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ABSTRACT 
 

STRATEGIC INVENTORIES IN A SUPPLY CHAIN WITH VERTICAL CONTROL AND DOWNSTREAM COURNOT COMPETITION 
by 

 
Vijayendra Viswanathan 

 
The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Jaejin Jang  

Strategic Inventory (SI) has been an area of increased interest in theoretical supply 
chain literature recently. Most of the work so far however, has only considered a supply 
chain without downstream competition between retailers. Competition is ubiquitous in 
most market situations, hence, interactions between SI and retailer competition merits 
study as a first step in bringing the conversations and insights from this stream of literature 
to the real world.  

We present here a two-period and a three-period model of one manufacturer 
supplying an identical product to two retailers who form a Cournot duopoly. We also study 
a Commitment contract, where the manufacturer commits to all the selling seasons’ 
wholesale prices at the beginning of the 1st period. Commitment contracts have been shown 
to eliminate SI carriage over two selling seasons in the absence of retailer competition 
(Anand et al. (2008)). We aim to deduce if this type of contract has the same effect in the 
presence of downstream competition.  We determine closed-form Nash Equilibrium 
decision variable values for each of these models using game-theoretic modeling, a price-
dependent linear demand function, and backward induction. 

We find that, the introduction of downstream Cournot duopoly competition leads to 
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lower profits for both the manufacturer and retailer. This holds, whether the number of 
selling season is two or three. Consumer Surplus is also uniformly lower under retailer 
competition, compared to a downstream monopoly supply chain.  

When we try to deduce the effect of SI carriage under Cournot duopoly competition, by 
comparing an SC with Cournot duopoly competition and SI allowed between periods, to a 
similar SC with a Cournot duopoly downstream and a static, repeating, one-shot game in 
each period, with no SI carried – we find again that manufacturer and retailer profits are 
both lower when SI carriage is allowed. This holds whether the number of selling seasons is 
two or three. Consumer Surplus is also lower uniformly over both two and three selling 
seasons. 

Under a Commitment contract, over two selling seasons, the manufacturer ends up 
with an advantage, making a higher profit with downstream retailer competition, than 
compared to supplying to a monopoly downstream under the same contract. The retailers, 
while competing as a Cournot duopoly, are not able to use the relative advantage that comes 
from a Commitment contract to make a higher profit, as they are, when the downstream is a 
single retailer monopoly. The consumer also is disadvantaged by the introduction of 
downstream Cournot competition under a Commitment contract. 

When we compare a manufacturer supplying to a Cournot duopoly downstream of 
retailers, with, and without a Commitment contract (dynamic ordering), we see that the 
manufacturer and consumer benefit under a Commitment contract, making higher profits, 
but the retailer is at a disadvantage.  

It would be an interesting extension of this work to generalize the results from two 
and three selling seasons, presented here, to the “n” period case. It would also be beneficial 



iv 
 

to run empirical studies in real-world supply chains to validate if and to what extent the in-
sights developed by this kind of game-theoretic modeling hold in a real-world supply chain 
setting. Development of contracts that are more effective than a Commitment contract in 
coordinating this supply chain would be another possible area for further research. 

 
 

 
                    



v 
 

                   ©Copyright by Vijayendra Viswanathan, 2016  All Rights Reserved     



vi 
 

 TABLE OF CONTENTS 
Introduction and motivation ................................................................................................................................................. 1 
2) Literature review ............................................................................................................................................................. 5 

2.1 Supply chain inventory optimization under a single decision maker ......................................................................... 5 
2.2 Game-theoretic inventory modeling .......................................................................................................................................... 7 
2.3 Classic economic competition models ....................................................................................................................................... 9 
2.4   Inventory as a strategic weapon ............................................................................................................................................. 10 
2.5 Strategic inventories in supply chains .................................................................................................................................... 14 
2.6. Game Theory in supply chains .................................................................................................................................................. 18 
2.7 Multiple Nash Equilibria in Games ........................................................................................................................................... 20 
2.8 Supply chain coordination with contracts ............................................................................................................................ 25 

3) Dynamic Cournot duopoly model with vertical control and SI carriage between periods................. 37 
3.1 Two-period Cournot duopoly model with vertical control and SI carriage between periods ....................... 38 

3.1.1 Effect of downstream retailer competition over two periods ...................................................................... 42 
3.1.2: Effect of Strategic Inventory over two periods .................................................................................................. 47 

3.2 Three-period Cournot duopoly model with vertical control and SI carriage between periods.................... 49 
3.2.1 Effect of Cournot competition over three selling seasons .............................................................................. 49 

3.2.2 Effect of Strategic Inventory in a Cournot competing duopoly downstream supply chain over three selling seasons. ................................................................................................................................................................. 54 
3.3 Conclusions......................................................................................................................................................................................... 57 

4) Cournot duopoly model under a Commitment contract  ................................................................................... 60 
4.1 Two-period Cournot duopoly model under a Commitment contract ......................................................................... 60 

4.1.1 Effect of a Cournot duopoly competition on a Commitment contract over two periods ................... 63 
4.1.2 Commitment contract  vs. dynamic contract  in the presence of Cournot duopoly competition .... 66 
4.2 Conclusions ............................................................................................................................................................................. 69 

5) Conclusions and future work .................................................................................................................................... 71 
References .................................................................................................................................................................................. 75 
Appendix .................................................................................................................................................................................... 79 
Curriculum Vitae………………………………………………………………………………………………………………………………150 

        



vii 
 

 
LIST OF FIGURES 

 
Figure 0.1 Illustration of a two-period Cournot duopoly model with Strategic Inventory……………………………...…...48 
Figure 3.2 Illustration of the comparison between  a 2-period Cournot duopoly downstream and a monopoly downstream model. ....................................................................................................................................................................................... 42 
 Figure 3.3 Illustration of the comparison between a two-period Cournot duopoly model with SI and a Static Cournot duopoly model ................................................................................................................................................................................ 47  Figure 3.4 Illustration of the comparison between a three-period Cournot duopoly model with SI and a 3-period monopoly downstream model with SI .................................................................................................................................................... 50  Figure 3.5 Illustration of the comparison between a three period Cournot duopoly model with SI and a Static Cournot duopoly model over three periods .......................................................................................................................................... 54 
 Figure 4.1 Illustration of the comparison between a two-period Cournot duopoly with SI under Commitment contract  and a two-period monopoly downstream with SI under Commitment contract ............................................... 63 
 Figure 4.2 Illustration of the comparison between a two-period Cournot duopoly model with SI under a Commitment contract and a two-period Dynamic Cournot duopoly model with SI. .......................................................... 66                 
 



viii 
 

LIST OF TABLES  
Table 2.1 Summary of literature on inventory as a strategic weapon ...................................................................................... 13 
 Table 2.2 Summary of literature on Strategic inventories in a supply chain .......................................................................... 17 
 Table 3.1 Comparison of equilibrium values between a two period Cournot duopoly and a monopoly downstream models ................................................................................................................................................................................................................. 44  Table 3.2 Comparison of equilibrium values between a two period Cournot duopoly with SI and a static Cournot duopoly (no SI) ................................................................................................................................................................................................ 47  Table 3.3 Comparison of equilibrium values between a three period Cournot duopoly with SI and a monopoly downstream model with SI ......................................................................................................................................................................... 51  Table 3.4 Comparison of equilibrium values between a three period Cournot duopoly with SI and a static Cournot duopoly (no SI) ................................................................................................................................................................................................ 54  Table 4.1 Comparison of equilibrium values between a two period Cournot duopoly with Commitment contract and a  monopoly downstream model with Commitment contract ............................................................................................. 63 
 Table 4.2 Comparison of equilibrium values between a two period Cournot duopoly with Commitment contract and a  dynamic two-period Cournot duopoly model......................................................................................................................... 66    



ix 
 

ACKNOWLEDGEMENTS 
 
I would like to thank my dissertation advisor – Prof. Jaejin Jang, for his consistent 

support, guidance and advice over the many years it has taken to produce this dissertation. 
His mentorship has been invaluable for me to pick up the “craft” of academic research over 
time. My utmost thanks for the countless hours he has spent with me so far, painstakingly 
imparting all aspects of this craft, and being patient with me, even when I was not the most 
diligent or quick-absorbing student. I’d like to thank all members of my dissertation 
committee – Prof. Anoop Dhingra, Prof. Xiaohang Yue, Prof. Khaled Abdallah and Prof. 
Wilkistar Otieno for your time and feedback. 

Utmost thanks to my family – dad, mom, sister and my dear wife, Revathi. Thank you 
dad for instilling in me a curiosity for learning and understanding the world, very early on. 
Thank you for being my biggest cheerleader, and staunchest critic at different times. It has 
all only motivated me in the end, to be beyond the best I ever thought I could be. Thank you 
mom for your unconditional support and love and for always believing in me, and the value 
of a first-class education – academic, moral, and spiritual. Thank you to my loving wife, 
Revathi for your love, affection and undying belief in me that definitely gives me strength 
every day to take on, and successfully complete challenging projects like this one. You’ve 
definitely held me up and kept me going, many times over, on this road, when I would have 
long given up, and here we are! Thank you to my dear sister, Vijayashree, for all the love and 
for showing by example what hard work, perseverance and tenacity can accomplish.  

My sincere gratitude to many friends that have been an essential part of this journey. 
Special thanks to Amanda van Rheeden for volunteering to read and critique so much of the 



x 
 

work from this dissertation, for the invaluable feedback on grammar, style and sequencing, 
as well as all the friendship and good cheer. 

My gratitude goes to the Department of Industrial Engineering at UW-Milwaukee for 
the financial support to my graduate work from 2006-11.  Thank you Betty Warras at the 
Office of the Dean, CEAS for your consistent support with all the administrative aspects of 
the doctoral program. Thank you for always having an open door, and a patient ear to listen 
to our frequent rants and raves, as we navigate an arduous adventure of this magnitude, 
and for making the bureaucratic side of this, effortless. You’ve always had a timely solution 
for many an anxious time something was left out, jumping some hoop. Highly appreciated!



1 
 

 1. INTRODUCTION AND MOTIVATION 
 
 Researchers have proposed various definitions of supply chains over the years. 
 Two examples are: 

 A supply chain is a set of firms that passes materials forward (Lalonde and 
Masters, 1994) 

 Several independent firms are involved in manufacturing a product and placing it 
in the hands of the end-user in a supply chain— raw material and component 
producers, product assemblers, wholesalers, retailer merchants and transportation 
companies, are all members of a supply chain (Lambert et al., 1998). 

 Inventory holding in supply chains is inevitable. Inventory helps smooth production 
and demand uncertainty, transportation delays and price fluctuations. On the contrary, 
inventory incurs holding costs (warehouse rental, administrative, refrigeration etc.), usually 
expressed either as a per-unit cost or a fixed cost plus a per-unit cost, and hence, larger the 
inventory, larger the holding cost. Due to these two competing effects of inventory, 
determining the optimal amount of inventory to carry in a supply chain has been a topic of 
active interest in supply chain research. A review of the relevant research in this area, both 
from a single-decision maker optimization as well as game-theoretic (multiple independent 
decision makers) approaches are summarized in sections 2.1 and 2.2 of this document 
respectively. 



2 
 

Economic competition is another important research area in business and 
engineering literature since the 1800s. Seldom does one firm dominate a market and hence, 
competition is an inevitable artifact of any free-market economic system. One of the most 
basic and widely used economic competition models – the Cournot model dates back to the 
18th century French philosopher and mathematician, Antoine Augustin Cournot (1801-
1887) and is still used widely to model economic competition in various kinds of models, 
due to its versatility and simplicity. Research on economic competition has typically 
focused on expressing competitive scenarios found in the real world in terms of an 
adequate model, either one of the standard competition models like Bertrand, Cournot and 
Stackelberg, or a hybrid model that represents the real-world situation best. Research in 
this area has focused on the interplay of control and incentives – situations where one of 
the competing entities is in a position of strength compared to the others and then the 
design of appropriate incentives to level the playing field – coordination, or the analysis of 
different competitive scenarios – entry of a new firm into an established market, mergers 
and acquisitions et al. A review of the standard economic competition models is presented 
in section 2.3 of this document, and a review of the literature on inventory as a strategic 
weapon is presented in section 2.4. 

 The focus of this work is the effect of competition on the retailers' tendencies to 
carry strategic inventory into the subsequent period. Strategic inventories are inventories 
carried by supply chain entities for purely strategic reasons, even in the absence of  
“traditional” reasons to hold inventory. Traditional reasons for holding inventory at a 
supply chain entity (e.g. Manufacturer, retailer, and distributor) have been economies of 
scale in production, resulting in cycle inventories; to hedge against production or 
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distribution delays and ensure timely availability of goods, resulting in pipeline inventories; 
inventories held as safety stock, to hedge against demand and supply uncertainty; 
inventories held to hedge against price fluctuations, termed speculative inventory (Anand 
et al., 2008); and inventories held to smooth production and thus lower production costs 
(Holt et al., 1960) .  Vertical control refers to an upstream supply chain entity controlling 
one of the operating parameters of a downstream entity like price or inventory. In this 
thesis, vertical control always implies price control, where an upstream manufacturer can 
set a different wholesale price in each period, while supplying to two competing 
downstream retailers, with multi-period ordering.  Recent literature in the area of strategic 
inventories in a supply chain with vertical control is reviewed in section 2.5 of this 
document. 

In Chapter three, we completely characterize and derive closed-form Nash equilibrium 
decision variable values for a two and three-period model of one manufacturer supplying 
identical product to a Cournot duopoly of retailers with SI carrying allowed between 
periods. We formulate this problem as a dynamic game and derive closed-form equilibrium 
decision variable values for both the manufacturer and retailers in every period. We 
present comparative analyses of these two and three period models to two and three period 
models with a monopoly downstream and a Static Cournot duopoly downstream to deduce 
the effect of competition and Strategic Inventory respectively. 

In Chapter four, we completely characterize and derive Nash equilibrium decision 
variable values for a two period Cournot duopoly downstream model with SI, under a 
“Commitment contract” where the manufacturer commits to the wholesale price for every 
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selling season, at the beginning of the first period itself. We then present comparative 
analysis of this model to an identical model under Commitment contract, but with a 
monopoly downstream and a dynamic 2-period Cournot duopoly model, to deduce the 
effect of downstream competition under a Commitment contract, and the effectiveness of a 
Commitment contract with a downstream Cournot duopoly respectively. 
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2. LITERATURE REVIEW  
 
 In the management of supply chain processes, inventory management is challenging 
because it directly impacts costs and service (Felea, 2008). Inventory is commonly seen as a 
tradeoff between holding costs and service levels, and the efficient balancing of these two 
competing parameters constitutes effective inventory management – keeping holding costs 
low, while keeping service levels high enough to attract customers consistently. 

Inventory decision making differs significantly with whether the supply chain is 
centralized or decentralized. In a centralized supply chain, there is one decision maker and 
the decisions of this entity are binding on all the other entities in the supply chain. 
However, a decentralized supply chain is one where each supply chain entity – 
manufacturer, retailer, intermediary are free to make their own operational decisions. 

2.1 Supply chain inventory optimization under a single decision maker 
 
  The news-vendor problem is a classic example of inventory theory focusing on 
optimization under a single decision maker. It is typically characterized by fixed prices and 
uncertain demand. It is named so, since it describes the dilemma faced by a newspaper 
vendor, who needs to decide every morning how many newspapers to buy for the day 
without knowing the characteristics of the demand. Also newspapers bought yesterday are 
useless today, and will not be sold. By analogy, in a news-vendor problem, unsold product at 
the end of each day is assumed to be disposed off at a salvage price s (s≥0).  
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  The classical single-period news-vendor problem (SPP) is to find a product's order 
quantity that maximizes the expected profit under probabilistic demand. The SPP model 
assumes that if any inventory remains at the end of the period, a discount is used to sell it 
or it is disposed (Khouja, 1999). Here, there is only one decision maker and a single selling 
season.  There are also various extensions to the classic problem that have been addressed 
by various researchers over the years. One early example is Kabak and Schiff (1978) who 
solve the news-vendor problem with the objective of profit-satisficing - maximizing the 
probability of achieving a certain target profit. Petruzzi and Dada (1999) summarize and 
critique of several works related to the news-vendor model, with parameters like demand 
and selling price, being endogenously supplied, in contrast to traditional news-vendor 
models, where these parameters are exogenous to the model. 

  In more recent research, Boute et al. (2006) consider a two-echelon supply chain 
with a single retailer that holds finished goods inventory to meet independent, identically 
distributed (i.i.d) customer demand and a manufacturer that produces the goods on a 
made-to-order basis. They show that by including the impact of the retailer's order decision 
on lead times, the order pattern can be smoothed to a considerable extent without 
increasing stock levels. This reduces inventory and hence inventory costs. In more recent 
research, Lam and Ip (2011) integrate the concept of customer satisfaction into inventory 
management and a “customer satisfaction inventory” model which integrates probabilistic 
concepts of Markov chains to abstract the value of retention vs. migration of customers as a 
decision variable into an inventory model such that the replenishment inventory level can 
be tailored to future expected customer demand without keeping excessive inventory. This 
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represents one of the first attempts to couple inventory levels with customer satisfaction 
directly. 

  The overarching theme in these models is that they focus on optimization under a 
single decision maker and hence incentives to either hold or not hold inventory. Specific 
incentive schemes to discourage/encourage holding of inventory are not discussed. 

2.2 Game-theoretic inventory modeling 
 
 Cachon and Zipkin (1999) compare competitive and collaborative inventory policies 
in a two-stage supply chain with stationary stochastic demand, where inventory holding 
costs are charged at each stage and back-orders incur a penalty. They propose two game-
theoretic models – one in which the firms track their echelon inventories and another in 
which they track only local inventories and compare the optimal policies chosen in either 
scenario. The optimal policy in the competitive case (each firm only watches local 
inventory) minimizes every agent's inventory costs whereas an optimal policy in the 
cooperative scenario (each firm watches echelon inventory) minimizes the cost of the 
entire supply chain. They show that competition reduces supply chain efficiency and that a 
system-optimal solution can be achieved as a Nash Equilibrium by using a linear transfer 
payment scheme. They develop a set of optimal transfer payment schemes based on easily 
verifiable metrics like inventory and back-orders that eliminate incentives to deviate and 
achieve a supply chain efficiency level comparable to the cooperative equilibrium. Chen et 
al. (2009) analyze the cost/benefit allocation among several retailers in various inventory 
centralization games (Distribution System with multiple retailers who can place joint 
orders and place inventory in a central warehouse location). Unlike previous related work 
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like Chen and Zhang (2006) and Slikker et al. (2005), this work assumes that the pricing 
decision is endogenous. They employ convex programming techniques to prove that there 
exists at least one feasible allocation that cannot be improved upon, (non-empty core) in an 
inventory centralization game with price-dependent linear demand. Bichescu and Fry 
(2009) analyze a decentralized supply chain following a periodic review (Q, R) inventory 
policy with a VMI arrangement. They explore the division of channel power between the 
different agents by analyzing 3 different models – one model of SC with a powerful supplier 
that can influence the decision-making process, a second with a powerful retailer and a 
third where both have approximately equal power, by modeling the powerful agent 
scenarios as a Stackelberg game where either agent moves first, and the third scenario as a 
simultaneous move game. They show that merely opting for a VMI arrangement leads to 
savings, irrespective of the power scenario. 

 In all this literature, inventory has been viewed as a parameter that needs to be 
optimized in different ways to positively impact supply chain efficiency and profits– 
centralization, VMI, optimization under a single decision-maker to maximize or minimize 
an operational parameter like total profit or cost respectively, game-theoretic perspectives 
to address decentralized decision-making, incentives to promote equilibria that benefit the 
entire supply chain vs. any single agent etc. None of the papers reviewed in the previous 
two sections view inventory as conferring a strategic advantage to any agent. The 
traditional view has always been that inventory incurs a holding cost and hence is a liability 
that needs to be minimized, or at least managed efficiently with a holding cost trade-off to 
act as a hedge against uncertain supply and/or demand, channel delays etc. However, there 
is an entire line of literature that views inventory as a strategic weapon and then a further 
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line of developing literature that extends this notion from economics to supply chains, 
exploring the strategic value of inventory in supply chains. We review these two strands of 
literature in the following two sections and posit that this thesis furthers the emerging line 
of research in the latter strand –strategic role of inventories in supply chains.  

2.3 Classic economic competition models 
 
 The Miriam-Webster dictionary defines competition as, "the effort of two or more 
parties acting independently to secure the business of a third-party by offering the most 
favorable terms." There are various basic economic competition models that are usually 
used in the literature (for simplicity of analysis), to model various competition scenarios in 
the real-world. 

Some of the most important ones are: 

Cournot competition: Cournot competition is an economic model where companies 
compete on the amount of output they will produce, which they decide independently of 
each other and simultaneously. It is named after Antoine Augustin Cournot (1801-1877). A 
key assumption of this model is the Cournot Conjecture which states that each firm aims to 
maximize profits, based on the expectation that its own output decision will not have an 
effect on the decisions of its rivals. 

Stackelberg competition: Stackelberg competition model is used to describe a situation 
where one of the firms in a market, has a natural advantage over the other competing firms 
and makes the first move, ahead of the other players. This firm is called the Stackelberg 
Leader. The advantage the Stackelberg leader firm holds over the other firms in the market 
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(followers) could be due to the fact that the leader held a monopoly in the market and the 
followers are new entrants. It could also be based on other forms of leadership of one firm 
over others in an Oligopoly, like, the leader firm holding excess inventory, which helps it to 
make a production decision before the other firms in the market. This form of competition 
is named after the German economist Heinrich Freiherr von Stackelberg who published 
Market Structure and Equilibrium (Marktform und Gleichgewicht) in 1934 which described 
the model. 

Bertrand competition: Bertrand competition is a model of competition used in economics, 
named after the French economist Joseph Louis François Bertrand (1822-1900). It is 
fundamentally different from the Cournot and Stackelberg models of economic competition 
described previously in that, firms do not compete over output quantity, but act as price-
setters i.e., they set prices at which each firm is going to sell goods in the market, 
simultaneously, and each firm is assumed to produce/be able to procure enough product to 
meet end-customer demand at that price point. Also, this is a simultaneous-ordering 
situation like the Cournot model and unlike the Stackelberg model. 

1.4 Inventory as a strategic weapon 
 

Inventories as a strategic weapon has been frequently studied in economic literature 
for over 30 years now and more recently from a marketing perspective (operations-
marketing interface). Murphy, Toman and Weiss (1989) represents one of the first attempts 
at a game-theoretic model of oil market disruption and the role of «inventory stock-piling» 
in this environment. Rotemberg and Saloner (1989), analyzes the role of inventories in 
supporting collusion between supply chain entities. The model considered in this paper is 
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that of duopoly retailers, who themselves are the producers, selling product over two 
consecutive seasons with inventory carrying being allowed between seasons. The demand 
function considered is price-dependent linear. One of the key intuitions they derive from 
the model is that, when demand is high, there is increased incentive to deviate from 
implicitly collusive arrangement, so there is increased strategic inventory carrying by the 
two retailers. Balachander and Farquhar (1994) represent an early attempt in the 
operations-marketing interface literature that considers the strategic value of a particular 
inventory strategy. In this case, they reason that though a firm might lose from foregone 
sales in case of a stockout, it might indirectly also benefit from the higher price a 
competititor is able to charge. They thus argue that customers are more prone to search 
elsewhere for a product upon encountering a stockout, from this reduced price-competition 
between the firms. This would then provide an incentive for competing firms to actually 
induce stockouts (deliberately stocking less) thereby resulting in inventory now acquiring a 
strategic dimension. 

 Matsumura(2002) similarly studies inventories as a strategic weapon, but from the 
standpoint of it used as a co-ordinating device in a duopoly, competing-retailer 
environment. Matsumura's model is a finitely repeated competition model with a finite 
number of selling seasons through which inventory carrying is allowed, as opposed to the 
more restrictive one-shot, two-selling season model of Rotemberg and Saloner (1989). One 
of the important insights derived in this paper is that, if a firm deviates from collusive 
behavior, the rival increases it's inventories to punish the deviator. Large inventory holding 
by the punishing firm effectively makes it the Stackelberg leader, forcing the defecting firm 
to follow. In this situation, the second mover's equilibrium optimal strategies, always place 
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it at a disadvantage compared to the punishing firm and hence inventory holding acts as a 
strategic deterrent to firms taking non cooperative actions. The two competing firms are 
allowed to carry inventory  at any given point in time,only one period forward. 

 Mollgaard, Poddar and Sasaki (2000) analyze the strategic role of inventories in a 
competing retailer environment. Their analysis again looks at the "strategic value" of 
inventory, from yet another angle - strategic inventory carrying allowing a firm to raise it's 
latter period output. Using a two-period model, they establish that the strategic value of 
inventories depend on the convexity of the cost function, on the cost of storage, and on the 
slopes of each firm's individual supply schedules. This makes their analysis more granular 
than earlier attempts. In addition to exploring what kind of strategic role inventories can 
play in a competing-retailer environment, they establish explicitly, factors that affect the 
strategic value of inventory in such situations.  

In summary, all these attempts at analyzing the strategic value of inventories do so, 
in the sense of inventories giving one of the firms a strategic edge over the other in a 
competitive environment, or inventory carrying either aiding or abetting collusive behavior 
in a cooperative environment. All of the above models assume that the producer himself is 
the seller of the goods and the supply chain angle is explicitly absent from this strand of 
literature. 
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Table 2.1 Summary of literature on inventory as a strategic weapon 
Author (Year) Types of strategic roles analyzed for inventory Types of competition Models Considered Vertical control present? Single period/Multi-period? Number of players 
Murphy et al. (1989) Stockpiling by entities Simultaneous move No Single Period N-player 

Rotermberg & Saloner (1989) 
Punish firms that deviate from a collusive arrangement. Simultaneous move No Two Period N-player oligopoly 

Balachander & Farquhar (1994) 
Strategically inducing stock-out Monopoly, Simultaneous move No Single Period n-player oligopoly 

Mollgaard et al. (2000) Allow firm to raise its latter period output Simultaneous move No Two-period 
 two-player 

Matsumura (2002) 
Firm can commit to larger sales in a later period – encourages firms to take collusive action 

Cournot competition No Two-period two-player 
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2.5 Strategic inventories in supply chains 
 
 One of the most significant works in this area is Anand et al. (2008), who conjecture 
among other things that strategic inventories are optimal for a wide range of contractual 
structures in an n-period ordering environment, first for markets with price-dependent 
linear end demand as well as later for, arbitrary demand functions. This is the case, even 
when all the traditional reasons for holding inventory at a supply chain entity do not exist. 
Traditional reasons for holding inventory are demand uncertainty, pipeline delays in 
getting the product from producer to end consumer on time, economies of scale in 
production and distribution and such other factors. Throughout their models they assume 
that the nature of end-demand is known and replenishment is instantaneous, no back-
ordering exists and production costs are the same across periods, but still prove that 
inventory carriage between periods is optimal in certain cases and make the important 
argument that design of coordinating supply chain contracts has to take the possibility of 
strategic inventory carriage into account. 

 Keskinocak et al. (2008) extend the two-period model proposed by Anand et al. 
(2008) to case where the manufacturer's first period capacity is limited, thereby analyzing 
the effect of strategic inventory carriage in a capacitated production environment. Zhang, 
Natarajan and Sosic (2008) extend the two period model from Anand et al. (2008) to the 
case with asymmetric information in an n-period model. Their key assumption is that the 
inventory level of the retailer from the previous period is invisible to the supplier, when the 
supplier is setting his wholesale price for the period. This is different from the other related 
efforts in analyzing the impact of strategic inventories in a vertically-controlled supply 
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chain.  All the previous studies (Anand et al. 2008, Keskinocak et al. 2008) assume full 
information at all stages and time-periods of the game.  They analyze the kind of contracts 
that can minimize the informational advantage the retailer has in this scenario (by not 
sharing the inventory information with the manufacturer) 

 These papers are the first to analyze the effect of strategic inventories in a supply 
chain. Strategic inventory carriage as a part of single-echelon inventory games among 
market competitors have been analyzed before in the literature by papers like Rotemberg 
and Saloner (1989), but a key difference to Anand et al. (2008) is the absence of vertical 
control, or a multi-echelon supply chain with procurement from an upstream manufacturer. 
In previous economics literature, typically, the producer himself is the seller in the market. 

 Krishnan and Winter (2007) propose a scheme of joint price and inventory control 
in a one-manufacturer, two-retailer supply chain where the retailers compete as 
differentiated duopolists under uncertain demand. They find that a combination of a buy-
back contract with a resale price ceiling leads to maximization of joint profits. This work is 
close, but different to the work presented in the thesis. A very crucial differentiator is the 
fact that we do not focus on joint price and inventory control. In our model, inventory 
decisions are taken independently by the retailers and the role of strategy inventory 
carrying by retailers acting independently is explored, for its interaction with price-control 
and retailer competition. 

 Another recent work in the area, Desai, Koenigsberg and Purohit (2010) focus on the 
effects of forward buying by retailers and proves that the motivations for forward buying 
are more complex than just manufacturer trade promotions or that retailer stock piling 
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only helps the retailer but hurts the manufacturer (a view shared by Anand (2008) who 
subsequently develop co-ordinating contracts to remedy this inequality). This work adds to 
the model considered by Anand (2008), the possibility of manufacturer trade promotions 
as well as uncertain demand and find that, regardless of whether the manufacturer offers a 
trade promotion, forward buying can be beneficial, both to the retailer and the 
manufacturer. They also consider a competitive model with two retailers  facing identical 
but different demand functions and that the retailers are differentiated (they aren't selling 
the same end-product). Also, they find that, in the case of uncertain demand, strategic 
forward buying is encouraged and find that the retailer orders a quantity higher than they 
expect to sell, even in the most optimistic demand scenario. This work further bolsters 
evidence that inventory can play a strategic role in the supply chain in some very 
interesting ways that merit more careful research and analysis. 

Hartwig, et al. (2015) present an experimental study on the effect of SI on supply 
chain performance. They show that the positive effects of SI are more pronounced than 
theoretically predicted – reducing average wholesale prices and the double marginalization 
effect which leads to benefits for both manufacturer and retailer alike in a one-
manufacturer, one-retailer SC two selling seasons. Downstream competition is not 
considered. 
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Table 2.2 Summary of literature on Strategic inventories in a supply chain 
Author (year) Vertical control Present? Competititve downstream present? Type of demand functions Considered Number of periods Co-ordinating contracts developed? 
Krishnan and Winter (2007) Yes Yes Uncertain demand Single period Yes 
Anand (2008) Yes No Price-dependent linear, general 2 period, n-period  

Yes 

Keskinocak (2008) Yes No Price-dependent linear 2-period Yes 
Desai et al. (2010) Yes Yes. 2 manufacturer one retailer and one manufacturer 2-retailer configurations 

Uncertain, price-dependent linear, depending on only the particular retailer's prior retail price 

2-period No 

Viswanathan and Jang (2009) Yes Yes, Cournot Competing downstream duopoly Price-dependent linear, depending on the total quantity on sale in the market in the given period. 

2-period No 

Viswanathan and Jang (2010) Yes Yes, Stackelberg Competing downstream duopoly 
Price-dependent linear,depending on the total quantity on sale in the market in the given period. 

2-period No 
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2.6. Game Theory in supply chains 
 
 Game theory is a powerful tool used to analyze situations where there are multiple 
players (“agents” or “stake-holders”) and each stake-holder’s payoff is affected by the 
decisions of the other players. It is easy to see that a supply chain can easily be cast into a 
game theoretic model, since it typically contains retailers, distributors, manufacturers all of 
whom make different kinds of strategic, tactical and operational decisions that can have a 
direct effect on the strategic, tactical and operational decisions of every other entity in the 
supply chain. This fact has led to a lot of game theoretic concepts being used to analyze 
supply chains and evolve coordination mechanisms, determine optimal decisions for each 
party and such other things. 

 One of the most important reviews that covers a lot of significant work in the use of 
game theoretic techniques in supply chain analysis was Cachon and Netessine (2003). This 
work introduces the basics of game theory that apply to supply chain research and reviews 
in fair detail and an accessible format, a set of game theoretic tools that have been used/can 
be used in future to analyze supply chain problems. Most of the review focuses on static, 
non-cooperative, non-zero sum games. 

 In the following, we provide an introduction to some key game theoretic concepts 
that are essential to understanding the analytical techniques used in this dissertation. 

Basic definitions, results and concepts:  (Fudenberg & Tirole, 1991) 

1. Strategic form game: Strategic form games have three elements 
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 A set of players i ∈ I 

 The Pure Strategy Profile (Si) for each player i 

 Payoff Functions ui that give the player i's von Neumann-Morgenstern utility ui(s) for 
each profile s = (s1, s2, s3,...,sI) 

 Each player's objective is to maximize his own pay-off function. 

2. Pure strategy: A pure strategy is a predetermined plan of action in a game of which 
strategy to choose, from a strategy profile, after considering all the strategies from 
the profile. 

3. Mixed strategy: A mixed strategy (σi) can be considered a probability distribution 
over pure strategies. Each player’s randomization is statistically independent of 
those of his opponents and the payoffs  to a profile of mixed strategies are the 
expected  values of the corresponding pure-strategy payoffs. 

4. A Nash equilibrium (NE) is a profile of strategy such that each player’s strategy is 
an optimal response to other players’ strategies. A mixed strategy profile σ* is Nash 
Equilibrium if, for all players i,  ui (σ*i, σ*-i) >= ui (si , σ*-i) for all si ∈ Si 

5. A Pure Strategy Nash Equilibrium is a pure strategy satisfying the above 
condition. 

6. Strict Nash equilibrium: A Nash Equilibrium is strict (Harsanyi, 1973), if each 
player has a best response to his rivals’ strategies. i.e., s* is a strict NE if u(si*, s-i*) > 
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u(si, s*-i) for all i and si ≠si* . By definition, a strict Nash Equlibrium is a pure strategy 
Nash Equlibrium. 

7. Domination of strategies: Pure strategy si is strictly dominated for player i if there 
exists si’ ∈ i  such that ui(si’, s-i) > ui(si, s-i)  for all s-i ∈ S-i 

8. Iterated elimination of pure strategies: When one round of elimination of strictly 
dominated strategies yields a unique strategy profile s* =(s1*,s2*,….si*), this strategy 
profile is necessarily a Nash equilibrium. 

9. Pareto optimality: Given a set of alternative allocations of, say, goods or income for 
a set of individuals, a change from one allocation to another that can make at least 
one individual better off without making any other individual worse off is called a 
Pareto improvement. An allocation is Pareto efficient or Pareto optimal when no 
further Pareto improvements can be made. 

2.7 Multiple Nash Equilibria in Games 
 
 The problem of selecting one unique Nash Equilibrium from many possible ones has 
been a pertinent problem for researchers for years now. There are many situations in a 
game theoretic setting, where there are multiple possible Nash Equilibria. This poses a 
problem, especially in real-world applications. E.g., Consider a supply chain Game where 
the Inventory level at a manufacturer and retailer needs to be decided. If we solve this game 
using backward induction and find that there are multiple possible equilibrium inventory 
values at each entity, then we face a dilemma as to which of these values to use, while 
physically setting inventory levels.    
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 There are many approaches to deal with the problem of multiple Nash equilibria. 
One of the more common ones is to seek a mixed strategy equilibrium (a randomization 
over the multiple pure strategies) in cases where there are multiple pure strategy equilibria 
possible. Though this approach is simple and elegant, and yields one mixed strategy 
equilibrium, when presented with multiple pure strategy equilibria, it is not useful while 
modeling for real-world applications, since it would be meaningless to say that the optimal 
inventory value for a supply chain entity would be 70 units 10% of the time and 40 units 
30% of the time, randomly. 

 Researchers have always been interested in various creative approaches to this 
problem ever since John Nash's seminal work introducing the notion of the Nash 
Equilibrium, in 1950.   

 One of the approaches is to choose a Nash Equilibrium randomly from the multiple 
available equilibria. Bjorn and Vuong (1984) present one such model where they choose a 
Nash Equilibrium among many, randomly.   They analyze the econometric decision of a 
husband and wife to participate or not in the labor force, together and model the behavior 
of this couple, using a game-theoretic framework. They distinguish their work from the 
previous efforts on this problem in that, the previous efforts all considered the husband's 
decision to work or not work, as exogenous to the model, but the authors here assume this 
decision happens within the framework of the problem itself. Another contribution of this 
work is that they assume a utility function that specifies the labor supply of a husband and 
wife using individual utility functions in contrast to previous work that specifies the labor 
supply of a husband and wife from the outcome of a joint utility function. In other words, 
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the decisions of the husband and wife are not independent and the decision of the husband 
has an impact on the utility function of the wife and vice-versa. They find that there exist 
multiple Nash equilibria to this game. i.e., both people not participating in the workforce as 
well as both people simultaneously participating are both Nash equilibria. They resolve this 
situation by proposing that the probability of occurrence of each of these pairs of outcome 
(equilibria) is distributed according to certain weights and provide a log-likelihood 
function formulation for estimating these weights and probabilities.   

 An approach that is a little more sophisticated than random choosing is one of 
choosing extremal equilibria.  Jia (2008) develops game-theoretic models quantify the 
impact of national discount chains on the profitability and entry and exit decisions of small 
retailers from the late 1980 to the late 1990s. He also examines the entry decisions of a 
small chain of stores vs just a single store, thereby relaxing the assumption that the 
entry/exit decision of a particular store is independent of the entry/exit decision of every 
other simultaneous entrant. They find that Walmart's expansion from the late 80s to the 
90s explains about 40-50% of the net change in the number of small discount retailers, 
during that period. They remark that modeling the entry decisions of a chain of retail 
stores, as opposed to one store causes the profits of the stores to be spatially related. This 
leads to huge problem sizes – they cite an example with the entry decision that has 22000   
choices for a market size of 2000 stores.  They encounter multiple equilibria, while solving 
for a Nash equilibrium to this entry game and solve this by transforming the profit-
maximization problem into a search for fixed points of the necessary conditions. This 
transformed problem then has much smaller dimensions than 22000  and is now much easier 
to solve for a Nash equilibrium.  They solve for a Nash equilibrium in this situation using a 
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search technique that relies on the super-modularity property of games. A super-modular 
game is one in which the marginal utility of increasing a player's strategy increases with the 
increase of other player's strategies. In other words, the best response of each player is a 
non-decreasing function of other players' strategies. 

 Tamer (2003) studies a bi-variate (only two decision choices per player), 
simultaneous response model, which is a stochastic representation of the equilibria in a 
two-person game. He finds that, in this situation there are multiple equilibria and 
categorize the approaches taken by previous works on similar models (with multiple 
equilibria) into two classes – incomplete and incoherent models. Incomplete models are 
ones where the model predicts a non-unique outcome that maps to a certain region of the 
exogenous variables. They observe that researchers dealing with these models have either 
made simplifying assumptions such that the outcome space changes, or impose ad-ho 
selection mechanisms in the regions of multiplicity. The author studies these kind of 
incomplete models in the regions that exhibit multiplicity of equilibria. Using restrictions 
on the probabilities of the non-unique outcomes and by identifying the parameters in the 
model that can be consistently estimated, the authors develop a maximum likelihood 
estimator for the parameters and hence resolve the multiplicity problem. 

 Bresnahan and Reiss (1990) develop empirical models of market structure from 
qualitative choice models of a firm's entry decision into a market. These models assume 
that the author does not observe market entrant's revenues or costs but draw inferences 
from a firm's unobservable profits that describe potential entrants' strategies.   They then 
use these models to study the market concentration in retail markets for new automobiles, 
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thus determining the entry strategy for a new entrant into the market. They find that there 
exist multiple Nash equilibria that make it impossible in this situation to use qualitative 
choice models. They overcome this situation by reinterpreting their game theoretic model 
from one that predicts the individual choices of each of the entrants to one that predicts the 
total number of entrants in the market, in which case, they find, there exist unique Nash 
Equilibria.  This is an example of another approach used in a situation with multiple Nash 
equilibria is to recast the game such that there exists a unique equilibrium. They also find 
that recasting the game as a sequential decision game, rather than simultaneous move, also 
eliminates the problem of multiple Nash equilibria. They argue that this decision also 
makes physical sense because one can always think of entry decisions of firms in a market 
happening one after another, and not all at the same time. Another similar example is Berry 
(1992) who present a market entry model for the airline industry. Here also, they 
encounter the problem of Multiple Nash Equilibria for firms' entry/exit decisions. Here too, 
they try to recast the game to model the number of new entrants (and not the identities of 
the individual entrants) versus a model that tries to predict each firm's entry/exit decisions 
based on the decisions of the other potential entrants. They find that this recast game has a 
unique equilibrium, and thus they are able to deal with the situation where multiple Nash 
equilibria exist. Lung (2010) presents an alternative to all these methods discussed above, 
using the Nash Ascendancy Relation. They postulate that if a strategy profile x dominates a 
strategy profile y, it can be said that strategy x is more stable (closer to equilibrium) than 
strategy y. In this case, it can be said that x Nash Ascends y and is more likely to be a Nash 
Equilibrium than y. By formulating an iterative method that does an approximate 
computation of how many strategies, each strategy in a strategy space ascends, they 
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propose a method to compute a unique Nash equilibrium for a game. In summary, all of 
these works, represent various methods and approaches to choose a single Nash 
equilibrium in a situation where there exist multiple possible equilibria. It can be seen that 
this is still an open research area and none of the methods proposed above provide a 
definite or fool-proof way of choosing one Nash equilibrium from many available choices 
and the final decision of method followed depends on the problem on hand, the objectives 
of the research (whether recasting the problem in a different way still fulfills the research 
objectives), time constraints (that prohibit computationally costly algorithms), amount of 
accuracy required etc., and hence the technique used has to be tailored specifically to the 
problem on hand, based on the unique characteristics of the problem, most of the time. 

2.8 Supply chain coordination with contracts 
 
 In a supply chain, operational decisions of the individual entities are usually made, 
keeping in mind, only their own best interest and these interests need not always be the 
same as the best interests of the supply chain as a whole (Cachon et al., 2003). Optimal 
supply chain performance can be achieved if firms coordinate by contracting on a set of 
transfer payments that align each firm's objective to the supply chain objective. This 
mechanism is termed decentralized supply chain coordination using contracts. 

 In the following paragraphs, we review some of the important contracts found in 
recent supply chain literature (Cachon et al., 2003). 

 Wholesale price contract: With a wholesale price contract, the supplier charges the 
retailer a fixed price w per-unit of product purchased. Lavaliere and Porteus (2001) 
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analyze a wholesale price contract in the context of the news-vendor model. They 
consider a manufacturer producing a single good at a marginal cost c which is sold 
at the fixed retail price r>c. Salvage value is assumed to be zero. A single selling 
season is assumed with demand drawn from a continuous distribution Φ, with 
density φ. Unmet demand (stock-out) is assumed to be lost, resulting in lost margin 
to the retailer but without any additional stock-out penalty. The manufacturer is the 
Stackelberg leader, presenting the wholesale price w that the retailer can either 
accept or reject. An optimal contract in this situation is one that maximizes the 
manufacturer's profit subject to the retailer's acceptance.  The retailer accepts any 
terms that allow an expected profit greater than zero (the model does not assume 
any opportunity cost).  This model does not consider supplier competition, retailer 
power and retailer pricing policies that affect wholesale prices in the real world. The 
authors show that manufacturer's profit and sales quantity increase (mostly) with 
increase in market size but the resulting wholesale price depends on how the 
market grows. They also show that, if the market becomes more variable, the 
retailer becomes more price-sensitive and hence the wholesale price decreases. 
Gerchak and Wang (2004) show that in assembly systems (where multiple 
components need to be mated together to form the finished retail product) with 
random demand. They find, among other things that the wholesale price contract is 
inferior to the revenue sharing contract, as the number of suppliers increase,  in the 
case of assembly systems. Using an Exponential demand distribution, they provide 
an example for which the VMI with revenue sharing dominates the wholesale price 
contract, with a single supplier. Unlike in Lariviere and Porteus (2001), here, unsold 
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items are returned to the manufacturer for a pre-arranged price.  In this model, the 
component lot sizes (Qi) are selected by the manufacturers (suppliers) and the 
assembly quantity (Qo) is chosen by the assembler. A basic revenue-sharing contract 
as described in this paper specifies that, for each unit of final product sold, the 
assembler pays supplier i, αi i=1, 2, 3 ...n and 0< αi<1, out of the total $1 of revenue. 
That revenue sharing scheme is clearly known to suppliers. So, the model 
considered in this paper is a full information game. The wholesale price contract 
considered here is a multiple-supplier generalization of the model described in 
Lariviere and Porteus (2001), reviewed above. Recent research on the use of 
wholesale price contracts in supply chains continues to innovate on the type of 
markets considered, types of incentives researched and types of insights gained – all 
with a simple wholesale price type arrangement. Case in point is Hu and Gan (2010) 
who research the impact of credit on stimulating demand and hence study a 
wholesale price contract model of a supply chain with “credit sale”. They find that if 
suppliers provide retailer with credit (incentive to increase sales) and the retailers 
only provide account sales (no credit), this scenario improves the overall supply 
chain performance. 

 Buyback contract: A buyback contract is one where the retailer buys the product 
from the supplier at a unit price w but the supplier pays the retailer b per unit 
remaining at the end of season. The model assumes that the retailer can never profit 
from the leftover inventory (and hence the “buy-back” is a legitimate incentive) i.e., 
ݓ ≥ ܾalways. Another important assumption in these contracts is that the supplier 
is able to verify the number of units remaining at the end of each selling season. 
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Padmanabhan and Png (1995) study the strategic effects of retailer returns policies 
on competing retailers. In this work, show that when there is no uncertainty in 
demand, a returns policy induces retailers to compete more intensely, since it 
reduces retail prices without affecting wholesale prices, which serves to reduce 
retailer profits leaving manufacturer margins intact. When demand is uncertain 
though, they find that a returns policy induces the retailer to overstock, reducing the 
upstream manufacturer profits. Emmons and Gilbert (1998) also focus on the 
strategic effects of returns policies that provide for conditions under which a retailer 
can return unsold merchandise for a full or partial refund from the supplier, and the 
role such a policy can play in aligning the self-interested behavior of the retailer 
with the best interests of a manufacturer. They opine that these kinds of policies are 
often used to encourage larger orders from retailers, of style goods, which are 
characterized by uncertain demand, long production times and short selling 
seasons. A key assumption of this model is that the retailer sticks to one profit-
maximizing retail price through the selling season (as opposed to related work like 
Gallego and vanRyzin (1994) who consider the prospect of the retailer being able to 
change the retail price in the middle of the selling season). Like the recent research 
on wholesale price contracts, the research on buy-back contracts has also tended 
towards more innovative and interesting variations of these inherently simple 
contracts. E.g.: Hou et al. (2010) who study a buyback contract between a buyer and 
a backup supplier, when the buyer's main supplier experiences supply disruptions. 
The primary source in this model is assumed to be cheaper than the backup source. 
They solve for the optimal backup supplier return price and the buyer's optimal                                                                                                                              
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order quantity and deduce among other things that if the disruption probability 
increases (both the probability of demand and supply uncertainty), it is better for 
the buyer to order more from the backup supplier till the supply meets demand and 
in this scenario, the buyer's expected profit decreases whereas that of the backup 
supplier increases. Also, they deduce that the optimal order quantity for the buyer 
under supply uncertainty is larger than under demand uncertainty, but the total 
expected profit of the buyer and supplier combined is larger under supply 
uncertainty than demand uncertainty, especially when the supply disruption 
probability is large. 

 Revenue sharing contract: In a revenue sharing contract the supplier charges wr per 
unit purchased plus the retailer shares a percentage of his revenue, back with the 
supplier. Cachon and Lariviere (2000) analyze revenue sharing contracts for the 
video rental industry. They show that a revenue sharing contract co-ordinates the 
supply chain consisting of one manufacturer supplying to a retailer, in both 
deterministic and stochastic demand situations. They also show that a revenue 
sharing contract can coordinate a news-vendor style supply chain with price-
dependent demand, while a buy-back contract cannot. Wang et al. (2004) study a 
consignment contract with revenue sharing, in which, akin to VMI, a supplier decides 
on a retail price and delivery quantity and retains ownership of the goods. For each 
item of goods sold, the retailer then deducts a certain percentage amount from the 
selling price and returns the balance to the supplier. This kind of arrangement, the 
authors opine, serves to shift the risk of inventory ownership from the retailer to the 
supplier, in contrast to a wholesale price-contract, discussed in the earlier section, 
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where the inventory risk is concentrated wholly at the hands of the retailer. Hence, 
this kind of contract is more advantageous to the retailer when demand uncertainty 
is high, since he can order exactly how much he needs, depending on how much 
information he has about demand in the forthcoming selling season. Dana and Spier 
(2001) consider a related model of an upstream firm that sells a good to a 
downstream firm who then resell it or rent It for one period (video cassette rental 
industry). Perfect competition is assumed and the supplier offers a contract {t,r} to 
the retailers where t  is the transfer price per unit of good sold to the retailer and r  
is the royalty percent  of total revenue that the retailers each share with the 
manufacturer. They consider two models of this kind in which the upstream firm 
(supplier) has an interest in softening price-competition between the downstream 
competing retailers and show that revenue-sharing contracts used with a linear 
input price leads to increased vertical integration (increased control of the 
downstream retailers' operating parameters by the upstream firm).   

 The quantity flexibility contract: A quantity flexibility contract is one where the 
supplier charges the retailer w per unit of product purchased and compensates the 
retailer for unsold units left over after the selling season. Tsay et al. (1999) provide a 
comprehensive framework for a quantity flexibility contract in a supply chain 
consisting of one manufacturer supplying to a downstream retailer.  Tsay opines 
here that the quantity flexibility contract fulfils a specific niche in a typical supply 
chain – the scenario of a customer that provides a planning forecast of intended 
purchase for the next selling season, but does not commit to a specific quantity. In 
this kind of situation, the customer has incentive to over-forecast to ensure adequate 
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supply, but the supplier now bears the risk of over-production. With a quantity 
flexibility contract, the supplier agrees to supply up to a certain percentage above 
the forecast quantity, in return for the retailer's promise to not buy anything less 
than a certain percentage below the forecast quantity. Under this contract, the 
retailer relays an order quantity forecast to the manufacturer much before the start 
of the selling season. He then places his final order, just before the selling season 
starts, based on an updated demand signal. Market demand occurs and is fulfilled by 
the retailer to the extent possible, based on this order quantity and retailer surplus, 
if any, is salvaged. Li and Kouvelis (1999) study a similar quantity flexibility 
contracts but of two primary types – a time inflexible contract that requires the 
retailer to not only specify the order quantity, but also the exact time of the ordering 
decision and a time flexible contract which eases the temporal limitation of the 
earlier case and permits ordering of a specific order quantity anytime within a 
mutually agreed time window. They also consider the situation of pure quantity 
flexibility – the ability to order a different quantity at any point in time. They claim 
to incorporate risk-sharing in the model by providing for the supplier being able to 
charge a different price each time, based on the time of the order and the quantity 
ordered. They derive the optimal time and order quantity decisions for the retailer 
and conclude that contractual flexibility in sourcing decisions can effectively reduce 
sourcing costs in an environment of price uncertainty. Lian and Deshmukh (2009) 
study quantity flexibility contracts that are a little more sophisticated than the ones 
studied by Tsay (2001) and Li and Kouvelis (1999). In this work, the time horizon 
between the initial demand forecast and the start of the selling season, is treated as 
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a continuous opportunity for the retailer to place an order, whenever the retailer is 
comfortable placing a firm one. The further in advance the order is placed, the larger 
the discount the retailer gets. The retailer is also given the opportunity here to 
update quantities for future rolling time horizons at any time, but he pays a 
premium for the incremental units. The paper develops heuristics for optimal order 
quantity and timing decisions for the retailer in this situation and evaluates the 
efficacy of different strategies possible under this contract, for optimal profit.  One 
important limiting assumption in this work is that the retailer can only increase his 
order quantity for future periods at the present time, he can never decrease it. 
Relaxing this assumption might affect the insights drawn on optimal strategies using 
this contract, considerably. Shi and Chen (2008) study quantity flexibility contracts 
with satisficing objectives, by assuming that supply chain agents are risk-averse, 
rather than neutral, as assumed by most of the previous analyses. With satisficing 
objectives, the goal is to maximize the probability of achieving a certain target. They 
obtain contracts based on the Pareto optimality criterion, which is again different 
from the Nash Equilibrium criterion usually used to derive optimal contract 
parameters. The authors setup a definition of a Pareto contract as: “Within a 
contractual form, a contract is said to be Pareto if its parameter set is Pareto, that is, 
there does not exist an alternative parameter set such that no agent is worse off and at 
least one agent is strictly better off.”  They also note that Pareto contracts do not co-
ordinate a supply chain, because there is one agent that is always strictly better off 
than other agents and for a contract to coordinate a supply chain, we need that the 
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optimal actions of the agents under the contract lead to pareto optimality for the 
supply chain, as a whole, and not any individual agent.   

 Sales rebate contract: A sales rebate contract is one where the supplier charges the 
retailer w per unit of product purchased, but gives the retailer a rebate r per unit of 
product sold above a threshold t. Taylor (2002) considers two kinds of channel sales 
rebates – linear and target rebates. A linear rebate is one where a rebate is paid for 
every unit sold and a channel rebate where a rebate is paid only for every unit sold 
beyond a target level. In this work, they deduce that when demand is not influenced 
by sales effort, a properly designed channel rebate achieves channel coordination 
and leads to a win-win outcome. They also note that an implementable coordination 
mechanism cannot be developed using just linear rebates.  Another significant 
observation the authors make in the paper is that a rebate is distinct from an 
upfront reduction in the wholesale price (discount), since the rebate is realized only 
after the item is sold by the retailer. They observe that rebates are used primarily in 
industries like computer hardware characterized by high demand variability and 
short cycle times. Wong, Qi and Leung (2009) look at how sales rebate contracts co-
ordinate supply chains. They consider a two-echelon supply chain with one vendor 
supplying to multiple retailers with a VMI arrangement. They argue that VMI 
actually facilitates a sales rebate contract, since with a VMI arrangement, the 
retailers' real-time inventory information is available to the vendor.  They show that, 
with this kind of arrangement – sales rebate contract under a VMI mechanism, the 
retailers achieve perfect coordination, i.e., retailers acting strategically to maximize 
their best interest can also make price decisions to maximize the aggregate supply 
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chain profit.  They claim that the proper rebate contract makes retailers lower their 
prices to system-optimal prices, which increases demand and hence aggregate 
supply chain profit also. He et al. (2009) look at a supply chain facing stochastic 
demand which is sensitive to both sales effort and retail price. They show that when 
demand is sensitive to both these quantities neither a returns policy nor a wholesale 
price contract coordinates the supply chain. They show that a returns policy coupled 
with sales rebate and penalty leads to a coordinating outcome for the supply chain. 
The penalty comes into effect, anytime the retailer sells below the target level T, 
which the supplier sets for the retailer. For every unit the retailer sells above the 
target level, the retailer gets a rebate r. 

 Quantity discount contract:  A general quantity discount contract can be defined as 
one where there is a transfer payment T = w (q)*q, where w (q) is the wholesale 
price per-unit, a decreasing function of q.  Cachon (2003), in their review of supply 
chain coordination using contracts opine interestingly that roughly speaking, 
quantity discount contracts achieve coordination by manipulating the retailer's 
marginal cost curve, while leaving the retailer's marginal revenue curve untouched. 
This would be a simplistic but elegant way to understand the basic working of a 
quantity discount contract. Ghandfourish and Loo (1992) propose a non-linear 
quantity discount based procurement model for a multi-national oil company with 
affiliated plants all over the world. They use a non-linear programming model to 
reduce overall procurement cost, using this model. It would be apt to note here 
though, that in this model, the oil company exercises significant control over the 
affiliated plants' operational parameters and hence the situation considered in this 
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problem is one that concerns a single decision maker rather than a decentralized 
supply chain that forms the backdrop of most of the efforts in supply chain 
coordination using contracts. Chen, Federgruen and Cheng (2001) study 
mechanisms for coordinating a two-echelon distribution system consisting of one 
supplier supplying to multiple downstream retailers, where the sales volumes are 
derived endogenously using known demand functions. They show that this 
decentralized system achieves equivalent performance (in terms of maximized 
system-wide profits), as a centrally controlled system, when coordination is 
achieved via periodically charged fixed fees and a discount pricing scheme where 
the discount given is the sum of 3 components based on  annual sales volume, order 
quantity and order frequency respectively.  They also show that a discounting 
scheme based solely on order quantity is not sufficient to optimize channel-wide 
profits in the presence of multiple identical downstream retailers. Su and Shi (2002) 
present a game-theoretic framework for the quantity discount problem with return 
contracts. They postulate a two-stage game model, where, in the first stage, the 
manufacturer and retailer determine their inventory levels cooperatively 
(manufacturing is make-to-order, end-user demand is stochastic) and in the second 
stage, in an attempt to increase channel efficiency, the manufacturer designs an 
optimal incentive scheme (quantity discount) to entice the retailer(buyer) to change 
the ordering decision. The retailer can return unsold inventory to the manufacturer 
at the end of the selling season for a pre-determined buyback price. The authors 
develop a menu of optimal discount-return configurations that balance an optimal 



 

36 
 

returns policy with a quantity discount and find among other things that a higher 
wholesale price can result in a more liberal returns policy. 

 In summary, in this chapter, we have focused on reviewing the extant literature 
related the problems presented and solved in this dissertation. We started with a review of 
inventory decision-making models under a single decision maker, moving on to game-
theoretic inventory models and the notion of inventories as a strategic weapon. 
Subsequently we focused on the work that focuses on inventories as a strategic weapon in a 
supply chain setting (with vertical control).  Then we moved on to provide an overview of 
basic game theory concepts used in this dissertation as well as the techniques used to deal 
with multiple Nash equilibria. Finally, we conclude this review with a compilation of recent 
research on supply chain coordination with contracts. 
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3. DYNAMIC COURNOT DUOPOLY MODEL WITH VER-
TICAL CONTROL AND SI CARRIAGE BETWEEN PERI-

ODS 
This chapter presents two analytical models to determine the equilibrium SI levels and 

associated profits for the manufacturer and retailers in a supply chain over two and three 
periods, respectively. In both cases, we have one manufacturer and two retailers along with 
vertical control, whereby the manufacturer exerts control over any of the decision 
variables of the retailer, selling quantities and SI levels in this case, by setting the wholesale 
prices at certain points of time. The manufacturer and retailers all compete for profit. The 
two retailers are in a Cournot competition with each another, i.e., they compete on quan-
tity. The demand is a known function of the product price.  

The demand function in these models is a price-dependent linear function, a common 
function form used in the supply chain, inventory, and economic modeling literature. That 
is, the unit price of a product sold in the market is p (Q) = a-bQ. Here “a” is the reservation 
price, the maximum a customer is willing to pay for this product. It is an exogenous strictly 
positive model parameter. The parameter “b” is another strictly positive model parameter 
with b<<a. Q is the total quantity on the market for sale in a particular selling season. 

We approach the problem using a game-theoretic modeling and a backward induction 
reasoning - observing the last period's decisions first and then working backward to the 
previous periods' decisions. The equilibria obtained at every decision stage are sub-game 
perfect Nash equilibria, i.e., the Nash equilibrium obtained at each decision stage is not only 
the Nash equilibrium for that particular stage, but also a Nash equilibrium for the entire 
game (Selten, 1975). 
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3.1 Two-period Cournot duopoly model with vertical control and 
SI carriage between periods 

The first model we will present in this dissertation consists of one manufacturer 
supplying a product to two Cournot duopoly retailers at its downstream in two consec-
utive selling seasons. The retailers are allowed to carry inventory between periods. The 
two retailers are identical in all respects. All products are sold at the end of the 2nd pe-
riod. Figure 3.1 illustrates the model.  

 
Figure 0.1 Illustration of a two-period Cournot duopoly model with Strategic Inventory 
 

The business flow in the two periods is as follows:  
Period 1:  
Step 1: The manufacturer announces its 1st period wholesale price (w1).  
Step 2: Retailer 1 and Retailer 2 simultaneously announce their 1st period order 

quantities, which is the sum of the quantity they want to sell in Period 1 (q11 and 
q12, respectively), and the quantity they want to carry to Period 2, I, for each of 
the retailer. Inventories carried to the 2nd period are held at a holding cost of 
h/unit.  
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Step 3: The market decides the retail price, p, of each unit of product sold: p (q11+q12) = 
a-b (q11+q12). 
Step 4: Quantities q11 and q12 are sold simultaneously by Retailer 1 and Retailer 2 at the 

price p (q11+q12) per unit and revenues are realized. Inventory I is carried by 
each retailer over to the second period. 

Period 2: 
Step 1: The manufacturer announces the 2nd period wholesale price (w2). 
Step 2: Retailer 1 and Retailer 2 simultaneously announce their 2nd period order 
quantities (q21 and q22). 
Step 3: The market decides the retail price of each unit of product sold: p (q21+q22+2I) = 
a-b(q21+q22+2I).  
Step 4: Quantities (q21 + I) and (q22 + I) are sold simultaneously by Retailer 1 and 

Retailer 2 at the retail price and revenues are realized. 
The complete work for all the calculations of the equilibrium values is shown in the 
Appendix.   As an illustration, we briefly present below the procedure of determining the 
retailers’ 2nd equilibrium period order quantity. 
 
Nomenclature  (all variables are non-negative): 
i: period ;  j: retailer; a: model parameter reservation price (a>0) ; b: model parameter 
(b>0); qij = order quantity of retailer j in period i (i = 1,2; j = 1,2); Ij : inventory carried by 
retailer j from period 1 to period 2; wi : wholesale price set by the manufacturer in period i 
(i=1,2); h: holding cost of each retailer to carry one unit of inventory from period 1 to 
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period 2 (it is assumed that both retailers have the same holding cost rate);  ПRij : profit of 
retailer j in period I; ПMi : profit of manufacturer in period i. 

Since the two retailers are identical in all respects and have equal holding costs, we 
can say that, in equilibrium, they carry equal amounts of inventory from the 1st period to 
the second. i.e., I1=I2 = I  
 Retailer 1's second period order quantity decisions  The conditions below are met by the decisions of the earlier periods’ business flow i.e.            
Given:  0< w2< a  (1);  I1, I2≥0, h>0 (2);    a-b (I1+I2) ≥ 0  (3)  The only decision variable here is q21, and the decision variable needs to meet the following 
conditions: 
a -b (q21+q22+2I) ≥ 0  (2nd period retail price is non-negative)    (4)    
q21   ≥ 0  (2nd period retailer 1 sales quantity is non-negative)   (5)  
Profit for the retailer is revenue minus cost, and we can write the 2nd period profit function 
for retailer 2 as: 
ПR21 =(ܽ − ଶଵݍ)ܾ + ଶଶݍ + ଶଵݍ)((ܫ2 + (ܫ −  :Taking the first derivative of (6) with respect to q21, we get  (6)     (ଶଵݍଶݓ)
డ௽ோమభ
డ௤మభ = ܽ − ଶଵݍ2)ܾ + ଶଶݍ + (ܫ3 −  ଶ       (7)ݓ

 Differentiating (7) again with respect to q21, we have: 
డమ௽ோమభ

డ௤మభమ = −2ܾ < 0          (8) 
  Equation (8) shows that (6) is concave with respect to q21.  Setting (7) at zero, we get the 
profit-maximizing 2nd period order quantity for retailer 1: ݍଶଵ௢ = ௔ି௪మ

ଶ௕ − ௤మమାଷூ
ଶ   (9) 

We need to check if (9) meets (4) and (5).  
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Re-arranging (4), we have:  q21≤ ௔
௕ − ଶଶݍ) +  (10)      (ܫ2

Equation (9) can be re-written as: 
ଶଵ௢ݍ  = ( ௔

ଶ௕ − ௤మమ
ଶ − (ܫ − (ூ

ଶ + ௪మ
ଶ௕) ≤ ௔

ଶ௕ − ଵ
ଶ ଶଶݍ) + (ܫ2 ≤ ௔

௕ − ଶଶݍ) +  (11)   (ܫ2
Equation (11) shows that (9) always meets (10). 
Next, we check if (9) fulfills (5), which leads to the following sub-cases for the optimal q*21 
decision: 
Case 1.1(a): qo21 (9) ≤0, In this case we set q*21 = 0      (12)  Case 1.1(b): qo21 (9) > 0, In this case q*21 = qo21      (13)  
Retailer 2's 2nd period order quantity decisions 
Retailer 2’s 2nd period decisions are made using an identical procedure to Retailer 1, and 
we can obtain the profit-maximizing 2nd period retailer order quantity decision (qo22) as: 
ଶଵ௢ݍ = ௔ି௪మ

ଶ௕ − ௤మమାଷூ
ଶ           (14) 

and the following two cases (following an identical procedure to the previous section). 
Case 1.2 (a): If qo22(14) ≤0, q*22 = 0         (15) 
Case 1.2 (b): If qo22(14) > 0, q*22 = qo22 (14) = ௔ି௪మ

ଶ௕ − ௤మభାଷூ
ଶ     (16) 

 
Combined equilibrium analysis – q21 and q22 decisions 
Since the two retailers are identical in all respects, symmetrical, in Cournot competition 
with each other and, take their decisions simultaneously, we can postulate that their 
equilibrium 2nd period order quantities are equal. There are only two possible equilibria: 
Case (a):  qo21 ≤ 0 and qo22 ≤ 0  In this case, q*21 = q*22 = 0 (from (12) and (14))      (17) Case (b):  qo21>0 and qo22>0  (Case 1.1(b) and Case 1.2(b))   
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In this case, q*21 = ௔ି௪మ
ଶ௕ − ௤మమାଷூ

ଶ   from (13))      (18) 
q*22 = ௔ି௪మ

ଶ௕ − ௤మభାଷூ
ଶ                             (from (16))       (19) 

 Solving (18) and (19) together, we obtain, 
q*21 = q*22 = ௔ି௪మ

ଷ௕ −  (20)          ܫ
 Equation (20) is the equilibrium order quantity decision for Retailer 1 and Retailer 2, in the 
two period Cournot duopoly model with SI allowed between the two selling seasons.  
 
3.1.1 Effect of downstream retailer competition over two periods  
  

In this section we analyze the effect of retailer competition on equilibrium values. 
Figure 3.2 below presents an illustration of this comparison: 

vs.  

Figure 0.2 Illustration of the comparison between  a 2-period Cournot duopoly downstream and a monopoly downstream model. 
 

Table 3.1 presents a comparison of the equilibrium values of our model (two 
competing retailers) with those of Anand et al. (2008) (one retailer).  In the table, all values 
for the downstream monopoly case are referenced from Anand et al. (2008). For ease of 
comparison we express our results in Table 1 using the same nomenclature as theirs Q1 = 
(total purchase quantity in the 1st period) = q11 + q12 + 2I, p1 = (retail price-per-unit in the 
1st period) = a-bq1, q1 = (total sale quantity) = q11+q12, Q2 = (total purchase quantity in the 
2nd period) = q21 + q22, q2 = (total sale quantity in the 2nd period) = q21+q22+2I,  p2=a - bq2 
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(customer retail price in the 2nd period) and (the SI quantity)  I* = 2I, since both retailers 
carry identical SI of I into the 2nd period. We use this convention for all comparison tables in 
this dissertation.  
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Table 0.1 Comparison of equilibrium values between a two period Cournot duopoly and a 
monopoly downstream models depending on the holding cost range (the results in column 2 are 
the opposite for the other side of the holding cost ranges in column 3) 

Quantities compared Result Holding cost range Cournot duopoly down-stream value Monopoly downstream value 
w*1 lower Always 12ܽ − 3ℎ

23  9ܽ − 2ℎ
17  

w*2 higher h< 0.906a 19ܽ + 24ℎ
46  6ܽ + 10ℎ

17  
Πܯଵ +  Πܯଶ lower Always 120ܽଶ − 198ܽℎ + 42ℎଶ

529ܾ  9aଶ − 4ah + 8hଶ
34b  

Q*1 lower h<=0.66a 10ܽ − 14ℎ
23ܾ  13ܽ − 18ℎ

34ܾ  
q*1 higher Always  22ܽ + 6ℎ

69ܾ  4ܽ + ℎ
17ܾ  

Q*2 lower Always 0 3ܽ + 5ℎ
17ܾ  

q*2 lower Always 8(ܽ − 6ℎ)
69ܾ  11ܽ − 10ℎ

34ܾ  
I* lower Always 8(ܽ − 6ℎ)

69ܾ  5(ܽ − 4ℎ)
34ܾ  

Q*1+Q*2 lower Always 10ܽ − 14ℎ
23ܾ  19ܽ − 8ℎ

34ܾ  
p*1 lower Always (47ܽ − 6ℎ)

23  13ܽ − ℎ
17  

p*2 higher  Always 61ܽ + 48ℎ
69  23ܽ + 10ℎ

34  
Πܴଵ +  Πܴଶ lower Always  594ℎଶ − 1164ܽℎ + 442ܽଶ

4761ܾ  155ܽଶ − 118ܽℎ + 304ℎଶ
1156ܾ  

 
From Table 3.1, we see that the manufacturer’s and retailer’s profits are always 

lower across the two selling seasons combined in the Cournot duopoly downstream than in 
the monopoly downstream. We can attribute this to increased double marginalization effect 
due to the retailers needing to compete with one another and maximize their individual 
profits. We observe that the introduction of the Cournot competition leads the 
manufacturer setting a lower wholesale price in the first period and mostly higher (when 
h<0.91a; which mostly holds) wholesale price in the 2nd period, in equilibrium, compares to 
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when he supplies a similar monopoly downstream.  The equilibrium SI quantity set by the 
retailers, in response, is lower.  

We compare the wholesale and retail prices over the two periods combined. In each 
case, the average is a weighted average, weighted by the quantity bought in each period for 
the wholesale price and the quantity sold in the period for the retail price.  

wavg.Cournot = ଵଶ௔ିଷ௛
ଶଷ  (21); wavg. monopoly =  ଼௛మିସ௔௛ାଽ௔మ

ଵଽ௔ି଼  (22).  

Subtracting these two quantities; (21)-(22) yields: ଵ଺଴௛మା଺ଵ௔௛ିଶଵ௔మ 
ଵ଼ସ௛ିସଷ଻௔ (23). 

Since a>>h usually, we ignore the h terms of (23) to obtain: ିଶଵ௔మ
ିସଷ଻௔   > 0 always. Hence we can 

conclude that the Cournot duopoly downstream leads to mostly higher average wholesale 
prices. We compute weighted average retail prices similarly, to obtain:  
pavgCournot =ି(ଶସଵ మାଶ଴ଽସ௔௛ିଷହଽ଴௔మ)

଺ଽ(ଷ଼௔ିଽ )  (24); pavgmonopoly = ଵହଶ௛మାଶସ଻௔௛ିଶ଼଼ మ
ସ଻଺௛ିସ଴଼  (25).  

Subtracting these two quantities, we get (24)-(25) = ଵ଴ଶ଴ଽ଺௛యିହ଻ଶ଴ସଽ௔௛మିହସଷହ మ௛ାଷହସ଻ଽଶ௔య
ଵସ଻଻ଽ଼଴௛మିଵ଼ଽ଴଼଻଺௔௛ାହଷସ଼଼଼௔మ  

(26). Ignoring h terms from equation (26), we get   ଷହସ଻ଽଶ௔య
ହଷସ଼଼଼௔మ>0 always. Thus, we conclude 

that a Cournot duopoly downstream leads to mostly higher equilibrium wholesale and 
retail prices. However, neither of these, higher wholeasale prices set by the manufacturer 
on average across the two periods, or the higher retail prices commanded by either retailer 
over the two periods, leads to either the manufacturers or retailers making a higher profit 
in the presence of downstream retailer competition, compared to a monopoly downstream. 
This is because, the order quantity for both periods combined (Q1+Q2 from Table 1) is 
lower and this offsets the higher wholesale and retail prices commanded by the 
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manufacturer and the retailers respectively, to drag down both their profits compared to 
the monopoly case, in aggregate. 

Next, we check the impact of Cournot competition on Consumer Surplus over two 
selling seasons.  Consumer Surplus is the difference between the total amount the 
consumers are willing to pay for the good and the price they actually pay. Since the 
maximum possible price of the good is the reserve price “a”, the total Consumer Surplus 
over the two periods is given by CS = ଵଶ (ܽ − ଵݍ(ଵ݌ + ቀଵ

ଶቁ (ܽ −  ଶ . Computing Consumerݍ(ଶ݌
Surplus for the two cases compared – Cournot duopoly and Monopoly downstream we 
have:  
CSCournotDuopoly =  ଵଶ଴଺௛మିସ଴ଶ௔௛ି଻଺଴௔మ

ସ଻଺ଵ  (28) and CSMonopoly =ଵ଼ହ௔మିଵ଼଼௔௛ାଵ଴ସ௛మ
ଶଷଵଶ௕  (29).    

Subtracting these two quantities: (28) – (29) yields:  ଶଶଽଷଵଶ଼௛మିଷସଷହ଺௔௛ିଶ଺ଷ଻ మ
ଵଵ଴଴଻ସଷଶ௕ < 0 when 

a>>h, which mostly holds. Thus, we can conclude that the introduction of downstream 
Cournot competition mostly reduces Consumer Surplus.  

In summary, over two selling seasons, both the Manufacturer and downstream 
Cournot competing retailers make lower profit compared to when the downstream is a 
single retailer monopoly. This is due to the presence of downstream retailer competition – 
double marginalization effect.  Consumers do not benefit either, as evidenced by the lower 
Consumer Surplus in the Cournot duopoly case. Strategic Inventory is carried at a finite but 
lower level than the monopoly downstream, by the Cournot duopoly retailers and this 
doesn’t help the retailers make a higher profit in aggregate, than the monopoly 
downstream. 
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3.1.2: Effect of Strategic Inventory over two periods 
 In Table 3.2 we present a comparison of the equilibrium values of our model with a 
static Cournot duopoly model, i.e., a model that does not allow a Strategic Inventory. This 
comparison shows the effect of SI in the presence of a Cournot competing retailer 
downstream. Fig 3.3 is an illustration of this comparison. 

Vs.  
Figure 0.3 Illustration of the comparison between a two-period Cournot duopoly model with SI and a Static Cournot duopoly model 
 
Table 0.2 Comparison of equilibrium values between a two period Cournot duopoly with SI and a static Cournot duopoly (no SI) depending on the holding cost range (for the other side of the holding cost range in column 3, the result in column 2 is the opposite) 

Quantities com-pared Result Holding cost range Cournot duopoly downstream value Static Cournot duopoly value  
w*1 Lower always 12ܽ − 3ℎ

23  a
2 

w*2 Lower h≤a/6 19ܽ + 24ℎ
46  a

2 
Πܯଵ +  Πܯଶ Lower always 120ܽଶ − 198ܽℎ + 42ℎଶ

529ܾ  a2

3b 
Q*1 Higher h≤a/6 10ܽ − 14ℎ

23ܾ  a
3b 

q*1 Higher h≤a/6  22ܽ + 6ℎ
69ܾ  a

3b 
Q*2 Lower always 0 a

3b 
q*2 Lower always 8(ܽ − 6ℎ)

69ܾ  a
3b 

I* Higher always 8(ܽ − 6ℎ)
69ܾ  N/A 

Q*1+Q*2 Lower always 10ܽ − 14ℎ
23ܾ  19a − 8h

34b  
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p*1 Lower always (47ܽ − 6ℎ)
23  2a

3  
p*2 Higher always 61ܽ + 48ℎ

69  2a
3  

Πܴଵ +  Πܴଶ Lower always 594ℎଶ − 1164ܽℎ + 442ܽଶ
4761ܾ  a2

18b 
 

From Table 3.2 we see that the manufacturer and retailer profits are always lower 
across the two selling seasons combined when SI is allowed. We observe that the 
manufacturer mostly sets a lower wholesale price in the first period, and a mostly lower 
wholesale price in the second period, as well, (when h<=a/6; which mostly holds) when SI 
is allowed. SI is carried in equilibrium when it is allowed, compared to a static Cournot 
duopoly downstream where each period is modeled as a one-shot game with no inventory 
allowed to be carried between periods. We compare the wholesale and retail prices over 
the two periods combined. In each case, the average is a weighted average, weighted by the 
quantity bought in each period for the wholesale price and the quantity sold in the period 
for the retail price.  

wavg.CournotSI = ଵଶ௔ିଷ௛
ଶଷ   (30);   wavgstaticCournot =  ௔ଶ (31).  

(30)- (31) yields: ௔ି଺௛
ସ଺ (32). Ignoring the h terms from (32), since a>>h, we get: ௔

ସ଺ >0 always.  
We can hence conclude that the manufacturer mostly sets a higher wholesale price on 
average, over the two selling season, when SI is allowed.  We similarly compute weighted 
average retail prices, to obtain:  pavgCournotSI = ି(ଶସଵଶ మାଶ଴ଽସ௔௛ିଷହଽ଴௔మ)

଺ଽ(ଷ଼௔ିଽ )  (33); pavgstaticCournot = ଶ௔
ଷ  

(34). Subtracting the two terms we computed above, (33)-(34) yields:଺଻ହ௛మି଺ଷଽ௔௛ାଶଶ଴௔మ
ଷଵ଴ହ௛ିଵଷଵଵ௔ .   

Ignoring h terms again. we get ଶଶ଴௔మ
ିଵଷଵଵ <0 always since a > 0.  We can hence conclude that 
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allowing SI leads to lower retail prices on average.  Next, we ascertain the impact of 
introduction of SI in a Cournot duopoly downstream on Consumer Surplus. Computing 
Consumer Surplus for the two cases compared we have:  
CSCournotSI =   ଵଶ଴଺௛మିସ଴ଶ௔௛ି଻଺଴ మ

ସ଻଺ଵ   (35) and CSStaticCournot = ௔మ
ଽ௕ (36).  (35)- (36) yields: 

ଵଶ଴଺௛మିସ଴ଶ௔௛ିଵଶ଼ଽ௔మ
ସ଻଺ଵ௕  (37).  Ignoring h terms in (37) we get: ିଵଶ଼ଽ௔మ

ସ଻଺ଵ  which is <0 always. This 
implies that Consumer Surplus is mostly lower when SI is allowed over two selling seasons.    

In summary, we see that allowing SI under Cournot duopoly downstream over two 
selling seasons does not help any of the SC entities in any way with reduced manufacturer 
profit, reduced retailer profit, and reduced Consumer Surplus.   Though the retailers carry 
SI in equilibrium, and enough of it to not order at all in the 2nd period and sell only the 
carried SI, this strategy is insufficient for them to make a better profit than the static 
Cournot case.  

3.2 Three-period Cournot duopoly model with vertical control and SI carriage between periods 
 

In this section, we present a comparison of a three period Cournot duopoly model and a 
three period model with one manufacturer selling to one retailer with SI carriage allowed 
between periods, using the framework established by Anand et al. (2008). Anand et al. 
(2008) do not provide closed form expressions for the equilibrium decision variable values 
for a three-period model; we derive them here for ease of comparison, using the same 
framework and assumptions established in their study. 

3.2.1 Effect of Cournot competition over three selling seasons 
 

In Table 3.3 we present a comparison of equilibrium manufacturer wholesale prices 
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between the 3-period Cournot duopoly model and a 3-period model with one manufacturer 
supplying to a single retailer monopoly downstream. This yields the effect of Cournot 
duopoly competition over three periods. Fig 3.4 below is an illustration of this comparison. 

 Vs.  

Figure 0.4 Illustration of the comparison between a three-period Cournot duopoly model with SI and a 3-period monopoly downstream model with SI 
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Table 0.3 Comparison of equilibrium values between three period Cournot duopoly with SI and 
monopoly downstream model with SI, depending on the holding cost range (the result in column 
2 is the opposite for the other side of the holding cost range in column 3)  
 

 
 

Quantities com-pared Result Holding cost range Three-period Cournot duo-poly value Monopoly downstream value 
w*1 higher always a ୟ

ଶ-୦
ସ  

w*2 lower always 12a − 3h
23  a 

w*3 lower always  24ℎ + 19ܽ
46  a 

Πܯଵ +  Πܯଶ +  Πܯଷ lower always 792ℎଶ − 126ܽℎ + 1586ܽଶ
4761ܾ  20ܽଶ − 4ܽℎ + ℎଶ

16ܾ  
Q*1 higher always 2ܽ

9b + 2ℎ
3b 2ܽ − ℎ

4ܾ  
q*1 lower always 0 ܽ

4b + ℎ
8b 

Q*2 lower always 44ܽ − 264ℎ
207ܾ  ܽ

ܾ 
q*2 lower always 6ℎ + 22ܽ

69ܾ  2ܽ − 3ℎ
8ܾ  

Q*3 same always 0 0 
q*3 lower always 8ܽ − 48ℎ

69ܾ  ܽ
ܾ 

I*1 higher always 2ܽ
9b + 2ℎ

3b 2ܽ − 3ℎ
8ܾ  

I*2 lower always 8ܽ − 48ℎ
69ܾ  ܽ

ܾ 
p*1 higher always ܽ 6ܽ − ℎ

8  
p*2 lower always 47ܽ − 6ℎ

69  6ܽ + 3ℎ
8  

p*3 higher always 61ܽ + 48ℎ
69  0 

Πܴଵ +  Πܴଶ + Πܴଷ lower always - ଼ଵହସ௛మାଵ଺ସ଻଺௔௛ାଵ଼ଽ଼௔మ
ଵସଶ଼ଷ௕  19ℎଶ − 36ܽℎ − 20ܽଶ

64ܾ  



 

52 
 

From Table 3.3 we see that the manufacturer profits and retailer profits are lower in 
a Cournot duopoly downstream with SI allowed, compared to a monopoly downstream, 
over three selling seasons.  This is similar to the result obtained in Section 3.1 over two 
selling seasons, further bolstering the evidence that double marginalization erodes profits 
in the presence of downstream Cournot competition, irrespective of the number of selling 
seasons. 

 We observe that the manufacturer sets a higher wholesale price in the first period 
and lower in the two subsequent ones in a Cournot duopoly downstream compared to a 
monopoly downstream. SI is carried at a higher level, from the 1st to the 2nd period and is 
carried at a lower level from the 2nd to the 3rd period.  

We compare the average wholesale and retail prices over the three periods 
combined. wavg. 3PDCournotSI = - ଷଽ଺௛మି଺ଷ௔௛ା଻ଽଷ௔మ

ଵସସଽ௛ିଵ଴ଷହ௔ (39); wavg3PDMonopolySI = ି(௛మିସ௔௛ାଶ଴௔మ)
ସ௛ିଶସ௔  (40). 

(39)- (40) yields:  ି(ଵଷହ యିଶଽଶହ௔௛మିଶ଼ସଷ଺௛௔మାଵ଺ య)
ହ଻ଽ଺ మିଷ଼ଽଵ଺௔௛ାଶସ଼ସ௔మ  (41). Ignoring the h terms from (41) 

since a>>h, we see that (41) <0 always. 
Hence we conclude that the manufacturer mostly sets a lower wholesale price on 

average, over the three selling seasons, when supplying to a Cournot duopoly downstream 
versus a monopoly over three selling seasons.  

We compute average retail prices similarly to obtain:  

 pavg3PdCournotSI = ଵଵ଻଴௛మାଵଵଽ଻௔௛ି଻଺ଵ௔మ
ଵସସଽ௛ିଵ଴ଷହ (43); pavgstaticCournot = ହ௛మାସ௔௛ିଵଶ௔మ

଼௛ିଵ଺  (44).  
Subtracting the two equations above: (43)-(44) yields:  

−(2115ℎଷ − 9765ܽℎଶ − 3712ܽଶℎ − 244ܽଷ)
11592ℎଶ − 31464ܽℎ + 16560ܽଶ  
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 (45). we observe that (45) > 0, when a>>h, which mostly holds. Thus we can say that retail 
prices are mostly higher in a Cournot duopoly downstream with SI allowed compared to a 
monopoly downstream over three selling seasons.  
Next, we ascertain the impact of Cournot competition on Consumer Surplus over three 
selling seasons. Computing Consumer Surplus for the two cases compared we have: 
CS3PDCournotSI = ଶଷସ଴௛మା(ଷଷଵଶ௔௕ାଶ଼଴଼ )௛ାସଶ଴ଽ௔మ௕ିସ௔మ

ଽହଶଶ௕   (46) and CSMonopoly = ହ௛మିସ௔௛ାସ௔మ
଺ସ௕  (47).    

Subtracting the two equations above, (46)-(47) yields:  
(ହଵ଴଻ହ௛మା(ଵ଴ହଽ଼ସ௔௕ାଵ଴଼ଽ଴଴௔௛ାଵଷସ଺଼ మ௕ିଵଽଵ଻ଶ௔మ

ଷ଴ସ଻଴ସ௕ (48) 
We see readily that (48) is < 0 when a>>h, which mostly holds. This implies that, Consumer 
Surplus is mostly lower in a Cournot duopoly downstream with SI allowed over three 
selling seasons.   

In summary, we see that the effect of competition over three selling seasons with SI 
carriage allowed between periods, mirrors the results for the two-period case. Like we saw, 
over two selling seasons in Section 3.1, manufacturer and retailer profits are both 
uniformly lower in the presence of a Cournot competing retailer downstream versus a 
monopoly downstream, over three selling seasons. Consumer Surplus is also lower, as in 
the two-selling season model. The retail prices are higher compared to the monopoly 
downstream supply chain, but like in the two-period case, the higher retail prices, fail to 
translate into higher profits for the retailer in aggregate. Average wholesale prices are 
lower in the 3-selling season model with a Cournot duopoly downstream, than the two-
selling season model, where they are higher than the corresponding monopoly downstream 
model with two selling seasons as well. This seems to indicate that, as the number of selling 
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seasons increases, this has a depressive effect on the average wholesale price, with all other 
things being equal. 
 
3.2.2 Effect of Strategic Inventory in a Cournot Competing duopoly 
downstream supply chain over three selling seasons. 
 In Table 3.4, we present a comparison of a three-period model with SI allowed to a 
three-period static model (one-selling season model with no SI allowed, replicated thrice). 
This comparison allows us to get an insight into which of the effects of SI allowance in a 
Cournot duopoly downstream are sustained when the number of selling seasons goes from 
two to three. Figure 3.5 below illustrates this comparison. 

Vs.  
Figure 0.5 Illustration of the comparison between a three period Cournot duopoly model with SI and a Static Cournot duopoly model over three periods 
 
Table 0.4 Comparison of equilibrium values between three period Cournot duopoly with SI and static Cournot duopoly (no SI) depending on the holding cost range (the result in column 2 is the opposite for the other side of the holding cost range in column 3) 
 

Quantities com-pared Result Holding cost range 3-period Cournot duopoly value Static Cournot value 
w*1 higher always a 0.5a 
w*2 lower always 12a − 3h

23  0.5a 
w*3 Lower always 24ℎ + 19ܽ

46  0.5a 
Πܯଵ +  Πܯଶ+  Πܯଷ lower always 792ℎ2 − 126ܽℎ + 1586ܽ2

4761ܾ  a2

3b 
Q*1 lower always 2ܽ

9b + 2ℎ
3b 0.334a

b  
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q*1 lower always 0 0.334a
b  

Q*2 lower always 44ܽ − 264ℎ
207ܾ  a

3b 
q*2 Lower  h≤a/6 6ℎ + 22ܽ

69ܾ  a
3b 

Q*3 lower always 0 a
3b 

q*3 lower Always 8ܽ − 48ℎ
69ܾ  a

3b 
I*1 higher always 2ܽ

9b + 2ℎ
3b 0 

I*2 higher always 8ܽ − 48ℎ
69ܾ  0 

p*1 higher Always ܽ 0.67a 
p*2 lower h≤a/6 47ܽ − 6ℎ

69  0.67a 
p*3 higher Always 61ܽ + 48ℎ

69  0.67a 
Πܴଵ +  Πܴଶ + Πܴଷ lower Always - 8154ℎ2+16476ܽℎ+1898ܽ2

14283ܾ  a2

12b 
                                                       From Table 3.4 we see that both manufacturer and retailer profits are always lower 
in equilibrium when the manufacturer supplies to a Cournot duopoly downstream with SI 
allowed, over three selling seasons compared to a similar downstream where SI is allowed 
Static Cournot duopoly model).   

 We observe that the manufacturer sets a higher wholesale price in the first period 
than the static solution and lower in the two subsequent ones with a Cournot duopoly 
downstream. SI is the higher than the static solution (zero) from 1st to 2nd period and 
higher again than the static solution from the 2nd to 3rd period. We compare the wholesale 
and retail prices over the three periods combined using the average wholesale and retail 
price in both cases. 
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wavg. 3PDCournotSI = - ଷଽ଺௛మି଺ଷ௔௛ା଻ଽଷ௔మ
ଵସସଽ௛ିଵ଴ଷହ௔  (49); wavg3PDStatticCournot = ௔ଶ (50).  

Subtracting these two equations above, (49)-(50) yields: ି(଻ଽଶ௛మାଵଷଶଷ௔௛ାହହଵ௔మ) 
ଶ଼ଽ଼௛ିଶ଴଻଴௔ (51). We see 

that (51) is > 0 when a>>h, which holds in most real-world supply chains. Thus, we 
conclude that the manufacturer mostly sets a higher wholesale prices on average when SI 
carriage is allowed in a supply chain consisting of a manufacturer supplying product to a 
Cournot duopoly downstream of retailers over three seasons, compared to when it is not 
allowed.   
We compute weighted average retail prices similarly, to obtain:   

pavg3PdCournotSI =  ଵଵ଻଴ మାଵଵଽ଻௔௛ି଻଺ଵ௔మ
ଵସସଽ௛ିଵ଴ଷହ (52); pavgstaticCournot =ଶ௔

ଷ (53).  

Subtracting the two equations above, (52)-(53) yields: ଵଵ଻଴ మାଶଷଵ௔௛ି଻ଵ௔మ
ଵସସଽ௛ିଵ଴ଷହ௔ (54). We observe 

that (55) > 0 (when a>>h). We can hence conclude that retail prices are mostly higher in a 
Cournot duopoly downstream with SI allowed compared to a static Cournot duopoly 
downstream (no SI) over three selling seasons.  Next, we ascertain the impact on SI 
allowance in a Cournot duopoly downstream on Consumer Surplus over three selling 
seasons. Computing Consumer Surplus for the two cases compared we have: CS3PDCournotSI =  
ଶଷସ଴௛మା(ଷଷଵଶ௔௕ାଶ଼଴ )௛ାସଶ଴ଽ௔మ௕ିସ௔మ

ଽହଶଶ௕  (56) and CSMonopoly =଴.ଵ଺଻ ௔మ
௕  (57).  

Subtracting the two equations above, (56)-(57) yields:  
(ଵଵ଻଴଴଴଴௛మା(ଵ଺ହ଺଴଴଴௔௕ାଵସ଴ସ଴଴଴௔)௛ାଶଵ଴ସହ଴଴௔మ௕ି଻ଽ଻଴଼଻௔మ

ସ଻଺ଵ଴଴௕   (58).  

We see readily that (59) is <0 always when a>>h, which mostly holds. This implies that, 
Consumer Surplus is mostly lower in a Cournot duopoly downstream with SI allowed, 
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versus a similar Cournot duopoly with no SI, over three selling seasons.   
 In summary, over three selling seasons, the effect of allowing SI carriage in a supply 
chain consisting of a manufacturer supplying to a Cournot duopoly downstream of retailers, 
mirrors the effects observed when the number of selling seasons is two, in Section 3.2. Both 
manufacturer and retailer profits are lower, over three selling seasons when SI is allowed 
than the static one-shot game in each period where no SI carried, as in the two-period case. 
SI is carried in equilibrium, when it is allowed, in the 3 selling season model, both from 
period 1-2 and from period 2-3. However, this does not seem to be enough to confer a 
strategic advantage to the competing downstream retailers, as their profits are consistently 
lower than the static solution. Consumers also do not seem to be benefited (lower 
Consumer Surplus) by allowing SI carriage by downstream retailers. Again, this mirrors 
what is observed in the two-period case, where the consumers are worse-off with SI 
allowed. Average retail prices in the 3-period model are higher than the static solution, 
whereas over two-selling seasons, they are lower, implying that the retailers are able to 
command a higher retail price in the market, on an average, as the number of selling 
seasons increases from two to three. It is remarkable however, that, this does not translate 
into higher retailer profits. 

3.3 Conclusions 
 

In this chapter, we presented a two-period and three-period model of a supply chain, a 
manufacturer supplying to a downstream Cournot duopoly of retailers with SI carrying 
allowed between periods. This problem is formulated as a dynamic game and closed-form 
equilibrium decisions variable values for both the manufacturer and retailers in every 
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period, are derived. 
We find that, the introduction of downstream Cournot duopoly competition of a supply 

chain consisting of one manufacturer supplying identical product to the retailers leads to 
lower profits for both the manufacturer and retailer. This holds, whether the number of 
selling season is two or three. Consumer Surplus is also uniformly lower under 
downstream retailer competition, compared to a downstream monopoly supply chain. This 
implies that the introduction of downstream retailer competition leaves all the SC entities – 
manufacturer, retailer and consumer, worse off, due to the double marginalization effect.  

When we try to deduce the effect of SI carriage under Cournot duopoly competition by 
comparing an SC with Cournot duopoly competition and SI allowed between periods to a 
similar SC with a Cournot duopoly downstream and a static, repeating one-shot game in 
each period with no SI carried, we find again that manufacturer and retailer profits are both 
lower when SI carriage is allowed. This holds whether the number of selling seasons is two 
or three. Consumer Surplus is also lower uniformly over both two and three selling seasons. 
This indicates that allowing SI carriage, in the presence of downstream retailer competition 
does not benefit either the manufacturer or retailer in contrast to what is observed in the 
monopoly downstream case, where the retailer clearly benefits. 

Further investigation is necessary to determine if and how much the effects observed in 
this research with the interaction of Strategic Inventories and competition are an artifact of 
the type of downstream retailer competition chosen to be modeled – Cournot. It would be 
meaningful to examine this system’s behavior under other models of competition like 
Bertrand and Stackelberg (one of the retailers is the leader) to deduce the effect of the 
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mode of competition on SI and other key performance indicators for the manufacturer and 
downstream retailers.   Another logical extension of the study would be to try to generalize 
the results for two and three selling seasons to arbitrary selling season lengths and see if 
and how well the insights derived for two and three selling seasons hold for the “n” period 
case. It would also be valuable to validate empirically some of the observations from this 
paper, and others in this line of research, to see if the insights predicted by game-theoretic 
modeling hold up in the real-world; if yes, how strongly and if not, where the key points of 
divergence are and how that can inform further theoretical model-building in this area. 
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4. COURNOT DUOPOLY MODEL UNDER A 
COMMITMENT CONTRACT   

 In this chapter, we aim to analyze the impact of a “Commitment contract” on Strategic 
Inventory in a one-manufacturer two-retailer supply chain, with the two retailers compet-
ing as a Cournot duopoly. When the manufacturer agrees to use a “Commitment contract” 
he/she is agreeing to set the wholesale prices for both the 1st and 2nd period at the begin-
ning of the 1st period itself. Anand et. al. (2008) use this type of contract in a supply chain 
without downstream retailer competition (one manufacturer supplying to a monopoly 
downstream retailer) and find that a Commitment contract eliminates Strategic Inventory 
carriage. In other words, the Commitment contract ends up being a “strategic tool” for the 
manufacturer to successfully dissuade the downstream retailer from carrying Strategic In-
ventory. One of our objectives here is to see if the same holds when the downstream is a 
Cournot-competing retailer duopoly.  
 

4.1 Two-period Cournot duopoly Model with Commitment con-tract: 
 
The model considered here consists of one manufacturer supplying a product in two 

consecutive selling seasons to two Cournot duopoly retailers at its downstream. The retail-
ers are allowed to carry inventory between periods. The two retailers are identical in all re-
spects. All product is sold at the end of the 2nd period. Figure 4.1 illustrates this model.  
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Figure 0.1 Illustration of two-period Cournot duopoly model under Commitment contract  
 
The business flow in the two periods is as follows:  

Period 1:  
Step 1: The manufacturer announces its 1st period wholesale price (w1) and 2nd period 
wholesale price at the beginning of period 1 
Step 2: Retailer 1 and Retailer 2 simultaneously announce their 1st period order 

quantities, which is the sum of the quantity they want to sell in Period 1 (q11 and 
q12, respectively), and the quantity they want to carry to Period 2, I for each of 
the retailer. Inventories carried to the 2nd period are held at a holding cost of 
h/unit.  

Step 3: The market decides the retail price, p, of each unit of product sold: p (q11+q12) = 
a-b (q11+q12). 
Step 4: Quantities q11 and q12 are sold simultaneously by Retailer 1 and Retailer 2 at the 

price p (q11+q12) per unit and revenues are realized. Inventory I is carried by 
each retailer over to the second period. 

Q22 Q21 

M1 

R2 R1 

M1 

R2 R1 

w1, w2 

Q11 Q12 

q12 q11 q22 q21 

I 
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Period 2: 
Step 1: Retailer 1 and Retailer 2 simultaneously announce their 2nd period order 
quantities (q21 and q22). 
Step 2: The market decides the retail price of each unit of product sold: p (q21+q22+2I) = 
a-b (q21+q22+2I).  
Step3: Quantities (q21 + I) and (q22 + I) are sold simultaneously by Retailer 1 and 

Retailer 2 at the price p (q21+q22 + 2I) per unit and revenues are realized. 
We now determine the profit-maximizing selling quantity in both periods and the 

wholesale prices of the manufacturer in both periods. We start with the 2nd period retailer 
decisions. 

Nomenclature (all variables are non-negative): i: period (i=1,2,3) , j: retailer (i=1,2),  
a: model parameter reservation price (a>0) , b: model parameter (b>0, a>>b), qij: buying 
quantity of retailer j in period i, to be sold in the same period (i.e., excluding SI) I: inventory 
carried by each retailer from Period 1 to Period 2, wi: wholesale price set by the 
manufacturer in period i, h: holding cost of each retailer to carry one unit of inventory from 
Period 1 to Period 2, ПRij: profit of retailer j in period I, ПMi: profit of the manufacturer in 
period i.. Determination of the equilibrium quantities start from the retailer’s decision in 
the second period. The complete work for the determination is shown in the Appendix. 
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4.1.1 Effect of a Cournot duopoly competition on a Commitment 
contract over two periods   
 
 Anand et al. (2008) find that a Commitment contract completely eliminates SI in a 
two-period model with one manufacturer supplying to a single downstream retailer. Under 
a Commitment contract, the manufacturer announces the wholesale price for the 1st and 2nd 
period at the beginning of the 1st period. In this section, we study the effect of this contract 
on SI in the case with downstream retailer competition. The equilibrium decision variable 
values for the manufacturer and retailers under a Commitment contract are as follows: 
w*1 = w*2 =௔

ଶ, q*11 = q*12 = ௔ି௪భ
ଷୠ = ௔

଺ୠ, q*21 = q*22 = 0, I* = ௔ି௪మ
ଷୠ = ௔

଺ୠ  
 In Table 4.1, we present a comparison of the equilibrium decision variable values of 
the Cournot duopoly downstream model under a Commitment contract with those of the 
one-manufacturer, one-retailer model under a Commitment contract. Figure 4.2 below il-
lustrates this comparison. 

Vs.  
Figure 0.2 Illustration of the comparison between a two-period Cournot duopoly with SI under Commitment contract  and a two-period monopoly downstream with SI under Commitment contract  
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Table 0.1 Comparison of equilibrium values between a two period Cournot duopoly with 
Commitment contract and monopoly downstream model with Commitment contract depending 
on the holding cost range (the results in column 2 are the opposite for the other side of the 
holding cost ranges in column 3) 

Quantities compared Result Holding cost range 
Cournot duopoly downstream under a Commitment contract 

Monopoly downstream under a Commitment contract 
w*1 same always ܽ

2 ܽ
2 

w*2 same always ܽ
2 ܽ

2 
Πܯଵ +  Πܯଶ higher always ܽଶ

3ܾ ܽଶ
4ܾ 

Q*1 higher always 2ܽ
3ܾ ܽ

4ܾ 
q*1 higher always ܽ

3ܾ ܽ
4ܾ 

Q*2 lower always 0 ܽ
4ܾ 

q*2 higher always ܽ
3ܾ ܽ

4ܾ 
I* higher always ܽ

3ܾ 0 
Q*1+Q*2 higher always 2ܽ

3ܾ ܽ
2ܾ 

p*1 lower always 2ܽ
3  3ܽ

4  
p*2 lower Always 2ܽ

3  3ܽ
4  

Πܴଵ +  Πܴଶ lower always ܽଶ
18ܾ − ܽℎ

6ܾ ܽଶ
8ܾ 

 From Table 4.1, we see that the manufacturer’s profit is always higher and retailer’ 
profits always lower across the two selling seasons when supplying to a Cournot duopoly 
downstream than in a monopoly downstream, under a Commitment contract. The 
introduction of the Cournot competition does not change the manufacturer wholesale price 
decision under a Commitment contract. The average retail price paid by the consumer is 
lower in the Cournot duopoly case in both periods. Next, we check the impact of Cournot 
competition on Consumer Surplus over two selling seasons under a Commitment contract. 
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Consumer Surplus is the difference between the total amount the consumers are willing to 
pay for the good and the price they actually pay. Since the maximum possible price of the 
good is the reserve price “a”, the total Consumer Surplus over the two periods is given by CS 
= ଵଶ (ܽ − ଵݍ(ଵ݌ + ቀଵ

ଶቁ (ܽ −  ଶ . Computing Consumer Surplus for the two cases comparedݍ(ଶ݌
– Cournot duopoly and Monopoly downstream supply chains under a Commitment 
contract, we have:  CSCournotDuopoly =  ௔మ

ଽ௕ (1) and CSMonopoly =ଷ௔మ
ଵ଺௕ (2). From (1) and (2) above, 

we see that (1) < (2) always, i.e., the consumer surplus in a Cournot duopoly downstream is 
less under a Commitment contract, compared to a monopoly downstream under the same 
contractual structure. 

In summary, over the two selling seasons, the manufacturer ends up with an 
advantage, making a higher profit under a Commitment contract with downstream retailer 
competition, than compared to supplying to a monopoly downstream under the same 
contract. The retailers, while competing as a Cournot duopoly, are not able to use the 
relative advantage that comes from a Commitment contract –i.e., knowing the 2nd period 
wholesale price before-hand to buy product and carry inventory strategically from the 1st 
period  to the 2nd to make a higher profit, as they are, when the downstream. The consumer 
also seems to be disadvantaged more with the introduction of downstream Cournot 
competition under a Commitment contract. This can be attributed to increased double-
marginalization effect. Strategic Inventory is carried at a finite (and hence) higher level 
under a Commitment contract when the downstream is a Cournot duopoly rather than a 
monopoly.  
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4.1.2   Commitment contract vs. dynamic contract in the presence of Cournot 
duopoly Competition 
 In Table 4.2, we present a comparison of the equilibrium values of our model with dynamic 
two-period model with a Cournot duopoly downstream (without a commitment contract). 
This comparison shows the effect of a Commitment contract on SI with a Cournot 
competing retailer downstream.  Fig. 4.3 illustrates this comparison. 

Vs.  
Figure 0.3 Illustration of the comparison between a two-period Cournot duopoly model with SI under a Commitment contract and a two-period Dynamic Cournot duopoly model with SI. 
 
Table 0.2 Comparison of equilibrium values between a two period Cournot duopoly with 
Commitment contract and a Dynamic two-period Cournot duopoly model depending on the holding cost range (the results in column 2 are the opposite for the other side of the holding cost ranges in column 3) 

Quantities compared Result Holding cost range 
2-period Cournot duo-poly model under a Commitment contract 

Dynamic 2-period Cournot duopoly model 

w*1 lower h≤ ௔
଺ ܽ

2 12ܽ − 3ℎ
23  

w*2 lower always ܽ
2 19ܽ + 24ℎ

46  
Πܯଵ +  Πܯଶ higher always ܽଶ

3b 120ܽଶ − 198ܽℎ + 42ℎଶ
529ܾ  

Q*1 higher always 2ܽ
3ܾ 10ܽ − 14ℎ

23ܾ  
q*1 higher always 2ܽ

3ܾ  22ܽ + 6ℎ
69ܾ  

Q*2 same always 0 0 
q*2 higher always ܽ

3ܾ 8(ܽ − 6ℎ)
69ܾ  

I* higher always ܽ
3ܾ 8(ܽ − 6ℎ)

69ܾ  
Q*1+Q*2 higher always 2ܽ

3ܾ 10ܽ − 14ℎ
23ܾ  
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p*1 lower h≤95a/18 2ܽ
3  (47ܽ − 6ℎ)

23  
p*2 lower always 2ܽ

3  61ܽ + 48ℎ
69  

Πܴଵ +  Πܴଶ lower always ܽଶ
18ܾ − ܽℎ

6ܾ 594ℎଶ − 1164ܽℎ + 442ܽଶ
4761ܾ  

 
From Table 4.2 we see that manufacturer makes a higher profit, and retailers, lower, 

under a Commitment contract. We observe that the manufacturer mostly sets a lower 
wholesale price in the first period (when h≤ ௔

଺ ; which mostly holds) and lower wholesale 
price in the second period, as well, when supplying under a Commitment contract versus 
without to a Cournot duopoly of retailers with SI allowed.  SI is carried at a higher level 
under a Commitment contract, implying that the Commitment contract is not effective in 
dissuading (or completely eliminating as in the monopoly downstream case (Anand et al. 
2008)) strategic inventory carriage in the presence of downstream retailer competition. 

We compare the wholesale price over the two periods combined. In each case, the 
average is a weighted average, weighted by the quantity bought in each period i.e.:   

wavg.CommitmentCournot = ௔ଶ   (3);   wavg.DynamicCournot = ଵଶ௔ିଷ
ଶଷ       (4)  

Comparing (3) and (4), we can write (3) < (4) always and hence conclude that the average 
equilibrium manufacturer wholesale prices are lower under a Commitment contract than a 
Dynamic contract, when the downstream is a competing Cournot duopoly of retailers. 
We similarly compute weighted average retail prices, to obtain:  
pavg CommitmentCournot = ଶ௔

ଷ  (5); pavgDynamicCournot = pavgCournot =ି(ଶସଵ మାଶ଴ଽସ௔௛ିଷହଽ଴௔మ)
଺ଽ(ଷ଼௔ିଽ଴௛)   (6) 

Subtracting the two terms we computed above, (5)-(6) yields:ି଼଴ସ௛మା଺ଽ଻௔௛ା଺ଵସ௔మ
ଶ଴଻଴௛ି଼଻ସ .   
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Ignoring h terms, we get ି଺ଵସ మ
ି଼଻ସ௔ >0 always since a > 0.  We can hence conclude that the 

consumers pay a higher price on average, over the two selling seasons under a 
Commitment contract in the presence of downstream Cournot competition. 
Next, we ascertain the impact of introduction of SI in a Cournot duopoly downstream on 
Consumer Surplus. Computing Consumer Surplus for the two cases compared we have:  
CSCommitmentCourot = ଶ௔మ

ଽ௕  (35) and CSDynamicCournot =   ଵଶ଴଺ మିସ଴ଶ௔௛ି଻଺଴௔మ
ସ଻଺ଵ௕  (36).  (35) - (36) yields: 

ିସ଴ଶ௛మାଵଷସ௔௛ା଺଴଺ మ
ଵହ଼଻௕  (37). Ignoring h terms in (38) we get: ଺଴଺௔మ

ଵହ଼଻௕ which is >0 always. We hence 
conclude that Consumer Surplus is higher under a Commitment contract compared to a 
Dynamic two-period ordering model with SI allowed between periods, in a Cournot 
duopoly downstream.  

The manufacturer makes a higher profit and retailers lower under a Commitment 
contract compared a Dynamic contract in the presence of downstream Cournot duopoly 
competition. Consumers benefit under a Commitment contract vs. Dynamic contract since 
consumer surplus is higher under a Commitment contract.  
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4.2 Conclusions  
 

In this chapter, we have presented a two-period model of a manufacturer supplying 
identical product to a Cournot duopoly downstream of retailers under a “Commitment 
contract” regime, where the manufacturer quotes the wholesale price for both periods, at 
the beginning of the 1st period itself. We derive closed-form equilibrium values for all 
decision variables using game-theoretic modeling.   

We find, over the two selling seasons, the manufacturer ends up with an advantage, 
making a higher profit under a Commitment contract with downstream retailer 
competition, than compared to supplying to a monopoly downstream under the same 
contract. The retailers, while competing as a Cournot duopoly, are not able to use the 
relative advantage that comes from a Commitment contract – i.e.,, knowing the 2nd period 
wholesale price before-hand, to buy product and carry inventory strategically from the 1st 
period  to the 2nd to make a higher profit, as they are, when the downstream. The consumer 
also seems to be disadvantaged more with the introduction of downstream Cournot 
competition under a Commitment contract. This can be attributed to increased double-
marginalization effect. Strategic Inventory is carried at a finite (and hence) higher level 
under a Commitment contract when the downstream is a Cournot duopoly rather than a 
monopoly. When we compare a manufacturer supplying to a Cournot duopoly downstream 
of retailers, with, and without a Commitment contract (dynamic ordering), we see that the 
consumer benefits under a Commitment contract, and that, consumer surplus is higher. The 
manufacturer makes a higher profit and retailers lower, under a Commitment contract over 
two selling seasons in the presence of downstream retailer competition. In summary, over 
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two selling seasons, the manufacturer benefits under a commitment contract and the 
retailers are at a disadvantage. 

Development of contracts that are more effective than a Commitment contract  in 
coordinating this supply chain – increasing consumer surplus and further increasing 
manufacturer and retailer profits can be explored using the results presented in this work. 
It would also be interesting to run empirical studies in real-world supply chains to validate 
if and how much the insights developed by this kind of game-theoretic modeling hold in a 
real-world supply chain setting. 
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 5. CONCLUSIONS AND FUTURE WORK 
 In Chapter three, we presented a two-period and three-period model of one 
manufacturer supplying identical product to a Cournot duopoly of retailers with SI carrying 
allowed between periods. We formulated this problem as a dynamic game and derived 
closed-form equilibrium decisions variable values for both the manufacturer and retailers 
in every period. In Chapter four, we presented two and three period Cournot duopoly 
downstream models with SI, under a “Commitment contract” where the manufacturer 
commits to the wholesale price for every selling season, at the beginning of the first. 

We find that, the introduction of Cournot duopoly competition in the downstream of a 
supply chain consisting of one manufacturer supplying identical product to the retailers 
leads to lower profits for both the manufacturer and retailer. This holds, whether the 
number of selling season is two or three. Consumer Surplus is also uniformly lower under 
downstream retailer competition, compared to a downstream monopoly supply chain. This 
implies that the introduction of competition leaves all the SC entities – manufacturer, 
retailer and consumer, worse off, due to the double marginalization effect.  

When we try to deduce the effect of SI carriage under Cournot duopoly competition, by 
comparing an SC with Cournot duopoly competition and SI allowed between periods, to a 
similar SC with a Cournot duopoly downstream and a static, repeating, one-shot game in 
each period, with no SI carried – we find again that manufacturer and retailer profits are 
both lower when SI carriage is allowed. This holds whether the number of selling seasons is 
two or three. Consumer Surplus is also lower uniformly over both two and three selling 
seasons. This indicates that allowing SI carriage, in the presence of downstream retailer 
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competition does not benefit either the manufacturer or retailer in stark contrast to what is 
observed in the monopoly downstream case, where the retailer clearly benefits. 

Under a Commitment contract, over two selling seasons, as we see in Chapter 4, the 
manufacturer ends up with an advantage, making a higher profit with downstream retailer 
competition, than compared to supplying to a monopoly downstream under the same 
contract. The retailers, while competing as a Cournot duopoly, are not able to use the 
relative advantage that comes from a Commitment contract – i.e., knowing the 2nd period 
wholesale price before-hand, to buy product and carry inventory strategically from the 1st 
period to the 2nd to make a higher profit, as they are, when the downstream is a single 
retailer monopoly. The consumer also seems to be disadvantaged more with the 
introduction of Cournot competition under a Commitment contract. This can be attributed 
to increased double-marginalization effect. Strategic Inventory is carried at a finite (and 
hence) higher level under a Commitment contract when the downstream is a Cournot 
duopoly rather than a monopoly.  

When we compare a manufacturer supplying to a Cournot duopoly downstream of 
retailers, with, and without a Commitment contract (dynamic ordering), we see that the 
manufacturer, retailers and consumer all benefit under a Commitment contract in the 
presence of downstream Cournot competition. The manufacturer and retailer make higher 
profits under a Commitment contract compared a Dynamic contract in the presence of 
downstream Cournot duopoly competition. However, this profit for the retailers is less than 
what they would make, if the downstream was a single retailer monopoly under the same 
Commitment contract. So, we can say that, though the retailers still benefit under a 
Commitment contract under downstream Cournot competition, the magnitude of benefit is 
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diminished by the presence of competition. Consumers benefit under a Commitment 
contract vs. Dynamic contract since consumer surplus is higher under a Commitment 
contract.  

We see from the previous sections that, under a commitment contract (compared to 
dynamic ordering) in the presence of downstream Cournot competing retailers with SI 
allowed, the manufacturer is benefitted, making a higher profit than dynamic ordering. This 
is a counter-intuitive result since one would expect the manufacturer to make a lesser 
profit in equilibrium under a commitment contract, since he/she locks him/her self up to 
the 2nd period wholesale price decision at the beginning of the 1st period itself, and does not 
afford him/her self the opportunity to quote a 2nd period wholesale price, in response to 
the manufacturer decisions in the 1st period like total quantity ordered, quantity sold in 1st 
period, quantity carried as Strategic Inventory etc. We however see such counter-intuitive 
findings in closely related literature. For example, Anand et al. (2008) argue that the whole 
idea of “Strategic Inventory” being carried in equilibrium, at a finite holding cost h/unit, 
being a drain on channel profits, is counter-intuitive, and it is inexplicable why SI will be 
carried, when the traditional reasons for inventory carriage are absent, and the retailer has 
an opportunity to buy product again in the 2nd period. However, they then explain the 
counter-intuitive result as a strategy by the retailer to hedge against the uncertainty in 2nd 
period wholesale price and further demonstrate it works, since once that uncertainty is 
removed (through a commitment contract) such inventory carrying disappears in 
equilibrium.  
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Further investigation is necessary to determine if and how much the effects ob-
served in this research with the interaction of Strategic Inventories, contractual structures, 
and competition are an artifact of the type of downstream retailer competition chosen to be 
modeled – Cournot. It would be meaningful to examine this system’s behavior under other 
models of competition like Bertrand and Stackelberg (one of the retailers is the leader) to 
deduce the effect of the mode of competition on SI and other key performance indicators 
for the manufacturer and downstream retailers.   Another logical extension of this work 
would be generalizing the results from two and three selling seasons to see if and how well 
the insights derived for two and three selling seasons hold for the “n” period case. Running 
empirical studies in real-world supply chains may validate if and to what extent the in-
sights developed by this kind of game-theoretic modeling hold in a real-world supply chain 
setting. 

 Development of contracts that are more effective than a Commitment contract in 
coordinating this supply chain – increasing consumer surplus and bolstering manufacturer 
and retailer profits would also be a valuable and interesting extension of the research 
presented in this dissertation. 
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APPENDIX 
 

1. Static one-period Cournot duopoly with vertical control 

Nomenclature:  

i: period,  j: retailer, a: model parameter reservation price (a>0) , b: model parameter (b<a), 
q0j= order quantity of retailer j in period 0 (there is only one period in this model and we 
denote that as period 0 for convenience ), wi :wholesale price set by the manufacturer in 
period i (i=1,2), ПRoi : profit of retailer i in period 0 ,ПMo : profit of manufacturer in period 
0.  

 Following is the analysis of the static single period game, using backward induction. 
The game starts with the manufacturer announcing a wholesale price w, to which the 
retailers respond with order quantities of qo1 and qo2 respectively.  In keeping with the 
principle of backward induction, we start with the analysis of the retailers' decisions first. 
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1.1: Retailers' decisions            
Given: (Assumptions) 

 0< w < a, h>0 , a>0       (1-001) 
Decision variables: qo1  
Requirement (constraints) on the decision variables. 

a-b(qo1+qo2)>=0       (1-002) 
q01   >= 0         (1-003)  

We can write the profit-function for retailer 1 as:  
ПRo1 = (a− b(q01+ q02))(q01)− (w q01)      (1-004) 
∂Π R01
∂ q01

= a− b(2q01+ q02)− w       (1-005) 
∂2Π R01

∂ q01
2 = − 2b< 0         (1-006) 

(1-006) shows that (1-004) is concave in qo1. 
Setting (1-005) to zero, we get the profit-maximizing retailer 1 order quantity as: 

qo01 = a− w
2b − q2

2         (1-007) 

Rearranging (1-002), we get: qo1<= a
b− q02     (1-008) 

We need (1-007) to fulfill (1-008) and (1-003) which leads to the following two sub-cases: 
Case 3.21(a): If qo01(1-007)<0, q*01 = 0      (1-009) 

Case 3.21(b): If qo1(1-008) >=0, q*01= a− w
2b − q2

2     (1-010) 
Similarly, for retailer 2 we can write: 
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qo02 = a− w
2b − q01

2         (1-011) 
Case 3.21(c): If qo02(1-011)<0, q*02 = 0      (1-012) 

Case 3.21(d): If qo02(1-011) >=0, q*02= a− w
2b − q01

2    (1-013) 
3.22: Combined equilibrium analysis: 
From (1-009), (1-010), (1-012) and (1-013), we see that there are two possible equilibria 
for the retailers' decisions: 

Case 3.21(s-i): If a− w
2b < 0, q*01 = q*02 = 0      (1-014) 

(1-014) always violates (1-001) and hence it's impossible. 

Case 3.21(s-ii): If a− w
2b ≥ 0,  

q*01=q*02 = a− w
3b         (1-015) 

 
We see that Case 3.21(s-ii), always occurs and hence, there is only one equilibrium for the 

retailer's order quantities i.e., q*01=q*02 = a− w
3b     (1-016) 

 
3.23 Manufacturer's wholesale price decision: 
Given:  
 a> 0, qo1, qo2 >=0       (1-017) 
Decision variable: w 
Requirement (constraints) for the decision variables. 
 0<=w <=a        (1-018) 
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The objective function is to maximize the manufacturer's  period profit given in (1-019) 

 ПM2=  w(2* a− w
3b )       (1-019) 

∂Π M
∂w = 2a

3b − 4w2
3b         (1-020) 

03b
4

22

2 <=w
ΠM2 


         (1-021) 

w* = wo = a
2  > 0         (1-022) 

Summary: 
Manufacturer's wholesale price decision: 

w* = a
2          (1-022) 

Retailers' order quantity decisions: 

q*01=q*02 = a− w
3b = a

6b        (1-023) 
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 2. Two period-model – one manufacturer supplying identical product to two identical Cournot duopoly downstream retailers  
Nomenclature  (all variables are non-negative): 
i: period  
j: retailer 
a: model parameter reservation price (a>0)  
b: model parameter (b>0) 
qij = order quantity of retailer j in period i (i = 1,2; j = 1,2) 
Ij : inventory carried by retailer j from period 1 to period 2 
wi : wholesale price set by the manufacturer in period i (i=1,2) 
h: holding cost of each retailer to carry one unit of inventory from period 1 to period 2 (it is 
assumed that both retailers have the same holding cost) 
 ПRij : profit of retailer j in period I 
ПMi : profit of manufacturer in period i. 
 
We solve this two-period game by backward induction i.e., solving the second period game 
first. Since the two retailers are identical in all respects and have equal holding costs, we 
can say that, in equilibrium, they carry equal amounts of inventory from the 1st period to 
the second. i.e., I1=I2 = I  
Retailer 1's second period decisions            
Given: (Assumptions) 

0< w2< a          (2-1) 
I1, I2≥0,  , h>0          (2-2) 
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a-b (I1+I2) ≥ 0 OR a-2bI ≥0        (2-3) 
Decision variables: q21 
Requirement (constraints) on the decision variables. 

a-b(q21+q22+2I)≥0         (2-4)  
q21   ≥ 0           (2-5)  

We can write the 2nd period profit function for retailer 2 as: 
ПR21 =(ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2I))(ݍଶଵ + (ܫ −  (2-6)     (ଶଵݍଶݓ)
డ௽ோమభ
డ௤మభ = ܽ − ܾ(2qଶଵ + ଶଶݍ + 3I) −  ଶ       (2-7)ݓ

డమ௽ோమభ
డ௤మభమ = −2b < 0          (2-8) 

(2-8) shows that (2-6) is concave with respect to q21 
Setting (2-7) to zero, we get the profit-maximizing 2nd period order quantity for retailer 1 
as: ݍଶଵ௢ = ௔ି௪మ

ଶୠ − ௤మమାଷ୍
ଶ          (2-9) 

We need to check that (2-9) fulfills (2-4) and (2-5)  
Re-arranging (2-4), we get: 
q21≤௔

௕ − ଶଶݍ) + 2I)          (2-10) 
(2-9) can be re-written as: 
ଶଵ௢ݍ  = ( ௔

ଶୠ − ௤మమ
ଶ − (ܫ − (ூ

ଶ + ௪మ
ଶୠ) ≤ ௔

ଶୠ − ଵ
ଶ ଶଶݍ) + 2I) ≤ ௔

௕ − ଶଶݍ) + 2I)   (2-11) 
From (2-11), we can say that (2-9) always fulfills (2-10) and (2-2). 
Next, we only need to check that (2-9) fulfills (2-5), which leads to the following sub-cases 
for the optimal q*21 decision: 
Case 1.1(a): If qo21 (9) ≤0, q*21 = 0         (2-12) 



 

85 
 

Case 1.1(b): If qo21 (9) > 0, q*21 = qo21(9) = ௔ି௪మ
ଶୠ − ௤మమାଷ

ଶ      (2-13) 
 
Retailer 2's 2nd period order quantity decisions 
Given: (Assumptions) 

I1, I2≥0,  0< w2< a, h>0        (2-14) 
a-b (I1+I2) ≥ 0 OR a-2bI ≥0        (2-15) 

Decision variables: q22 
Requirement (constraints) on the decision variables. 

a-b (q21+I1+ q22 +I2) ≥ 0 OR a-b(q21+q22+2I)≥0     (2-16)  
q22   ≥ 0           (2-17)  

We can write the 2nd period profit function for retailer 1 as: 
ПR21 =(ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2I))(ݍଶଶ + (ܫ −  (2-18)     (ଶଶݍଶݓ)
Since retailer 2 is symmetrical to retailer 1, we can use a procedure similar to the one 
employed in Section 1.1 to derive retailer 2's 2nd period profit-maximizing order quantity as 
ଶଶ௢ݍ = ௔ି௪మ

ଶୠ − ௤మభାଷ୍
ଶ           (2-19) 

For (2-19) to fulfill (2-16) and (2-17), we have the following two sub-cases, again, using a 
procedure similar to that used while computing Retailer 1’s decisions. 
Case (a): If qo22(2-19) ≤0, q*22 = 0         (2-20) 
Case (b): If qo22(2-19) > 0, q*22 = qo22 (2-19) = ௔ି௪మ

ଶୠ − ௤మభାଷ୍
ଶ     (2-21) 
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Combined equilibrium analysis – q21 and q22 decisions 
Since the two retailers are identical in all respects, symmetrical, in Cournot competition 
with each other and take their decisions simultaneously, we can postulate that their 
equilibrium 2nd period order quantities are equal. In this case, there are only two possible 
equilibria: 
Case (a):  qo21(2-9) ≤0 AND qo22(2-19) ≤0 (Case 1.1(a) and Case 1.2(a)) 
Here, q*21 = q*22 = 0  (From (2-12) and (2-16)      (2-22) 
Case (b):  qo21(9) >0 AND qo22(19) >0 (Case 1.1(b) and Case 1.2(b)) 
Here, q*21 = ௔ି௪మ

ଶୠ − ௤మమାଷ୍
ଶ  From (2-13)       (2-23) 

q*22 = ௔ି௪మ
ଶୠ − ௤మభାଷ୍

ଶ From (2-21)         (2-24) 
Solving (2-23) and (2-24) together, we obtain, 
q*21 = q*22 = ௔ି௪మ

ଷୠ −  (25-2)          ܫ
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Table 1.1: Summary of 2nd period retailer order quantity decisions 
Case No. Domain Conditions Equivalent Conditions Equilibrium Decision (q*21,q*22) 
S-(a) qo21(2-9) ≤0 AND qo22(2-19) ≤0 ௔ି௪మ

ଷୠ −  0,0 0 ≥ܫ
S-(b) qo21(2-9) >0 AND qo22(2-19) >0 ௔ି௪మ

ଷୠ − ௔ି௪మ 0 ≥ܫ
ଷୠ − ௔ି௪మ ,ܫ

ଷୠ −  ܫ
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2nd period manufacturer wholesale price decisions 
Given: 
 I ≥ 0           (2-26) 
 a-2bI  ≥ 0           (2-27) 
Decision variable: w2 
Requirement (constraints) for the decision variables. 
 0≤w2 ≤a          (2-28) 
The objective function is to maximize the manufacturer's 2nd period profit given in (29) 
 ПM2=   22q+qw 212          (2-29) 
Case (1): a-3bI > w2 
In this portion of the w*2 domain, 
q*21 =  q*22= ௔ି௪మ

ଷୠ −   (From (2-25))     ܫ
Substituting q*21 and q*22 into (2-29) from (2-25) we get: 
ПM2 = (2 ௔ି௪మ

ଷୠ − 2I)(ݓଶ)         (2-30) 
డ௽ெమ
డ௪మ = ଶୟ

ଷୠ − ସ୵మ
ଷୠ − 2I          (2-31) 

03b
4

22

2 <=w
ΠM 2 



          (2-32) 

(2-32)  shows that (2-30) is concave with respect to w2. 
Equating (2-32) to zero, we get the profit-maximizing 2nd period manufacturer wholesale 
price as  
wo2 = ௔ିଷୠ୍

ଶ            (2-33) 
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(2-33) needs to satisfy the constraint (2-28) as well as the domain conditions of  Case 1.4 
(a-3bI>w2 ). 
We see that (2-33) always fulfills the RHS of (2-33) and also fulfills the condition, 
a-3bI > wo2 , as long as wo2>0, which leads to the following sub-cases:  
Case (2-a): If wo2(2-33) ≤0, w*2 = 0         (2-34) 
Case (2-b): If wo2(2-33)>0, w*2 = ௔ିଷୠ୍

ଶ        (2-35) 
 
Case (2): If a-3bI ≤ w2, we see from Table 1.1 that neither retailer orders and w*2 can be set 
at any value such that fulfills (2-28) as well as w2≥a-3bI1 
This leads to the following two-cases for the optimal w*2 decision in this case: 
Case 2(a): If wo2(2-33)≤ 0, w*2 = 0        (2-36) 
Case 2(b): If  wo2(2-33) > 0, w*2 = any w2 that fulfills a-3bI1≤w2≤a     (2-37) 
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Table 1.2: Summary of 2nd period manufacturer wholesale price decisions 
 

 
From Table 1.2, we see that when I≥ ௔

ଷୠ, the equilibrium w*2 decision is always w*2 = 0.  
When I< ௔

ଷୠ, the manufacturer has a choice of either setting any w*2 such that a-3bI1≤w*2≤a 
OR w*2 = ௔ିଷୠ୍

ଶ , when  I< ௔
ଷୠ. 

We postulate that the equilibrium decision in this case will be w*2 = ௔ିଷୠ୍
ଶ , as this 

decision will lead to a higher profit for the manufacturer (both retailers order), versus 
when a-3bI1≤w*2≤a (neither retailer orders), in which case his profit is zero.   This decision 
is consistent with the Cournot conjecture that each entity always acts to maximize its own 
profit. Hence, there are two possible equilibrium values in this case, depending on the I 
value from the 1st period: 
 
Case (s-i): If  ௔

ଷୠ≤I≤ ௔
ଶୠ, w*2 = 0        (2-38) 

Case (s-ii): If I< ௔
ଷୠ, w*2  = ௔ିଷୠ୍

ଶ         (2-39) 
We further note that I is never greater than ௔

ଶୠ (from (2-27)) 
 
 

Case No. Domain Conditions w*2 
1(a) I≥ ௔

ଷୠ 0 
1(b) I< ௔

ଷୠ ܽ − 3bI
2  

2(a) a-3bI ≤ 0 OR I≥ ௔
ଷୠ 0 

2(b) a-3bI>0 OR   I< ௔
ଷୠ Any w*2 such that a-3bI1≤w*2≤a 
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1st period order quantity decisions for retailer 1 
Given: (Assumptions) 
 a, b, h >0           (2-40) 

0≤ w1+h< a           (2-41) 
q12≥0           (2-42) 

Decision variables:    q11,  I 
Requirement (constraints) on the decision variables. 

q11  ≥ 0           (2-43) 
a-b (q11+q12) ≥0         (2-44) 
I1 ≥0            (2-45) 
a-2bI≥0           (2-46 

We can write the 1st period profit function for retailer 1 as: 
ПR11= (ܽ − ଵଵݍ)ܾ + (ଵଵݍ)((ଵଶݍ − ଵଵݍ)ଵݓ + (ܫ − ℎ(47-2)      ܫ 
The 1st period problem for retailer 1 is to set a q11 and I to maximize the sum of 1st and 2nd 
period profits. i.e., retailer 1 needs to maximize: 
ПR11 + ПR12 
There are two possible sub-cases here, based on the 2nd period wholesale price and order 
quantities (which determine 2nd period profits) 

 
Case (1): I< ௔

ଷୠ 
In this case,  from Table 1.2, w*2 = ௔ିଷୠ୍

ଶ  and 
q*21 =q*22 =  ௔ି௪మ

ଷୠ − ௔ =ܫ
଺ୠ − ூ

ଶ        (2-48) 
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So, the 2nd period profit function becomes: 
ПR21  = (a-b( ௔

ଷୠ + )((ܫ ௔
଺ୠ + ூ

ଶ) -(௔ିଷୠ୍
ଶ )*( ௔

଺ୠ − ூ
ଶ) = (ଶୟ

ଷ − )(ܫܾ ௔
଺ୠ + ூ

ଶ) − (௔ିଷୠ୍
ଶ )( ௔

଺ୠ − ூ
ଶ) (2-49) 

Hence, retailer 1's 1st period problem becomes to max: 
ПR11 +ПR21 = (ܽ − ଵଵݍ)ܾ + (ଵଵݍ)((ଵଶݍ − ଵଵݍ)ଵݓ + (ܫ − ℎܫ+ (ଶୟ

ଷ − )(ܫܾ ௔
଺ୠ + ூ

ଶ) − (௔ିଷୠ୍
ଶ )( ௔

଺ୠ −
ூ
ଶ)            (2-50) 
డ(௽ோభభା௽ோమభ)

డ௤భభ = ܽ − 2bqଵଵ − ଵଶݍܾ −  ଵ       (2-51)ݓ
డమ(௽ோభభା௽ோమభ)

డ௤భభమ = −2b          (2-52) 
డ(௽ோభభା௽ோమభ)

డூ = ଵݓ)− + ℎ) + ଶୟ
ଷ − ହୠ

ଶ  (53-2)         ܫ
డమ(௽ோభభା௽ோమభ)

డூమ = ିହୠ
ଶ           (2-54) 

(2-52) and (2-54) show that (2-50) is concave in q11 and I respectively. 
Setting (2-51) and (2-53) to zero respectively, we get the profit-maximizing q11 and I1 
values for retailer 1 as: 
ଵଵ௢ݍ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ           (2-55) 

௢ܫ = ସୟ
ଵହୠ − ଶ

ହୠ ଵݓ) + ℎ)         (2-56) 
 
Re-arranging (44), we get: 
ଵଵݍ ≤ ௔

௕ −  ଵଶ           (2-57)ݍ
 
We observe that: ݍଵଵ௢ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ ≤ ௔

ଶୠ − ௤భమ
ଶ ≤ ଵଵݍ ≤ ௔

௕ −  ଵଶ    (2-58)ݍ
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i.e., (2-55) always fulfills (2-57) and it's hence enough to check that (55) fulfills (43), which 
leads to the following sub-cases for the optimal q*11 decision: 
Case 1(a): If qo11(2-55)≤0, q*11 = 0         (2-59) 
Case 1(b): If qo11(2-55) > 0, q*11 = ݍଵଵ௢ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ      (2-60) 

 
Also, Io1 (2-56) needs to fulfill (2-45) and (2-46). 
we see that Io1(2-56) fulfills (2-45) (using (2-41)). 
Also, we see that 
 Io1(2-57) ≤ ௔

ଷୠ = ହୟ
ଵହୠ.           (2-61) 

Hence Io1(2-57) fulfills all the domain conditions and hence, 
I*1 = Io1(2-57)= ସୟ

ଵହୠ − ଶ
ହୠ ଵݓ) + ℎ)        (2-62) 

 
Case (2): ௔

ଷୠ≤I≤ ௔
ଶୠ 

Neither retailer orders in the 2nd period in this case, though w*2 = 0. 
Hence, the 2nd period retailer 1 profit is only gained from selling the inventory carried from 
the 1st period i.e., ПR21  = (a-2bI)(I) 
Hence, ПR11 + ПR21  = (ܽ − ଵଵݍ)ܾ + (ଵଵݍ)((ଵଶݍ − ଵଵݍ)ଵݓ + (ܫ − ℎܫ+ (a-2bI)(I)  (2-63) 
డ(௽ோభభା௽ோమభ)

డ௤భభ = ܽ − 2bqଵଵ − ଵଶݍܾ −  ଵ       (2-64)ݓ
డమ(௽ோభభା௽ோమభ)

డ௤భభమ = −2b          (2-65) 
డ(௽ோభభା௽ோమభ)

డூ = ଵݓ)− + ℎ) + ܽ − 4bI       (2-66) 
డమ(௽ோభభା௽ோమభ)

డூమ = −4b          (2-67) 
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(2-65) and (2-67) show that (2-63) is concave in q11 and I respectively. 
Setting (2-64) and (2-66) to zero respectively, we get the profit-maximizing q11 and I1 
values for retailer 1 as: 
ଵଵ௢ݍ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ           (2-68) 

௢ܫ = ௔ି(௪భା௛)
ସୠ            (2-69) 

Re-arranging (2-44), we get: 
ଵଵݍ ≤ ௔

௕ −  ଵଶ           (2-70)ݍ
 
We observe that: ݍଵଵ௢ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ ≤ ௔

ଶୠ − ௤భమ
ଶ ≤ ଵଵݍ ≤ ௔

௕ −  ଵଶ    (2-71)ݍ
i.e., (2-68) always fulfills (44) and it's hence enough to check that (2-68) fulfills (2-43), 
which leads to the following sub-cases for the optimal q*11 decision: 
 
Case 2(a): If qo11(68)≤0, q*11 = 0         (2-72) 
Case 2(b): If qo11(68) > 0, q*11 = ݍଵଵ௢ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ       (2-73) 

 
Also, Io1 (69) needs to fulfill (2-45) and (2-46). 
We see that ܫ௢ = ௔ି(௪భା௛)

ସୠ ≤ ௔
ଷୠ ≤ ௔

ଶୠ       (2-74) 
Hence, the domain condition for this case i.e.,  ௔

ଷୠ≤I≤ ௔
ଶୠ, is never satisfied by (69).  So, the 

optimal I* decision is to carry I* = ௔
ଷୠ, which is the minimum value that fulfills the domain 

conditions.            (2-75) 
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Retailer 2's 1st period order quantity decision: 
Since retailer 2 is symmetrical to retailer 1 (exactly identical with same holding cost and 
same amount of inventory carried into the 2nd period), 
We have the following two sub-cases for the optimal q*12 and I* decisions in this case: 
Case (2-1): I < ௔

ଷୠ 
Using a procedure exactly similar to Case 1.5, we can obtain the profit-maximizing qo12 and 
Io values for this case as: 

ݍ ଵଶ
௢ = ௔ି௪భ

ଶୠ − ௤భభ
ଶ           (2-76) 

௢ܫ  = ସୟ
ଵହୠ − ଶ

ହୠ ଵݓ) + ℎ)         (2-77) 
And the following 2 cases for the optimal q*12 decisions: 
Case 2-1(a): If qo12(76)≤0, q*12 = 0         (2-78) 
Case 2-1(b): If qo12(76) > 0, q*12 = ݍଵଶ௢ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ      (2-79) 

and that  I* =  ܫ௢ = ସୟ
ଵହୠ − ଶ

ହୠ ଵݓ) + ℎ)       (2-80) 
 
Case (2-2): I1≥ ௔

ଷୠ 
In this case, again from symmetry to Case 1.61, we can derive the following results: 
ଵଶ௢ݍ = ௔ି௪భ

ଶୠ − ௤భభ
ଶ           (2-81) 

 
We have the following two sub-cases for the optimal q*12 decision: 
Case 2-2(a): If qo12(81)≤0, q*12 = 0         (2-82) 
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Case 2-2(b): If qo12(81) > 0, q*12 = ݍଵଶ௢ = ௔ି௪భ
ଶୠ − ௤భమ

ଶ      (2-83) 
and  I* = ௔

ଷୠ           (2-84) 
 
Combined Equilibrium Analysis 
Solving Case 1(a) and 2-1(a) together, we get: 
q*11 = q*12 = 0 when ݍଵଵ௢ = ௔ି௪భ

ଶୠ − ௤భమ
ଶ ≤0 and ݍଵଶ௢ = ௔ି௪భ

ଶୠ − ௤భభ
ଶ ≤0 

i.e., q*11 = q*12 = 0 when ௔ି௪భ
ଶୠ ≤ 0OR w1≥a        (2-85) 

However, this directly contradicts (41), which is a given condition and hence this case is 
impossible. 
We can similarly conclude that the combination of Cases 1.52(a) and 1.62(a) is impossible. 
Solving   cases 1(b) and 2-1(b) together (1st period retailer 1 and retailer 2 decisions 
respectively), we get: 
q*11 = q*12 =௔ି௪భ

ଷୠ  when ݍଵଵ௢ = ௔ି௪భ
ଶୠ − ௤భమ

ଶ >0 AND ݍଵଶ௢ = ௔ି௪భ
ଶୠ − ௤భభ

ଶ >0 
i.e., q*11 = q*12 =௔ି௪భ

ଷୠ when ௔ି௪భ
ଷୠ > 0 or w1 < a,, which we know from (1.52), always holds.  

(2-86) 
The combination of Case 2(b) and Case 2-2(b) also yields the same result i.e. 
q*11 = q*12 = ௔ି௪భ

ଷୠ           (2-87) 
Hence, the only possible equilibrium for 1st period q11 and q12 decisions is 
q*11 = q*12 = ௔ି௪భ

ଷୠ           (2-88) 
As for the optimal I* decisions, we have the following: 
If  I< ௔

ଷୠ, I* = ܫ௢ = ସୟ
ଵହୠ − ଶ

ହୠ ଵݓ) + ℎ)        (2-89) 
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If  ௔
ଷୠ≤I≤ ௔

ଶୠ, I* = ௔
ଷୠ ௔

ଷୠ ≤ ௔
ଶୠ        (2-90) 

We recall from 2-74) that in the case of   ௔
ଷୠ≤I≤ ௔

ଶୠ, the profit-maximizing Io1 value is below 
the lower bound of the domain. Also, from (2-67), we see that the function is concave and 
hence, we can say that the profit of retailer 1 is strictly decreasing in I, in the interval 
௔

ଷୠ<I≤ ௔
ଶୠ.             (2-91) 

Also, we see from (2-65) and (2-67) that, the profit-maximizing Io1 value in the interval   
I> ௔

ଷୠ, always is < ௔
ଷୠ, and that the profit function for that interval too is concave, hence, we 

know that the profit-function for retailer 1 in the interval (Io1(2-62)≤I≤ ௔
ଷୠ) is also strictly 

decreasing in I.             (2-92) 
Further, we see that the profit functions of the retailers in the two intervals, (2-49) and (2-
59), respectively, yield the same value at I = ௔

ଷୠ,  (when I= ௔
ଷୠ, w*2 = ௔ିଷୠ୍

ଶ =0 and q*21 = q*22 = 
௔ି௪మ

ଷୠ −  .so (2-49) reduces to (2-59) ,(0=ܫ
So, we can see that the profit-function for retailer 1 is continuous at I= ௔

ଷୠ, and we have 
shown that the profit-function is strictly decreasing in the interval (Io1(2-80)≤I≤ ௔

ଷୠ), as well 
as the interval ௔

ଷୠ<I< ௔
ଶୠ. So, we can argue that the profit-maximizing I* decision has to be 

that I* always lies in the interval I< ௔
ଷୠ, since there is no I value that yields a higher profit 

than the profit when I* = Io1(2-80). 
Hence, the optimal I* decision for retailer 1 is I* = Io1 (2-80) = ସୟ

ଵହୠ − ଶ
ହୠ ଵݓ) + ℎ). (2-93) 

Similarly, the optimal I* decision for retailer 2 is also I* = Io (2-80) = ସୟ
ଵହୠ − ଶ

ହୠ ଵݓ) + ℎ) (2-94) 
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1st period manufacturer wholesale price decisions 
Given: 
a, b, > 0            (2-95) 
q11, q12, I ≥0            (2-96) 
Decision variable: w1 
Requirement (constraints) for the decision variables. 
 0≤w1 +h≤a           (2-97) 
The objective of the manufacturer in the 1st period is to maximize the sum of 1st and 2nd 
period profits i.e., maximize: 
 ПM1 + ПM2 = w1(q11+q12+2I*)+w2(q*21+q*22)     (2-98) 
We see from the previous section, equation that there is only 1 possibility for optimal q*11, 
q*12, I*, q*21, q*22, w*2 decisions combined. Hence, we have the following 2 cases for the 
optimal w*1 decision: 
In this case, w*2 = ௔

ଵ଴ + ଷ
ହ ଵݓ) + ℎ), q*21 = q*22 = ௔

ହୠ + ଵ
ହୠ ଵݓ) + ℎ),  

I* = ܫ௢ = ସୟ
ଵହୠ − ଶ

ହୠ ଵݓ) + ℎ); q*11 = q*12 = ௔ି௪భ
ଷୠ ,  I* = ସୟ

ଵହୠ − ଶ
ହୠ ଵݓ) + ℎ) 

Substituting these into (2-98), we have: 
ПM1 + ПM2 =(6*h+a+6*w[1])^2/(150*b)+w[1]*(2*((4*a)/(15*b)-
(2*(h+w[1]))/(5*b))+(2*(a-w[1]))/(3*b)) (2-99) 
డ(௽ெభା௽ெమ)

డ௪భ = − (ଶସ௛ିଽ଺௔ାଵ଼ସ௪భ)
଻ହ௕        (2-100) 

డమ௽ெభ
డ௪భమ = ିଵ଼ସ

଻ହୠ ≤ 0         (2-101) 
(2-101) shows that (2-99) is concave in w1.  Setting (2-100) to zero, we get the profit-
maximizing wo1 for this case as: 
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wo1 =  ଵଶୟିଷ
ଶଷ           (2-102) 

We see that (2-102) is always ≥0 and is always ≤ a 
–> w*1 = wo1 (2-102) =ଵଶୟିଷ୦

ଶଷ        (2-103) 
 
Summary of decision variable values – 2 period model: 
w*1 = =ଵଶୟିଷ୦

ଶଷ  
q*11 = q*12 = ௔ି௪భ

ଷୠ  = ଷ௛ାଵଵ௔
଺ଽ௕  

I* =  ସୟ
ଵହୠ − ଶ

ହୠ ଵݓ) + ℎ)= ସ௔ିଶସ
଺ଽ௕  

w*2 = ଵଽୟାଶ
ସ଺ ; q*21 = q*22 =0 
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3. Three-period model with one-manufacturer supplying to one downstream 
retailer with Strategic Inventory carriage allowed between periods. 

3rd period retailer decisions 
Given: (Assumptions) 
I1, I2≥0,  0< w3< a, h>0         (3-1) 
0<w2<a, 0<w1<a          (3-2) 
a-bI2 ≥0            (3-3) 
a-bI1 ≥0           (3-4) 
q1 , q2 ≥0           (3-5) 
Decision variables: q3 
Requirement (constraints) on the decision variables.  
a- b(q3  + I2)≥0           (3-6)  
q3  ≥ 0            (3-7)  
We can write the 3rd period profit function for the retailer as: 
ПR3 =(ܽ − ଷݍ)ܾ + ଷଵݍ)((ଶܫ + (ଶܫ −  (3-8)       (ଷݍଷݓ)
డ௽ோయ
డ௤య = ଷݍ)2− + ܾ(ଶܫ + ܽ −  ଷ        (3-9)ݓ

డమ௽ோయ
డ௤యమ = −2b           (3-10) 

(3-9) and (3-10) prove that (3-8) is concave in q3. 
Setting (3-9) to zero, we get the profit-maximizing q3 decision as: 
qo3 = ௔ି௪య

ଶୠ −  ଶ          (3-11)ܫ
We now need (3-11) to fulfill the constraints (3-6) and (3-7). 
Rearranging (3-6), we have: q3<௔

௕ −  ଶ.        (3-12)ܫ
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We note that (3-11) readily fulfills the constraint in (3-12). Hence, we have the following 
sub-cases for the optimal q*3 decision: 
Case 7.1(a): If qo3 (3-11)≤0, qo3 = 0        (3-13) 
Case 7.1(b): If qo3(3-11)>0, q*3 = qo3(3-11) = ௔ି௪య

ଶୠ −  ଶ     (3-14)ܫ
3rd period Manufacturer decisions: 
Given: 
 I2 ≥ 0           (3-15) 
 a- bI2  ≥ 0           (3-16) 
 q2 > =0           (3-17) 
Decision variable: w3 
Requirement (constraints) for the decision variables. 
 0≤w3≤a          (3-18) 
The objective function is to maximize the manufacturer's 3rd period profit given in (3-19) 
 ПM2=  ݓଷ(ݍଷ)          (3-19) 
Case (1): a-2bI2 > w3 
In this portion of the w*3 domain, 
q*3= ௔ି௪య

ଶୠ −  ଶ  (From (3-11) )         (3-20)ܫ
Substituting q*3 from (3-11) into (3-20), we get: 
ПM3 = (௔ି௪య

ଶୠ −  (3-21)         (ଷݓ)(ଶܫ
డ௽ெయ
డ௪య = ௔

ଶୠ − ௪య
௕ −  ଶ          (3-22)ܫ

డమ௽ெయ
డ௪యమ = ିଵ

௕ < 0          (3-23) 
(3-23)  shows that (3-21) is concave with respect to w3. 
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Equating (3-22) to zero, we get the profit-maximizing 3rd period manufacturer wholesale 
price as wo3 = ௔ିଶୠ୍మ

ଶ           (3-24) 
We now need that (3-24) fulfills the constraint (3-18) as well as the particular domain 
condition for this case i.e., 0≤w3≤a AND a-2bI2 > w3. 
We observe that a-2bI2 >w3 is always satisfied by wo3(7-024), hence we only need to check 
for the condition 0≤w3≤a.          (3-25) 
This leads to the following two cases for the optimal w*3 decision: 
Case 1(a): If wo3(3-24) ≤0. w*3=wo3 =0         (3-26) 
Case 1(b): If wo3(3-24)>0, w*3 = wo3 = ௔ିଶୠ୍మ

ଶ       (3-27) 
 
Case 2:  a-2bI2 ≤ w3 
In this portion of the w*3 domain, 
q*3= 0             (3-28) 
Substituting q*3 from (3-11) into (3-20), we get: 
ПM3 = 0           (3-29) 
Here it does not matter what the w*3 is set at, since q*3 = 0. 
Hence the optimal w*3 is the max. allowed by the domain conditions i.e., 0≤w3≤a AND  a-
2bI2 . 
→ w*3 = a            (3-30) 
 
Table 2.1: Summary of w*3 decisions 

Case No. Domain Conditions w*3 decision 
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Case 1(a) a-2bI2 > w3   AND ௔ିଶୠ୍మ
ଶ ≤0 0 

Case 1(b) a-2bI2 > w3  AND ௔ିଶୠ୍మ
ଶ ≥0 w*3 = ௔ିଶୠ୍మ

ଶ  
Case 2 a-2bI2 ≤ w3 w*3 = a 

  
From Table 2.1, it is apparent that the manufacturer has a choice in the 3rd period to set the 
wholesale price either in the range a-2bI2 > w3  OR a-2bI2 ≤ w3,  depending on in which part 
of the region, the manufacturer makes a better profit. 
Computing the profit functions at the three wholesale price levels we have: 
*ଷݓ)ଷܯߎ = 0) = 0          (3-31) 
*ଷݓ)ଷܯߎ = ௔ିଶୠ୍మ

ଶ ) = (௔ି௪య
ଶୠ − ସ୍మమ௕మିସ୍మ௔௕ା௔మ =(ଷݓ)(ଶܫ

଼௕      (3-32) 
*ଷݓ)ଷܯߎ = ܽ) =0           (3-33) 
ସ୍మమ௕మିସ୍మ௔௕ା௔మ

଼௕ > 0 
4Iଶଶܾଶ − 4Iଶܾܽ + ܽଶ ≥ 0 
I2 ≥ ସୟୠ±ඥ(ଵ଺ୟమ௕మି(ଵ଺௔మ௕మ))

଼௕మ = ௔௕±ඥ(௔మ௕మି(௔మ௕మ))
ଶ௕మ  

I2 ≥ ௔
ଶୠ 

We see that (3-32) ≥0 if I2 ≥ ௔
ଶୠ. We also know that one of the domain conditions for the 

profit function value in (3-32) to hold is: ௔ିଶୠ୍మ
ଶ ≥0 → I2≤ ௔

ଶୠ 
and a-2bI2>w3 i.e.,   a-2bI2 > ௔ିଶୠ୍మ

ଶ which always holds. 
We see that, at I2= ௔

ଶୠ, which is the only point at which Case 1(b) holds, w*3 reduces to 
w*3 = 0. So, the decisions in Table 2.1 can be reduced to: 
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Table 2.2: Summary of w*3 decisions 
Case No. Domain Conditions w*3 
Case (a) a-2bI2 > w3 w*3 = 0 
Case (b) a-2bI2 ≤ w3 w*3 = a 

  In either case, the profit-function is zero, and hence we can say that w*3 = a is the optimal 
solution, since, with all things being equal, the manufacturer would want to set his 
wholesale price at the higher point.        (3-34) 
 
2nd period retailer decision: 
Given: (Assumptions) 
I1  ≥0             (3-35) 
0< w2< a, h>0           (3-36) 
0<w1<a        `   (3-37) 
a-bI2 ≥0            (3-38) 
q1  ≥0            (3-39) 
Decision variables: q2 , I2 
Requirement (constraints) on the decision variables: 
a-b (q2  + I1)≥0          (3-40)  
q2 ≥ 0            (3-41) 
I2≥0             (3-42) 
a-b(I2) ≥0           (3-43) 
We can write the 2nd period problem for the retailer (to set q*2) as to maximize: 
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ПR2  + ПR3 =(ܽ − ଶݍ)ܾ + ଶݍ)((ଵܫ + (ଵܫ − ଶݍ)(ଶݓ) + (ଶܫ − ℎܫଶ + 0   (3-44) 
డ(௽ோమା௽ோయ)

డொమ = ଶݍ)2− + ܾ(ଵܫ + ܽ −  ଶ       (3-45)ݓ
డమ(௽ோమା௽ோయ)

డொమమ = −2b          (3-46) 
డ(௽ோమା௽ோయ)

డூమ = ଶݓ)− + ℎ)         (3-47) 
డ(௽ோమା௽ோయ)

డூమమ = 0          (3-48) 
(3-46) proves that (3-44) is concave in q2. 
 
Setting (3-45) to zero, we get the profit-maximizing qo2 value as: 
qo2 = ௔ି௪మ

ଶୠ −  ଵ          (3-49)ܫ
We now need that qo2(3-45) fulfill the constraints (3-40) and (3-41). 
Rearranging (3-40) we get: q2≤௔

௕ −  ଵ       (3-50)ܫ
We see that qo2(3-49) readily fulfills (3-50) and hence (3-40).   
For qo2(3-49) to fulfill (3-41),we have the following sub-cases: 
 
Case (a): If qo2(3-49) ≤0, q*2 = 0         (3-51) 
Case (b): If qo2(3-49)>0, q*2 = qo2(3-49) = ௔ି௪మ

ଶୠ −  ଵ     (3-52)ܫ
 
As far as the I*2 decision, we see from (3-47) and (3-48) that the derivative of (3-44) with 
respect to I2 is constant and hence the I*2 can be set at the maximum allowed by the domain 
conditions i.e., (3-47) and (3-48). 
→ I*2 = ௔௕           (3-53) 
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2nd Period Manufacturer Decisions: 
Given: 
 I1≥ 0           (3-54) 
 a- bI1  ≥ 0           (3-55) 
 q1> =0           (3-56) 
Decision variable: w2 
Requirement (constraints) for the decision variables. 
 0≤w2≤a          (3-57) 
The objective function is to maximize the sum of the manufacturer's 2nd and 3rd period 
profit given in (3-58) 
 ПM2  + ПM3 =  ݓଶ(ݍଶ + (ଶܫ +  (3-58)       (ଷݍ)ଷݓ
Case (1a): If  w2≥a-2bI1 
Here, q*2 = 0, I*2 =௔

௕ (and w*3 =a, q*3 = 0) 
hence the manufacturer's problem becomes to maximize: 
ПM2  + ПM3 =  ݓଶ(ݍଶ) + w2(௔ =(ଷݍ)ଷݓ

௕)        (3-59) 
డ(௽ெమା௽ெయ)

డ௪మ = ௔
௕          (3-60)  

డమ(௽ோమା௽ோయ)
డ௪మమ = 0          (3-61) 

From (3-60) and (3-61), we see that the first derivative of (3-59) with respect to w2 is a 
constant. Hence, w*2 here is set at the maximum allowed by the domain conditions i.e., 
w2≥a-2bI1  AND 0≤w2≤a 
So, w*2 = a is the optimal decision here.        (3-62) 
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Case 1(b): If w2<a-2bI1 
Here, q*2 =௔ି௪మ

ଶୠ −  :ଵand hence the manufacturer's problem becomes to maximizeܫ
ПM2  + ПM3 =  ݓଶ(ݍଶ) + w2(௔ି௪మ =(ଷݍ)ଷݓ

ଶୠ −  ଵ)       (3-63)ܫ
డ(௽ெమା௽ெయ)

డ௪మ = (௔ିଶ୵మିଶୠ୍భ)
ଶୠ          (3-64) 

డమ(௽ோమା௽ோయ)
డ௪మమ = − ଵ

௕          (3-65) 
(3-64) and (3-65) prove that (3-63) is concave in w2. 
Setting (3-65) to zero, we get the profit-maximizing wo2 in this case as: 
wo2 = ௔ଶ −  ଵ           (3-66)ܫܾ
Now, we need that wo2(3-66) fulfills the constraint (3-57) as well as the domain condition: 
w2<a-2bI1.  We observe that wo2(3-66) always fulfills  the constant w2≤a-2bI1 . We only need 
to check that wo2(3-66) fulfills the constraint (3-57) . 
From (3-55) we observe that wo2(3-66) is always ≥0 and <=a 
w*2 = wo2(3-66) = = ௔ଶ −  ଵ is the optimal w*2 decision in this area of the w*2 domain (3-67)ܫܾ
Table 2.3: Summary of 2nd period manufacturer wholesale price decision: 

Case No. Domain Conditions w*2 value 
Case 1(a) If  w2≥a-2bI1 w*2 = a 

Case 1(b-i) If w2<a-2bI1   w*2=  ௔ଶ −  ଵܫܾ
 
Whether the manufacturer sets wo2 in the range w2 ≥ a-2bI1 OR w2 < a-2bI1, depends on 
which part of the domain he/she makes a better profit. 
ଶܯߎ + *ݓ)ଷܯߎ = ܽ)= w2(q2) + w3(q3)=a(a/b) = ௔మ

௕       (3-68) 
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ଶܯߎ + *ݓ)ଷܯߎ = ௔
ଶ −           (ଵܫܾ

=w2(q2) + w3(q3)= (௔
ଶ − ଵ)(௔ି௪మܫܾ

ଶୠ − ଵଶܫଵ) = 0.5ܾܫ + ଴.ଵଶହ௔మ
௕ − 0.5aܫଵ   (3-69) 

We know that the max. value of I1 is a/b, since it needs to fulfill a-bI1>=0.  
Substituting I1=a/b in (3-69), we have:  
ଶܯߎ + ଷܯߎ ቀݓ* = ௔

ଶ − ;ଵܫܾ ଵܫ = ௔
௕ቁ = ଴.ଵଶହ௔మ

 ௕       (3-70) 
So, we conclude that (3-68) is always less than (3-69), and hence: 
w*2 = a is the optimal w*2 decision here.        (3-71) 
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1st period retailer decision: 
Given: (Assumptions) 
0<w1<a         `   (3-72) 
Decision variables: q1 . I1 
Requirement (constraints) on the decision variables: 
a- b(q1  + I1)≥0           (3-73)  
q1≥ 0            (3-74) 
a-bI1≥0           (3-75) 
I1 ≥0             (3-76) 
The 1st period problem for the retailer as to maximize: ПR1  + ПR2  + ПR3   
here,  
w*2 = a; q*2 = 0, I*2 =௔

௕; w*3 =a, q*3 = 0 
 ПR1  + ПR2  + ПR3 

=(a-b(q1))(q1)-w1(q1+I1)-hI1 + (a-b(I1))( I1)  - a(௔
௕) – hI2 + (a-b(௔

௕))( ௔௕)    (3-77) 
And  
డ(௽ோభା௽ோమା௽ோయ)

డ௤భ = −2bqଵ + ܽ −  ଵ        (3-78)ݓ
డమ(௽ோభା௽ோమା௽ோయ)

డ௤భమ = −2b         (3-79) 
డ(௽ோభା௽ோమା௽ோయ)

డூభ = −ℎ − 2bIଵ + ܽ −  ଵ       (3-80)ݓ
డమ(௽ோభା௽ோమା௽ோయ)

డூభమ = −2b         (3-81) 
(3-79) and (3-81) prove that (3-78) and (3-80) are concave in q1 and I1 respectively.  
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Setting (3-78) and (3-80) to zero respectively, we get the profit-maximizing q1 and I1 
decisions as: 
→ qo1 = ௔ି௪భ

ଶୠ            (3-82) 
Io1 = ௔ି(௪భା௛)

ଶୠ            (3-83) 
q1(3-82) needs to fulfill (3-73) and (3-74).  We know w1≤a  (from (3-72)).  
So, we can say that (3-82) always fulfills (3-73).  We now check if (3-82) fulfills (3-74). 
Rearranging (3-74) we get:ݍଵ < ௔

௕ −  ଵ       (3-84)ܫ
We now need to check that (3-82) fulfills (3-84) . 
For this, we have the following sub-cases: 
Case (a): If  w1<ܽ − 2bIଵ, q*1 = qo1(3-82) = ௔ି௪భ

ଶୠ       (3-85) 
Case (b): If w1≥ܽ − 2bIଵ, q*1 = qo1(3-82) =ܽ − 2bIଵ     (3-86) 
Next, we check if (3-83) fulfills (3-75) and (3-76). 
We see that (3-75) readily fulfills (3-75) and (3-76) since w1<a always and a>>h 
I*1 = Io1 = ௔ି(௪భା௛)

ଶୠ is the optimal I*1 decision here.      (3-87) 
 
Table 2.4 Summary of 1st period retailer decisions –(q*1): 

Case No. Domain Conditions q*1 decision 
Case 2.5(a) If  w1<ܽ − 2bIଵ q*1 = ௔ି௪భ

ଶୠ  
Case 2.5(b) If w1≥ܽ − 2bIଵ q*1 = ܽ − 2bIଵ 

 



 

111 
 

We know from (3-87) that I*1 = ௔ି(௪భା௛)
ଶୠ . Using this in Case (a) and (b), we see that the 

domain condition of case (a) reduces to h>0, which always holds. Also, we see that, using 
this result, the domain condition for case (b) reduces to h<0, which is infeasible. 
Hence, we conclude that : q*1 = ௔ି௪భ

ଶୠ  is the only optimal q*1 decision in this case   
 
1st  Period Manufacturer Decisions: 
Given: 
 a, b >0           (3-88) 
Decision variable: w1 
Requirement (constraints) for the decision variables. 
 0≤w1≤a-h          (3-89) 
The manufacturer's profit function over the three periods becomes: 
ଵܯߎ + ଶܯߎ + ଷܯߎ = ଵݍ)ଵݓ + (ଵܫ + ଶݍ)ଶݓ + (ଶܫ +  (3-90)    (ଷݍ)ଷݓ
Here, q*1 = ௔ି௪భ

ଶୠ and I*1 = ௔ି(௪భା௛)
ଶୠ , w*2 =a-h, q*2 = 0, I*2 =௔

௕, w*3 =a, q*3 = 0 (From previous 
sections) 
Hence, the manufacturer's 1st period problem becomes: 
ଵܯߎ + ଶܯߎ + ଷܯߎ = ଵ(௔ି௪భݓ

ଶୠ + ௔ି(௪భା௛)
ଶୠ ) + (ܽ − ℎ)(௔

௕)     (3-91) 
డ(௽ெభା௽ெమା௽ெయ)

డ௪భ = ଵ(ିଵݓ
ଶୠ + ିଵ

ଶୠ) + (௔ି௪భ
ଶୠ + ௔ି(௪భା௛)

ଶୠ )     (3-92) 
డ(௽ெభା௽ெమା௽ெయ)

డ௪భమ = ିଶ
௕ <0          (3-93) 

(3-93) provea that (3-91)  is concave in w1. Setting (3-92) to zero, we get the profit- 
maximizing w1 in this case as: 
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w1 = ௔ଶ − ௛
ସ                             (3-94) 

since a>>h, we can say that w1(3-94) ≥0. We also observe that w1(3-94) fulfills the RHS of 
(3-95) 
Hence w*1 = ௔ଶ − ௛

ସ    is the optimal w*1 decision. 
 
SUMMARY – Anand's three period model: 
1st period: 

w*1 = ௔ଶ − ௛
ସ; q*1 = ௔ି௪భ

ଶୠ = ௔ି(ೌ
మି೓

ర)
ଶୠ = ௔

ସୠ + ௛
଼ୠ;  I*1 = ௔ି(௪భା௛)

ଶୠ  
2nd period: 
w*2 =a, q*2 = 0, I*2 =௔

௕ 
3rd period: 
w*3 =a, q*3 = 0  
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4. Three period Cournot duopoly Model 
Key Assumption: Inventory is carried only one period forward. 
three period Game Structure: 
1st period 

 manufacturer announces w1 
 retailers announce q11, q12 and I1 (each) 
 sell q11, q12, carry I1 to period 2 

2nd period: 
 manufacturer announces w2 
 retailers announce q21, q22, I2. (each) 
 sell q21 + I1, q22 + I1 respectively. 
 Carry I2 to the 3rd period. 

3rd period: 
 manufacturer announces w3 
  retailers announce q31, q32 respectively. 
 sell q31+I2, q32+I2 respectively. 

 
Retailer 1's third period decisions            
Given: (Assumptions) 

0< w2< a          (4-1) 
I1, I2≥0,  , h>0          (4-2) 
a-2bI2 ≥0          (4-3) 
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Decision variables: q21 
Requirement (constraints) on the decision variables. 

a-b(q31+q32+2I2)≥0         (4-4)  
q21   ≥ 0           (4-5)  

We can write the 3rd period profit function for retailer 2 as: 
ПR31 =(ܽ − ଷଵݍ)ܾ + ଷଶݍ + 2Iଶ))(ݍଶଵ + (ଶܫ −  (4-6)     (ଷଵݍଷݓ)
డ௽ோయభ
డ௤యభ = ܽ − ܾ(2qଷଵ + ଷଶݍ + 3Iଶ) −  ଷ       (4-7)ݓ

డమ௽యభ
డ௤మభమ = −2b < 0          (4-8) 

(4-8) shows that (4-6) is concave with respect to q31 
Setting (4-7) to zero, we get the profit-maximizing 3rd period order quantity for retailer 1 
as:  
ଶଵ௢ݍ = ௔ି௪మ

ଶୠ − ௤మమାଷ
ଶ           (4-9) 

(4-7) shows that (4-6) is concave with respect to q31 
Setting (4-6) to zero, we get the profit-maximizing 3rd period order quantity for retailer 1 
as: 
ଷଵ௢ݍ  = ௔ି௪య

ଶୠ − ௤యమାଷ୍మ
ଶ           (4-10) 

We need that (4-8) fulfills (4-3) and (4-4)  
Re-arranging (4-3), we get: 
q31≤௔

௕ − ଷଶݍ) + 2Iଶ)          (4-11) 
(4-8) can be re-written as: 
ଷଵ௢ݍ = ( ௔

ଶୠ − ௤యమ
ଶ − (ଶܫ − (ூమ

ଶ + ௪య
ଶୠ) ≤ ௔

ଶୠ − ଵ
ଶ ଷଶݍ) + 2Iଶ) ≤ ௔

௕ − ଷଶݍ) + 2Iଶ)   (4-12) 
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From (4-12), we can say that (4-9) always fulfills (4-3). 
Next, we only need that (4-9) fulfills (4-4), which leads to the following sub-cases for the 
optimal q*31 decision: 
Case (a) If qo31 (4-9) ≤0, q*31 = 0         (4-13) 
Case (b): If qo31(4-9) > 0, q*31 = qo31(4-9) = ௔ି௪య

ଶୠ − ௤యమାଷ୍మ
ଶ      (4-14 

Retailer 2's 3rd period order quantity decisions 
Given: (Assumptions) 

I1, I2≥0,  0< w3< a, h>0        (4-15) 
0<w2<a, 0<w1<a         (4-16) 
a-2bI2 ≥0           (4-17) 

Decision variables: q32 
Requirement (constraints) on the decision variables. 

a- b(q31+q32+2I2)≥0         (4-18)  
q32  ≥ 0           (4-19)  

We can write the 3rd period profit function for retailer 2 as: 
ПR32 =(ܽ − ଷଵݍ)ܾ + ଷଶݍ + 2Iଶ))(ݍଷଶ + (ଶܫ −  (4-20)     (ଷଶݍଶݓ)
Since retailer 2 is symmetrical to retailer 1, we can use a procedure similar to the one 
employed in Section 3.1 to derive retailer 2's 2nd period profit-maximizing order quantity as 
ଷଶ௢ݍ = ௔ି௪య

ଶୠ − ௤యభାଷ୍మ
ଶ           (4-21) 

For  (4-22) to fulfill (4-16) and (4-17), we have the following two sub-cases, again, using a 
procedure similar to that in Section 3.1 
Case (a) If qo32(4-21) ≤0, q*32 = 0         (4-22) 
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Case (b): If qo32(4-21) > 0, q*32 = qo32(4-21) = ௔ି௪య
ଶୠ − ௤యభାଷ୍మ

ଶ     (4-23) 
Combined equilibrium analysis – q31 and q32 decisions 
Since the two retailers are identical in all respects, symmetrical, in Cournot competition 
with each other and take their decisions simultaneously, we can postulate that their 
equilibrium 3rd period order quantities are equal. In this case, there are only two possible 
equilibria: 
Case (a):  qo31(4-13) ≤0 AND qo32(4-22) ≤0 (Case 3.1(a) and Case 3.2(a)) 
Here, q*31 = q*32 = 0           (4-24) 
Case (b):  qo31(4-13) >0 AND qo32(4-22) >0 (Case 3.1(b) and Case 3.2(b)) 
Here, q*31 = ௔ି௪య

ଶୠ − ௤యమାଷ୍మ
ଶ           (4-25) 

q*32 = ௔ି௪య
ଶୠ − ௤యభାଷ୍మ

ଶ           (4-26) 
Solving (4-26) and (4-27) together, we obtain, 
q*31 = q*32 = ௔ି௪య

ଷୠ −  ଶ         (4-27)ܫ
 
Table 3.1: Summary of 3rd period retailer order quantity decisions 
Case No.  Domain ConditionsEquivalent Conditions Equilibrium Decision (q*31,q*32) 

3.3(a) qo31(4-13) ≤0 AND qo32(4-22) ≤0 
௔ି௪య

ଷୠ −  ଶ≤ 0 0,0ܫ
3.3(b) qo31(4-13) >0 AND qo32(4-22) >0 

௔ି௪య
ଷୠ − ଶ> 0 ௔ି௪యܫ

ଷୠ − ଶ, ௔ି௪యܫ
ଷୠ −  ଶܫ

  3rd period manufacturer wholesale price decisions 
Given: 
 I2 ≥ 0           (4-28) 
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 a-2bI2  ≥ 0           (4-29) 
 q21, q22 > =0           (4-30) 
Decision variable: w3 
Requirement (constraints) for the decision variables. 
 0≤w3≤a          (4-31) 
The objective function is to maximize the manufacturer's 2nd period profit given in (5-033) 
 ПM2=  ݓଷ(ݍଷଵ +  ଷଶ)         (4-32)ݍ
 
Case (1): If a-3bI2 > w3 
In this portion of the w*3 domain,from (4-27), 
q*31 =  q*32= ௔ି௪య

ଷୠ −               ଶܫ
Substituting q*31 and q*32 from (4-27) into (4-32), we get: 
ПM3 = (2 ௔ି௪య

ଷୠ − 2Iଶ)(ݓଷ)         (4-33) 
డ௽ெయ
డ௪య = ଶୟ

ଷୠ − ସ୵య
ଷୠ − 2Iଶ         (4-34) 

డమ௽ெయ
డ௪యమ = ିସ

ଷୠ < 0          (4-35) 
(4-35)  shows that (4-33) is concave with respect to w3. 
Equating (4-34) to zero, we get the profit-maximizing 3rd period manufacturer wholesale 
price as  
wo3 = ௔ିଷୠ୍మ

ଶ            (4-36) 
Now, (4-36) needs to satisfy the constraint (4-31) as well as the domain conditions of  Case 
3.41 (a-3bI2>w3 ) 
We see that (4-36) always fulfills the RHS of (4-31) and also fulfills the domain condition, 
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a-3bI2 > wo3, as long as wo3>0. This leads to the following sub-cases: 
Case 1(a): If wo3(4-36) ≤0, w*3 = 0         (4-37) 
Case 1(b): If wo3(4-37)>0, w*3 = ௔ିଷୠ୍మ

ଶ        (4-38) 
 
Case (2): If a-3bI ≤ w3, q*31 = q*32 = 0 (neither retailer orders) and w*3 can be set at any 
value such that fulfills (4-31) as well as w3≥a-3bI2 
This leads to the following two-cases for the optimal w*3 decision in this case: 
Case 2(a): If wo3(4-36)≤ 0, w*3 = 0        (4-39) 
Case 2(b): If  wo3(4-36) > 0, w*3 = a-3bI2        (4-40) 
 
Table 3.2: Summary of 3rd period manufacturer wholesale price decisions 

Case No. Domain Conditions w*3 
3.41(a) I2≥ ௔

ଷୠ 0 
3.41(b) I2< ௔

ଷୠ ܽ − 3bIଶ
2  

3.42(a) a-3bI2 ≤ 0 OR 
I2≥ ௔

ଷୠ 
0 

3.42(b) a-3bI2>0 OR   
I2< ௔

ଷୠ 
w*3 = a-3bI2 

 
From Table 3.2, we see that when I2≥ ௔

ଷୠ, the equilibrium w*3 decision is always w*3 = 0.  
When I2< ௔

ଷୠ, the manufacturer has a choice of either setting any w*2 = a-3bI2 OR w*3 = 
௔ିଷୠ୍మ

ଶ . 
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The equilibrium decision in this case will be w*3= ௔ିଷୠ୍మ
ଶ as this decision will lead to a higher 

profit for the manufacturer (both retailers order), versus when a-3bI2≤w*3≤a (neither 
retailer orders), in which case his profit is zero.   This decision is consistent with the 
Cournot conjecture that each entity always acts to maximize it's own profit. Hence, there 
are two possible equilibrium values in this case, depending on the I1 value from the 1st 
period: 
Case (i): If ௔

ଷୠ≤I2, w*3= 0         (4-41) 
Case (ii): If I2< ௔

ଷୠ, w*3 =any w*3 that fulfills a-3bI1<=w2<=a    (4-42) 
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2nd period retailer's decisions: 
Given: (Assumptions) 

I1 ≥0, h>0          (4-43) 
0<w2<a,           (4-44) 

 a-2bI1≥0           (4-45) 
Decision variables: q21,  q22, I2 
Requirement (constraints) on the decision variables. 

a- b(q21+q22+2I1)≥0         (4-46)  
q21   ≥ 0           (4-47)  
a-2bI2 ≥0           (4-48) 
I2≥0            (4-49) 

We can write the 2nd period profit function for retailer 1 as: 
ПR21= (ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2Iଵ))(ݍଶଵ + (ଵܫ − ଶଵݍ)ଶݓ + (ଶܫ − ℎܫଶ    (4-50) 
The 1st period problem for retailer 1 is to set a q21 and I2 to maximize the sum of 2nd and 
3rd period profits. i.e., retailer 1 needs to maximize: 
ПR21 + ПR31 
There are two possible sub-cases here, based on the 2nd period wholesale price and order 
quantities (which determine 2nd period profits) 
Case (1): In the part of the I*2 domain - I2< ௔

ଷୠ 
Her,e from (4-41) and (4-42) w*3 = ௔ିଷୠ୍మ

ଶ  and 
q*31 =q*32 =  ௔ି௪య

ଷୠ − ଶ= ௔ܫ
଺ୠ − ூమ

ଶ         (4-51) 
So, the 2nd period profit function becomes: 
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ПR21  = (a-b( ௔
ଷୠ + )((ଶܫ ௔

଺ୠ + ூమ
ଶ ) -(௔ିଷୠ୍మ

ଶ )*( ௔
଺ୠ − ூమ

ଶ ) = (ଶୟ
ଷ − )(ଶܫܾ ௔

଺ୠ + ூమ
ଶ ) − (௔ିଷୠ మ

ଶ )( ௔
଺ୠ − ூమ

ଶ ) 
(4-52) 

Hence, retailer 2nd period problem becomes to max: 
ПR21 +ПR31  = (ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2Iଵ))(ݍଶଵ + (ଵܫ − ଶଵݍ)ଶݓ + (ଶܫ − ℎܫଶ+ (ଶୟ

ଷ − )(ଶܫܾ ௔
଺ୠ + ூమ

ଶ ) −
(௔ିଷ మ

ଶ )( ௔
଺ୠ − ூమ

ଶ )          (4-53) 
డ(௽ோమభା௽ோయభ)

డ௤మభ = ܽ − 2bqଶଵ − ଶଶݍܾ − 3bIଵ −  ଶ      (4-54)ݓ
డమ(௽ோమభା௽ோయభ)

డ௤మభమ = −2b< 0         (4-55) 
డ(௽ோమభା௽ோయభ)

డூమ = ଶݓ)− + ℎ) + (ଶୟ
ଷ ) − ହୠ

ଶ  ଶ         (4-56)ܫ
డమ(௽ோమభା௽ோయభ)

డூమమ = − ହ௕
ଶ < 0         (4-57) 

(4-55) and (4-57) show that (4-53) is concave in q21 and I2 respectively. 
Setting (4-54) and (4-56) to zero respectively, we get the profit-maximizing q21 and I2 
values for retailer 1 as: 
ଶଵ௢ݍ = ௔ି௪మ

ଶୠ − ௤మమାଷ భ
ଶ           (4-58) 

ଶ௢ܫ = ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)         (4-59) 
Similarly, we can write for retailer 2: 
ଶଶ௢ݍ = ௔ି௪మ

ଶୠ − ௤మభାଷ୍భ
ଶ           (4-60) 

ଶ௢ܫ = ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)              (4-61) 
We note that the qo22 values are independent of the Io2 values. 
Solving (4-58) and (4-60) together, we get: 
qo21 = qo22 = ௔ି௪మ

ଷୠ −  ଵ         (4-62)ܫ
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We now need that (4-62) fulfills (4-46) and (4-47) as well as the domain conditions for this 
sub-case i.e., I2< ௔

ଷୠ.   
Rearranging (4-46) we get: 

q21 ≤௔
௕ − ଶଶݍ) + 2Iଵ)         (4-63) 

since q21 = q22, we can write (4-63) as: q21 ≤ ௔
ଶୠ −  ଵ.      (4-64)ܫ

We observe that  (4-62) always fulfills (4-64).   
Now we only need to check that (4-62) fulfills (4-47), which leads to the following two-
cases for the optimal q*21 decision: 
Case 1(a) If qo21 (4-62)≤0, q*21 = 0         (4-65) 
Case 1(b): If qo21>0, q*21 = qo21(4-62) = ௔ି௪మ

ଷୠ −  ଵ      (4-66)ܫ
Further, we need that (4-60) (and (4-61) which is the identical value for retailer 2) fulfills 
(4-48), (4-49) as well as the domain conditions for this case i.e., I2< ௔

ଷୠ. From (4-47) and 
I2< ௔

ଷୠ together, we observe that we need only I2< ௔
ଷୠ and if this condition is satisfied, (4-47) is 

automatically satisfied. 
We further observe that Io2(4-61) is always < ௔

ଷୠ. We only need to check that (4-61) fulfills 
(4-49), which leads to the following sub-cases for the optimal I*2 decision: 
Case 1(c): If Io2(4-61) < 0, then I*2 =0       (4-67) 
 Case 1(d): If  Io2(4-61) > =0, I*2 = ସୟ

ଵହୠ − ଶ
ହୠ ଶݓ) + ℎ)     (4-68) 

We can obtain a similar 4 sub-cases for the q*22 and I*2 decisions of retailer 2, exactly 
identical to those for retailer 1.i.e., 
Case 1(e) If qo22 (4-62)≤0, q*22 = 0         (4-69) 
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Case 1(f): If qo22>0, q*22 = qo22(4-62) = ௔ି௪మ
ଷୠ −  ଵ      (4-70)ܫ

Case 1(g): If Io2(4-61) < 0, then I*2 =0       (4-71) 
Case1(h): If  Io2(4-61) > =0, I*2 = ସୟ

ଵହୠ − ଶ
ହୠ ଶݓ) + ℎ)     (4-72) 

 
Case (2):When I 2 is in the range:  ௔

ଷୠ<I2< ௔
ଶୠ 

In this case, w*3 = 0 (from 5-043) and q*31 = q*32 = 0 (from Table 3.1, Case 3.3(a)). Hence 
the 3rd period profit becomes: 
 ଷଵ= (a-2bI2)(I2)           (4-73)ܴߎ
Hence, retailer 2nd period problem becomes to max: 
ПR21 +ПR31  = (ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2Iଵ))(ݍଶଵ + (ଵܫ − ଶଵݍ)ଶݓ + (ଶܫ − ℎܫଶ+ (a-2bI2)(I2) (4-74) 
డ(௽ோమభା௽ோయభ)

డ௤మభ = ܽ − 2bqଶଵ − ଶଶݍܾ − 3bIଵ −  ଶ      (4-75)ݓ
డమ(௽ோమభା௽ோయభ)

డ௤మభమ = −2ܾ < 0         (4-76) 
డ(௽ோమభା௽ோయభ)

డூమ = ଶݓ)− + ℎ) + ܽ − 4bIଶ         (4-77) 
డమ(௽ோమభା௽ோయభ)

డூమమ = −4ܾ< 0         (4-78) 
(4-76) and (4-78) prove that (4-74) is concave in q21 and I2 respectively. Setting (4-75) and 
(4-77) to zero respectively, we obtain the profit-maximizing q21 and I2 respectively as: 
qo21 = ௔ି௪మ

ଶ௕ − (௤మమାଷூభ)
ଶ          (4-79) 

Io2 = ௔ି(௪మା௛)
ସୠ            (4-80) 

Similarly, we can obtain for retailer 2: 
qo22 = ௔ି௪మ

ଶୠ − (௤మభାଷ భ)
ଶ          (4-81) 
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Io2 = ௔ି(௪మା௛)
ସୠ            (4-82) 

Solving (4-79) and (4-81) together, we get: qo21 = qo22 = ௔ି௪మ
ଷୠ −  ଵ   (4-83)ܫ

We need that (4-80)  (and 4-82) fulfill the constraints (4-48), (4-49) as well as the domain 
condition for this sub-case  ௔

ଷ௕≤I2≤ ௔
ଶ௕.   

We also observe that (4-80) and (4-82) is always ≤ ௔
ଷ௕. 

Hence, I*2 = ௔
ଷୠis the optimal I*2 decision in this case.      (4-84) 

Summary of q*21 and I*2 decisions: 
Two cases for optimal q*21 decisons: 
Case 2-S(a): If ௔ି௪మ

ଷୠ −  ଵ≤0, q*21 = 0  (w2 ≥ a-3bI1)      (4-85)ܫ
Case 2-S(b): If ௔ି௪మ

ଷୠ − ଵ>-0, q*21 =  = ௔ି௪మܫ
ଷୠ −  ଵ  (w2 < a-3bI1)    (4-86)ܫ

I*2  = ௔
ଷୠ always. 

We can similarly obtain the decisions for retailer 2 
Table 3.3: Summary of 2nd period retailer decisions – order quantity (q*21, q*22) 

Case No. Domain Conditions Equilibrium values 
q (S-i) If ௔ି௪మ

ଷୠ −  ଵ≤0 q*21=q*22=0ܫ
q (S-ii) If ௔ି௪మ

ଷୠ − ଵ>0 q*21 = q*22 =௔ି௪మܫ
ଷୠ −

 ଵܫ
 Table 3.4: Summary of 2nd period retailer decisions – Inventory quantities (I*2) 

Case No.  Domain Conditions  Equilibrium values 
I-(S-i) If I2< ௔

ଷୠ AND  ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)< 0 I*2 = 0 
I-(S-ii) If I2< ௔

ଷୠ AND ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)≥ 0 I*2 = ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ) 
I-(S-iii) If ௔

ଷୠ≤I2< ௔
ଶୠ I*2 = ௔

ଷୠ 
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From Table 3.4 above, we can see that, the retailers can set I*2  either in the region I2<  ௔
ଷୠ  

(in which case, the options are: I*2 = 0 OR I*2 = ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)) or in the region  I2≥ ௔
ଷୠ(in 

which case I*2 = ௔
ଷୠ). Which value is chosen ultimately depends on, in which region of the I*2 

domain, the retailers make more profit. We now check the profit values for  each of the I*2 
options  in the following (we use q*21 = q*22=0, for ease of computation, since the q*21 and 
q*22 values are independent of the I*2 values and hence it does not matter at which q*21, 
q*22 level, we compare the  profit-functions to find which I*2 value yields the most profit) 
 ПR21 +ПR31 (I*2 = 0) = (ܽ − ܾ(2Iଵ))(ܫଵ) − (ଶܫ)ଶݓ − ℎܫଶ+ (ଶୟ

ଷ − )(ଶܫܾ ௔
଺ୠ + ூమ

ଶ ) − (௔ିଷୠ୍మ
ଶ )( ௔

଺ୠ − ூమ
ଶ )  

 =  (ܽ − ܾ(2Iଵ))(ܫଵ)+ (ଶୟ
ଷ )( ௔

଺ୠ) − (௔
ଶ)( ௔

଺ୠ)=ܫଵ(ܽ − (ଵܾܫ2 + ௔మ
ଷ଺௕ = ି(଻ଶ௕మூభమିଷ଺ூభ௔௕ି௔మ)

ଷ଺௕  

ଵଶܫ2ܾ = + (଴.଴ଶ଼௔మ)
௕ +                                                                                                                             ଵ         (4-87)ܫܽ

ПR21 +ПR31 (I*2 = ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)) = (ܽ − ܾ(2Iଵ))(ܫଵ) − (ଶܫ)ଶݓ − ℎܫଶ+ (ଶୟ
ଷ − )(ଶܫܾ ௔

଺ୠ + ூమ
ଶ ) −

(௔ିଷୠ୍మ
ଶ )( ௔

଺ୠ − ூమ
ଶ ) 

 = ଵ଴଼௛మା௛(ଶଵ଺௪మି଺ସ௔)ି଺଴଴௕మூభమାଷ଴଴௔௕ூభାଷ௔మି଺ସ௔௪మାଵ଴଼௪మమ
ଷ଴଴௕  

= ଴.ଷ଺௛మ
௕ − ଴.ଶ௔௛

௕ + ଴.଻ଶ௛௪మ
௕ − ଵଶܾܫ2 + ଴.଴ଵ మ

௕ − ଴.ଶଵ௔௪మ
௕ + ଴.ଷ଺௪మమ

௕ +  ଵ    (4-88)ܫܽ
ПR21 +ПR31 (I*2 = ௔

ଷୠ) = (ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2Iଵ))(ݍଶଵ + (ଵܫ − ଶଵݍ)ଶݓ + (ଶܫ − ℎܫଶ+ (a-2bI2)(I2)  

= (ܽ − ܾ(2Iଵ))(ܫଵ) − (ଶܫ)ଶݓ − ℎܫଶ+ (a-2bI2)(I2) = ିଷ௔௛ାଵ଼௕మூభమିଽ௔௕ூభି௔మାଷ௔௪మ
ଽ௕   

=ି଴.ଷଷ௔௛
௕ − ଵଶܾܫ2 + ଴.ଵଵ௔మ

௕ − ଴.ଷଷ௔௪మ
௕ +  ଵ       (4-89)ܫܽ

 The max value of  I1 is I1 = ௔
ଶୠ 

(4-87) at I1 = ௔
ଶୠbecomes:(ଵ.଴ଶ଼௔మ)

௕         (4-90) 
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(4-88) at I1= ௔
ଶୠbecome:଴.ଷ଺௛మ

௕ − (଴.ଶ௔௛)
௕ + (଴.଻ଶ௪మ௛)

௕ + (଴.଴ଵ మ)
௕ − (଴.ଶଵ మ௔)

௕ + (଴.ଷ଺௪మమ)
௕   (4-91) 

(4-89) at I1= ௔
ଶୠbecome: ି(଴.ଷଷ௔௛)

௕ + (଴.ଵଵ మ)
௕ − (଴.ଷଷ௪మ௔)

௕      (4-92) 
since a>>h, and a>w1 we can ignore the terms in (4-90), (4-91) and (4-92), so now, 
(4-90) becomes: (ଵ.଴ଶ మ)

௕          (4-93) 

(4-91) becomes: (଴.଴ଵ௔మ)
௕ − (଴.ଶଵ௪మ௔)

௕ + (଴.ଷ଺௪మమ)
௕ <<ି(଴.ଶଵ௪మ௔)

௕ + (଴.ଷ଻ మ)
௕     (4-94) 

(4-92) becomes: (଴.ଵଵ௔మ)
௕ − (଴.ଷଷ௪మ௔)

௕         (4-95) 
It is clear from (4-93), (4-94) and (4-95), that (4-93) and (4-94) are always greater than (4-
95). 
Hence, we can say that the retailers will always set their I*2 in the range I2< ௔

ଷୠ, in which 
case, the equilibrim I*2 decision is taken as per the following two subcases: 
Table 3.5: Summary of I*2 decisions 

I-(S-i) If  ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)< 
0 

I*2 = 0 

I-(S-ii) If  ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)≥ 
0 

I*2 = ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) +
ℎ) 

 ସୟ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ)< 0 → ଶୟ
ଷ < ଶݓ) + ℎ)→ w2>ଶୟ

ଷ − ℎ 
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Manufacturer's 2nd period decisions: 
Given: 
 I1≥ 0           (4-96) 
 a-2bI1  ≥ 0           (4-97) 
 a-b(q21+q22+2I1)≥0         (4-98) 
 a-b(q21+q22)≥0         (4-99) 
 q21 q22 > =0                      (4-100) 
Decision variable: w2 
Requirement (constraints) for the decision variables. 
 0≤w2≤a         (4-101) 
The objective function is to maximize the sum of manufacturer's 2nd period and 3rd period 
profit profit given in (5-096) 
 ПM2+ПM3=  ݓଶ(ݍଶଵ + ଶଶݍ + 2Iଶ) + ଷଵݍ)ଷݓ +  ଷଶ)    (4-102)ݍ
There are two main subcases here: 
Case (1): If I1 > ௔

ଽୠ + ௛
ଷୠ 

Here, from Tables 3.3, 3.4 and 3.5: 
 q*21 = q*22 = 0, I*2 = 0,         (4-103) 
Substituting q*21, q*22 and I*2 into (5-096) from (5-097) we get: 
ПM2 + ПM3  = w*2(0)+(௔ିଷ௕ூమ

ଶ )(2* ௔ି௪య
ଷ௕ −  ଶ)      (4-104)ܫ

డ(௽ெభା௽ெమ)
డ௪మ = 0         (4-105) 

பమ(ஈ୑భାஈ୑మ)
ப୵మమ = 0         (4-106) 

(4-104) and (4-105) prove that (4-098) is constant with respect to w2. 
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So, w*2 here is set at the maximum permissible by the domain conditions i.e., 
I1 > ௔

ଽୠ + ௛
ଷୠAAND 0≤w2≤a        (4-107)  

→ w*2 = a is the optimal w*2 decision in this case.     (4-108) 
 
Case (2): If I1 ≤ ௔

ଽୠ + ௛
ଷୠ 

Here, from Tables 3.3 and 3.4: 
q*21 = q*22 = ௔ି௪మ

ଷୠ − ଵAND I*2 = ସୟܫ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ), ( I*2 is < ௔
ଷୠ, hence, w*3 = ௔ିଷୠ୍మ

ଶ )  
(4-109) 

Substituting q*21, q*22 and I*2 into (5-096) from (5-116) we get: 
ПM2 + ПM3  =  w*2(q*21+q*22+2I*2) + w*3 (q*31+q*32)    (4-110) 
ПM2 + ПM3  = 2(௔ି௪మ

ଷୠ − ଵܫ + ସୟ
ଵହ − ଶ

ହୠ ଶݓ) + ℎ))(ݓଶ)+  (௔ିଷୠ୍మ
ଶ )(2* (௔ି௪య

ଷୠ −               ((ଶܫ
= 2(௔ି௪మ

ଷୠ − ଵܫ + ସୟ
ଵହ − ଶ

ହୠ ଶݓ) + ℎ))(ݓଶ)+  ((଺௛ା௔ା଺ మ)
ଵ଴ )(2* ௔ି௪య

ଷୠ −  ଶ)            (4-111)ܫ
= 2(௔ି௪మ

ଷୠ − ଵܫ + ସୟ
ଵହ௕ − ଶ

ହୠ ଶݓ) + ℎ))(ݓଶ)+ ((଺௛ା௔ା଺ మ)
ଵ଴ )((଺௛ା௔ା଺௪మ)

ଵହ௕ )   (4-112) 
 
డ(௽ெభା௽ெమ)

డ௪మ = ି(ଶସ௛ିଽ଺௔ାଵ଼ସ మ)
଻ହ௕        (4-113) 

డమ(௽ெభା௽ெమ)
డ௪మమ = ିଵ଼ସ

଻ହ௕          (4-114) 
(4-128) proves that (4-126) is concave in w2.  
Setting (5-127) to zero, we get the profit-maximizing w*2 as : 
wo2 = ଵଶୟିଷ

ଶଷ           (4-115) 
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we now need to check that wo2(4-115) fulfills the domain conditions for this case i.e.,  
I1 ≤ ௔

ଽୠ + ௛
ଷୠ AND 0≤w2≤a 

We see that (4-115) easily fulfills these constraints and hence. 
w*2 = wo2(4-115) = ଵଶୟି

ଶଷ          (4-116) 
Table 3.6: Summary of w*2 decisions: 

Case No. Constraint Optimal w*2 value: 
Case S-I: If I1 ≤ ௔

ଽୠ + ௛
ଷୠ ݓଶ∗ = ଵଶୟିଷ୦

ଶଷ   
Case S-II: I1 > ௔

ଽୠ + ௛
ଷୠ w*2 = a 
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1st period retailer 1 decisions:_ 
Given: (Assumptions) 

h>0          (4-117) 
0< w1< a        ` (4-118) 

Decision variables: q11,q12 . I1 
Requirement (constraints) on the decision variables. 

a- b(q11+q12)≥0        (4-119)  
q1 1  ≥ 0          (4-120)  
a-2bI1 ≥0          (4-121) 
I1≥0           (4-122) 

We can write the 1st period profit function for retailer 1 as: 
ПR11 =(ܽ − ଵଵݍ)ܾ + (ଵଵݍ)((ଵଶݍ − ଵଵݍ)ଵݓ + (ଵܫ − ℎܫଵ + (ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2Iଵ))(ݍଶଵ +  (ଶܫ
ଶଵݍ)ଶݓ−   + (ଶܫ − ℎܫଶ + (ܽ − ଷଵݍ)ܾ + ଷଶݍ + 2Iଶ))(ݍଷଵ + (ଶܫ −  ଷଵ (4-123)ݍଷݓ
The 1st period problem for retailer 1 is to set a q11 and I1 to maximize the sum of 1st, 2nd and 
3rd period profits. i.e., retailer 1 needs to maximize: 
ПR11 + ПR21 +ПR31          (4-124) 
Case (1): If  I1 > ௔

ଽୠ + ௛
ଷୠ 

Here,  q*21 = q*22 = 0, I*2 = 0  , w*2 = a and w*3 = ௔ିଷୠ୍మ
ଶ ,  q*31 = q*32 = 0    (4-125) 

Substituting the values from (4-125) into the retailer profit function over the three periods, 
we get: 
ПR11 + ПR21 +ПR31  =(a-b(q11+q12))(q11) – w1(q11+I1)-hI1 + (a-b(q21+q22+2I1))(q21+I1) - 
w2(q21+I2)-hI2+ (a-b(q31+q32+2I2))(q31+I2) -w3q31     (4-126) 
= (a-b(q11+q12))(q11) – w1(q11+I1)-hI1   + (a-2bI1 )(I1)     (4-127) 
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డ(௽ோభభା௽ோమభା௽ோయభ)
డ௤భభ = ܽ − 2bqଵଵ − ଵଶݍܾ −  ଵ     (4-128)ݓ

డమ(௽ோభభା௽ோమభା௽ோయభ)
డ௤భభమ = −2b< 0       (4-129) 

డ(௽ோభభା௽ோమభା௽ோయభ)
డூభ = ܽ − ℎ − 4bIଵ −  ଵ        (4-130)ݓ

డమ(௽ோభభା௽ோమభା௽ோయభ)
డூభమ = −4b< 0       (4-131) 

(4-129) and (4-131) prove that (4-128) Is concave in q11 and I1 respectively.   
Setting (4-128) and (4-130) to zero, we get the profit-maximizing q11 and I1 as: 
qo11 = ௔ି௪భ

ଶୠ − ௤భమ
ଶ          (4-132) 

Io1 = ௔ି(௪భା௛)
ସୠ           (4-133) 

Similarly, we can write the profit maximizing quantities for retailer 2 as: 
qo12 = ௔ି௪భ

ଶୠ − ௤భభ
ଶ          (4-134) 

Io1 = ௔ି(௪భା௛)
ସୠ           (4-135) 

Solving (4-132) and (4-134) together, we get: 
qo11 = qo12 = ௔ି௪భ

ଷୠ          (4-136) 
and the Io1 decision for either retailer is: Io1 = ௔ି(௪భା௛)

ସୠ     (4-137) 
 
We now need (4-136) and (4-137) to fulfill the constraints (4-119), (4-120), (4-121) and 
(4-122). 
as well as I1 > ௔

ଽୠ + ௛
ଷୠ.         (4-138) 

since the order quantities for the two retailers are equal, (4-119) can be written as: 
a-2bq11 ≥ 0 
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---> q11 ≤ ௔
ଶୠ          (4-139) 

We see that (4-142) always fulfills (4-144). We now only need to check that (5-135) fulfills 
qo11 > 0, which leads to the following sub-cases: 
Case 1(a):  If qo11(4-141) < = 0, q*11 = 0       (4-140) 
Case 1(b): If  qo11(4-141) > 0, q*11 = qo11 = ௔ି௪భ

ଷୠ      (4-141) 
Similarly, we need that (4-142) fulfills the constraints (4-126) and (4-127). 
We observe that (4-142) always fulfills (4-126). Now, for (4-142) to fulfill (4-127), we have 
the following sub-cases: 
Case 1(c): If Io1(4-140)≤0, I*1 = 0        (4-142) 
Case 1(d): If Io1(4-140)>0, I*1 = Io1(5-136)= ௔ି(௪భା௛)

ସୠ     (4-143) 
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Case (2): If  I1 <= ௔
ଽୠ + ௛

ଷୠ 
Here,  q*21 = q*22 = ௔ି௪మ

ଷୠ − ଵ, I*2 = ସୟܫ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ), w*2 =ଵଶୟି
ଶଷ   

and w*3 = ௔ିଷୠ୍మ
ଶ , q*31 = q*32 = 0         (4-144) 

Substituting the values from (4-149) into the retailer profit function over the three periods, 
we get: 
ПR11 + ПR21 +ПR31  =(a-b(q11+q12))(q11) – w1(q11+I1)-hI1 +  
(ଶଽ଻௛మା(ିଶ଴଻௕ூభିହ଼ଶ௔)௛ି଻ହூభ௔௕ାଶଶ మ)

ସ଻଺ଵ௕        (4-145) 
డ(௽ோభభା௽ோమభା௽ோయభ)

డ௤భభ = a – 2bq11- bq12 - w1      (4-146) 
డమ(௽ோభభା௽ோమభା௽ோయభ)

డ௤భభమ = −2b< 0       (4-147) 
డ(௽ோభభା௽ோమభା௽ோయభ)

డூభ = ିଶ଴଻௕௛ି଻ହଽ௔௕
ସ଻଺ଵ௕ −  ଵ       (4-148)ݓ

డమ(௽ோభభା௽ோమభା௽ோయభ)
డூభమ =0        (4-149) 

(4-154) proves that (4-152) is concave in q11 and I1 respectively. 
Setting (4-153) to zero, we get the profit-maximizing q*11 quantity as: 
qo11 = ௔ି௪భ

ଶୠ − ௤భమ
ଶ          (4-150) 

We see from (4-155) and (4-156)  that  (4-155) is constant in I1. Thus, 
ଵoܫ =+ Infinity          (4-151) 
Similarly, we can write for retailer 2: 
qo12 = ௔ି௪భ

ଶୠ − ௤భభ
ଶ          (4-152) 

ଵoܫ  =+ Infinity          (4-153) 
Solving (4-150) and (4-152) together we get: 
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q*11 = q*12 = ௔ି௪భ
ଷୠ          (4-154) 

ଵoܫ = +Infinity         (4-155) 
Now, we need that (4-154) and (4-155) fulfill the constraints (4-119) through (4-122)  as 
well as the domain condition: I1 < ௔

ଽୠ + ௛
ଷୠ       (4-156) 

Since the order quantities for the two retailers are equal, (4-119) can be written as: 
a-2bq11 ≥ 0 
---> q11 ≤ ௔

ଶୠ          (4-157) 
We see that (4-154) always fulfills (4-157). We now only need to check that (4-154) fulfills 
qo11 > 0, which leads to the following sub-cases: 
Case 2(a):  If qo11(4-154) < = 0 , qo12(5-135) < = 0  ,  q*11 = q*12 = 0   (4-158) 
Case 2(b): If qo11(4-154) > 0, q*11 = qo11 = ௔ି௪భ

ଷୠ      (4-159) 
Further, since Io1=+Infinity, the I*1 that fulfills constraints (4-119) through (4-122) is the 
maximum allowed by the domain conditions, i.e., 
I1 ≤ ௔

ଽୠ + ௛
ଷୠ and 0<=I1<= ௔

ଶ௕ 
 I*1 = ௔

ଽୠ + ௛
ଷୠ          (4-160) 

Summary of 1st period retailer q*11 and q*12 decisions: 
Case No. Constraints Optimal Value 

R-S-i ௔ି௪భ
ଷୠ <=0 q*11=q*12 =0 

R-S-ii ௔ି௪భ
ଷୠ >0 q*11 = q* 12 = ௔ି௪భ

ଷୠ  
 
We can further see: ௔ି௪భ

ଷୠ <=0 is infeasible since we know w1<=a, always. So, q*11 = q*12 = 
௔ି௪భ

ଷୠ  is the only optimal w*1 decision.       (4-160a) 
 As for the I*1 decision, the two possible cases are: 
In the range of the I1 domain: I1 > ௔

ଽୠ + ௛
ଷୠ;  
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If ௔ି(௪భା௛)
ସୠ ≤ 0; ∗ଵܫ = 0         (4-161) 

If ௔ି(௪భା௛)
ସୠ > 0; I*1 = ௔ି(௪భା௛)

ସୠ         (4-162) 
And in the range of the I1 domain: I1<= ௔

ଽୠ + ௛
ଷୠ; I*1 = ௔

ଽୠ + ௛
ଷୠ 

The final I*1 value decision depends on, in which range of the I*1 domain, the retailer makes 
a higher profit (over all the 3 selling seasons). 
Note: In the profit functions below: we only check the  I*1 values since the q*11 values are 
independent of the I*1 domain and will not change with the I*1 domain. 
Here: q*21 = q*22 = 0, I*2 = 0  , w*2 = a and w*3 = ௔ିଷୠ୍మ

ଶ ,  q*31 = q*32 = 0 
ПR11 + ПR21 +ПR31  (I*1 = 0) = -(w1+h)I1 + a-b(2I1)(I1) = 0    (4-163) 
ПR11 + ПR21 +ПR31  (I*1 =௔ି(௪భା௛)

ସୠ ) = (ℎ^2/(4 ∗ ܾ) − (ܽ ∗ ℎ)/(4 ∗ ܾ) + [1]ݓ) ∗ ℎ)/(2 ∗ ܾ) +
ℎ/2 − [1]ݓ) ∗ ܽ)/(4 ∗ ܾ) + 4)/2^[1]ݓ ∗ ܾ) + ܽ/2 +  (164-4)    (2/[1]ݓ
When I*1 = ௔

ଽୠ + ௛
ଷୠ; q*21 = q*22 = ௔ି௪మ

ଷୠ − ଵ, I*2 = ସୟܫ
ଵହୠ − ଶ

ହୠ ଶݓ) + ℎ), w*2 =ଵଶୟିଷ୦
ଶଷ  

ПR11 + ПR21 +ПR31  (I*1 = ௔
ଽୠ + ௛

ଷୠ) =  
(ସ଻

଺ଽ − ଶ௛
ଶଷ)( ௛

ଶଷ௕ + ଵଵ௔
଺ଽ௕) + (ଵ଺௛

ଶଷ + ଺ଵ௔
଺ଽ )( ସ௔

଺ଽ − ଼௛
ଶଷ௕) −(109h^2)/1587b+(845 ∗ ܽ ∗ ℎ)/(4761 ∗

ܾ) − [1]ݓ) ∗ ℎ)/(3 ∗ ܾ) − (88 ∗ ܽ^2)/(1587 ∗ ܾ) − [1]ݓ) ∗ ܽ)/(9 ∗ ܾ)        (4-165) 
Comparing profits in (4-163), (4-164) and (4-165), we see that, the retailer makes more 
profit always with I*1 in the range: I1<= ௔

ଽୠ + ௛
ଷୠ; 

 I*1= ௔
ଽୠ + ௛

ଷୠ is the optimal I*1 decision here.     (4-166) 
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1st period manufacturer decisions 
Given: 
a, b, > 0           (4-180) 
q11, q12, I ≥0           (4-181) 
Decision variable: w1 
Requirement (constraints) for the decision variables. 
 0≤w1≤a          (4-182) 
The manufacturer's profit function over the three periods becomes: 
ଵܯߎ + ଶܯߎ + ଷܯߎ = ଵଵݍ)ଵݓ + ଵଶݍ + 2Iଵ) + ଶଵݍ)ଶݓ + ଶଶݍ + 2Iଶ) + ଷଵݍ)ଷݓ +   (ଷଶݍ
           (4-183) 
There is only one optimal combination of w*2, q*21,q*22, I*2, w*3 and q*31,q*32 here 
Which is: I*1= ௔

ଽୠ + ௛
ଷୠ, q*11=q*12 = ௔ି௪భ

ଷୠ , q*21 = q*22 = ௔ି௪మ
ଷୠ − ଵ, I*2 = ସୟܫ

ଵହୠ − ଶ
ହୠ ଶݓ) + ℎ),  

w*2 =ଵଶୟିଷ୦
ଶଷ  ; and w*3 = ௔ିଷୠ୍మ

ଶ , q*31 = q*32 = 0 (4-184) 
substituting (4-184) into (4-183), we get: 

ଵܯߎ + ଶܯߎ + ଷܯߎ = ଵଵݍ)ଵݓ  + ଵଶݍ + 2Iଵ) +  (36ℎଶ + ଵܫ36ܾ) − 12ܽ)ℎ − ଵܾܽܫ144 + 47ܽଶ)
138ܾ  

= 

     (4-184) 
డ(௽ெభା௽ெమ)

డ௪మ =2*(h/(3*b)+a/(9*b))+(2*(a-w[1]))/(3*b)-(2*w[1])/(3*b)  (4-185) 
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பమ(ஈ୑భାஈ୑మ)
ப୵మమ = -4/3b <0         (4-186) 

(4-186) shows that (4-184) is concave in w1. Setting (4-185) to zero, we get the profit-
maximizing wo1 decision as: 
wo1 = ସ௔ାଷ௛

଺           (4-187) 
we readily see that (4-187) is >a, i.e., > than the RHS of the constraint on the w*1 value i.e., 
(4-182). 
Hence, w*1 = a is the optimal w*1 decision here. 
Summary of decisions  - three period Cournot model: 1st period: 
w*1 = a; I*1= ௔

ଽୠ + ௛
ଷୠ, q*11=q*12 = 0 

2nd period: 
q*21 = q*22 = ௔ି௪మ

ଷୠ − ଵ = ଵ଴௔ି଺଴௛ܫ
ଶ଴଻௕  

w*2 =ଵଶୟିଷ
ଶଷ  ; I*2 = ସୟ

ଵହୠ − ଶ
ହୠ ଶݓ) + ℎ) = ସ௔ିଶସ௛

଺ଽ௕  
3rd period: 
w*3 = ௔ିଷୠ୍మ

ଶ , q*31 = q*32 = 0 
* * * 

 



 

138 
 

5. 2 period Cournot duopoly with strategic inventories and vertical control  
Analysis under Commitment contract 
5.1 Retailer 1, 2nd period retailer decisions: 
Given: 
a > 0, b>0, h>0, I>0          (5-001) 
0<w2<=a, 0<w1<=a         (5-002) 
q11 >=0, q12>=0         (5-003 
q22>=0           (5-004) 
a-b(q22+2I)>=0         (5-005) 
a-2bI >=0          (5-006) 
Constraints: 
q21>=0           (5-007) 
a-b(q21+q22+2I)>=0         (5-008) 
The 2nd period profit function for retailer 1 can be written as: 
ПR21 =(ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2I))(ݍଶଵ + (ܫ −  (5-009)    (ଶଵݍଶݓ)
డ௽ோమభ
డ௤మభ = ܽ − ܾ(2qଶଵ + ଶଶݍ + 3I) −  ଶ      (5-010)ݓ

డమ௽ோమభ
డ௤మభమ = −2b < 0         (5-011) 

(5-011) shows that (5-009) is concave with respect to q21 
Setting (5-010) to zero, we get the profit-maximizing 2nd period order quantity for retailer 
1 as: 
ଶଵ௢ݍ  = ௔ି௪మ

ଶୠ − ௤మమାଷ୍
ଶ          (5-012) 

We need that (5-012) fulfills (5-007) and (5-008) . 
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Re-arranging (5-008), we get: 
q21<=௔

௕ − ଶଶݍ) + 2I)         (5-013) 
We observe that (5-012) always fulfills (5-013) and hence (5-008). 
So, we now only need to check that (5-012) fulfills (5-007), which leads to the following 
sub-cases for the optimal qo21 decision: 
Case 4.1(a): If qo21(5-013) <=0, q*21 = 0       (5-014) 
Case 4.1(b): If qo21(5-013) > 0, q*21 = qo21(3-3009) = ௔ି௪మ

ଶୠ − ௤మమାଷ୍
ଶ   (5-015) 

4.2: Retailer 2's 2nd period order quantity decisions 
Given: (Assumptions) 
 I1, I2>=0,  0< w2< a, h>0       (5-016) 
 a-b (I1+I2) >= 0 OR a-2bI >=0      (5-017) 
 a-b(q21+I)>=0         (5-018) 
Decision variables: q22 
Requirement (constraints) on the decision variables. 

a-b (q21+I1+ q22 +I2) >= 0 OR a-b(q21+q22+2I)>=0    (5-019)  
q22   >= 0          (5-020)  

We can write the 2nd period profit function for retailer 1 as: 
ПR21 =(ܽ − ଶଵݍ)ܾ + ଶଶݍ + 2I))(ݍଶଶ + (ܫ −  (5-021)    (ଶଶݍଶݓ)
Since retailer 2 is symmetrical to retailer 1, we can use a procedure similar to the one 
employed in Section 3.11 to derive retailer 2's 2nd period profit-maximizing order quantity 
as ݍଶଶ௢ = ௔ି௪మ

ଶୠ − ௤మభାଷ୍
ଶ         (5-022) 
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For  (5-022) to fulfill (5-019) and (5-020), we have the following two sub-cases, again, using 
a procedure similar to that in Section 4.1 
Case 4.2(a) If qo22(5-022) <=0, q*22 = 0       (5-023) 
Case 4.2(b): If qo22(5-022) > 0, q*22 = qo22(5-022) = ௔ି௪మ

ଶୠ − ௤మభାଷ୍
ଶ   (5-024) 

 
4.3: Combined equilibrium analysis – q21 and q22 decisions 
Since the two retailers are identical in all respects, symmetrical, in Cournot competition 
with each other and take their decisions simultaneously, we can postulate that their 
equilibrium 2nd period order quantities are equal. In this case, there are only two possible 
equilibria: 
Case 4.3 (a):  qo21(5-013) <=0 AND qo22(5-022) <=0 (Case 4.1(a) and Case 4.2(a)) 
Here, q*21 = q*22 = 0  (From (5-014) and (5-023))     (5-025) 
Case 4.3 (b):  qo21(5-013) >0 AND qo22(5-022) >0 (Case 4.1(b) and Case 4.2(b)) 
Here, q*21 = ௔ି௪మ

ଶୠ − ௤మమାଷ୍
ଶ  From (5-014)      (5-026) 

q*22 = ௔ି௪మ
ଶୠ − ௤మభାଷ୍

ଶ From (5-023)        (5-027) 
Solving (5-026) and (5-027) together, we obtain, 
q*21 = q*22 = ௔ି௪మ

ଷୠ −  (028-5)         ܫ
 
Table 1. Summary of 2nd period retailer order quantity decisions 
Case No. Domain Conditions Equivalent Conditions Equilibrium Decision (q*21,q*22) 
4.3(a) qo21(5-013) <=0 AND qo22(5-022) <=0 

௔ି௪మ
ଷୠ −  0,0  0 =>ܫ
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4.3(b) qo21(5-013) >0 AND qo22(5-022) >0 ௔ି௪మ
ଷୠ − ௔ି௪మ  0 <ܫ

ଷୠ −  ,ܫ
 
 ௔ି௪మ

ଷୠ −  ܫ
 Since w1, and w2 are decided at the beginning of the 1st period itself, the next decision we 
analyze, using the backward induction framework are the 1st period order quantity 
decisions for either retailer. 
 
4.4: 1st period retailer 1 order quantity decisions for retailer 1: 
Given: (Assumptions) 
 a, b, h >0           
 (5-029) 
 0<= w1+h< a, 0<=w2<a        (5-030) 
 q12>=0          (5-031) 

a-b(q12) >=0         (5-032) 
a-bI>=0         (5-033) 

Decision variables:    q11,  I 
Requirement (constraints) on the decision variables. 

q11  >= 0          (5-034) 
a-b (q11+q12) >=0        (5-035) 
I >=0           (5-036) 
a-2bI>=0          (5-037) 

We can write the 1st period profit function for retailer 1 as: 
ПR11= (ܽ − ଵଵݍ)ܾ + (ଵଵݍ)((ଵଶݍ − ଵଵݍ)ଵݓ + (ܫ − ℎ(038-5)    ܫ 
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The 1st period problem for retailer 1 is to set a q11 and I to maximize the sum of 1st and 2nd 
period profits. i.e., retailer 1 needs to maximize: 
ПR11 + ПR21           (5-039) 
From Table 1, we can observe that there are two possible sub-cases here, since  ПR21  is 
different depending on whether (q*21,q*22) is given by Case 4.3(a) or Case 4.3(b). Hence, we 
have the following two sub-cases: 
Case 4.4(a): ௔ି௪మ

ଷୠ − OR I>=௔ି௪మ 0 =>ܫ
ଷୠ  

In this case, from Table 1, q*21 = q*22= 0 and hence 
ПR21 = (a-b(2I))(I)          (5-040) 
The sum of 1st and 2nd period profits for retailer 1 hence becomes: 
ПR11 + ПR21  = (ܽ − ଵଵݍ)ܾ + (ଵଵݍ)((ଵଶݍ − ଵଵݍ)ଵݓ + (ܫ − ℎܫ+(a-b(2I))(I)  (5-041) 
డ(௽ோభభା௽ோమభ)

డ௤భభ = ܽ − 2bqଵଵ − ଵଶݍܾ −  ଵ      (5-042)ݓ
          
డమ(௽ோభభା௽ோమభ)

డ௤భభమ = −2b         (5-043) 
డ(௽ோభభା௽ோమభ)

డூ = ଵݓ)− + ℎ) + ܽ − 4bI      (5-044) 
డ(௽ோభభା௽ோమభ)

డூ = −4b         (5-045) 
(5-043) and (5-045) show that (5-041) is concave in q11 and I respectively. 
Setting (5-042) and (5-044) to zero respectively, we get the profit-maximizing q11 and I 
values as: 
qo11 = ௔ି௪భ

ଶୠ − ௤భమ
ଶ          (5-046) 

Io = ௔ି(௪భା௛)
ସୠ           (5-047) 
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We now need (5-046) and (5-047) to fulfill the constraints (5-034) ~ (5-037). 
Rearranging (5-035), we have: 
q11<=௔

௕ −  ଵଶ          (5-048)ݍ
Similarly, from (5-037), we can write: 
I<= ௔

ଶୠ           (5-049) 
We see that (5-046) and (5-047) fulfill (5-048) and (5-049) respectively. 
As such, We have the following four sub-cases for the optimal q*11 decision: 
Case 4.4(a-i): if qo11(5-046) <0, q*11 = 0       (5-050) 
Case 4.4(a-ii): If qo11(5-046)>=0, q*11 = qo11(5-046) = ௔ି௪భ

ଶୠ − ௤భమ
ଶ    (5-051) 

We observe that (5-047) needs to fulfill (5-036) as well as the domain condition for this 
case i.e., 
I>=௔ି௪మ

ଷୠ           (5-052) 
We see if ௔ି௪మ

ଷୠ <=0 → w2>=a. 
From (5-030), we see that w2 is always < a. 
→  ௔ି௪మ

ଷୠ  is always >0          (5-053) 
Also, we see that ௔ି(௪భା௛)

ସୠ <=0 → w1>=a, which again contradicts (5-030). As such, we can 
also write:௔ି(௪భା௛)

ସୠ >0 always       (5- 054) 
From all of the above, we have the following sub-cases for the optimal I* decision: 
Case 4.4(a-iv): If  Io(5-047)<=௔ି௪మ

ଷୠ , I* = ௔ି௪మ
ଷୠ      (5-055) 

Case 4.4(a-v): If Io(5-047) >௔ି௪మ
ଷୠ , I*= Io(5-047) = ௔ି(௪భା௛)

ସୠ    (5-056) 
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Table 2: Summary of Retailer 1's 1st period decisions: 
Case No. Domain Conditions Decision 
4.4(a-i) ௔ି௪భ

ଶୠ − ௤భమ
ଶ <0 q*11 = 0 

4.4(a-ii) ௔ି௪భ
ଶୠ − ௤భమ

ଶ >=0 q*11 = ௔ି௪భ
ଶୠ − ௤భమ

ଶ  
4.4(a-iii)  ௔ି(௪భା௛)

ସୠ <=௔ି௪మ
ଷୠ  I* = ௔ି௪మ

ଷୠ  
4.4(a-iv)   ௔ି(௪భା௛)

ସୠ >௔ି௪మ
ଷୠ  I* = ௔ି(௪భା௛)

ସୠ  
 
Case 4.4(b): I<= ௔ି௪మ

ଷୠ  
In this case, we know from Table 1 that q*21 = q*22 = ௔ି௪మ

ଷୠ −  and henceܫ
ПR21 = (a-b(2*௔ି௪మ

ଷୠ ))(௔ି௪మ
ଷୠ )-w2(௔ି௪మ

ଷୠ −  (057-5)       (ܫ
The sum of 1st and 2nd period profits for retailer 1 hence becomes: 
ПR11 + ПR21  = (ܽ − ଵଵݍ)ܾ + (ଵଵݍ)((ଵଶݍ − ଵଵݍ)ଵݓ + (ܫ − ℎܫ+(௔ି௪మ)మ

ଽୠ +  (058-5) ܫଶݓ
డ(௽ோభభା௽ோమభ)

డ௤భభ = ܽ − 2bqଵଵ − ଵଶݍܾ −  ଵ      (5-059)ݓ
డమ(௽ோభభା௽ோమభ)

డ௤భభమ = −2b         (5-060) 
డ(௽ோభభା௽ோమభ)

డூ = ଵݓ)− + ℎ) +  ଶ       (5-061)ݓ
డ(௽ோభభା௽ோమభ)

డூ = 0         (5-062) 
(5-060) shows that (5-058) is concave in q11 
Setting (5-059) to zero we get the profit-maximizing q11  as: 
qo11 = ௔ି௪భ

ଶୠ − ௤భమ
ଶ          (5-063) 

(5-061) and (5-062) show that  (5-058) increases linearly with increase in   Io. Hence, the 
profit-maximizing Io = + Infinity. 
Io = + Infinity           (5-064) 
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We however need that (5-063) and (5-064) fulfill the conditions (5-034)~(5-037).  We see 
readily that (5-063) always fulfills (5-035). Hence, we only need to check that (5-063) 
fulfills (5-034), which leads to the following two cases for the optimal q*11 decision: 
Case 4.4(b-i): if qo11(5-063) <0, q*11 = 0       (5-065) 
Case 4.4(b-ii): If qo11(5-063)>=0, q*11 = qo11(5-063) = ௔ି௪భ

ଶୠ − ௤భమ
ଶ    (5-066) 

The optimal I* decision is the max. allowed by the domain conditions i.e., 
I >=0  AND I<= ௔

ଶୠAND I<= ௔ି௪మ
ଷୠ   

→ I* =  ௔ି௪మ
ଷୠ          (5-067)  

In summary, retailer 1's 1st period decisions can be written as: 
q*11 decisions: 
Case 4.5-S(i): If ௔ି௪భ

ଶୠ − ௤భమ
ଶ <=0, q*11= 0     (5-068) 

 Case 4.5-S(ii): If  ௔ି௪భ
ଶୠ − ௤భమ

ଶ >0, q*11 = ௔ି௪భ
ଶୠ − ௤భమ

ଶ     (5-069) 
 I* decisions: 
 If I>=௔ି௪మ

ଷୠ  AND ௔ି(௪భା௛)
ସୠ <=௔ି௪మ

ଷୠ , I* = ௔ି௪మ
ଷୠ      (5-070) 

 If I>=௔ି௪మ
ଷୠ  AND ௔ି(௪భା௛)

ସୠ >௔ି௪మ
ଷୠ , I* = ௔ି(௪భା௛)

ସୠ     (5-071) 
 If I<௔ି௪మ

ଷୠ , I*=௔ି௪మ
ଷୠ         (5-072) 

We observe that:  ௔ି(௪భା௛)
ସୠ <=௔ି௪మ

ଷୠ  → 4w2-3w1<=a+3h     (5-073) 
We know from (5-030) that:   
0<=w2<a          (5-074) 
0<=w1<=a         (5-075) 
4*(5-075) – 3*(5-074) yields 
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4w2-3w1<=a+3h, which now always holds, since (5-074) and (5-075) are given conditions. 
→  ௔ି(௪భା௛)

ସୠ <=௔ି௪మ
ଷୠ  holds always        (5-076) 

Thus, we can say that ௔ି(௪భା௛)
ସୠ >௔ି௪మ

ଷୠ  is impossible and hence (5-071) is impossible. 
This leads to the fact that I* = ௔ି௪మ

ଷୠ is the only profit-maximizing I* decision that holds 
always, and hence, this is the only I* decision possible.     (5-077) 
 
4.5 Retailer 2's 1st period decisions: 
From symmetry to section 4.4, we can write: 

Case 4.5-S(i): If ௔ି௪భ
ଶୠ − ௤భభ

ଶ <=0, q*12= 0     (5-078) 
 Case 4.5-S(ii): If  ௔ି௪భ

ଶୠ − ௤భభ
ଶ >0, q*12 = ௔ି௪భ

ଶୠ − ௤భభ
ଶ     (5-079) 

 and I* = ௔ି௪మ
ଷୠ          (5-080) 

4.6: Combined equilibrium analysis - 1st period retailer decisions: 
From (5-068) and (5-078), we can write: if ௔ି௪భ

ଶୠ <=0, q*11 = q*12 = 0   (5-081) 
However, we see that, ௔ି௪భ

ଶୠ <=0 → a<=w1       (5-082) 
From (5-030), we can see that (5-082) is impossible and hence the only possible q*11, q*12 
decision pair is: (From (5-069) and (5-079)) 
q*11 = q*12 = ௔ି௪భ

ଷୠ          (5-083) 
and the only possible I* decision for either retailer is I* = ௔ି௪మ

ଷୠ    (5-084) 
Substituting these back into Table 1, we see that the only optimal (q*21, q*22) decision is: 
q*21 = q*22 = 0          (5-085) 
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This shows that the two retailers do not order anything in the 2nd period, under a 
Commitment contract. (and it follows that a Commitment contract structure is unable to 
prevent strategic inventory carriage by the retailers). 
Manufacturer's 1st and 2nd period wholesale price decisions: 
Given: 
a, b, > 0           (5-086) 
q11, q12, I, q21, q22>=0         (5-087) 
Decision variable: w1, w2 
Requirement (constraints) for the decision variables. 
 0<=w1 +h<a          (5-088) 
 0<=w2<a         (5-089) 
The objective of the manufacturer in the 1st period is to maximize the sum of 1st and 2nd 
period profits i.e., maximize: 
 ПM1 + ПM2 = w1(q11+q12+2I*)+w2(q*21+q*22)    (5-089) 
 = w1(2*௔ି௪భ

ଷୠ +2*௔ି௪మ
ଷୠ )       (5-090) 

 డ(௽ெభା௽ெమ)
డ௪భ = ଶୟ

ଷୠ − ସ
ଷୠ  ଵ       (5-091)ݓ

 డమ(௽ெభା௽ெమ)
డ௪భమ = ିସ

ଷୠ ≤ 0       (5-092) 

 డ(௽ெభା௽ெమ)
డ௪మ = ଶୟ

ଷୠ − ସ
ଷୠ  ଶ       (5-093)ݓ

 డమ(௽ெభା௽ெమ)
డ௪మమ = ିସ

ଷୠ ≤ 0       (5-094) 
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(5-092) and (5-094)  prove that (5-089) is concave in w1 and w2 respectively. Setting (5-
091) and (5-093) to zero respectively, we get the profit-maximizing wo1 and wo2 decisions 
for this case as: 
wo1 = wo2 = ௔ଶ> 0         (5-095) 
We observe that (5-095) fulfills (5-089) 
For (5-095) to fulfill (5-088), we need ௔ଶ<=a OR a>=h, which usually holds. Hence, (5-095) 
mostly fulfills (5-088) also. 
→ w*1 = w*2 = ௔ଶ         (5-096) 
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Summary: 
w*1 = w*2 = ௔ଶ          (5-S001) 
q*11 = q*12 = ௔ି௪భ

ଷୠ = ௔
଺ୠ         (5-S002) 

q*21 = q*22 = 0          (5-S003) 
I* = ௔ି௪మ

ଷୠ = ௔
଺ୠ          (5-S004) 

*** 
  



 

150 
 

Curriculum Vitae  Vijayendra Viswanathan  Place of Birth: Bangalore, India  Education: Doctor of Philosophy in Engineering, University of Wisconsin-Milwaukee, USA, 2016 Major: Industrial Engineering Minor: Business Administration  Bachelor of Engineering, Visweswaraya Technological University, India, 2005  Major: Electrical and Electronics Engineering  Dissertation Title: Strategic inventories in a supply chain with vertical control and downstream Cournot competition  Significant Teaching, Research and Professional Experience: 2012-Present: Consultant – Global Manufacturing Solutions Group, Product Development and Global Technology Division, Caterpillar Inc., Champaign IL USA  2005-12: Instructor of Record (IE 370), Lab Instructor (IE 112), Grader (BUSADM 473/474) and Teaching Assistant (Math 211) – Departments of Industrial Engineering and Mathematics, Lubar School of Business, UW-Milwaukee, Milwaukee, WI, USA  Publications and Presentations:  Viswanathan, V., and Jang, J., Impact of a Commitment contract in a one-manufacturer, two-retailer supply chain (In preparation)  Viswanathan, V., and Jang, J., Strategic Inventories in Vertical Control and Cournot duopoly Competition (Revise and Resubmit)  Jang, J., and Viswanathan, V., Strategic Inventories under a Commitment contract in a supply chain with downstream Cournot duopoly competition, Accepted to 4th Annual International Conference on Industrial, Systems and Design Engineering, June 2016, Athens, Greece.  Viswanathan, V., and Jang, J. , Impact of Cournot competition and Commitment contract on Strategic Inventory in a one-manufacturer, two-retailer supply chain. Proceedings of the 2012 Annual Meeting of the Production and Operations Society, Chicago, IL.  Viswanathan. V, and Jang, J., Strategic inventories in a two-period Stackelberg duopoly with vertical control, Proceedings of the 2010 Annual Meeting of the Western Decision Sciences Society, April 2010, Lake Tahoe, NV.  



 

151 
 

Viswanathan, V. and Jang, J., Strategic inventories in a Cournot duopoly, Proceedings of the 2009 Annual Meeting of the Production and Operations Society, May 2009, Orlando, FL. 
Select Honors/Recognition:  Chancellor's Graduate Student Award, UW-Milwaukee (2005-2011)  Graduate Student Travel Award to attend WDSI’10 – Spring 2010, UW-Milwaukee.  Graduate Student Travel Award to attend POMS’09– Spring 2009, UW Milwaukee.  Scholarship to attend the POMS College of SCM Mini-Conference’09 in Orlando, FL from POMS, USA  Education Impact Grant – Melton Foundation (2008)  Select Service:  Reviewer, 2010 Academy of Management Annual Meeting, Chicago, IL Reviewer, 2010 Western DSI Annual Meeting, Lake Tahoe, NV   Session Chair, supply chain Strategy, POMS Annual Meeting '09, Orlando, FL   Reviewer, 2009 Academy of Management Annual meeting, Chicago, IL   Reviewer, 2009 DSI Annual Meeting, New Orleans, LA 


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2016

	Strategic Inventories in a Supply Chain with Vertical Control and Downstream Cournot Competition
	Vijayendra Viswanathan
	Recommended Citation


	Microsoft Word - Dissertation Draft_VV_05_18_16

