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ABSTRACT 

MULTI-SCALE MODELING OF PARTICLE REINFORCED CONCRETE THROUGH 

FINITE ELEMENT ANALYSIS 

by 

Mir Zunaid Shams 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Konstantin Sobolev 
 
 

 

Concrete is the main constituent material in many structures. The behavior of concrete is 

nonlinear and complex. Increasing use of computer based methods for designing and simulation 

have also increased the urge for the exact solution of the problems. This leads to difficulties in 

simulation and modeling of concrete structures. A good approach is to use the general purpose 

finite element software, e.g ANSYS . Normal strength concrete is a composite material 

represented by mechanically strong aggregates of various shapes and sizes incorporated into 

weaker cementitious matrix. A number of simplified homogenized models have been reported in 

the literature to represent the mechanical response of concrete. An accurate representation of the 

spatial distribution of the aggregate particles is one of the most important aspects of real-scale 

concrete modeling. A three-dimensional, numerical model, capable of predicting structural 

reliability of concrete under various loading conditions has been developed. A micromechanical 

heterogeneous model based on "real world" spatial distribution of aggregates was generated 

using a packing algorithm. This model has been used to compute the stress-strain response of 
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concrete by taking a representative cell homogenization approach.  The results of numerical 

analysis of this model were compared with existing models of particulate composite material. 

The computational results demonstrate agreement within existing models and, therefore, can be 

used for micromechanical modeling of composite material such as "real world" concrete 

composites. 
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CHAPTER 1 

 

1 Introduction 

The macro-mechanical material properties and behavior of portland cement and asphalt 

concrete mixtures, such as mechanical strength, modulus of elasticity, creep parameters, and 

shrinkage, greatly depend on the properties of their main constituent, the aggregates [1]. In addition 

to material properties, the most important parameters affecting the macro-mechanical behavior of 

particulate composite materials include packing density, compaction degree, particle size, and 

spatial distribution of aggregates.  It has been shown that aggregates packing methods and optimal 

aggregate distribution can improve the mechanical response of concrete [1, 2].   

Figure 1 depicts five classical models describing the micro-mechanical properties of 

composites applicable to concrete. The closed form expressions that are derived from these models 

for the homogenized modulus of elasticity (Ec) are summarized as follows [4, 6]. 

 

Figure 1-1: Various simplified matrix/aggregate models for macro-mechanical behavior [4, 6]. 
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In the equations (1) – (5), Vp is the volumetric proportion of particulate, Ep is the elastic 

modulus of the particulate, Vm is the volumetric proportion of the matrix, and Em is the elastic 

modulus of the matrix. 

1.1 Motivation and Objectives 

Engineered structures must be capable of performing their functions throughout a specified 

lifetime while being exposed to a series of events that include loading, environment, and damage 

threats. These events, either individually or in combination, can cause structural degradation, 

which, in turn, can affect the ability of the structure to perform its function. The performance 

degradation in structures made of composites is quite different when compared to metallic 

components because the failure is not uniquely defined in composite materials. The size of the 

material components is significantly smaller than the structural dimensions. The nonlinear 

behavior of concrete can be attributed to the initiation, propagation, accumulation and coalescence 
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of micro cracks within the internal material structure. Thus, failure of concrete structures is a multi-

scale phenomena. 

 Since the beginning of the 1970s there has been a steadily increasing interest in developing 

robust and reliable models that can simulate concrete cracking; much of the development is 

certainly caused by the introduction of the finite element method and other numerical simulation 

techniques in science and engineering. 

 Improvements in the computer models may eventually reduce the role of experiments. 

Experiments are considered expensive, time consuming and cumbersome, only limited structural 

conditions can be tested, some loading situations are so complex that testing is considered 

impossible. 

 In this research, a Finite Element (FE) model was developed to analyze particle reinforced 

concrete. A prior FE model of a solid non-reinforced concrete was used as a benchmark. 

 

 

1.2 Literature Review 

In a research article Nagai et. al. demonstrated a method of finite element mesh generation 

in aggregate packed concrete. They pointed out that the difficulty in mesh generation comes from 

the boundary of aggregate and mortar. They proposed a method where they used three-dimensional 

digital image processing to generate mesh. They reported that they have developed the algorithm 

of a new element for the aggregate-mortar interface zone [7]. 

A finite element simulation using ANSYS based on a test for compressive strength of 

recycled coarse aggregate-filled concrete was presented by Jing et. al. in a research article 
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published in the Advanced Materials Research Journal. Opened crack and closed crack were 

introduced through transfer coefficient in their finite element model [8]. However, the meshing 

technique with the presence of aggregates in the specimen was not reported. Discussion about 

handling the aggregate and mortar interface zone was also not available. 

The method of generation of aggregates in a computational model is very important to 

replicated the real world concrete. Leite et al. described a method of aggregate distribution with 

the help of random number generation [9]. Their objective was to develop a mesocopic  concrete 

for simulating fracture processes. 

He et. al. investigated the influence of aggregate packing on the elastic properties of 

concrete [10]. They developed a numerical model where they packed triangular aggregates. In a 

2D finite element model, each triangular aggregate particle had a corresponding circular aggregate. 

Increase and decrease of Young’s Modulus and Poisson’s Ratio based on the change of area 

fraction of aggregates were reported. 

Use of lattice model for computational model of concrete is also found to be used by several 

researchers [11]. Elias and Stang developed a 2D lattice model to demonstrate concrete aggregate 

interlocking. The model is based on rigid cells interconnected by springs. 

Gal and Kryvoruk demonstrated a two step homogenization method of fiber reinforced 

concrete for multi-scale analysis [12]. Their homogenization approach includes first an analytical 

method to homogenize the aggregates and their interfacial zones and then a numerical 

homogenization algorithm is applied to homogenize the mortar, fibers and pre-homogenized 

aggregates. In another research Wriggers and Moftah developed a finite element model of concrete 

by incorporating aggregates, which were randomly generated using Monte Carlo's simulation 
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method [13]. Their meso-scale model was meshed using aligned approach for direct computation 

of the concrete effective properties. They have reported a subsequent homogenization was required 

during the numerical simulation. 

Due to the highly non-homogenous nature of concrete it is necessary to analyze a concrete 

model in multi-scale to fully understand the role of every component, such as, aggregates, voids, 

reinforcing fibers etc. In his doctoral thesis, Kasai presented his work on multi-scale modeling of 

concrete in a nano-scale [14]. The author found a difference of themechanical properties of solid 

C-S-H between MD computation results and the nanoindentation-micromechanics combined 

results. His explanation was that may be due tothe difference of the real structure of C-S-H and 

the crystal structure of jennite andtobermorite . In another multi-scale approach, Choudhuri 

utilized XEFG-method to analyze concrete material both on macroscopic and mesoscopic scale 

[15]. Constituents of concrete, i.e. cement paste and aggregates, are modeled explicitly while 

concrete is consideredas homogenized material on the macrscopic scale. Purpose of the research 

was to represent concrete damage. non-linear isotropic damage model is used to describe the 

tensile behavior of the cement paste. A cohesive crack model is introduced that can capture 

complex mixed-mode fracture. 
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CHAPTER 2 
 

2 Concrete Failures and Fracture 

Concrete used in common engineering structures, basically is a composite material, 

produced using cement, aggregate and water. Sometimes, as per need some chemicals and mineral 

admixtures are also added. Experimental tests show that concrete behaves in a highly nonlinear 

manner in uniaxial compression. Figure.1 shows a typical stress-strain relationship subjected to 

uniaxial compression. This stress-strain curve is linearly elastic up to 30% of the maximum 

compressive strength. Above this point tie curve increases gradually up to about 70-90% of the 

maximum compressive strength. Eventually it reaches the pick value which is the maximum 

compressive strength. Immediately after the pick value, this stress-strain curve descends. This part 

of the curve is termed as softening. After the curve descends, crushing failure occurs at an ultimate 

strain. A numerical expression has been developed by Hognestad [16], which treats the ascending 

part as parabola and descending part as a straight line. This numerical expression is given as: 

0 < 𝜀 < 𝜀0
′ ,          

𝜎

𝜎𝑐𝑢
= 2

𝜀

𝜀0
′ (1 −

𝜀

2𝜀0
′ ) 

𝜀0
′ < 𝜀 < 𝜀𝑐𝑢 ,         

𝜎

𝜎𝑐𝑢
= 1 − 0.15 (

𝜀 − 𝜀0
′

𝜀𝑐𝑢 − 𝜀0
′ ) 

 

 



 
 

7 
 

 

Figure 2.1 Typical Stress-strain curve for concrete and its constituents [9] 

 

The stress-strain curve for hardened cement paste is almost linear as shown in the figure. The 

aggregate is more rigid than the cement paste and will therefore deform less (i.e. have a lower 

strain) under the same applied stress. The stress strain curve of concrete lies between those of the 

aggregate and the cement paste. However this relationship is non-linear over the most of the 

range. The reason for this non-linear behavior is that micro-cracks are formed both at the 

interface between aggregate particles and cement paste and within the cement paste itself. 

 Concrete taken through a cycle of loading and unloading will exhibit a stress-strain curve 

as shown in the Figure 2.2. Concrete will not return to its original length when unloading mainly 

due to creep and micro-crackling. 



 
 

8 
 

 

Figure 2.2 Loading and unloading cycle of concrete [9] 

 

2.1 Multi-scale Modeling Basics 

Many scientific and engineering problems involve multiple scales, particularly multiple 

spatial or temporal scales or both. Spatial scale involves the physical size of the problem and 

temporal scale involves the different constituents such as, composite materials, porous media etc.  

Involvement either spatial or temporal scale increases the complexity of the problem by increasing 

the size of computation. These types of problems can be efficiently handled by multi-scale 

modeling. In most traditional multi-scale modeling the calculation of material properties or system 

behavior on the macroscopic level is done using information or models from microscopic levels. 

In other words it captures the small scale effect on the large scale, without resolving the small-
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scale features. At present there is enormous interest in multi-scale approaches, where the behavior 

of materials and structures is analyzed simultaneously at several different length-scales. The global 

mechanical performance of materials is determined by the materials structures and the local 

properties of constituents. The constituents also have their own material structures at a lower scale, 

which determine their mechanical properties. Take cement-based materials as an example. 

Concrete is a composite material consisting of coarse aggregates and mortar. The global 

mechanical behavior of concrete is determined by the material structure of concrete and the 

mechanical properties of coarse aggregates and mortar. At a lower scale mortar is made up with 

sands in cement paste. The properties of mortar are related to the material structure of mortar, as 

well as the local properties of sands and cement paste. 

Homogenization method [17] and concurrent method [18] are usually employed to address 

the failure modeling problem of heterogeneous materials. The homogenization method applies 

when the scales can be ideally divided and separated, while the concurrent method is used when 

the scales are somehow coupled. Generally speaking the homogenization method consumes less 

computational resources, and the concurrent method provides more accurate simulation results. 

The homogenization method requires that each block of heterogeneous material is taken 

out and isolated to evaluate its mechanical properties, and then these properties are used as the 

homogenized properties of the blocks and are put back to the network to simulate the global 

performance of the original piece of material. The concurrent method demands that the connection 

between neighboring blocks is preserved and the boundaries of blocks remain compatible with 

each other during the simulation, the stress and strain also remain the same as if the domain was 

not decomposed. 
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2.2 Multi-scale Finite Element Model (MsFEM) 

 Multi-scale Finite Element Model (MsFEM) typically works by capturing the multi-scale 

structure of the solution via localized basis functions. Basis functions contain information about 

the scales that are smaller than the local numerical. Basis functions are coupled through a global 

formulation to provide a faithful approximation of the solution. MsFEM consists of two major 

ingredients: multi-scale basis functions and global numerical formulation that couples these multi-

scale basis functions. Basis functions are formulated to incorporate localized multi-scale features 

of the solution. A global formulation couples these basis functions to provide an accurate 

approximation of the solution. 

 Mathematical formulation of MsFEM can be developed by considering a linear elliptical 

equation as: 

𝐿𝑢 = 𝑓   𝑖𝑛  Ω     (2.1) 

𝑢 = 0   𝑜𝑛  𝜕Ω  

Where Ω is a domain in ℝ𝑑         (𝑑 = 2,3) 

      𝐿𝑢 = −𝑑𝑖𝑣(𝑘(𝑥)∇𝑢) 

And 𝑘(𝑥) is a heterogeneous field varying over multiple scales. 

It is additionally assumed that the tensor 𝑘(𝑥) = (𝑘𝑖𝑗(𝑥)) is symmetric and satisfies  

𝛼|𝜉|2 ≤ 𝑘𝑖𝑗𝜉𝑖𝜉𝑗 ≤ 𝛽|𝜉|2, for all 𝜉 ∈ ℝ𝑑 and with 0<α<β 
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2.2.1 Construction of Basis Functions 

 The domain of interest is first decomposed into partitions called coarse grid and assume 

that the coarse grid can be resolved through a finer resolution called fine grid. Let us consider that 

Th be a usual coarse grid partition of Ω into finite elements (triangular, quadrilaterals, etc.). 

 Let xi be the interior nodes of Th and 𝜑𝑖
0be the nodal basis of the standard finite element 

space 𝑊ℎ = 𝑠𝑝𝑎𝑛{𝜑𝑖
0}. For simplification, it is assumed that Wh consists of piecewise linear 

functions if Th is a triangular partition. Definition of multi-scale basis function 𝜑𝑖is given by: 

 𝐿𝜑𝑖 = 0  in  K,  𝜑𝑖 = 𝜑𝑖
0  on  ∂K,  ∀𝐾 ∈ 𝑇ℎ,   𝐾 = 𝑆𝑖           (2.2) 

Where 𝑆𝑖 = 𝑠𝑢𝑝𝑝{𝜑𝑖
0} 

These multi-scale basis functions coincide with standard finite element basis functions on the 

boundaries of a coarse-grid block K, and are oscillatory in the interior of each coarse-grid block. 

Computational domain smaller than coarse grid block K can be chosen if one can use smaller 

regions (Kloc) to characterize the local heterogeneities within the coarse-grid block. Such regions 

are called Representative Volume Elements (RVE). In this case the definition of multi-scale basis 

function 𝜑𝑖 changes to: 

 𝐿𝜑𝑖 = 0  in  Kloc,  𝜑𝑖 = 𝜑𝑖
0  on  ∂Kloc,  ∀𝐾𝑙𝑜𝑐 ∈ 𝑇ℎ,   𝐾𝑙𝑜𝑐 = 𝑆𝑖           (2.3) 

In general, the equation (2.2) is solved on the fine grid to compute basis functions. In Figure 2.3a 

the basis function is consgtructed when K is a coarse partition element, and in Figure 2.3b the basis 

function is constructed by taking K to be an element smaller than the coarse grid block size. 
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                                (a)                                                              (b) 

Figure 2.3 Schematic descriptions of coarse and fine grids. 

2.2.2 Global Formulation 

 The representation of the fine-scale solution through multi-scale basis functions allows 

reducing the dimension of the computation. Then the approximation of the solution 𝑢ℎ = ∑ 𝑢𝑖𝜑𝑖𝑖  

is substituted into the fine-scale equation. Here ui are the approximate values of the solution at 

coarse grid nodal points. The resulting system is projected onto the coarse dimensional space to 

find ui. This can be done by multiplying the resulting fine scale equation with coarse-scale test 

functions. 

 Generalized MsFEM problem is then represented as: 

Find uh = Vh such that  

∑ ∫ 𝐾∇𝑢ℎ . ∇𝑣ℎ𝑑𝑥
𝐾

=  ∫ 𝑓𝑣ℎ𝑑𝑥
Ω𝐾       ∀𝑣ℎ = 𝑉ℎ                   (2.3) 

The above equation (2.3) is equivalent to Aunodal = b 

Where A=(aij) with  
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𝑎𝑖𝑗 = ∑ ∫ 𝑘∇𝜑𝑖. ∇𝜑𝑗𝑑𝑥
𝐾𝐾

 

Unodal = (u1, u2, . . . . , ui, . . . ) are the nodal values of the coarse scale solution and b = (bi) with 

𝑏𝑖 = ∫ 𝑓𝜑𝑖
Ω

 

Computation of aij requires the evaluation of the integrals using simple quadrature rule  on the fine 

grid. 

 MsFEM can be further generalized as: 

Lu = f                   (2.4) 

Where L: XY is an operator. 

Multi-scale basis functions are replaced by multi-scale maps EMsFEM: WhVh 

For each vhWh,   vr,h = EMsFEMvh is defined as: 

Lmapvr,h = 0  in  K 

Lmap captures the small scales. 

Solution scheme of equation (2.4) can be: 

Find ut,h  Vh such that: 〈𝐿𝑔𝑜𝑏𝑎𝑙𝑢𝑟,ℎ, 𝑣𝑟,ℎ〉 = 〈𝑓, 𝑣𝑟,ℎ〉,         ∀𝑣𝑟,ℎ ∈  𝑉ℎ 

Appropriate choises of Lmap and Lglobal are the essential part of MsFEM and guarantee the 

convergence of the solution. 
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Figure 2.4 Basis functions example. Left: basis function with K being a coarse element. Right: 

basis function with K being RVE. [12] 
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CHAPTER 3 

 

3 Computational Models 

Most engineering problems are solved using mathematical/numerical modeling. 

Mathematical models are presented in terms of differential equations with a set of boundary and/or 

initial conditions. Figure 3-1 shows a flow chart of engineering problem solving process. 

Physical Problem  Mathematical Model  Numerical Model 

  - Differential equations 

- Boundary conditions 

- Initial conditions 

 - Finite Element Method  

- Finite Difference Method 

- Boundary Element Method 

- Finite Volume Method 

- Central Difference Method 

- Meshless Method 

Figure 3-1: Engineering problem solving process 

Numerical models approximate exact solutions at discrete points of a given physical 

system. FEA is a popular numerical technique to solve engineering problems because of its ability 

to handle complex structures. 
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3.1. The Packing Algorithm 

Given the relationship between input parameters and output material performance, it is of 

great importance that the input parameters, including spatial distribution of aggregates, be highly 

tunable.  The Sobolev packing algorithm was used to create a parametric aggregate dispersion 

for use in simulation of particulate composites (Figure 3.2a) [19-20].It was assumed that the 

aggregates had spherical shape (diameters varying from Dmin to Dmax) and that there was no 

contact between any two spheres within the predefined and controlled volume size. The packing 

size distribution and volumetric ratio of aggregates to matrix are highly tunable and parametric-

based. This allows for future parameter coupling and output values for modeling real-scale 

particulate composites (Figure 3a).The packing algorithm starts with randomly assigning the 

location of the largest aggregate particle (Dmax).  The packing continues by the Monte-Carlo 

generation of the coordinates and subsequent placement of spheres with diameter di, wherein 

Dmax≥ di ≥ Dmin.  The center of the sphere must lie within the container and spheres must not 

overlap.  Any spheres that do not fit these criteria are discarded. 

After achieving a certain number of packing trials, the minimum sphere diameter, Dmin, is 

reduced as follows: 

 

 

where Dmin is the minimum diameter, Dmax is the maximum diameter, K is the reduction 

coefficient, and N is the number of trials. 
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                    a)                                            b)                                          c)  
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d) 

Figure 3.2 The simulation based on Sobolev packing algorithm: (a) two-dimensional 

representation of the algorithm [19];the results of two-dimensional packing with (b) K= -1 and 

(c) K= -3 [7]; (d) particle size distribution for 3-dimensional packing of 300 and 10,000,000 

aggregate particles. 

 

This method yields a simple pseudo-dynamic packing algorithm that produces randomly 

packed set of aggregates in a given container [19-20].This method is further expanded to allow 
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coefficient-driven particle spacing, and, therefore, allowing a more realistic suspension model to 

be generated: 

Where r is the radius of a new sphere, d is a minimum distance to the surface of any 

already packed set of spheres, kdel is an initial coefficient that provides the separation between 

spheres, S is a coefficient to change the size of separation, and m is the number of steps taken to 

change the size (for simplification, it is assumed that m = N).   

This packing process yields a favorable result for the modeling of aggregate based 

composites when the spacing algorithm is applied, as demonstrated by Figure 2 [19-20]. It 

should be noted that the ultimate selection of the best aggregates. mix should be based on the 

workability requirements, segregation potential, strength and stiffness equirements achieved at 

the highest packing density possible [21]. Aggregate optimization can enhance the compressive 

strength by identification of the best blend through multiple criteria [22]. 

3.2 Finite Element Modeling 

A finite element model of the cube shaped matrix containing spherical aggregates was 

created in ANSYS software. One set of generated 101 spheres  were packed in an approximate 

cube shaped control volume . The spheres were scaled to have a maximum diameter of 20 mm. 

For the sake of simplicity, finer aggregates were not considered in the packing. A solid cube was 

then created in such a way that it accommodates all the spheres and at the same time it replicates 

a continuum of large scale pack . Outermost spheres were only partially contained inside the cube. 

The portion of those outermost spheres was then subtracted by boolean operation to flush the cut 
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surface of spheres to the outer surface of the cube. Another Boolean operation called glue was 

performed to tie the spheres to the cube so that they do not deform independently and freely under 

pressure.  

The volumes were then meshed with ANSYS Solid65 concrete elements. Uniaxial pressure 

was applied to the block from the top surface while the bottom surface was constrained in all 

degrees of freedom. No slip condition of the top and bottom surfaces was considered. Material 

properties of the aggregate and mortar considered in this analysis are shown in Table 3.1 

Table 3.1 Material properties of cement mortar and aggregates. [21] 

 Elastic Modulus Poisson’s Ratio 

Mortar/matrix 25 GPa 0.29 

Aggregates 75 GPa 0.29 
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(a) (b) 

 

(c) 

 

(d) 

 

Figure 3.3: (a) Solid spheres generated in ANSYS from Sobolev packing algorithm, (b) solid 

block representing the RVE size (c) subtracting spheres outside the RVE (d) conformal finite 

element mesh. 

 

3.2.1 SOLID65 3-D Solid Element 

SOLID65 is used for the three-dimensional modeling of solids with or without reinforcing 

bars. The solid is capable of cracking in tension and crushing in compression. In concrete 

applications, for example, the solid capability of the element may be used to model the concrete 

while the rebar capability is available for modeling reinforcement behavior. Other cases for which 

the element is also applicable would be reinforced composites (such as fiberglass), and geological 
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materials (such as rock). The element is defined by eight nodes having three degrees of freedom 

at each node: translations in the nodal x, y, and z directions. Up to three different rebar 

specifications may be defined. The most important aspect of this element is the treatment of 

nonlinear material properties. The concrete is capable of cracking (in three orthogonal directions), 

crushing, plastic deformation, and creep. 

. 

Figure 3-4 Node numbering convention and coordinate system of SOLID65 element. 
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CHAPTER 4 

 

4 Results and Discussions 

Since concrete, by construction, is a brittle material that does not exhibit a defined yield 

point. Moreover it has much lower strength is tension compared to the same in compression. So, 

in order to analyze the stresses, the maximum principal stresses were of primary concern. For 

comparison and boundary condition validation purposes the same boundary conditions were 

applied to a solid concrete block of the same size. By looking at the resulting stress contour plots 

it is found that the maximum stress zones resembles the actual laboratory test case. Figure 4.1, 

4.2, 4.3 and 4.4 shows the 1st principal stress, 2nd principal stress, 3rd principal stress and von 

Mises stress respectively for a solid concrete block. 

In case of aggregate filled block the results of the stress contour are quite different from 

the results of an assumed homogeneous block. In the aggregate filled block the higher stress 

zones are located near and around the aggregates. Figure 4.5, 4.6, 4.7 and 4.8 shows the 1st 

principal stress, 2nd principal stress, 3rd principal stress and von Mises stress respectively for 

aggregate filled concrete block. 

From the results of stresses presented in Table 4.1 it is found that the stresses increase 

significantly with the inclusion of the aggregates.  
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Figure 4-1 1st principal stress contour plot of solid concrete block. 

 

Figure 4.2 2nd  principal stress contour plot of solid concrete block. 
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Figure 4.3 3rd principal stress contour plot of solid concrete block. 

 

 

Figure 4.4 von Mises stress contour plot of solid concrete block. 
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Figure 4.5 1st principal stress contour plot of aggregate packed concrete block. 

 

Figure 4.6 2nd principal stress contour plot of aggregate packed concrete block. 
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Figure 4.7 3rd principal stress contour plot of aggregate packed concrete block. 

 

Figure 4.8 von Mises stress contour plot of aggregate packed concrete block. 
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Table 4-1 Stress result values for solid and aggregate filled concrete block. 

 1st Principal 

Stress 

2nd Principal 

Stress 

3rd Principal 

Stress 

Von Mises 

Stress 

Solid Concrete 

Block 
243  x 104 MPa 22 x 104 MPa 99 x 106 MPa 120 x 106 MPa 

Aggregate 

Filled 

Concrete 

Block 

363 x 106 MPa 142 x 106 MPa 260 x 106 MPa 216 x 107 MPa 
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CHAPTER 5 

5 Conclusions and Future Work 

Finite element models of solid concrete block and concrete block with aggregate packing 

were developed and analyzed for stresses. The constraints and loading conditions were validated 

through the solution of solid concrete block by looking at its maximum stress zones. Same 

boundary condition and loading were applied to the aggregate filled concrete block. As expected, 

the location and distribution of the maximum stresses were different from the same in the solid 

block. Results are summarized in the next sub-section..  

5.1 Summary of Results 

Results from the research are summarized below 

▪ Finite element stress results for the solid concrete block replicates the actual test results of 

uniaxial compression on a concrete block. The higher stress zones are at the same location 

where the failure occurs. 

▪ With inclusion of the aggregates the concrete block exhibits higher rigidity and 

consequently it experiences higher stresses. 

▪ Higher stress occurs near the aggregates. It is because of the stress concentration at the 

aggregate-mortar interface. It indicates that damage or fracture is likely to initiate at the 

interface areas. 

▪ 3-D solid-beam mixed element model shows lower stress than the solid only element model 

under same amount of bending (Figure 4-11). 
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5.2 Future Work 

Several major research directions can be recommended for a future development of the 

finite element analysis of aggregate reinforced concrete: 

1. Location of the crack initiation and nature of its propagation can be investigated through 

cohesive zone modeling in FEA.  

2. Air voids were neglected throughout this research, where air voids play a significant role in 

concrete strength and fracture. Inclusion of air voids in the model will be a desired 

improvement of this research. 

3. Investigating different types of loading conditions may be another approach to simulate 

different locations in a large structure. 
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