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ABSTRACT

A CONSERVATIVE TYPE SYSTEM BASED ON
FRACTIONAL PERMISSIONS

by
Chao Sun

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor John Boyland

The system of fractional permissions is a useful tool for giving semantics to various

annotations for uniqueness, data groups, method effect, nullness, etc. However, due to its

complexity, the current implementation for fractional permissions has various performance

issues, and is not suitable for real world applications.

This thesis presents a conservative type system on top of the existing fractional permission

type system. The system is designed with high-level types, and is more restrictive. The

benefit is that it can run much faster. With this system, we propose a multi-tiered approach

for type checking: the conservative type system is first applied, and only those that it cannot

handle will then be processed by the more powerful fractional permission system.
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A crucial property about a type system is its soundness. In this thesis we also present a

mechanized proof, written in Twelf, for the conservative type system. A mechanized proof is

checked by computer, and offers much more confidence about its correctness. Moreover, we

proved the soundness property with a novel approach: instead of defining the semantics of

the language and proving progress and preservation directly, we delegate it to the soundness

proof of the fractional permission system.

The novel technical features in this thesis include: 1) a multi-tiered approach for type

checking and a conservative type system build on top of fractional permissions; 2) a mech-

anized proof for the type system, and 3) a novel way of proving soundness property for a

type system.
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Chapter 1

Introduction

1.1 Aliasing

One common safety issue in imperative programming languages is aliasing, which happens

when a data location in memory is accessed through different symbolic names (or variables)

in program. With the presence of aliasing, it is difficult to reason about a program’s behavior,

because write action on a memory location through one variable may affect read action by

others.

Even worse, the write action could happen at a totally unrelated point in the program,

which could make reasoning even harder. Also, in a language without garbage collection,

where objects need to be deallocated explicitly, uncontrollable aliasing can cause two prob-

lems: dangling reference and memory leaks. The former is caused by deallocating a memory

block too early while some pointers to it still alive in the system; the latter is caused by

deallocating a memory block too late which depletes the memory available to the program.

In addition, aliasing can have serious affect on information hiding and encapsulation,
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which are essential elements in object-oriented programming. For instance, a private member

of an object may have aliases outside the scope, therefore even though the intention is to

disallow access to this member from outside the class, it can still be done so through the

aliases. Modern software is often required to offer implementation transparency, which means

the ability to change internal implementation without affecting the rest of the system.

1.2 Annotation

To resolve the issue of aliasing, many researchers have suggested using annotations [Eva96,

LLP+00, FLL+02, BLS05, HLL+12]. Unlike program types, which are “hardcoded” in the

language, and mainly concern low-level semantics, annotations are more about the high-

level program behaviors, like the fields that a method may modify, or whether a variable

is not null. Annotations usually will not change the runtime behavior, and for this they

can serve two purposes: implementors can attach their design intent to the program, for

better understanding, and maintainers can use them to extract more semantic information,

for better analysis of the program. In general, annotations enable a component supplier to

offer contracts in which certain demands are described, and clients are supposed to follow

these requirements, to guarantee the result of execution meets the expectation.

Another reason of using annotations is their flexibility. Rather than design a new lan-

guage and add all the desired features, people can deploy annotations as an optional type

system [FFA99, Bra04]. Existing languages can be improved in this way without their es-

sential elements altered. Compiler and run-time system also do not need to be modified.

Fractional Permissions [Boy10b, Boy03, BR05, BRZ09], originating from separation logic [Rey02,

OYR04], provide a general tool for managing access to mutable state. Under this framework,
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each piece of mutable state is associated with a whole permission, which is required when one

needs to modify the state. The whole permission, nevertheless, can be split into multiple

fractions, and each fraction can be used for reading the state. The fractions can also be

recollected and joined back, to restore the whole permission for writing the state.

Because of its expressiveness, Fractional Permissions can be used to give precise seman-

tic meaning to most annotations concerning mutable state, such as unique, readonly,

effects and data groups [BRZ09]. Not only that it can help us to better understand these

annotations, but it also provide a foundation for the implementation to be built upon.

Although Fractional Permissions possess great expressive power, the tradeoff is its com-

plexity. To fully implement it on a practical programming language like Java is rather

difficult. The current implementation of Fractional Permissions [Ret09], which is built on

Fluid project [GHS03], is very complex, and has various performance issues, even though it

only handles part of the system. For instance, to model a base permission:

ξ(o.f → o′)

it needs lattices for both location and fraction, and has two separate maps for them. To

model Java evaluation at a low-level, the transfer function needs to simulate stack operations,

and therefore a stack lattice in which elements are of some other base lattices is used. One

side-effect for this is all the primitive types in Java, such as int and string need to have

their lattice representations too. Besides, along the control flow, the analysis also needs

to collect various “facts”, like the equality (inequality) between object locations, as well as

nesting situations.

Because of the massive information that needs to be represented, and the complexity

of operations (especially the join operation upon control flow merge), the analysis has high
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runtime overhead and large memory footprint. This makes it not so practical to use on real

world programs [Ret09].

class Node {

@InRegion("Instance")

@Unique Node next;

}

class List {

@Unique Node head;

@RegionEffect("writes head")

void prepend(@Unique Node n) {

n.next = head;

head = n;

}

}

Figure 1.1: Sample Annotated Code in Fluid

1.3 A Multi-Tiered Approach

To make annotation checking more efficient, instead of applying the heavyweight checker on

the input program directly, one solution is to first apply a more “conservative” type system.

The conservative type system and the corresponding implementation should run much faster,

albeit with less precision. Instead of encoding fractional permission directly, it uses much

higher-level types. The fractional permission type system, can then serve as a foundation
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for the new type system. With this approach, it gives us two benefits: we can have better

understanding of semantics of annotations, using fractional permission, and therefore derive

better type system to check them; we can build the soundness proof of the conservative type

system directly on that of fractional permissions.

The conservative type system identifies and accepts those “obviously correct” cases. Inside

a program, some methods may contain obvious errors that should be easy to detect. However,

these methods will fail both conservative checker and permission checker, as both of them

only allow correct methods to be passed. Therefore, this situation generates even worse

performance compared to the old way. To solve this, one approach is to use some “liberal

checker”, which detect those “obviously wrong” cases. For instance, storing a borrowed

method parameter into a unique field, or not returning the effects passed to a method, etc.

By using adopting this “multi-layered” approach, type checking can be much more ef-

ficient; the majority of an input program should be checked rather quickly by using the

liberal checker and conservative checker, and one should rarely need to use the heavyweight

permission checker.

conservative

permission

liberal

Figure 1.2: Multi-layered Type Systems
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1.4 Proof of Correctness

For any type system, soundness is one of its important properties. For the conservative type

system, we provide mechanized proofs for its soundness. Compare to hand-written proofs,

mechanized proof takes much more effort to write, since the proof is checked by machine,

which requires precise definitions and theorems, and checks every possible cases. On the flip

side, a machine-checked proof gives one much greater confidence about its correctness. Also,

a mechanized proof is easier to maintain and update [Chl10]. When some change needs to be

done on an existing proof, the proof system usually tells one about all the relavent changes

that need to be made.

The proof for the conservative type system described in this dissertation is written in

Twelf [PS99, PS02], which is an implementation of LF logical framework [HHP93] that is

especially useful for proving properties of programming languages and logics.

In addition, we adopted a novel approach for proving the soundness. Instead of following

a tranditional approach, which is to prove the preservation and progress of the system, we

reduce the proof for the system to the soundness proof for fractional permissions [Boy10a,

BS11], which is also written in Twelf. To achieve this, for each term in the language, we

show that if it is well-typed under the conservative type system, then it is also well-typed

under the permission system, and since the latter is already proven sound, this shows the

former is sound too. With this piggy-packing approach, we avoid the need to prove progress

and preservation directly, and the dynamic semantics of the language is also separated from

the type system.

In this thesis we present the conservative type system that is built upon the fractional

permission logic. Also, we demonstrate how the sematics of the conservative type system

6



can be converted to the corresponding pieces under fractional permission system, and how

to prove the correctness of the former by reduction to that on the latter.

1.5 Outline

The remainder of this thesis is organized in the following sections. In Chap. 2, we introduce

related work in the area, and compare them with the approach that we are going to use. In

Chap. 3, we introduce some basic concepts of fractional permission system. In Chap. 4, we

introduce a pilot study that we have done, that is, proving the soundness of a simple non-

null type system by reducing it to fractional permission system. In Chap. 5, we formalize

the conservative type system, although without the proof. In Chap. 6, we show how the

components in the conservative type system can be transformed to those under fractional

permission system, and how the soundness theorem for the former can be proved by using

that of the latter. In Chap. 7, we discuss some of the difficulties we encountered while writing

the proof, and possible directions for future work. In Chap. 8, we conclude the thesis.

7



Chapter 2

Related Work

In this section we introduce some related work in the literature.

2.1 Linear Types

The notion of uniqueness build its foundation on linear types [Wad90], which in turn come

from one branch of substructural logic called linear logic [Gir87]. Linearity provides a pow-

erful tool for reasoning about aliasing, since a linear reference is effectively the sole reference

to the object it points to, and thus one is assured that there would be no aliasing for the

object. However, it also means restrictions on how meaning can be represented in a program.

First, a linear value can only be used once, and therefore to preserve semantic meaning, a

program’s structure has to be changed dramatically. Second, the pure distinction between

linear and non-linear type makes them hard to co-exist in a same data structure, which

makes linear type system impractical to use in large software systems.

Hogg’s “islands” and Minsky’s “unique”[Hog91, Min96] are earliest attempts to incorpo-

rate uniqueness into an object-oriented language. These works use destructive read to handle
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usage of unique variable. That is, a unique variable is set to null immediately after it is

used, also called consumed. This approach guarantees every unique object can only have

one reference at any time, with the cost of making programming awkward and more com-

plex [Boy01a]. Also, for formal parameters, it’s not desirable to always consume them. In

many situations one simply wants to use a unique variable without breaking the uniqueness.

For this case, Hogg and Minsky use the notion of borrowed for those parameters. Inside a

procedure body, a borrowed parameter is not allowed to be stored in a field.

Within the above work, borrowing essentially weakens the uniqueness invariant, which

then makes preserving the invariant harder. This is especially true when there are complex

data dependencies. Alias burying [Boy01a, BNR01] suggests the nullification of the unique

variable can be delayed as long as no alias is read. And, whenever a unique field is read, all

other aliases to this field are then become undefined, and not usable anymore. Also, since

aliasing is a global effect, to enable intra-procedural analysis, borrowed annotation is used to

grant temporary access on a unique variable. Similar to the previous work, inside a procedure

body, a borrowed parameter cannot be stored in any field and thus cannot be further aliased.

The advantage of alias-burying is that instead of modifying the compiler, a separate static

check can be used to check that uniqueness is preserved. A static object-oriented effect

system [GB99] may be used to verify the effects each method imposed on unique variables.

Boyland also described the inter-dependence between uniqueness and effects [Boy01b], which

reasons about the need to unify both of them inside one system, as was done later in the

fractional permissions system [Boy03, BR05].

Other attempts [CWM99, WCM00, SWM00, WM01] have also been made to apply linear

type on low-level programming languages. Different from unique annotations, which use

either a set of rules or static analysis to prevent alias, their approach is to define a type

9



system to track alias. In their proposal, linear type is represented through two parts: a

singleton type ptr(`) is given to a pointer to the location `, and a set of aliasing constraint

on the heap. A type system has been defined and proven sound.

The above approaches have been introduced into high-level languages by Deline and

Fähndrich, in their Vault system [DF01], in which they use tracked types and guards to

track the life span of allocated objects. Specifically, when an object is newly allocated, a

fresh key is bound to it, and when the object is removed from memory, the key is released.

All the currently available keys are put into a holder-key set, which is in turn looked up

when a operation is to be performed on a certain object. In this way, it can model the

run-time behavior through compile-time entities. As in alias types from Smith, Walker and

Morrisett [SWM00], aliasing is tracked through type system. To address the problem that a

linear type structure cannot exist inside a non-linear structure, Fähndrich uses “adoption and

focus” [FD02] which allows linear types to be nested inside a non-linear structure. A linear

value can be adopted by another linear value, and after which it is assigned a guarded type,

indicating that is can be shared via multiple references. Whenever one needs the linear fact

about certain variable, a focus operation is performed, and during a certain lexical scope,

the value can be treated as linear.

Boyland’s fractional permission system [Boy03, BR05, BRZ09, Boy10b] is another capability-

based approach. The system incorporates the idea of “adoption and focus” into a logic struc-

ture which closely resembles separation logic [IO01, Rey02]. Separation logic enables one to

reason of a heap through reasoning about partial heaps. Fractional permission offers power

semantics, and can be used to interpret the semantic meanings of various common annota-

tions, like unique, owned, borrowed, etc. Since this thesis is closely related to fractional

permission system, we shall introduce it in Chap. 3.
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There are more work based on the idea of permissions. Bierhoff and Aldrich developed a

modular typestate checking tool [BA07] based on a concept called access permissions, which

is high-level abstraction of fractional permissions and is used to capture different patterns

of them. Later, Naden, Bocchino, et al. presented a language and type system [NBAB12]

based on the idea of borrowing. Their type system covers different types of permissions such

as unique, none, immutable, local immutable, etc. A particular kind of permission called

“local permission” is supported by this system, which is useful for permission splitting and

combining. The system also supports “changing permissions”, which is part of a method’s

contract, and is similar to the input and output permissions specified for a method type in

the fractional permission system.

Based on separation logic, Parkinson and Bierman built formalism for programmers to

write specifications for object-oriented languages such as Java [PB05, PB08, PB13], using a

notion called abstract predicate. These can be used for properties about abstract datatypes

(ADTs), class hierarchies with inheritance and method overriding, and so on. However,

verification for these properties still needs to be done by hand. Also based on separation

logic, Smallfoot [BCO06] is a automatic verification tool that checks specifications for both

sequential and concurrent programs that manipulate recursive data structures. jStar [DPJ08]

is another automatic verification tool based on the notion of abstract predicate and can be

used to check specifications for Java-like languages.

2.2 Ownership Types

Another important technique of handling aliasing is ownership types [CPN98] , which, instead

of either forbidding or tracking alias, tries to confine [BV99] the aliases to a certain scope.
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This is especially useful when coping with large-scale software system, since it allowes one to

reason about one module at a time, independent of the others. In fact, the idea of restricting

the scope of alias is similar to adoption in Adoption and Focus [FD02], in which the adopter

of a linear value can be seen as its owner. This idea is further made explicit in fractional

permissions [BR05], where ownership relation is established by nesting a linear value to a

special Owned region in its owner.

The main works on ownership types can be divided into two categories, namely “owners-

as-dominators” and “owners-as-modifiers”. In below, we shall introduce them in order.

Clarke, Potter and Noble first propose to use ownership type [CPN98] as a way to localize

aliasing. In their work, each object owns a context, and is itself residing in some other object’s

context. A context of object o can be thought of a set of objects that are nested inside o.

This approach establishes a partition on the run-time store, and enable one to speak of an

object’s interior and exterior.

When an object is first created, it is initialized with a owner object, this is implemented

by augmenting class declaration with ownership parameters. The default owner is world,

which is also the outermost context. With world as root, all objects in the system form a

tree structure, based on which reference access is restricted. In specific, an object can only

access all objects in its own context (that is, all the objects nested in its context), alongside

with its peer objects (that is, other objects owned by its owner). In other words, an object

cannot be accessed by any object outside its owner.

The above condition is also referred as “owners-as-dominators”. Basically, each owner

can be seen as the dominator for all the object in its context, and the ownership structure

guarantees that every access path from root to an object must contain its owner as one of

the node [Cla01].
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Clarke further extend the above work by combining a ownership type system with an

effect system [CD02]. Similar to the object-oriented effect system from Greenhouse and

Boyland [GB99], it enables modular reasoning about object-oriented programs, by checking

effects generated by individual method against its annotation.

However, this “owners-as-dominators” approach also has its downside. One particular

problem occurs when one wants to implement design patterns such as iterator [BRZ07].

Basically, an iterator needs to be both inside and outside of the collection it represent.

However, this is hard to implement with the “owners-as-dominators” approach, as it has

to be either inside or outside, to preserve the ownership structure. One proposal is to use

an inner class to provide special privilege for the objects in the same module [BSBR03],

even though the object of inner class may not be owned by outer object. The idea of using

inner class has been further developed into Tribal Ownership [CNW10], where families of

classes are used solely to define ownership structure. The advantage of this is that the

burden on programmer to add ownership annotations is totally eliminated. The author

also described how to implement the traditional “owners-as-dominators” and “owners-as-

modifiers” mechanism in this system.

Different from “owners-as-dominators”, one may allow an object be referenced by another

object, as long as the other object doesn’t modify it. This approach is called “owners-as-

modifiers” [MPH00]. A special any annotation is used in this approach, which is similar to

readonly [MPH00, KT01]. It is especially useful in the iterator design pattern, in which the

iterator can refer to a collection’s internal elements as long as it doesn’t modify them. Uni-

verses [DM05] extends the above system with Java-like generics [BML97]. Müller and Rudich

further extend their work by enabling ownership transfer between different objects [MR07].

Ownership Domains [AC04] is a further attempt on acquiring a balance between safety
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and expressiveness. Unlike the work described above, which impose a fixed structure on the

objects, Ownership Domain separates the aliasing policy from ownership mechanism. Specif-

ically, inside an object, multiple domains are declared to represent different encapsulation

level on the objects. A link may be established between domains to grant one access to the

other.

2.3 Others

Clarke and Wrigstad combines both uniqueness and ownership type with a concept called

external uniqueness [CW03]. The key idea is that, to ensure an object’s uniqueness, it is

enough to only guarantee one reference from outside to it, while multiple references from

inside the object to itself are allowed. This is useful, for example, when one wants to

assign this to some other internal structure. With destructive reads, this is unique, and

therefore will be consumed after use. With external uniqueness, multiple references to this

can co-exist since they are all internal to the object. A unique reference may be moved

to another scope, or be borrowed. In the former case, a movement bound is specified to

ensure the ownership structure is not broken after moving. In the latter case, destructive

read is applied first, and then the final contents of the borrowed variable are restored after

the borrowing is done. Haller and Odersky later designed and implemented a simple type

system which uses capabilities to model uniqueness and borrowing [HO10]. Their system

offers a slightly more strict version of external uniqueness, that is more suitable in a setting

of message-based concurrency. Atomic operations are offered for transfering unique values

and merging unique values.

External uniqueness offers a good unification between uniqueness and ownership types.
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However, it is still suffers from restriction on the owner-as-dominator structure. For instance,

a collection may have multiple iterators linked to it. This is hard to represent in external

uniqueness as only one reference from outside is allowed.

An effect system [Luc87] also provides another important tool for handling aliasing [GB99].

Boyland discussed the inter-dependence between uniqueness and effects, and reasoned about

the necessity of unifying both inside one system, as was done in his later works [Boy03, BR05].

In a different direction, Clarke and others combine ownership type and effects [CD02], which

is similar to the work before, with the addition of annotating effects on owner targets.

Lu and Potter designed a type system [LP06] based on effect encapsulation, instead of

object encapsulation. In addition of ownership parameters on fields, methods are anno-

tated with effective owners, which describe what fields they are allowed to generate effects

for. Compared with fractional permission discussed above, it is more restrictive, with the

advantage that less annotation is needed.

2.4 Difference of Our Work

Our work, as shall be introduced later, is very different from all the above work, in the

following aspects:

First, while all the type systems proposed above are independent, and standalone, ours

is directly built on top of another more powerful one, i.e., the fractional permissions system.

The base system provides a foundation for us to explore the semantic meanings of various

annotations, and use this information to design more efficient type system. Second, most of

the previous works use natural language proofs. Instead, we provide mechanized proofs for

our type system, which can provide much more confidence for correctness. Moreover, one
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distinguishable feature is the way we used to prove the soundness: we reduce the proof of

the simpler system to that of a more powerful system. This approach, as far as we know, is

new for proving type soundness of an effect system.

Third, all the previous work only use a single type system for checking the program.

Instead, we use multiple type systems for this purpose. By making the process layered, we

believe the type checking can be much more efficient, as most parts of the program should

be handled rather quickly by the lightweight checker, and only a small part of the program

needs to utilize the heavyweight permission checker.
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Chapter 3

Fractional Permissions

In this section we introduce the Fractional Permission system. For a more formal presenta-

tion, readers are encouraged to [Boy03, BR05, BRZ09].

In Sec 3.1, we introduce permission logic with nesting. In Sec 3.2, we introduce a Java-

like kernel language for reasoning about concurrent imperative programs. In Sec 3.3, we

introduce a permission type system for the kernel language, and how the type system is

proved using mechanized proofs. In Sec 3.4, we discuss the existing implementation based

on permission type system, and its limitations.

3.1 Permission Logic

Fractional permissions are used to manage access on mutable states. Generally speaking,

each piece of mutable state is associated with a fraction number in the range of (0, 1], with 1

representing the full access, including both read and write, to the state. Any other fraction,

no matter how small it is, represents only read access to the state.
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The most basic permission is a field permission:

o.f → o′

This represents the full access to field f of object o. Additionally, it gives information that

f currently refers to object o′. Permissions (in contrary to formulae, which will be introduced

below) are linear : one can only scale permissions, but not duplicate them. Otherwise, a

change of field value on one permission would invalidate the other.

To obtain “fractional permission”, one can scale any permission by a positive number.

For instance, from the above we have:

o.f → o′ ≡ 1

2
(o.f → o′) +

1

2
(o.f → o′)

This can roughly be read: a whole permission for field f in object o is equivalent to

two half permissions for it. In general, a read permission has the form ξ(o.f → o′), while

0 < ξ ≤ 1. Sometimes, the object and the fraction may not yet be known, in which case

we shall use variable r and z to represent them respectively. For instance, a permission

zr.f → r′ represents a read permission for the field r.f , although the object r and r′, as well

as the fraction z, remain unknown.

Notice the “+” operator above: permissions can be combined together, and a compound

permission give one both accesses through its component permissions.

In many cases we may need to pack a base permission to obtain its existential form (for

instance, as part of a class invariant). This is written:

∃r · (ρ.f → r + Π) where ρ 6= r

where Π is a permission may or may not use r. One example for the above general form

is ∃r · (o.f → r+r.g → o′). This gives write access to o.f , where the field points to an object

r for which we have access to its field g, which currently points to another object o′.
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ρ ::= o | x literal reference, variable

ξ ::= q | z literal fraction, variable

k ::= ρ.f field f of object at ρ

Π,Ψ ::= permission:

v variable

k → ρ field

∅ empty

Π + Π combined

ξΠ scaled

Γ formula

∃r · (k→r + Π) existential

Γ ? Π : Π conditional

Ψ −+ Π implication

Γ ::= formula:

> true

¬Γ negation

Γ ∧ Γ conjunction

ρ = ρ comparison

Ψ ≺ k nesting

p(X) predicate call

∃x · Γ existential

x ::= r | z | v any variable

X ::= ρ | ξ | Π any variable value

P ::=
{
p(x) = Γ

}
predicate definitions

σ ::=
[
x 7→ X

]
substitution

Figure 3.1: Syntax of Permissions and Formulae.

A “null” pointer exists in many systems (albeit refereed to as a “billion-dollar mistake” by

C.A.R Hoare, its inventor) as a pointer to no object. In permission logic, we represent a null

object using the special symbol 0, and use formula r = 0 to represent the fact that object r

is null. Since accessibility only makes sense to those non-null references, we use conditional

permission to represent this:

r = 0 ? ∅ : r.f → o

If r is null, we have no permission (∅). Otherwise we have the write permission for field f
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of r. In general, the conditional part here can be any formula, which is defined by grammar

in Fig. 3.1.

Before introducing the last form of permission, we shall take a break and introduce the

various forms of formula first. In the permission logic, formula represents “facts” that are

known to be true. Most of the formulae in the system are standard, except nesting relation,

which is written:

Π ≺ ρ.f

This means the permission Π is available whenever one has permission for accessing field

ρ.f . Nesting is useful for modeling ownership and abstraction: a permission such as o.All→ 0

expresses the direct access to the “All” field, which is a default data group [Lei98, GB99,

LPHZ02], of object o. Also, it (indirectly) grants permissions which are nested inside “All”

field. Hence, all the other permissions are treated as if they are “owned” by the permission

for “All” field, which is similar to the idea of “adoption and focus”, proposed by Fähndrich

and Deline [FD02]. Another default data group is “Owned”, which is for express the idea of

object ownership [CPN98]. A permission o.Owned→ 0 gives access to the data group which

contains all objects that o owns. The “Owned” data group is also nested inside “All” data

group.

The last form of permission is permission implication Π1 −+ Π2, which, if given Π1,

can be combined and produce permission Π2. For this case, we call Π1 is encumbered in

permission Π2. The permission itself is not useful, except recording the information that Π1

is “carved” out Π2, and need to be restored by applying the linear modus-ponens rule before

Π2 can be reused.
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e ::= o | x | new (f) | e.f | e.f:=e | let x=e in e |
if c then e else e | while c do e | m(e)

c ::= true | not c | c and c | e == e

d ::= m(x) = e procedure definition
g ::= d;...;d program
µ ::=

[
o 7→ [ f 7→ o ]

]
memory

Figure 3.2: Syntax of Kernel Language (omitting concurrency).

3.2 Kernel Language

In this section we describe a Java-like kernel language for reasoning about concurrent im-

perative programs.

The kernel language is first described in [Boy09]; Fig. 3.2 shows the single-threaded subset

of this language. We also intend to handle the full multi-threaded feature of this language,

but this still remains a future work at this time.

The expressions, in order, are object literals, variables, allocation, field reads and writes,

local bindings, procedure calls, conditionals and loops. The language has separate syntactic

kinds for expressions and conditionals, although since equality tests include expressions, side-

effect are possible in conditionals as well as in expressions. The language does not include

primitive arithmetics and dynamic dispatch, as neither of these affect aliasing or threading.

Evaluation is of the form:

(e;µ)→g (e′;µ′)

which reads: a expression e, in context of memroy µ, can be evaluated to expression

e′, with a (perhaps) changed memory µ′, under “program” g, which is a set of procedure

definitions.
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α ::= ∀r∀∆ Π→ ∃r0∃∆′ Π′ procedure type

ω ::= {m 7→ α} program type

Figure 3.3: Procedure and Program Types

Ignoring concurrency, evaluation of a thread can only get stuck if one of the following

cases happens:

1. Calling a non-existent procedure;

2. Calling a procedure with the wrong number of parameters;

3. Reading or writing a field on an object not (yet) allocated;

4. Reading or writing a field on an object that does not have it;

3.3 Permission Type

In this section we briefly introduce a permission type system [BS11] built on the kernel

language.

Procedures in programs are assigned procedure types (see Fig. 3.3); these are used to

check if a program is well-typed. A procedure type has universally quantified variables

for its input variables (including a distinguished series of object variables for parameters)

in the input permission Π, and existentially quantified variables for the output variables

(including one distinguished variable for result value) that may additionally appear in the

output permission Π′.

The typing rules are shown in Fig. 3.4 and Fig. 3.5. The relation (Π `ω e ⇓ ρ a ∆′; Π′)

reads: in the environment E = (∅; Π), the expression e will (if it terminates) evaluate to
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Literal
Π `ω o ⇓ o a ∅; Π

Alloc

Π `ω new (f) ⇓ r a r; r.f → 0 + Π

Let
Π1 `ω e1 ⇓ ρ1 a ∆2; Π2

∀∆2 Π2 `ω [x 7→ ρ1]e2 ⇓ ρ′ a ∆′; Π′

Π1 `ω let x=e1 in e2 ⇓ ρ′ a ∆2,∆
′; Π′

Read
Π `ω e ⇓ ρ a ∆′; ξρ.f → ρ′ + Π′

Π `ω e.f ⇓ ρ′ a ∆′; ξρ.f → ρ′ + Π′

Write
Π1 `ω e1 ⇓ ρ1 a ∆2; Π2

∀∆2 Π2 `ω e2 ⇓ ρ2 a ∆′; ρ1.f → ρ′ + Π′

Π1 `ω e1.f=e2 ⇓ ρ2 a ∆2,∆
′; ρ1.f → ρ2 + Π′

Cond
Π `ω c ⇓ Γ a ∆0; Π0

∀∆0 Γ + Π `ω e1 ⇓ ρ′ a ∆′; Π′ ∀∆0 ¬Γ + Π `ω e2 ⇓ ρ′ a ∆′; Π′

Π `ω if c then e1 else e2 ⇓ ρ′ a ∆0,∆
′; Π′

Figure 3.4: Permission Typing Relations Part 1
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an object reference or variable ρ in the new environment E ′ = (∆′; Π′), where ∆ is a set of

variables.

In a slight abuse of notation, we write ∀∆D as a short-hand for ∀σ:∆→∅σD: it means that

D should be true no matter what binding the variables in ∆ have.

In Fig. 3.4, the Literal rule types an object (o) as itself , and returns the same set of

permission (Π) with no new variables (∅).

The Alloc rule allocates an object with the given set of fields and in the result adds a

unit permission for each field of the new object which is assigned the name r in the context.

The rule Let first types e1, and then use the result to type e2. When typing e2, all

occurrences of variable x are replaced with the result value from typing e1. The result

variables are the union of output variables from both e1 and e2.

Rule Read specifies how reading a field is typed. In this case, the expression e needs to

be well-typed, and the result permissions must contain the permission for reading the field

(ξρ.f → ρ′ + Π′).

Next, rule Write specifies how writing a field is well-typed. In this case, both expression

e1 and e2 need to be typed, consecutively. Unlike Read, the result permissions for checking

e2 must contain the whole permission (ρ.f → ρ′+Π′) for the field, since it is a write operation.

The result value is the same value after typing e2.

In rule Cond, for a conditional expression to be typed, first the conditional part (c) needs

to be typed. Then, to check both branches, the “then” branch can assume the condition is

true, while the “else” branch can assume it is false. Both branches are required to produce

the same result value, set of variables and set of permissions. This can be done through

applying the Transform rule. Also, notice that here conditional expressions can include

side-effects as well, so they also need to be evaluated to formulae, which can then be used
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for checking the branches.

The second part of the rules are in Fig. 3.5. The rule Loop types a while loop expression.

It uses permission transformation to establish an invariant (∆; Π), and also re-establish it

after the body is evaluated in each iteration. Similar to Cond, the conditional part is typed

and the result formula is included in the input permissions for typing the loop body.

In rule Call, to type a procedure call, first each of its actual parameters must be

typed with the input permissions. Then, the procedure m is required to be well-typed.

The permissions after typing all the arguments (Πn) should be able to be splitted into the

required permissions for typing the method body (σΠ) plus the rest of the permissions

(Π′′). The result permissions are the declared output permissions for the method (σΠ′) plus

the permissions Π′′. Note that here we need to substitute each actual parameter with the

corresponding formal parameter, using σ.

The rule Transform specifies how to change the input and out permissions for typing

an expression. This is useful for other rules such as Cond and Loop.

Lastly, there are rules for conditional expressions. Rule True types the literal true to

be the formula true. No change on permissions for this case. In rule Not, the conditional

expression c must be typed, and the result is the negation of its output formula. For And,

both sides of the expression must be typed consecutively with the input permissions, and the

result formula is the conjunction of formulae after typing each of them. For Eq, expressions

from both sides need to be typed consecutively and the result formula is the object equal

relation between the result values for both sides.

Figure 3.6 defines a well-typed program: the body of each procedure can be typed using

its procedure type.
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Type soundness says that programs that permission check execute without errors. Execu-

tion depends on memory, but permission checking depends on permissions. The connection

between the two is called “consistency” and depends on a “fractional heap” [Boy10b] to

connect the two.

3.4 Implementation

In this section we briefly describe the current implementation of fractional permission on

Java; a detailed introduction is in Retert’s PhD thesis[Ret09]. The implementation is built

upon Fluid project [GHS03] (see Fig. 1.1 for sample annotated code), which provides a

framework for various program analyses. The tool does not let user to specify fractional

permissions directly. Instead, annotations for uniqueness, data groups and method effects

are supported on input programs. These are then translated to permission semantics and

checked by the tool.

The permission analysis is implemented as a control-flow analysis. At bottom level, there

are two basic lattices: one for locations and one for abstract fractions. A base permission

(ξk → ρ) is therefore implemented with two distinct mappings, one for each lattice, and a

pair of map lattice represents the collection of all base permissions. Linear implication can

also be implemented in a similar way, as a mapping from consequent to the set of all keys

for permission carved out of it.

To simulate Java evaluation at low level, the transfer function also needs to handle stack

operation. This is done by a stack lattice, whose elements are location lattices. The join

operation is defined only between stacks of same height. Otherwise, the analysis will throw

an exception.
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Loop
∅; Π1  ∆; Π

∀∆ Π `ω c ⇓ Γ a ∆′; Π′ ∀∆,∆′ Γ + Π′ `ω e ⇓ ρ a ∆′′; Π′′ ∆,∆′,∆′′; Π′′  ∆; Π

Π1 `ω while c do e ⇓ 0 a ∆,∆′;¬Γ + Π′

Call
Π0 `ω e1 ⇓ ρ1 a ∆1; Π1

∀∆1 Π1 `ω e2 ⇓ ρ2 a ∆2; Π2
...

∀∆1,...,∆n−1 Πn−1 `ω en ⇓ ρn a ∆n; Πn

ωm = ∀r1,...,rn∀∆Π→ ∃r0∃∆′Π
′ σ : {r1, . . . , rn} ∪∆ 7→ ∆1, . . . ,∆n ∀i σri = ρi

Πn = σΠ + Π′′ (∆1, . . . ,∆n) ∩ (r0,∆
′) = ∅

Π0 `ω m(e1,. . .,en) ⇓ r0 a ∆1, . . . ,∆n, r0,∆
′;σΠ′ + Π′′

Transform
∅; Π1  ∆2; Π2

∀∆2 Π2 `ω e ⇓ ρ a ∆3; Π3

∀o ∆2,∆3; ρ = o+ Π3  ∆4; ρ′ = o+ Π4

Π1 `ω e ⇓ ρ′ a ∆4; Π4

True
Π `ω true ⇓ > a ∅; Π

Not
Π `ω c ⇓ Γ a ∆′; Π′

Π `ω not c ⇓ ¬Γ a ∆′; Π′

And
Π0 `ω c1 ⇓ Γ1 a ∆1; Π1

∀∆1 Π1 `ω c2 ⇓ Γ2 a ∆2; Π2

Π0 `ω c1 and c2 ⇓ Γ1 ∧ Γ2 a ∆1,∆2; Π2

Eq
Π0 `ω e1 ⇓ ρ1 a ∆1; Π1 ∀∆1 Π1 `ω e2 ⇓ ρ2 a ∆2; Π2

Π0 `ω e1 == e2 ⇓ ρ1 = ρ2 a ∆1,∆2; Π2

Figure 3.5: Permission Typing Relations Part 2

{r} ,∆, {r0} ,∆′ pairwise disjoint ∀∆,r (Π `ω [x 7→ r]e ⇓ r0 a r0,∆
′; Π′)

`ω m(x) = e : ∀r∀∆ Π→ ∃r0∃∆′ Π′

`ω m(x) = e : ωm

`ω m(x) = e OK

Figure 3.6: Well-Typed Procedures and Programs
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Other than base permissions, formulae need to be represented too. In the implementation,

there are three types of facts: object equality, object inequality, and nesting relation (some

key is nested in another key). All these are kept in a set representing the conjunction. The

join operation is intersection. For a if expression, the condition can be kept as a fact in the

true branch, and its negation in the false branch. Both are dropped when the branches join.

Disjunction is also implemented too, to represent facts like a location for a local variable

may equal to multiple other locations. The downside of this, however, is algorithm efficiency;

the number of disjoined elements is linear to the number of merges. Therefore, if program

has complex control flow, the analysis sometimes will take 10-30 minutes to finish [Ret09].

Existential and conditional permissions are left out by the implementation.
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Chapter 4

A Non-Null Type System

In this chapter, we will describe the type system and show how its soundness can be proved

by reduction to fractional permissions. In Sec. 4.1, we discuss the motivation for design a

nonnull type system based on fractional permissions. In Sec. 4.2, we introduce the nonnull

type system. In Sec. 4.3, we show how the soundness of the nonnull type system can be

proved.

4.1 Motivation

To show that we can indeed piggy-pack the proof of one type system onto that of another

(in this case, the fractional permission type system), and also to get familiar of writing proof

in the Twelf language. As a pilot study, I first designed a simple non-null type system, and

proved its correctness using the piggy-packing approach [BS11]. The proof are all done in

Twelf and can be checked under version 1.5R3. This is used as a basic foundation for our

later proof for the more complex conservative type system.
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4.2 The Type System

Our target language uses the same syntax as the kernel language defined in Chap. 3. However,

since the latter is sequential, and we need constructor to establish the non-null invariant,

several extra structures are defined, which shall be explained below.

To simplify the proof, in our non-null system, each class is encoded as a collection of

fields, with exactly one constructor for initializing them. All the procedures are global. For

constructor, the first parameter is the newly allocated object. We can also easily model

methods as procedures by marking the first parameter implicitly as the receiver.

The typing rules for the non-null type system are shown in Fig. 4.1. As can be seen,

each reference type in the system is augmented with additional information of whether the

reference is not null or possibly null. Following Fähndrich and Leino [FL03], we denote the

former with c− and latter with c+, while c is the class identifier. We also use the notation

cε to denote a type where the nullness is represented by the variable ε. In addition, we use

a special Null type for the reference whose value is exactly null (which we will use 0 to

represent).

There are several environments used in the typing rules. A class map (C) is a map from

class identifiers to their field maps, a procedure map (M) is a map from procedure identifiers

to their types, a field map (F ) is a map from field identifiers to their types, a (E) is a map

from local variables to their types.

C ::= ε | C, c : F (c is the class identifier)

M ::= ε | M,m : (cε11 , . . . , c
ε1
n )→ cε

F ::= ε | F, f : cε

E ::= ε | E, x : cε
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We denote E(x) = cε for the same meaning as x : cε ∈ E. This also applies to C, M ,

and F . The lookup for E always start from the rightmost element. Also, in a slight abuse

of notation, we use C(c)(f) = cεf to mean C(c) = F and F (f) = cεf .

Before going further, there are some details need mentioning. First, in fractional permis-

sion system, invariants are established through nesting, In our non-null system, we simply

assume every field is shared (that is, in terms of ownership, belongs to the world). In

permission syntax, suppose a field f is inside a object o, and is pointing to another object

o′, it can be written as follow:

(∃r′ · r.f → r′ + p(r′)) ≺ 0.Owned

where p is the class predicate for field f . Here we use 0 to encode the “world” object. As

mentioned before, the Owned region is used to model object ownership. Note that, here for

simplicity, we nest each field permission inside the Owned region directly, instead of in the

All region first. This would have no affect on the proof since everything is shared in the

system.

Second, for every procedure, the input permission is always 0.Owned → 0, and the

output permission is the same plus the permission for return value. In terms of effect

notation [BRZ09], the input permission can be expressed as “writes shared”, which

grants the annotated method privilege to write field that is shared.

Since the system does not have inheritance, we do not need to consider the “rawness”

problem [FL03]. To avoid leaking a partially constructed object, constructor in the system

is syntactically restricted; the body of the constructor must be a sequence of assignments to
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Var
E(x) = cε

C;M ;E ` x : cε

Null

C;M ;E ` 0 : Null

Read
C;M ;E ` e : c− C(c)(f) = cεf

C;M ;E ` e.f : cεf

Write
C;M ;E ` e1 : c−1 C;M ;E ` e2 : cε2

C(c1)(f) = cε2

C;M ;E ` e1.f=e2 : cε2

Let
C;M ;E ` e1 : cε1 C;M ;E, x : c1 ` e2 : cε

C;M ;E ` let x=e1 in e2 : cε

Cond
C;M ;E `b b C;M ;E ` e1 : cε C;M ;E ` e2 : cε

C;M ;E ` if b then e1 else e2 : cε

Loop
C;M ;E `b b C;M ;E ` e : cε

C;M ;E ` while b do e : Null

NotNull
E(x) = c+

0 C;M ;E, x : c−0 ` e1 : cε1 C;M ;E ` e2 : cε1

C;M ;E ` if not x==0 then e1 else e2 : cε1

Sub
C;M ;E ` e : cε00 cε00 <: cε11

C;M ;E ` e : cε11

Call
M(m) = (cε11 , . . . , c

εn
n )→ cε C;M ;E ` ei : cεii

C;M ;E ` m(e1,. . .,en) : cε

Eq
C;M ;E ` e1 : cε00 C;M ;E ` e2 : cε11

C;M ;E `b e1 == e2

Not
C;M ;E ` e : cε

C;M ;E ` not e : cε

And
C;M ;E `b b1 C;M ;E `b b2

C;M ;E `b b1 and b2

Figure 4.1: Non-null Typing Rules
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the fields of this class, followed by returning the special this (the first parameter) reference.

The special variable this can only appear on the left-hand-side of each assignment, thus

the object will not be used until its invariant is fully established. We also restrict through

typing rules that each non-null field has to be assigned inside constructor body. Therefore

we must treat constructor as a special syntactical construct, and prove extra theorems about

it.

The most interesting clause in the type system is NotNull; the typing rule has added

assumption that x is not null in the else part. In this case, the syntactic construct offers

a narrowing operation on a type.

In our Twelf realization for the non-null system, we use the map signature defined in

previous work [Boy10a] for all the environments. Each class identifier is represented by an

unique natural number, as are methods and fields. In addition, inside M , the constructor

shares the same identifier as the class. We also need to ensure each map is consistent with

the others (for instance, each class identifier used in some type should also exist as an entry

in C). These restrictions are enforced by a series of consistency relations.

4.3 Converting to Fractional Permissions and Soundness

Having the class structures defined, we need to convert them to fractional permissions. The

most important part of this process is to construct a predicate for each class in C. The

predicate for object o of class C has the form:

p(o)
def
= (∃ρ1 · (o.f1 → ρ1 + Π1) +

. . .+ ∃ρn · (o.fn → ρn + Πn)) ≺ 0.Owned
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where Πi for reference ρi has the form:

Πi =


ρi 6= 0 + pi(ρi) ρi is not null

ρi 6= 0 ? pi(ρi) : ∅ ρi is possibly null

While realizing this in Twelf, we first tried to construct predicate for each class on ad-hoc.

However, as we found out later, this approach did not work, since each class predicate is

not equivalent to its unfolded version in permission logic (in other words, it is iso-recursive).

In our second approach, we construct class predicates all at once, and store them inside a

special predicate map, which is defined as follow:

P ::= ε | P, c : p(x) (c is the class identifier)

where p is the predicate for class c. Specifically, when constructing the predicate for a partic-

ular class, we first bind the class with a variable, and then use it to construct permissions for

its field map. The algorithm is similar to a depth-first-traversal on class structure. After all

the classes of the enclosing fields are seen, it replaces the predicate variable with the actual

one, then the algorithm moves on to the next unseen class in C.

Once the predicate map is constructed, the conversion for type environment E is straight-

forward. The conversion of procedure map M to program type ω is a simple iteration; for

each procedure type (c1, . . . , cn)→ c, we convert it to a procedure type α, where α is:

∀x1, . . . , xn (Π1 + . . .+ Πn + 0.Owned→ 0)

→ ∃xt (Πt + 0.Owned→ 0)

where Πi is the converted permission for type ci.

The soundness of the non-null type system depends on the following result: for each

expression e in the kernel language, if e is well-typed and has type t in non-null type system,
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with consistent environments C, M , and E, then after converting these environments to P ,

ω, and Π, respectively, e is also well-typed under permission type system, with ω and input

permission Π. In addition, the output permission is Π + Π′, where Π′ is the permission for

type t, converted from t by using P . This is proved by case analysis on all the possibly forms

of expression e. For a conditional b, a similar property is proved via mutual induction.

Take the Write rule as a example, to show e1.f=e2 is well-typed under the permission

type system, we first need to use induction to get the assumption that e1 and e2 are well-

typed. For e1, since it is not null, the output permission Π2 is

ρ1 6= 0 + p1(ρ1) + Π1

where p1 is the predicate for class c1. For e2, the above permission is the input of permission

typing rule, therefore we need to use the frame rule first. Depending on e2’s type, the

permission varies. Here, assuming e2 is not null, then the output permission is:

ρ1 6= 0 + p1(ρ1) + ρ2 6= 0 + p2(ρ2) + Π1

where p2 is the predicate for class c2.

To convert this output to something like ρ1.f → ρ′ + Π′, we need to have the field

permission carved out from 0.Owned → 0 in Π1. Then, the permission will be transformed

to:

∃ρ′ · (ρ1.f → ρ′ + pf (ρ
′)) +

∃ρ′ · (ρ1.f → ρ′ + pf (ρ
′)) −+ 0.Owned +

ρ1 6= 0 + p1(ρ1) + ρ2 6= 0 + p2(ρ2) + Π′1

where Π′1 is Π1 without 0.Owned→ 0. We can then get the form by unpacking the existential.
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The final step is to transform the output permission of consequence to the right form.

Since we have ρ1.f → ρ2 and p2(ρ2), we can pack them again to existential form, and use

linear modus ponens to get the permission 0.Owned → 0 back. Also, extra formulae, like

ρ1 6= 0 and p1(ρ1), are discarded. For the case that e2 is possibly null, the proof is similar.

Given the above result, the well-typedness of methods is straightforward. However, con-

structors need extra attention; for each constructor, the input field permission is raw, and

needs to be packed depending on its non-null type. Also, since not-null fields are guaranteed

to be assigned in constructor body, we need to filter them out and construct the permission

accordingly. This is done by classifying fields into disjoint sets, with separate relations de-

scribing properties about them. As “output” for the theorem, all fields are packed and the

class invariant is established.

With the above works done, the soundness theorem is as follow:

soundness For every program g in the kernel language, if g is well-typed under consistent

environments C and M , then with the converted program type ω, g can also be type

checked under the fractional permission system.

the proof of this theorem is basically iterating over all procedures in the program, and use

the above proof of well-typedness for either method or constructor. Being able to prove it,

we showed not only that non-null types can be re-expressed using fractional permissions, but

also that an entire type system can be reduced to fractional permissions.
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Chapter 5

The Conservative Type System

In this section we formalize the conservative type system. Unlike the nonnull type system

in Chap. 4, this system also handles annotations for uniqueness, borrowed, and shared.

Unlike the system defined in previous work [GB99, Ret09], the method effects are declared

through the borrowed annotation. Also, this system does not distinguish between read and

write effects. Handling the distinction is left to future work since on the permissions level,

fractions need to be treated separately, and is a complication that obscures the interesting

issues that arise even without the distinction.

In the following, Sec. 5.1 describes the syntax for the language we used for this type

system, as well as some constructs used in the type rules; Sec. 5.2 describes the concepts of

targets, sources and capabilities; Sec. 5.3 describes the main type rules for the system, and

explain some of the design decisions; Sec. 5.4 demonstrates some simple examples that are

either rejected or accepted by the conservative type system.
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P ∈ Program ::= defn

defn ∈ Class ::= class cn { field constr meth }

field ∈ Field ::= α τ f

meth ∈Method ::= α τ mn(α τ x) α { e }

constr ∈ Constructor ::= cn(α τ x) { e }

e ∈ Expr ::= x | null | e.f | e.f = e

| let x = e in e | (e;e)

| if(b) then e else e | while (b) do e

| new c(e) | e.mn(e)

b ∈ BoolExpr ::= true | not b | e==e | b and b

α ∈ Annotation ::= unique | shared | borrowed(f)

ε ∈ Nullness ::= notnull | nullable

τ ∈ Type ::= ε c

Figure 5.1: Syntax
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5.1 Syntax

The syntax for the kernel language used for the conservative type system is shown in Fig. 5.1.

For the purpose of better explanation, a slightly different language is used here from the one

in previous chapters. The differences are mainly:

• The language is more high-level, and has explicit class, field and method declarations.

• Beside annotations for nullness, the language also has annotations for uniqueness and

method effects. Note that Retert’s thesis does not handle nullness [Ret09]. We included

it here because 1) it is relatively easy to do because of the pilot study work described

in Chap. 4; 2) conversion to fractional permissions requires the knowledge of nullness

for a variable.

In the Twelf realization, the language is modeled using the same kernel language defined in

Chap. 3 and Chap. 4. For instance, methods are modeled with procedures, of which the

first parameter is reserved for this. Classes, fields and methods are modeled using various

environments, such as class map, field map and method map. This is similar to what we did

in Chap. 4.

On the top-most level, a program P is simply a collection of class declarations. Each

class is represented by a collection of field, a constructor declaration, followed by method

declarations. Since inheritance is orthogonal to the aliasing problem, for simplicity, it is not

included in this language.

A field declaration includes an annotation as well as the type and name of the field. The

annotation consists of two parts: the uniqueness and the nullness information. Uniqueness

is specified as either unique or shared. As stated before, unique means the field should

be the only reference to the object it refers to, while shared imposes no restriction on the
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number of aliases. Similar to the type system in Chap. 4, the nullness information is also

attached to a field declaration. A field can be declared as either notnull, which indicates

the field should never be null, or nullable, which indicates it could possibly be null.

For a class, all of its not-null fields are required to be initialized in the constructor. For a

possibly-null field, it may or may not be initialized. In the latter case, it defaults to null.

In this thesis, we use τ to represent a type variable, which is a nullness variable ε followed

by a class identifier c. We also call α τ an annotated type.

Methods are defined in a similar way as in Java, except that each method parameter

is prefixed with an annotation α, as well as a nullness ε. Unlike Java, a method receiver

also has an annotation, which appears after the method parameters. Before checking the

method body, according to the specific annotation, a set of input and output capabilities

(which shall be described in the next section) are generated for each method parameter and

the receiver. Note that, unlike the type system defined in Retert’s thesis [Ret09], method

effects are declared as part of the borrowed annotation in this type system. We shall discuss

this further in the next section.

A constructor is treated as a special kind of method. First, its name should be the

same as the class name that it belongs to. Also, its body must be a sequence of field

assignments, followed by the this expression. In the field assignments, the special variable

this cannot occur on the right hand side of any of the assignments, to avoid leaking a

partially constructed object. A constructor, unlike a method declaration, does not have

return value and annotation for receiver; inside a constructor body, one is able to write any

field for the newly allocated object. The type rule for constructor also guarantees that all

not-null fields are properly initialized.

The following is a simple example for a constructor in the kernel language:
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class A {

unique notnull B b;

unique nullable C c;

A(unique notnull B b1) {

this.b = b1;

this

}

}

Here the field b is initialized in the constructor, using the unique parameter b1; field c

defaults to null.

Expressions are, in order, local variable access, null, field reads and writes, “let” expres-

sion, sequence, “if” expression, while loop expression, method call and object creation. A

sequence expression (e0;e1) is essentially a syntax suger for let _ = e0 in e1, but we list it

here separetely just for convenience. A sequence expression is also treated in a special way

by the type system, which will be described in Sec. 5.3.

The language also has boolean expressions, which are used in conditionals. The boolean

expressions are, in order, true, negation, expression comparison and conjunction.

Annotations for a type can be unique, shared or borrowed(f). For unique and

shared, they have the same meaning as stated before. Also, borrowed(f) is restricted to

be used on method parameters (including method call receivers).

41



5.2 Targets, Sources and Capabilities

This section introduces the concepts of targets, sources and capabilities, which are essential

components to the type system. Their definitions are shown in Fig. 5.2. In the type system,

sources represent where a value comes from, while targets represent all the sources for a

unique value. Capabilities represent the ability to access a value.

ρ ∈ Target ::= x | x.f | s-tgt | f-tgt

ψ ∈ Targets ::= · | ψ, ρ

κf ∈ FieldCapabilities ::= · | κf , x.f • | κf , s-tgt•

κo ∈ ObjectCapabilities ::= · | κo, x

κ ∈ Capabilities ::= (κf , κo)

β ∈ Sources ::= shared | ψ

Figure 5.2: Targets, Sources and Capabilities

The main type rule is of the format:

P ;E;κ1 ` e : (τ, β) a κ2

This is read: in program P , given environment E and input capabilities κ1, expression e has

type τ , and sources β. The type checking also produces output capabilities κ2. Capabilities

appear both as input and output. In the former case it means all the capabilities that can be

used to check the expression e, and in the latter case it means all the remaining capabilities

after checking e.

Because capabilities appear both as input and output in the type rule, the system is flow-

sensitive. I initially thought about a flow-insensitive effect system, which may be simpler.
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class Node {
unique nullable Node next;
shared nullable Object data;

Node(shared nullable Object d, unique nullable Node n) {
this.next = n;
this.data = d;

}

void append(unique notnull Node m, unique notnull Node n)
borrowed(next) {

let x = if (...) then m else n in
x.next = this.next;
this.next = x;

null
}

}

Figure 5.3: A Motivating Example

However, the linear nature of the problem means that the effect system is very restrictive.

For instance, we need to know whether a unique value is used before or after it is consumed,

or whether a unique field is consumed before or after the field’s uniqueness is restored.

When compared to the fractional permission system, even with the flow-sensitive nature,

the current type system is still much more lightweight. This is because operations on capabil-

ities are much simpler than those on fractional permissions. In fractional permissions, there

are different forms of permissions, such as conditional permissions, field permissions with

fractions, encumbered permissions, formulae, etc., and operations are complex to transform

these permissions from one format to another, for instance, carving out one permission from

another, or split one read or write permission into several read permissions, and so on. In

contrast, the operations on capabilities and targets are very limited: operations on them are

essentially set operations such as add and remove.

Let us consider example:

In the method append, depending on the result of evaluating the condition part for the
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“if” expression, let-bound variable x could either equal to m or n. In the let body, x.next is

first assigned the unique value of this.next, and then the unique value of x is consumed

as effect of being assigned to this.next. The ordering of the two expressions in the let

body is important: if we swap the two expressions, then it would no longer be valid, since

after consuming x, its next field can no longer be written.

In order to check this method, the type system needs to track information about the

variable x. Specifically, it needs to know that x could be either m or n, and that when

executing the first expression in the let body, the uniqueness of x is not compromised.

Also, the type system should record that the variable is no longer unique after the second

expression, and therefore guarantees that it is not accessed as a unique variable afterwards.

In the conservative type system, we use two key concepts to track the above information.

A target is used to track the information of where a value comes from, and a capability is

used to track whether one can access a particular value.

A target, denoted with ρ, is used to track where a unique value could come from. By

saying that a value comes from a target ρ, it means that the only access path to that value

is through the object represented by the target. And, in order to access the unique value,

one needs to hold the capability on ρ. The concept of capability shall be introduced shortly

after.

In the type system, there are four different kinds of unique targets:

• x, referred as object target, represents that the unique value it is associated to could

be an alias to the local variable x.

• x.f , referred as a field target, represents that the unique value could come from x.f ,

where x is a local variable, and f is a field identifier.
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• s-tgt, referred as a shared target, indicates that the variable comes from a shared

object. That is, the variable refers to a unique field of a shared object.

• f-tgt, which is referred as a fresh target, indicates that the value could come from a

fresh object, which is either a newly allocated object or a returned value from a method

call. For fresh target, there is no corresponding capability.

In the case of shared target, it means the value could be accessed from some shared object,

and hence the accesses could potentially come from different places. In the case of fresh

target, it means the access comes from some local object. A value from a fresh target

is guaranteed to be only used once (e.g., appear on the right hand side of an assignment

expression). This is enforced by the way the let expression is treated in the type rules. The

type rules also enforce that in either object or field target, both x and f are unique.

Readers may wonder why only the first field (f in x.f) is tracked, instead of the whole

path. For instance, suppose a, f, g and h are all unique, it would be more precise to represent

the value:

a.f.g.h

using a target a.f.g.h. This is possible, with the cost of extra complexities in the type

system and conversion to fractional permissions. In addition, in a while loop, an unbounded

path could be formed because there could be an infinite number of iterations, and therefore

approximation is necessary at certain point.

The result value of an expression could come from multiple targets. For instance, in the

example shown in Fig. 5.3, the targets for variable x are object targets m and n.

As another example, consider:

if (..) then a.f
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else if (..) then b.g else new C()

Assuming a is unique, b is shared, and both field f and g are unique, targets associated

with the expression are a.f, s-tgt and f-tgt, in the order of the “if” branches.

Capabilities are represented by a pair of κf , which is a set of field capabilities, and κo,

which is a set of object capabilities.

A field capability gives access to a particular target. There are two different kinds of

field capabilities: a field capability x.f •, which gives access to target x.f , and the capability

s-tgt•, which gives access to the shared target s-tgt.

For instance, to read field f of a variable a:

a.f

one needs to have capability a.f• if a is unique. In case a is shared, the field capability

s-tgt• is needed.

A unique value is said to be consumed, when it is assigned to a unique field or method

parameter. When consumed, capabilities associated with the targets of this value must be

taken away from the input and can no longer be used, unless the uniqueness of this value

is restored by another unique value. Similarly, we also say the capabilities are consumed or

restored in this case.

If a unique value has targets x.f or s-tgt, then the corresponding capabilities need to

be removed in order to consume the variable. However, if the variable has an object target

x, then an corresponding object capability x is required, as well as field capabilities for all

fields of the object referred by x. An object capability represents the ability to consume an

object as a whole.

For instance, back to the example shown in Fig. 5.3, to type check the second expression
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in the let body:

this.next = x;

One needs to have

• field capabilities m.next•, m.data•, n.next• and n.data•.

• object capability m and n.

Therefore, including the capability to access this.next, the input capabilities need to be:

({this.next•,m.next•,m.data•,n.next•,n.data•}, {m,n})

In the type system, input and output capabilities are generated for each parameter in a

method declaration. For a method parameter a of class c:

• if it is unique, then it generates input field capabilities on all fields of class c, as well

as object capability a. There is no output capability.

• if it is borrowed(f), then it generates input and output field capabilities on all fields

in f .

• if it is shared, then no capability is generated. For accessing shared values, capability

s-tgt• is always included in both input and output capabilities.

Therefore, in the example shown in Fig. 5.3, the input capabilities for method append

are:

({this.next•,m.next•,m.data•,n.next•,n.data•, s-tgt•}, {m,n})

and output capabilities are:

({this.next•, s-tgt•}, ∅)
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In this thesis, we use κ to represent a pair of field capability set κf and object capability

set κo. We also refer κ as capabilities. In several occasions we need to union two pairs of

capabilities. For brevity, we use the following notation:

(κf0 , κo0) ∪ (κf0 , κo0)
def
= (κf0 ∪ κf1 , κo0 ∪ κo1)

to represent the union of two such pairs. Similarly, we define:

(κf0 , κo0) ⊆ (κf0 , κo0)
def
= (κf0 ⊆ κf1 , κo0 ⊆ κo1)

and

(κf0 , κo0) \ (κf0 , κo0)
def
= (κf0 \ κf1 , κo0 \ κo1)

Finally, in the type rules, β represents the source for the result value. A source could be

a shared source shared, or for a unique value, a set of targets ψ. shared indicates that the

value is shared, and therefore there could be other aliases that are pointing to the object

that this value is pointing to. For accessing a field inside a value with shared source, one

needs to have s-tgt•.

Given an expression a.f0.f1 . . . fn, to infer what are the result source for this expression,

there are three cases to consider:

1. fn is shared, then the result source is shared.

2. fn is unique, and either a or at least one field in f0 . . . fn−1 is shared, then the source

is the set {s-tgt}. This means the result is a unique value that can only be accessed

through some shared reference.

3. both a and all fields in f0 . . . fn are unique. In this case, the source for this expression

is the set {a.f0}.
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On the other hand, for an expressions such as new c(e), the source is the set {f-tgt}, since

there is no capability to track for a new object.

It is important to know the difference between a shared target s-tgt and a shared source

shared. The former indicates that the result value is unique, but comes from a shared

object, while the latter indicates that the value is shared. For instance, for an expression

a.f, if a is shared, while f is unique, then it has source {s-tgt}. However, if f is shared,

the expression will have source shared regardless of the type of a.

When an expression e has targets ψ, it is guaranteed that the field capabilities for the

field targets and shared target in ψ are removed from the input until the e is no longer in

use, at which time they will be returned back to the available capabilities. In the following of

this thesis, we shall say these field capabilities are pinned by the e, and are unpinned when

the targets are released.

For instance:

if (b == null) then a.u else b.u

In this example, suppose a and u are unique, and b is shared. In order to type check this

expression, one needs to have capabilities ({a.u•, s-tgt•}, ∅). After checking the expression,

the result source is {a.u, s-tgt}, and result capabilities are (∅, ∅). The field capabilities

a.u•, s-tgt•} are pinned by the “if” expression, and are no longer available until the “if”

expression is not used anymore.

When converting to fractional permissions, removing field capabilities for ψ of e means

the permissions associated with ψ are encumbered inside permissions for e. The first set of

permissions cannot be used until e is not needed anymore, at which time linear modus-ponens

rule can then be applied to restore the pinned field capabilities.

49



5.3 The Type System

In this section, we describe the conservative type system built on the language introduced

in Sec. 5.1. The main type judgments are shown in Fig. 5.4.

5.3.1 Type Rules for Expressions

judgment meaning
P ` � well-formed program P
P ` defn well-formed class definition defn
P, c ` meth method meth is well-formed in class c
P, c ` field well-formed field in class c
P ;E;κ1 ` e : (τ, β) a κ2 Under environment E and with input

capabilities κ1, e has type τ and
sources β, and output capabilities κ2.

P ;E;κ1 ` b a κ2 Under environment E and with input
capabilities κ1, boolean expression b
is well-typed, and has output capabilities κ2.

κ1 ` (τ1, β) <: α2 τ2 a κ2 Given input capabilities κ1, type τ1 and source β is
a subtype of declared annotated type α2 τ2.
The subtyping also produces
output capabilities κ2.

Figure 5.4: Main Type Judgments

The definition of type environment E is given by the following rule:

E ::= · | E, x : α τ

Here, the variable x is bound to an annotated type α τ . In the rest of this thesis, when it

simplifies the presentation, we will treat E as a partial function from variable names to their
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type and targets. Therefore, E(x) = α τ is equivalent to E = E ′, x : α τ . For a well-formed

environment E, we require that each variable x can appear at most once, and that there

is exactly one associated type for the variable. In addition, all the type variables τ used

in a well-formed environment must also be well-formed in the program P (e.g., P ` τ). A

well-formed environment has the exchange property so that when we have E(x) = α τ , there

exist an environment E ′ such that E = E ′, x : α τ .

In the following paragraphs, for the purpose of explanation, we present type rules as a

set of groups, with a description following each.

The first group of the type rules is shown in Fig. 5.6. Rule Null specifies how a null

expression can be checked. No capability is required in this case, and therefore the output

capability set is the same as input. A null can have any class c, and is clearly possibly-null

(nullable).

For local variable access (Var) to be type checked, the variable x need to be in the domain

of E, and has annotated type α τ . The result source is generated through the auxiliary

function annot-to-source defined in Fig. 5.5. There are two cases: if the annotation is

shared, then the result source is simply the shared source shared; if the annotation is

unique, then the result source is a singleton set with the object target x. Accessing a local

variable does not cost any capability, so the input and output capabilities are the same.

For reading a field (Read), e.f . First, the expression e must be well-typed, and the

result value must not be null (notnull). In addition, f should be an valid field inside class

c of expression e, which is specified by the relation ftype.

Reading a field also requires capabilities to targets of e. This is specified by the read-

field function defined in Fig. 5.5. Given input sources β, input capabilities (κf , κo), and a

field identifier f , read-field computes output targets and capabilities. There are two cases
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annot-to-source(x, α) =


s-tgt α = shared

{x} α = unique

{x} α = borrowed(f)

read-field(β, (κf , κo), f) ={
({s-tgt}, (κf \ {s-tgt•}, κo)) β = shared ∧ s-tgt• ∈ κf
(ψ2 ∪ non-obj-tgts(ψ), (κf \ ψ•2, κo)) β = ψ ∧ ψ2 = extend-fld(ψ, f) ∧ ψ•2 ⊆ κf

obj-tgts(ψ) = { ρ | ρ = x ∈ ψ }
non-obj-tgts(ψ) = ψ \ obj-tgts(ψ)

non-obj-fresh-tgts(ψ) = ψ \ (obj-tgts(ψ) ∪ {f-tgt})
extend-fld(ψ, f) = { x.f | x ∈ obj-tgts(ψ) }

extend-flds(ψ, f) = { x.f | x ∈ obj-tgts(ψ), f ∈ f }

restore-shared(ψ, κ, α) =

{
(ψ, κ) α = unique

(shared, κ ∪ (non-obj-fresh-tgts(ψ)•, ∅)) α = shared

pinned-capabilities(β) =

{
∅ β = shared
non-obj-fresh-tgts(ψ)• β = ψ

annot-to-result-source(α) =

{
{f-tgt} α = unique

shared α = shared

reclaim-borrowed(β, α) ={
extend-flds(ψ, f)• ∪ non-obj-fresh-tgts(ψ)• β = ψ ∧ α = borrowed(f)

∅ otherwise
not-in-source(x, β) ={

⊥ β = shared
∀ρ ∈ ψ : not-in-target(x, ρ) β = ψ

not-in-target(x, ρ) =
x 6= x′ ρ = x′

x 6= x′ ρ = x′.f

⊥ otherwise

Figure 5.5: Auxiliary Rules For Type Checking
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Null

P ;E;κ ` null : (nullable c, {f-tgt}) a κ

Var
E(x) = α τ annot-to-source(x, α) = β

P ;E;κ ` x : (τ, β) a κ

Read
P ;E;κ0 ` e : (notnull c, β1) a κ1 ftype(P, c, f) = α τ

read-field(β1, κ1, f) = ψ, κ2 restore-shared(ψ, κ2, α) = β3, κ3

P ;E;κ0 ` e.f : (α τ, β3) a κ3

Write
P ;E;κ0 ` e1 : (notnull c1, β1) a κ1

ftype(P, c1, f) = α τ read-field(β1, κ1, f) = ψ, κ2 P ;E;κ2 ` e2 : (τ2, β2) a κ3

κ3 ` (τ2, β2) <: α τ a κ4 restore-shared(ψ, κ4, α) = β3, κ5

P ;E;κ0 ` e1.f= e2 : (τ, β3) a κ5

Figure 5.6: Type Rules for the Conservative Type System (Part 1)
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depending on the input β.

1. β is shared: this is reading a field from a shared value, which requires the capability

to access the target s-tgt. Hence, the input κf needs to contain s-tgt•, which then is

removed. Correspondingly, the result target is a singleton set containing s-tgt.

2. β is a target set ψ: this is reading a field from a unique value that comes from targets

in ψ. In this case, we need to look at each target ρ in ψ, and, depending on the type

of ρ, we may need to extend ρ with the field f . There are four sub-cases:

(a) if ρ is a field target x.g, then it means the expression e comes from x.g. Reading

a field for this expression (x.g.f) should also comes from the same target. Hence,

the result is still the field target x.g.

(b) if ρ is the shared target, it means the unique value of e comes from the shared

target. Similar to the first case, the result target should still be the same.

(c) if ρ is an object target x, it means the expression e comes from x. Reading the

field f should generate a field target x.f .

(d) if ρ is the fresh target f-tgt, then it is simply skipped because there is no capability

to track for a fresh object.

The “extend” operation is defined by the function extend-flds in Fig. 5.5, which takes all

object targets in the input ψ, and extend them with f . Also, given a target set ψ, function

non-obj-tgts returns all non-object targets in the set. Therefore, the result of extending a

target set ψ is equal to:

extend-fld(ψ, f) ∪ non-obj-tgts(ψ)
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For the function read-field, the output targets are the extended targets on input ρ. The

output capabilities are the input capabilities with all the pinned field capabilities (the capa-

bilities on targets extend-fld(ψ, f)) removed.

Lastly for the Read rule, the function restore-shared takes the output of read-field as

input, and produces a new pair of target set and capability set, considering the annotation

for field f . Note that the input targets for this function can only be field targets.

There are two cases for read-field, depending on the annotation:

1. α is shared: this means the result is shared, and therefore any further access on fields

in this value must come through shared instead. In this case, all targets (if there are

any) associated with e can be released, as well as all the pinned capabilities.

2. α is unique: this means the result is unique. In this case, any further field access

for the result value shall still go through the same targets, and therefore the output

targets and capabilities should remain the same.

Next is the rule for writing a field e1.f = e2 (Write). This rule shares some of the

common premises as the Read rule. First, like the rule Read, the expression e1 needs to

be well-typed and the output should be not null. The field f should also be a well-formed

field, which is defined by the ftype function. In addition, reading the field f will cost some

capabilities, perhaps temporarily, which is described using read-field.

After removing the required capabilities for reading field f , κ2 is the remaining set of

capabilities. This is then used as input for checking e2.

For writing a field we need to check whether the actual result type from checking e2 is

a subtype of the declared type α τ for field f . This is defined by the subtyping rule in
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Sec. 5.3.3. A subtyping relation in the type system is of the format:

κ1 ` (τ1, β1) <: α2 τ2 a κ2

This is read: given input capabilities κ1, type τ1 and source β1 is a subtype of the annotated

type α2 τ2. The subtyping relation also produces output capabilities κ2.

For the Write rule, there are two cases:

1. β2 (which corresponds to the β1 in the subtyping rule above) is a unique source, and

the annotated type for f is either unique or shared (it cannot be borrowed since it is

a field type), all the associated capabilities are consumed. For any target ρ associated

with e2, if ρ is an object target x, then the whole object is consumed. For this, field

capabilities for all fields of the x are removed, and the x itself is also removed from the

object capabilities. On the other hand, if ρ is a field target, then nothing needs to be

done, since the capability for ρ is already pinned, they are already removed from the

available capabilities. This computation is defined in the SubUnique rule.

2. In the case that the β2 is shared, the declared field type is required to be shared as

well. No change happens for the capabilities when both sides of the subtyping rule are

shared. This is defined by the SubShared rule.

The subtyping rules defined in Fig. 5.13 captures the above cases and change the input

capabilities accordingly.

Finally, similar to Read, the pinned field capabilities for the expression e1 can be recov-

ered if the field is shared. This is done through restore-shared. Together with the output

capabilities κ4, and target set ψ, restore-shared generates β3 and κ5, which are final the

output sources and capabilities for the whole expression.

Now look at a simple example:
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x.f = y.g

To type check this expression, assuming after checking the expression x the result source is

a unique target set {a,b.k}, and the expression y produces unique target set {c}. Also,

suppose both variable a and b, and field f and g are unique, and the input capabilities are

({a.f•,b.k•,c.g•}, ∅). Let us analyze step by step to see how this can be type checked.

1. Type checking expression x. This produces target set {a,b.k}. The output capabili-

ties are ({a.f•,c.g•}, ∅). The capability b.k• is pinned.

2. Checking whether field f is well-formed, using function ftype.

3. Generating new capabilities using function read-field. Since the field is unique, the

result targets are {a.f,b.k}, and the result capabilities are ({c.g•}, ∅).

4. Type checking expression y.g, with input capabilities ({c.g•}, ∅). The output capa-

bilities are (∅, ∅), and the field capability c.g• is pinned for reading g.

5. Applying the subtyping rule on the declared field type and the actual result type from

checking y.g. Since the field type is unique, the field capability c.g• associated with

c.g is consumed. But, since it is already pinned, the input and out capabilities are

still the same ((∅, ∅)).

6. Finally, together with the field annotation, {a.f,b.k} and (∅, ∅) are passed to restore-

shared as input, and the outputs are {a.f,b.k} and (∅, ∅). Therefore, the result

target set is {a.f,b.k}, and result capabilities are (∅, ∅).

For the case when both field f and g are shared, or when f is shared and g is unique, the

process is also the same.
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Notice that, for the case that both a and b are shared, and f and g are also shared,

the expression cannot be type checked under the type system. This is because after reading

a.f, the capability s-tgt is removed from the input capabilities, and is not available when

checking b.g. To solve this issue, it is possible to postpone removing s-tgt in read-field,

until after e2 is checked. Checking e2 should never cost the capability s-tgt or move it to

the target set, so therefore it can be used to read the field f right before writing it. To

implement this, it requires changes to both the type system and the proof. This is a future

work.

The second part of type rules is shown in Fig. 5.7. Given the fact that an expression can

be checked, the rule Sub defines how to weaken it and obtain different type checking results.

This is useful, for instance, in checking “if” expressions, when we need to obtain the same

results from both branches.

Sub
P ;E;κ0 ` e0 : (τ0, β0) a κ1

P ;E;κ1 ` (τ0, β0) <: (τ1, β1) a κ2

P ;E;κ0 ` e0 : (τ1, β1) a κ2

If
P ;E;κ0 ` b a κ1

P ;E;κ1 ` e0 : (τ, β) a κ2

P ;E;κ1 ` e1 : (τ, β) a κ2

P ;E;κ0 ` if(b) then e0 else e1 : (τ, β) a κ2

IfNull
E0 = E ′, x : α ε c

E1 = E ′, x : α notnull c
P ;E0;κ1 ` e0 : (τ, β) a κ2

P ;E1;κ1 ` e1 : (τ, β) a κ2

P ;E0;κ1 ` if (x==0) then e0 else e1 : (τ, β) a κ2

Loop
P ` c

P ;E;κ0 ` b a κ1 P ;E;κ1 ` e : (τ, β) a κ2 κ2 ∪ pinned-capabilities(β) = κ0

P ;E;κ0 ` while (b) do e : (nullable c, {f-tgt}) a κ1

Figure 5.7: Type Rules for the Conservative Type System (Part 2)
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There are three places that can be weakened, the type, the sources and the capabilities.

The format for the sub-result relation is as follow:

P ;E;κ0 ` (τ0, β0) <: (τ1, β1) a κ1

This is read: under program P and environment E, with input capabilities κ0, the result

type τ0 and source β0 can be relaxed to τ1 and source β1, with output capabilities κ1.

First, rule Shared2Shared defines the case when both sides are of shared source. For

this, it is simple: we can relax the nullness as well as capabilities, by removing parts of the

input capabilities.

Rule Unique2Shared defines the case when relaxing a unique source to a shared source.

This is restrictive: all capabilities associated with the unique source are consumed (that is,

in terms of fractional permissions, nested into the permission for the shared object). The

reason for this restriction is because in the type system, a result type is either unique or

shared, but never both. A possible future work is to use a hybrid type for a value that could

be either unique or shared. This would make the system more flexible, but potentially more

complex.

For the case of relaxing one unique source to another, it is more complex. The rule

Unique2Unique defines how this is done. Suppose we want to expand (relax) the original

target set ψ, by adding another target set ψ′. There are several restrictions on the latter:

• For any object target x in ψ′, x must be in the environment E, and the nonnull type

of x must be a subtype of ε1.

• For any field target x.f in ψ′, the variable x must be in the environment E and must

be not null. Also, f must be a valid field inside the class of x, and its type must be a

subtype of the final type.
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Shared2Shared
τ0 <: τ1 κ′ ⊆ κ

P ;E;κ ` (τ0, shared) <: (τ1, shared) a κ′

Unique2Shared
ε0 c0 <: τ1 κ′ ⊆ κ κ′′ = (extend-flds(ψ,fields(c0))•,obj-tgts(ψ)) κ′′ ⊆ κ′

P ;E;κ ` (ε0 c0, ψ) <: (τ1, shared) a κ′ \ κ′′

Unique2Unique
(κf , κo) ⊆ κ τ0 <: τ1

∀x ∈ ψ′ : E(x) = α′ τ ′ ∧ τ ′ <: τ1

∀x.f ∈ ψ′ : x.f • ∈ κf ∧ E(x) = α notnull cx ∧ ftype(P, cx, f) = αf τf ∧ τf <: τ1

non-obj-tgts(ψ) = ∅ ⇒ f-tgt /∈ ψ′ ∧ s-tgt /∈ ψ′
ψ1 = non-obj-fresh-tgts(ψ′) ψ•1 ⊆ κf

P ;E;κ ` (τ0, ψ) <: (τ1, ψ ∪ ψ′) a (κf \ ψ•1, κo)

Figure 5.8: Sub Rules for Sources

• If the original target set ψ′ only contains object target, then the target set cannot

contain either s-tgt or f-tgt.

The first case is valid since each object target x in ψ represents that the value could be an

alias to x. It is sound to be more conservative by adding more aliases (object targets) that

the value may equal to.

In the second case, for a field capability x.f •, if the type of f can be relaxed to the final

type τ1, then we can also weaken the original target set by adding x.f to be an alias of the

original value. This effectively cost the capability and thus it needs to be removed from the

input.

For the third case, s-tgt cannot appear in ψ′. To include it in ψ′, we need to prove that

there exists a path: a.f0.f1 . . . .fn, such that:

• a is a valid variable in E
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• fn is a unique field of type τ , and ε is a subtype of ε1.

• At least one ancestor of fn in the path is shared.

This is complicated to define and transform to fractional permissions. At the mean time, we

choose to be more conservative and disallow this.

The third case also requires that if the input target set only contains object target, then

the added target set ψ′ can not contain fresh target f-tgt. This is because of the way we

transform the system into fractional permissions, and shall be discussed more in Chap. 6.

Therefore, in the current system, expressions such as

if (..) then a else new C()

(assuming a is unique) cannot be checked, because on the left hand side the result target set

only contains an object target a, while the result target set for the right hand side contains

f-tgt.

Also:

if (..) then a else b.f.g

can not be type checked, if the type of b.f.g is not the same as that of a. The type system

only tracks the first field, and to know that b.f.g has the right type, we need to either do

a search on all the direct or indirect fields of a.f, or track more information in the type

system. At the moment, we choose to disallow this.

Next is the If rule. For an “if” expression to be well-typed, both of its branches need

to be well-typed, and have identical outputs (type, source, and capabilities). This can be

achieved by applying the Sub rule. The result of the “if” rule is simply the result of either

of its branches.
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If a variable is of type nullable c, then it stays possibly-null forever, and none of its

fields can ever be read or written. This is very restrictive. A IfNull rule can be used to

address this issue. Similar to the one we defined in Chap. 4. In this rule, from the result of

checking the condition part of the “if” expression, it is guaranteed that the variable x is not

null when checking the “else” branch, and therefore the input environment can be updated

with that information.

The rule Loop types a while loop expression. After checking e, the result capabilities

κ2, combined with the pinned capabilities in the result targets of e, should be equal to the

input capabilities κ0. This is similar to the Loop rule defined in Fig. 3.4 of Chap. 3. The

requirement is needed because we need to re-establish the loop invariant after each iteration

of the body expression. Similarly to the rule Null, the result type for this rule can have

any well-formed class, and is possibly-null.

Fig. 5.9 defines a few type rules on a “let” expression.

LetUnique
P ;E;κ0 ` e0 : (ε0 c0, ψ) a κ1

κ2 = (extend-flds(ψ,fields(c0))•,obj-tgts(ψ)) κ2 ⊆ κ1

κ3 = ({ x.f • | f ∈ fields(c0) }, {x})
x /∈ E P ;E, x : unique ε0 c0;κ1 \ κ2 ∪ κ3 ` e1 : (τ1, β) a κ4

κ3 ⊆ κ4 not-in-source(x, β)

P ;E;κ0 ` let x = e0 in e1 : (τ1, β) a κ4 \ κ3 ∪ κ2

LetShared
P ;E;κ0 ` e0 : (τ0, shared) a κ1

x /∈ E P ;E, x : shared τ0;κ1 ` e1 : (τ1, β) a κ2

P ;E;κ0 ` let x = e0 in e1 : (τ1, β) a κ2

Seq
P ;E;κ0 ` e0 : (τ0, β0) a κ1

pinned-capabilities(β0) = κ
P ;E;κ1 ∪ κ ` e1 : (τ1, β1) a κ2

P ;E;κ0 ` (e0;e1) : (τ1, β1) a κ2

Figure 5.9: Type Rules for the Conservative Type System (Part 3)
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In LetUnique, the result value from checking e0 is unique, and has targets ψ. To check

e1, we need to add a fresh variable x into the environment, and also all field capabilities for

x, for checking e1.

To ensure that all the necessary capabilities for x are available when checking e1, the

type system requires that the capabilities of all the targets associated with the reference of

e0 are available. This is defined in a restricted way: all the field capabilities for the unique

value of e0 are removed from the input, and replaced by field capabilities on x. Also, all

object capabilities for object targets (obj-tgts(ψ)) in ψ are removed from input.

Also, when checking the let body e1, it is not allowed to consume any capability for the

let-bound variable x; all of these are restored after the checking.

Finally, the variable x is not allowed to appear in the result sources after checking the

let body. In other words, the variable is not allowed to “leak” out of the “let” body. This is

defined by the function not-in-sources in Fig. 5.5.

For instance, expression such as:

let x = ... in ...; x

is not permitted.

Also, some obvious correct expression such as:

let x = new C() in a.u = x;

is also not permitted.

These constraints make the let bound expression for the unique case particularly restric-

tive, especially for the second example above, which seems obviously correct. In order to

remove these constraints, we need to track the sources for the variable x, and in result, for

every capability that x occurs, substitute it with the actual capabilities it comes from. This

is complex due to the difficulties in transforming to fractional permissions, and we choose
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to left this out as a future work. We will discuss some enhancements that can be done in

Chap. 7.

In comparison, the type rule LetShared is much simpler. If the type for e0 is shared,

a fresh variable x with shared type is added to the environment, which is used to check the

“let” body.

Seq defines how a sequence expression can be checked. After type checking the first

expression e0, we can claim back the pinned field capabilities and put them back to the

available capabilities. They can then be reused to check e1.

Now let us take a look at a simple example:

let x =

if (..) then a.k else b.l

in

(x.f = c.g; null)

Assuming a, b and c are unique references, and f, g, l and k are unique fields, and, for

simplicity, that class of a only contains one field f. The input capabilities required to check

this expression are ({a.k•,b.l•,c.g•}, ∅).

The type checking process for this expression is performed as following:

1. Type checking the “if” expression, which in turn requires checking a.k and b.l. After

checking the former, the result capabilities are ({b.l•,c.g•}, ∅), and for the latter,

are ({a.k•,c.g•}, ∅). After applying the Sub rule, we can derive the same source

{a.k,b.l}, and same capabilities ({c.g•}, ∅) for both branches.

2. Calculating capabilities κ2 and κ3 in the rule. For κ2, it is (∅, ∅) since there is no

object target in the result target set after checking the “if” expression. For κ3, it is

({x.f•}, {x}). Therefore, after checking the initialization expression for the let-bound
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variable, the capabilities are ({c.g•,x.f•}, {x}), which is κ3 combined with the result

capabilities after checking the “if” expression.

3. Type checking the expression x.f = c.g; null. This first checks the expression

x.f = c.g. Since from the previous step we have obtained x.f•, and also capability

for c.g is in the output capabilities after checking the “if” expression. This can be

type checked. For the whole expression, the result source is {f-tgt} from null, and

result capabilities are ({x.f•}, {x}), as capability c.g• is consumed.

4. Checking that x is not in the result of x.f = c.g; null, using not-in-source.

This is obviously true.

5. Removing x.f• from the remaining field capabilities, and x from the object capabil-

ities. Also we need to claim back capabilities for the targets in the result of the “if”

expression. Therefore, the final result capabilities are ({a.k•,b.l•}, ∅).

Note that in this example, we need to put a null at the end. For expression:

let x =

if (..) then a.k else b.l

in

x.f = y.g

cannot be typed under the type system, because variable x occurs in the result targets.

The second part of the rules for “let” expression are defined in Fig. 5.10.

Rule LetRestore defines how a consumed field capability can be restored through

another field assignment. This rule is useful when one wants to consume some unique field

and then restore it using another unique value. A motivating example is shown in Sec. 5.4.3

at the end of this chapter.
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In this rule, it first consumes the field capability for the target x′.f , whose type must

be unique. It then restores the uniqueness of x′.f by assigning the result of another unique

expression e to it. During type checking the expression e, all capabilities for the let-bound

variable x are added into the input capabilities, and can be freely used. However, after

finishing type checking e, all remaining capabilities for x are discarded.

LetRestore
E(x′) = α notnull c annot-to-source(x′, α) = β

ftype(P, c, f) = unique εf cf read-field(β, κ0, f) = ψ, κ1

κ = ({ x.f | f ∈ fields(cf ) }•, {x}) κ1 ∩ κ = ∅
P ;E, x : unique εf cf ;κ1 ∪ κ ` e : (τ1, ψ1) a κ2

κ2 ` (τ1, ψ1) <: unique εf cf a κ3

P ;E;κ0 ` let x = x′.f in x′.f = e : (εf cf , ψ) a κ3 \ κ

LetSwap
E(x′) = α notnull c annot-to-source(x′, α) = β

ftype(P, c, f) = unique τf read-field(β, κ0, f) = ψ, κ1

x does not occur in e P ;E;κ1 ` e : (τ1, ψ1) a κ2 κ2 ` (τ1, ψ1) <: unique τf a κ3

pinned-capabilities(ψ) = κ4

P ;E;κ0 ` let x = x′.f in (x′.f = e;x) : (τf , {f-tgt}) a κ3 ∪ κ4

Figure 5.10: Type Rules for the Conservative Type System (Part 4)

For the LetRestore rule, the let-bound variable x is not allowed to leak from the

body. But, sometimes we do want to pass the result to other places. Consider the following

example:

class A {

unique nullable B item;

...

unique notnull B getItem() borrowed(item) {
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B ret = this.item;

this.item = null;

return ret;

}

}

In the method getItem, it first saves the unique value of field item using a local variable.

It then nullifies the field, and return its old value using the local variable. This essentially

transfers the unique value that item points to to another place.

To permit cases like this, we can use an extra rule, which we call LetSwap, defined in

Fig. 5.10. It is similar to the swap function defined in the capability based type system

proposed by Haller and Odersky [HO10]. In the rule, we must first be able to lookup x′ and

it should not be null. The field f should also be a valid field and is unique. It then requires

that the let-bound variable x cannot appear in e, and therefore no capability for x will be

consumed. Lastly, the result from checking e is used to restore the uniqueness for x′.f , and

the pinned capabilities for this expression are restored in the output capabilities. The final

target is a singleton set containing the fresh target.

In Fig. 5.11, rule Call defines how a method call is checked. Firstly, the method call

receiver e0 needs to be type checked, and is not null. Secondly, the method should be

well-typed, which is specified by the function mtype.

A method type is of the following format:

(α1 τ1), . . . , (αn τn) −→ α τ

where the α τ on the right hand side of the arrow is the return type for the method. It is

restricted to be either unique or shared. Also, for a non-constructor method type, the

first parameter type is always the type for the method call receiver.
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The next step for checking a method call is to type check every argument. We also need

to make sure that the type of the method call receiver and each actual parameter is a subtype

of that of the declared parameter. This is done using the subtyping rule defined in Fig. 5.13.

The type rule also ensures that the input capabilities contain the necessary capabilities for

each method parameter. Those are then removed as side-effect of the subtyping rules. For

borrowed parameters, their capabilities come from the fields specified in the annotation.

These are also removed, but will be recovered after the type checking of method body is

done.

Call
P ;E;κ0 ` e0 : (α notnull c, β0) a κ1

mtype(c,mn) = (α0 τ0), (α1 τ1), . . . , (αn τn) −→ αr τr
κ1 ` (notnull c, β0) <: α0 τ0 a κ2 ∀i ∈ [0, n) : P ;E;κ2i+2 ` ei+1 : (τ ′i+1, βi+1) a κ2i+3

κ2i+3 ` (τ ′i+1, βi+1) <: αi+1 τi+1 a κ2i+4 κ = κ2n+2 ∪
n⋃
i=1

reclaim-borrowed(βi, αi)

annot-to-result-source(α) = β

P ;E;κ0 ` e0.mn(e1 . . . en) : (τr, β) a κ

New
mtype(c, c) = (α1 τ1), . . . , (αn τn) −→ unique notnull c

∀i ∈ [0, n) : P ;E;κ2i+1 ` ei+1 : (τ ′i+1, βi+1) a κ2i+2

κ2i+2 ` (τ ′i+1, βi+1) <: αi+1 τi+1 a κ2i+3 κ = κ2n+1 ∪
n⋃
i=1

reclaim-borrowed(βi, αi)

P ;E;κ1 ` new c(e1 . . . en) : (unique notnull c, {f-tgt}) a κ

Figure 5.11: Type Rules for the Conservative Type System (Part 5)

For checking method arguments, the input capabilities are the output from checking the

receiver, and these capabilities are passed along for checking every parameter. At each step,

parts of the capabilities may be removed.

After the method body is checked, we need to reclaim capabilities for those borrowed
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method parameters. This is defined by the reclaim-borrowed function in Fig. 5.5. For

each argument, the pinned field capabilities as well as the capabilities for the declared fields

are restored after the method call is checked.

Lastly, the result source for a method call is determined by the declared method return

type: if it is unique, then the result source is a singleton target set containing the f-tgt;

if it is shared, then the result source is shared. A method return type is not allowed to

be borrowed. In Chap. 7, we will discuss the possibility of adding a “from” return type as a

future work. This is useful for scenarios such as external iterators [BRZ07].

Rule New defines how a new object is allocated and instantiated. This is a special case

of a method call, in that the return type for the constructor is required to be unique and

not null. The result target is a singleton set containing f-tgt.

Now consider the following example for method call:

unique nullable A

foo(unique notnull B a) borrowed(f,g) {

..

}

this.foo(new B());

In this example, the method type for foo is:

((borrowed(f,g) notnull C), (unique notnull B)) −→ unique nullable A

To type check the expression this.foo(new B()), assuming the input capabilities are

({this.f•,this.g•}, ∅), the following steps are performed:

1. Type checking the method call receiver, which in this case is simply the this variable.

The rule Var is applied and no change on the capabilities.
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2. Checking whether the method foo has a well-formed method type. This is also checked

and the method type is the one we listed above.

3. Type checking each arguments. In this case, there are two arguments, this and

new B(). For the argument this, again the Var is applied first, and then followed

by the subtyping rule SubBorrowed. Since this method requires field capabilities

{this.f•,this.g•}, they are removed from the input. For the second argument

new B(), it is well-typed and has result type unique notnull B, and the result

source is a singleton target set containing f-tgt. The subtyping rule is then applied

for this argument, and since in both cases only fresh objects are involved, no change

happens in input capabilities. Therefore, after checking all the arguments, the final

capabilities are (∅, ∅).

4. Reclaiming the borrowed capabilities for each method argument. For the borrowed

method argument this, the associated capabilities {this.f•,this.g•} are reclaimed.

There is no pinned field capability.

5. For the return type, since the declared method return type is unique, the result type

is notnull A and result source is {f-tgt}.

5.3.2 Type Rules for Bool Expressions

Type checking rules for bool expressions are defined in Fig. 5.12.

First, for the type rule True, it is simple. The input and output capabilities are the

same in this case.

For the type rule Not, in order to type check the expression not b, the sub-expression b

needs to type check. The final capabilities are the same as the one generated from checking
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b.

For the rule Eq, first, the sub-expressions e0 and e1 need to be separately type checked.

After the checking is done, for the case that the result is unique, all pinned capabilities for

both expressions are no longer used, and therefore should be reclaimed. This is described

by pinned-capabilities defined in Fig. 5.5.

For the rule And, again, both sub-expression b0 and b1 must be type checked. However,

for b1, the output capabilities are required to be the same as the input capabilities. This is

because fractional permissions allow short-circuiting for an “and” expression, and therefore

when converting to permissions, both branches need to have the same set of permissions.

True

P ;E;κ ` true a κ

Not
P ;E;κ0 ` b a κ1

P ;E;κ0 ` not b a κ1

Eq
P ;E;κ0 ` e0 : (τ0, β0) a κ1

P ;E;κ1 ` e1 : (τ1, β1) a κ2

pinned-capabilities(β0) = κ3

pinned-capabilities(β1) = κ4

P ;E;κ0 ` e0==e1 a κ2 ∪ κ3 ∪ κ4

And
P ;E;κ0 ` b0 a κ1 P ;E;κ1 ` b1 a κ1

P ;E;κ0 ` b0 and b1 a κ1

Figure 5.12: Rules for Bool Expressions

5.3.3 SubTyping Rules

The subtyping rules are defined in Fig. 5.13. A subtyping rule is of format:

κ1 ` (τ1, β1) <: α2 τ2 a κ2
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This is read: under input capabilities κ1, type τ1 and source β1 is subtype of declared type

α2 τ2. The subtyping relation also generates output capabilities κ2.

SubUnique
ε1 c1 <: τ2

α 6= borrowed(f) κ′ = (extend-flds(ψ,fields(c1))•,obj-tgts(ψ)) κ′ ⊆ κ

κ ` (ε1 c1, ψ) <: α τ2 a κ \ κ′

SubBorrowed
τ1 <: τ2 κ′ = (extend-flds(ψ, f)•, ∅) κ′ ⊆ κ

κ ` (τ1, ψ) <: borrowed(f) τ2 a κ \ κ′

SubShared
τ1 <: τ2

κ ` (τ1, shared) <: shared τ2 a κ

Figure 5.13: The Main Subtyping Rules

Nonnull

notnull c <: nullable c

Ref

τ <: τ

Figure 5.14: Sub Nonnull and Class Rules

Fig. 5.14 defines the sub relation for types. It is quite straightforward, except that we

require the class identifiers to be the same on both sides, since there is no inheritance in our

kernel language.

The most interesting rule is SubUnique: when passing a unique value to a unique or

shared field, all associated capabilities for the expression are considered as consumed, and

be removed from the input.

For the SubBorrowed rule, it is defined in a similar way as SubUnique. The difference

is that the set f is used instead of all the fields of class c. Also, object capabilities are

unchanged, since a borrowed parameter is never allowed to be consumed as a whole object.

For a borrowed parameter, the associated field capabilities are taken away from the input,
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just like SubUnique. However, it is required that they should be restored after the method

call is checked. It is illegal to consume any of these capabilities when checking the method

body.

Rule SubShared is straightforward. When passing a shared expression to a shared field,

capabilities are unchanged.

5.3.4 Well-formedness

In Fig. 5.3.4, rules for well-formedness of various constructs of a program are defined. In the

following we shall explain each of them in order.

First, the rule Field describes what is a well-formed field declaration. This requires that

field f must be a valid field identifier for the class c, and the field annotation is not borrowed.

The rule Method defines the well-formedness for a method declaration. First, the

method return type must not be borrowed. Each method parameter is also accompanied by

a set of fields that the method body may read or write. The function CheckFields defined

in Fig. 5.16 checks whether this set of fields are valid, i.e., whether it is a subset of the fields

of the declared class for the method parameter.

Next, for checking the method body e, we need to construct an input environment and

ainput/output capabilities. For the input environment, it simply contains a mapping from

each method parameter to its declared type. For the input and output capabilities, they

are derived by using the function InputCaps and OutputCaps respectively, which are

defined in Fig. 5.16. The only interesting case is for borrowed method parameter, for which

the associated capabilities need to appear in both input and output. The input and output

capabilities should also include the s-tgt• for accessing anything that is of type shared.

With the above constructed input environment E, input capabilities κin and output
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Field
f ∈ fields(c) α 6= borrowed(f)

P, c ` α τ f

Method
αr 6= borrowed(f) τ0 = notnull c E = this : α0 τ0, xi : αi τi

∀i ∈ [0, n] : CheckFields(αi, τi)
κin =

⋃
InputCaps(αi, τi, xi) ∪ ({s-tgt•}, ∅)

κout =
⋃

OutputCaps(αi, xi) ∪ ({s-tgt•}, ∅)
P ;E;κin ` e : (τ ′r, βr) a κ κ ` (τ ′r, βr) <: αr τr a κout

P, c ` αr τr mn(α1 τ1 x1, . . . , αn τn xn) α0 { e }

Constructor
∀i ∈ [1, n], j ∈ [1,m] : E = xi : αi τi

CheckFields(αi, τi) κ1 =
⋃

InputCaps(αi, τi, xi) ∪ ({s-tgt•}, ∅)
κ2m+1 =

⋃
OutputCaps(αi, xi) ∪ ({s-tgt•}, ∅)

all not-null fields are in f1 . . . fm ftype(P, c, fj) = αfj τfj
P ;E;κ2j−1 ` ej : (τj, βj) a κ2j κ2j ` (τj, βj) <: αfj τfj a κ2j+1

P, c ` cn(α1 τ1 x1, . . . , αn τn xn) { this.f1 = e1; . . .;this.fm = en;this }

Class
cn ∈ classes(P ) P, cn ` fieldi P, cn ` constr P, cn ` methi

P ` class cn { field1, . . . , fieldn constr meth1, . . . ,methn }

Prog
P = defn1, . . . , defnn P ` defni

P ` �

Figure 5.15: Rules for Well-formed Classes and Methods

74



CheckFields(α,τ) = if α = borrowed(f) then f ⊆ fields(c)

InputCaps(α, τ , x) =


({ x.f | f ∈ fields(c) }, {x}) α = unique

(∅, ∅) α = shared

({ x.f | f ∈ f }, ∅) α = borrowed(f)

OutputCaps(α, x) =


(∅, ∅) α = unique

(∅, ∅) α = shared

({ x.f | f ∈ f }, ∅) α = borrowed(f)

Figure 5.16: Auxiliary Functions for Well-formed Methods and Classes

capabilities κout, for a well-formed method declaration, the method body e needs to be type

checked under E and κin, and the result type should be a subtype of the declared return

type. The final capabilities should be κout.

Similarly, the rule Constructor type checks a constructor declaration. Notice that

a constructor declaration does not contain type for receiver or returned value. Also, the

constructor body has to conform to a particular format: a list of field assignments, followed

by returning this. Finally, it is required that all the not-null fields should appear in the

field assignments, to ensure they are initialized.

The rule Class defines the well-formedness of a class declaration. It is straightforward:

for a class declaration defn to be well-formed, all the field and method declarations in defn

are required to be well-formed.

Lastly, the rule Prog defines what is a well-formed program in the system. All the class

declarations in the program need to be well-formed.
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5.4 Examples

In this section we go through several examples that demonstrate how the various pieces of

the type system works together.

5.4.1 Example 1: Illegal Consumption

First, let us consider an example that is adopted from Retert’s thesis [Ret09]:

class UniqueDemo {

unique notnull Object o1;

unique notnull Object o2;

...

void bad() borrowed(o1,o2) {

this.o1 = this.o2;

null

}

}

In this example, class UniqueDemo contains two unique non-null fields o1 and o2. For the

method bad, if we allow it to be checked, then the uniqueness of object initially pointed by

o2 will be violated, since after the method call it would be pointed by both o1 and o2. Here,

this method will not be type checked, since in default the method receiver is borrowed(f),

and the field capability for this.o2 is required to be in the output capabilities after checking

the method, but in this case it does not.
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5.4.2 Example 2: Restoring Consumed Field Capability

This example is taken from the paper on comprehending annotations using fractional per-

missions, by Boyland, Retert and Zhao [BRZ09]. It is slightly modified here:

class UNode {

unique nullable UNode next;

shared nullable Object datum;

...

void append(borrowed(next) notnull Unode n,

unique notnull UNode m) borrowed() {

let x = n.next in

n.next = (m.next = x; m);

null

}

}

The method body of append can be checked by the LetRestore rule. Here, since method

parameter n is borrowed, the method append has the field capability n.next• both as

input and output. In the method body, the capability is first consumed as effect of passing

to m.next, and then immediately restored by consuming the unique argument m.

5.4.3 Example 3: Searching in a Linked List

This is another example for linked list. The function member looks for data in the linked

list starting from node head. It returns the data if any of the node contains it. Otherwise,

if the data is not found in any of the list node, it returns null.
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1 class Node {

2 shared nullable Data val;

3 unique nullable Node next;

4 }

5

6 shared nullable Object

7 member(borrowed(val, next) nullable Node head,

8 shared nullable Object data) borrowed() {

9 if (head == 0) then null

10 else if (head.val == data) head.val

11 else member(head.next, data);

12 }

For the member, its method type is:

((borrowed(val,next) nullable Node), (shared nullable Object))

−→ shared nullable Object

The interesting part in this example is the recursive call on the member function, at

line 11. Since the result target for head.next is {head.next}, and field capability

head.next• is available at the entry of the call, the SubBorrowed rule is applied and

head.next• is removed from the input. It is then restored after the call. For the head.val

at line 10, it can also be type checked, because the capability head.val• is available at

that point. The field capability will not be pinned since the field val is shared.
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Chapter 6

Soundness of the Conservative Type

System

In this chapter, we describe how the soundness of the conservative type system defined in

the last chapter can be proved. Similar to the non-null type system described in Chap. 4, the

soundness is proved by converting each component in the conservative type system to the

corresponding parts under fractional permission system. The goal is that, since the fractional

permission system is already proven sound, if we can show that the conversion to fractional

permissions is valid, then the conservative type system itself is sound as well. In particular,

we will need to show that if an expression can be type checked under the conservative type

system, and if all the environments, input and output can be converted to the corresponding

pieces in the fractional permission system, then the same expression can be type checked

under the latter.
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6.1 Conversion to Fractional Permissions

In this section, we describe the conversion from the conservative type system to fractional

permission system, in a bottom-up order.

6.1.1 Conversion for Field Types

The first step is to transform each class definition to a class predicate [BS11]. A class

predicate describes invariants about the class. It is (roughly) a set of invariants about each

field inside the class. Invariants are expressed through fractional permissions. For instance,

whether this field is not null or possibly null, or whether this field is unique or shared.

Therefore, on the lower level we need to convert each field declaration to the corresponding

permission about the field.

Recall that in Sec. 5.1, a field has annotated type α ε c, while α can be either unique or

shared, and ε can be notnull, which indicates the field can never be null, or nullable,

which indicates the field may or may not be null.

Depending on the nullness of the field, we need to construct two different forms of per-

missions. In the following context we shall assume the field is f of an object o. For the case

that f is possibly null (nullable), the result permission is of the format:

∃r · ((o.f → r) + (r = 0 ? ∅ : πf ))

where πf is the rest of permissions for f . Depending on the annotation of the field, πf may

be different. We shall show how this is done later in the section.

For the case where f is not null (notnull), the corresponding permission is of the

format:

∃r · ((r 6= 0) + (o.f → r) + (r = 0 ? ∅ : πf ))
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In this case, besides the conditional permission, there is also the fact that r is not null. This

can be used to “unlock” the conditional permission, and obtain the permission in the “else”

branch, i.e., πf . One may wonder why we do not choose to use the more concise format:

∃r · ((r 6= 0) + (o.f → r) + πf )

This is because in the Sub rule (Fig. 5.7) we allow a not-null field to be treated as a possibly-

null field, and correspondingly, we need to transform the permission for a field target where

the field is not-null:

∃r · (((o.f → r) + (r = 0 ? ∅ : πf )) −+ π)

to a permission for field target where the field is possibly-null:

∃r · (((r 6= 0) + (o.f → r) + (r = 0 ? ∅ : πf )) −+ π)

Here, the field permission is encumbered in some other permission π. Since permission

transformation inside a encumbered permission is very restrictive, this cannot be done if the

field permission is not a conditional permission.

To construct the permission πf , we need to consider annotation α. Suppose α is unique,

the result permission is:

πf ≡ r.All→ 0 + p(r)

That is, along with the class predicate p(r) for the field’s class, the whole permission for

accessing r is included in πf .

For shared annotation, the result permission is:

(r.All→ 0) ≺ 0.All

In this case, πf merely contains the fact that the whole permission for r is nested inside the

“all” field of the null (or world) object (0). Thus, in order to obtain the whole permission,
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one has to first obtain the permission for the special permission 0.All → 0, and then carve

out the permission r.All→ 0 from it.

Conversion for field types is defined by the function ty2perm in Fig. 6.1 of Sec. 6.1.3.

With this function, a field type α τ for f of object r is converted to

∃r · (o.f → r + ty2perm(G,α, τ, r))

In Sec. 6.1.3, we shall describe this function in detail.

6.1.2 Conversion for Classes

In this section, we describe how to transform a class declaration to a class predicate in terms

of fractional permissions.

As described in the last section, to construct the permission for a field f , the class

predicate of f needs to be available. However, to get a class predicate we need all of its field

permissions (which may include the permission for f). Hence, they are mutually-dependent.

A naive way would be for each class c, to construct class predicate for each of its field on

the fly, that is, when processing a class c, we first construct predicates for each of its fields,

and then construct the predicate for c, and fill the entry in the predicate map. However, in

practice, as we have discussed in Sec. 4, the resulting permission would not be equivalent to

its unfolded version, and thus the proof would not be sound. The other approach, therefore,

is the same as we did for the non-null type system: we first construct class predicates all

at once, and store them in a special construct predicate map. The difference is that, with

the first approach we may construct more than one predicates for a class c, while the second

approach guarantees that for each class c, exactly one predicate is constructed.
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A predicate map is defined as follow:

G ::= · | G, c : p(x)

where p is predicate for class c. When processing a class c, if there is no associated predicate

for c, we first associate the class with a newly created variable, and then use it to construct

c’s actual predicate. After the predicate is constructed, we use it to replace the variable for

c, and then the algorithm moves on to the next unseen class. At the end of this process, for

each class in the program, we will get a corresponding entry in the predicate map G, which

maps the class identifier to its predicate.

For constructing the predicate for a class c, a similar algorithm is used to obtain all

field permissions for c. The fields are processed one by one. Whenever we see a field whose

associated class has no predicate, a new variable is used to create the actual predicate for

the field’s class. This process is similar to a depth-first-traversal on all the fields of c.

6.1.3 Conversion for Input and Output

The next step of the transformation is to convert the input and output of a type rule:

P ;E;κ0 ` e : (τ, β) a κ1

to the corresponding permissions. For the input, it consists of the permissions from the

environment E and the input capabilities κ0. For the output, besides the permissions from

E and output capabilities κ1, it also includes the permissions from the type (τ, β) for the

result value. The goal is that, after the transformation is done, we can type check the same

expression under the fractional permission system, using the corresponding input and output

permissions. In the following sections, we describe how the transformation is done for input

and output.
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Conversion for Input

For fractional permissions, the input is a program type (a mapping from procedures to their

types) and a set of input permissions. In Sec. 6.1.4 we will define how methods in the

program are converted to a program type under fractional permissions.

In Fig. 6.1, the function ty2perm defines how an annotated type α τ is converted to

permissions. Given the predicate map G constructed in the last section, an annotation α, a

type τ , and a variable r, ty2perm constructs permissions for the type and the variable r.

Note, to convert for a borrowed annotation, the rule does not need to know the set of fields.

In a slight abuse of notation, instead of using Borrowedf , we will use borrowed for this

rule. In several occasions in the following we will need to use this function without having

an existing borrowed annotation, and therefore with this change we do not need to obtain

an arbitrary set of fields from nothing.

The output of this function varies depending on the nullness and the type of the annota-

tion. Also, the conversion for the nullness is orthogonal to the conversion for the annotation

α.

ty2perm(G, α, ε c, r) =

r 6= 0 + r = 0 ? ∅ : p(r) ε = notnull, α = borrowed

r = 0 ? ∅ : p(r) ε = nullable, α = borrowed

r 6= 0 + r = 0 ? ∅ : r.All→ 0 + p(r) ε = notnull, α = unique

r = 0 ? ∅ : r.All→ 0 + p(r) ε = nullable, α = unique

r 6= 0 + r = 0 ? ∅ : r.All ≺ 0.All + p(r) ε = notnull, α = shared

r = 0 ? ∅ : r.All ≺ 0.All + p(r) ε = nullable, α = shared

where G(c) = p

Figure 6.1: Converting Annotated Type to Permissions

Fig. 6.2 defines how an environment E is converted to a set of formulae. A formula,
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unlike a permission, can be freely duplicated and discarded. The formulae generated here

represent the facts we know about each method argument. The base case is defined Empty,

where an empty environment is simply converted to an empty permission. For shared or

borrowed types (NonEmpty-Shared and NonEmpty-Borrowed), they are converted

to the corresponding permissions using ty2perm. For NonEmpty-Borrowed, it uses

the annotation borrowed without the set of fields, as explained above. In NonEmpty-

Unique, instead of unique, the borrowed is used for calling ty2perm. This is because the

permissions for a unique variable come from the associated capabilities, not the environment.

Empty

G ` · ⇒ ∅

NonEmpty-Shared
G ` E ⇒ π0 π = ty2perm(G,shared, τ, x)

G ` E, x : shared τ ⇒ π0 + π

NonEmpty-Borrowed
G ` E ⇒ π0 π = ty2perm(G,borrowed, τ, x)

G ` E, x : borrowed(f) τ ⇒ π0 + π

NonEmpty-Unique
G ` E ⇒ π0 π = ty2perm(G,borrowed, τ, x)

G ` E, x : unique τ ⇒ π0 + π

Figure 6.2: Converting Environment to Permissions

To convert capabilities to permissions, there are two parts: field capabilities (x.f • or

s-tgt•) and object capabilities (x).

For field capabilities, the related rules are defined in Fig. 6.3. The rule Empty handles

the base case, where an empty capability set is simply converted to empty permission. Rule

NonEmptyCap-Unique defines how a field capability x.f • is converted to permissions.

It first looks up the type for the field f , and then uses ty2perm to generate the field

permissions. Note that in this rule variable x must have unique annotation; if x is shared,
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the capability on the target would be mapped on to the shared target, and therefore would

be included in the capability s-tgt• instead. Also, conditional permission is used in the

result, regardless of the nullness of variable x. In case the x is not null, the fact x 6= 0 can

be obtained from the permissions converted from the environment E.

In rule NonEmptyCap-Shared, the shared target is converted to the unique permission

on the All field of the null object (0) encoding the “world” object. Since the shared target can

only appear at most once in a capability set (guaranteed by the Method or Constructor

rule in Fig. 5.3.4), at most one copy of this permission will appear in the output.

EmptyCap

P ;E;G ` · ⇒ ∅

NonEmptyCap-Unique
P ;E;G ` κf ⇒ π0 E(x) = α ε c α = unique ∨ α = borrowed(f)

ftype(P, c, f) = αf τ π = ty2perm(G,αf , τ, r)

P ;E;G ` κf , x.f • ⇒ π0 + (x = 0 ? ∅ : ∃r · (x.f → r + π))

NonEmptyCap-Shared
P ;E;G ` κf ⇒ π0

P ;E;G ` κf ,shared• ⇒ π0 + 0.All→ 0

Figure 6.3: Converting Field Capabilities to Permissions

Fig. 6.4 defines how object capabilities are converted to permissions. In general, for each

variable x in the set, we first collects permissions for every field of the object referred by x,

and then encumbers these permissions from the unique permission for x (x.All→ 0).

With conversion for both field and object capabilities done, the rule Caps2Perm defined

in Fig. 6.5 defines how capabilities κ are converted to permissions. It is a simple combination

of permissions from field capabilities and object capabilities.
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Empty

P ;E;G ` · ⇒ ∅

NonEmpty
E(x) = α ε c P ;E;G ` κo ⇒ π0

∀fi ∈ fields(c) : ftype(P, c, fi) = αi τi πfi = ∃ri · (x.fi → ri + ty2perm(G,αi, τi, ri))

P ;E;G ` κo, x⇒ π0 + (x = 0 ? ∅ : ((πf1 + · · ·+ πfn) −+ x.All→ 0))

Figure 6.4: Converting Object Capabilities to Permissions

CapsToPerm
P ;E;G ` κf ⇒ πf P ;E;G ` κo ⇒ πo

P ;E;G ` (κf , κo)⇒ πf + πo

Figure 6.5: Converting Capabilities to Permissions

In Chap. 5 we mentioned that to consume an object r as a whole, we need to:

• Remove all field capabilities for all fields of r

• Remove r from the object capabilities

In fractional permissions, with permissions from all the field capabilities of r, and the

permissions from the object capability r, we can reconstruct the unique permission for r:

r = 0 ? ∅ : ∃r1 · (r.f1 → r1 + πf1) + · · ·+

r = 0 ? ∅ : ∃rn · (r.fn → rn + πfn) +

r = 0 ? ∅ : ((∃r1 · (r.f1 → r1 + πf1) + · · ·+

∃rn · (r.fn → rn + πfn)) −+ r.All→ 0)

|= (through linear modus-ponens rule)

r = 0 ? ∅ : r.All→ 0
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With additional information from the environment (e.g., nullness, class predicate), we can

obtain the unique permission for r and be able to consume it (e.g., passing to a unique field).

With the above definitions, the input permissions for checking an expression is the per-

missions from the environment E, combined with the permissions from the input capabilities.

Conversion for Output

For converting outputs from the conservative type system to the fractional permission system,

in addition to the conversions for environment and capabilities, we also need to convert the

output reference type (a pair of type τ and source B) and the output capabilities to the

corresponding permissions.

Fig. 6.6 defines the conversion from a pair of type and source to permissions. The rule

has the following format:

P ;E;G; (o, r, v) ` (τ, β)⇒ π

This says that, under program P , environment E, and predicate map G, reference type (τ, β)

can be converted to permission π for reference variables o, r, and permission variable v. Here,

variable o represents the final value for the corresponding expression after evaluating it, and

v represents some unknown permission that we do not track. This is used to encode a fresh

target. Variable r represents some additional value that o could be equal to.

The rules for this conversion are defined in Fig. 6.6:

First, in case the source is shared (shared), it is simply converted to shared permissions

using ty2perm. This is defined by the rule Shared. The permission only contains the

formula specifying that the unique permissions for the result value is nested in the unique

permission for the null (0) object. To access these permissions, one needs to have permission

0.All→ 0, which can be obtained from the s-tgt• capability.
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Shared

P ;E;G; (o, r, v) ` (τ, shared)⇒ ty2perm(G,shared, τ, o)

Nonlinear
non-obj-tgts(ψ) = ∅ o ` obj-tgts(ψ)⇒ γ

P ;E;G; (o, r, v) ` (τ, ψ)⇒ γ + ty2perm(G,borrowed, τ, o)

Unique
non-obj-tgts(ψ) 6= ∅ o ` obj-tgts(ψ)⇒ γ

π1 = ty2perm(G,unique, τ, r)
P ;E;G ` non-obj-tgts(ψ)• ⇒ π2

π3 = v if f-tgt ∈ ψ else ∅

P ;E;G; (o, r, v) ` (τ, ψ)⇒ o = r ? (π1 + (π1 −+ (π2 + π3))) : γ

Figure 6.6: Converting Reference Type to Permissions

Empty

o ` · ⇒ ⊥

NonEmpty
o ` ψ ⇒ γ

o ` ψ, x⇒ γ ∨ o = x

Figure 6.7: Converting Object Targets to Permissions
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When the result source is unique, the case is more interesting. There are two sub cases:

when there are only object targets in the result targets, or when there are field targets in

the targets. Note that a target set ψ will never be empty, as enforced by the type rules.

For the first case (Nonlinear) where all targets are object targets, there is no actual

permission associated with the result value. Instead, the object targets are converted into a

list of object equal relations between the result value (o) and each of the variables represented

by the object targets. This conversion is described by rules defined in Fig. 6.7. They are

quite straightforward.

Note the rule also produces permission for result value o using ty2perm. Annotation

borrowed is used since there is no actual permission for o.

With this, expression such as:

x = if (...) a else b

would not require any permission from either variable a or b until some field for x is actually

used.

In the second case (Unique), the result target set ψ not only may contain object targets,

but also field targets, shared target, or fresh target. This means that there are pinned capa-

bilities for the targets. In terms of fractional permissions, those capabilities are represented

by permissions that are encumbered by the permissions for the result value. In addition

to all the variables from the object targets in ψ, the result value o could also be equal to

another variable r, for which the whole unique permission is available. This permission is

encumbered in permissions for the pinned capabilities, represented by π2 and π3 in the rule.

Therefore, unlike in Nonlinear, ty2perm in rule Unique takes a unique annotation as

input, and therefore the whole permission (represented by the permission π1 in the rule) is

available when the result value o equals to the variable r.
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For instance:

if (...) a else b.f

In this example, depending on the result from the condition part (omitted with . . . ), result

value o for the “if” expression could be an alias to the result of a, or b.f. In the former

case, we only have the knowledge that o is equal to result value of a, but have no actual

permission on o, while in the latter case, not only we know that o is equal to the result value

of b.f, but also that we have unique permission on the value. The unique permission comes

from the permissions for the result value of b.f.

In the Sec. 5.3.1 of Chap. 5, we mentioned that expression such as:

if (..) then a else new C()

cannot be checked under the current type system, as restricted by the rule Unique2Unique

defined in Fig. 5.8. One may wonder why we cannot obtain a common target set {a, f-tgt} for

this expression. In terms of fractional permissions, the left hand side of the above expression

generates:

∃o · (o = ra + πra)

Note πra is generated through ty2perm where the input annotation is borrowed. There-

fore, it does not contain any actual permission for ra, merely formulae.

To derive a common target set {a, f-tgt}, the final permissions need to be:

∃o, r, v · (o = r ? πr + (πr −+ v) : (o = ra))

Note the πr contains the full permission, including πr..All for variable r. In order to prove

that the rule is valid, we need to show that first set of permissions can be transformed into

the second set of transformations. This is not possible because there is no way to derive πr

from πra , in case ra is not null.
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In Unique rule, a fresh target f-tgt is represented with the permission variable v. This

represents some unknown permission that we do not track.

Finally, the rule Expr in Fig. 6.8 describes how outputs from typing an expression e in the

conservative type system are converted to fractional permissions. It is a combination of the

1), the permissions from the environment, 2) the permissions from the output capabilities,

and 3), the permissions from the result type and source.

Also in Fig. 6.8, the rule Cond defines how outputs from typing a boolean expression

are converted to permissions. It is simpler than Unique, in that there is no result type

and source. The result is simply the permissions from the environment combined with

permissions from the output capabilities.

Expr
G ` E ⇒ π1 P ;E;G ` κ⇒ π2 P ;E;G; (o, r, v) ` (τ, β)⇒ π3

P ;E;G ` 〈(τ, β), κ〉 ⇒ ∃o, r, v · (π1 + π2 + π3)

Cond
G ` E ⇒ π1 P ;E;G ` κ⇒ π2

P ;E;G ` κ⇒ (π1 + π2)

Figure 6.8: Converting To Output Permissions

6.1.4 Conversion for Method Type

Each method type in the conservative type system corresponds to a procedure type under

fractional permission system. In order to obtain a program type ω (defined in Chap. 3)

from a program P , we need to iterate over all the methods and perform conversion for each

method type. This is similar to what we did in Chap. 4.
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Recall that a method type is of the following format:

(α1 τ1, . . . , αn τn) −→ α τ

and a procedure type in fractional permissions is of the following format:

∀r∀∆ Π→ ∃r0∃∆′ Π′

With the help of the definitions in the last few sections, we can define how a method type

is converted to a procedure type in fractional permissions. This is shown in Fig. 6.9. First,

each annotated parameter type αi τi as well as the result type α τ is converted to permission

πi on a fresh variable xi, using ty2perm. Then, functions InputCaps and OutputCaps

(defined in Fig. 5.16) are used to collect the input and output capabilities, which are then

converted to the corresponding input and output permissions for type checking the method

body.

We also need to convert environment E to permissions and include them in both input

and output. These contain information about each method argument, such as its nullness

and class predicate.

MethType
G ` E ⇒ πE

πi = ty2perm(G,αi, τi, xi) πr = ty2perm(G,α, τ, xr)

κin =
⋃

InputCaps(αi, τi, xi) ∪ ({s-tgt•}, ∅)
κout =

⋃
OutputCaps(αi, τi, xi) ∪ ({s-tgt•}, ∅)

P ;E;G ` κin ⇒ πin P ;E;G ` κout ⇒ πout

P ;E;G ` (α1 τ1, . . . , αn τn) −→ α τ ⇒
∀x1, . . . , xn · (πE + π1 + . . .+ πn + πin)→ ∃xr · (πE + πr + πout)

Figure 6.9: Converting Method Type to Procedure Type
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6.2 Soundness of the Transformation

The proof process for the conservative type system is similar to the proof we demonstrated

for the nonnull type system in Chap. 4. To prove the final soundness theorem, the following

lemmas need to be proved first:

lemma1 For any expression e in the kernel language, if e can be type checked under the

conservative type system under consistent program P , environment E, with input

capabilities κin and output capabilities κout, and has result type τ and source β. Then,

with ω converted from P , input permissions πin converted from E and κin, and output

permissions πout converted from E, τ , β and κout, e can also be type checked under

fractional permission system.

For this lemma, it can be proved by case analysis on each of the expressions in the kernel

language. Most of the cases are straightforward, except for LetRestore and LetSwap.

For the former, in order to restore the uniqueness of field f , we need to preserve the field

permission (o.f → o′), and use it for the assignment.

Unlike Read, which produces (roughly) the following permission:

∃o, r · (o = r + r = 0 ? ∅ : (r.All→ 0 + p(r)) +

r = 0 ? ∅ : (r.All→ 0 + p(r)) −+

∃rf · (x′.f → rf + rf = 0 ? ∅ : (rf .All→ 0 + p(rf )))

When converting to fractional permissions, the result permissions from checking the expres-

sion x′.f are (roughly):

∃r · (x′.f → r + (r = 0 ? ∅ : (r.All→ 0 + p(r)))
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Here, the field permission x′.f → r in the above is passed along when checking the let body

e, and then is used to check the expression x′.f = e. The conditional permission in the above

is converted to the unique permission needed for the let-bound variable x. After the “let”

expression is checked, any remaining permission for x is discarded.

The approach for handling LetSwap rule is similar. The conditional permission is also

passed along when checking the expression e, but remains in the final permissions for the

f-tgt.

lemma2 For any method declaration in the kernel language, if it is well-typed under consis-

tent environment P in the conservative type system, then with the converted program

type ω, the converted procedure type for the method can also be type checked under

the fractional permission system.

To prove this lemma, we first obtain a procedure type using the rule MethType. Then,

we show that the input permissions for the procedure type can be transformed to the input

permissions converted from input environment and capabilities. With the help of lemma1,

the method body can be type checked under fractional permission system. Finally, we show

that the output permissions for checking the method body can be transformed to the output

permissions of the procedure type.

With the above, the soundness theorem for the conservative type system is as follow:

soundness For every program g in the kernel language, if g is well-typed under consistent

environment P , then with the converted program type ω, g can also be type checked

under the fractional permission system.

To prove this theorem, we can use the lemma above and show that for all method dec-

larations in the program, they can be converted to procedure type and is well-typed under
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fractional permission system.
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Chapter 7

Discussion

In this chapter, we discuss some of the difficulties we encountered during designing the

conservative type system and proving its correctness. We also describe some of the limitations

of the current system, and possible future work that can be done.

7.1 Proofs In Twelf

The conservative type system and the soundness theorem described in the last two chapters

are proved sound using mechanized proofs realized in the Twelf programming language [PS99,

PS02]. In this section we discuss some of the advantages and disadvantages by proving in

this approach.

The advantages of using a proof system such as Twelf are:

• Much more confidence on the correctness of the proof. Mechanized proof offers much

greater reliability on its correctness. Compared to a hand-written proof, which is

checked by human, a mechanized proof is checked by computer programs. Computers

are much less error-prone than manual checkings.
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• Easier to detect errors. Since a proof system checks all the possible cases in a proof,

this gives the proof writer better chances to discover errors in the proof. In my personal

experience, during the writing process for this thesis, I often got stuck when proving

some theorems that I initially thought were trivial, only to find out later that there

were some details that I had overlooked. As result, changes were required for the

theorem or related judgements. In this aspect, having the assistance of a proof system

is very helpful.

• Easier to maintain. It is often easier to update and maintain mechanized proofs.

For instance, during the proof process for this thesis, I frequently found that some

definitions needed to be changed, while there were already many theorems related to

them. In this case, a proof system will detect which parts of the proof need to be

updated and report all the places for me. I consider this as a big advantage compared

to maintaining a hand-written proof.

Not all aspects of using a proof system like Twelf are pleasant. In my opinion, there are

also some disadvantages, listed in the following:

• Much more tedious to write. Everything comes with a price. What comes with the

rigorous nature of mechanized proof is the fact that it is much harder to write. The

mechanized proof for the fractional permission type system took Boyland about 500

hours[BS11], and for me, much more for the conservative type system. The tediousness,

in my opinion, mainly comes from the fact that the proof system requires precise

definitions for all the judgements and theorems about the programming language.

One cannot ignore any of the cases, even though some cases may seem trivial and

often are ignored in a hand-written proof. In general, one needs to spend much more
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time writting a mechanized proof than a hand-written proof.

• Hard to debug. Twelf does not have very good support for debugging. This is fur-

ther aggravated by the fact that it tries to unify variables when there are no explicit

annotations to differentiate them. This often often results to coverage errors, which

means there are cases that are not covered by the proof. In this situation, Twelf will

print out all the cases that are missing. For theorems with a few cases this is not a big

issue, but for theorems that have thousands or even more cases, which is very common

for this thesis, this can be a huge headache, since Twelf will try to first collect all the

missing cases and then output them to the console all at once. The “collecting” process

is quite time consuming, and when the result is not ready, the console will appear to

be frozen and often have to be interrupted manually to avoid waiting. The debugging

information for the missing cases is also not so useful. As a result, I often just explicitly

add annotations for all the variables in the proof. This makes the proof more tedious

to write, and harder to read.

• Lack good library and module system support. Twelf does not come with good li-

brary support by default, and lacks module system. Boyland has written some library

support [Boy] for basic data types such as natural numbers, sets, maps, etc., and a

primitive module system using the C++ preprocessor. However, this does not solve all

the issues. First, when using a particular data type defined in the library, one needs

to search through all the properties about the data type and look for the one that

fits the need. Since there are a large number of properties (theorems) for each data

type, this searching process is time consuming. In many cases, the library does not

contain the exact property one needs, and therefore new theorems need to be defined
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and proved. Second, the library only has limited coverage. For instance, in Twelf the

extend-fld function in Fig. 5.5 is implemented by a many-to-one mapping from a set

of natural numbers into another set of natural numbers. This is not present in the

library. Similarly, in Chap. 6, often a set of field or object capabilities or needs to

be mapped to corresponding permissions, and many properties about this conversion

need also be proved in Twelf.

• Transformation in fractional permissions One important part of the proof is to con-

vert fractional permissions from one format into another, and this is done through

permission transformations. When there are many permissions, it can become rather

complex, because one needs to keep track of the positions of all the permissions, and

apply different rules to split/combine them or move them around. Permission transfor-

mations consist of a large portion of the Twelf proof. They are also hard to maintain.

A small change in the input permissions often involves changes in many places in the

sequence of transformations.

7.2 Future Work

This section discusses some of the possible directions for future work. In the following,

Sec. 7.2.1 discusses several possible enhancements for the conservative type system; Sec. 7.2.2

discusses the implementation for the conservative type system as an annotation checker;

Sec. 7.2.3 discusses how a “liberal” annotation checker, alongside the conservative annotation

checker, can help to further improve the annotation checking process.
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7.2.1 Improvements on the Type System

In this section, we first discuss some of the limitations for the current type system. In

particular, a few examples that appear to be obviously correct are unable to type check

under the system. We then discuss some possible future work that can be done to enhance

the type system and lift these restrictions.

Restore Consumed Capabilities

Although the rule LetRestore offers a way to restore consumed capabilities, it is limited

in a “let” expression, and often a source program needs to be rewritten in order to be type

checked. Another more general, albeit more complex approach is to introduce compromised

field capability into the type system:

κf ∈ FieldCapabilities ::= · | κf , x.f • | κf , s-tgt• | κf , x.f ◦

A compromised field capability is of the form: x.f ◦. It is used to track those capabilities on

fields that have been consumed, but can be restored later via assignments. Also, a normal

field capability x.f • is stronger than a compromised field capability x.f ◦: all places that a

x.f ◦ is used, one can substitute it with a x.f •.

With the compromised field capability, the relevant rules that need to be changed are

shown in Fig. 7.1.

In the rule SubUniqueNew, different from the original rule SubUnique, the pinned

field capabilities for targets ψ are added back to the capabilities as compromised capabilities.

Note that the capability s-tgt• cannot be restored because the current type system tracks

these using the s-tgt, instead of the actual unique fields that they came from. To allow this

would require a bigger change on the system.
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SubUnique
ε1 c1 <: τ2 α 6= borrowed(f)

κ′ = (extend-flds(ψ,fields(c1))•,obj-tgts(ψ))
κ′ ⊆ κ ψ′ = non-obj-tgts(ψ) \ {s-tgt}

κ ` (ε1 c1, ψ) <: α τ2 a κ \ κ′ ∪ (ψ′◦, ∅)

WriteNew
P ;E;κ0 ` e1 : (notnull c, β1) a κ1

ftype(P, c, f) = α τ write-field(β1, κ1, f) = ψ, κ2 P ;E;κ2 ` e2 : (τ2, β2) a κ3

κ3 ` (τ2, β2) <: α τ a κ4 consider-ftype(ψ, κ4, α) = β3, κ5

P ;E;κ0 ` e1.f = e2 : (τ, β3) a κ5

Figure 7.1: New Rules for Write (Partial)

write-field(β, (κf , κo), f) =

({s-tgt}, (κf \ {s-tgt•}, κo)) β ≡ shared
(ψ2 ∪ non-obj-tgts(ψ), (κf \ (ψ•3 ∪ ψ◦4), κo)) β ≡ ψ

ψ2 ≡ extend-fld(ψ, f) ∧
ψ2 ≡ ψ3 ∪ ψ4 ∧
ψ3 ∩ ψ4 = ∅ ∧
ψ•3 ⊂ κf ∧ ψ◦4 ⊂ κf

Figure 7.2: New Auxiliary Rules (Partial)

A consumed whole object cannot be restored as well. Such objects must be unique

method parameters. The unique permission on the all field for those parameters have been

lost, and therefore access to any field in the objects are no longer available.

In WriteNew, the only change is that read-field is now replaced with write-field,

defined in Fig. 7.2, which also restores the compromised capabilities. Either normal or

compromised field capabilities can be used to write a field. Both capabilities are removed

from input capabilities and pinned. They can be restored once the expression e1 in rule

WriteNew is no longer needed.
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A compromised capability x.f is converted to the following (assuming x is not null)

permission:

∃r · ((x 6= 0) + (x.f → r) + (r = 0 ? ∅ : p(r)))

Notice that we don’t have any permission on r, only class predicate.

Further changes need to be made with regards to how output permissions are converted.

Consider the following example:

x.u = y;

b.f = z;

Assume the variable y has targets: {a,b.f,c.g}, the output permissions after checking y

are of the following format:

∃o, r · (o = a ∨ o = r +

r = 0 ? ∅ : r.All→ 0 + p(r) +

(r = 0 ? ∅ : r.All→ 0 + p(r)) −+

((∃r · (b.f → r + r = 0 ? ∅ : r.All→ 0 + p(r))) +

(∃r · (c.g → r + r = 0 ? ∅ : r.All→ 0 + p(r)))))

Here, the permissions corresponding to compromised field capabilities a.f◦ and b.g◦ are

inside the encumbered permissions, and therefore would not be available for checking the

expression b.f = z, which needs the permission:

∃r · ((b.f → r) + (r = 0 ? ∅ : p(r)))
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for accessing b.f. Therefore, the above permissions need to be transformed to:

∃o, r · (o = a ? ∅ :

(o = r ? (r = 0 ? ∅ : r.All→ 0 + p(r)) +

r = ra ? ((b.f → ra + p(ra)) + ∃r · ((c.g → r) + (r = 0 ? ∅ : p(r))))

: (r = rb ? ((c.g → rb + p(rb)) + ∃r · ((b.f → r) + (r = 0 ? ∅ : p(r)))) : >) : >))

In general, the result permissions corresponding to a pinned field capability x.f • cannot

be encumbered permissions as we defined in Fig. 6.6 of Chap. 6. Instead, we need to convert

the capability into a field permission (assuming r is possibly-null) fo the format:

x.f → r + p(r)

Where r is the variable representing the result value. The permission also needs to be in

a conditional permission similar to that in the example above. In this way, if the targets

are consumed for the expression, the field permission can be transformed into existential

permission in the format:

∃r · (x.f → r + p(r))

corresponding to the compromised capability x.f ◦, and the conditional permission can then

be removed since all the branches will have the same permissions. Or, in case the capability

is unpinned, the original permissions for x.f • can be restored in a similar way.

Better LetUnqiue Rule

Another restriction of the current type system is the LetUnique rule. To summarize, there

are three restrictions:
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1. All the unique targets associated with the “let” binding expression are treated as con-

sumed and taken away from the input capabilities. They are no longer available when

checking the “let” body.

2. For the let-bound variable, none of its fields can be consumed inside the “let” body.

3. The let-bound variable cannot appear anywhere in the last expression of the “let” body.

For instance, the following example:

let x = new C() in a.f = x

cannot be type checked, because the unique value x is consumed in the “let” body.

It is possible to lift the second and third restriction by performing substitution on both

result capabilities and targets, after the “let” body is checked. Lifting the restrictions can

potentially be done in the following rewrite of LetUnique: The difference in the rule

LetUniqueNew
P ;E;κ0 ` e0 : (ε0 c0, ψ) a κ1

κ2 = (extend-flds(ψ,fields(c0))•,obj-tgts(ψ)) κ2 ⊆ κ1

κ3 = ({ x.f • | f ∈ fields(c0) }, {x})
x /∈ E P ;E, x : unique ε0 c0;κ1 \ κ2 ∪ κ3 ` e1 : (τ1, β) a (κf4 , κo4)

if x ∈ κo4 then κo = obj-tgts(ψ) else κo = ∅
s = { f | x.f • ∈ κf4 } if s = fields(c0) ψ4 = non-obj-tgts(ψ) else ψ4 = ∅

ψ5 = { x′.f | x.f ∈ κf4 , x′ ∈ obj-tgts(ψ) } β′ = sub-source(ψ, β)

P ;E;κ0 ` let x = e0 in e1 : (τ1, β
′) a (κf5 ∪ ψ•4 ∪ ψ•5, κo5 ∪ κo) \ κ3

Figure 7.3: New Rule for let

LetUniqueNew is that after the “let” body is checked, it substitutes all field capabilities

and targets that x occurs with the original ones they come from.

The rule first checks whether let-bound x is in the result object capabilities after checking
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the body expression. If so, it means the object represented by x is not consumed, so that all

the object capabilities that x comes from (obj-tgts(ψ)) can then be restored.

For field capabilities, there are two cases to consider: the pinned field capabilities for the

let binding expression e0 in the rule, and the field capabilities obtained by extending object

targets of e0 (field capabilities in κ2). For the former, they can only be restored if none of

the capability for x has been consumed. In terms of permissions, these correspond to the

encumbered permissions (π2 in Fig. 6.6), and they can only be restored if the permission

for the result value is intacted. For the latter, the original field capabilities are obtained by

replacing x with each of the object targets from e0.

The substitution for targets is done through the auxiliary function sub-source in Fig. 7.4.

If the result source is shared, nothing needs to be done. Otherwise, for each target in the

result target set, there are three cases: if the target is x, then it is simply replaced by the

original targets for e0; if it is x.f for some field f , then the original targets are obtained by

extending the object targets that x comes from with f , unioned with all non-object targets

of x; otherwise, x does not occur in the target and therefore no substitution needs to be

done. Here, the same target could be added multiple times, but since the result is a set, the

operation is idempotent.

sub-source(ψ, β) ={⋃
ρ∈ψ1

sub-target(ρ, ψ) β ≡ ψ1

β β ≡ shared
sub-target(ρ, ψ) =

ψ ρ ≡ x

extend-fld(ψ, f) ∪ ψ \ obj-tgts(ψ) ρ ≡ x.f

{ρ} otherwise

Figure 7.4: Substitution for Targets
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Note that the new rule does not address the first restriction, and still removes capabilities

for all object targets in the result of e0. Therefore, expression such as:

let x =

if (..) a else b.f

in (a.g = null; x)

cannot be checked, because capability for a.g is not available when checking the let body.

The type system does not track the relation between the variable x and those targets that

it comes from. If we allow the preceding example, then in

let x =

if (..) a else b.f

in (c.f = a.f; c.f = x.f; x)

a.f would be consumed twice illegally.

Fine-grained Capabilities

The current conservative type system does not differentiate between read and write effects.

A possible future work is to define two types of capabilities: a read capability and a write

capability. For reading a field, only the former is required.

With this addition, a method can be declared as the following:

class Demo {

unique nonnull A f;

...

foo(borrowed(read f) nonnull A a1, borrowed(

read f) nonnull A a2) {
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...

}

}

To differentiate between a read and write capability, notation borrowed(read f) is used

instead of borrowed(f). This indicates that only read capability for field f is needed

inside the method.

A read or write capability can be split into multiple read capabilities. Therefore, the

following is allowed:

foo(this.f, this.f)

as long as we hold either read or write capability on this.f.

Obviously, a write capability cannot be split into multiple write capabilities.

With the introduction of read capability, the method type for foo can be converted to

the following procedure type:

∀z1, z2, ra1 , ra2 · (z1∃r · (ra1 .f → r + r 6= 0 + p(r)) +

z2∃r · (ra2 .f → r + r 6= 0 + p(r)))

→ ∃ · (z1∃r · (ra1 .f → r + r 6= 0 + p(r)) + z2∃r · (ra2 .f → r + r 6= 0 + p(r)))

Note that for different read capabilities, we need to bind different fraction variables. Also, to

convert a read capability to fractional permissions, we need to know how to “split” an existing

fraction. In expressions such as method calls, a read or write capability can be splitted into

multiple copies, and we need to calculate how many copies to generate. A simple solution is

to collect all the usages of the capability and divide the fraction variable by that number.
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“From” return type

Currently for a method return type only shared or unique are supported. It would be

interesting to think about supporting the “from” return type [BRZ07], so that usages such

as iterators can also be benefited from aliasing control using annotations.

7.2.2 A Conservative Annotation Checker

An important follow-up work is to implement the conservative type system as an annota-

tion checker, perhaps on the Fluid framework [GHS03], and integrate it with the existing

checker based on fractional permissions. The implementation should be built directly on the

type system, and does not involve any operations on the fractional permission level. This

potentially could make annotation checking much faster.

The implementation should be followed by evaluations with large real world programs, to

test how the multi-tiered approach will improve the overall efficiency of annotation checking.

Based on the feedback, perhaps more improvements could be done on the conservative type

system and the annotation checker, to increase its input program coverage, reduce the space

or runtime overhead, etc.

7.2.3 A Liberal Annotation Checker

The conservative type system and the annotation checker based on it only makes checking

correct program faster. For those incorrect programs, they would still be passed to the

heaveweight permission checker once they failed the conservative checker, which could make

the issue even worse. As mentioned in Chap. 1, one possible solution is to design a liberal

annotation checker that is also lightweight, which detects those “obviously wrong” cases. For
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instance, it would be clearly wrong to store a borrowed method parameter into a unique

field, or use a unique variable more than one time as a unique method parameter. For these,

the liberal checker should be able to reject them immediately.
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Chapter 8

Conclusion

Annotations are a useful tool for specifying high-level design intent for computer programs.

Unlike a built-in type system, an annotation system can function as an pluggable type

system, and can work separately from the main compiler and runtime system. This makes

them very flexible, and a great way for enhancing an existing programming language without

modifying the language itself.

Researchers have proposed many different annotations for tracking changes on mutable

states, such as uniqueness, object ownership, immutability, method effects, nullness, etc.

Even though they are very useful, when putting them together under the same context, their

interactions with each other are hard to reason about. Moreover, these annotations are often

expressed in a high-level concepts, and their precise semantic meanings are often difficult to

pin down. The fractional permission system by Boyland and Retert [Boy03, BR05] offers a

powerful tool for specifying semantics for the various annotations mentioned above. However,

the trade-off for its expressiveness is its complexity. The current implementation [Ret09] only

handles a portion of the features for the system, yet it is already very complex and has both
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high space and runtime overhead. Therefore, it is not practical for real world usage.

This thesis proposes that, instead of using a monolithic type system to check every input

program, we can adopt a multi-tiered approach. On the top we can use a more lightweight

type system that sacrifices expressiveness for efficiency. The lightweight system can only

handle part of the inputs, and for those it cannot handle, they shall be passed to the more

powerful system in the next tier. The expectation for this approach is that most of the input

shall be handled by the lightweight system very quickly, while only a small number of input

need to be checked by the more heavyweight system. In general, the overall efficiency should

be greatly improved.

Based on this idea, this thesis also presents a conservative type system built on top

of fractional permissions. The type system uses high-level types, whose semantics can be

translated to that of the fractional permission system. It is more lightweight, and therefore

type checking is much faster.

The type system is also accompanied with a machine-checked proof for its soundness,

which, unlike a natural language proof, provides greater assurance about its correctness.

The proof is written in a novel approach: since the soundness for the fractional permission

type system is also proved through mechanized proof, the soundness of the conservative type

system is proved indirectly by piggy-packing onto that of the former. By doing this, there is

no need to define the dynamic semantics of the target language, and also no need to prove

progress and preservation directly.

Some possible future work for this thesis includes:

• Enhancements for the conservative type system by making it more expressive, while

still preserving the efficiency. Some possible directions include:
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– Better support for restoring consumed capabilities.

– Better handling for let expression when the let variable is unique.

– Fine-grained capabilities; differentiate between read and write capabilities.

– Supporting a “from” return type.

• Implement the type system as an annotation checker, perhaps on top of the Fluid IR.

Since the implementation is only concerned with high-level types, and does not involve

operations on the permissions, it should run much faster.

• Implement a liberal type checker that works
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Chapter 9

Appendix

About the Mechanized Proof

We have mechanized all the proofs for the conservative type system in about 65K lines of
Twelf code including about 1800 theorems. The current release of the Twelf proof on the
conservative type system is available at
https://github.com/sunchao/reftype/archive/release.zip. It includes all
the dependencies such as Boyland’s proof for the fractional permission type system, and
requires Twelf 1.5R3.

The syntax for the kernel language is defined in simple-concur/syntax.elf, and
the type system is defined in typing.elf. Some of the main Twelf metatheorems are listed
in below. They are defined in the file conversion.thm.

1. reftyping-ok. Corresponds to the lemma1 in the Chap. 6.

2. methmapmatch-implies-progtypematch. Corresponds to the lemma2 in the
Chap. 6.

3. env2progtype-total. Corresponds to the soundness theorem in the Chap.6.
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