. However, Gaff (1999:62) 
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reported a low debitage-to-tool ratio of about 10:1 from ¼ inch screen contexts from excavation 

at the site in 1998, likely because artifacts were collected from screened backdirt from the 1968 

excavations (Jeske, personal communication). Sterner (2012) reports an even lower debitage-to-

tool ratio of 5:1 from the 2004 lithic assemblage, accounting for screened plowzone contexts as 

well as bisected feature contexts, one half being a screened through ¼ inch and the other 

recovered for flotation.  

A low debitage-to-tool ratio is a common pattern that has been reported at the Crescent 

Bay Hunt Club and is also exhibited at the Koshkonong Creek Village. However, not all Oneota 

sites exhibit low debitage-to-tool ratios. At the Carcajou Point site in the Lake Koshkonong 

Locality, Rosebrough and Broihahn (2005:22-26) reported a debitage-to-tool ratio of 48:1 at the 

Folk Property. Similarly, the Tremaine and Pammel Creek sites in the La Crosse Locality exhibit 

debitage-to-tool ratios of over 100:1 (O’Gorman 1995; Rodell 1989). 

One must be careful of sampling bias when comparing lithic debitage and tools between 

two assemblages. There is likely some discrepancy in the debitage-to-tool ratios between the 

sites due to sampling and excavation strategies. However, it is clear that Washington Irving 

exhibits a higher debitage-to-tool ratio that at KCV. As only pieces of debitage ½ inch (12.5mm) 

and larger (size grade 3 and 4) were recorded from Washington Irving (exhibiting a 16:1 ratio), 

the absence of size 2 debitage undoubtedly has an influence on the ratio. Using an analogous 

sample to eliminate bias can help compare the assemblages. When size grade 2 pieces of 

debitage are omitted from the sample, the debitage-to-tool ratio from excavations at KCV is 6:1.  

When analyzed using an assemblage-based approach, lithic tools and debitage can be 

observed together to better understand the lithic economies practiced by inhabitants of the sites. 
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Jeske (2003b) suggested a higher proportion of debitage to tools suggests a higher degree of 

repair, rework and resharpening of tools was occurring. Jeske’s expectation that Mississippian 

assemblages exhibit a high debitage-to-tool ratio is supported by the Washington Irving lithics. 

While KCV exhibits a much lower ratio, there is a higher frequency of expedient flake edge-only 

tools that do not require as much energy to produce compared to bifacial tools that require 

resharpening. Raw material quality and availability may have an effect on the amount of 

debitage found in the lithic assemblage (Andrefsky 2004). Further, these differences may be 

attributed to functional differences of the sites. Additional analysis of the debitage assemblage is 

needed to address these questions. 

Lithic Economies in an Environmental Context 

By combining the interpretation of the environmental catchment study with the 

comparative lithic assemblage analysis, further hypotheses and interpretations can be formulated 

of the larger Wisconsin Oneota and Langford lifeways in the Upper Midwest. The study sites are 

situated in similar positions on the landscape. While not “defensive sites” (lacking evidence of 

defensive structures such as palisades; after Sasso 1989:247-248), the topography of the site 

areas suggests their locations would have provided the site inhabitants concealment and some 

protection from surprise attacks, as well as protection from flooding and strong winds. A similar 

proportion of ecotone coverage, wetland ecozones and agricultural potential at a two-kilometer 

radius suggest the sites were positioned with similar access to diverse resources. Therefore, it 

was not expected for the lithic assemblages differ because of constraints from the immediate 

environment. Rather, differing economizing behaviors in lithic tool procurement, manufacture, 

use or discard are suggested to be a function of raw material quality, availability and accessibility 
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(Andrefsky 2004, 2009) as well as other stressors and constraints from the late prehistoric 

landscape, or a complex combination of both. 

Andrefsky (2009:77) acknowledged the complex nature of lithic technological 

organization, noting “raw material availability, size, and quality have complex influences on 

different aspects of stone tool technology.” The de-emphasis of formal tool forms and lithics in 

general in the Late Woodland and Mississippian periods, once a “poorly understood 

phenomenon” (Jeske 1992a:477-478), has since been considered by many scholars in terms of 

efficiency, economy and the organization of lithic technology (discussed in Chapter 6). Based on 

ethnographic and archaeological data, Andrefsky (1994) argued that lithic raw material 

availability is an important factor in lithic technological organization and in decision making 

regarding the manufacture various tool types, particularly the production of informal and formal 

tools. Rather than suggesting it was the cultural preference of the groups to make informal tools, 

or that toolmakers did not care to make formal tools, Andrefsky (1994:29-30) expected groups 

with a low abundance of low quality raw material as well as groups with a high abundance of 

low quality raw material to produce lithic assemblages of primarily informal tools, evident from 

the assemblages at both study sites.  

A higher ratio of debitage-to-tools at Washington Irving than KCV possibly suggests 

more repair, rework and resharpening on tools (Jeske 2003b). However, the ratio of debitage to 

tools may also be a function of the raw material availability to groups in their physical and 

cultural surroundings (after Jeske et al. 2006). The small size of chert nodules and poor quality of 

raw material available to Washington Irving inhabitants were likely the influence for the 

production of humpback bifaces, and their utilization further suggests an attempt to conserve raw 

material (Hohol 1985; Jeske 1992a). As warfare and the maintenance of social and political 
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relationships require energy that detracts from the amount of time and energy budgeted for raw 

material procurement and tool manufacture, a higher frequency of crude bifacial tool forms 

implies more tool curation (after Jeske 1992a; Kelly 1988; Torrence 1983) at Washington Irving 

than at KCV, suggesting Washington Irving inhabitants were living on a more stressful political 

landscape and tightening their territorial boundaries (following Emerson 1999; Milner et al. 

1991). 
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CHAPTER 9 

CONCLUSIONS 

The first goal of this thesis was to update Hunter’s (2002) catchment model of the 

Washington Irving site following Edwards (2010) methods from his catchment studies of Oneota 

sites in the Lake Koshkonong Locality. The subsequent comparative analysis between the 

Washington Irving and Koshkonong Creek Village sites was to provide a nuanced view of the 

two environments as well as provide data for further analyses and interpretations of the sites 

within the Langford and Oneota traditions.  

The second goal was to characterize the lithic tool and debitage assemblages from the 

two study sites using an assemblage-based approach. Further, the two assemblages were subject 

to a comparative analysis for the purpose of interpreting the variation in the organization of lithic 

technology that was employed by the Langford and Oneota site inhabitants. This chapter will be 

an overview of the findings of the catchment and macroscopic lithic analyses as well as the 

broader impacts of this study and avenues for future research. 

Summary and Discussion 

 This research has shown the similarities of Oneota and Langford site locations of the 

Washington Irving and Koshkonong Creek Village sites, contemporaneous creekside villages on 

the Prairie Peninsula. In her investigation, Hunter (2002:98) suggested that Langford and Oneota 

populations inhabit and exploit different environments while their lithic technology and 

economies were similar. While Hunter’s research explored the differences of Oneota and 

Langford settlements based on the lakeside location of the Crescent Bay Hunt Club, this research 
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compared Washington Irving to KCV,  which has similar access to upland, wetland and aquatic 

resources, and diverse ecotones and plenty of arable land within a two-kilometer radius.  

The methods implemented in this analysis adopted from Lurie and Jeske (1990; see Jeske 

2014) are closely tied with an economic model of viewing stone tool production. This 

assemblage-based approach views the debitage in terms of its economic value rather than simply 

a byproduct of lithic production and reflects the economizing choices that groups make regarding 

how time and energy is used in tool production (Jeske 1987, 1989a, 2003b). The presence of 

cortex and the range of debitage size recovered from the sites suggest all stages of lithic 

reduction were occurring. While only size grade 3 and 4 debitage from Washington Irving were 

observed because of ½ inch mesh recovery methods, many size grade 2 pieces were recovered 

from flotation contexts. 

The macroscopic analyses of the Washington Irving lithic assemblage and the 

assemblages from the 2012 and 2014 field seasons at KCV indicate the site inhabitants were 

utilizing fair and poor quality raw materials that were made of local cherts and glacial till. Many 

scholars have reported this pattern at other Langford and Oneota sites across Wisconsin and in 

northern Illinois (Fowler 1952; Hunter 2002; Jeske 1990b, 2000; Lurie 1992; O'Gorman 1993, 

1995; Rodell 1989; Rosebrough and Broihahn 2005; Sterner 2012). Bipolar reduction, also 

common in Oneota and Langford tool assemblages, is often associated with the production of 

blanks from small raw material packages (Goodyear 1993; Jeske 1992a; Jeske and Lurie 1993) 

as well as a technique to recycle or conserve raw material. 

A similar degree of intensity of tool use and tool breakage, as well as tool scavenging, 

suggests the efficient use of available raw material. However, a majority of tools at KCV are 
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edge-only and suggest a lithic economy of expedient tool manufacture and discard while a higher 

frequency of heat alteration suggests inhabitants tried to improve the flaking quality of raw 

material. Conversely, Washington Irving inhabitants utilized significantly fewer edge-only tools 

and more bifacial tool forms, indicating more tool reuse and curation (after Jeske 1992a; Kelly 

1998; Torrence 1983). The higher frequency of poor quality raw material, crude bifacial 

refinement and the use of humpback points also suggests a level of energetic efficiency out of 

necessity due to the quality of raw material and constrains on procurement (Jeske 1992a). 

Bradbury (2010) noted the lack of thermal alteration in bipolar assemblages could be related to 

the emphasis on expedient tool manufacture (although not necessarily expedient discard) and the 

lack of tool production debris. 

Broader Impacts 

The results of the comparative catchment and lithic analyses presented in this thesis are 

beneficial in the discussion of Upper Mississippian lifeways. According to Jeske (1989b, 1990, 

2000; 2003a) and other scholars (Brown et al. 1967; Faulkner 1973; Fowler 1952; Griffin 1946; 

Lurie 1992), Langford represents an ethnically distinct cultural group from Oneota. While 

culturally distinct, this study has emphasized the physical similarities of the sites located on the 

Prairie Peninsula with access to similar resources and plenty of arable land. Further, the results 

of the comparative lithic analysis do not suggest a vastly different stone tool kit, with the 

exception of humpback bifaces.  Rather, the lithics from Washington Irving and KCV suggest 

differing economizing behaviors were used to get the most out of the fair and poor quality 

materials available to the groups. While the degree of bifacial and edge-only tools is likely a 

function of the quality of raw material available to the groups, it may also be a function of 

stressors and constraints from the social or political landscape. More bifacial tools at Washington 
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Irving suggest a higher degree of tool curation (after Kelly 1988), further suggesting an increase 

in time-stress (Torrence 1983:12) and “extreme constraints” on the availibility or accessibility of 

raw material (Jeske 1992a:476).   

Many researchers have investigated the differences of Wisconsin Oneota and Langford 

traditions in the Upper Midwest. Jeske (2000:286) noted the differences in the Washington 

Irving and Robinson Reserve Langford sites in northern Illinois, suggesting the sites likely 

represented different functional site types within Langford tradition settlement systems. 

Similarly, other scholars have accentuated the differences in Oneota lithic economies and 

settlement and subsistence practices, as well as the social, economic and political interactions in 

Wisconsin, both intra-locality and inter-locality (see Edwards 2010; Sasso 1989; Schneider 2015; 

Sterner 2012). Further, Hunter’s (2002) Master’s thesis focused on the comparison of Oneota 

and Langford in differing environmental settings. However, the focus of this study was to 

investigate Koshkonong Locality Oneota and Langford traditions with sites situated in similar 

creekside environments. While not all Langford and Wisconsin Oneota sites share the 

environmental characteristics exhibited in this research, our understanding of upland positioned 

creekside Upper Mississippian sites with access to wetland resources and diverse ecotones can 

be further interpreted and applied to other study sites in the future. 

Future Research 

Further Environmental, Floral and Faunal Studies 

While the focus of the two-kilometer environmental models was to better contextualize 

the horticultural practices of the site inhabitants, the catchment offers little towards the 

discussion of raw material procurement practices or the defensibility of territorial boundaries. A 
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larger catchment study may be able to provide further insight to the site selection behaviors of 

groups in northeastern Illinois and southeastern Wisconsin. While the catchment model of 

Washington Irving was used to directly compare with KCV and Lake Koshkonong Oneota sites 

(see Edwards 2010), more complex catchment models can be designed to more closely integrate 

economical and environmental factors, such as Verhagen and Whitley’s (2012:75) Habitat 

Model. Similarly, while it is clear that the occupants of both sites heavily utilized local raw 

materials, a larger lithic resource catchment analysis (e.g. Arakawa 2006) would be an 

interesting way to analyze the mobility of the two groups and expand our understanding of their 

nuanced social and political landscapes. 

The comparative catchment analysis presented here suggests that the Oneota and 

Langford groups would have had access to similar resources and comparable agricultural 

potential. Significant differences in the faunal and floral assemblages at the sites may represent 

either cultural or social differences between the groups rather than a discrepancy in the 

availability of resources. Emerson et al. (2005, 2010) suggested that Langford groups engaged 

heavily in maize agriculture, similar to that of Middle Mississippian groups in the American 

Bottom.  Conversely, Hart (1990:569) suggested the Oneota practiced a mixed horticulturist 

economy, with a greater contribution of hunting, fishing and gathering than that of maize 

cultivation. This pattern has been supported by Hunter’s (2002:97) examination of the 

Washington Irving and Crescent Bay Hunt Club floral assemblages, which suggested a light but 

ubiquitous distribution of corn and squash at Washington Irving (also see Egan 1985; Jeske 

2000) while Crescent Bay inhabitants relied on corn, wild rice and chenopodium in similar 

proportions. Further flora analysis at KCV will help support or challenge these hypotheses 

regarding Langford and Oneota subsistence. 
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A comparative analysis of the faunal assemblages from the sites could help support the 

argument for differing degrees of stress and conflict adaptation, currently evident from the high 

degree of bone processing at Washington Irving (McTavish 2014). A preliminary analysis of the 

faunal assemblage at KCV suggests a higher frequency of deer and elk than at the neighboring 

Crescent Bay Hunt Club site, while the remains of deer under two years of age suggests dietary 

stress possibly due to resource exhaustion (Van de Par et al. 2015). However, the frequency and 

diversity of fish remains suggests that fish was a significant component of their diet.  Even with 

the creek and backwater located nearby, site occupants may have occasionally traveled to Lake 

Koshkonong for fish, over three kilometers away from the site (Edwards and McTavish 2012).  

While preliminary faunal data from KCV show a comparable emphasis on mammal and fish 

(Van der Par et. al 2015), mammals dominate the faunal assemblage at Washington Irving 

(Hunter 2002).  More faunal data from KCV will help in the interpretation of stress adaptation 

and subsistence practices and further contextualize the site catchment analyses as it relates to 

local resource acquisition. 

Further Lithic Debitage and Tool Analysis 

While the individual tool analysis and mass debitage analysis of this study has provided 

information on the lithic assemblages from the Washington Irving and Koshkonong Creek 

Village sites, a full individual analysis of the debitage could provide further information 

regarding the organization of lithic technologies employed by the groups. An individual debitage 

analysis approach allows for an extensive examination of every piece of debitage to be observed 

on many more attributes than that of the mass analysis. Using an individual debitage analysis, 

categories such as raw material type, the number of dorsal flake scars, platform preparation and 

platform angle are investigated (see Jeske 2014) and allow for the further interpretation of 
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specific technological practices such as bifacial thinning, end-scraper resharpening, projectile 

point notching, and bipolar reduction (Andrefsky 2009:80). A substantial amount of Hixton 

Silicified Sandstone flakes was recovered in the debitage assemblage at KCV but were not 

characterized using a mass analysis. By characterizing the debitage based on raw material, a 

better interpretation of raw material utilization can be formed. Furthermore, a debitage analysis 

of all size grades from flotation recovery contexts may supply a better representation of debitage 

to tools at the sites as well as allow for an interpretation of intra-site patterns regarding lithic 

production areas (Price 1978). 

Blood Residue Analysis 

Hayden and Kamminga (1979:10) stressed the importance of advancing the field of 

organic residue analysis from the surface of stone tools as a way to determine tool function. Loy 

and Dixson (1998:24) acknowledged that blood residue analysis has become increasingly 

popular within the 1990s and is beneficial in making direct associations with lithic artifacts and 

subsistence species. Sterner-Miller et al. (2013) suggest that blood residue analysis alongside 

high- and low-power methods provides supporting evidence for how tools were utilized by 

prehistoric groups. As human protein residues were found on several projectile points from the 

Crescent Bay Hunt Club (Sterner-Miller and Jeske 2016), blood residue analyses may also 

provide supporting evidence for hypotheses about violence among Oneota and Langford groups. 

However, as blood residue analyses are time intensive and costly, they are not a common aspect 

of many lithic analyses. A blood residue analysis of the lithic assemblages from KCV and 

Washington Irving could support evidence from the faunal record regarding subsistence practices 

and site activities. 
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Microscopic Tool Analysis 

Many scholars argue that microscopic methods in lithic analysis are important in 

clarifying the role a lithic assemblage, as morphological and typological approaches can be 

inaccurate in the interpretation of stone tools use (see Flenniken and Raymond 1986; Jeske 1989; 

Jeske and Sterner-Miller 2015; Odell 1979; Sterner 2012; Yerkes 1983). In his study of the 

Cahokia microlithic industry, Yerkes (1983) stressed that a tool’s morphology does not always 

represent its function.  Using experimental data and high-power magnification, he concluded that 

unmodified microblades and microcores that resembled burins recovered from Cahokia showed 

no evidence of edge-wear, suggesting they were not used as tools, while “burin spalls” by 

morphology were indicated to be used as hafted drill bits to bore holes in shell (Yerkes 

1983:508-511).  

Similarly, several scholars (Ahler 1971; Flenniken and Raymond 1986; Sterner 2012) 

have stressed that using the morphology of projectile points to make inferences regarding 

manufacture and use is neither accurate nor reliable in terms of understanding the tool’s function. 

Using experimental methods, Flenniken and Raymond suggested that one out of every three 

projectile points change in morphological type due to use and damage over the course of it’s use-

life (1986:613), often leaving no morphological trace of its previous manifestation as a projectile 

point in the archaeological record. 

Apart from simply being a way to describe the activities for which tools were used, 

Tringham et al. (1974) and Odell (1980) recognized that use-wear analyses are beneficial in the 

interpretation of other aspects of a societies organizational structure.  As the scope of early 

microwear research was limited to the understanding of the function of tools or the activities that 
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occurred at a particular site, Tringham et al. (1974:174) stressed that edge-wear research needed 

to begin to focus on the processes of cultural change; further, they argued that microscopic 

analyses be “an essential part of every lithic analysis” (Tringham et al. 1974:195, emphasis in 

original). Odell suggested that by “combining functional with technological and formal aspects 

of lithic remains should increasingly enable us to approach questions of broader anthropological 

concern” (1980:428). While beyond the scope of this thesis, the use-wear analysis of stone tools 

from KCV and Washington Irving would be complimentary to the assemblage-based analysis for 

understanding the strategies of lithic technological organization at the sites. 

Microscopic analyses of the tools from Washington Irving, the Koshkonong Creek 

Village and other Langford and Oneota sites would be beneficial for the further comparison 

between the two Upper Mississippian groups and would help contextualize the type of tools and 

activities occurring at the sites. High-power microscopic analyses on a small sample of 

humpback bifaces from Washington Irving (Hohol 1985) and bipolar tools from the Crescent 

Bay Hunt Club (Jeske and Sterner-Miller 2015) suggests these crude bifacial and multifacial 

tools were used for a variety of activities, some with unidentified wear on the humps, and some 

possible evidence of wear related to hafting. A microscopic analysis of a larger sample of lithic 

tools from Washington Irving would help benefit the interpretation of lithic technology and 

economizing behavior occurring at the site.  Likewise, an expansion on Jeske and Sterner-

Miller’s (2015) microscopic work with lithics from the Crescent Bay Hunt Club (also see Sterner 

2012) would be beneficial for the further understanding of Oneota technology around Lake 

Koshkonong and other Wisconsin localities. 
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Additional Comparative Approaches  

Additional comparisons of lithic assemblages between other Langford tradition sites and 

sites at other Wisconsin Oneota localities would expand our understanding of lithic organization 

among Upper Mississippian groups. This study can further help the interpretation of upland 

village sites with access to wetland resources and diverse ecotones and form hypotheses for 

further research. Conducting similar catchment analyses for other Langford sites in the Prairie 

Peninsula as well as sites in other Oneota localities around Wisconsin would be valuable in 

understanding Upper Mississippian settlement patterns across the Upper Midwest.  
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APPENDIX A 
 
 
 Mass Analysis Schema for Debitage (after Jeske 2014; Lurie and Jeske 1990) 
 

A. Provenience 
 
  B. Additional Provenience  
 
  C. Type 
  1. Flake 
   2. Flake-like 
   3. Non-flake 
 
  D. Size grade 
   1. Less than 8 mm 
   2. 8 mm to 12.5 mm 
   3. 12.5 mm to 25 mm 
   4. Greater than 25 mm 
 
  E. Count per Size Grade 
 
  F. Weight per Size Grade 
 
  G. Number of Pieces with Cortex per Size Grade 
 
  H. Number of Pieces with heat treatment per Size Grade  
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APPENDIX B 
 
 
 Chipped Stone Tool Recording Schema (after Jeske 2014; Lurie and Jeske 1990) 
 

A. Provenience: All artifacts are given a unique number that identifies site and location 
within the site. 

 
B. Catalogue Number: The catalogue number is an arbitrary number assigned as a short 

code for the provenience. 
 

C. Tool Number: Each tool is given a unique number within its provenience. 
 

D. Raw Material: Raw material is identified using the comparative collection at the UWM 
archaeological laboratory. Identification is done by visual comparison, with low power 
magnification (if necessary) to aid in fossil identification for an excellent resource for 
northern Illinois cherts (Ferguson and Warren 1992), also see (Winkler, et al. 2009). 

 
1. Unknown 
2. Galena Chert 
3. Silurian Chert (Niagara Formation) 
4. Maquoketa Chert 
5. Upper Prairie du Chien Chert (Shakopee Formation, oolitic) 
6. Lower Prairie du Chien Chert (Oneota Formation) 
7. Platteville Formation Chert 
8. Moline Chert Unknown Silicified Sandstone 
9. Hixton Silicified Sandstone 
10. Burlington Chert 
11. Alma Silicified Sandstone 
12. Arcadia Ridge Silicified Sandstone 
13. Baraboo Quartzite 
14. Barron County Quartzite 
15. Barron County Pipestone 
16. Quartz 
17. Rhyolite 
18. Basalt 
19. Knife River Flint 
20.  
21. Unknown Quartzite 
22.  
23. Wyandotte Chert 
24. Unknown Chalcedony 
25. Flint Ridge Chert 
26. Pecatonica Chert 
27. Excello Shale 
28. Silurian (Joliet Formation) 
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29. Cochrane / Chocolate Chert 
30.  

 
E. Raw material quality: This variable is also defined using comparative samples. 

Inclusions, fossils, fracture planes, and grain size are used to determine quality. 
1. Good 
2. Fair 
3. Poor 
4. Can't Determine. 
5. Not Applicable for non-chert flaked artifacts 

 
F. Amount of Cortex: For flake artifacts this variable refers to the percent of the dorsal 

surface which is covered with cortex or patina. For bifacial and multifacial artifacts the 
variable refers to the percent of cortex or patina on all surfaces. Patina which has 
accumulated since the manufacture of the artifact, that is, patination covering flake scars 
is ignored. 

1. 0 
2. <50 
3. >50, <100 
4. 100 

 
G. Heat-Alteration: This variable is recorded for all artifacts. The criteria used to identify 

heat-altered chert are taken from (Rick 1978). It should be noted that Rick's experiments 
were primarily done with Burlington chert, and that his criteria may not apply to all types 
of chert. In assessing heat-alteration it is necessary to have samples of both the unaltered 
and altered materials for comparison. Rick's criteria are as follows: 
 
Luster Contrast. “On an artifact with flaked surfaces produced both before and after 
heating, a contrast will appear in the luster of the two surface types. Presence of such a 
luster contrast is near- certain evidence of heat treatment.” (p. 57) This criterion is 
considered most reliable for scoring Burlington chert. 
Degree of Luster. An increase in luster is often a result of heat alteration (p. 57). 
Heat Fracture Scars. These include crazing and pot lid fractures (p. 58). 
Conchoidal Ripples. Conchoidal ripples are more prominent on heat-altered pieces 
(p.58). 
Color. Pink-red coloration was used as an indicator of heat-alteration. Comparative 
collections are used to indicate the range of variation in non-heat-altered. 
 
Heat-Alteration attributes were scored as follows: 

1. Heat Treatment Present. 
2. Heat Treatment Possible. 
3. Heat Treatment Absent. 
4. Burned 
5. Can't Determine 

 
H. Basic Form: This variable is recorded for each artifact. Attributes are usually assigned 



 

 189 

with 10X magnification. Medium power magnification (40x) is used if use wear is 
suspected. 

1. Edge or Functional Unit Only. No attempt has been made to shape the body of 
the piece, but one or more edges have been retouched and or used. Occasionally a 
small surface area rather than an edge will be modified through use (usually 
battering or polish). 

2. Unifacial. The body of the piece has been shaped on one side. There must be at 
least one flake scar which does not originate on the edge on the shaped face. 
Torrence (personal communication) has suggested the extent of flake scar 
invasion as an alternate means of assessing body modification. 

3. Bifacial. Both faces of the piece have been shaped. There must be at least one 
flake scar which does not originate on the edge of the piece on both sides of the 
piece. This flaking usually produces items with lenticular cross-sections. 

4. Multifacial. The body of the piece exhibits intentional flake scars creating more 
than two faces. These pieces often have a blocky appearance. They may or may 
not have functional units. 

5. Nonfacial. These are rounded pieces with no well defined faces or edges. They 
are usually produced by battering and are often formed through use rather than 
intentional modification. 

6. Prismatic Blade or Bladelet. Flake with parallel edges and at least one ridge 
running the length of the dorsal surface of the piece. It is usually much longer 
than it is wide. The piece may or may not show use wear. 

7. Unknown. These are fragments that have been flaked or battered on a face of 
edge, but are too incomplete to assign to any of the above categories. 
 

I. Edge Modification: This variable characterizes the location of retouch or use on an edge. 
Pieces are considered retouched if: 1.) there are at least three contiguous flake scars or 
battering 0.5mm or more along the edge of a tool, and 2.) the scars or battering extend 
more than I mm onto the body of the piece. Pieces are considered used when 1.) 
microflaking, grinding, polishing or rounding extend 0.5mm along an edge, and 2.) 
modification does not extend beyond 1mm onto the body of the piece. The extent of use 
on a projection may be less than 0.5mm. Bag wear and shovel or trowel modification 
scars are usually recognized by their fresh appearance and acute angle to the edge 
(Knudsen 1973; Odell 1977) Knudson 1973). 

1. Unifacial. Retouch scars, battering or use appear on one side of an edge or edge 
segment. 

2. Bifacial. Retouch scars or use are on both sides of an edge or edge segment. 
Modification must occur on both sides of the same edge or edge segment for 
pieces with more than one edge or edge segment.  

3. Unifacial and Bifacial. The piece has more than one edge or edge segment. At 
least one is unifacially modified and one bifacially modified. 

4. Not Applicable. Pieces without edges are scored not applicable. 
 

J. Method of Modification: Applies to both the edges and bodies of all pieces. 
1. Flaked. The piece has been intentionally flaked on the body or edge of the piece 

(See variable J for definition of retouch).  
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2. Battered. An edge or surface has been altered by pounding. It may have been 
pounded upon or used to pound something else. Pounding will produce flake scars 
and crushing. When flake scars are not distinct, the alteration is considered 
battering. Many battered edges have directionality to the remnants of visible flake 
scars, and it is possible to determine if an edge is unifacially or bifacially 
modified. Edges formed by battering are often not well defined. There may be a 
zone of non directional crushing between the sides of an edge. If there are 2mm or 
less separating directional pounding on both sides of an edge, the edge is 
considered bifacial; if there are more than 2mm separating directional battering 
along a segment, the alteration is considered two distinct edges. 

3. Flaked and battered. The piece has been altered by both flaking (leaving distinct 
flake scars) and by battering. 

4. Use-wear Only. A functional unit (usually an edge) shows traces of use-
microflaking, edge grinding, polishing, or rounding. Microflaking will not extend 
more than 1mm onto the face of the pieces (See variable J) 

5. Retouched and used. 
6. Not Applicable. Small problem pieces are scored here. 

 
K. Refinement: This variable applies to pieces scored 3 (bifacial) for Basic Form. Scores for 

refinement are based on comparison with sample pieces chosen by the author. Size of 
flake scars along edges, regularity of tool outline and thickness of transverse cross-
section were basic criteria for the selection of sample pieces. 

1. Crude. 
2. Medium. 
3. Refined. 
4. Can't Determine. Pieces are too incomplete to be scored. 
5. Not Applicable. Pieces scored something other than 3 for Basic Form. 

 
L. Completeness of Functional Unit: For some studies, particularly functional analysis of 

tools, the appropriate unit of inquiry is the functional unit rather than the whole tool. This 
variable records the condition of functional units. 

1. Broken. One or more functional units on a tool is interrupted by a break. 
2. Whole. All functional units are complete. If there are two functional units, one 

whole and one broken, the piece is scored as broken. 
3. Can't Determine. Sometimes a functional unit will end at a break, but the break 

may not have interrupted the functional unit; i.e., the functional unit was created 
after the break occurred and is whole. This situation is difficult to determine in 
practice. This attribute is assigned to questionable pieces. 

4. Not Applicable. Fragments without functional units are not scored for this 
variable. 
 

M. Element Present: This variable focuses on the entire tool. The first three attributes apply 
to flakes and rectangular-ovoid pieces that have ends. Essentially whole, square pieces, 
and many small or blocky fragments will be scored as attributes 5, or 4 and 6, 
respectively. 

1. Distal End. The distal end of a flake is the termination end, the end opposite the 
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striking platform and bulb of percussion. For non-flakes the distal end is the 
working end of the tool if this can be determined. The distal end may contain part 
of the mid-section. 

2. Mid-Section. There is no end present. 
3. Proximal End. The proximal end of a flake is the end that contains the striking 

platform or bulb of percussion. Hafting elements and butt ends of bifaces are 
considered proximal ends. Proximal ends may contain part of the mid-section. 

4. End Section. An end section is present, but it is not possible to determine if it is 
the distal or proximal end. 

5. All elements Present. The tool is essentially whole. Small edge sections may be 
missing, but the entire outline of the piece can be determined without guess work. 

6. Can't Determine. 
 

N. Reworking or Reuse: Tools are often resharpened if an edge becomes dull, or reworked 
and reused if the tool is broken. Resharpened tools may have remnants of flake scars 
from the original edge. Tools may become progressively asymmetrical as they are 
resharpened. Retouch or use on a broken edge and abrupt change in tool outline are also 
used as indicators of reworking and reuse. 

1. Present. 
2. Possible. 
3. Absent. 

 
O. Distal End Morphology: This variable applies only to those pieces with identifiable 

distal ends (See variable N for definition of distal end). 
1. Blunt. The major portion of the distal end is perpendicular to an axis drawn 

through the striking platform and bulb of percussion or perpendicular to the 
longest axis of the piece if platform and bulb are absent. 

2. Pointed. Pointed ends may be rounded or accumate. 
3. Not Applicable. Pieces without distal ends are scored not applicable. 
4. Can't determine. 

 
P. Position of Retouch or Use: Applies to edge modified only and unifacially modified 

pieces with modified edges. The tools must be complete enough to determine two axes. 
1. End. The retouch or use is perpendicular to an axis through the striking platform 

and bulb of percussion or through the longest axis of the piece if platform and 
bulb are absent. 

2. Side. The retouch or use is parallel to an axis drawn through the striking platform 
and bulb of percussion, or parallel to the longest axis if platform and bulb are not 
present.  

3. End and Side. A continuous modified edge is both perpendicular and parallel to 
the axis. If more than one edge exists, at least one perpendicular and one parallel 
to the axis. 

4. Can't Determine. 
5. Not Applicable. Pieces scored other than 1 or 2 for Basic Form. 

 
Q. Number of Edges: Records the number of distinct edges identified on the piece. Each 
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edge must conform to the definition given in Edge Modification 
 

R. Edge Angle: Edge angles are measured for all edge functional units. Edges on hafting 
elements are not measured. If only the hafting element is present, no edge angle is 
recorded. A piece may have more than one edge functional unit. Three measurements are 
taken for each functional unit and the mode is taken to represent the edge as a whole. 
Measurements are taken with a goniometer. Measurements are taken 5mm back from the 
edge, measuring what Knudsen (1973) has termed the production angle. To assign 
specific locations for each edge measured, the piece is oriented with the long axis vertical 
and the short axis horizontal. Starting from the top of the piece (the distal end) and 
moving clockwise around the piece, each edge is given a letter. Up to four distinct edges 
can be measured on the form. For pieces with more than four edges, a note is made in 
Comments. 

1. 0-45 degrees. 
2. 46-75 degrees. 
3. Greater than 75 degrees. 
4. Not Applicable. Pieces without edges are scored not applicable. 

 
S. Edge Configuration: Edge configuration in plan view is recorded for all edges except 

edges on hafting elements. Location assignment for each edge on the piece is done 
exactly the same as in Edge Angle. Thus, Edge Angle A and Edge Configuration A for 
any piece refer to the same place on the artifact. 

1. Smooth. There are no regular indentations or projections in plan view. 
2. Serrated. There are regular indentations along the edge; the indentations are up to 

2mm deep and up to 2mm apart. There must be at least 2 1/2 indentations present. 
3. Denticulate. There are regular indentations along the edge; the indentations are 

greater than 2mm deep and more than 2mm apart. There must be at least 2 1/2 
indentations present. 

4. Notched. There is a single indentation or a series of non-contiguous indentations 
on an edge. The indentation(s) must show retouch or use within their boundaries. 
Notches for hafting are not scored here. 

5. Not Applicable. Pieces without edges are scored not applicable. 
 

T. Hafting Element: This variable applies to whole or almost whole pieces (See variable 
K), and broken pieces with obvious hafting elements. 

1. Present. Hafting elements are defined by marked constrictions or notches. 
2. Possible. Possible hafting elements are defined by slight constrictions, or wear or 

polish on the lateral margins toward the base. Pieces with suspected hafting 
elements were examined v microscopically. 

3. Absent. There are no indications of hafting. 
4. Not Applicable. Fragments without obvious hafting elements are scored not 

applicable. 
5. Modification for hafting by thinning and/or grinding the tool base. 

 
U. Projections: This variable applies to whole pieces, broken pieces with projections. Or 

projections alone (i.e. broken drill bits). The projections are defined by intentional 
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retouch or by wear on an unretouched area that extends out from the body of the piece. 
1. Present. 
2. Absent. 
3. Not Applicable. Tool fragments without projections are scored not applicable. 

 
V. Modification on Projection: Applies only to pieces with projections (see variable T). 

1. Present. Projections have been formed by intentional retouch. 
2. Absent. Projections have been defined on the basis of wear. 
3. Not Applicable. Pieces without projections are scored not applicable.  

 
The following metric variables are recorded for whole pieces only. Whole pieces are those that 
were scored 2 for variable J and 5 for variable K. Length, width and thickness were measured to 
the nearest millimeter. 
 

W. Length: The longest axis of the piece regardless of orientation was measured as length. 
 

X. Width: The longest axis perpendicular to the long axis was measured as width. 
 

Y. Thickness: The greatest axis perpendicular to both length and width was measured as 
thickness. 
 

Z. Weight: Weight was recorded to the nearest gram. 
 

AA. Comments: Written comments accompany unusual pieces. The comments have been 
grouped into six categories. 

1. Thinning Flake. Thinning flakes are flakes exhibiting dorsal flake scars and 
some sort of edge preparation. These items are usually products of bifacial 
manufacture and not in themselves shaped for an intentional use. The platforms 
often have remnants of bifacial edges or are ground. These bifacial edge remnants 
are not recorded as a working edge on the thinning fake. 

2. Unusual Raw Material. Any comment about raw material that is not covered in 
the main body of the scheme is recorded as a written comment on the original 
recording forms. 

3. Dubious Artifact. Flake scars may have been caused by some natural agent, and 
therefore, the item may not be an artifact.  

4. Unusual Artifact Form, General. The artifact shape is in some way unique. A 
written descriptive comment can be found on the original recording sheet. 

5. Unusual Artifact Form, Specific. The artifact shape is similar to a particular 
form which is in some way characteristic of the site. A written comment can be 
found on the original recording sheet. 

6. Association. The item under consideration is linked to another item. This link 
may be refitting, items from the same core, or spatial relationship. 

7. More than four edges. Edge angle and configuration records for these artifacts 
can be found on the original recording sheet. 

8. Other. 
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BB. Comments 2: Note for limestone, sandstone, and igneous materials: Heat altered 
limestone is characterized by a grayish to pink powdery exterior. Pieces are friable and 
disintegrate into small fragments and powder. Heat altered sandstone and igneous 
material is often blackened on the surface, giving a smoked appearance. Outer surfaces 
sometimes exhibit yellow, pink, or red discoloration. Broken surfaces often exhibit 
crazing similar to heat-cracked chert. 

 
CC. Projectile Point Type: List those commonly found in your region. See for example 

(Justice 1995). 
1. Madison. 
2. Cahokia. 
3. Lowe Flared Base. 
4. Snyder. 
5. Manker. 
6. Adena. 
7. Monona. 
8. Table Rock. 
9. Matanzas. 
10. Gainey. 
11. Clovis. 
12. Unclassified (or Unidentified) Projectile Point. 
13. Unclassified lanceolate. 
14. Unclassified corner notched. 
15. Unclassified side notched. 
16. Unclassified stemmed. 
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APPENDIX C 
 

 
Plate 1. Triangular Madison point tools from the Washington Irving site 
 

 
Plate 2. Triangular Humpback point tools from the Washington Irving site 
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Plate 3. Broken hafted bifacial tools from the Washington Irving site 

 
 

 
Plate 4. Knives from the Washington Irving site 
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Plate 5. Scrapers from the Washington Irving site 
 

 
Plate 6. Bipolar cores from the Washington Irving site 
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Plate 7. Freehand cores from the Washington Irving site 
 
 

 
Plate 8. Unidentified tools from the Washington Irving site 
 



 

 199 

 
Plate 9. Triangular Madison point tools from the Koshkonong Creek Village site 
 

 
Plate 10. Scrapers from the Koshkonong Creek Village site 
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Plate 11. Knife from the Koshkonong Creek Village site 
 
 

 
Plate 12. Broken drill from the Koshkonong Creek Village site 
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Plate 13. Freehand cores from the Koshkonong Creek Village site 
 

 
Plate 14. Bipolar cores from the Koshkonong Creek Village site 
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Plate 15. Unidentified tools from the Koshkonong Creek Village site 
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