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ABSTRACT 

INTER-DECADAL SHIFTS IN INTENSE EXTRATROPICAL CYCLONES IN THE 
NORTHERN HEMISPHERN 

 
by 
 

Timm Uhlmann 

 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Kyle Swanson 

 

Cyclones, both tropical and extratropical, have a large socioeconomic impact during any 

given year. Understanding the formation and evolution of these cyclones in the current climate 

therefore becomes imperative to minimize loss to property and life. Previous work by Kossin et 

al (2014) showed a significant poleward migration for the most intense tropical cyclones from 

1982 to 2009. This sparks the interest in whether extratropical cyclones exhibit a similar trend 

within a changing climate. Data used stems from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) ERA-Interim Analysis for an analogous time period from 1980-

2015. Tracking and identification of cyclones is performed using the 850-mb level relative 

vorticity field with procedures similar to that used by Hodges (1995, 1996, 1999) and then 

limited to 30 degrees North latitude and higher. A statistically significant shift in the most 

intense cyclones, defined separately for minimal central pressure and vorticity maxima, from the 

Pacific Oceanic basin to the Atlantic Oceanic basin is found. 
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Introduction 

Cyclones, both tropical and extratropical cause a large amount of socioeconomic impact 

during any given year. In Europe, winter time extratropical storms pose the second highest cause 

of insurance loss due to natural disasters, behind only tropical cyclones (Swiss Re, 2000). 

European storm Kyrill, which impacted Western, Central, and Eastern Europe in 2007 brought 

over 1 billion dollars in damage after intensifying over the northern Atlantic (Fink et al 2009).  

 With considerable impact comes the need to understand the formation and evolution of 

both types of cyclones, along with their role in a changing climate, in order to minimize loss of 

life and property and further the overall understanding involved in forecasting these events. In a 

previous study by Bengtsson et al (2006) on extratropical cyclones in a warming climate, an 

ensemble of three 30-yr integrations of the Max Planck Institute (MPI) coupled atmosphere–

ocean model (OM; ECHAM OM) was used to compare storm tracks for the period 2070–99 with 

the control period 1960–89. They found that there was a general poleward shift in cyclone tracks 

during this period with little to no intensification. This is in agreement with other previous 

studies that utilized similar Lagrangian techniques studies such as Yin (2005) and Fischer-Bruns 

et al. (2005). Within this paper, intensification will be a reference to either the depth of the 

pressure field as estimated by the mean sea level pressure (MSLP) or the magnitude of the 

relative vorticity field at the 850 millibar level. This is in contrast to fields such as wind speed 

and precipitation, which are arguably equally important, particularly from the perspective of the 

public. 

 A study by Kossin et al. (2014), they found a poleward shift for the most intense tropical 

cyclones for both hemispheres in both the Atlantic and Pacific Ocean basins using the past 30 

years of data spanning from 1982 to 2009. This observed shift in tracks for tropical cyclones 
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begets the question of whether similar trends can be found in the movement of extratropical 

cyclones. Following these ties further then leads to other possible trend changes such as along 

with the general trends of other factors such as precipitation, location, etc. As is well 

documented, extratropical cyclones grow primarily from baroclinic instability and receive the 

majority of their energy from the conversion of potential energy, with relatively smaller 

contributions from latent heat release, (when compared to tropical systems). This potential 

energy is primarily derived from a difference in temperature, which is at its peak in the winter 

months, which is why most studies, including this one, focus on this time frame.  

Studies on the change in extratropical cyclones in a changing climate include one 

conducted by Bengtsson et al (2009). Their analysis studied the general life cycles of 

extratropical cyclones and their overall structures by comparing the 40-yr European Centre for 

Medium-Range Weather Forecasts (ECMWF) Re-Analysis with a high resolution version of the 

ECHAM5 global climate model. They found that there was a general poleward shift between the 

model runs in regards to mid latitude cyclones, including comparisons to a previous paper. In 

terms of intensity as defined by central pressure, they found cyclones became a few mb deeper 

for the southern hemisphere during the winter months June, July, and August (JJA). 

Additionally, overall cyclone high wind speed increased slightly (~1m/s) during the winter 

months of the northern hemisphere and overall precipitation totals increased with the warming 

climate. Additionally, their work along with others showed an overall decrease in the number of 

most intense cyclones (Bengtsson et al 2006, Meehl et al 2007, Catto et al 2011). This has been 

thought to occur due to an uneven increase in surface heating, where the poles receiving more 

than areas further equator-ward, thus decreasing the overall temperature gradient and baroclinic 

instability. 
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The goal of this paper is to further investigate the overall structures of the extratropical 

cyclones utilizing storm tracking algorithms similar to those used by Hodges (1995,1996,1999). 

Additionally, the overall latitude change in extratropical cyclones will be revisited including a 

change in longitude associated with the oceanic basins of the Atlantic and the Pacific, as these 

provide the source for the most intense storms.  

Methodology 

Data 

Utilized in this study was data from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim Reanalysis, which contains real time data starting in 1979. 

For analysis of the extratropical system, only the winter months of December-February (DJF) are 

considered through 2015, as these provide the timeframe for the most intense storms. The initial 

data is imported and the Southern Hemisphere discarded in order to focus the overall study upon 

the Northern Hemisphere. Coordinates for all parameter fields were then compressed and 

centered upon the Northern Hemisphere with the North Pole as the center with a uniform 

360x360 grid to form the polar map. 

Feature Tracking & Identification 

Historically, the choice of field for tracking cyclones varies but the traditional field for 

extratropical cyclones has been mean sea level pressure (MSLP) as utilized by Hodges (1995). 

However, some more recent studies have also utilized the 850-mb vorticity field to implement 

tracking of cyclones including Hodges (1996) and by Ayrault and Joly (2000). Advantages in 

tracking via the vorticity field have been found as it does a better job representing more 

prominent maximal features. Comparison between MSLP and vorticity has shown to produce 

similar results otherwise, although vorticity can be found to be generally better at describing 
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smaller scale systems (Hoskins and Hodges 2002). This same study by Hoskins and Hodges 

(2002) also found that tracking via negative pressure anomalies generally created tracks more 

sensitive to overall more slow moving systems as opposed to positive vorticity anomalies at the 

850-hPa level. Since this paper is primarily interested in the changes within the maxima of both 

pressure, vorticity, etc., tracking via the 850-mb vorticity is performed. 

In general for feature tracking, the features in question must be identified for each given 

time step and then linked together to make a coherent picture of the evolution of that feature with 

time. Since tracking in this case is done via the 850-hPa vorticity, local maxima are tracked 

through time to identify the overall storm paths. A copy of the code used by Hodges (1995, 1996, 

1999) was obtained, but due to the lengthy nature of the algorithms in Fortran, the essence of the 

method has been ported over to Matlab. Matlab was determined to be a better choice as the built 

in functions allowed for a drastic shortening and simplification of the overall code. 

To identify the cyclones and track them, the following procedure was used: 

1.   For any given time step, contours were drawn around all regions with vorticity values 

exceeding 5x10-5. 

2.   Contours are then used to generate polygons and their corresponding (x,y) coordinate 

pairs along the 5x10-5 contours. 

3.   Local maxima are then identified within these contours and are considered to be the 

center of the cyclone. 

4.   Perimeter squared over area calculations are performed for all identified polygons 

corresponding to cyclones. A perfect circle will yield the result of 4	  𝜋 from this 

calculation as shown in Equation 1. 

#$

%
= 	   (()*)

$

)*$
= 4𝜋       (1) 
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where P is the perimeter, A is the area, and r represent the radius of a hypothetical circle. 

5.   The perimeter over area squared is then normalized by the perfect circle remainder and 

compared to the arbitrary value of 4. All cyclones identified for the time step exceeding 

this value are discarded. 

The perimeter squared over area calculation is necessary to exclude filaments and other 

smaller scale disturbances that are present in the vorticity field that could contaminate the data. 

The normalization using the factor of 4𝜋 uses the assumption that any given cyclone is 

approximately circular in shape. 

Next, each time step must be associated with the next to create a contiguous set of storm 

tracks. There are multiple available techniques for doing this and one of the simpler methods is 

the nearest neighbor approach (Blender et al. 1997). This approach functions optimally for 

relatively smaller number of tracked features, but as the overall number of possible storms 

increases so too does the problem of storm association as outlined in Fig. 1.  

 

 FIG 1. Taken from Hodges (1999), “Importance of feature point ordering on nearest neighbor searches: (a) result 
of nearest neighbor search for a particular feature-point indexing, (b) same as (a) except indexing at frame 4 
swapped, (c) same as (b) except indexing swapped at frame 3, (d) result of cost function optimization using either 
(b) or (c) as initialization.” 
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Since this study is deals with a large volume of possible cyclones for any given time step, 

this method was not considered to be efficient. Instead, the general tracking procedure used was 

that outlined by Hodges (1995,1996, 1999) which optimizes the overall track identification 

utilizing the minimization of a cost function. This cost function attempts to minimize the change 

in distance as we all as changes in the maxima of the observed feature, as outlined in Eq 2. 

𝑀𝑎𝑥	  𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛	  𝑉𝑎𝑙𝑢𝑒 = <
=>?*>>@

(𝑥AB< − 𝑥A)( + (𝑦AB< − 𝑦A)( +
FGHI
JKL MFGHI

J 	  
FJNOPQN

 (2) 

where x and y are the coordinates of the vorticity maximums for the current and next time step, 

degrees is the maximum distance to search, in degrees, that we will consider, 𝜉STUA  is the 

vorticity maximum value found within a given contour, 𝜉AV*>@V is the initial contour threshold 

defined towards the beginning of the process as 5x10-5s-1, and the maximum consideration value 

being the tracking algorithm constraint utilized to keep the search within approximately ten grid 

points. Utilizing this function, all the identified cyclones are labeled and paired with any 

corresponding cyclones from the previous time step. Any unidentified storms are then labeled as 

a new storm. The final step for the identification and tracking process then loops through to 

accumulate all the possible storms by their track number to get a cohesive set of track 

information across the year.  

 Once all the storms have been identified, the next calculation performed is the removal of 

all storms with maximum vorticity latitude locations originating further south than 30 degrees 

latitude. This is similar to the paper by Bengtsson et al (2009) in which all storms with origin 

under 25 degrees north are excluded for extratropical analysis. This is to eliminate any influence 

that tropical cyclones might have upon the extratropical analysis, including the possibility of a 

tropical cyclone migrating poleward and transitioning over to extratropical cyclone. That said, 

there is currently no measure in place to account for systems that started in the tropics but didn’t 
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reach identification criteria and/or their peak until they were well within the extratropics. 

However, given the relatively high latitude limit imposed upon the definition of extratropics, this 

effect was considered to be minimal. After this is done, all storm tracks that do not last longer 

than 96 hours, are removed. This further limits storms considered to those that are sufficiently 

developed to last for four days as well as acting as an additional filter for anomalously identified 

storms caused by brief anomalies in vorticity.  

Extratropical Cyclone General Structure 

The analysis conducted for the general structure of extratropical cyclones will initially 

consider the structure of the extratropical cyclone in general, before moving on to the top 100 

most intense storms for the entire period. Most intense storms have been defined separately as 

either the minima in MSLP or maxima in vorticity for the top 50 or 100 cyclones for each given 

time period. This separation sets up two separate cyclone analyses. It should be further noted that 

storms defined by either definition do not necessarily coincide as maxima in relative vorticity 

will tend to be further south following the conservation of absolute vorticity. 

Pressure 

 Pressure for this section is assumed to mean the MSLP. Pressure trends for all storms 

found in the analysis shows an initial value around 1008 mb two days ahead of the minima in 

pressure with a gradual deepening towards the time of the minima, and the greatest rate of 

intensification around 6-12 hours prior. Following the time of minimum, the overall rate of 

occlusion is less than the rate of intensification, ending the 48-hour period around 1006 mb, with 

the primary discrepancy being the deepening and filling in the 6 hours surrounding the 

minimum, as identified in Fig 2.  
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FIG 2. Shown is the comparison of mean sea level pressure (solid lines) and vorticity (dashed lines) centered around 
the time of peak intensity. Pressure lines are those of all storms (blue), average of top 100 most intense by pressure 
(red), and the average pressure corresponding to the top 100 vorticity centered cyclones (yellow). Similarly, 
vorticity is mapped by average of all cyclones (purple), most intense (green), and vorticity corresponding to the 
pressure centered storms (light blue). 

Analysis then continues into the pressure trends of the top 100 most intense storms, as 

identified by pressure, and shows an expected overall deepening in values. Setting them apart 

from the overall trends, the most intense cyclones show a much stronger deepening rate leading 

into the the time of minimal pressure. Similar to the average, the top 100 most intense storms 

follow a similar structure in the overall pressure rise rate following the time of the minima, 

implying these systems can be expected to last significantly longer as the pressure gradually 

rises. 
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Perhaps the most interesting is the third pressure trend shown in Fig 2 show the trend of 

pressure along the most intense storms identified by their vorticity value. Of particular note is the 

fact that the initial pressure readings exceed that of the average cyclone by a few millibars before 

rapidly deepening as the vorticity value begins to increase, eventually exceeding the average 

storm at around 24-30 hours before the minima. Additionally, there is a notable offset in the peak 

time of the maximum vorticity when compared to the minimum in pressure of approximately 6-

12 hours. Previous work conducted by Temperton (1973) suggests that this could be in part 

predicted as the scale of extratropical cyclones is great enough that the mass field will adjust to 

the wind field during geostrophic adjustment. Following the time of the minimal pressure, the 

occlusion of the cyclone is significantly slower than average, with an average increase of just 1-2 

millibars in the 24 hour period following the minima, quickly closely the gap in pressure towards 

the top 100 deepest pressure cyclones. 

Vorticity 

The vorticity values exhibit a similar set of interesting behaviors. The average cyclone 

intensifies by only a small margin relative to the most intense cyclones, ranging from the initial 

average around 1.35x10-4 s-1 to 1.65x10-4s-1.   The top 100 most intense storms, as defined by the 

central vorticity, instead exhibit a significant increase in vorticity after a comparable start to the 

average cyclone, rapidly intensifying in the 24-30 hour window preceding the maximum value to 

4.81x10-4 s-1. This is a substantial increase from the average cyclone and is notably reflected in 

the corresponding, but slightly delayed, strong deepening rate of the MSLP corresponding to the 

most intense vorticity cyclones.  

Similar to the pressure being mapped to the most intense vorticity cyclones, the 

corresponding vorticities were mapped to the deepest MSLP cyclones for comparison. The 
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overall vorticity values were around 60-80% higher than the average cyclone, including being 

initially higher than the highest vorticity cyclones. Again a shift of approximately 6-12 hours is 

exhibited with the peak vorticity value being achieved before the pressure value. Following the 

time of the peak for these cyclones, the rate of decay is greater than the initial rate of 

intensification leading up to the cyclone’s end. Overall, the general increase and persistence of 

the vorticity values during the deepest MSLP storms suggests that although vorticity plays a part 

in the eventual deepening of an extratropical cyclone, a slow and persistent vorticity field is 

necessary for the deepest extratropical cyclones. 

Latitude 

 One possible explanation considered for the discrepancy in the trends of pressure and 

vorticity sorted storms is the discrepancy in latitude. As shown in Fig 3, the average latitude of 

the most intense storms sorted by vorticity is significantly further south at times of peak intensity 

than those sorted by pressure. Assuming the conservation of absolute vorticity, the plotted 

relative vorticity at 850 mb would be expected to be higher at lower latitudes as the Earth 

vorticity component of absolute vorticity increases. Performing the calculation between the two 

latitudes for relative vorticity yields a result on the order of 10-5, which is a full order of 

magnitude below the observed difference. The implication is that the discrepancy in vorticity 

between the two sets of storms cannot be wholly explained by a shift in latitude. 
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FIG 3. Shown are the average latitude trends for all storms(blue), top 100 intense storms as identified by pressure (red), and top 
100 storms as identified by vorticity (yellow). 

Precipitation 

 Precipitation wise the average has its expected value well below that of the most intense 

storms using either classification. That said, there is a significant increase in the overall 

precipitation for storms identified by the vorticity maxima as opposed to pressure minima. This 

may again be a result of the fact that the storms identified by their vorticity maxima are up to ten 

degrees further south which will place them into warmer environments with significantly more 

available moisture. 

The most intense storms exhibit markedly different structures, with those using MSLP 

containing a distinctly asymmetrical pattern compared to the much more symmetrical vorticity 
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centered storms. For the most intense vorticity related storms, the swift collapse of the 

precipitation formation is likely due to the similar decay in the primary lifting mechanism 

leading to occlusion behind the values of peak intensity. For the storms related to pressure, this is 

not as clear as the lowered vorticity values associated with these storms would indicate a 

possibly a larger system with lesser gradients, thus allowing precipitation formation to remain 

more widespread and consistent through the lifecycle of the storm.  

 

FIG 4. Area averaged precipitation in mm/hr around peak intensity as averaged around all storms (blue), top 100 pressure 
centered (red), and top 100 vorticity centered (yellow). 
 

The analysis of these variables agrees thus far with previous research for the ERA-

Interim Reanalysis as conducted by Bengtsson et al (2009) who conducted a similar analysis on 

the structure of extratropical cyclones using the 50 most intense storms, as defined by vorticity 
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values, and defining extratropical storms as those with latitudes greater than 25 degrees. Their 

results are summarized in Fig 5. 

 

FIG 5 Taken from Bengtsson et al (2009): “(a) Life cycle composites of the 100 most intense storms, identified in T42 j850, for 
the NH DJF for T213 ECHAM5 in 20C (solid line) and ERA-40 (1979–2002) (dashed line); (b) life cycle composites of the 
identically same 50 most intense storms in the Interim reanalysis (solid line) and ERA-40 (dashed line). Parameters shown are 
MSLP (hPa; black), j850 (1025 s21; red), 925-hPa winds (m s21; green), and area-averaged total precipitation (mm h21;blue).” 
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Trends in 5-year Intervals 

The preliminary analysis of extratropical cyclones explores the effects of sorting via 

minima in MSLP and maxima in vorticity. From this point we will address the evolution of 

extratropical cyclones with time in sets of 5 years starting in 1980 and ending in 2015. Each set 

of five years results in approximately 250-300 identified storms which are then further sorted 

into the top 50 most intense storms, representing the top ~20%, once again identified separately 

by both pressure and vorticity.  

Pressure and Vorticity Trends 

 The top 50 average across each five-year period yields result very similar to the general 

structure found for extratropical cyclones with a rapid deepening and filling in the six hours to 

either side of the minima. Pressure minima for these cyclones are approximately 10 mb weaker 

than the average for the top 100 storms, but this is to be expected due to the averaging in general. 

For the top 50 storms, the time period of 2000-2005 shows the highest minimal pressures while 

the 2010-2015 period exhibits the lowest as shown in Fig. 6. The difference between the two can 

not be considered statistically significant however. 

 The average vorticity trends are also similar in structure with a near symmetrical rate of 

intensification and diminishment around the time of peak vorticity with the greatest rates in the 

12-18 hours around the peak as provided by Fig. 7. The three most intense storms identified are 

in the five year periods of 1980-1985, 1995-2000, and 2010-2015, with differences overall too 

small to be considered statistically significant. These result do not support the conclusion that the 

most intense storms are getting more intense as time progresses. 
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FIG 6. Average MSLP around the time of peak intensity, defined by pressure,  for the top 50 storms of each 5 year period. 

 
FIG 7 Average 850-mb relative vorticity values around the time of peak intensity as defined by vorticity for the top 50 most 
intense storm of each 5 year period. 
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Cross Referenced Vorticity & Pressure 

 The most intense vorticity and MSLP storms were also cross referenced by mapping the 

vorticity to the most intense MSLP defined storms and the MSLP values to the most intense 

vorticity defined storms. For pressure intense storms, the greatest rate of change in vorticity 

comes after the time of the peak with a rapid de-intensification of the central vorticity maximum 

as the storm’s energy begins to diminish. Interestingly, unlike the previous averaged analysis, not 

all of the peaks in vorticity coincide as they range between 0-12 hours, implying that the time of 

the peak vorticity could be a few hours closer to the time of minimum MSLP. The rate of decay 

for the storms is similar however, while the initial rate of intensification varies considerably 

more. 

 

FIG 8. Average 5 year 850-mb vorticity trends for the top 50 most intense storms, defined by pressure, for each 5-year period. 
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FIG 9. Average 5-year MSLP trends for the top 50 most intense storms, defined by vorticity, for each 5-year period. 

Similarly, for the overall pressure trends associated with the times of maximal vorticity, 

the rate of most rapid deepening occurs in the 18 hours before the time of the minimal pressure 

followed by a time of relative uncertainty as not all 5 year averages hit their minimal pressure at 

the same time. The offset is as great as six to twelve hours. The average rate of deepening for the 

18 hours leading up to the vorticity maximum corresponds to a drop of 0.47 mb/hr with a 

standard deviation of .09 mb/hr. The timing of the peaks shown with these trends likewise 

exhibit no uniformity as a number of 5 year averages hit their minima up to 6-12 hours after the 

vorticity maximum, but a few, namely the 2000-2005 and 2010-2015 trends are closer to time 

zero, coinciding with the time of maximal vorticity. Pinpointing the exact timing and correlation 
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between the two is not possible with the given dataset however, due to the 6-hour time step. 

Following the time of the minimum, the filling of the low pressure system is uncertain for for a 

period behind the time of the minimum as not all of the peaks coincide, but if the last eighteen 

hours of the 48-hour period are considered, the fill rate is approximately 0.17 mb/hr with a 

standard deviation of 0.07 mb/hr. 

 Neither trend supports the conclusion that storms are getting more intense in terms of 

vorticity nor in terms of pressure over the time period of the data set. However, it does show that 

there is a decent amount of variability in the correlation between the two parameters for 

extratropical cyclones on the order of approximately a day (24 hours). 

Latitude Trends 

 Extratropical cyclones have been suggested to be moving poleward in previous research 

(Bengtsson et al 2009), similar to the poleward shift of tropical cyclones as a result of the 

expanding tropical zone with a warming climate (Bengtsson et al 2006, Yin 2005, Fischer-Bruns 

et al 2005). Although the analysis of storm tracks based upon latitude is beyond the scope of this 

paper, the average latitude around both the time of pressure maxima and vorticity minima are 

calculated and shown in Figs 10 and 11 respectively. 
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FIG 10. Average latitude of the top 50 most intense storms as defined by MSLP for each 5 year period. 

 
FIG 11. Average latitude of the top 50 most intense storms, as defined by vorticity, for each 5-year period. 
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 Of note in this analysis is that for the storms based upon pressure, the average storms 

from the past ten years (2010-2015) are in the upper latitudes starting around 24 hours before the 

time of the peak intensity, although the difference compared to the next two storms is only that 

of a degree. That said, the time period of 2000-2005 starts at a relatively high latitude, but 

concludes the 48 hour period at the lowest overall latitude in the data set. Therefore, although all 

the storms do travel further north during their lifetime, it is not possible to conclude that the 

average latitude increases, e.g. a poleward shift is occurring, for northern hemispheric storms 

based upon pressure. 

 For the storms based upon vorticity, the trend is even more convoluted as the latitude has 

no consistent pattern with each given 5-year average. A general increase in latitude is present 

over the life cycle of the storms, but as shown by the 2000-2005 period, there is a great 

variability in the overall track. Therefore, it is once again not possible to conclude that the most 

intense storms defined by vorticity maxima are shifting northwards either.  

Precipitation Trends 

 Precipitation trends on the 5-year time scale average have also been computed to take 

note if the more recent years have had more precipitation in the most intense cyclones. In terms 

of pressure, the average extratropical cyclone has a great deal of variability with very few trends 

until the minimum in pressure is reached at which point there is a consistently rapid 

diminishment in the overall amounts of rainfall.  
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FIG 12. The average area average precipitation for each 5-year period for the top 50 most intense pressure defined storms. 

 Vorticity centered storms are more consistent in the overall structure through the time 

periods of the data and exhibit a more consistent increase and decrease in average rainfall around 

the time of maxima for each 5-year period. Once again, no consistent difference has been 

located.   
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FIG 13. Area averaged precipitation for the top 50 most intense storms, defined by vorticity, for each 5-year period. 

Tracks 

 The overall tracks of all extratropical cyclones need to be considered as well. Of note is 

the relatively higher concentration of extratropical cyclones over both the Pacific oceanic basin 

and the Atlantic basin towards northern Europe. The implication of these locations is that the 

majority of the most intense storms occur over the oceans, agreeing with previous results for the 

most intense extratropical cyclones (e.g. Bengtsson et al 2005).  
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FIG 14. The track images of the top 50 most intense winter cyclones identified by MSLP plotted in the Northern Hemisphere 
around the North Pole, by 5 year periods with 1980-1985(top left), 1985-1990 (top right), 1990-1995 (bottom left), and 1995-
2000(bottom right). 

 The most significant change over the course of time is the apparent shift of the most 

intense cyclones from the Pacific oceanic basin over to the Atlantic oceanic basin. The images 

containing the tracks show a trend of most intense storms tracks, for both MSLP and vorticity 

values, shifting away from the Pacific and towards the Atlantic. In order to investigate this 

further, bar graphs of the number of storms in each basin were created to show the evolution of 

the overall number of storms over time. From these, an apparent shift towards the Atlantic 
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appears for the trend in the vorticity identified cyclones while remaining relatively unpronounced 

in the pressure cyclones.  

 

FIG 15. The track images of the top 50 most intense winter cyclones identified by MSLP plotted in the Northern Hemisphere 
around the North Pole, by 5 year periods with 2000-2005 (top left), 2005-2010 (top right), and 2010-2015 (bottom). 
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FIG 16. The track images of the top 50 most intense winter cyclones identified by vorticity plotted in the Northern Hemisphere 
around the North Pole, by 5 year periods with 1980-1985(top left), 1985-1990 (top right), 1990-1995 (bottom left), and 1995-
2000(bottom right). 
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FIG 17. The track images of the top 50 most intense winter cyclones identified by vorticity plotted in the Northern Hemisphere 
around the North Pole, by 5 year periods with 2000-2005 (top left), 2005-2010 (top right), and 2010-2015 (bottom). 
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FIG 18 Bar graph showing the total number of Atlantic and Pacific basin storms out of the top 50 most intense, defined by 
pressure, for each 5-year period. 

               
FIG 19 Bar graph showing the total number of Atlantic and Pacific basin storms out of the top 50 most intense storms, defined by 
vorticity,  for each 5-year period. 
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To test the statistical significance of this shift, the bootstrap method was performed. The 

pool of 200 storms formed from the top 50 from the sets in the 80s and 90s was used for this test 

as this twenty-year period is considered to form the base for the analysis. From this base, 10,000 

sample cases of 50 random storms were selected to form the basis, as shown in Table 1. 

TABLE 1 The number of observed storms for both the Pacific and Atlantic basin are shown for each given five-year 
period along with the 95% confidence intervals from the bootstrap test for 10,000 samples of 50 random storms 
chosen from the collective pool. Thresholds at or exceeding the upper limit(green) or lower limit (red) are 
highlighted. 

5-‐Year	  Data	   Pressure	  
	  

Vorticity	  
	  

Bootstrap	  	  Results	  
	  Years	   Atlantic	   Pacific	   Atlantic	   Pacific	  

	  
Atlantic	   Pacific	  

1980-‐1985	   16	   34	   22	   28	   Pressure	  
	    1985-‐1990	   17	   33	   20	   30	   Upper	  Bound	   32	   32	  

1990-‐1995	   23	   27	   25	   25	   Lower	  Bound	   18	   18	  
1995-‐2000	   21	   29	   26	   24	   Vorticity	  

	    2000-‐2005	   20	   30	   26	   24	   Upper	  Bound	   33	   30	  
2005-‐2010	   26	   24	   28	   22	   Lower	  Bound	   20	   17	  
2010-‐2015	   26	   24	   35	   15	  

	      

The first two sets of five-year periods under the most intense MSLP storms, representing 

the 80s, both exceed the 95% confidence intervals with an abnormally large number of storms 

identified for the Pacific basin. This trend then disappears into the 90s and beyond as the number 

of storms begins to favor the Atlantic. While this does not necessarily prove a shift from Pacific 

to Atlantic, it does show that the 80s were particularly active over the mid-latitudes in the 

Pacific. Further backing this story are the cyclones identified by vorticity. These storms sit 

comfortably within the 95% interval throughout most of the period until the last and most recent 

five years where they get to the upper bounds. Since these do not necessarily represent the same 

set of storms as those identified by MSLP, as covered previously in this paper, this secondary 

trend lends further credit to the idea that storms are becoming more focused in the Atlantic over 

the Pacific. 
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Decadal Track Comparison 

 In order to further aid in identifying a climatic signal however, the investigation in the 

overall basins was expanded to the decadal scale for the 80s, 90s, and the most recent years of 

2005-2015. The given data spans a period of 35 years, thus the winters of 2000-2005 were 

excluded in order to capture the decade of 2005-2015, but these were not found to significantly 

impact the results.  

 

FIG 20. Storm Tracks for the top 100 most intense storms, as defined by pressure, for each decade considered for the years of 
1980-1990 (top left), 1990-2000 (top right), and 2006-2015 (bottom). 
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FIG 21. Storm Tracks for the top 100 most intense storms, as defined by vorticity, for each decade considered for the years of 
1980-1990 (top left), 1990-2000 (top right), and 2006-2015 (bottom). 

Similar to the five-year period, both tracks and their densities are particularly heavy and 

widespread during the 80s but make a shift towards the Atlantic region by the 2000s. Unlike the 

trend observed for the 5-year periods, the rise in Atlantic systems coupled with the decrease in 

the Pacific systems becomes drastically more pronounced. Similar to the 5-year analysis 

however, the vorticity trend still shows a more significant increase in the number of Atlantic 
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cyclones by the last decade. The pressure trend suggests more of a decrease of Pacific cyclones 

in the first decade.  

 

FIG 22 Bar Graph showing the total number of Atlantic and Pacific basin storms out of the top 100 most intense storms, as 
defined by MSLP. 

 

FIG 23. Bar Graph showing the total number of Atlantic and Pacific basin storms out of the top 100 most intense storms, as 
defined by vorticity. 
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 Bootstrap testing performed upon the decadal analysis yields somewhat similar results to 

that suggested by a purely quantitative analysis. Namely, a significantly large number of pressure 

intense storms in the 1980s decreasing over time to fall within the normal range of data, and a 

significant increase in vorticity based cyclones for the Atlantic. Together with the previous 5-

year analysis conducted upon the data suggest a shift for the most intense storms from the Pacific 

basin over towards the Atlantic for intensity based upon both pressure and vorticity as shown in 

Table 2. 

TABLE 2. The number of observed storms per decade is recorded for the Atlantic and Pacific basin utilizing the most 
100 intense storms as defined by both vorticity and pressure. The 95% confidence intervals of the 10,000 samples of 
100 storms via bootstrap testing are shown with those values exceeding the upper bound(red) and lower 
bound(green) highlighted. 

Decadal	  
Data	   Pressure	  

	  
Vorticity	  

	  Years	   Atlantic	   Pacific	   Atlantic	   Pacific	  
1980-‐1990	   33	   67	   42	   58	  
1990-‐2000	   45	   55	   52	   48	  
2005-‐2015	   51	   49	   62	   38	  

	  
Pressure	  

	  
Vorticity	  

	  Bootstrap	   Atlantic	   Pacific	   Atlantic	   Pacific	  
Upper	  
Bound	   61	   59	   62	   57	  
Lower	  
Bound	   41	   39	   43	   38	  

 

 A large part of the variability in the intense storms over the two ocean basins may be tied 

into the over oscillations exhibited in the sea-surface temperature anomalies (SSTA) over the 

past century. In work conducted by  Mestas-Nuñez and Enfield (2010), it was found that multiple 

non-ENSO (El Nino Southern Oscillation) modes exist for both the North Pacific and North 

Atlantic. Their results showed an oscillation period on the order of 15-40 years for the North 

Atlantic which directly impact the overall oscillations of the North Atlantic. Specifically, 

positive SSTA in the southern Pacific and negative SSTA for the northern Pacific were shown 
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through the 1980s, effectively enhancing atmospheric baroclinicity and perhaps explaining in 

part the observed larger number of intense cyclones present in the basin during this period. 

Similarly, a shift in the northern Atlantic mode had been shown, which compared to previous 

research cited in their paper, with the initial shift in the 1960s. A secondary shift in the anomalies 

for the northern Atlantic has also been suggested to occur in the mid 1990s around the time of 

1995 (Kerr 1997), similar to the observed timing of increase in the number of Atlantic cyclones. 

Conclusions 

 The general nature of the extratropical cyclone has been shown to involve a gradual 

deepening towards the time of pressure minima. This deepening is at its greatest 6-12 prior, with 

the greatest rates exhibited by the the storms corresponding to maximal vorticity values while the 

overall deepest storms maintained a more consistent measure of vorticity. Precipitation structure 

between the most intense pressure and vorticity storms also varied with the vorticity related 

storms exhibiting a more symmetrical structure and rapid decay following the maximum in 

vorticity as the lifting mechanism decays and the system occludes. Pressure related storms were 

more asymmetric around their peak with a more gradual decay towards the end of the storm and 

greatly diminished precipitation over the entire considered 4 day period around the peak. 

 No significant trends were found in precipitation or changes in overall intensity for either 

pressure or vorticity for the time period as tracked by 5-year averages. Additionally, although no 

significant shifts in extratropical cyclone paths were detected in the poleward direction. 

 For decadal trends, an abnormally large number of the most intense MSLP DJF cyclones 

have been found to be based within the Pacific during the 80s by bootstrap testing. This holds 

true considering 5 year periods of 1980-1985 and 1985-1990 and considering the decade as a 

whole. In terms of vorticity intense storms, a significant increase in Atlantic activity has been 
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found towards the end of our analysis by both the 5-year analysis for the time of 2010-2015 and 

by considering the last decade spanning from 2005-2015. Although the top pressure and vorticity 

intense storms do not necessarily happen to be the same storms, this suggests a migration of the 

most intense storms towards the Atlantic basin. This does not provide insight on the overall 

number of intense storms in either basin however. Possible explanations put forth include the 

shift in the Atlantic inter-decadal mode for the SSTAs occurring in the mid 1990s. Future work 

would focus upon a larger data set extending towards the other marked shift in the Atlantic mode 

noted in previous research to occur in the 1960s (Mestas-Nuñez and Enfield 2010).  
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