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ABSTRACT 
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 As the rate of running related injuries has failed to decline despite advances in footwear, 

many researchers have begun focusing on different foot strike patterns possible contribution to 

injury risk.  While many studies have focused on the differences between RFS and FFS running, 

few have investigated kinematic differences within the distal foot in habitual RFS and FFS runners 

and have failed to consider mechanical and neuromuscular changes due to fatigue.  The purpose 

of this study, therefore, was to investigate foot kinematics and neuromuscular differences 

between RFS and FFS runners at the beginning and end of an exhaustive run.  Fifteen habitual 

RFS and 15 habitual FFS runners (27.6 ± 5.64 years) performed a maximal 5 km treadmill run.  A 

seven segment foot model was used with 3D motion capture methods to calculate joint 

kinematics of six functional articulations: rearfoot, calcaneonavicular, calcaneocuboid, medial 

forefoot, lateral forefoot, and first metatarsophalangeal (MTP).  Four dual Ag/AgCl EMG surface 

electrodes were attached to the medial gastrocnemius, peroneus longus, soleus, and tibialis 

anterior to identify neuromuscular activity.  Motion capture and EMG data were analyzed for five 

consecutive steps at the beginning and end of the 5 km run.  Motion capture data was processed 

to investigate foot kinematic and joint coordination variability differences between the foot 
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strike patterns at the beginning and end of the 5 km run.  EMG data was processed to investigate 

neuromuscular preactivation onset and magnitude (iEMG) differences between the foot strikes 

at the beginning and end of the run.  Mixed between-within groups statistical tests were used to 

compare variables between the foot strike patterns at the beginning and end of the exhaustive 

run.  Exploration of kinematic results indicated a more supinated foot in FFS runners at initial 

contact and through early stance.  The increased foot supination may result in a more rigid foot, 

but a less stable ankle joint.  When the foot is moving toward greater pronation, a greater 

demand on soft tissues for stability is expected which may imply increased risk of soft tissue 

injury within the foot for RFS runners.  Both groups demonstrated an increased range of motion 

at the end of the run during the first (0-20% of stance), 3rd (51-75% of stance), and 4th (76-100% 

of stance) stance subphases which may be a result of muscular fatigue and may increase injury 

risk to dynamic stabilizers of the foot articulations.  With respect to joint coordination, rearfoot-

midfoot coupling variability increased in both groups during midstance (21-50% of stance) at the 

end of the run.  The increased variability may have been indicative of neuromuscular 

compensation to alter step-to-step variability in order to avoid overstressing tissues which may 

lead to overuse injury.  Neuromuscular preactivation magnitude was increased and occurred 

earlier in the tibialis anterior in RFS runners and preactivation onset was earlier in the 

gastrocnemius in FFS runners.  While RFS runners require tibialis anterior activation to maintain 

a dorsiflexed position at initial contact, it is likely that the earlier gastrocnemius onset in FFS 

runners facilitates positioning of the foot for initial contact with the forefoot. The earlier 

gastrocnemius onset in FFS with no significant difference in magnitude may suggest different 

roles of the gastrocnemius between the foot strikes and may be clinically relevant when looking 
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at overuse injury risks.  There was no difference in neuromuscular preactivation as a result of the 

5 km run, suggesting that neuromuscular fatigue did not affect how the muscles prepared for 

initial contact.   
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1. INTRODUCTION 
 

Since the 1970’s, the percentage of individuals who have taken up running has 

dramatically increased (Marti, Vader, Minder, & Abelin, 1988; van Mechelen, 1992; Yoder, 

2013).  As the amount of participants in the sport has risen, so too has the occurrences of 

running related injuries. Recent studies have indicated that 19.4-79.3% of runners suffer some 

form of running related injury each year (Bahr & Holme, 2003; van Gent et al., 2007).  Much of 

the research to date has focused on decreasing running injuries through advancements in 

footwear.  The underlying theory has been that impact loads are the major contributing factor 

to overuse running injuries (Light, McLellan, & Klenerman, 1980).  However, there is  little 

evidence that running injuries rates have decreased despite scientific advances in footwear 

(Richards, 2009) which has lead researchers to investigate the potential role of foot strike 

patterns on injury rates.  Recently, Lieberman et al. (2010) investigated foot strike running 

patterns in habitually shod and habitually barefoot individuals and found that those who were 

not accustomed to wearing footwear generally ran with a midfoot or forefoot strike pattern.  

Habitual shod runners, on the other hand, tend to run with a rearfoot strike pattern (~75-94%) 

(Hasegawa, Yamauchi, & Kraemer, 2007; Kerr, Beauchamp, Fisher, & Neil, 1983; Larson et al., 

2011).  This has raised questions as to the foot’s natural ability to attenuate impact forces.  

Subsequent  research has focused on comparing barefoot and minimalist shoe running with 

that of traditional running shoes to try to identify which may better prevent running injuries 

(Divert et al., 2008; Shih, Lin, & Shiang, 2013; Squadrone & Gallozzi, 2009).  The biomechanical 

differences between the habitually shod and barefoot runners identified by Lieberman, et al., 

(2010) however, were associated with the strike pattern, not the footwear.  Only a few studies 
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have used methods that allow biomechanical evaluation between strike patterns by controlling 

the shod condition (Ahn, Brayton, Bhatia, & Martin, 2014; Pohl & Buckley, 2008; Shih et al., 

2013; Yong, Silder, & Delp, 2014).  These studies have identified earlier plantarflexor 

neuromuscular activation in FFS runners (Ahn et al., 2014; Shih et al., 2013), strong forefoot-

rearfoot coupling patterns (Pohl & Buckley, 2008), and better shock absorption when switching 

from a RFS to a FFS (Shih et al., 2013). 

The differences in impact loads and ground reaction force between individuals running 

with different strike patterns has been well established (Cavanagh & Lafortune, 1980; Williams, 

McClay, Hamill, & Buchanan, 2001), and will not be the focus of this project.  The ground 

reaction force differences between the strike patterns are, however, important to understand 

as they are related to the kinematics of the lower extremity.  In general, rearfoot runners have 

an impact peak in the first subphase of running which is not evident in midfoot and forefoot 

runners (Lieberman et al., 2010; Williams, McClay, & Manal, 2000).  The repetitive exposure of 

the lower extremity to large vertical ground reaction forces is theorized to result in overuse 

injuries (Cavanagh & Lafortune, 1980; Clarke, Frederick, & Cooper, 1983; Hreljac, Marshall, & 

Hume, 2000).  The movement of adjacent joints during the stance phase of gait is also 

influenced by the magnitude and direction of the ground reaction force. As rearfoot strikers 

and forefoot strikers impact the ground at different areas of the foot, different lower extremity 

kinematics have been observed between the foot strike patterns when changing footwear 

conditions (Bonacci et al., 2013; Lieberman et al., 2010; Shih et al., 2013).  At initial contact, 

rearfoot strikers have a greater dorsiflexed foot position than forefoot runners which 

contributes to differing knee and hip kinematics while running (Kulmala, Avela, Pasanen, & 
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Parkkari, 2013; Stackhouse, Davis, & Hamill, 2004).  However, there is conflicting research 

regarding whether or not the differing rearfoot kinematics have an impact on the development 

of running related injuries such as tibial stress fractures and plantar fasciitis (Milner, Hamill, & 

Davis, 2010; Pohl, Hamill, & Davis, 2009; Pohl, Mullineaux, Milner, Hamill, & Davis, 2008; Tam, 

Astephen Wilson, Noakes, & Tucker, 2014; Willems et al., 2006).  It has been suggested that 

investigation of more distal foot motion may contribute to the understanding of the 

relationship between foot kinematics and running related injuries (Pohl et al., 2009).  To date, 

however, differences in distal foot motion between these foot strike patterns have not been 

investigated.  Identification of the differences may be particularly crucial to forefoot running as 

the large ground reaction forces must first pass through the foot at initial contact.    

When using motion capture techniques to evaluate lower extremity motion, the foot 

has traditionally been defined as a single, rigid body segment.   Only recently has the use of 

multi-segment foot models been used in research.  These foot models allow the foot to be 

segmented into multiple sections, generally ranging from 2-8 segments (MacWilliams, Cowley, 

& Nicholson, 2003; Morio, Lake, Gueguen, Rao, & Baly, 2009; Pohl, Messenger, & Buckley, 

2006).  Although a greater number of segments allow for a more detailed understanding of foot 

motion, limited skin surface area on the foot and current tracking technology increase the 

difficulty in being able to analyze motion of the multi-segmented foot.  Therefore, a model with 

sufficient functional segments that does not inhibit data collection is important.  The seven 

segment model selected for this project allows for reliable kinematic measurements (Bauer, 

Joshi, Klinkner, & Cobb, 2011) while representing functional segmentation of the rearfoot, 

medial and lateral midfoot, and medial and lateral forefoot.  Differences in joint kinematics 
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have been identified for both walking and running in individuals with different foot pathologies 

and arch height (Bauer, 2012; Cobb et al., 2009). 

In addition to the motion at an individual joint, the interaction between joints, also 

impacts lower extremity motion and the transfer of forces along the kinetic chain.  In rearfoot 

strike runners, abnormal joint coupling between the rearfoot complex and leg have been 

observed in individuals with patellofemoral pain and stress fractures (Bates, Osternig, Mason, & 

James, 1979; DeLeo, Dierks, Ferber, & Davis, 2004; Heiderscheit, Hamill, & Tiberio, 2001; 

McClay & Manal, 1997; Nigg, Cole, & Nachbauer, 1993; Powers, Chen, Reischl, & Perry, 2002).  

Very little, however, is known about joint coupling patterns during forefoot or midfoot strike 

running.  By initiating ground contact with the forefoot, joint couplings within the distal foot 

will have a strong influence on the transfer of forces proximally along the lower extremity 

during the initial loading phase of stance.  Those studies that have looked at foot joint coupling 

in rearfoot and forefoot strikers have only done so with a two segment (rearfoot, forefoot) foot 

model (Eslami, Begon, Farahpour, & Allard, 2007; Pohl & Buckley, 2008).  Additionally, 

identifying a satisfactory method of quantifying joint coupling in a way that can be interpreted 

clinically has been a challenge (Chang et al., 2008; Miller, Chang, Baird, Van Emmerik, & Hamill, 

2010).  Currently the most accepted methods of quantifying joint coupling are continuous 

relative phase angle and vector coding.  Although both are commonly used, the results of the 

two methods cannot be directly compared (Miller et al., 2010).  Pohl and Buckley (2008) 

identified good coupling patterns between rearfoot frontal plane motion with transverse plane 

tibial rotation as well as forefoot sagittal plane motion using both cross-correlation and vector 

coding techniques.  Using relative phase angle, Eslami, et al. (2007) identified a more in-phase 
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relationship in forefoot transverse plane and rearfoot frontal plane coupling between the 

various phases of running stance for individuals running shod compared with barefoot running 

where out-of-phase coupling was observed (37° difference). 

Joint coupling variability has further been utilized with cyclic movements, such as gait, 

as an indicator of injury risk.  Previously, large amounts of variability in successive steps were 

thought to lead to injury.  Though extreme amounts of variability are still thought to increase 

injury risk, the dynamic systems theory, however, hypothesizes that some variability may be 

beneficial to allow for adaptation to varying constraints between successive steps (Haken, 

Kelso, & Bunz, 1985; Schoner & Kelso, 1988).  Because biological tissues adapt to stresses 

placed on them, variability while running may allow for stress to be dispersed to surrounding 

tissues and therefore avoid repetitive overuse.  Though decreases in variability in ankle and 

tibial coupling has been found in injured runners, differences between forefoot and rearfoot 

runners have not been established.   

Joint kinematics and variability of movement patterns are controlled by the 

neuromuscular system.  Therefore, muscular activity is expected to vary between the different 

strike patterns.  Increased activity of the triceps surae during forefoot running is expected as 

the heel is lowered to the ground after initial contact.  Rearfoot strikers, on the other hand, 

require more tibialis anterior activity to maintain a dorsiflexed foot while making initial contact 

with the ground and then eccentrically contracting to lower the forefoot to the ground as well.  

Forefoot runners have demonstrated earlier preactivation of the gastrocnemius and delayed 

tibialis anterior preactivation when compared to rearfoot runners prior to initial contact (Shih 

et al., 2013).  Preactivation of muscle contributes to joint stability and preparation for large 
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impact loads which may otherwise cause injury.  The different muscle requirements for joint 

stability, foot posture, and loading response between the foot strike patterns suggests that 

each foot strike pattern may have a different fatigue responses as well.  Understanding how 

muscle preactivation patterns change after running exhaustion may aide in understanding the 

different roles each leg muscle contributes to the varying foot strike patterns and how to better 

avoid overuse musculoskeletal injury. 

Most running motion capture studies have utilized a protocol that required the subjects 

to perform running trials after a brief warm-up period.  However, many overuse injuries are 

thought to occur later in a run, when the lower extremity muscles become fatigued (Mizrahi, 

Verbitsky, & Isakov, 2000a; Verbitsky, Mizrahi, Voloshin, Treiger, & Isakov, 1998).  Fatigue 

results in decreased force production and delayed muscle activity which may lead to abnormal 

lower extremity kinematics (Mizrahi et al., 2000a; Petrofsky, Guard, & Phillips, 1979; Wu, 

Chang, Wu, Guo, & Lin, 2007).  This has been supported by research which has observed altered 

lower extremity kinematics following exhaustive runs (Derrick, Dereu, & McLean, 2002; Dierks, 

Davis, & Hamill, 2010; Donahue & Sharkey, 1999; Milgrom et al., 2007; Mizrahi, Verbitsky, 

Isakov, & Daily, 2000b; Mizrahi, Voloshin, Russek, Verbitski, & Isakov, 1997).  Therefore, to 

better understand how foot and ankle motion may contribute to overuse injuries, it is 

necessary to consider alterations in these motions that occur as a result of fatigue.  The 

differences in lower extremity neuromuscular activity between the foot strike patterns 

following an exhaustive run have not been investigated.  Understanding how RFS and FFS 

runners respond differently to an exhaustive run may help to explain differences in the types 

and rate of injuries seen in runners. 
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As specific foot and ankle kinematics have been linked to various running overuse 

injuries, it is important to understand how kinematics differ between running styles.  Muscle 

activity and tissue loading both influence the kinematics that occur during the stance phase of 

running. This may be especially true as lower extremity muscles become fatigued.  Therefore, 

as overuse running injuries are closely linked to lower extremity kinematics, understanding how 

foot motion and muscle activity differ between strike patterns in uninjured runners will allow 

future research to further investigate how to prevent injuries for each foot strike pattern. 

Statement of the Problem 

 
 Rearfoot kinematics are associated with overuse injury risk while running. However, 

most research investigating this relationship focused almost exclusively on rearfoot strike 

runners. Recent running trends, however, have integrated minimalist shoes and barefoot 

running, which results in many runners switching to a midfoot or forefoot strike pattern.  To 

date, it is unclear how distal foot kinematics and leg musculature activity are influenced by 

different running strike patterns.  Most previous research has treated the foot as a single rigid 

segment, neglecting the motion in the distal foot during the stance phase of running gait. 

Though a few studies have investigated foot motion with multi-segment foot models, the 

majority have not included models with sufficient functional segments and have only focused 

on rearfoot strike running.  As many researchers, clinicians, and runners argue as to which foot 

strike pattern is superior, studies have yet to identify the foot kinematics and muscular 

activation associated with each foot strike pattern. In addition, most running research protocols 

do not consider the kinematic and muscular changes that may occur after exhaustion has set in.  
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Because many running injuries occur when some level of fatigue is present, consideration 

should be given to how an exhaustive run may change kinematics and neuromuscular profiles.  

Though recently converted FFS runners do not appear to have any differing kinematics from 

habitual FFS runners (Williams et al., 2000), asking recently converted FFS runners to perform 

an exhaustive run would likely have different results.  Therefore, utilizing habitual RFS and FFS 

runners would be necessary to truly understand how these foot strike patterns differ at the 

beginning and end of an exhaustive run.  Such information may help begin to understand what 

injury etiology occur with each foot strike pattern. 

Purpose 

 
The purpose of this project was to explore the differences in foot kinematics and lower 

extremity muscular activation between habitual rearfoot strike (RFS) and forefoot strike (FFS) 

runners before and after an exhaustive run. Specifically, patterns of distal foot motion, joint 

coupling variability, and extrinsic leg musculature preactivation were investigated.   

Research Aims and Hypotheses 

 
Specific aim 1.  To determine the differences in joint kinematics between habitual RFS 

and FFS runners at the beginning and end of an exhaustive run. 

Hypothesis 1.1.  It was postulated that significant kinematic differences would be 

observed between RFS and FFS runners at initial contact and in distal foot range of motion 

during the early subphases of running stance.  This was hypothesized to occur due to variation 

in center of pressure during early stance between rearfoot and forefoot running.   
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Hypothesis 1.2.  No differences were expected in the second half of gait as push-off was 

thought to be similar between the two strike patterns.  Further, similar fatigue effects on 

kinematics were expected in both strike patterns due to similar muscular usage during push-off 

in both the foot strikes.  

Hypothesis 1.3. Following the exhaustive run, range of motion in all joints was 

hypothesized to increase for both foot strike patterns because of muscle fatigue.  Because of 

large eccentric contractions of the ankle plantarflexors, FFS runners were hypothesized to have 

a larger increase in joint range of motion due to exhaustion.   

Specific aim 2.  To identify the differences in foot and ankle joint coupling variability 

between habitual RFS and FFS runners at the beginning and end of an exhaustive run. 

Hypothesis 2.1. Because of a more distal vertical ground reaction force at initial contact 

in FFS running, increased joint coupling variability was expected in the distal foot during the 

first half of the stance phase.  This variability was hypothesized to decrease with fatigue as a 

result of the neuromuscular system decreasing its ability to adapt and increasing overuse injury 

risk, based on the dynamic systems theory.   

Specific aim 3. To identify the muscular preactivation differences between habitual RFS 

and FFS runners at the beginning and end of an exhaustive run. 

Hypothesis 3.1.  It was hypothesized that FFS runners would exhibit an earlier onset and 

larger iEMG value of gastrocnemius and peroneus longus activity.  This was hypothesized due to 

the immediate and large eccentric motion the plantarflexors undergo during the loading phase 

of stance.  Smaller values for the tibialis anterior were expected when compared to RFS runners 

because of the need for RFS runners to maintain a dorsiflexed foot posture at initial contact.  
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No differences were expected for the soleus based on previous research suggesting the soleus 

contracts similarly for each strike pattern (Jacobs, Bobbert, & van Ingen Schenau, 1993). 

Hypothesis 3.2.  Preactivation for both foot strike patterns was hypothesized to be 

delayed and iEMG was thought to decrease with fatigue as a result of decreased neural drive. 

Delimitations 

 
Purposeful decisions made in the design of this study include the following: 

1. Fifteen habitual rearfoot strike (RFS) and forefoot strike (FFS) runners (minimum 10 

miles running per week) were recruited from college campuses and running 

clubs/groups in the Milwaukee area to participate in this study.  

2. The percentage of FFS runners has been estimated at 1-2% of runners based on various 

classification techniques.  Recently, however, the percentage is thought to be 

underestimated based on the misclassification of midfoot strike runners (Graf, Rainbow, 

Samaan, & Davis, 2013).  Therefore, since the two strike patterns do share similar 

vertical ground reaction force (VGRF) patterns, this study did not differentiate between 

midfoot strike runners and FFS runners.  The methods for determining foot strike 

pattern in this study were by vertical ground reaction force while running. 

3. The seven segment foot model chosen for this study was selected because it included 

medial and lateral segmentation of the midfoot and forefoot.  Medial and lateral foot 

motion has been observed to contribute significantly to lower extremity kinematics 

(Rouhani, Favre, Crevoisier, Jolles, & Aminian, 2011; P. Wolf et al., 2008). 
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4. The sandals used for the study were chosen following pilot testing of several different 

‘minimalist’ sandals in both RFS and FFS runners.  All subjects used the same footwear 

to eliminate kinematic differences due to footwear.  The purpose of the pilot testing 

was to identify a sole thickness that would allow barefoot or minimalist runners to 

maintain a FFS and that would allow traditional shod RFS runners to maintain a RFS.  The 

12 mm Mono sandals (Luna Sandals, Seattle, WA) allowed runners to run with their 

preferred foot strike pattern.  A running speed of 7.5 mph was chosen for EMG and 

kinematic data collection because it was assumed that habitual runners that ran a 

minimum of 10 miles per week would be able to run for at least 30 s at that speed even 

at the conclusion of an exhaustive run. 

5. A maximal 5 kilometer run was used as the exhaustive run protocol based on the time it 

generally takes to complete (under 40 minutes).  As only a 10-day accommodation 

period is given the subjects, 5 km is a reasonable distance to build up to in the sandals in 

that time frame.  Additionally, pilot testing had proven that exhaustive criteria based on 

heart rate max (HRmax) and rate of perceived exertion (RPE) can be achieved during the 5 

km run.  Furthermore, time trials and run-to-exhaustion methods have been shown to 

produce similar results of fatigue (Laursen, Francis, Abbiss, Newton, & Nosaka, 2007). 

6. EMG of the tibialis anterior, peroneus longus, medial gastrocnemius, and soleus were 

chosen for observation.  Tibialis anterior and gastrocnemius/soleus EMG have different 

roles in the FFS and RFS running pattern during the loading phase and therefore deemed 

necessary to include.  The peroneus longus has yet to be investigated between the foot 

strike patterns, but is of interest because of its role in avoiding excessive inversion and 
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lateral ankle sprains.  Delayed onset of muscle activity has been linked to individuals 

with lateral ankle sprains and therefore an understanding of onset timing while running 

is important to understand from a dynamic stability standpoint (Konradsen & Ravn, 

1990). 

7. Data collection for EMG and kinematic data were performed while participants ran on a 

treadmill, and not overground.  This was decided because of the difficulty in some 

subjects to consistently perform running trials at a specified speed, especially after an 

exhaustive bout of exercise.  In order to assure that the exhaustive effects do not wear 

off due to inconsistency in overground trials, all data was captured while running the 5 

km run on a treadmill.  Perhaps even more importantly, when looking for variability 

characteristics in joint coupling, consecutive steps are generally a better indicator of the 

step-to-step variability that occurs. 

8. Vector coding methods according to Heiderscheit, et al. (2002) were selected over those 

of Ferber, et al. (2005) because of the range of angles.  The Heiderscheit method allows 

for calculations of joint angles to range from 0-360⁰, where the Ferber method allows 

for only 0-90⁰ range.  The larger range allows for determination of in-phase, anti-phase 

characteristics of the joint coupling.   

Limitations 

 
The following are limitations of this study: 

1. The retroreflective surface markers were assumed to represent the underlying bone of 

the various segments.  Although, error from soft tissue artifact is inevitable 
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(Reinschmidt, van den Bogert, Nigg, Lundberg, & Murphy, 1997b), the effects were 

minimized by placing markers over skin where minimal soft tissue movement occurs and 

through the use of optimization procedures.   

2. EMG noise occurs as a result of various factors including movement of wires and 

crosstalk (Farina, Merletti, & Enoka, 2004).  Additionally, some wire leads were not 

working optimally and resulted in partial data for some subjects. 

3. Various methods have been used for determining muscular activity onset, but none 

have been determined to be the most accurate.  This study used a threshold of 2 

standard deviations above baseline, but visual inspection of this was performed to 

assure accurate determination of muscular activity onset. 

4. Testing was conducted in minimalist sandals and, therefore, is not to be directly 

inferable of motion in other types of footwear or to running barefoot. 

5. Shoe uppers may add restriction to foot motion.  To allow access for marker placement, 

sandals were chosen as opposed to shoes with cut out windows.  Therefore, foot 

kinematic motion that occurs within a traditional running shoe may be different. 

6. Because of space limitation on the surface of the foot and inaccessibility of some of the 

foot bones to surface markers, not all bony segments of the foot may be represented by 

surface markers.  Functional segments were identified instead. 

7. Three-dimensional motion capture requires that a minimum of two cameras have view 

of a retroreflective marker in order to acquire 3D coordinates.  At times this does not 

occur and the marker appears to be missing.  For estimating correct position of missing 
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markers, interpolation by cubic spline or by virtually joining based on the surrounding 

positional data were used.  

Assumptions 

 
The following assumptions were made when considering the results: 

1. All subjects were injury free, healthy, and run at least 10 miles per week. 

2. All runners participating in the study consistently ran with the foot strike pattern seen 

during the screening and were a representative sample of the population.  Additionally, 

it was assumed that despite using a different type of footwear than what they habitually 

use, their habitual foot strike pattern remained the same.   

3. The 10-day accommodation period given for the shoes was sufficient for shoe 

adaptation.  Any changes in foot kinematics when comparing pre- and post- exhaustive 

run were assumed to be a result of the exhaustion and not caused by the insufficient 

footwear accommodation.  This accommodation period length was pilot tested and 

used by other researchers (Bonacci et al., 2013; Nyska, McCabe, Linge, & Klenerman, 

1996). 

4. Maximal voluntary contractions (MVC) performed by the subjects were truly their 

maximal effort.  Practice with maximal contractions during an earlier visit and strong 

verbal encouragement during the MVC were used to assure this takes place. 

5. The 5 kilometer run was performed at the fastest pace possible by the individual.  By 

allowing each subject to adjust speed accordingly and tracking heart rate and RPE, 

confirmation that the run was truly a maximal effort was monitored.  
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6. The cohesive bandage used to secure marker clusters on the foot was assumed to not 

affect kinematics of the foot as it is very flexible and even stiffer athletic tape has shown 

to not effect kinematics while running (Lindley & Kernozek, 1995; Verhagen, van der 

Beek, & van Mechelen, 2001). 

7. Marker placement was accurate over the appropriate bony landmarks based on 

sufficient practice of the investigator applying the markers and by having the same 

investigator apply markers to all subjects. 

8. Motion capture, EMG, and all other equipment used were accurate and sensitive 

enough to determine differences between and within groups. 
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2. REVIEW OF LITERATURE 
 

Introduction 

 The primary purpose of this study was to compare the foot kinematics and leg muscular 

preactivation in habitual rearfoot strike and forefoot strike runners.  This review of literature 

first gives an overview of the different foot strike patterns while running and their general 

kinematic characteristics.  Because running shod and barefoot have different kinematic effects 

on the various foot strike patterns, this review includes an overview of how each foot strike 

pattern is effected by footwear.  The foot model used in this study was a multi-segment foot 

model which partitions the foot into six segments.  Therefore, this review also includes an 

overview of the different types of multi-segment foot models that have been used in research 

and functional segmentation of the foot which helps determine what segments are important 

to track for understanding foot motion.  From the multi-segment foot model kinematics, joint 

coupling was determined for various adjacent foot articulations prior to determining joint 

coupling variability.  An overview of joint coupling and its quantification methods are therefore 

included in this review of literature as well as details to the theories behind variability in 

biological systems.  As all the kinematics and joint coupling variability are a result of muscle 

activation, which were observed in this study, this review of literature also includes an synopsis 

of leg muscular activation while running and particulars of electromyography (EMG) 

characteristics, specifically onset of muscle activity and integral EMG (iEMG) activity prior to the 

running stance phase. 

 In conjunction with the primary purpose of this study, the study will also incorporate an 

exhaustive run protocol to better understand how kinematics, joint coupling variability, and 
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muscular preactivation may change as a result of fatigue.  The final piece of this review of 

literature will explain what is known about fatigue and different fatigue protocols that have 

been used in research for mimicking training sessions and running performances.  This is 

important to understand as altered kinematics may occur as a result of fatigue and lead to 

injury or decreased performance in running. 

Running Foot Strike Patterns 

Runners can be classified into three or four different strike patterns based on the area 

of the foot that first makes contact with the ground while running.  The three main strike 

patterns are rearfoot, midfoot, and forefoot, with some researchers distinguishing toe striking 

as a fourth category.   

Rearfoot strike pattern.  The rearfoot strike (RFS) pattern, also referred to as heel strike 

or heel-toe running, occurs when a runner makes initial ground contact with the heel of the 

foot.  This method of running is the most common strike pattern among novice to elite runners 

with researchers identifying RFS in approximately 75-99% of runners (Bertelsen, Jensen, 

Nielsen, Nielsen, & Rasmussen, 2013; Hasegawa et al., 2007; Kasmer, Liu, Roberts, & Valadao, 

2013; Larson et al., 2011).  It should be noted, however, that this prevalence rate is lower (only 

33%) when strike pattern is self-reported, suggesting that some runners may be unaware of the 

type of strike pattern they habitually perform (Goss & Gross, 2012).  The exact location where 

the foot initially contacts the ground within the posterior portion of the foot in RFS runners can 

greatly vary, possibly being the cause of individuals misreporting their actual foot strike pattern 

(Cavanagh & Lafortune, 1980).   
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 Midfoot strike pattern.  Midfoot strikers (MFS) make up approximately 0-23.7% of 

runners identified by researchers, and 43% of runners as identified by self-reporting methods 

(Bertelsen et al., 2013; Goss & Gross, 2012; Hasegawa et al., 2007; Kasmer et al., 2013; Larson 

et al., 2011).  This strike pattern occurs when the forefoot and rearfoot make simultaneous 

contact with the ground (Cavanagh & Ae, 1980). 

 Forefoot strike pattern. Runners with a forefoot strike pattern (FFS) only comprise 0-2% 

of runners as observed in research studies, though 20% of runners self-report having a FFS 

(Bertelsen et al., 2013; Goss & Gross, 2012; Kasmer et al., 2013; Larson et al., 2011).  This strike 

pattern is defined as making initial contact with the forefoot, or distal 1/3 of the foot (Cavanagh 

& Ae, 1980). Sprinting, or fast-paced running are most often associated a FFS (Doherty, 1971).   

Toe strike pattern.  The additional foot strike pattern that has been identified as toe 

striking occurs when initial contact is made with the forefoot, but the rearfoot never makes 

contact with the ground.  Because the foot strikes the ground in the forefoot region, despite 

not making heel contact, this foot strike pattern is often not differentiated as a separate foot 

strike pattern (Lieberman, 2012) and, likewise, was not differentiated from the FFS pattern 

presently.  

Foot Strike Classification Methods. Discrepancies in the prevalence of runners that use 

each strike pattern are further complicated by the various methods that exist for classification 

of foot strike pattern.  The least technical method reported in the literature is by visual 

methods, most often by examining footage taken during a race with a video camera (Hasegawa 

et al., 2007; Kerr et al., 1983).  Visual methods are also still well excepted techniques for 

determining foot strike pattern.  However, error can occur due to digital camera limitations 
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such as frame rate and inadequate focus which may lead to improper foot strike classification.  

This method also seems to be less accurate for identifying MFS (Altman & Davis, 2012b).   

Cavanagh and Ae (1980) introduced a foot strike determining method in which the total 

length of the foot or shoe is divided into equal thirds (proximal, middle, and distal).  The 

position of the foot’s center of pressure at initial contact with respect to the dividing lines 

determines if the runner is a FFS (distal third), MFS (middle third), or RFS (proximal third) 

runner (Cavanagh & Ae, 1980).  It is thought that perhaps the number of FFS runners which has 

previously been reported in the literature using this method may be incorrect because of how 

FFS runners contact the ground (Graf et al., 2013).  When barefoot, FFS runners appear to 

contact the ground on the lateral aspect of their 5th metatarsal head.  In some individuals, this 

occurs on the border of the partition between the distal and middle sections of the foot.  

Therefore, many FFS runners may be incorrectly identified as MFS.  Recent methods have been 

developed to avoid this problem by partitioning the foot into thirds between the most posterior 

aspect of the calcaneus and the 1st metatarsal head rather than the tip of the second toe or 

shoe (Graf et al., 2013).  This method appears to be a valid method of identifying FFS patterns 

during barefoot running. The method has not, however, been utilized to compare foot strike 

pattern during shod running (Graf et al., 2013). 

  Another method of foot strike pattern identification has been to examine the 

dorsiflexion angle of the ankle at initial contact.   Altman and Davis (2012a) found this method 

to be 60-83% reliable when comparing it to visual methods (Hasegawa et al., 2007; Kerr et al., 

1983) and the center of pressure method (Cavanagh & Ae, 1980).  This method is least accurate 

with FFS runners as they sometims make initial contact in a dorsiflexed ankle position.  This is 
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made possible by increasing the knee flexion angle at initial contact which allows for minimal 

change in the ankle angle in order to make contact with the forefoot at initial contact 

(Squadrone & Gallozzi, 2009). 

Ground reaction force characteristics of the different running strike patterns is also 

different between RFS and FFS running and can be used to distinguish between them (Bramble 

& Lieberman, 2004; Lieberman et al., 2010; Williams et al., 2000).  The most pronounced 

difference is a sharp initial impact peak, or a vertical ground reaction force (VGRF) curve with a 

double peak (Figure 2.1), in RFS running and is discussed in further detail later in this review.  

When comparing MFS and FFS running, however, both patterns are similar in that they do not 

have the characteristic initial impact peak seen in RFS running.  The VGRF curve was used for 

the present study to distinguish between the foot strike patterns.  Distinction was only made 

between FFS and RFS running patterns.  Individuals with a MFS pattern were included in the FFS 

group since their VGRF patterns are similar and difficulty is found in distinguishing between the 

two strike patterns (Altman & Davis, 2012a; Williams et al., 2000). 

Foot strike pattern prevalence.  Beyond differences in classification methods, 

prevalence of each foot strike pattern may be influenced by the length of endurance running 

and different levels of running experience.  Hasegawa et al. (2007) reported foot strike patterns 

(n = 283) based on visual methods (filming speed = 120 Hz) at the 15 km point of an 

international half marathon to be 74.9% RFS, 23.7% MFS, and 1.4% FFS.  Kerr et al. (1983) used 

similar methods as Hasegawa et al. (2007) but observed (filming speed = 60 Hz) recreational 

runners in a 10 km race and more competitive runners in a marathon (n = 753) and found 81% 

RFS, 19% MFS, and 0.2 % FFS.  In this study, only 45% of faster runners (running speed of 332 
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m/min) demonstrated a RFS running pattern compared to 88% in slower runners (running 

speed 207 m/min).  Similarly, Larson et al. (2011) reported 94.4% RFS, 3.6% MFS strikers, and 

1.9% FFS at the 10 km point for recreational half-marathon, relay, and full-marathon runners 

using visual methods (filming speed = 300 Hz, n = 936).  In this study, marathon runners were 

also video recorded at the 32 km point where 92.3% of FFS runners had converted to a MFS or 

RFS and 59.5% of MFS runners converted to RFS. Only 1.8% of RFS converted to either a MFS or 

FFS.  Differences in foot strike prevalence may be partially attributed to the experience level of 

runners, one study being elite to sub-elite runners (Hasegawa et al., 2007) and the other being 

sub-elite to recreational runners (Larson et al., 2011)  as well as a difference in filming speed 

(120 Hz and 300 Hz, respectively) in which the initial contact moment may have been miss 

identified.  As reported in Kerr et al. (1983), there is a much lower prevalence of RFS runners in 

those who complete distance running at a faster pace (88% compared to 45%).  In a laboratory 

setting, Nunns, House, Fallowfield, Allsopp, and Dixon (2013) reported foot strike patterns in 

male military recruits (n = 120) to be 77% RFS, 8.3% MFS, and 10.8% FFS when running barefoot 

by using a plantar pressure mat and dividing the foot into thirds.  This study is the only known 

study to use a large cohort with more technical measures than those of visual methods and 

demonstrated a much larger portion of FFS runners than the previous mentioned studies.  

However, most of the observed difference is likely due to the recruits running barefoot rather 

than the methods chosen. 

Summary. In summary, it is well accepted that the majority of runners make initial 

ground contact with a RFS, though MFS and FFS are not uncommon.  There is some discrepancy 

as to the best method for determining one’s foot strike, with visual, kinematic, and kinetic data 
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being used for determining foot placement at initial contact.  Though joint angles and plantar 

pressure locations have been used, visual methods continue to be well accepted for 

determining foot strike patterns, though utilizing cameras with faster filming speeds may 

produce more accurate results.  Characteristic impact peaks in the VGRF curve further aid in 

discriminating between the various foot strike patterns.  This study used VGRF data to 

determine if an individual is a RFS or FFS (which will include FFS and MFS) runner. 

Running Kinematics 

 Running gait cycle.  The running gait cycle is defined between the instant a foot first 

contacts the ground (initial contact) to the instant the same foot contacts the ground again 

(Novacheck, 1998).  Within this cycle, the stance phase is identified between the initial contact 

and toe off events of the same foot.  The stance phase during running is generally around 30-

40% of the total gait cycle with less contact time associated with faster running speeds 

(Novacheck, 1998).   

 The running stance phase can be further separated into four subphases, with each 

subphase exhibiting key factors of stance.  Subphase 1, or loading phase (~0-20% stance 

phase), is defined between initial ground contact to initial loading.  In RFS running, this is where 

the initial impact peak is observed.  Subphase 2, or midstance (~21-50% stance phase), occurs 

between the initial loading to full body weight acceptance.  It marks the end of absorption, 

when the leg is no longer working to absorb VGRF, but prepares to push against the ground for 

forward propulsion.  Subphase 3, or terminal stance (~51-75%), begins with full body weight 

acceptance and ends half the distance to toe-off.  During subphase 3, the center of gravity of 

the body moves over the midpoint of the center of pressure and the leg begins to push the 
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body forward.  Subphase 4 is from subphase 3 to the final toe-off (~76-100%), and often is 

referred to as pre-swing (Ferber et al., 2005).  It is during this phase that final propulsion occurs 

to move the body forward and the foot leaves the ground. 

Effect of Foot Strike Pattern on Running Kinematics.  Much of running research has 

investigated the effect of footwear on running kinematics, comparing various shod conditions 

to barefoot.  Some researchers, however, have neglected to consider the shift in foot strike 

pattern prevalence for each of these conditions.    Barefoot runners often utilize a MFS or FFS 

pattern and the majority of shod runners present with a RFS (Bramble & Lieberman, 2004; 

Lieberman, 2012; Lieberman et al., 2010).  Exceptions have been reported especially when 

habitually shod runners initially transition to barefoot running or vice versa (Lieberman et al., 

2010).  However, many RFS runners who habitually run shod convert to a MFS or FFS when 

barefoot (Divert et al., 2008; Lieberman et al., 2010).  Most research investigating the 

difference between barefoot and shod running kinematics have only used habitually shod 

runners who more often have a RFS.  Further, some researchers have required subjects to 

perform a specific foot strike pattern although the subject may have preferred a different one 

(e.g. a habitual shod RFS runner asked to run barefoot RFS, but naturally shifts to a FFS when 

barefoot).  It is difficult to conclude, therefore, that the kinematics in these studies mimics what 

habitual runners of each foot strike pattern would actually display.  As habitually shod runners 

tend to acquire a MFS or FFS while barefoot, it is unknown at what point this occurs and at 

what point it becomes habit.  It was suggested by Divert, Mornieux, Baur, Mayer, and Belli 

(2005b) that conversion from a RFS habitual shod runner to a FFS while running barefoot may 

occur after a specific running length.  Methods that require participants to only take a few steps 
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down a runway may allow participants to maintain a RFS while longer runs, such as the three 

minute run used by Divert et al. (2005b) may require FFS conversion to avoid discomfort.  There 

are also, however, runners who habitually run shod that run with a FFS or MFS (Cavanagh & 

Lafortune, 1980; Hasegawa et al., 2007; Larson et al., 2011).  Therefore, it is important to 

consider both how the strike patterns influence running kinematics and how footwear 

contributes to the differences between the strike patterns. 

Rearfoot strike running. 

Shod running. Arguments have been made that the modern-day running shoe with 

cushioning, arch support, and a heel-to-toe drop promote RFS running (Lieberman et al., 2010; 

Robbins & Hanna, 1987).  Due to the increased sole thickness under the heel, the heel is more 

likely to make ground contact first because cushioning prevents ground contact from being 

uncomfortable.  When running with a RFS pattern there are two distinct peaks visible in the 

VGRF during stance (Figure 2.1-A) (Cavanagh & Lafortune, 1980; Nigg, Bahlsen, Luethi, & 

Stokes, 1987).  The initial peak is referred to as the passive peak as passive structures such as 

shoe cushioning have been thought to control its magnitude.  This impact peak is an indicator 

of the loading rate and magnitude of force on the foot which is then transferred up the kinetic 

chain.   The loading rate of the VGRF has been theorized to be related to overuse running 

injuries (Light et al., 1980; Robbins & Hanna, 1987).  When a RFS occurs during shod running, 

the heel cushion causes an increase in the time it takes to lower the center of mass compared 

to when RFS occurs during barefoot conditions.  The result is a reduction in the magnitude of 

the passive VGRF peak and loading rate at initial contact in shod versus barefoot conditions (De 

Clercq, Aerts, & Kunnen, 1994; De Wit, De Clercq, & Aerts, 2000; Divert et al., 2005b; Komi, 
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Gollhofer, Schmidtbleicher, & Frick, 1987).  This requires different kinematics and muscle 

control than with a FFS. 

 

Kinematic analyses of running have customarily identified the foot as a rigid segment, 

analyzing joint motion of the ankle, or rearfoot complex.  Generally, at initial contact when 

running, the rearfoot complex, defined as the combined motion of the talocrural, subtalar, and 

talofibular joints (Nester, 1997), is in a dorsiflexed position and slightly inverted to allow for 

initial contact to occur on the lateral border of the calcaneus (Cavanagh & Lafortune, 1980; 

Mann, Baxter, & Lutter, 1981; Reinschmidt, van Den Bogert, Murphy, Lundberg, & Nigg, 1997a).  

The rearfoot complex plantarflexes slightly during subphase 1 to allow for the forefoot to 

contact the ground. The rearfoot complex then begins to dorsiflex until reaching a peak during 

subphase 2.  Sagittal plane motion then reverses, reaching peak plantarflexion at take-off 

(Figure 2.2-A) (Reinschmidt et al., 1997a; Stacoff, Kaelin, Stuessi, & Segesser, 1989; Williams et 

al., 2000).  The initially inverted rearfoot complex everts through subphases 1 and 2 of stance.  

Like dorsiflexion, peak eversion occurs during subphase 2 of stance.  Inversion then completes 

the stance phase through subphases 3 and 4 (Figure 2.2-B) (Reinschmidt et al., 1997a; Stacoff, 

Nigg, Reinschmidt, van den Bogert, & Lundberg, 2000a; Williams et al., 2000). In the transverse 

plane, the rearfoot complex is approximately in a neutral position at initial contact. The 

Figure 2.1. Typical vertical ground 
reaction force (VGRF) of a rearfoot strike 
(RFS) runner (A) and forefoot (FFS) or 
midfoot strike runner.  In A, the first peak, 
also known as the passive peak, is not 
usually visible when running with a FFS or 
midfoot strike (B). 
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rearfoot complex then abducts as the body transitions from subphase 1 to subphase 2 and 

peaks around 20-25% stance.  Following peak adduction, the rearfoot complex steadily adducts 

throughout subphases 3 and 4 (Figure 2.2-C) reaching peak adduction at take-off (Reinschmidt 

et al., 1997a).   

 

 

Barefoot running.  When running with a RFS pattern while barefoot, the passive VGRF 

peak and its rate of loading are often increased when compared to RFS shod running (De Clercq 

et al., 1994; De Wit et al., 2000; Dickinson, Cook, & Leinhardt, 1985; Komi et al., 1987; Oakley & 
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Pratt, 1988).  Interestingly, heel striking while barefoot also tends to have a double impact 

peak, or two separate peaks during initial loading (De Clercq et al., 1994; De Wit et al., 2000).  

This has led many to dispute the safety of running barefoot as the loading peak is associated 

with injury (Light et al., 1980; Robbins & Hanna, 1987).  As a result of the changes in VGRF 

characteristics, RFS runners that continue in their habitual RFS pattern tend to alter kinematics 

and increase cadence to help attenuate shock while running (Shih et al., 2013). 

The most noted difference in rearfoot kinematics while running barefoot with a RFS 

versus running shod with a RFS is a decreased angle of dorsiflexion at initial contact.  Traditional 

shod runners that maintain a RFS while running barefoot do so at a 4-11⁰ decreased 

dorsiflexion angle at initial contact (Bonacci et al., 2013; De Wit et al., 2000; Lieberman et al., 

2010; Shih et al., 2013).  Shih et al. (2013) observed a 4.52⁰ decrease in ankle angle at initial 

contact and a 3.64⁰ increase in ankle range of motion throughout stance when running 

barefoot in 12 habitually shod RFS male runners.  Marker placement, however, was on the 

shoes’ surface for the shod condition and on the skin for the barefoot, which could account for 

some of the reported differences.  De Wit et al. (2000) compared rearfoot dorsiflexion and 

eversion in seven long distance male runners during both barefoot and shod conditions 

(markers were placed on the shoe during the shod condition) using a two-dimensional 

technique.  Participants were instructed to not alter their running pattern between the 

conditions; they were to maintain a RFS.  Despite the instruction, kinematic differences were 

observed with decreases in rearfoot eversion during impact (3.3 to 4.0⁰ difference) and 

dorsiflexion position at touchdown (8.2 to 10.7⁰ difference) while running barefoot.  Bonacci et 

al. (2013) found similar results between barefoot and shod running (4.48 ± 1.6 m·s-1) in highly 
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trained runners (n=22, mean 10 km time = 33.7 ±3.7 min) with smaller differences also 

observed between traditional running shoes and a minimalist shoes (Nike Free 3.0) or racing 

flats (Nike LunaRacer2).  Rearfoot complex angle at initial contact ranged from 0.78⁰ of 

dorsiflexion in the barefoot condition to 4.52⁰ in the minimalist shoe, 4.25⁰ in the racing flat, 

and 5.31⁰ in the traditional running shoe.  Peak dorsiflexion angle was also lower in the 

barefoot condition (24.94 ± 2.6⁰) than in the traditional shoe (27.51 ± 2.7⁰) and racing flat 

(26.33 ± 2.9⁰) conditions.  The participants in the barefoot condition also had greater 

plantarflexion at toe-off (10.91 ± 9.6⁰) than all of the shod conditions (4.77 ± 9.5 to 6.01± 8.4⁰).  

Peak ankle eversion was also observed to be decreased in barefoot running (9.7 ± 2.5⁰) when 

compared with traditional shoes (12.55 ± 3.0⁰) or racing flats (11.03 ± 3.3⁰) (Bonacci et al., 

2013).  It is difficult to determine by these studies, however, how accurate the differences seen 

between barefoot running and shod running are as markers for tracking motion were generally 

placed on the shoe.  It has been shown that there is a significant difference between shoe 

motion and foot motion within the shoe (Morio et al., 2009; Stacoff et al., 2000a; Stacoff et al., 

2001).  In contrast to the previous studies, Stacoff et al. (2000a) tracked foot motion as 

opposed to shoe motion and found no difference in rearfoot complex inversion when 

comparing shod and barefoot runners.  However, intracortical bone pins were used for this 

study, limiting the number of participants to only five males, and participants were instructed 

to not change their foot strike pattern.  Although individual differences were observed between 

the conditions for some participants, the differences never varied more than 3 or 4 degrees.  

The eversion velocity, however, was slower when the runners ran barefoot (barefoot = 116.64 ± 

28.40 deg·s-1, shod ranged from 129.92 ± 29.94 to 144.30 ± 56.52 deg·s-1).  In summary, even 
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within habitual RFS runners, there are large amounts of kinematic variability due to the shoe 

and especially between barefoot and shod conditions where the strike pattern may change 

completely.  Despite the variability, however, studies that allowed for foot strike pattern 

changes in the different types of footwear saw similar patterns in kinematic changes between 

barefoot and shod conditions.  

Forefoot strike running. 

Shod running.  Unlike with RFS running, FFS running often does not demonstrate a 

passive VGRF impact peak.  Researchers have repeatedly observed a smooth parabola shaped 

VGRF curve in FFS runners (Figure 2.1-B) (Cavanagh & Lafortune, 1980; Oakley & Pratt, 1988; 

Williams et al., 2000).  Marked differences in VGRF between the strike patterns are mostly 

limited to the absence of the passive impact peak during initial loading (subphase 1).  Oakley 

and Pratt (1988) directed a subject pool of mostly non-runners to run (running speed = 3.3 to 

3.6 m·s-1) with a heel strike and then a toe strike pattern.  Loading rates while RFS running were 

over 7.5 times higher than those forefoot striking (Oakley & Pratt, 1988).  Habitual FFS runners 

have also been compared to recently converted FFS runners and both groups were found to 

have similar loading rates and peak VGRF (Williams et al., 2000).  Shih et al. (2013) investigated 

shod RFS and FFS running in 12 habitual shod RFS male runners and found an increase in 

loading rate of 17.46 BW·s-1 when running with a RFS compared to FFS while shod.  The 

decrease in loading rate during FFS running was attributed to the attenuation of the VGRF as 

the heel was lowered to the ground.  During the lowering of the heel, the VGRF can be 

transferred to angular motion of the ankle and further dissipated by the ankle plantarflexors as 

they eccentrically contract. 
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 Altered rearfoot complex sagittal plane motion between FFS and RFS runners is most 

evident in subphase 1 of running.  A plantarflexed rearfoot complex position (10.05 ± 3.66⁰ at 

initial contact) is generally present in FFS running for the entire loading phase (subphase 1) as it 

progresses towards a dorsiflexed position in subphase 2 of stance (Shih et al., 2013; Stackhouse 

et al., 2004).  Shih et al. (2013) observed almost a 20⁰ difference in sagittal plane ankle angle 

initial contact position between RFS and FFS shod running of 12 male habitual RFS runners.  In 

addition to the apparent difference in sagittal plane motion at the beginning of the stance 

phase of running, Stackhouse et al. (2004) observed decreased peak eversion, increased 

eversion excursion (FFS = 16.38⁰, RFS = 13.65⁰) and velocity (FFS = 270.6 ⁰·s-1, RFS = 190.91 ⁰·s-1) 

and increased dorsiflexion excursion (FFS = 31.57⁰, RFS = 19.24⁰) and velocity (FFS = 426.73 ⁰·s-

1, RFS = 317.36 ⁰·s-1) in 15 habitual RFS runners when they ran with a FFS.  In this study, 

although the subjects conducted the testing in running shoes, holes were cut in the area around 

the calcaneus to allow for a marker cluster to be attached to the foot, unlike the previously 

mentioned articles where the markers were placed on the shoe (Shih et al., 2013; Stackhouse et 

al., 2004).   

Barefoot running.  Where marked differences occur in VGRF loading rate between shod 

and barefoot conditions while running with a RFS, such dramatic differences are not seen in FFS 

running (Oakley & Pratt, 1988).  In a study of 14 non-experienced runners and four experienced 

runners, Oakley and Pratt (1988) found no significant difference in loading rate during FFS 

running when comparing barefoot to shod.  Shih et al. (2013) instructed 12 habitual RFS 

runners to run with a RFS in both shod and barefoot conditions and then with a FFS in both 

shod and barefoot conditions.  They found loading rate differences between all conditions 
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except between the FFS barefoot and shod conditions.  Based on VGRF characteristics, barefoot 

and shod FFS running does not have the differences seen when comparing VGRF of barefoot 

and shod RFS running.   

Only small kinematic differences have been reported between barefoot and shod FFS 

running.  Shih et al. (2013) observed a 2.93⁰ increased plantarflexion ankle angle at initial 

contact while running with a FFS  in a shoes compared to barefoot.  This difference is most 

likely due the shoe’s sole which presents with a thicker portion under the heel and thinner sole 

under the forefoot.  As markers in the shod condition were placed on the shoes’ uppers and on 

the skin in the barefoot condition, it is unclear if the differences reported were a result of actual 

kinematic changes or shoe motion compared to foot motion.  Squadrone and Gallozzi (2009) 

observed eight habitual barefoot runners and found a 7⁰ difference in ankle sagittal plane angle 

at initial contact with barefoot running when compared to shod, but no difference in any 

kinematic variables between barefoot running and running in minimalist shoes (Vibram 

Fivefingers).  A shift of initial contact plantar pressure to the posterior portion of the foot while 

running shod indicated a flatter foot placement at initial contact, but for all three conditions 

(barefoot, minimalist shoe, running shoe) the mean strike index (Cavanagh & Ae, 1980) was 

consistent with that of a MFS runner.  It was not reported if all runners were MFS runners or if 

some were FFS and others RFS runners.  Beyond sagittal plane motion, research is lacking in 

comparing kinematic characteristics between barefoot and shod FFS running.  

Despite only small differences in kinematic and kinetic characteristics observed, 

spatiotemporal parameters between FFS barefoot and shod running are evident.  FFS running 

requires a higher frequency of step rate, smaller step length, and shorter contact time (Bonacci 
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et al., 2013; De Wit et al., 2000; Divert, Baur, Mornieux, Mayer, & Belli, 2005a; Divert et al., 

2005b; Hamill, Russell, Gruber, & Miller, 2011; Nunns et al., 2013; Squadrone & Gallozzi, 2009).  

Shih et al. (2013) identified an increased cadence (2.80 ±0.19 vs. 2.72 ± 0.18 steps·s-1) and 

decreased time of flight phase (13.89 ± 2.03 vs 15.25 ± 2.29 ms) in barefoot FFS running when 

compared to shod FFS running.  Squadrone and Gallozzi (2009) found a decreased stride length 

and increase in stride frequency in barefoot running (2.19 ± 0.2m and 91.2 ± 0.9 stride/min) 

compared to running in minimalist shoes (Vibram Fivefingers, 2.29 ± 0.16m and 88.3 ± 0.9 

stride/min) and traditional running shoes (2.34 ± 0.15m and 86.0 ± 1.1 stride/min) in habitual 

barefoot runners.  A change in any of these spatio-temporal variables alone may contribute to 

small alterations in VGRF and kinematic patterns in runners.  For this reason, it is important to 

monitor other variables that may also alter spatio-temporal variables, such as running speed 

and footwear.   

In comparing shod and barefoot running kinematics, few researchers have controlled for 

strike pattern, making it difficult to determine if differences are due to strike pattern changes or 

the footwear condition.  Studies that have controlled for strike pattern have often used 

habitual RFS runners and request them to also perform the FFS trials.  Shih et al. (2013) has 

been  the only known study to compare the FFS pattern and footwear conditions while also 

looking at ankle angle.  At initial contact, they observed a significant increase in plantarflexion 

of nearly 3⁰ when running shod compared to barefoot with the FFS pattern.     

Summary.  When running, kinematic differences of the rearfoot complex are regularly 

reported between RFS and FFS running regardless of footwear type.  Most of these differences 

are reported in sagittal plane motion during subphase 1 of stance.  It is during subphase 1 that 
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RFS runners have a dorsiflexed rearfoot position at initial contact which quickly plantarflexes 

while FFS runners contact the ground with a plantarflexed rearfoot position and proceed to 

dorsiflex the ankle.  These kinematic differences may undergo further changes based on the 

type of footwear that is worn while running.  Traditional running shoes will decrease the 

dorsiflexion angle of the foot because of the shoe drop which elevates the calcaneus, but make 

it more difficult to run with a MFS or FFS.  Most extreme differences due to footwear appear 

between traditional running shoes and barefoot running conditions.  In addition, most research 

comparing RFS and FFS running use habitual RFS runners for both running conditions, making it 

unclear if habitual FFS runners would exhibit the same kinematics.  It is still unclear how 

kinematics of individuals with a habitual RFS compare to those who habitually FFS, irrespective 

of what type of footwear they are running in. 

Multi-Segment Foot Modeling 

The foot has historically been modeled as a single rigid segment in gait analysis despite 

the foot’s mobility created by its 26 bones and 30 articulations.  Many researchers have found 

evidence to support the notion that alterations in rearfoot motion can lead to further 

alterations along the kinetic chain (McClay & Manal, 1997; Messier & Pittala, 1988; Shambaugh, 

Klein, & Herbert, 1991; Stergiou, Bates, & James, 1999), but have ignored the contribution of 

movement that occurs within the foot itself and how it effects lower extremity motion.  Until 

recently, motion capture technology has made it difficult to identify specific segments within 

the foot because of the size of the foot and inability to properly identify segments with surface 

markers.  The talus, which sits between the tibia and calcaneus, making up the talocrural and 

subtalar joints, is completely surrounded by other bones.  Capturing talus motion is therefore 
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only accessible through imaging such as with magnetic resonance imaging or computed 

tomography, cadaveric studies, or invasive intracortical bone pin methods (Beimers et al., 2008; 

Hirsch, Udupa, & Samarasekera, 1996; C. J. Nester et al., 2007; Whittaker, Aubin, & Ledoux, 

2011).  Each of these methods has its limitations.  To date, medical imaging techniques are 

unable to capture motion while moving through a range of motion and cadaveric data cannot 

adequately take into account the role of musculature and the individuals’ habitual motion 

pattern.  Because of the invasive nature of bone pins, few studies are able to directly track bone 

motion, and those that do have had very small sample sizes (Arndt et al., 2007; Lafortune, 

Cavanagh, Sommer, & Kalenak, 1992; Lundgren et al., 2008; C. Nester et al., 2007; Reinschmidt 

et al., 1997a; Stacoff et al., 2000a).  Additionally, high inter-subject variability observed in 

studies using bone pins, make such studies difficult to generalize to the population (Nester, 

2009; Stacoff et al., 2000a).  Only one study has used bone pins to quantify motion of the 

individual foot bones while running.  Arndt et al. (2007) tracked the foot motion of 4 males 

during slow barefoot running (1.9-2.3 m·s-1) using intracortical bone pins.  Though variability 

between subjects was high for some joints, general motion patterns were evident.  There was a 

larger range of motion in subtalar joint plantarflexion and dorsiflexion (24.7 ± 3.9⁰) than in the 

talocrural joint (8.9 ± 3.2⁰).  Large talonavicular rotations were also evident (frontal = 13.5 ± 

4.1⁰, sagittal = 6.5 ± 2.9⁰, transverse = 8.7 ± 1.4⁰).  Additionally, motion of other joints ranged 

from 1.6 – 11.4⁰ in all planes for the following articulations: cuboid-fifth metatarsal, cuboid-

calcaneus, cuboid-navicular, cuneiform-navicular, and cuneiform-first metatarsal.   

Surface markers are a non-invasive method used for motion capture that has commonly 

been used to track dynamic movement of the underlying bony structure.  However, soft tissue 
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motion becomes an issue with the use of surface markers (Cappozzo, Catani, Leardini, 

Benedetti, & Croce, 1996; Reinschmidt et al., 1997b).  Despite this error, surface markers are 

readily used and accepted as an adequate form of analyzing gait kinematics.  They also provide 

a safe, non-invasive alternative to intracortical pins and therefore larger subject populations are 

able to be assessed.  Because of the lack of motion description provided by modeling the foot 

as a single rigid body, foot and ankle researchers identified the need for adequately producing 

models that accurately describe foot motion (Davis, 2004).  A variety of models using surface 

markers have been introduced in the literature varying from 2 to 8 segment models (Table 2.1 

and 2.2) (Buczek, Walker, Rainbow, Cooney, & Sanders, 2006; Cobb et al., 2009; Hwang, Choi, & 

Kim, 2004; Jenkyn, Anas, & Nichol, 2009; Leardini et al., 2007; MacWilliams et al., 2003; Morio 

et al., 2009; Rouhani et al., 2011).  Stacoff et al. (1989) were among the first to evaluate foot 

motion during running by comparing frontal plane motion of the forefoot (identified as torsion) 

and rearfoot (identified as pronation).  They found that by decreasing forefoot torsion through 

the use of shoes, rearfoot pronation was increased in nine subjects with varying levels of fitness 

(sedentary to 10 hrs of exercise per week).  Where much of the running injury focus had been 

on  excessive rearfoot complex/foot pronation, Stacoff et al. (1989) successfully introduced the 

importance of understanding the motion occurring within the foot.  As a result, researchers 

have begun to partition the foot into various segments beyond the traditional single rigid 

segment.  Because of the required minimum of three markers per identified segment for 3D 

motion capture, identifying each bone within the foot via surface markers is not currently 

possible due to space restriction.  For this reason, functional segmentation is necessary.  Wolf 

et al. (2008) stated that “a functional unit is present when its bones rotate either (i) in the same 
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direction, (ii) in the opposite direction, or (iii) when one or more bones show no rotation.”  

Based on intracortical pin data while walking, Wolf et al. (2008) were able to identify functional 

units of the talonavicular and navicular-medial cuneiform in the frontal and transverse plane, 

the navicular-cuboid in all three planes, and the medial cuneiform-first metatarsal.  It was 

recommended that minimally the calcaneus, navicular-cuboid, medial cuneiform-first 

metatarsal, and fifth metatarsal should be identified as separate segments.  Rouhani et al. 

(2011) attempted to find functional segments as well using reflective, surface markers and 

suggested segmentation to occur in the rearfoot, medial and lateral forefoot, and toes.  These 

recommendations did not include the midfoot as a segment despite their conclusion that the 

leg-rearfoot and rearfoot-midfoot were the dominant movement joints during walking gait. 

Multi-segment foot model running kinematics.  Of all the multi-segment foot models 

(MSFM) that have been introduced, few have been used to identify motion patterns while 

running.  Pohl et al. (2006) used a two segment foot model, identifying the forefoot and 

rearfoot, on 12 recreational runners (running a minimum 2 hours per week). They observed the 

forefoot in dorsiflexion and abduction during the first half of stance and then plantarflexion and 

adduction during the second half of stance under three different step widths while running.  

Specific discrete variables for forefoot motion were identified and included forefoot 

dorsiflexion excursion (10.2 to 12.5⁰), abduction excursion (-5.5 to -6.6⁰), time to peak forefoot 

dorsiflexion (52.4 to 59.3% of stance), and time to peak forefoot abduction (46.0 to 50.5% of 

stance).  It was noticed, additionally, that during a narrow, cross-over step pattern, some 

subjects transitioned to a FFS pattern which may have contributed to high variability recorded 

in the forefoot frontal plane kinematics.  In a later study, Pohl and Buckley (2008) observed the 
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same discrete variables of forefoot and rearfoot motion during RFS, FFS, and toe running for 

the same set of subjects.  Significant differences were observed for the FFS and toe running 

strike patterns when compared to RFS running in forefoot dorsiflexion excursion (13.0 ± 2.4⁰ 

FFS, 13.9 ± 2.1⁰ toe running, 7.3 ± 1.8⁰ RFS) and forefoot abduction excursion (-6.4 ± 1.7⁰ FFS, -

6.5 ± 1.4⁰ toe running, -3.7 ± 1.2⁰ RFS).  Time to peak forefoot dorsiflexion and abduction were 

only different while toe running (52.1 ± 6.8% and 45.9 ± 8.4% of stance) when compared to RFS 

running (58.2 ± 4.9% and 53.8 ± 11.5% of stance).   

Using a similar foot model as Pohl et al. (2006), Morio et al. (2009) compared foot 

motion to shoe motion by looking at discrete variables of running in barefoot and during two 

shod (sandal) conditions.  Differences were observed between barefoot and shod conditions for 

forefoot eversion amplitude (12.0 ± 3.9⁰ barefoot, 10.7 ± 4.6⁰ soft sole, 10.0 ± 4.9⁰ hard sole), 

eversion slope (-371.9 ± 98.5⁰/s barefoot, -232.3 ± 126.9⁰/s soft sole, -142.8 ± 138.4⁰/s hard 

sole), eversion/inversion maximum slope (-10.9 ± 179.0⁰/s barefoot, 116.8 ± 115.9⁰/s soft sole, 

136.0 ± 114.8⁰/s hard sole), abduction excursion (-3.4 ± 2.2⁰ barefoot, -4.5 ± 2.2⁰ soft sole), and 

adduction amplitude (9.6 ± 2.6⁰ barefoot, 8.2 ± 2.8⁰ soft sole, 6.9 ± 2.6⁰ hard sole).  No 

significant difference was seen between the footwear conditions in the sagittal plane.   

The Leardini MSFM (Leardini, Benedetti, Catani, Simoncini, & Giannini, 1999) includes a 

midfoot segment, something not included in the previously mentioned studies, and has been 

used to investigate running kinematics of female athletes with high and low arches (Powell, 

Long, Milner, & Zhang, 2011; Powell, Williams, & Butler, 2013).  Combined (n=10 low-arched, 

n=10 high arched), peak eversion at the rearfoot-midfoot and midfoot-forefoot joints ranged 

from 5.3 ± 2.6⁰ to 5.5 ±2.5⁰ and 6.5 ±2.5⁰ to 11.6 ± 5.0⁰ respectively.  Eversion excursion was 
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between 3.7 ± 3.2⁰ to 3.9 ± 1.8⁰ for rearfoot-midfoot joint and 5.6 ± 1.7⁰ to 9.2 ± 3.7⁰ for 

midfoot-forefoot eversion.  The Leardini model (Leardini et al., 1999) has also been compared 

to the commonly used Oxford model (Carson, Harrington, Thompson, O'Connor, & Theologis, 

2001) in running trials (Powell et al., 2013).  The main difference between these two models, 

again, is the inclusion of a midfoot segment in the Leardini model which is excluded in the 

Oxford model.  The Leardini model was shown to be more sensitive in detecting peak eversion 

angles of the midfoot and forefoot while the Oxford model was more sensitive to detecting 

eversion excursion values between the forefoot and rearfoot, most likely due to the combining 

of two segments (forefoot and midfoot) which would increase the overall motion by summing 

the joint excursion of the two joints.  This comparison is an example of how simplification of a 

foot model to not include functional segments may not adequately describe the motion that is 

occurring in the foot.  In addition to the inclusion of a midfoot segment, some researchers have 

recognized the different movement characteristics of the medial and lateral forefoot, but few 

MSFM have included this aspect despite its ability to be reliably measured (Bauer et al., 2011; 

Hwang et al., 2004; Jenkyn & Nicol, 2007; MacWilliams et al., 2003; Rouhani et al., 2011; Simon 

et al., 2006; Tome, Nawoczenski, Flemister, & Houck, 2006).  Only one foot model containing 

both medial and lateral midfoot and medial and lateral forefoot segments  has been found 

reliable during running protocols (Bauer, 2012; Bauer et al., 2011; Bauer, Joshi, Klinkner, & 

Cobb, 2012; Seneli, Joshi, Bauer, & Cobb, 2013).  This model is a six segment model (hallux, 

medial forefoot, lateral forefoot, navicular, cuboid, and calcaneus) and has been tested on 

healthy adults (Bauer et al., 2011; Bauer et al., 2012; Cobb, Bauer, & Joshi, 2014), adults with 

low arch structure (Seneli et al., 2013), and adults with plantar fasciitis (Bauer, 2012).  From this 
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foot model it is evident that during barefoot running the medial forefoot moves differently than 

the lateral forefoot (sagittal plane range of motion = 20.90 ± 4.68⁰ and 7.68 ± 3.19⁰, 

respectively) and the calcaneonavicular complex functions differently compared to the 

calcaneocuboid joint (sagittal plane range of motion = 10.85 ± 2.57⁰ and 18.66 ± 1.86⁰) (Bauer 

et al., 2012). 

Limitations of foot models.  While there are advantages to understanding variables that 

effect foot motion and therefore advantages to MSFM, there are also many limitations to this 

type of motion capture.  One such limitation is adequate access to the foot segments.  Some 

researchers evaluating MSFM while running have required their participants to run barefoot 

(Pohl & Buckley, 2008; Pohl et al., 2006; Powell et al., 2011). This is relevant since previous 

studies have established that foot and ankle mechanics differ between running barefoot and 

running shod (Bonacci et al., 2013; Lieberman et al., 2010; Shih et al., 2013; Squadrone & 

Gallozzi, 2009; Zhang, Paquette, & Zhang, 2013).  Studies that have used sandals as a shod 

condition have done so with the assumption that increased motion may occur within the foot 

compared to a traditional running shoe with restricting uppers, though stiffer sandals do still 

limit the motion over barefoot conditions (Eslami et al., 2007; Morio et al., 2009).  Simply 

tracking the shoe is not an accurate description of foot motion (Morio et al., 2009).  Other 

researchers have cut holes into shoe uppers to avoid losing the constriction of the shoe upper 

and still allow for skin placement of markers and marker clusters (Reinschmidt et al., 1997a; 

Shultz & Jenkyn, 2012; Stacoff et al., 2000b; S. Wolf et al., 2008).  Increasing the number of 

markers and marker clusters, however, would require extreme modification of a shoe’s upper.  
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Therefore, if striving for evaluating kinematics with a shod condition, the complexity of the 

MSFM may dictate the type of footwear that is needed for the study. 

Summary.  Based on the information from previous studies, it is evident that the foot is 

not a single rigid segment, but rather has an intricate movement pattern dependent on the 

speed, style of footwear, and other parameters while running.  These movement patterns 

within the foot itself help dictate kinematics and kinetics along the lower extremity which may 

affect performance and injury status of runners.  Choosing proper segmentation that is 

representative of foot motion is imperative to adequately understand how the foot contributes 

to lower extremity motion.  In addition to the rearfoot complex which is regularly distinguished 

in kinematic running studies, it is now known that the midfoot and forefoot should be 

separately distinguished as should medial and lateral section because of the motion that occurs 

in these segments independent of the other segments.  It is unknown to what extent varying 

kinematics occurs between foot strike patterns.  With proper segmentation to best represent 

foot motion, further understanding of foot strike pattern kinematics can be investigated to 

further understanding into kinematics that prevent injury and improve performance. 
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Carson et al. (2001) adults: club 
feet 

walking 3 x        x     x    

Jenkyn & Nicol 
(2007) 

adults walking 5 x x x       x x       

Bruening et al. 
(2012) 

children walking 3 x        x     x    

Cobb et al. (2009) adults: low 
arches 

walking 4 x       x  x   x     

Dixon (2007) children walking 3 x        x     x    
Stebbins et al. (2006) children walking 3 x        x     x    
Kidder et al. (1996) adult walking 3 x  x           x    
Hwang et al. (2004) adults: males walking 8 x x  x      x x   x x x  
Rattanaprasert et al. 
(1999) 

adults: tibialis 
posterior 
dysfunction 

walking 3 x        x     x    

Cornwall & McPoil 
(1999) 

adults walking 3 x       x    x      

Leardini et al. (2007) adults walking 3 x  x      x         
Arampatzis et al. 
(2002) 

gymnasts landing 6 x x   x  x          x x  

Tome et al. (2006) adults: tibialis 
posterior 
dysfunction  

walking 4 x         x  x   x    

MacWilliams et al. 
(2003) 

children walking 8 x   x   x   x x    x x  

   Table 2.1. Summary of the different multi-segment foot models that have been developed and modified in research.  Under population tested, all studies 
with a pathological sample also had a healthy control sample tested.  Met = metatarsal 
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Leardini et al. (1999) adults walking 4 x  x         x  x    
Rao et al. (2009) adults: 

midfoot 
arthritis 

Walking, 
step down 

4 x         x  x   x    

Houck et al. (2009) adults: tibialis 
posterior 
dysfunction  

walking 3 x           x  x    

Sawacha et al. (2009) adults: 
diabetic foot 

walking 3 x x x               

Rouhani et al. (2011) adults walking 9 x  x       x x      x 
Saraswat et al. 
(2012) 

children: 
planovalgus 
feet 

walking 3 x        x     x    

Dubbeldam et al. 
(2013) 

adults: 
rheumatoid 
arthritis 

walking 4 x  x      x     x    

Myers et al. (2004) children walking 4 x        x     x    
Powell et al. (2011) adult: female 

athletes 
walking, 
running, 
step down 

3 x  x         x      

Morio et al. (2009) adults: males running 2 x        x         
Pohl et al. (2006) adults: 

recreational 
runners 

running 2 x        x         

Bauer et al. (2011) adults: 
plantar 
fasciitis  

running 6 x   x    x  x x  x     

Table 2.2. Continuation of the summary of the different multi-segment foot models that have been developed and modified in research.  Under population 
tested, all studies with a pathological sample also had a healthy control sample tested.  Met = metatarsal  
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 Joint Coupling 

Joint coupling has been determined to be an important factor to consider when looking 

at both walking and running gait for performance and injury purposes.  It is theorized that 

perhaps the movement pattern of one joint by itself is not the cause of dysfunction, but rather 

how that joint is functioning with other joints along the kinetic chain.  Extensive research has 

been conducted on the joint coupling of ankle pronation (eversion) with tibial internal rotation 

during closed chain activities. The coupling relationship has been theorized to contribute to 

pain and disability associated with pathologies such as patellofemoral pain and stress fractures 

(Bates et al., 1979; DeLeo et al., 2004; Heiderscheit et al., 2002; McClay & Manal, 1997; Nigg et 

al., 1993; Powers et al., 2002).  Quantifying this relationship in a clinically relevant method, 

however, has been a challenge.  Kinematics of a single joints are most often compared using 

angle-time graphs, but such graphs do not adequately characterize or measure coupling 

between two joints even when the two joints are illustrated on the same graph.  The difficulty 

in adequately describing joint couples has led to various ways of quantifying the coupling. 

Quantification methods of joint coupling.   

Discrete variables.  Some studies have quantified joint coupling by examining joint 

position at discrete points along the stance phase (Pohl & Buckley, 2008; Pohl et al., 2006; 

Reinschmidt et al., 1997a; Stacoff et al., 2000b), while others take into account the dynamic 

movement of the joints throughout the stance phase (Hamill et al., 1999; Heiderscheit et al., 

2001).  Arguments have been made that the discrete quantification methods do not take into 

account the dynamic movement of the joints throughout the stance phase of gait and may miss 

critical moments when the coupling is out-of-phase (Hamill et al., 1999).   
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Joint ratios.  Joint ratios have been used to quantify the amount of movement occurring 

at one joint or in one plane of motion with respect to that of another joint (DeLeo et al., 2004; 

McClay & Manal, 1997; Nigg et al., 1993).  When calculating joint ratios, the angular 

displacement of the distal joint over a given portion of gait, such as initial contact to a peak 

angle or a discrete point along the stance phase, is divided by that of the proximal joint.  The 

ratio is said to represent the amount of motion between the two joints.  For example, a ratio of 

2.0 would indicate 2⁰ of motion at the distal joint for every 1⁰ of motion at the proximal.  

However, the motion may not be occurring at the same time during stance and therefore may 

not actually represent coupled motion. 

Cross-correlation.  Another method of analysis involves the use of cross-correlation to 

identify the relationship between angular displacement curves of the joint motions being 

investigated (Li & Caldwell, 1999; Pohl & Buckley, 2008; Pohl et al., 2006; Pohl, Messenger, & 

Buckley, 2007).  However, this method only addresses the correlation of the movement and not 

magnitude, therefore one joint may be moving at twice the velocity of the other and the cross-

correlation would not indicate such activity because they are moving at the same time.   

Dynamic variables. 

Continuous relative phase.  An advanced method of dynamic assessment is continuous 

relative phase analysis, which provides temporal and spatial information (Hamill et al., 1999; 

van Emmerik & Wagenaar, 1996).  This method plots the normalized angular position against 

the normalized angular velocity for each of two joints.  Drawing a line from the origin to a given 

point along the stance phase plot produces an angle with respect to the horizontal.  This is 

known as a phase angle (0-90⁰) (see Figure 2.3).  The difference between the phase angle of the 
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two joints is the relative phase.  With sinusoidal motions, this method describes coordination 

patterns well, but this is not the case more complex motion patterns including transitioning 

from walking to running (or running to walking) where relative phase patterns can vary largely 

(Diedrich & Warren, 1995; Heiderscheit et al., 2002).  A continuous change in a control  

parameter (such as speed) may present discontinuity in the relative phase (Diedrich & Warren, 

1995).  Continuous relative phase analysis of non-sinusoidal motions can include a phase shift 

or low frequency oscillations in the signal (Peters, Haddad, Heiderscheit, Van Emmerik, & 

Hamill, 2003).  Normalizing the data can remove this problem, but then temporal parameters 

between the two joints will not be reliable (Peters et al., 2003).   It is difficult to interpret 

continuous relative phase clinically because of the added velocity component (Chang et al., 

2008; Miller et al., 2010). 

   

Figure 2.3. Phase plot describing 
phase angle from normalized 
angular position and velocity data 
(top) and a typical lower extremity 
joint coupling example (bottom).  
Reprinted with permission from 
Hamill et al.(1999). 
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Vector coding.  Recent research involving complex kinematics of the lower extremity has 

also used vector coding methods (Ferber et al., 2005; Heiderscheit et al., 2002; Pohl & Buckley, 

2008; Sparrow, Donovan, van Emmerik, & Barry, 1987).  Angle-angle diagrams, or relative 

motion plots, plot the two joint motions in question against each other.  The distal joint motion 

is often plotted on the y-axis and the proximal joint motion on the x-axis.  By creating a vector 

between two adjacent points along the angle-angle diagram and orienting it with respect to the 

right horizontal, an angular orientation is obtained (see Figure 2.4).  Vector coding angles of 45⁰ 

in each quadrant (namely 45⁰, 135⁰, 225⁰, and 315⁰) signifies a one-to-one ratio of movement 

between the two joint motions.  It is not clear if a one-to-one ratio is optimal for all foot joint 

coupling relationship, though it has been theorized to be optimal for the couple between 

subtalar eversion and tibial internal rotation (McClay & Manal, 1997).  

   

Vector coding angles can be evaluated at discrete points during the stance phase, or as a mean 

of the angles during a period of time, such as during the subphases of stance (Ferber et al., 

2005).  The terms anti-phase, in-phase, proximal phase, and distal phase have been used to 

characterize the location of the resulting vector angle from the horizontal (Chang et al., 2008).  

Anti-phase describes when the proximal and distal segment are moving opposite direction to 

Figure 2.4. Example of an 
angle-angle plot with the 
vector coding angle (Θ) 
illustrated at a discrete point 
during the stance phase.   
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one another (vector coding angle = 135⁰ or 315⁰) while in-phase is when they are moving in the 

same direction (vector coding angle = 45⁰ or 225⁰).  When a vector coding angle is along the 

horizontal axis, the coupling pattern is in proximal phase, where only the proximal joint is 

moving, while an angle along the vertical axis would quantify a distal phase where the opposite 

is true.  Chang et al. (2008) identified vector coding ranges to identify the classification of joint 

coupling vector coding angles when the angle does not lie directly over one of the axes  or 

along a 45⁰ diagonal (Table 2.3).  One disadvantage of vector coding over continuous relative 

phase is the exclusion of angular velocity.  However, unlike continuous relative phase, it is able 

to compare joint angles to the original position signal and therefore more easily interpreted 

clinically (Miller et al., 2010; Peters et al., 2003).  A recent comparison of the two methods 

determined that their results are not always similar and warns against comparing results from 

one method to that of the other (Miller et al., 2010). 

 

 

Coupling Pattern Angle ranges 

Anti-phase 112.5⁰ ≤ Θ < 157.5⁰, 292.5⁰ ≤ Θ < 337.5⁰ 

In-phase 22.5⁰ ≤ Θ < 67.5⁰, 202.5⁰ ≤ Θ <247.5⁰ 

Proximal phase 0⁰ ≤ Θ < 22.5⁰, 157.5⁰ ≤ Θ < 202.5⁰, 337.5⁰ ≤ Θ < 360⁰ 

Forefoot phase 67.5⁰ ≤ Θ < 112.5⁰, 247.5⁰ ≤ Θ < 292.5⁰ 

 

Joint coupling in the foot.  Though joint coupling has been researched in running in both 

healthy and various pathological conditions (DeLeo et al., 2004; Ferber et al., 2005; Fisher, 

Bauer, Joshi, & Cobb, 2013; Hamill et al., 1999; Heiderscheit et al., 2002; McClay & Manal, 1997; 

Miller et al., 2010), few researchers have examined the joint coupling of the foot using MSFMs.  

Pohl et al. (2006) divided the foot into  forefoot and rearfoot segments to track coupling 

Table 2.3. Joint coupling pattern catagorization based on vector coding angle (Θ) from the 
right horizontal.(Chang, Van Emmerik, & Hamill, 2008; Ferber, Davis, & Williams, 2005) 
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characteristics of the midfoot joint with the rearfoot complex motion during running with 

different step widths in 12 active adults (≥ 2 hrs per week of exercise that involved running).  In 

general for all of the step widths, the rearfoot dorsiflexed and everted during the first half of 

stance while the forefoot dorsiflexed and abducted.  During the second half of the stance phase 

the rearfoot inverted and plantarflexed while the forefoot plantarflexed and adducted.  In 

effort to evaluate the coupling characteristics of rearfoot and forefoot throughout the entire 

stance phase, cross-correlations between rearfoot eversion/inversion with forefoot 

plantarflexion/dorsiflexion, forefoot eversion/inversion, and forefoot abduction/adduction 

were performed. The results revealed high cross correlations (r) for rearfoot eversion/inversion 

with forefoot plantarflexion/dorsiflexion (r < -0.85) and forefoot abduction/adduction (r > 0.94), 

but not with forefoot eversion/inversion (r < 0.32).  These coupling patterns were slightly out of 

phase as rearfoot inversion (40.4 to 47.7% of stance) began prior to forefoot plantarflexion 

(52.4 to 59.3% of stance) and adduction (46.0 to 50.5% of stance).     

In a similar study, Pohl et al. (2007) compared rearfoot-forefoot coupling patterns over 

different speeds and modes of gait (walking and running) in 12 active adults who were all RFS 

runners.  Besides the coupling between rearfoot eversion/inversion with forefoot 

eversion/inversion (walking, r = 0.41; running, r = 0.15), running always had higher cross 

correlations than walking (rearfoot eversion/inversion with forefoot plantarflexion/dorsiflexion, 

walking r = -0.80; running r = -0.96; rearfoot eversion/inversion with forefoot 

abduction/adduction, walking r = 0.91; running r = 0.97).  Vector coding revealed high coupling 

during running between rearfoot eversion/inversion and forefoot plantarflexion/dorsiflexion 

(medium run = 40.3 ± 5.0⁰; fast run = 40.6 ± 5.2⁰), but increased forefoot abduction/adduction 
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motion when coupled with rearfoot eversion/inversion (medium run = 24.4 ± 2.6⁰; fast run = 

24.5 ± 3.1⁰).   

Joint coupling with different foot strike patterns.  In a study comparing forefoot and 

rearfoot coupling patterns of 12 active runners while running with RFS, FFS, and toe running 

patterns, Pohl and Buckley (2008) found similar cross-correlation coefficients (r) between 

rearfoot eversion/inversion coupled with forefoot motion in all three planes of motion 

(forefoot plantarflexion/dorsiflexion, r between -0.96 to -0.86; forefoot abduction/adduction, r 

between 0.92 to 0.96; forefoot eversion/inversion, r between -0.20 to -0.06).  Interestingly, the 

FFS running pattern cross-correlations for all of the rearfoot and forefoot motions were slightly 

higher than those for RFS running.  In addition to the cross-correlations, vector coding methods 

were used to identify the magnitude of changes between the joints.  Mean vector coding angles 

were calculated between rearfoot eversion/inversion and forefoot plantarflexion/dorsiflexion 

(44.8 ± 5.1⁰ FFS, 39.9 ± 4.0⁰ RFS), forefoot abduction/adduction (24.5 ± 4.7⁰ FFS, 21.7 ± 4.0⁰ 

RFS), and forefoot eversion/inversion (27.4 ± 5.6⁰ FFS, 28.4 ± 5.2⁰ RFS).  Coupling angle curves 

revealed a decreased joint coupling angle during the first subphase of stance in the RFS 

condition (as evaluated by visual inspection of coupling angle-percent stance plots), indicating a 

greater movement at the proximal joint relative to the distal joint.    Because of the strong 

coupling between the forefoot and rearfoot motion, Pohl and Buckley (2008) suggested 

midfoot coupling may be important in transferring movement along the foot and up the kinetic 

chain.  They also postulated the idea that the dorsiflexed forefoot at initial contact when 

running with a RFS may alter the talonavicular articulation. Such an alteration would influence 

the transfer of motion to the rearfoot and ultimately to the tibia which would result in 



 

50 
 

decreased internal rotation excursion (Hintermann, Nigg, Sommer, & Cole, 1994).  None of the 

vector coding angles, however, were compared for significant differences.  Eslami et al. (2007) 

compared forefoot and rearfoot joint coupling in 16 male RFS runners during barefoot and shod 

conditions and found only at heel-strike was there a difference in mean phase angle  (stance 

subphases examined were heel-strike, 0%; foot-flat, 5-25%; heel-rise, 25-50%; push-off, 50-

75%; toe-off, 75-95%) between rearfoot eversion/inversion and forefoot abduction/adduction 

(71.5 ± 45.4⁰ barefoot, 34.5 ± 28.2⁰ shod).  No phase angle differences in any other subphases 

or with the sagittal or frontal planes of the forefoot were seen.  Additionally, during barefoot 

running subjects demonstrated a greater coupling relationship during the first 5% of stance 

than during any other subphase of stance.  Shod running, however, had a greater coupling 

relationship for push-off (50-75% of stance) and toe-off (75-95% of stance) than for heel-rise 

(25-50% of stance).    

One limitation of these studies is the lack of quantifying midfoot motion as well as 

medial and lateral motions of the forefoot.   Only recently has research begun to look at joint 

coupling within the foot using more sophisticated foot modeling (Fisher et al., 2013; Seneli et 

al., 2013).  Seneli et al. (2013) compared foot coupling from barefoot running to that of running 

in a sandal without arch support in 10 active adults and observed strong coupling using vector 

coding methods between rearfoot eversion/inversion with calcaneocuboid eversion/inversion 

during subphase 1 and 4 of stance while barefoot (44.40 ± 14.16⁰, 49.61 ± 14.50⁰, respectively) 

and between subphase 3 and 4 (45.21 ± 13.77⁰, 47.27 ± 16.07⁰, respectively) while shod.  

Coupling between calcaneonavicular inversion/eversion and medial forefoot 

plantarflexion/dorsiflexion also showed strong coupling during subphases 1 and 3 while shod 
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(41.48 ± 12.15⁰, 42.76 ± 15.15⁰, respectively).  Calcaneocuboid eversion/inversion with lateral 

forefoot plantarflexion/dorsiflexion also showed strong coupling during subphase 3 while shod 

(40.77 ± 13.58⁰).  These results illustrate the midfoot-forefoot coupling patterns that contribute 

to the kinematics of the running stance phase as well as differences in coupling patterns based 

on footwear.  It is still unknown, however, to what extent the midfoot and medial/lateral 

forefoot contribute to different foot strike patterns.  Additionally, it is unknown what coupling 

characteristics are ideal within the foot to help prevent injury and improve performance.. 

Variability in joint coupling.  Some researchers have begun focusing more on the 

variability of joint motion and coupling rather than the coupling direction angles.  In engineered 

systems, variability is usually undesirable and treated as noise, however, variability in biological 

systems may be a demonstration of health.  Hamill et al. (1999) introduced the application of 

the Dynamical Systems Theory to lower extremity running injuries based on previous work 

done in movement coordination and stability (Haken et al., 1985; Schoner & Kelso, 1988).  It is 

based on the idea that regular movement patterns result in a loss of adaptability, which may 

increase the risk of injury by not allowing the body to adapt to changes in the environment or 

different tasks.  Supporting this theory, less joint coupling variability has been demonstrated in 

individuals with patellofemoral pain and anterior cruciate ligament deficient knees compared to 

healthy controls (Hamill et al., 1999; Heiderscheit et al., 2002; Moraiti, Stergiou, Vasiliadis, 

Motsis, & Georgoulis, 2010).  The decreased variability in movement patterns may also lead to 

overloading of a specific area of tissue instead of distributing the stress to different areas, 

resulting in injuries associated with overload such as osteoarthritis.  Though variability in 
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movement patterns have been quantified in the larger joints of the lower extremity, variability 

within the segments of the foot has not been investigated. 

Summary.  It has been established that joint coupling characteristics are important for 

running kinematics and may contribute to musculoskeletal injury.  Most research in this area 

has focused on coupling of rearfoot eversion/inversion with tibial rotation, negating the effect 

the joints of the foot have on the rearfoot (Heiderscheit et al., 2001; McClay & Manal, 1997).  

However, it has been established that the joint couplings within the foot may affect rearfoot 

motion, specifically eversion/inversion, and that the foot strike pattern further affects this 

motion (Pohl & Buckley, 2008; Pohl et al., 2006, 2007).  As identified by Pohl and Buckley 

(2008), FFS running resulted in larger cross-correlations of joint coupling than RFS running 

which may indicate a more synchronous movement between forefoot and rearfoot while FFS 

running.  To further understand the extent of this relationship, a more sophisticated foot model 

is needed to further understand how the foot contributes to rearfoot motion.  Lacking in MSFM 

joint coupling and foot strike literature is the variability in consecutive steps while running as it 

may indicate how each foot strike pattern functions to prevent overuse injuries.   

Leg Muscle Activation  

Electromyography.  Peripheral neuromuscular activity has been researched using 

various methods, among which electromyography (EMG) is the most common.  Surface 

electrodes properly placed over muscle are able to identify small changes in voltage caused by 

action potentials of the underlying motor units. The voltage changes are used as an indicator of 

the muscle’s activity  (Gerdle, Karlsson, Day, & Djupsjöbacka, 1999).  There are various EMG 

signal analyses researchers have used to further understand muscle activity level.  Motor 
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pattern recruitment is often evaluated by identifying events when the muscle is turned on.  This 

can be done by identifying the onset and offset of the EMG signal.  Because of the amount of 

noise that is produced while capturing an EMG signal, adequate methods for identifying the 

onset of a muscle are necessary to avoid error. Visual methods of EMG onset have been used as 

well as computer algorithms in order to determine when a muscle becomes active, however, 

there is currently no consensus regarding the best method (Ebig, Lephart, Burdett, Miller, & 

Pincivero, 1997; Hodges & Bui, 1996).  For computer-based methods, procedures vary from 

setting a standard threshold (Tomberg, Levarlet-Joye, & Desmedt, 1991; Zhou, Lawson, 

Morrison, & Fairweather, 1995) to using standard deviations or a percentage of the EMG signal 

to identify a threshold (Johnson & Johnson, 1993; McKinley & Pedotti, 1992; Morey-Klapsing, 

Arampatzis, & Bruggemann, 2004).   

 In addition to identifying when a muscle is active, the intensity of the muscle activity, or 

contraction, can be identified by the amplitude and frequency of the EMG signal.  After 

removing all negative EMG values through rectification of the signal, amplitude can be 

evaluated in many different ways including maximum values, means, medians, integrated 

values, or root-means-square values (Gerdle et al., 1999; Ishikawa, Pakaslahti, & Komi, 2007; 

Kyrolainen, Avela, & Komi, 2005; Shih et al., 2013). The root-mean-square analysis has been 

recommended by Basmajian and De Luca (1985) and commonly used in research (Gerdle et al., 

1999; Mizrahi et al., 1997; Shih et al., 2013).  It also has reduced amplitude cancellation 

compared to other EMG averaging methods (Keenan, Farina, Maluf, Merletti, & Enoka, 2005).  

Morey-Klapsing et al (2004) compared various onset detecting algorithms and integrated EMG 

signals and concluded that the detection of muscle onset alone does not give adequate 
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information as to whether or not the muscle is contracting sufficiently to produce adequate 

force, but rather onset and integrated EMG should be used in combination to better 

understand the muscle preactivation characteristics. 

 EMG while running.  Because of the variation in foot position at initial contact 

associated with the different strike patterns, leg musculature activation may also be different.  

In a FFS running pattern, the gastrocnemius and soleus complex undergo a much larger 

eccentric load as they attempt to gradually control the lowering of the calcaneus down to make 

ground contact. In a RFS running pattern, on the other hand there is a need to support the foot 

in a dorsiflexed position and lower the forefoot to the ground during the first subphase of 

stance, requiring more activity from the tibialis anterior.   

Preactivation.  Preactivation of a muscle during gait is often evaluated as an indicator of 

how the muscle “prepares” for the stance phase and is identified as the amount of EMG activity 

during the swing phase immediately prior to initial contact.  Because of electromechanical 

delay, the musculature of the lower extremity must preactivate in preparation for stabilization 

during landing and to avoid injury (Konradsen & Ravn, 1990; Zhou, 1996).  In RFS running, the 

tibialis anterior needs a higher level of preactivation in order to maintain the ankle in 

dorsiflexion and then eccentrically lower the forefoot to the ground.  The main EMG activity of 

the tibialis anterior appears to be during the 100 ms leading up to and following initial ground 

contact, peaking at heel contact (Dietz, Schmidtbleicher, & Noth, 1979; Elliott & Blanksby, 1979; 

von Tscharner, Goepfert, & Nigg, 2003).  In FFS running, the gastrocnemius acts to assist in 

lowering the heel and shock absorption during subphase 1 of stance and would therefore 

benefit from adequate muscle stiffness.  Shih et al. (2013) compared EMG of the tibialis 
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anterior and gastrocnemius in 12 habitually shod runners while running with a RFS and FFS in 

both barefoot and shod conditions.  While shod, the tibialis anterior had a higher preactivation 

(assessed 50 ms before initial contact to initial contact) while running with a RFS (48.59 ± 11.5 

% maximal voluntary contraction (MVC) than with a FFS (16.79 ±7.3 % MVC).  The opposite was 

true for the gastrocnemius, with increased preactivation in the FFS (61.96 ± 13.5 % MVC) 

compared to the RFS (13.83 ± 7.9 % MVC).  Similar differences were also seen when barefoot 

running with a FFS and RFS (Shih et al., 2013).  Jacobs et al. (1993) compared mono- and 

biarticular muscle activation in seven elite male FFS runners and found high levels of 

gastrocnemius activation prior to initial contact which continued during lengthening of the 

gastrocnemius, allowing  for maximal utilization of the stretch-shortening cycle.  The mono-

articular soleus did not have high levels of activation prior to initial contact. 

Footwear.  There is also variation in how footwear alters neuromuscular activity in 

running.  While running with a RFS, barefoot running has been reported to have higher levels of 

preactivation in the gastrocnemius, and soleus muscles than RFS running while shod (Divert et 

al., 2005b; Shih et al., 2013).  When normalized to percent of maximal voluntary contraction 

(MVC), the medial and lateral gastrocnemius have a 1-3% increased activation in barefoot 

running when measured using surface EMG.  Olin and Gutierrez (2013) observed increased 

average medial gastrocnemius activity when 18 habitual shod RFS runners (run per week = 20.9 

± 6.0 km) ran for the first time barefoot with their normal RFS pattern and a further increase in 

average activity when running barefoot with a FFS (Divert et al., 2005b; von Tscharner et al., 

2003).  Komi et al. (1987) observed preactivation EMG patterns of four active males in various 

footwear conditions and identified a strong correlation between the lateral gastrocnemius 
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preactivation amplitude and VGRF impact peak magnitude.  This correlation was attributed to 

the need to stiffen the leg extensor muscles in order to buffer the initial impact.  The study did 

not specify foot strike pattern, but barefoot running was associated with an increased impact 

peak versus shod running, therefore, a RFS pattern may be assumed.  Wakeling et al. (2001) 

attempted to identify muscle activity that corresponded to impact on the foot during running 

with repetitive striking of a pendulum on the calcaneus while supine, reproducing running-like 

forces, but minimizing the role of the muscles in joint motion.  In a study of 20 active males, 

they found similar results in that muscle activity increased as a result of increased rate of 

loading in both the tibialis anterior and medial gastrocnemius. EMG of the tibialis anterior 

muscle has evidence of increased pre-activation intensity with shod running compared to 

running barefoot.  After initial contact there is more of a delayed response in tibialis anterior 

activity when running shod compared to barefoot as found in 40 male runners (>25 km·wk-1) 

(von Tscharner et al., 2003).  O’Connor and Hamill (2004) analyzed the effect of varus and 

valgus shoe wedges in tibialis anterior, peroneus longus, medial and lateral gastrocnemius, and 

soleus EMG in 10 recreationally active males (all RFS) and failed to observe any differences in 

EMG activity based on the different calcaneal varus and valgus positioning at initial contact.  

Nigg et al. (2003) tested 20 male runners in two different shoe conditions, one of medium 

hardness and elastic and the other softer and more viscous, and likewise found no difference in 

the onset timing of the muscles or preactivation intensity of the medial gastrocnemius or 

tibialis anterior. 

 Spatiotemporal parameter changes.  In addition to the difference in muscle activation 

due to change in foot contact posture, alterations in muscle activity have been shown to exist 
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with changes in spatiotemporal parameters.  Chumanov et al. (2012), in a study of 45 

recreational runners, found that an increase in cadence of 10% over preferred cadence 

increased medial gastrocnemius muscle activity during late swing/preactivation, but attributed 

the difference to a change in foot posture, though ankle angle was not reported. Likewise, 

increases in speed result in increased EMG activity of the gastrocnemius and tibialis anterior, 

likely due to an increase in motor unit recruitment (Chumanov et al., 2012).  Because of 

potential EMG changes due to changes in speed and cadence, it is important to control for 

these parameters or to acknowledge that differences between conditions or subjects may be 

due to differences in spatiotemporal parameters.  When specifically looking at RFS and FFS 

running, it is already known that FFS running tends to be performed with a higher step cadence 

(Bonacci et al., 2013; Divert et al., 2008; Nunns et al., 2013; Shih et al., 2013; Squadrone & 

Gallozzi, 2009). Therefore, even at a similar speed of running, the step rate must be taken into 

consideration when looking at differences in EMG profiles.  In the present study, though step 

rate will not be controlled, it will be measured and compared for differences.  It is still unknown 

if similar EMG differences in step rate will be seen between FFS and RFS runners. 

 Fatigue on EMG.  Fatigue has also been shown to both have an effect and no effect on 

EMG activity.  Some of the discrepancy may be associated with defining fatigue and the type of 

fatigue elicited in the protocol (Gandevia, 2001).  With prolonged submaximal activity, an 

increase in EMG activity is most likely due to recruitment of more, larger motor units (Bigland-

Ritchie, Furbush, & Woods, 1986; Petrofsky et al., 1979).  EMG activity has also, however, been 

shown to decrease during running activities, likely a result of decreased conduction velocity 

(Mizrahi et al., 2000a; Petrofsky et al., 1979; Wu et al., 2007).  Wu et al. (2007) tested 29 male 
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Army Infantry students while running 20 minutes at a 12 km·hr-1 pace and found an increase in 

EMG amplitude of the medial gastrocnemius and tibialis anterior during minutes 10 and 15 of 

the run over activity at minute five.  At minute 20, however, the EMG amplitude decreased to 

be similar to that observed at the fifth minute. The researchers attributed the initial increase in 

EMG amplitude to recruitment of larger motor units and the final decrease to fatigue of the 

larger muscle fibers in those muscles.  No change was seen in the peroneus longus muscle for 

the duration of the 20 minutes.  Mizrahi et al. (2000a) had 14 male, recreational runners (8-10 

km·wk-1) run for 30 minutes at their anaerobic threshold and found no significant change in 

gastrocnemius normalized integrated EMG, but a decrease in tibialis anterior EMG activity after 

20 minutes.  Reaching metabolic exhaustive levels, such as a run based on anaerobic threshold 

or oxygen consumption level will not necessarily result in fatigue characteristics at the muscle 

level.  It is therefore evident that the fatigue status of an individual can affect the EMG profile 

while running both during and towards the end of a run.  There are no known studies 

comparing the effect of an exhaustive run on EMG of leg muscles between FFS and RFS runners.  

It is therefore unknown if the preactivation of the leg muscles will see similar changes between 

the foot strike patterns after an exhaustive run. 

 Summary.  Muscular control influences joint motion and variability while running.  For 

performance and prevention of injury, activation prior to initial contact for each stance phase 

while running is necessary for leg musculature.  The onset and magnitude of a muscle’s 

preactivation are dependent on running strike pattern, spatiotemporal parameters, and 

footwear.  Because of the kinematic differences of FFS and RFS runners at initial contact and 

during subphase 1 of running, their activation needs are most likely to be different, but it is still 
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unknown what differences for preactivation are present and how fatigue may change these 

neuromuscular characteristics.    

Fatigue 

 Most running research comparing kinematics and joint coupling are performed when 

subjects have completed little more than a warm-up.  However, musculoskeletal injury rarely 

occurs at the beginning of a run.  Most running related injuries occur after an individual has 

experienced some level of fatigue (Mizrahi et al., 2000a; Verbitsky et al., 1998).  When muscles 

are functioning appropriately, they  control motion of joints and attenuate dynamic loads 

(Radin, 1986).  Overuse injury may result from repetitive motion or altered kinematics caused 

by altered muscular contraction which is often observed with fatigue.  Many researchers have 

disagreed on the specific definition of fatigue (Ament & Verkerke, 2009; Gandevia, 2001; 

Gandevia, Allen, & McKenzie, 1995)  but they tend to agree on the general idea that it is “any 

exercise-induced reduction in the force generating capacity” of muscle (Gandevia, 2001).  The 

type and mode of exercise performed as well as environmental factors (e.g. temperature, 

altitude), individual characteristics (e.g. level of expertise, genetics), muscle group used, type of 

muscle action , and intensity level of exercise all contribute to the onset and location of fatigue 

(Bazett-Jones, 2012).  Beyond alterations in physiological systems such as with neuromuscular 

control and chemical changes at the muscle level, an individual’s perception and sensation of 

fatigue also affects their overall ability to continue an exercise task (Gandevia, 2001).  The 

commonly used Borg scales (Borg, 1970) are a subjective measure of one’s fatigue level which 

incorporates both the physiological and psychological components of fatigue. 
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Peripheral and central fatigue.  Fatigue itself occurs from both peripheral (distal to the 

neuromuscular junction) and central (proximal to the neuromuscular junction) factors.  In 

healthy individuals, peripheral forms of fatigue may occur as a result of metabolite 

accumulation (Holloszy & Coyle, 1984; Lamb & Stephenson, 1994; Tesch & Karlsson, 1984), 

depletion of glycogen stores (Coyle, Coggan, Hemmert, & Ivy, 1986; Gollnick, Armstrong, 

Sembrowich, Shepherd, & Saltin, 1973), and hypoxia (Richardson, Noyszewski, Kendrick, Leigh, 

& Wagner, 1995; Romer, Haverkamp, Lovering, Pegelow, & Dempsey, 2006).  These peripheral 

mechanisms may also have an effect on central fatigue as their influence can occur at both the 

muscle level and throughout the body.  Because of the many levels within the nervous system, 

exercise may affect any number of factors causing central fatigue.  Many different physiological 

components such as core temperature (Nybo & Nielsen, 2001) and pain (Lund, Donga, Widmer, 

& Stohler, 1991) provide sensory signals to the brain to alter neuromuscular control.  Likewise, 

psychological factors can equally effect CNS function (Ament & Verkerke, 2009).   

Theories of fatigue.  Various theories have been developed to help understand how the 

body fatigues during exercise.  Fatigue is very task dependent, and therefore, different fatigue 

models may better represent how and why fatigue is occurring during a specified activity 

(Gandevia, 2001; Weir, Beck, Cramer, & Housh, 2006).  Two theories that have been described 

to be best associated with endurance tasks are the teleoanticipatory (Ulmer, 1996) and central 

governing theories (Noakes, St Clair Gibson, & Lambert, 2004).  The teleoanticipatory theory 

suggests that the body uses a feedback mechanism to constantly monitor the metabolic rate 

and the estimated metabolic cost to complete the task and alters output accordingly.  The 

central governing model proposes that the central nervous system is able to construct a feed-
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forward mechanism using sensory information from the periphery to create an exercise “plan”, 

using the physiological abilities of the individual, to execute a specific task.  However, activities 

lasting less than one minute, such as a Wingate power test on a cycle ergometer, see a steady 

decrease in performance output and no “strategy” of pacing is used for the highest power 

output.  In addition to the two theories above, the catastrophic failure model recognizes that if 

one or more physiological systems are stressed beyond their capacity, exercise is reduced or 

stopped (Edwards, 1983; Noakes et al., 2004).  From another view point, Ament and Verkerke 

(2009) have suggested that fatigue be separated into tasks that mostly require either type I or 

type II muscle fibers because of the complexity that different muscle fiber types have on a 

specific task or their ability to resist fatigue.  However, though some tasks tend to preference 

one muscle fiber type over another, seldom does a task use only one muscle fiber type. 

Fatigue and running.  Despite the cause or level of fatigue, research has succeeded in 

showing that kinematic changes occur when running in an exhausted or exerted state (Derrick 

et al., 2002; Dierks et al., 2010; Donahue & Sharkey, 1999; Milgrom et al., 2007; Mizrahi et al., 

2000b; Mizrahi et al., 1997).  Though changes seen in an exerted state are within normal limits, 

the repetitive nature of running may allow the accumulation of minor differences to overload 

tissue (Hreljac et al., 2000).  As muscles contribute greatly to the dissipation of forces while 

running (Bobbert, Yeadon, & Nigg, 1992; Radin, 1986), the inability of muscles to optimally 

perform their task will result in increased forces on other tissues.  For example, research has 

identified imbalances in leg muscle EMG patterns and increased tibial acceleration following an 

exhaustive run which  may increase the risk of stress fractures (Mizrahi et al., 2000a).  

Furthermore, exhaustive exercise bouts have also shown to change the pre-activation timing of 
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leg muscles, which may also contribute to alterations in joint kinematics and coupling, 

especially at initial contact and during initial loading (subphase 1) of stance (Nyland, Caborn, 

Shapiro, & Johnson, 1997).  

Fatigue Protocols.  Various methods of achieving an exhaustive or fatigue state have 

been used in running fatigue research.  To investigate peripheral fatigue, protocols have 

fatigued muscle groups with concentric and eccentric resisted motions prior to collecting 

running data (Brüggeman, 1996; Christina, White, & Gilchrist, 2001; Ferber & Pohl, 2011).  

Central fatigue protocols have focused more on fatigue from exhaustive running bouts.  Davis 

et al. (1999) used a high-intensity running protocol consisting of shuttle runs to fatigue, to 

mimic activity of soccer, basketball, and hockey players.  Other running studies looking at 

endurance running, have used techniques based on an individual’s anaerobic threshold 

(Verbitsky et al., 1998), time trials (Derrick et al., 2002), and incremental exercise to volitional 

exhaustion (Nyland et al., 1997).  Verbitsky et al. (1998)  conducted a 30 minute run at 

anaerobic threshold of 22 adult male recreational athletes and divided them into groups of 

those fatigued and those not fatigued based on end-tidal carbon dioxide pressure which 

decreases when fatigued.  To assess level of fatigue that is more representative of a typical run, 

many researchers have used protocols requiring subjects to perform a run of specified length 

such as a 10 kilometer run (Elliot & Ackland, 1981; Paavolainen, Nummela, Rusko, & Häkkinen, 

1999), marathon (Kyrolainen et al., 2000; Nagel, Fernholz, Kibele, & Rosenbaum, 2008; Nicol, 

Komi, & Marconnet, 1991a, 1991b; Ross, Middleton, Shave, George, & Nowicky, 2007), or ultra-

marathon (Morin, Samozino, & Millet, 2011).  Some of the specified length runs are completed 

at a predetermined speed, or constant velocity, while others are performed at the subjects’ 



 

63 
 

self-selected pace.  In studies that utilize a predetermined speed, participants may not acquire 

the level of fatigue that the individual would typically experience during a regular run or they 

may fatigue too quickly.  Bruggeman (1996) conducted three consecutive experiments 

comparing various methods of fatigue in untrained runners (< 15 km·wk-1).  They investigated 

the various ways of inducing fatigue at both the central and peripheral levels.  The first 

experiment required two separate 30 minute runs by the subjects, one below anaerobic 

threshold (< 5 mmol lactate) and one above (> 5 mmol lactate).  The second experiment 

involved a resistive dynamic ankle motion of concentric inversion/adduction with eccentric 

eversion/abduction repeated as much as possible in a 2 minute time period.  The final protocol 

required a run (2.6-3.0 m·s-1) to volitional exhaustion.   Local muscle strength as measured 

dynamic leg press (concentric) and ankle inversion and adduction (concentric/eccentric) 

protocols decreased for all the protocols.  Additionally, rearfoot inversion at initial contact was 

decreased during the resistive dynamic motion protocol and the exhaustive run.  When 

comparing the rearfoot kinematics over the course of the exhaustive run (approx. 45 min), the 

rearfoot sagittal plane kinematics and VGRF appeared to be continually changing for the first 7 

minutes of the run  (about 3⁰) while subjects adjusted to the treadmill and then after 12-15 

minutes significant changes (about 3-5⁰) due to fatigue were observed.  As many running 

studies do not have a lengthy running protocol, it is important to note that their kinematics 

may not indicate normal kinematics mid- and late- run. 

Neuromuscular characteristics also changed as a result of fatigue from the different 

protocols.  Mean power frequencies shifted in both leg and thigh musculature by increasing 

initially, indicating the recruitment of fast-twitch muscle fibers, and decreasing, as all fibers 
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fatigued.  With the resistive dynamic motion protocol, a time shift in the EMG activity was 

evident after fatigue, indicating a later onset and time to maximum peak in the tibialis anterior 

muscle. 

The effect of fatigue on running kinematics. 

Ankle.  Changes in ankle and foot kinematics as a result of an exhaustive run include 

increased ankle inversion at initial contact (Derrick et al., 2002) and peak eversion during stance 

(Clansey, Hanlon, Wallace, & Lake, 2012; Dierks et al., 2010; VanGheluwe & Madsen, 1997).  

Just prior to volitional exhaustion (when runner could no longer continue running at treadmill 

pace) while running at 4.5 m·s-1, Van Gheluwe et al. (1997) observed increased peak eversion 

(2.1⁰ difference) and eversion excursion (1.8⁰ difference) during stance in 20 physical education 

students (20-29 years old), all of which were RFS.  Similar results were found after a 3200 m 

time trial of 10 recreational runners with small, but significantly different peak eversion (1.1⁰ 

difference) and eversion excursion (1.4⁰ difference) during the stance phase at the end of the 

run (Derrick et al., 2002).   The foot strike pattern used by the runners, however, was not 

identified.  In a study of 20 recreational runners (RFS) that ran to exhaustion (85% HRmax, or RPE 

≥ 17), Dierks et al. (2010) had observed the greatest kinematic changes in rearfoot eversion, 

compared to knee and hip kinematics with an increased excursion of 1.2⁰ and peak eversion of 

1.5⁰ during the stance phase.  After a local muscular fatigue protocol of the ankle invertors and 

dorsiflexors, Christina et al. (2001) observed decreased ankle inversion (2.2⁰ difference) and 

dorsiflexion (3.2⁰ difference) respectively at initial contact in RFS runners .  Likewise, Kellis and 

Liassou (2009) fatigued the ankle dorsiflexors/plantarflexors, using an isokinetic protocol until 
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only 30% of peak torque could be produced by the ankle, and also found decreased dorsiflexion 

at initial contact (5⁰ difference).   

Foot.  As previously stated, few researchers have investigated kinematic and joint 

coupling changes within the foot via a MSFM while running. Even fewer have considered 

changes in distal foot function that occur following an exhaustive run.  Research investigating 

changes in plantar pressure from running suggests alterations in foot kinematics due to 

exhaustion.  Nagel et al. (2008) identified a shift in plantar pressure from the toes to the 

forefoot in 200 marathon runners while walking barefoot immediately after completing a 

marathon, suggesting changes in stance phase foot motion while walking after an exhaustive 

run.  The study did not, however, evaluate the changes while running.  While running, Willems 

et al. (2012) monitored foot pressures after a 20 km race in 52 racers and also found 

differences in mean and peak forces under the medial heel, metatarsals, and toes.  No other 

research has examined the motion occurring within the foot after an exhaustive run despite the 

fact that the plantar pressure studies suggest that changes in kinematics may occur.  Elliot and 

Ackland (1981) recognized that foot mechanics have the greatest influence on running 

mechanics, yet these mechanics have yet to be analyzed after an exhaustive run. This may be 

especially important due to the fact that this is time when injuries commonly occur.  

Additionally, the research that has compared kinematics before and after an exhaustive run has 

failed to include FFS runners. 

 Summary.  From previous research it is known that kinematics, kinetics, and 

neuromuscular characteristics change as a result of both central and peripheral fatigue.  

Rearfoot inversion at initial contact (Derrick et al., 2002), eversion excursion, and peak eversion 
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increase as a result of running fatigue (Clansey et al., 2012; Dierks et al., 2010; VanGheluwe & 

Madsen, 1997) and the initial contact angle of ankle dorsiflexion decreases in RFS runners 

(Brüggeman, 1996).  As suggested by foot plantar pressure data (Nagel et al., 2008; Willems et 

al., 2012), kinematic changes may also occur distal to the rearfoot complex and may possibly be 

the cause of rearfoot changes.  It is still unknown what kinematic changes occur in the distal 

foot and how foot and ankle kinematics change in FFS runners.  Fatigue also affects leg 

musculature by decreasing the time of preactivation of the tibialis anterior (Brüggeman, 1996).  

These affects have yet to be determined in FFS runners and further investigation into 

preactivation patterns of the plantarflexors and everters of the foot have not been done during 

fatiguing protocols.  These patterns may be crucial in foot and ankle stability during stance 

especially during initial loading (subphase 1) when the inverted foot is particularly vulnerable to 

sprains. 
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3. MULTI-SEGMENT FOOT KINEMATICS IN HABITUAL FOREFOOT AND REARFOOT 
RUNNERS AT THE BEGINNING AND END OF AN EXHAUSTIVE RUN 

 
Introduction 

 An estimated 19.4-79.3% of runners experience some type of overuse injury each year 

(Bahr & Holme, 2003; van Gent et al., 2007).  Despite changes in footwear to combat these 

injuries, there is little evidence that overuse injury rates have decreased. As a result, some 

researchers have begun to focus on the role of foot strike patterns in running injuries 

(Lieberman et al., 2010; Williams et al., 2000). 

Most runners (75-99%) utilize a rearfoot strike (RFS) pattern (Hasegawa et al., 2007; 

Larson et al., 2011). While fewer runners utilize a midfoot strike (MFS) (0-23.7% of runners) or 

forefoot strike (FFS) (0-2% of runners) pattern (Hasegawa et al., 2007; Larson et al., 2011), some 

researchers have hypothesized that these styles are a more “natural” form of running.  These 

researchers have also argued that RFS running, which emerged because of modern footwear, 

may increase injury risk.  Midfoot and FFS running are associated with greater knee flexion and 

ankle plantarflexion at initial contact compared to RFS running (Shih et al., 2013; Stackhouse et 

al., 2004).  Although overall range of motion at the knee and ankle during the entire stance 

phase does not appear to differ significantly between the foot strikes, differences during early 

stance have been observed (Pohl & Buckley, 2008).  These kinematic differences contribute to 

decreased vertical ground reaction force loading rates reported with MFS and FFS versus RFS 

patterns (Lieberman et al., 2010; Williams et al., 2000) and may be significant given the 

common clinical belief that higher loading rates are associated with increased risk of injury.   
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Although many motion analysis studies have investigated ankle and knee kinematic 

differences between the foot strike patterns, the effect on foot kinematics has received little 

attention (Pohl & Buckley, 2008; Pohl et al., 2006). Differences in weight distribution and 

centers of pressure location between the foot strike patterns (De Wit et al., 2000) create an 

increased demand on the distal foot to provide stability and dissipate force following initial 

contact during mid/forefoot running.  Pohl and Buckley (2008) compared FFS and RFS foot 

kinematics using a two-segment foot model (forefoot and rearfoot) and observed differences in 

forefoot dorsiflexion and abduction excursion during stance.  However, important differences 

between the foot strike patterns may have been masked in this study due to the use of an over-

simplified foot model. Wolf et al. (2008) and Rouhani et al. (2011),  have recommended 

partitioning of the foot into rearfoot, midfoot, and medial and lateral forefoot segments. To 

date, no study has used these recommended segments to evaluate foot motion between the 

foot strikes.  

 Furthermore, the majority of studies investigating foot strike patterns have only 

investigated runners in a non-fatigued state. However, most running injuries do not occur at 

the beginning of a run, rather after an individual has experienced some level of fatigue (Mizrahi 

et al., 2000a). The limited number of studies that have used exhaustive protocols have reported 

altered ankle kinematics not only between differing foot strikes, but also as the result of fatigue 

(Dierks et al., 2010).  The effect of a prolonged run on foot kinematics in runners with different 

foot strike patterns, however, has not been investigated. 

The purpose of this investigation was to identify the differences in foot kinematics 

between habitual RFS and FFS runners at the beginning and end of an exhaustive run.  It was 
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hypothesized that significant kinematic differences would be seen between the groups at initial 

contact and in distal foot range of motion during early stance based on different initial contact 

points.  Additionally, it was hypothesized that the angular displacements of the functional 

articulations in the foot and ankle would increase as a result of muscular fatigue in both groups 

throughout stance following the exhaustive run. The increase was hypothesized to be greater in 

FFS vs RFS runners due to the increased use of the plantarflexors associated with making initial 

contact with the mid/forefoot (Ahn et al., 2014). 

Methods 

Participants 

Fifteen habitual RFS runners were age and gender matched with 15 habitual 

midfoot/FFS runners (Table 3.1). All subjects ran a minimum of 10 miles per week and used 

their current foot strike pattern for a minimum of one year at the time of participation.  

Participants were excluded if they had a lower extremity injury within 6 weeks, history of lower 

extremity surgery, currently used custom molded foot orthotics, or any known cardiovascular 

problems or uncontrolled asthma.  Participation in the study included an initial phone screen 

and two in-person visits consisting of a foot strike screen and a running gait analysis.  All 

procedures and risks associated with the study were explained to the participants. Participants 

read and signed an informed consent form approved by the institution’s Institutional Review 

Board. 

Procedure 

Foot strike screen  
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Foot strike patterns were confirmed using visual analysis of each participant’s vertical 

ground reaction force profile during overground running (Altman & Davis, 2012a; Hasegawa et 

al., 2007). The ground reaction force data was captured using an AMTI force plate (Advanced 

Medical Technologies, Inc, Waterford, MA) sampling at 1000 Hz embedded in a 25 m runway.  A 

RFS was defined as a vertical ground reaction force time-series with two distinct peaks during 

stance.  A FFS was defined as a time-series that did not have two distinct peaks.  Midfoot and 

FFS were combined into the FFS group since both have similar vertical ground reaction force 

patterns (Lieberman et al., 2010).  Subjects completed five running trials along the carpeted 

walkway in their own running shoes.  At least three trials had to have a consistent vertical 

ground reaction force time-series to be placed in a footstrike group.   

Participants were then provided with a pair of 12 mm neutral running sandals (Mono, 

Luna Sandals, Seattle, WA) and a 10-day accommodation program (Appendix M) (Bonacci et al., 

2013; Squadrone & Gallozzi, 2009).  The accommodation program required participants to 

slowly incorporate sandal usage into their habitual training without decreasing their training 

mileage.   

Multi-segment foot model  

Clusters of four retroreflective technical markers (6.4 mm diameter) were placed on the 

right leg and foot to identify seven segments (Bauer, 2012) and six functional articulations 

(Figure 3.1).  Technical markers were either directly adhered to the skin or as wand clusters 

using liquid adhesive (Mastisol Liquid Adhesive, Ferndale Laboratories, Inc., Ferndale, MI) and 

double-sided toupee tape.  Elastic tape (Elastikon, Johnson & Johnson, New Brunswick, NJ) and 

a cohesive bandage (Powerflex, Andover Healthcare, Inc., Salisbury, MA) were used to further 
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secure wands to skin.  Three-dimensional positional marker data were collected using a 10-

camera Eagle Motion Analysis System (Motion Analysis Corp., Santa Rosa, CA) sampling at 200 

Hz.  An anatomical calibration procedure was performed to identify the three-dimensional 

position of additional anatomical landmarks in order to define local coordinate systems for each 

segment (Appendices A and C) (Grood & Suntay, 1983). 

Exhaustive run and gait assessment   

Following the anatomical calibration procedure subjects warmed up for 5 minutes on a 

treadmill.  After the warm up, subjects ran at a speed of 3.4 m·s-1 (7.5 mph) until a consistent 

gait pattern was observed. Motion capture was then collected for 10 s.  Each subject then 

performed a maximal effort 5 km run (Laursen et al., 2007).  During the maximal effort run 

subjects were able to alter the treadmill speed as necessary.  The exhaustion criteria of a heart 

rate equal to or greater than 80% of age-predicted heart rate max (220-age) and a rate of 

perceived exertion at or above 17 out of 20 (Borg, 1970) were both met by all subjects.  While 

running, one leg of the treadmill was placed on the force plate and vertical ground reaction 

force data was again used to verify subjects maintained their habitual foot strike.  Following the 

run, the treadmill was once again set to 3.4 m·s-1 and a second 10 s motion capture was 

performed.   
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Data Processing 

Cortex software (Cortex  v 1.1, Motion Analysis Inc., Santa Rosa, CA) was used to track 

3D marker position data and a custom Matlab program (Matlab v. R2013b, Mathworks, Natick, 

MA) was created to filter the data with a zero-lag, low-pass fourth order Butterworth filter and 

12 Hz cut-off frequency. Reconstruction of the 3D position of each rigid body segment was 

performed using the Calibrated Anatomical System Technique (Cappozzo, Catani, Croce, & 

Leardini, 1995).  Finally, joint angles for each of the functional articulations were calculated 

using the joint coordinate systems technique (Grood & Suntay, 1983).  All motions were defined 

as the distal segment moving on the proximal segment with positive joint angles reflecting 

dorsiflexion (extension), inversion, and internal rotation (adduction).     

Five consecutive stance phases were processed from each 10 s motion capture.  All 

kinematic data were time normalized to 100 percent stance. Initial contact was identified when 

the toe horizontal velocity was 0 m/s (Zeni, Richards, & Higginson, 2008) and toe-off was 

identified when the first metatarsophalangeal joint (MTP) reached maximum extension 

Figure 3.1 -The seven segments that were 
identified to form the following functional 
articulations: rearfoot (leg and calcaneus), 
calcaneonavicular (calcaneus and 
navicular), calcaneocuboid (calcaneus and 
cuboid), lateral forefoot (cuboid and lateral 
rays), medial forefoot (navicular and medial 
rays), and 1st MTP (medial rays and hallux). 
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(Appendix L) (Seneli, Pomeroy, & Cobb, 2015).  The stance phase was further divided into four 

subphases:  subphase 1 (0-20%), subphase 2 (21-50%), subphase 3 (51-75%), and subphase 4 

(76-100%) for subsequent data analysis (Ferber et al., 2005).   

Statistical Analyses 

Independent t-tests were used to compare average weekly mileage between the RFS 

and FFS groups and the time to completion of the 3.1 mile exhaustive run.   

Initial contact and peak joint angles  

Mixed between-within subjects MANOVAs were performed for each functional 

articulation to investigate initial contact and peak stance phase joint angle differences between 

the foot strike groups prior to and following the exhaustive run. The between-subject factor in 

each MANOVA was foot strike (RFS, FFS), and the within-subject factor was time (pre-, post-

run). The dependent variables in each MANOVA were initial contact angle, maximum stance 

phase angle, and minimum stance phase angle (Table 3.1).  For the rearfoot complex, 

calcaneonavicular, and calcaneocuboid articulations separate mixed between-within subjects 

MANOVAs were performed for the sagittal, frontal, and transverse plane data. For the medial 

forefoot, MTP, and lateral forefoot only the sagittal plane data was investigated.  Follow-up RM 

ANOVA testing was done to investigate statistically significant mixed between-within subjects 

MANOVA results. Follow-up dependent t-tests with a Bonferroni adjustment were performed 

to investigate significant mixed between-within subjects ANOVA time-by-foot strike 

interactions.   
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Table 3.1. Description of the dependent variables utilized for the mixed between-within subjects MANOVAs.  Each articulation 
had three MANOVAs (one for each plane of motion) to process significant findings. 

Articulations Planes Analyzed Dependent Variables Statistical Test 

Rearfoot complex 
Calcaneonavicular 
Calcaneocuboid 
Medial forefoot 
Lateral forefoot 
1st MTP 

Sagittal 
Frontal 
Transverse 

Initial Contact 
Minimum Angle 
Maximum Angle 

MANOVA for each plane of each 
articulation (total 18 MANOVA) 

 

Angular displacement  

Mixed between-within subjects MANOVAs with one between-subjects (foot strike) and 

one within-subjects factor (time) were performed to investigate differences in rearfoot 

complex, calcaneocuboid, and calcaneocuboid angular displacement within each of the four 

stance subphases.  The dependent variables in each MANOVA were the sagittal, frontal, and 

transverse plane angular displacements within a given subphase (Table 3.2).  For the medial 

forefoot, MTP, and lateral forefoot, RM ANOVAs were performed to identify within- and 

between-subjects sagittal plane differences.  Follow-up testing for significant mixed between-

within subjects MANOVAs were the same as indicated above. 

Table 3.2. Description of the dependent variables utilized for the mixed between-within subjects MANOVAs and ANOVAs 
when comparing angular displacement.  Each articulation had four MANOVAs or ANOVAs (depending on the joint) processed 
for each of the four subphases of stance. 

Articulation Subphases Analyzed Dependent Variables Statistical Test 

Rearfoot complex 
Calcaneonavicular 
Calcaneocoboid 

Subphase 1 (0-20%) 
Subphase 2 (21-50%) 
Subphase 3 (51-75%) 
Subphase 4 (76-100%) 

Mean sagittal displacement 
Mean frontal displacement 
Mean transverse displacement 
 

MANOVA for each 
subphase of stance for 
each articulation (total 12 
MANOVA) 

Medial forefoot 
Lateral forefoot 
1st MTP 

Subphase 1 (0-20%) 
Subphase 2 (21-50%) 
Subphase 3 (51-75%) 
Subphase 4 (76-100%) 

Mean sagittal displacement 
 

ANOVA for each subphase 
of stance for each 
articulation (total 4 
ANOVA) 
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Significance was set at α = 0.05.  For significant interaction effects that required multiple 

tests for follow-up analyses, a Bonferroni adjusted alpha level of 0.003 was used. 

Results and Discussion 

This study investigated the differences in foot kinematics between habitual RFS and FFS 

runners prior to and following an exhaustive 5 km run.  Because of the number of articulations 

examined and the different measurements observed, only significantly different results will be 

discussed, but all means are reported in Tables 3.4 and 3.5.  

 
Table 3.3- Participant descriptive data  

Variable RFS (n=15) FFS (n=15) P-value 

Age (years) 27.7 ± 5.05 27.4 ± 6.34  

Height (cm) 179 ± 7.69 179 ± 7.02  

Mass (kg) 77.9 ± 10.3 61.2 ± 33.6  

Weekly distance (mi) 20.2 ± 11.5 22.4 ± 15.8 .64 

Experience running over 10 mi (years) 4.82 ± 4.47 6.40 ± 5.59  

5K completion time (min) 23.2 ± 4.03 23.2 ± 4.03 .67 
 

Foot strike differences 

With respect to the differences between the foot strike patterns, we hypothesized 

significant kinematic differences at initial contact and during early stance. This hypothesis was 

supported at initial contact with greater rearfoot complex plantarflexion (6.59 ± 1.25° 

difference, P < 0.001) and inversion angle (2.74 ± 0.96° difference, P = 0.01) in FFS runners 

(Table 3.2).  Greater plantarflexion in the calcaneocuboid articulation at initial contact (5.62 ± 

1.70°, P = 0.003) was also observed in FFS runners (Table 3.4).  The FFS group also 

demonstrated increased peak rearfoot inversion (2.92 ± 0.92°, P < 0.001) (Table 3.4), which 

occurred near initial contact.   Forefoot running requires increased rearfoot plantarflexion to 

make initial contact with the forefoot.  In conjunction with the greater rearfoot complex 
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plantarflexion, the increased plantarflexion at the calcaneocuboid articulation and increased 

rearfoot complex inversion may function to put FFS runners in a more supinated position during 

early stance.  The increased rearfoot plantarflexion and inversion positions in FFS runners may 

result in decreased ankle joint stability and put the ankle in a more susceptible position to acute 

injury such as ankle sprain.  Although the ankle joint is in a less stable position in plantarflexion 

and inversion, the position contributes to supination and increased rigidity of the foot which 

would be important for impact in FFS runners.  

In addition to the initial contact and peak angle differences, there were also significant 

angular displacement differences between the foot strikes in the midfoot and forefoot 

articulations during early stance (subphase 1).  In the sagittal plane, the calcaneonavicular and 

calcaneocuboid articulations plantarflexed in FFS runners (1.00 ± 0.27° and 0.57 ± 0.38° 

plantarflexion, respectively), but dorsiflexed in the RFS runners (0.73 ± 0.28° and 0.82 ± 0.38° 

dorsiflexion, P < 0.001 and P = 0.02, respectively) (Table 3.5). In the frontal plane, the 

calcaneonavicular complex everted in FFS runners (0.93 ± 0.33°) but inverted in RFS runners 

(0.06 ± 0.34°, P = 0.05) (Table 3.3).  Contrary to the initial hypothesis, RFS runners went through 

significantly greater medial forefoot dorsiflexion ROM during the first subphase compared to 

the FFS runners (0.92 ± 0.39° difference, P = 0.03) (Table 3.5). 

The midfoot and forefoot plantarflexion observed in FFS runners may be a strategy to 

increase/maintain foot rigidity while the heel is lowered to the ground.  The opposite may be 

true for RFS runners with midfoot and forefoot dorsiflexion functioning to increase foot 

mobility as the forefoot is lowered to the ground.  Because plantarflexion and inversion are 

triplanar motions of supination, it is interesting to note that while FFS runners plantarflexed the 
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calcaneonavicular articulation during early stance, the complex also everted.  If FFS runners 

made initial contact with the center of pressure more lateral, as previously reported (Cavanagh 

& Lafortune, 1980), the ground reaction force may have caused this eversion motion.  A similar 

observation was also made in RFS runners with calcaneonavicular dorsiflexion and inversion.  It 

should also be noted that, although a significant interaction was not observed, inspection of the 

pre- and post-run frontal plane calcaneonavicular motion indicates that the direction of motion 

actually changed from an inversion motion pre-run to eversion post-run in RFS runners.  The 

different foot kinematics between RFS and FFS running during early stance suggest loading of 

different foot and ankle structures. The differences may impact the location and type of injury 

to which each foot strike pattern is more susceptible. 

In addition to the early stance subphase differences, several unanticipated range of 

motion differences between the foot strike patterns were also observed in the second and third 

subphases.  In subphase 2, FFS runners had increased calcaneocuboid dorsiflexion compared to 

RFS runners (7.20 ± 1.30° difference, P < 0.001) (Table 3.5).  The FFS runners’ conversion from 

calcaneocuboid plantarflexion in subphase 1 to dorsiflexion in subphase 2 may be the result of 

the foot becoming more mobile to adapt to running terrain.  The increased dorsiflexion that FFS 

runners had over RFS runners may aide them in reaching full pronation at the same time during 

stance since they had to come from a plantarflexed position.  Additionally, in the transverse 

plane FFS runners had decreased calcaneocuboid abduction range of motion compared to RFS 

runners (2.55 ± 1.16° difference, P = 0.031) (Table 3.5).  It is during subphase 2 when RFS 

runners reach their peak calcaneocuboid abduction while FFS runners reached peak near initial 

contact.  The timing difference may be the result of a more distal center of pressure in FFS 
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runners during the first half of stance.  Also, although no interaction was observed, inspection 

of the pre- and post-run transverse plane calcaneocuboid motion indicates that FFS runners 

switched from an adduction motion pre-run to abduction post-run.  In subphase 3, MTP 

extension was increased in FFS runners over RFS runners (2.60 ± 1.02°, P = 0.02) (Table 3.5).  

This may also be the result of a more anterior center of pressure in FFS running (Becker, 

Pisciotta, James, Osternig, & Chou, 2014) which allows for a quicker conversion to prepare the 

foot for take-off, where maximum MTP extension occurs.  Inspection of the time series 

supports this theory as well as MTP extension appears to begin sooner in FFS runners (Figure 

3.2). 

Previous research has identified similar differences in rearfoot complex sagittal and 

frontal plane kinematics with RFS runners exhibiting a dorsiflexed position and FFS runners 

demonstrating a plantarflexed and more inverted position at initial contact (Bonacci et al., 

2013; Cavanagh & Lafortune, 1980; De Wit et al., 2000; Lieberman et al., 2010; Reinschmidt et 

al., 1997a; Shih et al., 2013; Squadrone & Gallozzi, 2009; Stackhouse et al., 2004; Williams et al., 

2000).   Shih, et al. (2013) observed nearly a 20° sagittal plane difference while Squadrone and 

Gallozzi (2009) observed a 7° difference between FFS and RFS running when switching from 

running barefoot to shod, both of which are larger than what was observed presently.  These 

studies, however, placed anatomical markers on the shoe in shod conditions and evaluated the 

rearfoot using a single foot segment model.  Additionally, the same runners performed both 

foot strike patterns rather than evaluate habitual FFS and RFS runners which may account for 

some of the difference.  In the frontal plane, previous research has also identified an increased 

inversion angle (~5°) in FFS runners compared to RFS runners while tracking shoe motion 
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(Stackhouse et al., 2004; Williams et al., 2000) which is comparable to the 2.75° increase 

observed in the present study.  Because no other studies have compared functional 

articulations of the foot with different running strike patterns, the present findings are novel 

and help to better understand the patterns of rigidity and mobility within the foot for RFS and 

FFS runners.  This exploration of how foot pronation and supination occur in healthy runners 

may be used in future studies to investigate differing kinematics in injured populations.  Other 

studies using a single-segmented foot model have been inconclusive as to whether or not 

increased foot pronation contributes to injuries such as plantar fasciitis and stress fractures 

(Tam et al., 2014).  Though other studies debated whether or not there are significant 

differences in injury rate between RFS and FFS running (Daoud et al., 2012; Goss & Gross, 

2012), types of injuries and injury locations appear to be different.  Daoud et al. (2012) 

identified much higher rates of RFS predicted injuries (hip pain, knee pain, lower back pain, 

tibial stress injuries, plantar fasciitis, and lower limb stress fractures) in RFS runners while FFS 

runners were predicted to have higher rates of metatarsal fractures, Achilles tendinopathies, 

and foot pain, but were not found to be different between the foot strikes.  Similar results were 

also reported in barefoot runners, majority of which run with a FFS or midfoot strike pattern, 

when compared to shod runners, majority of which use a RFS running pattern (Altman & Davis, 

2015).  The increased time RFS runners are in a more pronated position may contribute to 

these types of injuries.  It has been suggested by Pohl, Hamill, and Davis (2009) that 

understanding of midfoot pronation may help to better understand the relationship between 

foot pronation and running related injuries. 
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Exhaustive run 

 With respect to the exhaustive run, we hypothesized that foot and ankle angular 

displacements would increase throughout the stance phase in both groups following the run.  

At the end of the exhaustive run, both foot strike groups made initial contact with the rearfoot 

complex in greater internal rotation (1.55 ± 0.71° difference, P = 0.04) and both the 

calcaneonavicular (1.28 ± 0.39° difference, P = 0.003) and calcaneocuboid (2.00 ± 0.54°, P = 

0.001) functional articulations in greater plantarflexion (Table 3.2).  Although no interaction 

was found, it should be noted that further investigation of the rearfoot complex shows that the 

increased initial contact internal rotation angle only increased in RFS runners (2.54 ± 2.24°), but 

actually decreased in FFS runners (0.39 ± 1.99°).  This interaction likely was masked because of 

the MANOVA model used.  The increased rearfoot internal rotation observed in RFS runners 

may be the result of exhaustion to the anterior tibialis.  The increased midfoot plantarflexion 

position at initial contact may function to contribute to the rearfoot complex plantarflexion in 

FFS runners (Table 3.4), which would allow FFS runners to assure forefoot contact.  Additionally, 

the midfoot plantarflexed angle may assist in providing more bony rigidity for the foot as 

dynamic stabilizers become exhausted.  In RFS runners, the midfoot plantarflexion may also 

have been a result of fatigue in the tibialis anterior muscle which is more active in RFS running 

(Shih et al., 2013) and therefore more susceptible to fatigue. 

 In addition to the changes in initial contact position, both foot strike groups also 

demonstrated a number of pre- to post-run changes in peak position and range of motion 

during the four stance subphases.  During subphase 1, peak rearfoot complex internal rotation, 

which occurred near initial contact, increased post-run for RFS and FFS runners (1.68 ± 0.73° 
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increase, P = .03) (Table 3.5).  Rearfoot eversion (1.02 ± 0.29° increase, P = 0.002) and external 

rotation (0.92 ± 0.32°, P = 0.01) range of motion during subphase 1 also increased in both 

groups (Table 3.5).  The increased rearfoot complex external rotation displacement is perhaps 

necessary to allow appropriate foot position/posture needed for dissipation of force after initial 

contact is made with a greater internally rotated rearfoot.  Increased calcaneonavicular 

eversion (0.56 ± 0.24° increase, P = 0.02) and adduction (0.78 ± 0.21° increase, P = 0.001) were 

also observed in subphase 1. The increased eversion in both joints will contribute to foot 

pronation and increase foot mobility going into subphase 2.  The increased pronation and foot 

mobility may be the result of fatigue of dynamic foot stabilizers.  The increase in pronation and 

foot mobility would rely strongly on dynamic stability and, as a result, these dynamic stabilizers 

which may already be exhausted from the run may become overstressed.    These soft tissue 

structures, which would include structures such as the plantar fascia and spring ligament, may 

be at a higher risk for injury with the increased pronation. 

 During subphase 2, peak rearfoot complex eversion increased as a result of the 

exhaustive run (1.53 ± 0.34°, P < 0.001) (Table 3.5).  This change contributes to increased 

maximal pronation while running.  It has strong clinical relevance as over pronation has been 

linked to multiple overuse injuries (Ferber, Hreljac, & Kendall, 2009).  As discussed previously, 

as dynamic stabilizers become fatigued, control of pronation would become more difficult.   

 During the third stance subphase, both groups increased rearfoot plantarflexion and 

inversion range of motion as a result of the exhaustive run (0.98 ± 0.38° and 0.41 ± 0.18° 

increase, P = 0.02 and P = 0.03, respectively) (Table 3.5).  Peak calcaneonavicular and 

calcaneocuboid dorsiflexion, which occurred in subphase 3, decreased in both the 
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calcaneonavicular (1.37 ± 0.45° decrease, P = 0.006) and in the calcaneocuboid articulations 

post-run (1.91 ± 0.73° decrease, P = 0.02) (Table 3.5).  Additional subphase 3 range of motion 

changes post-run included increased lateral forefoot plantarflexion (0.95 ± .34, P = 0.009) and 

MTP extension post run (1.78 ± 0.35°, P < 0.001) (Table 3.5).  The increased range of motion for 

all of these joints pushes the foot towards a more supinated position.  As the foot prepares for 

the swing phase of stance, a rigid foot is crucial for a sufficient push off force.  Therefore, as 

pronation increased during the second subphase of stance, the increased supination motion 

during subphase 3 may be in response to trying to make up for the necessary foot rigidity 

during late stance.  

 Finally, during subphase 4, both RFS and FFS runners had increased range of motion in 

rearfoot complex plantarflexion (1.11 ± 0.32°, P = 0.002), inversion (0.90 ± 0.30°, P = 0.01), and 

internal rotation (0.87 ± 0.29°, P = 0.01) post-run (Table 3.5).  This directly results in greater 

ankle supination during push-off.  Increases were also observed in medial forefoot 

plantarflexion range of motion (1.87 ± 0.40°, P < 0.001), MTP extension range of motion (1.53 ± 

0.43°, P = 0.001) and peak MTP extension (2.60 ± 0.75°, P = 0.002) (Table 3.3).  Like in subphase 

3, the increased supination may aid in creating a more rigid foot for push-off.   The increased 

plantarflexion of the rearfoot and midfoot would also contribute to the need for the MTP to 

increase extension at toe-off.  Because of the less rigid foot during subphases 1 and 2, changes 

in subphase 4 must allow compensation for a productive push-off to maintain the same speed. 

 In addition to the hypothesized increased range of motion following the exhaustive run, 

we further postulated that the increase would be greater in FFS vs RFS runners due to the 

increased use of the plantarflexors associated with making initial contact with the forefoot.  
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This was not the case as only one interaction was identified. In subphase 2, medial forefoot 

dorsiflexion range of motion was increased in RFS runners (2.47 ± 1.23° increase, P < 0.001) but 

not FFS runners (P = 0.15) (Table 3.5).  It is worth mentioning that in this subphase, medial 

forefoot dorsiflexion in FFS runners was nearly double that of RFS runners both at the beginning 

and end of the run (6.00 ± 1.15° difference overall).  The medial forefoot dorsiflexion is part of 

the motion that lowers the medial arch to aid in force absorption as peak ground reaction 

forces are reached.  As the foot is increasing pronation during this subphase, it would appear 

that fatigue of dynamic stabilizers in RFS runners contributes to increased foot mobility after an 

exhaustive run.  As FFS runners have much more medial forefoot dorsiflexion than RFS runners 

both at the beginning and end of the run, it would appear FFS runners have very little rigidity in 

this joint to begin with and may already be near their end range of medial forefoot sagittal 

plane motion.  

 Similar to the present study, previous research utilizing exhaustive running protocols 

have also reported decreased rearfoot dorsiflexion in RFS runners at initial contact as well as 

increased peak eversion during stance (Christina et al., 2001; Dierks et al., 2010; VanGheluwe & 

Madsen, 1997), but not all studies are consistent.  Pohl, et al. (2010) found no change in peak 

rearfoot eversion with a local posterior tibialis fatiguing protocol, but the difference may be the 

result of a local muscular fatiguing protocol rather than exhaustion from running.  When 

running to volitional exhaustion, Derrick, et al. (2002) also observed increased rearfoot 

inversion at initial contact which was not found to be statistically significant in the present 

study.  However, it appeared that the data was following this trend, but again, may have been 

masked by the MANOVA model. 
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Limitations 

 With the utilization of a multi-segment foot model and the number of variables 

examined, the mixed between-within subjects MANOVA statistical model used for most 

variables allowed protection for type I error.  Because of this conservative model, it is likely that 

some results may have actually been statistically significant but were not identified as such, 

particularly with interaction effects.  An example of this is in the rearfoot complex sagittal and 

frontal plane angle at initial contact which had a significant time main effect from the 

MANOVA, but was not found to be significantly different from follow-up testing in the present 

study.  The data did appear to follow results that have been previously reported  where the 

rearfoot decreased dorsiflexion and increased inversion after fatigue (Derrick et al., 2002), but 

may have been masked by the MANOVA model.  Similarly, there were various significant 

reactions which were investigated with follow up testing, but because of the Bonferroni 

adjusted p-value (0.003), only one was found to be significantly different (Appendix K).  .   

Conclusion 

 This exploratory study helped to identify differences in distal foot kinematics between 

habitual RFS and FFS runners.  Though it has been suggested that RFS runners may experience 

more bony tissue injury and FFS runners more soft tissue (Daoud et al., 2012), the more 

supinated foot of the FFS runners would create more bony stability and contradict this thought 

when considering soft tissue structures within the foot itself.  The more pronated foot in RFS 

runners would suggest increased stress on dynamic stabilizers and is supported by the finding 

that RFS runners have experienced a higher rate of plantar fasciitis (Daoud et al., 2012).  The 

exhaustive run affected both RFS and FFS runners by increasing peak joint angles and range of 
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motion.  The increased range of motion during the first and second subphases of stance would 

result in increased pronation and a more mobile foot, putting more stress and possibly 

increasing injury risk on dynamic stabilizers and soft tissue structures such as the plantar fascia 

and medial arch ligaments.  Increased range of motion from the run during the third and fourth 

subphases of stance resulted in greater supination and foot rigidity which is necessary for push-

off effectiveness.   Additionally, differences were observed in the medial forefoot at the end of 

run where dorsiflexion range of motion increased in RFS runners in subphase 2 while FFS 

runners did not change, suggesting a greater fatiguing effect to medial forefoot kinematics in 

RFS runners.   Some of the significant differences observed were relatively small (less than a 

degree in some cases), which may question the clinical relevance.  However, in considering 

angular displacement, the more clinically relevant piece may be the differing direction of 

motion, and therefore loading of different structures such as in the first stance subphase where 

FFS runners had greater foot rigidity and RFS runners’ greater mobility.   As this study was 

largely exploratory and helping to identify kinematic patterns between the foot strikes, future 

research should begin to explore the articulations where differences were identified and 

compare them with injured populations.  
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Table 3.4-  Mean ± SD of joint angles in RFS and FFS runners at the beginning (Pre-run) and end (Post-run) of an exhaustive 5 km run for the rearfoot 
complex (RC), calcaneonavicular (CNC), medial forefoot (MFF), first metatarsophalangeal (MTP), lateral forefoot (LFF), and calcaneocuboid (CC).  
Positive numbers are associated with dorsiflexion/extension, inversion, and internal rotation/adduction.  
  RFS FFS 

  Initial Contact Max angle Min angle Initial Contact Max angle Min angle 

Joint Plane Pre-run 
(°) 

Post-run 
(°) 

Pre-run 
(°) 

Post-run 
(°) 

Pre-run 
(°) 

Post-run 
(°) 

Pre-run 
(°) 

Post-run 
(°) 

Pre-run 
(°) 

Post-run 
(°) 

Pre-run 
(°) 

Post-run 
(°) 

RC Sag 4.28 ± 
3.31b 

3.95 ± 
3.63b 

13.3 ± 
3.62 

13.6 ± 
3.78 

-4.24 ± 
4.11 

-5.71 ± 
3.68 

-3.40 ± 
3.63b 

-1.55 ± 
3.69b 

11.3 ± 
3.34 

12.4 ± 
3.86 

-6.33 ± 
4.46 

-6.56 ± 
3.63 

 Fron 3.46 ± 
3.41b 

4.28 ± 
2.62b 

3.87 ± 
3.35b 

4.82 ± 
2.45b 

-4.45 ± 
3.91a 

-5.97 ± 
4.06a 

6.30 ± 
2.58b  

6.93 ± 
2.23b 

6.95 ± 
2.53b 

7.58 ± 
1.89b 

-3.67 ± 
3.15a 

-5.21 ± 
3.26a 

 Trans -0.98 ± 
5.02a 

2.52 ± 
5.06a 

0.46 ± 
4.79a 

3.67 ± 
4.83a 

-13.7 ± 
5.18 

-13.3 ± 
5.41 

2.80 ± 
3.03a 

2.41 ± 
4.89a 

4.02 ± 
2.63a 

4.16 ± 
4.42a 

-12.4 ± 
3.24 

-13.0 ± 
4.15 

CNC Sag -3.94 ± 
2.94a 

-5.38 ± 
3.68a 

1.28 ± 
3.12a 

-0.04 ± 
4.32a 

-8.03 ± 
3.73 

-8.63 ± 
4.15 

-5.83 ± 
4.04a 

-6.95 ± 
3.86a 

0.61 ± 
2.54a 

-0.82 ± 
3.00a 

-9.80 ± 
3.51 

-10.0 ± 
3.56 

 Fron 1.81 ± 
3.31 

2.13 ± 
2.40 

3.71 ± 
3.09 

3.57 ± 
2.72 

-4.19 ± 
2.51 

-4.72 ± 
3.13 

2.02 ± 
4.19 

2.34 ± 
4.06 

2.83 ± 
3.90 

2.70 ± 
4.00 

-4.04 ± 
3.34 

-5.32 ± 
3.08 

 Trans 5.99 ± 
4.49 

3.34 ± 
4.67 

9.29 ± 
4.79 

7.53 ± 
4.62 

3.03 ± 
2.51 

1.22 ± 
4.12 

0.18 ± 
4.67 

0.54 ± 
5.23 

5.74 ± 
3.84 

5.93 ± 
5.23 

-1.04 ± 
3.69 

-0.91 ± 
4.96 

MFF Sag 5.11 ± 
3.43c 

3.66 ± 
3.67c 

14.8 ± 
3.64 

16.8 ± 
4.73 

-3.11 ± 
3.04 

-3.37 ± 
3.47 

-4.34 ± 
3.41 

-2.89 ± 
3.29 

12.0 ± 
2.74 

14.3 ± 
3.54 

-6.59 ± 
3.51 

-6.62 ± 
4.08 

MTP Sag 11.4 ± 
6.25 

13.8 ± 
4.33 

36.0 ± 
6.85a 

39.0 ± 
7.16a 

-2.45 ± 
2.38 

-3.03 ± 
4.09 

14.56 ± 
6.57 

15.5 ± 
4.45 

39.2 ± 
6.74a 

41.4 ± 
6.74a 

-1.13 ± 
3.93 

-2.71  ± 
4.48 

LFF Sag 2.27 ± 
2.30 

2.32 ± 
3.99 

7.64 ± 
3.13 

9.01 ± 
3.18 

-0.39 ± 
2.37 

-0.23 ± 
3.30 

-0.90 ± 
2.11 

0.67 ± 
3.64 

5.47 ± 
1.81 

6.29 ± 
3.86 

-2.73 ± 
1.94 

-1.96 ± 
3.68 

CC Sag -4.45 ± 
3.01a,b 

-6.42 ± 
4.28a,b 

4.06 ± 
3.97a 

2.08 ± 
4.16a 

-10.5 ± 
3.19  

-11.2 ± 
4.91 

-10.0 ± 
5.09a,b 

-12.1 ± 
6.53a,b 

5.03 ± 
2.97a 

3.19 ± 
6.29a 

-12.4 ± 
4.31 

-13.9 ± 
6.30 

 Fron -1.81 ± 
5.77 

-0.11 ± 
4.72 

2.59 ± 
5.67 

2.76 ± 
4.91 

-5.71 ± 
4.34 

-5.14 ± 
4.93 

0.64 ± 
4.07 

1.12 ± 
4.72 

3.54 ± 
4.03 

3.88 ± 
4.77 

-4.59 ± 
3.12 

-4.68 ± 
6.26 

 Trans 2.88 ± 
3.76 

2.61 ± 
5.19 

2.76 ± 
4.91 

6.86 ± 
4.09 

0.46 ± 
3.78 

-0.41 ± 
3.84 

1.56 ± 
4.86 

3.25 ± 
6.52 

3.88 ± 
4.77 

6.38 ± 
3.54 

0.26 ± 
4.75 

1.62 ± 
6.22 

a Indicates time main effects difference from follow-up RM ANOVAs for the same foot strike (p ≤ .05)  
b indicates foot strike main effect difference from follow-up RM ANOVAs (p ≤ .05) 
c indicates difference from significant time-by-foot strike interaction follow-up t-test (p ≤ .003) 



 

 
 

8
7 

Table 3.5- Angular displacements for subphase 1-4 of running stance for RFS (top) and FFS (bottom, shaded) runners at the following articulations: rearfoot 
complex (RC), calcaneonavicular (CNC), medial forefoot (MFF), first metatarsophalangeal (MTP), lateral forefoot (LFF), and calcaneocuboid (CC).   

  Subphase 1 Subphase 2 Subphase 3 Subphase 4 

Joint Plane Pre-run (°) Post-run (°) Pre-run (°) Post-run (°) Pre-run (°) Post-run (°) Pre-run (°) Post-run (°) 

RC 

Sagittal 
-1.90 ± 1.76 -2.00 ± 2.06 10.1 ± 2.06 11.5 ± 1.85 -0.68 ± 4.21a -1.71 ± 4.28a -13.5 ± 2.77a -14.8 ± 3.4a 

-0.31 ± 1.27 -0.37 ± 2.14 12.8 ± 3.60 12.2 ± 3.72 -2.60 ± 2.73a -3.53 ± 2.33a -13.5 ± 2.84a -14.5 ± 3.12a 

Frontal 
-1.86 ± 1.37a -2.79 ± 2.19a -5.64 ± 2.19 -6.97 ± 2.80 3.68 ± 1.44a 4.07 ± 1.46a 2.86 ± 1.75a 3.96 ± 2.16a 

-0.73 ± 1.46a -1.84 ± 1.91a -8.56 ± 3.65 -9.86 ± 3.18 3.28 ± 1.23a 3.71 ± 1.71a 2.67 ± 1.72a 3.39 ± 2.36a 

Transverse 
-2.22 ± 1.32a -2.78 ± 2.38a -9.56 ± 3.15 -11.9 ± 3.64 4.19 ± 1.55 4.08 ± 2.18 8.73 ± 2.05a 9.75 ± 1.86a 

-1.09 ± 1.96a -2.35 ± 3.15a -13.4 ± 3.94 -12.3 ± 3.51 3.59 ± 2.68 3.46 ± 3.17 9.27 ± 2.51a 9.98 ± 2.55a 

CNC 

Sagittal 
0.67 ± 1.15b 0.80 ± 1.11b 3.29 ± 3.83 3.07 ± 3.94 -2.66 ± 1.82 -2.55 ± 2.58 -5.95 ± 3.70a -4.59 ± 3.41a 

-1.20 ± 0.82b -0.79 ± 1.39b 6.68 ± 3.29 6.10 ± 3.02 -2.89 ± 2.83 -2.89 ± 2.56 -6.41 ± 2.52a -5.44 ± 2.75a 

Frontal 
0.39 ± 1.66a,b -0.27 ± 1.64a,b -3.21 ± 4.63 -3.95 ± 4.68 -1.46 ± 2.75 -1.70 ± 1.87 1.11 ± 3.13 0.92 ± 3.94 

-0.69 ± 0.99a,b -1.16 ± 1.31a,b -3.40 ± 4.41 -4.40 ± 3.51 -1.26 ± 2.45 -0.88 ± 2.54 1.34 ± 3.04 1.49 ± 2.75 

Transverse 
2.01 ± 1.43a 2.52 ± 1.44a -3.67 ± 3.26 -2.13 ± 4.13 -0.16 ± 2.98 -0.29 ± 2.66 1.62 ± 2.83 1.23 ± 2.71 

1.55 ± 1.30a 2.60 ± 2.09a 1.33 ± 4.00 -0.37 ± 4.12 0.02 ± 2.46 0.04 ± 2.47 -0.56 ± 3.48 0.11 ± 3.38 

MFF Sagittal 
1.59 ± 1.00b 2.13 ± 1.28b 6.23 ± 2.57 c 8.70 ± 3.11c -2.76 ± 3.22 -2.91 ± 3.62 -13.6 ± 2.84a -15.5 ± 2.73a 

0.78 ± 1.21b 1.10 ± 1.26b 13.1 ± 3.65c 13.9 ± 3.33c -4.23 ± 1.57 -4.95 ± 1.68 -13.5 ± 3.31a -15.3 ± 2.75a 

MTP Sagittal 
-2.01 ± 1.20 -2.37 ± 2.36 -11.6 ± 5.42 -14.2 ± 6.12 14.4 ± 2.6 a,b 16.3 ± 3.48a, b 22.3 ± 4.60a 23.8 ± 5.53a 

-1.17 ± 2.53 -2.46 ± 2.69 -14.2 ± 7.56 -15.3 ± 4.80 17.1 ± 2.75a,b 18.8 ± 2.75a,b 20.9 ± 4.37a 22.4 ± 4.43a 

LFF Sagittal 
0.55 ± 1.59 0.96 ± 1.48 3.58 ± 2.15 4.19 ± 2.56 -1.02 ± 2.70a -2.14 ± 2.68a -5.32 ± 1.59 -5.92 ± 2.10 

1.82 ± 1.17 1.62 ± 1.35 3.38 ± 1.15 2.18 ± 2.35 -1.11 ± 2.46a -1.88 ± 2.28a -5.21 ± 1.67 -5.21 ± 2.20 

CC 

Sagittal 
0.60 ± 1.95b 1.04 ± 1.61b 7.07 ± 3.21b 6.30 ± 2.39 b -3.78 ± 2.80 -3.10 ± 2.81 -9.90 ± 2.93 -8.96 ± 3.49 

-1.12 ± 1.43b -0.02 ± 2.27b 14.0 ± 3.95b 13.8 ± 4.72b -4.46 ± 2.89 -4.92 ± 2.73 -9.91 ± 3.19 -10.5 ± 3.68 

Frontal 
0.78 ± 1.89 0.40 ± 2.18 -2.08 ± 6.26 -3.74 ± 4.02 1.97 ± 4.27 1.98 ± 3.67 -1.53 ± 3.97 -1.98 ± 3.41 

0.17 ± 1.67 -1.00 ± 2.32 -4.90 ± 3.56 -4.01 ± 4.50 3.64 ± 2.73  4.61 ± 2.95 1.02 ± 3.47 0.07 ± 3.02 

Transverse 
1.06 ± 1.05 0.91 ± 1.63 -2.91 ± 3.18 b -2.27 ± 3.72 b 2.84 ± 2.57 3.05 ± 2.09 0.68 ± 2.42 -0.32 ± 3.20 

0.92 ± 1.38 1.20 ± 1.78 0.56 ± 3.57b -0.64 ± 2.98b 2.19 ± 2.51 2.58 ± 2.29 -1.40 ± 3.36 -1.08 ± 2.91 
a Indicates time main effects difference from follow-up RM ANOVAs (p ≤ .05)  
b indicates foot strike main effect difference from follow-up RM ANOVAs (p ≤ .05) 
c indicates difference from significant time-by-foot strike interaction RM ANOVAs (p ≤ .003) 
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Figure 3.2- Medial forefoot (MFF), 
first metatarsophalangeal joint 
(MTP), and lateral forefoot (LFF) 
sagittal plane kinematics for RFS 
(red) and FFS (blue) runners during 
the stance phase of running at the 
beginning (solid) and end (dashed) 
of a 5 km treadmill run. Vertical grey 
lines indicate the division between 
the four subphases of stance. 
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4. FOOT JOINT COUPLING VARIABILITY DIFFERENCES BETWEEN HABITUAL 
REARFOOT AND FOREFOOT RUNNERS PRIOR TO AND FOLLOWING AN 

EXHAUSTIVE RUN 
 

Introduction 

 Much debate has erupted around the influence of foot strike pattern on injury risk in 

runners.  Although the majority of runners (75-94%) use a rearfoot strike pattern (RFS) 

(Hasegawa et al., 2007; Kerr et al., 1983; Larson et al., 2011), arguments have been made that 

traditional running shoes encourage heel contact and that a forefoot strike pattern (FFS) or 

midfoot strike pattern is more “natural” and may therefore be better at reducing injury rates 

(Bramble & Lieberman, 2004; Lieberman, 2012; Lieberman et al., 2010).  One theory is that FFS 

running is associated with a decreased vertical ground reaction force during initial impact that 

results in decreased tissue stress along the kinetic chain (Lieberman et al., 2010; Shih et al., 

2013; Williams et al., 2001).   

In addition to differing ground reaction force loading characteristics, the foot strikes 

exhibit different joint coupling patterns along the lower extremity (Pohl & Buckley, 2008).  

Further, joint coupling variability has been suggested to be an important factor in running 

related injuries.  Though extreme variability can stress tissues to a point where injury occurs, 

the dynamical systems theory also suggests that some increased variability in coordination 

patterns may reduce overuse injuries (Hamill et al., 1999; Heiderscheit et al., 2002; van 

Emmerik & Wagenaar, 1996).  

Dynamical systems theory suggests that variability is unavoidable in biological systems 

and by producing movement with a certain amount of variability these systems are able to 

adapt to varying constraints placed on them.  Therefore, joint coupling patterns with little or no 
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variability may overload musculoskeletal tissues and lead to overuse injury.  This theory has 

been supported by observations of decreased lower extremity joint coupling variability in 

individuals with patellofemoral pain, chronic ankle instability, and iliotibial band syndrome 

(Hamill et al., 1999; Herb et al., 2014; Miller, Meardon, Derrick, & Gillette, 2008).  

Although joint coupling between the rearfoot and forefoot segments have been 

observed to be highly correlated in FFS and RFS runners (Pohl & Buckley, 2008), the variability 

of these coordination patterns has not been analyzed.  Additionally, more recent multi-segment 

foot models have begun to allow researchers to examine foot kinematics using more functional 

articulations (Wolf et al., 2008).  Particularly when comparing different running strike patterns, 

motion within the foot is important to understand because of the role it plays in stability and 

force dissipation.   

Furthermore, as running kinematics and coordination patterns often change as a result 

of fatigue (Dierks et al., 2010; Ferber & Pohl, 2011), joint coupling variability may also be 

affected.  Coordination variability would affect the amount of repetitive stress tissues receive.  

Increased variability would disperse stress to different tissues with each subsequent step, and 

therefore, avoid overuse injury.  However, too much variability may also stress tissues to the 

point where injury occurs and, therefore, may be detrimental to runners as well.  

Therefore, the purpose of this study was to identify differences in foot and ankle joint 

coupling variability between habitual RFS and FFS runners prior to and following an exhaustive 

run.  Use of habitual RFS and FFS runners was essential for the study to eliminate variability that 

may be the result of motor learning.   It was hypothesized that FFS runners would have 

increased coupling variability within the foot early stance because of the dependence of distal 
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foot motion with a forefoot strike.  In addition, it was also hypothesized that the exhaustive run 

protocol would result in decreased joint coupling variability as the system decreases its ability 

to adapt to continual stress. 

Methods 

Subjects 

 Thirty runners (18-40 years), 15 habitual rearfoot runners and 15 habitual 

forefoot/midfoot runners, were recruited.  Participants had to currently be running a minimum 

of 10 miles per week on average and to have not changed foot strike pattern within the 

previous year.  Volunteers were excluded (Appendix E) if they had a lower extremity injury in 

the previous 6 weeks, a previous major lower extremity surgery, wore custom molded foot 

orthotics, had known cardiovascular problems, or uncontrolled asthma.  The two groups were 

matched by age and sex.  Experimental procedures were explained and participants signed an 

informed consent form approved by the Institutional Review Board prior to testing. 

Foot Strike Screen   

An in-person visual analysis of each participants’ foot strike was performed to avoid 

error in self-reported foot strike patterns (Goss & Gross, 2012).  This was done by visual analysis 

of the participants’ vertical ground reaction force data while running on a 25 m walkway over 

an AMTI force plate (Advanced Medical Technologies, Inc., Waterford, MA) sampling at 1000 

Hz.  Presence of a double impact peak indicated a RFS, while absence of a double peak placed 

subjects in the FFS group, which included MFS and FFS runners (Williams et al., 2000).  Subjects 

performed 5 running trials over the force plate both in their habitual running shoes and then in 

running sandals (Mono, Luna Sandals, Seattle, WA) provided by the lab.  At least 3 of the 5 
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running trials had to exhibit the peak, or lack thereof, to be placed in the appropriate foot strike 

group. 

 After foot strike verification, subjects were given the running sandals and instructed to 

accommodate to them over a minimum 10 day period.   They were instructed to run 1 mile in 

them for their first run and then increase their mileage in the sandal by 0.5 mile every training 

run while still maintaining their overall running mileage in their habitual running shoes.  After 

10 days, or when the subject was able to comfortably complete 5 km in the sandals, they 

returned to the lab for running analysis. 

Running analysis 

 All subjects were equipped with clusters of four retroreflective markers (6.4 mm 

diameter) on the right leg and foot to identify the tibia, calcaneus, navicular, cuboid, medial 

rays (metatarsals 1 and 2), lateral rays (metatarsals 4 and 5), and the hallux as well as single 

markers to identify anatomical landmarks (Appendix A).  Markers were adhered to the skin with 

double-sided toupee tape and liquid adhesive (Mastisol Liquid Adhesive, Ferndale Laboratories, 

Inc., Ferndale, MI).  Wand clusters were additionally adhered using elastic tape (Elastikon, 

Johnson & Johnson, New Brunswick, NJ) and a cohesive bandage (Powerflex, Andover 

Healthcare, Inc., Salisbury, MA).  Three-dimensional positional marker data was collected at 200 

Hz using a 10-camera Eagle Motion Analysis System (Motion Analysis Corp., Santa Rosa, CA).  A 

seated calibration was performed to identify anatomical landmarks from single markers and 

with a Davis Digitizing Pointer (C-Motion Inc., Germantown, MD) to identify joint coordinate 

systems for each segment.  
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 After a 5 minute warm-up, subjects were instructed to perform a maximal effort 5 km 

run on a treadmill located in the center of the capture volume.  All subjects began the run at a 

speed of 3.4 m·s-1.  Once a consistent gait pattern was observed, motion capture data was 

collected for 10 s.  Subjects were then allowed to adjust the speed to allow for maximal effort 

during the run.  Maximal effort was reached if subjects reached 80% of their age-predicted 

heart rate max (220-age) and/or a rate of perceived exertion of 17 or higher on a 20 point scale 

(Borg, 1970), both of which were met by all participants.  The treadmill speed was again set at 

3.4 m·s-1 when 0.16 km remained in the 5 km run to allow for a final 10 s data collection.  While 

running, one leg of the treadmill was positioned on a force plate to verify subjects maintained 

their habitual foot strike pattern by visual examination of the vertical ground reaction force 

profile. 

Data Processing.  

 Five consecutive steps from each 10 s motion capture were processed.  Marker data was 

tracked with Cortex software (Cortex v 1.1.4.368, Motion Analysis, Inc., Santa Rosa, CA) and 

processed with a custom Matlab program (Matlab v. R2013b, Mathworks, Natick, MA).  

Positional data was filtered with a zero-lag, low-pass (12 Hz) fourth order Butterworth filter.  

Reconstruction of 3D position of each rigid body segment was performed using the Calibrated 

Anatomical System Technique (Cappozzo et al., 1995) and functional articulation angles 

calculated using the joint coordinate systems technique (Grood & Suntay, 1983) (Appendix B).  

Functional articulations calculated included the rearfoot complex, calcaneonavicular, 

calcaneocuboid, medial forefoot, lateral forefoot, and first metatarsophalangeal articulation 
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(MTP).  Positive angle measurements identified dorsiflexion (MTP extension), inversion, and 

adduction (rearfoot complex internal rotation). 

 All joint angle time series were normalized to 100 percent (101 data points) of stance 

phase.  Initial contact was identified as the instant at which the horizontal velocity of the tip of 

the hallux was equal to zero (Zeni et al., 2008) and toe off was defined as  the point at which 

the MTP reached maximum extension (Seneli et al., 2015).   

Using another custom Matlab code, joint coupling angles (Θ) were computed using 

vector coding methods:  

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒. 𝟏.                       𝜃𝑖 = tan−1 (
𝑦𝑖+1 − 𝑦𝑖

𝑥𝑖+1 − 𝑥𝑖
) 

where Θ the joint coupling angle between 0° and 360°, and i is a percent of stance phase (0-100%) 

(Chang et al., 2008; Heiderscheit et al., 2002; MacLean, van Emmerik, & Hamill, 2010; Sparrow 

et al., 1987).  Joint coupling angles were found for each time point.  Four subphases of stance 

were defined as (1) 0-20%, (2) 21-50%, (3) 51-75%, and (4) 76-100%  and the mean joint 

coupling angle was calculated for each subphase.  The standard deviation of the vector 

magnitude was used to calculate coordination variability: 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟒. 𝟐.                   𝑣2 = 2[1 − √(�̅�2 +  �̅�2)] 

where 𝑣2 is coordination variability and �̅� and �̅� are mean coordinates of the vector as 

determined by the cosine and sine of the joint coupling angle (MacLean et al., 2010).  

Statistical Analyses   

The joint coupling variability was compared for 10 different joint couples (Table 4.1).  

The joint couples selected were decided upon based on the constrained tarsal mechanism 

theory (Huson, 2000) and the concept of pronation twist (Hicks, 1953).  The variability of the 
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specified joint couples was compared using mixed between-within subjects ANOVAs to 

compare between and within the groups for each subphase of stance.  The between group 

main effect was foot strike and the within group main effect was time (pre- and post-run).  

Significant interactions of main effects were further investigated with dependent t-tests for 

simple time main effects.  The significance level was set at 0.05. 

Table 4.1 -Joint couplings that were statistically compared for differences between FFS and RFS runners 
before and after an exhaustive run.  The joints included are the rearfoot complex (RC), calcaneonavicular 
(CNC), calcaneocuboid (CC), medial forefoot (MFF), lateral forefoot (LFF), and 1st metatarsophalengeal 
(MTP) and the anatomical planes as indicated (transverse = tran, sagittal = sag, frontal = fron). 

Medial foot couplings Lateral foot couplings Ankle couplings 

RCsag-CNCsag RCsag-CCsag RCtran-RCfron 

RCfron-CNCfron RCfron-CCfron  

RCtran-CNCtran RCtran-CCtran  

CNCfron-MFFsag CCfron-LFFsag  

MFFsag-MTPsag   

 

Results 

To be concise, only statistically significant results are reported here.  Means ± SD for all 

of the variability measurements are located in Table 4.2.  

Subphase 1  

Significant between-subjects (foot strike) main effects from subphase 1 mixed  

between-within subjects ANOVAs indicated that FFS runners had greater joint coupling 

variability between the calcaneocuboid frontal and medial forefoot sagittal plane motion 

(CCfron_MFFsag) (p = 0.050) as well as between the medial forefoot sagittal and MTP sagittal 

plane motion (MFFsag_MTPsag) (p < 0.001).  There was less variability between the 

calcaneocuboid frontal and lateral forefoot sagittal plane motion (p = 0.048) in FFS runners 

both prior to and following the exhaustive run (Table 4.2).   
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Subphase 2  

Investigation of simple time main effects of a significant foot strike by time interaction 

between the calcaneonavicular frontal and medial forefoot sagittal plane motion 

(CNCfron_MFFsag) (p = 0.023) during subphase 2 indicated that variability decreased in RFS 

runners overtime (p = 0.003) while it did not change in FFS runners (p = 0.91) (Table 4.2).  

Significant foot strike main effects from subphase 2 mixed ANOVAs indicated that FFS runners 

had less joint coupling variability between the rearfoot sagittal and calcaneonavicular sagittal 

plane motion (RCsag_CNCsag) (p < 0.001), rearfoot sagittal and calcaneocuboid sagittal plane 

motion (RCsag_CCsag) (p < 0.001), and rearfoot frontal and calcaneocuboid frontal plane 

motion (RCfron_CCfron) (p = 0.026) when compared to RFS runners (Table 4.2).  Significant time 

main effects indicated increased subphase 2 variability in both FFS and RFS runners end of the 

run for the couple between the following five adjacent joint couples: (1) rearfoot transverse 

and rearfoot frontal plane (RCtran_RCfron) (p = 0.004), (2) rearfoot transverse and 

calcaneonavicular transverse plane motion (RCtran_CNCtran) (p = 0.001), (3) rearfoot frontal 

and calcaneocuboid frontal plane motion (RCfron_CCfron) (p = 0.002), (4) rearfoot transverse 

and calcaneocuboid transverse plane motion (RCtran_CCtran) (p = 0.004), and (5) 

calcaneocuboid frontal and lateral forefoot sagittal plane motion (CCfron_LFFsag) (p = 0.008) 

(Table 4.2). 

Subphase 3  

Significant foot strike main effects from subphase 3 mixed between-within subjects 

ANOVAs indicated decreased coordination variability in FFS runners between calcaneocuboid 
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frontal and lateral forefoot sagittal plane motion (CCfron_LFFsag) (p = 0.041) compared to RFS 

runners (Table 4.2). 

Subphase 4  
 

Significant foot strike main effects from subphase 4 mixed between-within subjects 

ANOVAs indicated increased coordination variability in FFS runners for the medial forefoot 

sagittal and 1st metatarsophalangeal sagittal plane motion (MFFsag_MTPsag) (p = 0.030) (Table 

4.2). 

Discussion 

 The purpose of this study was to investigate the differences in foot and ankle joint 

coupling variability between habitual RFS and FFS runners at the beginning and end of an 

exhaustive run.  The hypothesis that FFS runners would have more joint coupling variability 

during early stance was partially supported with medial midfoot-forefoot couplings.  The 

hypothesis that joint coupling variability would decrease in both groups in response to the 

exhaustive run was not supported as all but one coordination pattern increased variability.   

Foot strike differences 

 The original hypothesis that FFS runners would increase variability was supported for 

the CNCfron_MFFsag and MFFsag_MTPsag couplings during subphase 1 of stance.  However, 

the variability of the CCfron_LFFsag during subphase 1 and the RCsag_CNCsag, RCsag_CCsag, 

and RCfron_CCfron during subphase 2 were actually decreased in FFS runners when compared 

to RFS runners.  Additionally, contrary to the original hypotheses, there were also differences 

during late stance in CCfron_LFFsag (increased in RFS runners) and MTPsag_MFFsag (increased 

in FFS runners) variability between the foot strike patterns. 
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According to the dynamical systems theory, joint couplings that have increased 

variability may be more resistant to overuse injuries by distributing stress to different tissues 

within the system (Hamill et al., 1999).  Based on this theory, the increased joint coupling 

variability observed in FFS runners at the CNCfron_MFFsag and MFFsag_MTPsag couplings may 

suggest a decreased injury risk at these medial foot couplings during the initial loading 

(subphase 1) of stance.  Given that FFS runners likely require greater dynamic stability in the 

foot because of a less stable ankle position during early stance, it may be that dynamic 

stabilizers create more variability than bony stability.  This may help prevent overuse to medial 

foot structures in FFS runners.  It was surprising, however, that FFS runners had decreased 

CCfron_LFFsag coupling than RFS in subphase 1.  It is possible that because the forefoot goes 

from being unloaded to loaded in RFS runners that this variability is greater in RFS runners.  

Additionally, it is possible that the lateral arch does not have as much dynamic stability as the 

medial arch and therefore has different neuromuscular control needs based on the amount of 

stability at the ankle and other foot joints.  Because both of the groups of runners used for this 

study were uninjured, it is assumed that these variations in variability are healthy for each 

indicated foot strike pattern.  Likewise, when comparing variability from injured runners to 

these findings, the differences identified suggest the importance of comparing variability to the 

appropriate foot strike group. 

In the second stance subphase, the increased rearfoot-midfoot coupling variability 

(RCsag_CNCsag, RCsag_CCsag, RCfron_CCfron) in RFS runners may have resulted from an 

increased muscular response to the large impact loads observed in RFS running during the first 

stance subphase (Lieberman et al., 2010).   The increased coupling variability between the 
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lateral midfoot and forefoot in the RFS group during subphase 3 and between the medial 

midfoot and MTP during subphase 4 in the FFS group were not anticipated.  Like with the first 

subphase of stance, the increased variability may derive from the need for varying stability 

demands for each strike pattern during the first and second subphases of stance.  The differing 

coordination variability from the second half of stance may be in response to earlier kinematic 

differences that now require different coordination patterns to assure sufficient foot rigidity for 

push off.  

When considering the variability in rearfoot frontal plane coupling with tibial transverse 

plane rotation, Dierks and Davis (2007)  found within-subject variability to range from 6.8 – 8.4° 

in uninjured recreational runners throughout the four subphases of stance which is similar to 

the present findings with the exception of subphase 4 where the current study observed less 

than 2° of variability.  Perhaps some of this difference can be explained by use of a treadmill 

rather than overground running where propulsion requirements may be different.  In addition, 

Dierks and Davis (2007) placed motion capture markers on the shoe and did not use 

consecutive steps for analysis.  Previous studies investigating coupling pattern within the foot 

have not partitioned the foot into medial and lateral midfoot and forefoot segments, rather the 

studies have only investigated forefoot-rearfoot coupling (Eslami et al., 2007; Pohl & Buckley, 

2008).   Due to the differing foot models, the distal foot coupling pattern results in the current 

study cannot be compared with previous studies.  The medial and lateral mid and forefoot joint 

coupling variability differences between the foot strike patterns observed in the current study 

advocate for the importance of medial-lateral segmentation when investigating foot coupling.   
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Exhaustive run effect 

 Contrary to the initial hypothesis, not only did variability increase as a result of the 

exhaustive run, but the differences from the beginning to the end of the run occurred during 

subphase 2 rather than subphase 1.  There was one foot strike by time interaction during 

subphase 2 in the CNCfron_MFFsag joint couple where variability did decrease in RFS runners at 

the end of the exhaustive run, but there was no change in FFS runners.  The decreased 

variability in this coordination pattern may be a potential problem area for RFS runners.   

The remainder of the fatigue effects were associated with increased variability during 

subphase 2 in both groups and most of the changes were observed in the rearfoot and midfoot 

joint couples.  During subphase 2, the body continues to accept increasing ground reaction 

forces, but has passed the initial loading response that is characteristically different between 

FFS and RFS runners (Dierks & Davis, 2007; Lieberman et al., 2010).  Originally, variability was 

hypothesized to decrease following the run due to central and/or peripheral exhaustion that 

would leave the system less able to adapt to varying constraints and disperse tissue stress.  The 

inability to disperse stress to other tissues would result in overloading of the same tissue and 

possible injury.   

Although the results were inconsistent with the our original hypothesis, they were 

consistent with the findings of a previous study that investigated leg and rearfoot joint coupling 

after an exhaustive tibialis posterior protocol in a non-injured population (Ferber & Pohl, 2011).  

Ferber and Pohl (2011) suggested that perhaps the neuromuscular system works to increase 

variability in healthy runners in order to avoid injury when muscles become exhausted, by 

utilizing alternate muscles for joint stability and force dissipation.  The results of the current 
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study may support the suggestion that in non-injured runners increased variability associated 

with an exhaustive run may function to avoid injury and still maintain stability.  Therefore, 

perhaps variability decreases in already injured or unhealthy individuals, but healthy, pain-free 

runners are able to increase variability to avoid injury.  However, too much variability is also 

potentially damaging as the inability to control coordination may lead to overstressing tissues 

or not providing sufficient stability at critical moments.  Based on the fact that the runners used 

in the current study are healthy, non-injured runners, it is assumed that the variability 

experienced as a result of the fatiguing run are within the normal limits of acceptable variability 

and help to disperse force to varying tissue without passing the yielding point. 

 It was surprising that changes in variability were not seen during subphase 1 as a result 

of the exhaustive run as this is theorized to be where impact injuries occur (Lieberman et al., 

2010).  Perhaps the muscular response to high loading rates during subphase 1 are only first 

observed after the subphase is completed, which is why variability of the couples was only 

observed during subphase 2.    

Conclusion 

 Joint coupling variability during subphase 1 of stance was increased in FFS runners 

between the medial midfoot to forefoot while RFS runners had increased variability between 

the rearfoot to lateral midfoot and lateral midfoot to lateral forefoot.  These variability 

differences are assumed to be good, having occurred in uninjured runners, and clinically 

suggests that distal foot coordination variability may not be interpreted identically for all foot 

strike patterns.  Despite joint coupling variability differences between RFS and FFS runners, 

both groups demonstrated similar increases in coupling variability, primarily between the 
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rearfoot and midfoot functional articulations during the second stance subphase, at the end of 

an exhaustive 5 km run.    In uninjured RFS and FFS runners, the increases in variability following 

the exhaustive run may have been the result of neuromuscular system compensations to 

maintain stability and disperse forces in order to prevent overuse injury.  Although FFS runners 

may use more dynamic stabilizers during early stance to aid in stabilizing the foot and force 

dissipation, it does not appear that they were affected by fatigue any differently than in RFS 

runners.  More studies investigating joint coupling variability in the foot and ankle as the result 

of exhaustion in both healthy and injured populations are needed to better understand the 

relationship between coupling variability and running injuries. 
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Table 4.2- Joint coupling coordination variability mean ± SD for RFS (top numbers) and FFS (bottom numbers) before and after a 5 km run.  
Variability was found for each of the four subphases of stance: (1) 0-20%, (2) 21-50%, (3) 51-75%, and (4) 76-100%. 

  Pre-run Post-run 

Articulation  1 2 3 4 1 2 3 4 

RCtran_RCfron RFS 
FFS 

4.76 ± 2.23 
6.09 ± 2.08 

5.01 ± 1.57a 
4.59 ± 1.95a 

6.05 ± 1.31 
5.88 ± 2.09 

1.18 ± .66 
1.20 ± .61 

4.36 ± 1.45 
5.80 ± 2.46 

5.33 ± 1.53a 

5.62 ± 1.75a 

6.08 ± 1.43 
5.86 ± 2.32 

1.33 ± .61 
1.14 ± .72 

RCsag_CNCsag RFS 
FFS 

5.82 ± 1.43 
5.68 ± 1.87 

6.29 ± 2.22b 

2.52 ± .91b 
8.85 ± .88 
8.30 ± .94 

1.42 ± .71 
1.74 ± .62 

5.71 ± 1.74 
5.65 ± 1.65 

6.16 ± 2.20b 

3.07 ± 1.28b 
8.57 ± .73 
8.47 ± 1.07 

1.47 ± .64 
1.88 ± .74 

RCfron_CNCfron RFS 
FFS 

4.88 ± 2.26 
5.91 ± 1.68 

6.03 ± 1.47 
5.56 ± 1.87 

5.98 ± 1.05 
6.56 ± 1.81 

4.26 ± 1.75 
4.54 ± 1.84 

4.65 ± 1.66 
5.30 ± 1.99 

6.65 ± 1.80 
6.00 ± 1.67 

5.65 ± 1.14 
6.62 ± 1.53 

4.11 ± 1.83 
4.34 ± 1.63 

RCtran_CNCtran RFS 
FFS 

4.31 ± 2.32 
5.48 ± 1.68 

4.59 ± 1.97a 
3.98 ± 1.62a 

6.94 ± 1.47 
1.02 ± 1.85 

2.15 ± .89 
1.87 ± 1.01 

4.24 ± 1.90 
4.97 ± 2.02 

5.15 ± 2.21a 

5.10 ± 1.24a 

7.20 ± 1.58 
7.39 ± 2.06 

1.96 ± .64 
2.07 ± .79 

RCsag_CCsag RFS 
FFS 

5.37 ± 1.36 
6.74 ± 2.03 

6.00 ± 2.18b 

2.23 ± 1.03b 
8.53 ± .861 
8.48 ± 1.23 

1.45 ± .80 
1.52 ± .60 

5.61 ± 1.42 
6.30 ± 1.77 

6.14 ± 2.07b 

2.60 ± 1.21b 
8.45 ± .940 
8.44 ± .978 

1.31 ± .55 
1.60 ± .52 

RCfron_CCfron RFS 
FFS 

5.44 ± 1.84 
5.52 ± 2.01 

7.26 ± 1.32a,b 

6.11 ± 2.14a,b 
5.48 ± 1.65 
5.18 ± 2.04 

3.42 ± 1.89 
4.44 ± 2.01 

4.55 ± 1.78 
5.34 ± 1.77 

8.17 ± .99a,b 

6.74 ± 1.77a,b 

5.70 ± 1.60 
4.81 ± 1.69 

3.55 ± 2.19 
4.02 ± 2.04 

RCtran_CCtran RFS 
FFS 

4.82 ± 2.18 
5.74 ± 1.61 

5.32 ± 1.99a 
4.26 ± 2.06a 

6.12 ± 1.81 
6.48 ± 1.65 

1.88 ± .90 
1.75 ± .98 

4.57 ± 2.14 
5.92 ± 1.87 

5.60 ± 2.23a 

5.28 ± 1.79a 

6.16 ± 1.82 
6.61 ± 1.86 

1.61 ± .81 
1.70 ± 1.02 

CNCfron_MFFsag RFS 
FFS 

4.83 ± 1.97b 

5.97 ± 1.30b 

5.67 ± 1.80c 

2.29 ± .80c 

8.28 ± 1.18 
8.72 ± .76 

1.32 ± .52 
1.21 ± .43 

4.79 ± 1.57b 

6.09 ± 2.21 
4.68 ± 1.63c 

2.32 ± .45c 

8.49 ± 1.03 
8.55 ± .79 

1.33 ± .65 
1.44 ± .46 

MFFsag_MTPsag RFS 
FFS 

4.60 ± 2.04b 

7.51 ± 1.46b 
5.12 ± 1.42 
4.21 ± 1.17 

4.23 ± 1.44 
3.75 ± .99 

1.87 ± .34b 

2.08 ± .23b 
4.54 ± 2.05b 

7.30 ± 1.16b 
5.00 ± 1.30 
4.81 ± 1.06 

4.68 ± 1.26 
3.69 ± .81 

1.90 ± .26b 

2.11 ± .26b 

CCfron_LFFsag RFS 
FFS 

5.96 ± 1.36b 

4.92 ± 1.46b 
6.26 ± 1.67 

6.82 ± 1.93 
7.20 ± 1.59b 

6.33 ± 1.73b 
2.39 ± .76 
2.88 ± 1.49 

5.96 ± 1.45b 

5.12 ± 1.58b 
7.24 ± 1.55a 

7.15 ± 1.56a 

7.73 ± 1.19b 

6.16 ± 2.17b 
2.47 ± 1.48 
3.21 ± 1.80 

a significant time main effect (pre-run to post-run) 
b significant difference between foot strikes (FFS and RFS) 
c significant interaction 
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5. DIFFERENCES IN LEG MUSCLE PREACTIVATION BETWEEN HABITUAL 
REARFOOT AND FOREFOOT RUNNERS AT THE BEGINNING AND END OF 

AN EXHAUSTIVE RUN 
 

Introduction 

 As the number of running participants has steadily increased over the last few decades, 

the occurrence of running-related injuries has also escalated.  Recent studies suggest that 19.4-

79.3% of runners experiencing some type of overuse injury each season (Bahr & Holme, 2003; 

van Gent et al., 2007).  Despite advances in footwear technology, running related injury rates 

have failed to decrease; leading some researchers to focus on foot strike patterns.  This has also 

led some clinicians and researchers to recommend that runners switch from a rearfoot strike 

pattern (RFS) (the pattern utilized by 75-99% of runners) (Bertelsen et al., 2013; Hasegawa et 

al., 2007; Kasmer et al., 2013) to a midfoot (MFS) or forefoot strike pattern (FFS) (Daoud et al., 

2012).   

 Rearfoot strike running has been associated with a vertical ground reaction force profile 

that includes a sharp impact peak and higher loading rate during the load acceptance phase of 

running when compared to MFS and FFS running (Cavanagh & Lafortune, 1980; Lieberman et 

al., 2010).  These forces and loading rates are thought to be related to the development of 

overuse running injuries.  While running, leg muscles contract prior to initial contact to aid in 

dissipating the forces that travel proximally up the lower extremity following ground impact 

(Komi et al., 1987).  This preactivation is thought to reduce the occurrence of impact related 

injuries.   

The association between lower extremity muscle preactivation and vertical ground 

reaction force in running has been investigated.  Komi et al. (1987) reported that increases in 
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vertical ground reaction force resulted in an earlier preactivation and increased preactivation 

amplitude of the lateral gastrocnemius.  This characteristic was also supported by Wakeling et 

al. (2001) using a striking pendulum apparatus, which mimicked ground reaction force on the 

calcaneus.  As the force of the pendulum increased, amplitudes pre- and post-activation of both 

the tibialis anterior and medial gastrocnemius muscles increased.  Running with different foot 

strike patterns also induces variations in the neuromuscular profile of the leg musculature that 

may contribute to injury risk (Ahn et al., 2014; Shih et al., 2013).  In a study investigating RFS 

and FFS running, Shih et al. (2013) reported habitual RFS runners to have increased 

preactivation of the tibialis anterior while RFS running and increased gastrocnemius 

preactivation during FFS running.  However, in a study investigating natural FFS and RFS 

runners, Yong, et al. (2014) did not find differences in tibialis anterior and gastrocnemius root 

mean square muscle activity during early stance phase.  The study did not look at preactivation 

and therefore, information about how habitual RFS runners differ in preactivation compared to 

habitual FFS runners is still needed.  Given the common clinical belief that the presence of a 

sharp vertical ground reaction force impact peak and high loading rate increases injury risk, it is 

important to further understand how preactivation of leg muscles may be affected by a 

runner’s foot strike pattern.   

In addition to foot strike pattern, fatigue also results in variations in lower extremity 

neuromuscular activity which may adversely affect a muscle’s ability to dissipate impact forces 

(Bobbert et al., 1992; Mizrahi et al., 2000a).  Previous research has identified changes in ankle 

muscle co-contraction and delayed preactivation after exhaustive running protocols in the 

tibialis anterior muscle (Mizrahi et al., 2000a; Nyland et al., 1997).  Although previous research 
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has compared neuromuscular patterns in running with RFS and FFS patterns in a non-fatigued 

state, it is unknown if these neuromuscular profiles are similar after an exhaustive run. 

The purpose of this study was to identify the leg muscular preactivation differences 

between habitual RFS and FFS runners at the beginning and end of an exhaustive run.  It was 

hypothesized that FFS runners, when compared to RFS runners, would exhibit an earlier onset 

and larger magnitude of gastrocnemius and peroneal neuromuscular activity.  Likewise, it was 

postulated that the tibialis anterior would have an earlier preactivation and larger magnitude in 

RFS runners.  No difference between the groups was expected for the soleus. It was also 

hypothesized that post-exhaustive run preactivation would be delayed and diminished for all 

muscles in both foot strike groups. Further, the delay and decreased magnitude were 

hypothesized to be greater in FFS runners due to the initial contact position difference 

compared to RFS runners. 

Methods 

Subjects  

Thirty volunteers (15 RFS, 15 FFS; 6 female, 24 male) participated in the study (Table 

5.1).  All participants were currently running a minimum of 10 miles per week and had used 

their current strike pattern for a minimum of 1 year.  Participants were excluded if they had any 

lower extremity pain or injury within the previous 6 weeks, a history of major lower extremity 

surgery, wore custom molded orthotics, or had any known cardiovascular problems or 

uncontrolled asthma.  Rearfoot strike running participants were matched for age and sex with 

FFS runners.  Participation in the study consisted of a phone screen to verify inclusion and 

exclusion criteria (Appendix E) and two separate visits to the lab. During the first visit, after IRB 
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approved informed consent was obtained, participants completed a running questionnaire to 

compare running experience between the groups (Appendix N) and a foot strike screen was 

conducted.  Eligible participants were then scheduled for a running gait analysis visit. 

Protocol. 

Foot strike verification  

Participants warmed up for 5 minutes on a treadmill and were then instructed to 

complete five successful running trials (3.35 ± 0.34 m/s) along a 25 m force plate instrumented 

walkway (Advanced Medical Technologies, Inc, Waterford, MA) sampling at 1,000 Hz.  The 

runners performed the trials in their own running shoes and then in a laboratory supplied 

running sandal (Mono, Luna Sandals, Seattle, WA).  Following the trials, ground reaction force 

data were visually inspected for an initial impact peak which is characteristic of RFS running 

(Cavanagh & Lafortune, 1980; Lieberman et al., 2010).  Individuals exhibiting an obvious initial 

impact peak in at least three of the five trials for both footwear conditions were placed in the 

RFS group while those without an initial impact peak were placed in the FFS group.  Since both 

MFS and FFS runners tend to lack an initial impact peak, both were placed into the FFS group 

(Ahn et al., 2014; Lieberman et al., 2010).  This method was repeated during the second visit’s 

running analysis by positioning one leg of the treadmill on the force plate and visually 

examining the vertical ground reaction force to verify foot strike pattern did not change.  At 

completion of the foot strike verification, participants were fitted for a pair of running sandals 

and given a running log.  They were then instructed to gradually increase running distance in 

the sandals over a minimum of 10 days in order to accommodate to the new footwear prior to 

the follow-up data collection visit.  Instructions were given to increase the distance run in the 
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sandals by ½ mile every run while maintaining total mileage in their habitual running shoes for 

the remainder of their planned distance.   

During this visit, participants also performed maximal voluntary isometric contractions 

(MVC) for ankle plantarflexion, dorsiflexion, and eversion to become familiar with performing 

maximal contractions.  For the MVC testing, the subject was positioned in a Biodex 

dynamometer (Biodex Medical Systems, Shirley, NY) with the knee fully extended and the ankle 

in a neutral position.  The participant pushed against the stationary arm of the dynamometer 

with maximal plantarflexion force for 5 s, rested for 5 s, then pulled against the stationary arm 

of the dynamometer with maximal dorsiflexion force for 5 s.  This sequence was repeated 3 

times.  The MVC for eversion was conducted with the subject placed in a manual isometric 

muscle testing position.  Manual resistance just distal to the base of the fifth metatarsal with 

the ankle in neutral was then applied (Rose, Burns, Ryan, Ouvrier, & North, 2008).   

Running analysis visit  

Participants wore a Polar heart rate chest monitor (Polar Electro Inc., Oulu, Finland) to 

observe exertion level.  The right leg of the participant was prepared for EMG electrode 

placement by shaving and then cleansing the area with alcohol.  Four circular 1.0 cm diameter 

dual Ag/AgCl electrodes (Noraxon Dual Electrodes- 2.0 cm interelectrode distance, Noraxon 

USA, Inc., Scottsdale, AZ) were positioned on the skin according to SENIAM recommendations 

(Hermens et al., 1999) for the medial gastrocnemius, soleus, peroneus longus, and tibialis 

anterior.  Electrodes were secured with a self-adhesive tape (PowerFlex, Andover Healthcare 

Inc, Salisbury, MA).  An 8-channel Noraxon EMG system (Telemyo 900, Noraxon, Scottsdale, AZ) 
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sampling at 1000 Hz was used to measure electrical activity of each muscle.  The wireless EMG 

unit was placed in a secured pack on the back of the participant for the running protocol. 

 Prior to the exhaustive run, MVCs were collected for ankle plantarflexion, dorsiflexion, 

and eversion identical to methods used during their first visit and used to normalize EMG data.  

Maximal plantarflexion and dorsiflexion torque was also recorded pre- and post- exhaustive run 

as an indicator of muscle exhaustion. 

Following MVC testing, clusters of four retroreflective markers (6.4 mm diameter) were 

placed on the right leg and foot to identify the leg and six foot segments (Bauer et al., 2011).  

Three-dimensional positional marker data were collected using a 10-camera Eagle Motion 

Analysis System (Motion Analysis Corp., Santa Rosa, CA) sampling at 200 Hz.  Positional data of 

the toe tip from the multi-segment foot model was used to identify initial contact (Zeni et al., 

2008). 

Running protocol   

Subjects warmed up for 5 minutes on a treadmill located in the center of the capture 

volume.  After the warm up, the subjects performed a maximal effort 5 km run (Laursen et al., 

2007).  They began the run at a speed of 7.5 mph (3.4 m·s-1).  Once a consistent gait pattern 

was observed, EMG activity was collected for 10 seconds. Following the 10 s data collection, 

subjects were able to adjust the treadmill speed to control their own pace throughout the run.  

Subjects were considered to have reached an exhausted state if their heart rate was equal to or 

greater than 80% of age-predicted heart rate max (220-age) or if they had a rate of perceived 

exertion at or above 17 out of 20 on a Borg scale (Borg, 1970).  All subjects reached both 

criteria.  Heart rate and rate of perceived exertion were assessed every five minutes during the 
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run and at the completion of the run.  In the final 0.16 km, the treadmill was set to 7.5 mph (3.4 

m·s-1). As soon as the subject adjusted to the speed, a second 10 s data collection was 

performed.  Following the data capture, the participant continued at a self-selected speed until 

5 km were completed. 

Data Processing  

From the 10 s data collections, the kinematic and EMG data from five subsequent 

running stance phases were identified and processed.  Initial contact was determined as the 

point when the toe tip reached maximal anterior position (Zeni et al., 2008).   

EMG processing  

The amplified EMG signals were processed with a custom Matlab program (Matlab 

R2013a, Mathworks, Natick, MA).  The signal was trimmed from 250 ms prior to initial contact 

until initial contact.  The signal was then processed using a bandwidth filter of 10-500 Hz with a 

fourth order zero lag Butterworth filter followed by full wave rectification. Finally, the signal 

was smoothed using a Root Mean Square (RMS) algorithm with a 0.05 s running window (Eq. 

5.1): 

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟓. 𝟏.             𝑅𝑀𝑆(𝑡) = √1
𝑇⁄ ∫ 𝐸𝑀𝐺2(𝜎)𝑑𝜎

𝑡+𝑇

𝑡
  

where, T is the period of time that the smoothing is being performed (0.05 s), t is the exact time 

point in the trial that is being considered, and σ represents the data points within the 

smoothing window (De Luca, 2006).  Onset of preactivation was identified when the EMG signal 

exceeded a threshold of 2 standard deviations (SD) above the baseline muscle activity prior to 

initial contact of the stance phase.  The integrated EMG (iEMG) was also calculated from onset 

to initial contact (preactivation period) to quantify the amount of activation occurring in the 
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muscle prior to ground contact.  The pre- and post-exhaustive run EMG signals for the five 

stance phases for each subject were averaged and then ensemble averaged for each foot strike 

group. 

Statistical Analyses  

Independent t-tests were used to investigate weekly mileage and 5 km completion time 

differences between FFS and RFS runners.  Mixed between-within subjects analyses of variance 

(ANOVA) were used to compare step frequency and plantarflexion and dorsiflexion MVCs. The 

between subjects factor was foot strike and the within subjects factor was pre- and post-

exhaustive run.  Likewise, mixed between-within subjects ANOVAs were used to compare the 

medial gastrocnemius, soleus, peroneus longus, and tibialis anterior muscles’ EMG onset and 

preactivation iEMG prior to and following the exhaustive run. The significance level for all of the 

statistical analyses was defined as α = 0.05. 

Table 5.1- Participant descriptive data (N = 30). 

Variable RFS (n=15) FFS (n=15) 

Age (years) 27.7 ± 5.05 27.4 ± 6.34 

Height (cm) 179 ± 7.69 179 ± 7.02 

Mass (kg) 77.9 ± 10.3 61.2 ± 33.6 

Weekly distance (mi) 20.2 ± 11.5 22.4 ± 15.8 

Experience running over 10 mi (years) 4.82 ± 4.47 6.40 ± 5.59 

5K completion time during testing (min) 23.2 ± 4.03 23.2 ± 4.03 

Mean comfort level (1-5) 3.51 ± 0.61 3.33 ± 0.64 

Final comfort level (1-5) 3.20 ± 0.92 3.09 ± 0.83 

Step frequency-Pre-run (steps/min) 167 ± 10.4 174 ± 9.75 

Step frequency-Post-run (steps/min) 164 ± 11.3* 172 ± 12.2* 

Pre-run plantarflexion MVC (Nm) 144 ± 38.0 144 ± 31.5 

Post-run plantarflexion MVC (Nm) 129 ± 25.5* 136 ± 32.1* 

Pre-run dorsiflexion MVC (Nm) 26.4 ± 9.55 24.6 ± 9.36 

Post-run dorsiflexion MVC (Nm) 23.7 ± 6.80* 21.6 ± 6.63* 
* Significant difference from pre-run measures (p < .05) 
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Results 

 All participants met the exhaustion criteria by the end of the 5 km exhaustive run.  

According to statistical tests, there were no significant differences between RFS and FFS 

runners in weekly mileage (P = .67), 5 km completion time (P = .99), or step frequency (P = .06) 

(Table 5.1).  However, both groups exhibited a significant decrease in step frequency following 

the exhaustive run (P = .02) (Table 5.1).  There were no differences between FFS and RFS 

runners’ pre-run plantarflexion (P = .75) or dorsiflexion (P = .52) MVCs.  Plantarflexion (P = .02) 

and dorsiflexion (P = .006) post-run MVCs were diminished for both FFS and RFS runners. 

Onset timing   

Due to several incidences of electrode detachment or wire lead malfunction during 

testing, EMG data from all of the muscles assessed were not available for all of the subjects.  All 

EMG data that was viable was processed and sample size was adjusted accordingly (Table 5.2).  

Mixed between-within subjects ANOVAs revealed no significant time-by-foot strike interactions 

for the medial gastrocnemius (P = .17), soleus (P = .43), peroneus longus (P = .52), or tibialis 

anterior (P = .11).  Significant between-subjects (foot strike) main effects revealed the medial 

gastrocnemius had an earlier onset in FFS runners (P = .01) and the tibialis anterior had an 

earlier onset in RFS runners (P = .02).  There were no significant between-subject main effects 

for the soleus (P = .10) or the peroneus longus (P = .44).  There were no significant time main 

effects for the medial gastrocnemius (P = .67), soleus (P = .19), peroneus longus (P = .62), or 

tibialis anterior (P = .69).   
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Table 5.2- Rearfoot striker (RFS) and forefoot striker (FFS) pre- and post- exhaustive 
run preactivation onset timing. 

Muscle Foot strike Pre-run (ms) Post-run (ms) N 

Medial 
Gastrocnemius 

RFS 68 ± 60 80 ± 40 13 

FFS 124 ± 39* 101 ± 50* 14 

Soleus RFS 75 ± 63 68 ± 56 9 

FFS 121 ± 51 91 ± 45 11 

Peroneus Longus RFS 60 ± 52 57 ± 53 13 

FFS 73 ± 46 91 ± 53 9 

Tibialis Anterior RFS 147 ± 64 119 ± 96 7 

FFS 37 ± 47* 83 ± 65* 9 
* Significant between-subject difference when compared to RFS runners (p < .05) 

 
Integrated EMG  

Mixed between-within subjects ANOVAs did not reveal any time-by-foot strike interaction 

effects for medial gastrocnemius (P = .13), soleus (P = .88), peroneus longus (P = .68), or tibialis 

anterior (P = .74). Significant between subjects main effects indicated an increased amount of 

tibialis anterior iEMG in RFS runners when compared to FFS runners (P = .01), but no difference 

between groups for the medial gastrocnemius (P = .23), soleus (P = .81), or peroneus longus (P 

= .50).  Finally, there were no significant within-subjects (time) main effects for the medial 

gastrocnemius (P = .65), soleus (P = .26), peroneus longus (P = .44), or tibialis anterior (P = .28) 

(Table 5.3). 

Table 5.3- Rearfoot striker (RFS) and forefoot striker (FFS) pre- and post- exhaustive 
run integrated EMG  

Muscle Foot strike Pre-run (%MVC·s) Post-run (%MVC·s) 

Medial 
Gastrocnemius 

RFS 2.58 ± 3.10 6.79 ± 13.05 

FFS 8.35 ± 4.32 6.03 ± 5.95 

Soleus RFS 6.29 ± 5.65 4.81 ± 4.25 

FFS 6.60 ± 5.58 5.46 ± 4.35 

Peroneus Longus RFS 3.19 ± 3.16 3.56 ± 3.80 

FFS 2.06 ± 1.71 3.29 ± 3.83 

Tibialis Anterior RFS 6.51 ± 1.98 9.38 ± 11.58 

FFS 1.28 ± 1.05* 2.83 ± 2.25* 
* Significant between subject difference when compared to RFS runners (p < .05) 
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Discussion 

 The purpose of this study was to compare neuromuscular preactivation patterns in 

habitual RFS and FFS runners at the beginning and end of an exhaustive run.  The hypothesis of 

FFS runners having an earlier onset of medial gastrocnemius activity compared to RFS runners 

and RFS runners having an earlier onset of tibialis activity compared to FFS runners was 

supported by the results.  However, only the iEMG of the tibialis anterior, and not the medial 

gastrocnemius, differed between the groups, which is inconsistent with our initial hypothesis.  

It was also hypothesized that FFS runners would have an earlier onset of peroneus longus 

activity, but this was not supported by the present data.  Likewise, the lack of significant 

differences in preactivation timing or iEMG values when comparing muscle activity at the 

beginning of the run to the end of the run were not consistent with our initial hypotheses.   

Onset timing  

The onset of medial gastrocnemius activity in FFS runners occurred 21-56 ms earlier 

than for the RFS group which is similar to previously reported results (Ahn et al., 2014; Divert et 

al., 2005b; Shih et al., 2013).   Preactivation allows the muscle’s contractile unit to create 

tension in the Achilles’ tendon prior to initial contact in preparation for the eccentric 

contraction during the loading phase in FFS runners (Bobbert et al., 1992).  The muscle tension 

is important for the dissipation of forces and joint stability following foot contact with the 

ground.  The delayed gastrocnemius onset in the RFS runners was likely due to the fact that the 

RFS runners make initial contact in a dorsiflexed ankle position.  This dorsiflexed position at 

initial contact also explains the 36-110 ms earlier onset of the tibialis anterior seen in RFS 
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runners, which also is similar to previously reported results (Shih et al., 2013; von Tscharner et 

al., 2003).   

 As hypothesized, the soleus onset timing did not differ between the groups, despite the 

common insertion to the Achilles’ tendon with the gastrocnemius.  It has been suggested 

previously (Jacobs et al., 1993) that the soleus may play a different role during the loading 

phase of stance while running than the gastrocnemius, with the gastrocnemius  contributing 

more to force dissipation.  If this is the case, both foot strike patterns would to utilize the soleus 

for elastic energy storage to the same extent.   

 Because FFS runners contact the ground with increased ankle inversion and 

plantarflexion, (Williams et al., 2000) it was initially hypothesized that they may also have an 

earlier peroneus longus onset to provide increased ankle stability at ground contact.  With an 

increased inversion angle and the foot in a plantarflexed position, the ankle is in a less stable 

position and more prone to inversion ankle sprains.  Even though FFS runners have increased 

ankle inversion at initial contact, RFS runners also land in an inverted position (Williams et al., 

2000).  Therefore, although the degree of inversion may differ between the foot strikes, the 

peroneus longus preactivation patterns required to maintain lateral ankle stability appear to be 

similar.   

 Although it was hypothesized that preactivation patterns would change pre- to post-run, 

this was not observed for any of the four muscles. The plantarflexors and dorsiflexors did 

experience some level of fatigue as evidenced by the decreases in peak MVC following the 

exhaustive run (Table 5.1), but it appears that the maximal strength capabilities of the muscle 

did not affect timing of the contraction when running.   



 

123 
 

Integrated EMG  

Although differences between the foot strikes were observed in EMG onset timing 

between the medial gastrocnemius and the tibialis anterior, there was only a difference in the 

iEMG for the tibialis anterior.  Despite the earlier onset of the medial gastrocnemius in FFS 

runners, a similar magnitude of gastrocnemius contraction was present in both running styles 

prior to initial contact. These results indicate that RFS and FFS runners have similar 

gastrocnemius activation levels immediately prior to initial contact, however, the purpose of 

the muscle activity may differ.  Because RFS runners exhibit a ground reaction force impact 

peak and loading rate of up to 7 times that of FFS runners, (Lieberman et al., 2010) it is likely 

that RFS runners utilize the gastrocnemius to aid in the dissipation of the impact forces during 

the loading phase of stance. With absence of an impact peak and a lower loading rate in FFS 

running, the gastrocnemius activity may instead contribute more to ankle stability and elastic 

energy storage during the loading phase.  

The increased preactivation iEMG in the tibialis anterior of RFS runners was likely the 

result of having to maintain the ankle in a dorsiflexed position for initial contact.  Unlike the 

gastrocnemius which may have similar iEMG preactivation between the foot strikes but for 

different functional purposes, the dorsiflexed ankle position in RFS runners requires larger 

amounts of tibialis anterior preactivation.  A dorsiflexed position when FFS running would not 

allow for correct foot position at initial contact and essentially cause the runner to strike the 

ground with the rearfoot. 

Likewise with onset of preactivation, there were no changes in pre- to post-run iEMG 

values which goes against the initial hypothesis.  It is possible that preactivation iEMG did 
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change at different time points within the run, but only pre- and post- values were evaluated.  

Wu, et al. (2007) evaluated gastrocnemius and tibialis anterior EMG activity during a 20 minute 

run and reported an increase in peak EMG activity in the middle of the run, that returned to 

initial levels after 20 minutes.  This would likely be the result of larger motor units being 

activated mid-run and then exhausted by the end.  Since only pre- and post- measures were 

taken for the current study, it is unclear if a similar preactivation pattern would have been 

observed. 

Although the assessment of step frequency was not a primary purpose of the study, the 

differences between the current and previous studies requires additional discussion.  Unlike 

previous studies, there was no difference between the RFS and FFS runners’ step frequency.  

Because FFS runners have a greater knee flexion angle to allow for forefoot contact with the 

ground, shorter steps are generally needed to accommodate the differing kinematics, making 

the step frequency higher for a given speed (Williams et al., 2000).  In the present study, 

statistical tests were nearing significance (P = 0.06) and finding a larger sample may provide a 

statistically different sample.  However, it is also possible that by using habitual FFS runners 

instead of asking habitual RFS runners to run with a FFS, and having all runners wear similar 

footwear, that the difference between the groups was not observed.   

Further, both groups decreased their step frequency at the end of the exhaustive run 

suggesting that both foot strike patterns increased their stride length as exhaustion set in.  

Larson, et al. (2011) reported that a large number of FFS runners had changed their foot strike 

pattern during a long distance running event, which may be the result of increasing step 

frequency.  All runners in the current study, however, continued to maintain their original strike 
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pattern.  It is suggested, therefore, that perhaps a longer run duration may be beneficial to 

compare exhaustive running muscle profiles. 

Limitations of the study 

Before drawing conclusions based on the results discussed, it is important to identify the 

limitation of this study.  One limitation of this study was the limited number of complete EMG 

profiles achieved from each subject.  Wire lead malfunction during the run often allowed for 

pre-run data, but not post-run data.  Additionally, because of the nature of the exhaustive 

running protocol and securing the EMG electrodes and leads with cohesive bandages, 

perspiration may have greatly affected EMG readings by increasing conduction of the electrical 

signal when comparing post-run to pre-run results.  Another limitation is that data was only 

analyzed at the beginning and end of the 5 km run, preactivation patterns that may have 

changed during the run were not available.  Finally, because this study only compared 

preactivation data, conclusions as to how the musculature was activated during the stance 

phase was not available.  This may be important to understand as it is during stance that ankle 

stability and force dissipation are needed. 

Conclusion 

 In conclusion, only the tibialis anterior and medial gastrocnemius onset timing and 

tibialis anterior iEMG differed between the foot strikes and there were no changes in muscle 

activity timing or magnitude following the exhaustive run in either group.  The increased tibialis 

anterior activity helps to maintain a dorsiflexed ankle joint position for initial contact in RFS 

runners.  Despite similar iEMG values of the medial gastrocnemius in FFS and RFS runners, the 

function of the muscular activity may differ between the foot strikes. The gastrocnemius 
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preactivation activity in FFS runners may function primarily for elastic energy storage and ankle 

stability, while RFS runners may utilize the preactivation for dissipation of the much larger 

vertical ground reaction force and loading rate associated with making initial contact with the 

heel.   Further, the lack of differences in lower extremity muscle preactivation following the 5 

km exhaustive run protocol suggest  that neuromuscular mechanisms prior to initial contact 

may not be altered in experienced RFS or FFS runners.  It remains unclear if increased distance, 

higher intensity intervals, or other training factors may influence preactivation of these muscles 

while running.   
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6.  SUMMARY AND CONCLUSIONS 

 
The purpose of this study was to identify differences in foot kinematics and lower 

extremity muscular activation between habitual RFS and FFS runners before and after an 

exhaustive run.  The main objectives to achieve this purpose were to (1) explore differences in 

discrete joint kinematics of the foot using a multi-segment foot model, (2) compare foot joint 

coupling variability, and (3) evaluate leg musculature preactivation onset and magnitude via 

iEMG. 

 Fifteen habitual RFS runners (27.7 ± 5.05 years, 179 ± 7.69 cm, 77.9 ± 10.3 kg) and 15 

age and sex matched FFS runners (27.4 ± 6.34 years, 179 ± 7.02 cm, 61.2 ± 33.6 kg) participated 

in this study.  After foot strike verification procedures, all participants were given 12 mm sole 

running sandals (Mono sandal, Luna, Seattle, WA) and a 10 day accommodation program.  After 

accommodation, participants returned for testing and performed a maximal 5 km treadmill run 

with appropriate retroreflective markers on their right foot to identify a seven segment foot 

model and EMG electrodes positioned over the medial gastrocnemius, soleus, peroneus longus, 

and tibialis anterior.  Motion capture and EMG data were captured both at the beginning and 

end of the exhaustive run.  Motion capture data was processed for five consecutive steps at 

both time points to identify single joint kinematics for the following function articulations: 

rearfoot complex, calcaneonavicular, calcaneocuboid, medial forefoot, lateral forefoot, and 1st 

MTP.  With the single joint kinematics, vector coding measurements were calculated and used 

to identify joint coupling variability of adjacent foot articulations.  Neuromuscular preactivation 

onset and iEMG were also identified for the four leg muscles and compared between and 

within the groups. 
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Foot strike differences 

 Differing joint kinematics between RFS and FFS runners revealed that FFS runners 

appear to have a more supinated foot and ankle position at initial contact and through early 

stance.  Supination in the ankle is an unstable position, but supination in the foot is thought to 

create a more rigid foot.  Because FFS runners rely on foot stability while making initial contact 

with the distal foot, a more supinated foot posture will allow for the necessary bony foot 

stability.  The supinated foot in the beginning of stance may also prevent overpronating, or 

reaching early foot pronation which has been theorized to contribute to injuries such as plantar 

fasciitis and tibial stress fractures (Pohl et al., 2009; Pohl et al., 2008; Wilder & Sethi, 2004).  

The ankle in FFS runners, however, may be more at risk for acute injuries such as ankle sprains.  

Given that the participants in the current study were healthy, non-injured runners, future 

research should investigate these ideas by comparing with injured running populations. 

 Although single joint kinematics are useful in understanding motion, joint coupling has 

become a common measurement to assess how the kinetic chain works to coordinate 

movement.  Greater variability in these coordination patterns has been associated with the 

ability to avoid injury by being able to adapt to varying stresses (Hamill et al., 1999).  Between 

the foot strikes, variability increased with medial midfoot-forefoot couplings in FFS runners and 

increased variability in lateral rearfoot-midfoot and midfoot-forefoot couplings in RFS runners.  

This medial and lateral trend suggests that each foot strike pattern has different areas of the 

foot that may be more susceptible to running related injuries. 

Between the foot strikes, the RFS runners had increased tibialis anterior preactivation 

magnitude (iEMG) and an earlier onset of activation than FFS runners.  This would be necessary 
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for RFS runners to maintain their dorsiflexed foot posture for initial contact.  The FFS runners, in 

contrast, had an earlier medial gastrocnemius onset, but no difference in preactivation iEMG.  

Although iEMG values were similar for both foot strike patterns, the earlier gastrocnemius 

onset may indicate different muscular activity function between the foot strikes.  The 

preactivation activity in FFS runners may aid in elastic energy storage and ankle stability while 

the preactivation in RFS runners may aid in force dissipation of the large loading rates which are 

characteristic of RFS running (Lieberman et al., 2010). 

Exhaustive Run Effect 

As a result of the exhaustive run, both RFS and FFS groups had increased range of 

motion for subphases 1, 3, and 4 of stance.  The increased range of motion during early stance 

resulted in a more pronated foot and therefore more mobility which would increase stress on 

dynamic stabilizers.  Range of motion increases in subphases 3 and 4 resulted in a more 

supinated foot and more rigidity which would be necessary for adequate push-off.  Only at the 

medial forefoot and during the second subphase of stance were RFS kinematics observed to be 

different compared to FFS runners’ kinematics at the end of the exhaustive run.  During this 

subphase, RFS runners increased their medial forefoot dorsiflexion range of motion while FFS 

runners did not change.   

When comparing the foot strike patterns during an exhaustive run, both groups 

demonstrated increases in joint coupling variability at the end of the run.  This increase may be 

the neuromuscular system’s response to exhaustion and its attempt to avoid overstressing 

tissues and injury (Ferber & Pohl, 2011).  Where other studies have reported decreased 

variability in injured populations (Hamill et al., 1999; Herb et al., 2014; Miller et al., 2008), 
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variability in healthy populations may increase in order to disperse stress to various tissue and 

therefore avoiding the breakdown of tissues through repetitive forces. 

 Despite the many differences in kinematics and joint coupling variability observed at the 

end of the exhaustive run, preactivation patterns of the four muscles investigated were not 

found to change in either group.  Preactivation of the leg muscles helps to assure proper foot 

positioning and stability at initial contact as well as potentiation for a successful stretch 

shortening cycle (Aura & Komi, 1986).  Despite the kinematic changes in initial contact angle 

and during early stance at the end of the run, the timing and magnitude of the muscles in 

preparation for these events does not appear to be altered.   

The varying foot kinematics and neuromuscular preactivation observed between the 

foot strike patterns suggests that RFS and FFS runners likely are at risk for different types and 

locations of running related injuries.   Although FFS running is thought to be a more “natural” 

form of running (Bramble & Lieberman, 2004; Lieberman et al., 2010), overall injury rates 

appear to be similar between the foot strike patterns (Goss & Gross, 2012; Warr et al., 2015).  

As this study was largely exploratory in nature and conducted on uninjured runners, no 

conclusion can be made as to which foot strike pattern may have more ideal foot kinematics.  

Therefore, more research is needed to understand how the varying kinematics and kinetics 

between the foot strike patterns contributes to specific running related injuries. 
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Appendix A: Multi-Segment Foot Model 

 

 
 
 
 
 

Segment Anatomical Landmark Identified  

Calcaneus Sustentaculum Tali  
 
 
Identified by Davis Digitizing 
Pointer 

Apex of Calcaneus 

Peroneal Tubercle 

Navicular Proximal, dorsal corner 

Proximal, plantar corner 

Distal, plantar corner 

Cuboid Proximal, dorsal corner 

Proximal, plantar corner 

Distal, plantar corner 

Hallux Base of hallux 

Distal tip of hallux 

Medial hallux 

Medial forefoot 1st and 2nd metatarsal heads  
Identified by surface marker Lateral forefoot 4th and 5th metatarsal heads 

Leg Medial malleolus 
Lateral malleolus 
Tibial tuberosity 

 

 

 

  

Figure A- The segments identified 
by the six-segment foot model: 
calcaneus (pink), navicular (blue), 
cuboid (yellow), medial rays 
(purple), lateral rays (red), and 
hallux (green). 

Table A- Anatomical landmarks identified using the Davis Digitizing Pointer and surface markers. 
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Appendix B: Joint Coordinate Systems Definitions 

 
Rearfoot functional articulation. The motions of the calcaneus with respect to the leg were formed 
using the mediolateral axis of the leg segment, the anteroposterior axis of the calcaneus, and the 
floating axis as computed by their cross product.  
 
Midfoot functional articulations. The midfoot consists of two functional joints, the calcaneus and 
navicular articulation (calcaneonavicular) and the calcaneus and cuboid articulation 
(calcaneocuboid). For each of these articulations, the JCS was defined by the mediolateral axis of 
the calcaneus, the anteroposterior axis of the distal segment (the navicular or cuboid), and a 
floating axis calculated by their cross-product.  
 
Forefoot functional articulations. Similar to the midfoot functional articulations, the forefoot 
consisted of a medial and lateral JCS to define the articulation of the medial rays (metatarsals 1 and 
2) with respect to the navicular and lateral rays (metatarsals 4 and 5) with respect to the cuboid. 
The JCS of the medial forefoot functional articulation was defined by the mediolateral axis of the 
navicular, anteroposterior axis of medial rays, and a floating axis of their cross product. The lateral 
forefoot functional articulation was defined by the mediolateral axis of the cuboid, anteroposterior 
axis of the medial rays, and a floating axis of their cross product.  
 
First metatarsophalangeal functional articulation. Three-dimensional motion of the 1st MTP (motion 
of hallux with respect to the medial rays) were calculated from the JCS formed by the mediolateral 
axis of the medial rays, anteroposterior axis of the hallux, and a floating axis of their cross product. 
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Appendix C: Multi-Segment Foot Model Coordinate Systems 

 

 
  

Figure C- Lateral (above) and medial 
(below) view of the marker 
positioning for the multi-segment 
foot model.  Cartesian coordinates 
are labeled for the calcaneus (CA), 
cuboid (CU), lateral rays (LR), hallux 
(H), medial rays (MR), navicular (N), 
and leg (L). 
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Appendix D: Statistical Power Analysis 

A priori power analysis was done to find an appropriate sample size for the present study.  
Using joint coupling means and standard deviations from previously collected walking data 
using the same foot model (Table D), the Cohen’s d value and effect size were calculated.  The 
effect sizes from the sample data indicated a medium effect size (Cohen’s d large effect size = 
0.8, medium = 0.5, and small = 0.2).  Calculations for a medium effect size (Cohen’s f = 0.25, α = 
0.05, and β = 0.20) indicated that a minimum of 24 subjects were needed. 
 

Table D. Mean and standard deviation of vector coding angles for individuals walking in two different shoe 
conditions. 

Vector coding joint Mean 1 SD1 Mean2 SD2 Cohen’s 
d 

Effect 
Size 

Leg-Rearfoot transverse plane 70.48 4.94 15.64 41.24 1.87 0.68 
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Appendix E: Inclusion and Exclusion Criteria 

 
Inclusion criteria 
 Run minimum of 10 miles per week 

 Use of either a rearfoot or mid/forefoot strike pattern for a minimum of 1 year 

 Age 18-40 years old 

 Have previously ran a 5 km run 

 Able to run briefly at 3.35 m·s-1 (7.5 mph) at completion of a 5 km run 

 
Exclusion criteria 
 Lower extremity injury within the previous 6 weeks  

 Major lower extremity surgery 

 Wear custom molded foot orthotics 

 Cardiovascular problems 

 Uncontrolled asthma 
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Appendix F: Phone Screen Interview 

 
How old are you? _________  

How many miles do you average running per week? ______________  

Have you had any previous lower extremity injury in the past 6 weeks that prevented you from 
continuing your normal running activity?  □ Yes □ No  

If yes, what injury?  
Hip __________________________________________________________________  
Knee _________________________________________________________________  
Ankle _________________________________________________________________  

 

Do you have a history of any lower extremity surgery?  □ Yes □ No  
If so, what was done? ___________________________________________________________________  
 

When you run, what part of the foot makes contact with the ground first?  
□ Heel   □ Midfoot  □ Forefoot  

 

Have you ever been diagnosed with any foot pathologies? _____________________  

Have you ever been told you have high or low arches?  □ Yes □ No  

What is your shoe size? ______________  

Do you have a history of cardiovascular disease?  □ Yes □ No  

Do you have asthma or exercise induced asthma?  □ Yes □ No  

If yes, do you use medication to control it? □ Yes □ No  

Do you have a history of asthma or exercise induced asthma?  □ Yes □ No 

Female participants: Are you pregnant?   □ Yes □ No 
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Appendix G: Health History Questionnaire 

For your safety, a list of conditions that would make you unable to participate in this study has been 
prepared.  Please answer the following questions to the best of your ability to assure your safety and 
inclusion in this study: 
Sex     M    F 

 Yes    No Are you between the ages of 18 and 40 years old? 

 What’s your age? ___________ 

 Yes    No  Do you run at least 10 miles a week regularly?  

 RFS    FFS Do you consider yourself a rearfoot (RFS) or forefoot (FFS) striker? 

 Yes    No Have you ran for at least one year with your current strike pattern? 

 Yes   No Do you have a history of asthma or exercise induced asthma? 

If yes, is it controlled by medication?  Yes   No 

 Yes   No Do you have any known sensitivity to any liquid adhesives or methyl 

salicylate? 

 Yes   No Do you have a history of cardiovascular disease? 

 Yes   No Have you ever been told by a health care provider to avoid vigorous exercise?  

 Yes    No Have you ever had a lower extremity injury that caused you to decrease the 
amount of physical activity you undertake? If yes, please complete the 
following: 

  Yes    No   Hip injury(ies) 
  If yes, approximately how many injuries?_________________________ 
  Yes    No   Knee injury(ies) 
  If yes, approximately how many injuries? _________________________ 
  Yes    No   Ankle/foot injury(ies)  
  If yes, approximately how many injuries? _________________________ 

 Yes    No Have you had a lower extremity injury, in the last 6 weeks, that caused you to 
decrease the amount of miles you run per week? 

 If yes explain______________________________________________________ 
 Yes    No Do you currently have any lower extremity pain or injury(ies)? 

 Yes    No Have you ever had major orthopedic surgery on your lower extremities? 

 Yes    No Have you been diagnosed with a foot pathology (i.e. hallux valgus)? 

 Yes    No For female participants: Are you pregnant or do you have reason to believe that 

you may be pregnant? 

 Yes    No Are you currently employed by UWM? 

 

Comments/Notes:  
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Appendix H: Informed Consent Form 

UNIVERSITY OF WISCONSIN – MILWAUKEE 

CONSENT TO PARTICIPATE IN RESEARCH 
 

THIS CONSENT FORM HAS BEEN APPROVED BY THE IRB FOR A ONE YEAR  
 

1. General Information 

 

Study title:  
 Foot joint coupling and EMG patterns in habitual forefoot and rearfoot runners 

 

Person in Charge of Study (Principal Investigator):  

 The Principal Investigator (PI) for this study is Stephen Cobb, PhD, ATC, CSCS. Dr. Cobb is a 
faculty member in the Department of Kinesiology. The co-principal investigator for the 
study is Rhiannon Seneli, MS, ATC. Rhiannon is a doctoral student in the College of Health 
Sciences.  Emily Gerstle is another co-investigator on this study.  Emily is a masters student 
in the Department of Kinesiology. 
 

2. Study Description 

 

You are being asked to participate in a research study.  Your participation is completely 
voluntary.  You do not have to participate if you do not want to. 
 
Study description: 
The purpose of this project is to identify what foot motion and muscular activity differences exist between the 
different running patterns to better understand patterns of musculoskeletal overuse injuries commonly seen in 
runners.  This study will compare runners who run with a rearfoot strike pattern (heel-to-toe strike) to those who 
run with a forefoot strike pattern (toe-to-heel).  A foot model that divides the foot into 6 segments will be used to 
evaluate foot motion and how foot motion is coupled with adjacent joints.  The muscle activity of the leg muscles 
will be compared between the two running patterns as well.  As biomechanics of motion can change after fatigue, 
observation will take place before and after a fatiguing run. 
 
This study will further the current knowledge on the differences between forefoot and rearfoot 
strike running mechanics. The results will provide clinicians and researchers invaluable 
information regarding the effect of foot strike pattern on running mechanics and joint coupling. 
Such knowledge will be an important component to comprehensive intervention programs that 
alter running mechanics to help prevent running related injuries. 
 
Initial participant screening will be done via telephone call and further screening will take place 
along with, data collection, analyses, and storage in the Musculoskeletal Injury Biomechanics 
laboratory (Enderis 132); 15 habitual runners (age 18 – 45 years) with rearfoot strike patterns 
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and 15 habitual runners (age 18 – 45 years) with forefoot strike patterns will be recruited from 
the University, surrounding community, and local running and triathlon groups. 
 
As a participant in this study, you will be asked to participate in two study sessions in the lab 
where you will participate in an evaluation of running for identification of strike pattern, 
maximal voluntary contractions of ankle musculature, motion analysis of running mechanics 
before and after a fatiguing run on a treadmill.  The total estimated completion time is 2.5-3 
hours across two testing sessions. 
 

3. Study Procedures 

 

What will I be asked to do if I participate in the study? 
If you agree to participate you will be asked to report to the Musculoskeletal Injury 
Biomechanics Laboratory (END 132) for testing. All procedures and measurements involved in 
the testing session will be performed by the PI or a co-investigator.  Information of 
participants who do not qualify will be destroyed. 

 
INITIAL PHONE SCREEN (~5-10 min) 

 Medical History Questionnaire 

 Includes questions pertaining to your physical activity level and previous lower 
body injury(ies) and surgeries, pregnancy, and presence of diseases/illness 
that may exclude participation. This also includes questions about your age. 
 

To participate in the study, you must meet the following criteria 
 Age 18-45 

 Run a minimum of 10 miles per week 

 Female participants must have a women’s size 6 -10 shoe size 

 Male participants must have a men’s size 7-13 shoe size 

 Must never have had major surgery to the lower extremity 

 Must have not had an injury to the lower extremity in the last 6 weeks 

 Must not have diagnosed asthma or exercise induced asthma that is not 
adequately controlled with medication to permit moderate intensity 
exercise 

 Must not have a history of cardiovascular disease 

 Female participants must not be pregnant 
 

IN-PERSON SCREENING (Visit 1) (~30 min) 
 

 Informed Consent Process 
 
 If you agree to participate in the study, you will be asked to complete the following: 

 



 

165 
 

 Foot strike pattern evaluation 

You will be asked to run over a walkway and force plate to evaluate running form.  
Ground reaction force as measured by the force plate and video of your foot 
(video does not record above the waist) will be used to identify foot strike 
pattern. 

 
 Foot posture screen 

A digital photograph of each of your feet will then be taken while you are 
standing with 10% of your body weight on the foot to be measured and also with 
90% of your body weight on the foot to be measured. This photograph will not 
have any of your identifiers attached to it, so individuals who see it will not know 
that it is your foot. If you choose not to have your foot photographed, you will not 
be eligible to complete the study. 

 

 
ELECTROMYOGRAPHY (EMG) AND MAXIMUM MUSCLE CONTRACTIONS (Visit 2) (~ 30 min) 
  

 Eight EMG electrodes will be attached to your skin on your leg to measure electrical 
activity in your muscles.  Your skin will be prepared through any necessary shaving 
and cleaning to assure good skin contact.   

 

 A 3-5 minute warm up will take place on a treadmill. 
 

 Maximal voluntary muscle contractions will be recorded for four different ankle 
motions.  This is an “all-out” muscle contraction.  You will sit in a muscle strength 
tester called a dynamometer and your leg will be secured to prevent undesired 
movement.  There will be 3 “all-out” contractions for each of the four motions, each 
lasting 3 seconds. 

 

RUNNING DATA COLLECTION (Visit 2) (~40 min) 

 Reflective markers will be placed on your foot and leg to identify bony landmarks.  
They will be placed directly on your skin and secured using liquid adhesive and 
double-sided tape. 
 

 A calibration and ten successful running trials over the walkway and force plate will 
take place.  They will be performed at a speed of 4.0 m/ s ± 10% (8.96 mph ± 10%).   

 

 Data will be collected using a 10-camera Motion Analysis system which will collect the 
position of the reflective markers, but not any images of your person. If you choose 
not to be recorded during the gait trials, you will not be eligible to complete the 
study.  

  
FATIGUING RUN (Visit 2) (~30-45 min) 
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 The fatiguing run will take place on a treadmill at your selected training pace.  Your rate of 
perceived exertion (RPE) will be collected to identify how hard you feel you are working.  
After 30 minutes of running, the incline on the treadmill will increase 1⁰ every 5 minutes until 
you are fatigued and feel you cannot run any longer at the set pace.  The run will be 
terminated when you have at least a score of 8 on the RPE scale and/or you can no longer 
maintain the set pace. 
 

POST-FATIGUE RUNNING DATA COLLECTION (Visit 2) (~20 min) 
 The reflective markers previously placed will be assessed to assure proper placement exists.  

If needed, markers that have fallen off will be replaced.  As in the previously explained 
running data collection, 10 more running trials will be performed at the same speed of the 
first 10 trials.  RPE will be assessed at the end of the final trial. 

 
 
 

 
 

4. Risks and Minimizing Risks 

 

What risks will I face by participating in this study? 
The potential risks other than muscle soreness or tightness for your participation in this 
research study are minimal. 
 
Physical Risks: 

Likely: 

 Minor muscle soreness and/or tightness  
 
Less Likely: 

 Musculoskeletal injury such as muscle strain  

 Allergic reaction to the liquid adhesive used to secure the reflective markers  
 
Highly unlikely: 
 Due to the physical activity demand of the study, there is an increased risk of cardiovascular injury.  

However, based on your completed medical questionnaire, age, and activity level, risks for this type 
of injury have been greatly reduced. 

 
Protection of Physical Risks: 
 

To reduce the above risks, appropriate warm-up has been incorporated before the running gait 
trials. If you feel any soreness or irritation while participating in this study, please tell the 
investigators as soon as possible. If you are injured, experience allergic reaction to the liquid 
adhesive used to secure the reflective markers, or experience shortness of breath while 
participating in this research study, initial first aid and/or appropriate emergency measures will 
be provided/initiated by the Principal investigator, who is a Licensed Athletic Trainer. If you are 
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a UWM student you will be referred to the Norris Health Center for follow-up care. Non-
students will be referred to their primary care physician and will be responsible for all expenses 
incurred.  
 
Risks to Privacy and Confidentiality:   
Less Likely: 

 Since a photograph and video will be taken of your foot, this might increase risks to your 
privacy. 

 Since your private information will be collected for this study, there is always a risk of breach 
of confidentiality. 

 
Protection of Risks to Privacy and Confidentiality: 

 All data will be stored in a locked filing cabinet in a locked room. All data will be given a letter 
and number that is uniquely associated with you. This code will NOT contain any partial 
identifiers (i.e. last four digits of your SSN) and will be stored in a separate locked office in a 
locked filing cabinet.  No identifiers will be stored with the research data. Only those individuals 
with an active role in this study will have access to the research data and only the PI and Co-
investigators will have access to identifying information. When all participants’ have completed 
active participation in the study and data collection is completed, the code will be destroyed.  
All appropriate measures to protect your private information will be taken. 
 

5. Benefits 

 

Will I receive any benefit from my participation in this study? 

 You will be given information as to your foot strike pattern (as some individuals incorrectly 
identify their proper technique).  This may assist you in altering your foot strike pattern in 
the future to perhaps change performance or reduce injury risk. 
 

6. Study Costs and Compensation 

 

Will I be charged anything for participating in this study? 

 You will not be responsible for any of the costs associated with this research study. 
 
Are subjects paid or given anything for being in the study? 

 If following the initial screening you qualify for participation in the study, you will receive   
$20.00 in gift cards upon successful completion of the final running analysis. 
 

7. Confidentiality 

 

What happens to the information collected? 
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All information collected about you during the course of this study will be kept confidential to 
the extent permitted by law. We may decide to present what we find to others, or publish our 
results in scientific journals or at scientific conferences.  Information that identifies you 
personally will not be released without your written permission. Only the PI and the co-
investigators will have access to the information.  However, the Institutional Review Board at 
UW-Milwaukee or appropriate federal agencies like the Office for Human Research Protections 
may review this study’s records. 
 
All data collected will be retained for 3 years following completion of the research study. 
The confidentiality of your data and information will be safeguarded as outlined in “Risks & 
Minimizing Risks” section under the “Protection of Risks to Privacy and Confidentiality” header. 
 
 

8. Alternatives 

 

Are there alternatives to participating in the study? 
There are no alternatives to participating in this research study.  You may choose not to 
participate. 

  

9. Voluntary Participation and Withdrawal 

 

What happens if I decide not to be in this study? 
Your participation in this study is entirely voluntary. You may choose not to take part in this 
study.  If you decide to take part, you can change your mind later and withdraw from the study. 
You are free to not answer any questions or withdraw at any time. Your decision will not 
change any present or future relationships with the University of Wisconsin Milwaukee. 
 
If you withdraw from this study before completing the second testing session, we will destroy 
all information we collect about you. Your decision not to participate or to withdraw early will 
not result in penalty or harm, nor will it affect your grade or class standing.   
 

10. Questions 

 

Who do I contact for questions about this study? 
For more information about the study or the study procedures or treatments, or to withdraw 
from the study, contact: 

Stephen Cobb, PhD, ATC 
Dept. of Kinesiology 
PO Box 413 
Milwaukee, WI 53201 
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(414) 229-3369 
Who do I contact for questions about my rights or complaints towards my treatment as a 
research subject? 
The Institutional Review Board may ask your name, but all complaints are kept in confidence. 
 

Institutional Review Board 
Human Research Protection Program 
Department of University Safety and Assurances 
University of Wisconsin – Milwaukee 
P.O. Box 413 
Milwaukee, WI 53201 
(414) 229-3173 

11. Signatures 

 

Research Subject’s Consent to Participate in Research: 
To voluntarily agree to take part in this study, you must sign on the line below.  If you choose to 
take part in this study, you may withdraw at any time.  You are not giving up any of your legal 
rights by signing this form.  Your signature below indicates that you have read or had read to 
you this entire consent form, including the risks and benefits, and have had all of your questions 
answered, and that you are 18 years of age or older. 
 
_____________________________________________ 
Printed Name of Subject/ Legally Authorized Representative  
 
_____________________________________________ _____________________ 
Signature of Subject/Legally Authorized Representative Date 
 
Research Subject’s Consent to Audio/Video/Photo Recording: 
 
It is okay to photograph my feet while I am in this study and use my photographed data in the 
research. 
 
Please initial:  ____Yes    ____No 
Principal Investigator (or Designee) 
I have given this research subject information on the study that is accurate and sufficient for the 
subject to fully understand the nature, risks and benefits of the study. 
 
_____________________________________________ _____________________ 
Printed Name of Person Obtaining Consent Study Role 
 
_____________________________________________ _____________________ 
Signature of Person Obtaining Consent Date
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IRBManager Protocol Form 
 
Instructions: Each Section must be completed unless directed otherwise. Incomplete forms will delay the IRB review process and may be returned to you. 
Enter your information in the colored boxes or place an “X” in front of the appropriate response(s). If the section does not apply, write “N/A.” 
 

SECTION A: Title 

 

A1. Full Study Title: 
 
 
 
 

SECTION B: Study Duration 

 

B1. What is the expected start date? Data collection, screening, recruitment, enrollment, or consenting activities may not begin until IRB approval has 
been granted. Format: 07/05/2011 
 

09/01/2013 

 

B2. What is the expected end date? Expected end date should take into account data analysis, queries, and paper write-up. Format: 07/05/2014 
 

08/31/2014 

 

SECTION C: Summary 

 

C1. Write a brief descriptive summary of this study in Layman Terms (non-technical language): 

This study will compare habitual runners who run with a rearfoot strike pattern (heel strike) to those who run with a forefoot strike pattern 
(ball of foot strike).  A foot model that divides the foot into 6 segments will be used to evaluate foot motion and how foot motion is coupled 
with adjacent joints.  The neuromuscular function (muscle activity) of the leg muscles will be compared between the two running patterns as 
well.  As biomechanics of motion can change after fatigue, observation will take place before and after a fatiguing run. 

 
C2. Describe the purpose/objective and the significance of the research: 

Foot joint coupling and EMG patterns in habitual forefoot and rearfoot runners 
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The purpose of this project is to identify what biomechanical and neuromuscular differences exist between the different strike patterns to 
better understand patterns of musculoskeletal overuse injuries commonly seen in runners.   

 

C3. Cite and relevant literature pertaining to the proposed research: 

Bramble, D. M., & Lieberman, D. E. (2004). Endurance running and the evolution of Homo. Nature, 432(7015), 345-352. 
Cobb, S. C., James, C. R., Hjertstedt, M., & Kruk, J. (2011). A Digital Photographic Measurement Method for Quantifying 

Foot Posture: Validity, Reliability, and Descriptive Data. J Athl Train, 46(1), 20-30. 
Cobb, S. C., Tis, L. L., Johnson, J. T., Wang, Y. T., Geil, M. D., & McCarty, F. A. (2009). The effect of low-mobile foot 

posture on multi-segment medial foot model gait kinematics. Gait & Posture, 30(3), 334-339. 
Farthing, J. P., & Chilibeck, P. D. (2003). The effects of eccentric and concentric training at different velocities on muscle 

hypertrophy. Eur J Appl Physiol, 89(6), 578-586. 
Goss, D. L., & Gross, M. T. (2012). Relationships Among Self-reported Shoe Type, Footstrike Pattern, and Injury 

Incidence. US Army Med Dep J, 25-30. 
Guidetti, L., Rivellini, G., & Figura, F. (1996). EMG patterns during running: Intra- and inter-individual variability. J 

Electromyogr Kinesiol, 6(1), 37-48. 
Hwang, S. J., Choi, H. S., & Kim, Y. H. (2004). Motion analysis based on a multi-segment foot model in normal walking. 

Conf Proc IEEE Eng Med Biol Soc, 7, 5104-5106. 
Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D'Andrea, S., Davis, I. S., . . . Pitsiladis, Y. (2010). Foot 

strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(7280), 531-535. 
Morey-Klapsing, G., Arampatzis, A., & Bruggemann, G. P. (2005). Joint stabilising response to lateral and medial tilts. 

Clin Biomech (Bristol, Avon), 20(5), 517-525. 
Nigg, B. M., Cole, G. K., & Nachbauer, W. (1993). Effects of arch height of the foot on angular motion of the lower 

extremities in running. Journal of Biomechanics, 26(8), 909-916. 
Pohl, M. B., & Buckley, J. G. (2008). Changes in foot and shank coupling due to alterations in foot strike pattern during 

running. Clin Biomech (Bristol, Avon), 23(3), 334-341. 
Williams, D. S., McClay, I. S., & Manal, K. T. (2000). Lower extremity mechanics in runners with a converted forefoot 

strike pattern. J Appl Biomech, 16(2), 210-218.  
 

SECTION D: Subject Population 
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Section Notes… 

 D1. If this study involves analysis of de-identified data only (i.e., no human subject interaction), IRB submission/review may not be 
necessary. Visit the Pre-Submission section in the IRB website for more information. 

 

D1. Identify any population(s) that you will be specifically targeting for the study. Check all that apply: (Place an “X” in the column next to 
the name of the special population.) 

 Not Applicable (e.g., de-identified datasets)  
Institutionalized/ Nursing home residents recruited in the nursing 
home 

X UWM Students of PI or study staff  Diagnosable Psychological Disorder/Psychiatrically impaired 

 
Non-UWM students to be recruited in their educational 
setting, i.e. in class or at school 

 Decisionally/Cognitively Impaired 

 UWM Staff or Faculty  Economically/Educationally Disadvantaged  

 Pregnant Women/Neonates  Prisoners 

 Minors under 18 and ARE NOT wards of the State  Non-English Speaking 

 Minors under 18 and ARE wards of the State  Terminally ill 

X Other (Please identify): Healthy adult runners (age 18-49) 

 

 

D2. Describe the subject group and enter the total number to be enrolled for each group. For example: teachers-50, students-200, parents-

25, parent’s children-25, student control-30, student experimental-30, medical charts-500, dataset of 1500, etc. Enter the total number of 

subjects below. If this is a multi-center study, enter the total number of subjects to be enrolled for UWM only. Total enrollment from all sites 

should be explained in the Protocol Summary Form. 

Describe subject group: Number: 

Forefoot runners 

15 will complete the study, but we anticipate screening 

approximately 25 runners who believe they are forefoot 

runners in order to identify 15 that meet our forefoot 

http://www4.uwm.edu/usa/irb/researchers/formsandtemplates.cfm
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strike pattern criteria (see “Running screen evaluation” in 

section F1 Below) 

 Rearfoot runners 

15 will complete the study, but we anticipate screening 

approximately 25 who believe they are rearfoot runners 

in order to identify 15 that meet our rearfoot strike 

pattern criteria (see “Running screen evaluation” in 

section F1 below) 

  

  

  

  

TOTAL # OF SUBJECTS: 50 

TOTAL # OF SUBJECTS (If UWM is a collaborating site): 50 

 

D3. List any major inclusion and exclusion criteria (e.g., age, gender, health status/condition, ethnicity, location, English speaking, etc.) and state the 
justification for the inclusion and exclusion: 

Inclusion criteria for all participants are as follows: age 18-45, run a minimum of 10 miles per week, and shoe size 6-13. 
 
Exclusion criteria for all participants are as follows: major lower extremity surgery, lower extremity injury in the previous 6 weeks, asthma or 
exercise induced asthma not controlled by medication, cardiovascular disease, and pregnant. 
Participants who do not qualify will have their data/information destroyed. 

 

SECTION E: Informed Consent 

Section Notes… 

 E1. Make sure to attach any recruitment materials for IRB approval. 

 E3. The privacy of the participants must be maintained throughout the consent process. 
 

E1. Describe how the subjects will be recruited: (E.g., through flyers, beginning announcement for X class, referrals, random telephone sampling, etc.) 
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Flyers posted on UWM campus 
Announcements in UWM classrooms 
Flyers to running and triathlon groups at UWM and in the surrounding community 

 

E2. Describe the forms that will be used for each subject group (e.g., short version, combined parent/child consent form, child assent form, verbal script, 
information sheet): Copies of all forms should be attached for approval. If requesting to waive documentation (not collecting subject’s signature) or to waive 
consent all together, state so and complete the “Waiver to Obtain-Document-Alter Consent” and attach: 

Phone screen Health questionnaire 
Consent form 
 

 

E3. Describe who, where, and when consent will be obtained. When appropriate (for higher risk and complex study activities), a process should be mentioned 
to assure that participants understand the information. For example, in addition to the signed consent form, describing the study procedures verbally or 
visually.  

Verbal consent will be achieved upon describing the study to the participant over the phone when screening inclusion/exclusion criteria.  
Written consent will be obtained upon arrival for the first visit to the Musculoskeletal Injury Biomechanics Lab.  The study will be verbally 
explained to the participant in addition to the written consent form they will sign.  Any information or data from the participants will be 
destroyed after 5 years. 

 

 

SECTION F: Data Collection and Design 

Section Notes… 

 F1. Data collection instruments should be attached for IRB review. 

 

F1. In the table below, chronologically describe all study activities. 

 In column A, give the activity a short name. 

 In column B, briefly describe activities conducted by the PI (recruitment, audiotaping) and describe in greater detail the activities (surveys, 

interviews, tasks, etc.) research participants will be engaged in. Address where, how long, and when each activity takes place. 

 In column C, describe any possible risks (e.g., physical, psychological, social, economic, legal, etc.) the subject may reasonably encounter. 

Describe the safeguards that will be put into place to minimize possible risks (e.g., interviews are in a private location, data is anonymous, 
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assigning pseudonyms, where data is stored, coded data, etc.) and what happens if the participant gets hurt or upset (e.g., referred to 

Norris Health Center, PI will stop the interview and assess, given referral, etc.). 

A. Activity Name: B. Activity Description: C. Activity Risks and Safeguards: 

Recruitment 

Post fliers on UWM bulletin boards, contact UWM instructors to send 
e-mailed flier to students, contact UWM and community running and 
triathlon groups and ask to e-mail fliers to members.  Recruitment 
should take 1-2 months. 
 

No risk to participants 

Phone screen 

interview- Health 

Questionnaire 

Participants will be asked a basic health questionnaire over the phone 
to assure safety during the study and to assure they qualify based on 
the inclusion and exclusion criteria before being asked to come to the 
lab for further screening and testing.  In the phone interview, their 
age, gender, and inquiries of cardiovascular and pulmonary diseases 
will be asked to assure they qualify for the study.  If the individual 
does not qualify or chooses not to participate, all information/data 
collected on the participant will be destroyed. This should take 
approximately 10 minutes.  
 

No risk to participants 

Informed consent  

(Visit 1) 

The first visit to the Musculoskeletal Injury Biomechanics (MIB) Lab 
(Enderis 132) will begin with verbal instruction to the participant as to 
all the requirements, risks, benefits, and study purpose.  They will 
then read and sign the written informed consent which contains the 
same information.  After hearing and reading all the risks and 
requirements of this study, if an individual chooses not to participate 
in the study, all information/data collected on the participant will be 
destroyed. This should take approximately 10 minutes 
 

No risk to participants 

Foot posture screen 

(Visit 1) 

Height and weight will be collected from the participant.  Foot arch 
structure will be assessed in the MIB lab (UWM, Enderis Hall 132) 
through partial (10%) and full weight-bearing (90%+) digital images of 
the foot.  Ink marks from a ballpoint pen will be made on foot to 
identify underlying bony structures.  Subjects will place foot on scale 1 
m from camera lens.  One picture will be taken at each of the two 
different weight-bearing conditions and both feet will be 
photographed for a total of 4 pictures.  This should take 
approximately 20 minutes 

Ink from pen may irritate skin, alcohol wipes are 
available to remove ink after photographs are 
taken. Risk of skin irritation from the pen will be 
minimized by using a pen with ink that conforms 
to the ASTM D-4236 nontoxic standard. 
 
Since a photograph will be taken of the 
participant’s foot, this may increase risks to 
privacy; however, since the photograph will not 
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 be identifiable, this risk is minimized. All data is 
stored in a locked computer and each subject is 
assigned a number so the feet will not be 
associated with a name.  

Running evaluation 

screen 

(Visit 1) 

Due to the fact that some runners who believe they run with a 
forefoot strike pattern actually run with a rearfoot strike pattern, and 
vice-versa foot strike pattern will be evaluated by the investigator 
through assessment of ground reaction force patterns.  Participants 
will be asked to run across a carpeted walkway in the MIB lab with 
right foot placement on the AMTI force plate (Advanced Medical 
Technologies, Inc, Waterford, MA).  A few trials may be necessary to 
assure proper foot placement on the force plate without alteration of 
running form.  Immediate results will be viewed through the 

computer program, Cortex (Motion Analysis Corp, Santa Rosa, 
CA) to determine if participant is a forefoot or rearfoot 
striker.  This should take approximately 10 minutes. 
 

Running requires increased cardiovascular and 
muscular activity.  There is a slight risk of heart 
attack or other exercise-induced medical 
conditions (asthma, etc) and musculoskeletal 
injury as well.  The student and faculty primary 
investigators are both certified athletic trainers 
and certified in CPR and AED for the professional.  
Other investigators are also certified in CPR.  An 
AED is available in close proximity to the MIB lab 
(approx. 50 m) .  These risks will be minimized by 
using trained runners and prescreening for 
cardiovascular disease. 
If an individual completes the running evaluation 
screen and the research group is already filled, 
their information/data will be destroyed. 
 
 

EMG electrode 

placement 

(Visit 2) 

Eight silver-silver chloride surface electromyography (EMG) electrodes 
(Telemyo 900, Noraxon, Scottsdale, AZ) will be placed on four leg 
muscles (2 per muscle) on the right leg.  They will be placed on the 
skin surface 20 mm apart over the gastrocnemius medial portion, 
gastrocnemius lateral portion, the peroneus longus, and the tibialis 
anterior.  Prior to skin placement, skin will be prepared through 
removal of hair (via shaving razor) and cleaned with an alcohol wipe.  
Electrodes will be connected to a battery and data storage pack via 
wires.  The pack will be placed on the low back of the participant via a 
fanny pack. Wires will be secured with Elasticon tape. (15 minutes) 
 

Shaving the hair off the skin may possibly cause 
minor cuts.  Basic first aid will be administered if 
necessary to stop bleeding.  Electrodes may cause 
minor irritation to the skin.  If this occurs, 
participants will be instructed to treat with ice for 
20 minutes upon returning home. 

Leg MVC’s 

(Visit 2) 

Participants will undergo a 3-5 minute warm up on a 
treadmill.  Each subject will then complete maximal 
voluntary isometric contraction (MVC) testing for ankle 
dorsiflexion, plantarflexion, inversion, and eversion on a 
Biodex dynamometer (Biodex Medical Systems, Shirley, 

There is a slight risk of musculoskeletal injury 
during the MVC’s.  Risk will be reduced by 
allowing for adequate warm-up and familiarity of 
dynamometer before MVC. If any injury occurs, 
the test will be stopped and the individual will be 
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NY). Subjects will be instructed to perform a 3 sec an “all-
out” muscle contraction.  During the contraction, strong 
verbal encouragement will be delivered to motivate a true 
MVC.  Muscle activation intensities during running will be 
evaluated as a percentage of the ankle MVC’s. (20 min) 
 

instructed to treat it accordingly with ice and any 
other necessary modality 

Running Data 

Collection 

(Visit 2) 

Reflective marker clusters (6.4 mm diameter markers) will 
be placed using liquid adhesive (Mastisol) and toupee tape 
on the right leg and foot to identify the following bony 
landmarks: medial and lateral malleoli, calcaneus, 
navicular, cuboid, metatarsals 1, 2, 4, and 5, and the 
hallux.  Prior to running analysis, a seated and standing 
anatomical calibration will take place to develop local 
coordinate systems within each segment.  During the 
standing calibration, additional markers will be placed on 
the greater trochanters and medial and lateral joint line of 
the knee and then removed after calibration to identify 
knee and hip joint centers.  Marker clusters will also be 
positioned on the thigh segment and leg segment prior to 
the standing calibration and left on during running trials.  
Participants will then execute the running analysis portion 
by completing 10 successful running trials (4.0 m·s-1 ± 
10%) in a minimal sandal using their typical foot strike 
pattern.  The running trials will occur on a 30 m carpeted 
walkway with an AMTI force plate (Advanced Mechanical 
Technology, Inc, Watertown, MA) located at about 20 m 
down the walkway.  Motion analysis data will be collected 
at 200 Hz with a 10-camera Eagle Motion Analysis System 
(Motion Analysis Corp, Santa Rosa, CA) and the AMTI force 
plate sampling at 1000 Hz will be used to assess ground 
reaction forces.  (40 minutes) 
 

Running requires increased cardiovascular and 
muscular activity.  There is a risk of heart attack or 
other exercise-induced medical conditions 
(asthma, etc) and musculoskeletal injury as well.  
The student and faculty primary investigators are 
both certified athletic trainers and certified in CPR 
and AED for the professional.  Other investigators 
are also certified in CPR.  An AED is available in 
close proximity to the MIB lab (approx. 50 m).  
The age of participation is also maximized at 45 to 
avoid the increase in risk for cardiovascular 
problems in individuals over 45.  These risks will 
also be minimized by using trained runners and 
prescreening for cardiovascular disease. 
 
There may be a slight risk of allergic reaction to 
the liquid adhesive used to secure the reflective 
markers. If an allergic reaction is experienced, 
UWM student participants will be referred to the 
Norris Health Center for follow-up care. Non-
students will be referred to their primary care 
physician and will be responsible for all expenses 
incurred. If an unexpected emergency event 
occurs, a full report will be submitted to the 
IRB.the participant will be referred to Norris 
Health Center for immediate care.  
Participants may experience minor muscle 
soreness and/or musculoskeletal injury such as 
muscle strain as a result of the running gait trials.  
Proper warm-up will help to minimize this risk.  
Participants will also be asked to report any 
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shortness of breath during the trials. In the case of 
injury or illness, initial first aid and/or appropriate 
emergency measures will be provided/initiated by 
the Principal investigator, who is a Licensed 
Athletic Trainer. UWM student participants who 
get hurt, upset, or experience shortness of breath 
during the trials will be referred to the Norris 
Health Center for follow-up care. Non-students 
will be referred to their primary care physician 
and will be responsible for all expenses incurred. 
If this event is unexpected, a full report will be 
submitted to the IRB. 

Fatiguing run 

(Visit 2) 

After 10 successful running trials, subjects will be placed 
on a treadmill to perform a fatiguing run.  Subjects will be 
allowed 5 minutes for warm-up and then choose a speed 
that is aligned with their training pace.  Level of fatigue 
will be assessed during the run by assessing rate of 
perceived exertion (RPE) on a scale of 1-10 every 5 
minutes.  After 30 minutes of running, intensity will 
increase by increasing treadmill incline 1° every 5 minutes.  
The fatiguing run will be terminated when the participant 
is reporting no less than an 8 on the RPE scale and/or can 
no longer continue at the set pace.   

Running requires increased cardiovascular and 
muscular activity.  There is a slight risk of heart 
attack or other exercise-induced medical 
conditions (asthma, etc) and musculoskeletal 
injury as well.  The student and faculty primary 
investigators are both certified athletic trainers 
and certified in CPR and AED for the professional.  
Other investigators are also certified in CPR.  An 
AED is available in close proximity to the MIB lab 
(approx. 50 m).  The age of participation is also 
maximized at 45 to avoid the increase in risk for 
cardiovascular problems in individuals over 45. .  
These risks will also be minimized by using trained 
runners and prescreening for cardiovascular 
disease. 
 

Post-fatigue running 

data collection 

(Visit 2) 

Foot and leg reflective markers will be assessed after the 
fatiguing run to assure that none fell off and need to be 
replaced.  If replacement of markers is required, seated 
and standing calibration will be done again but this time 
after the gait trials in order to not give time to recover to 
the participant.  As in the pre-fatiguing gait trials, 10 
successful trials will be conducted at the same speed of 
the first 10 trials.  RPE will be assessed again after 

Running requires increased cardiovascular and 
muscular activity.  There is a slight risk of heart 
attack or other exercise-induced medical 
conditions (asthma, etc) and musculoskeletal 
injury as well.  The student and faculty primary 
investigators are both certified athletic trainers 
and certified in CPR and AED for the professional.  
Other investigators are also certified in CPR.  An 
AED is available in close proximity to the MIB lab 
(approx. 50 m).  The age of participation is also 
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completion of the final successful trial to see if the 
participant feels recovered from the fatigue. (20 minutes) 
 

maximized at 45 to avoid the increase in risk for 
cardiovascular problems in individuals over 45. .  
These risks will also be minimized by using trained 
runners and prescreening for cardiovascular 
disease. 
 

Data Analysis 

Data analyses will be performed using Matlab (Matlab R2011b, 
MathWorks, Natick, MA) to filter data, calculate range of 
motion and joint coupling variables and SPSS to identify 
statistical significance. 

No risk to participants 

   

   

 

F2. Explain how the data will be analyzed or studied (i.e. quantitatively or qualitatively) and how the data will be reported (i.e. aggregated, anonymously, 
pseudonyms for participants, etc.): 

Data will be evaluated quantitatively and all participants will be given a random code to which they will be identified. 
 
All data will be stored in a locked filing cabinet in a locked room.  All data will be given a letter and number that is uniquely associated with 
each individual participant. This code will not contain any partial identifiers and will be stored in a separate locked office in a locked filing 
cabinet. No identifiers will be stored with the data.  Those having access include the PI, Stephen Cobb, the student PI, Rhiannon Seneli, and 
Emily Gerstle, another graduate student in the lab.  When all participants’ have completed active participation in the study and data collection 
is completed, the key linking the names to the code will be destroyed one year after data collection is complete.  All data will be retained for 
3 years following conclusion of the research study. 

 

 

SECTION G: Benefits and Risk/Benefit Analysis 

Section Notes… 

 Do not include Incentives/ Compensations in this section. 
 

G1. Describe any benefits to the individual participants.  If there are no anticipated benefits to the subject directly, state so.  Describe potential benefits to 
society (i.e., further knowledge to the area of study) or a specific group of individuals (i.e., teachers, foster children). Describe the ratio of risks to benefits.  
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Subjects will be given immediate biomechanical information as to their footstrike pattern based on the initial footstrike analysis and overall 
group results of pre- and post- fatiguing run biomechanical results of the footstrike pattern groups will be available upon request from the 
participant after data analyses have been completed for up to one year, at which time the code linking participant to data will be destroyed.  
Further understanding of foot motion between the two foot patterns will help to identify possible prevention of injury and rehabilitation 
strategies for leg musculoskeletal injuries. 

 

G2. Risks to research participants should be justified by the anticipated benefits to the participants or society.  Provide your assessment of how the 
anticipated risks to participants and steps taken to minimize these risks, balance against anticipated benefits to the individual or to society. 

The risks for this study are minimal and the knowledge of the participants’ footstrike pattern may help to reduce future injuries through 
technique changes.  Additionally, the benefits to the running community are great in helping to identify possible biomechanical causes to 
running injuries. 

 

SECTION H: Subject Incentives/ Compensations 

Section Notes… 

 H2 & H3. The IRB recognizes the potential for undue influence and coercion when extra credit is offered. The UWM 
IRB, as also recommended by OHRP and APA Code of Ethics, agrees when extra credit is offered or required, 
prospective subjects should be given the choice of an equitable alternative. In instances where the researcher does 
not know whether extra credit will be accepted and its worth, such information should be conveyed to the subject 
in the recruitment materials and the consent form. For example, "The awarding of extra credit and its amount is 
dependent upon your instructor. Please contact your instructor before participating if you have any questions. If 
extra credit is awarded and you choose to not participate, the instructor will offer an equitable alternative." 

 H4. If you intend to submit to the Travel Management Office for reimbursement purposes make sure you understand what each level of 
payment confidentiality means (click here for additional  information).  

 
H1. Does this study involve incentives or compensation to the subjects? For example cash, class extra credit, gift cards, or items. 
 
 [X] Yes 
 [__] No [SKIP THIS SECTION] 
 
 
H2. Explain what (a) the item is, (b) the amount or approximate value of the item, and (c) when it will be given. For extra credit, state the number of credit 
hours and/or points. (e.g., $5 after completing each survey, subject will receive [item] even if they do not complete the procedure, extra credit will be award 
at the end of the semester): 

http://www4.uwm.edu/bfs/depts/travel/
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$20 in gift certificates to area merchants  

 

H3. If extra credit is offered as compensation/incentive, an alternative activity (which can be another research study or class assignment) should be offered. 
The alternative activity should be similar in the amount of time involved to complete and worth the same extra credit. If the task is a class 
requirement/assignment that students would be required to complete. 

 

 

H4. If cash or gift cards, select the appropriate confidentiality level for payments (see section notes): 
[X_] Level 1 indicates that confidentiality of the subjects is not a serious issue, e.g., providing a social security number or other identifying information 

for payment would not pose a serious risk to subjects. 
 Choosing a Level 1 requires the researcher to maintain a record of the following: The payee's name, address, and social security 

number and the amount paid. 
 When Level 1 is selected, a formal notice is not issued by the IRB and the Travel Management Office assumes Level 1. 
 Level 1 payment information will be retained in the extramural account folder at UWM/Research Services and attached to the 

voucher in Accounts Payable.  These are public documents, potentially open to public review. 
 
[__] Level 2 indicates that confidentiality is an issue, but is not paramount to the study, e.g., the participant will be involved in a study researching 

sensitive, yet not illegal issues. 
 Choosing a Level 2 requires the researcher to maintain a record of the following: A list of names, social security numbers, home 

addresses and amounts paid. 
 When Level 2 is selected, a formal notice will be issued by the IRB. 
 Level 2 payment information, including the names, are attached to the PIR and become part of the voucher in Accounts Payable. The 

records retained by Accounts Payable are not considered public record. 
 
[__] Level 3 indicates that confidentiality of the subjects must be guaranteed. In this category, identifying information such as a social security number 

would put a subject at increased risk. 
 Choosing a Level 3 requires the researcher to maintain a record of the following: research subject's name and corresponding coded 

identification.  This will be the only record of payee names, and it will stay in the control of the PI. 
 Payments are made to the research subjects by either personal check or cash. 
 Gift cards are considered cash. 
 If a cash payment is made, the PI must obtain signed receipts. 
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SECTION I: Deception/ Incomplete Disclosure (INSERT “NA” IF NOT APPLICABLE) 

Section Notes… 

 If you cannot adequately state the true purpose of the study to the subject in the informed consent, deception/ incomplete disclosure is 
involved. 

 

I1. Describe (a) what information will be withheld from the subject (b) why such deception/ incomplete disclosure is necessary, and (c) when the subjects 
will be debriefed about the deception/ incomplete disclosure. 
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Appendix J: IRB Approval 
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Table K.1. Statistical findings from MANOVA testing for kinematics of the multi-segment foot model (RC = rearfoot complex, CNC = calcaneonavicular, 
MFF = medial forefoot, MTP = 1st metatarsophalangeal, LFF = lateral forefoot, and CC = calcaneocuboid) at initial contact (IC) and the maximum and 
minimum joint angle over the stance phase. Within and between-subjects factors were time (pre- and post- 5 km run) and footstrike (rearfoot vs forefoot 
strike).  Results are reported as F-statistic (top number) and p-value (bottom number). Follow-up ANOVAs were used to identify differences seen in the 
MANOVAs. 

Joint 
MANOVA 
(ANOVA) 

dF P
la

n
e

 

Within-subjects main effects  
(Time) 

Between-subjects main effects 
(Foot strike) 

Interaction effects 

MANOVA ANOVA 
IC 

ANOVA 
max 

ANOVA 
min 

MANOVA ANOVA 
IC 

ANOVA 
max 

ANOVA 
min 

MANOVA ANOVA 
IC 

ANOVA 
Max 

ANOVA 
min 

RC 
3,24 

(1,26) 

Sag 7.96  
.001 

2.23 
.147 

2.83 
.102 

2.80 
.107 

10.29 
< .001 

27.77 
< .001 

1.57 
.222 

1.08 
.309 

1.50 
.24 

   

Fron 11.30 
< .001 

3.02 
.09 

3.96 
.06 

20.81 
< .001 

3.91 
.02 

8.13 
.01 

10.15 
.004 

.333 

.57 
.12 
.95 

   

Tran 5.19 
.007 

4.84 
.04 

5.35 
.03 

.06 

.81 
.92 
.45 

   2.60 
.08 

   

CNC 
3,25 

(1,27) 

Sag 6.94 
.001 

10.85  
.003 

9.10 
.006 

1.28 
.27 

.55 

.66 
   .38 

.77 
   

Fron 3.16 
.04 

.66 

.42 
.21 
.65 

5.31 
.03 

2.90 
.06 

   .30 
.82 

   

Tran 1.08 
.38 

   2.62 
.07 

   2.27 
.11 

   

MFF 3,24 
Sag 16.50  

< .001 
   20.27 

< .001 
   3.78 

.02 
9.49 
.005 

.177 

.677 
.037 
.849 

MTP 
3,25 

(1,27) 
Sag 15.04  

< .001 
2.25  
.15 

12.17 
.002 

2.71 
.11 

.74 

.54 
   .23 

.88 
   

LFF 3,25 
Sag 3.55  

.03 
   2.07 

.13 
   4.12 

.02 
2.88 
.10 

  

CC 
3,25 

(1,28) 

Sag 5.80  
.004 

13.54  
.001 

6.79 
.02 

3.72 
.06 

17.15 
< .001 

10.86 
.003 

.49 

.49 
2.01 
.17 

.64 

.59 
   

Fron 1.38 
.27 

   .50 
.69 

   .49 
.70 

   

Tran 3.77 
.02 

1.98 
.17 

10.82 
.003 

.26 

.61 
1.07 
.38 

   1.84 
.17 
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Table K.2. Statistical findings from subphase 1 angular displacement. Separate MANOVAs were used to compare the three planes of motion for the rearfoot 
complex (RC), calcaneonavicular complex (CNC), and the calcaneocuboid complex (CC).  Follow-up ANOVAs were used to identify any significant differences.  
For the medial forefoot (MFF), 1st metatarsophalangeal joint (MTP), and lateral forefoot (LFF) only the sagittal plane was examined and mixed within- and 
between-subjects ANOVAs were used.  All results are reported as F-statistic (top number) and p-value (bottom number). 

Joint 
MANOVA 
(ANOVA) 

dF 

Within-subjects main effects  
(Time) 

Between-subjects main effects  
(Foot strike) 

Interaction 
effects 

MANOVA ANOVA 
Sagittal 

ANOVA 
Frontal 

ANOVA 
Trans. 

MANOVA ANOVA 
Sagittal 

ANOVA  
Frontal 

ANOVA  
Trans. 

MANOVA ANOVA 

RC 
3,24 

(1,26) 

7.49 
.001 

.042 

.84 
12.42 
.002 

8.08 
.009 

2.94 
.054 

   
 

.381 

.768 
 

CNC 
3,25 

(1,27) 
5.04 
.007 

2.35 
.14 

5.69 
.02 

13.70 
.001 

8.87 
< .001 

20.39 
< .001 

4.38 
.046 

.114 

.74 
.719 
.55 

 

MFF (1,26) 
 3.72 

.07 
   5.39 

.03 
   .26 

.62 

MTP (1,27) 
 2.96 

.10 
   .93 

.60 
   .29 

.34 

LFF (1,27) 
 .28 

.62 
   4.06 

.05 
   1.98 

.17 

CC 
3,25 

(1,28) 
1.39 
.269 

   3.78 
.023 

6.74 
.02 

2.57 
.12 

.022 

.88 
.629 
.603 
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Table K.3. Statistical findings from subphase 2 angular displacement. Separate MANOVAs were used to compare the three planes of motion for the rearfoot 
complex (RC), calcaneonavicular complex (CNC), and the calcaneocuboid complex (CC).  Follow-up ANOVAs were used to identify any significant differences.  
For the medial forefoot (MFF), 1st metatarsophalangeal joint (MTP), and lateral forefoot (LFF) only the sagittal plane was examined and mixed within- and 
between-subjects ANOVAs were used.  All results are reported as F-statistic (top number) and p-value (bottom number). 

Joint 
MANOVA 
(ANOVA) 

dF 

Within-subjects main effects 
(Time) 

Between-subjects main effects 
(Footstrike) 

Interaction effects 

MANOVA ANOVA 
Sagittal 

ANOVA 
Frontal 

ANOVA 
Trans. 

MANOVA ANOVA 
Sagittal 

ANOVA  
Frontal 

ANOVA  
Trans. 

MANOVA ANOVA 
Sagittal 

ANOVA  
Frontal 

ANOVA 
Trans. 

RC 
3,24 

(1,26) 

4.94 
.008 

   2.68 
.070 

   
 

6.12 
.003 

6.81 
.015 

.001 

.973 
11.99 
.002 

CNC 
3,25 

(1,27) 
2.13 
.122 

   3.89 
.021 

   3.70 
.025 

.364 

.55 
.123 
.73 

9.03 
.006 

MFF (1,26) 
 17.42 

< 
.001 

   27.01 
< .001 

   4.61 
.04 

  

MTP (1,27) 
 3.84 

.06 
   .815 

.38 
   .75 

.39 
  

LFF (1,27) 
 1.02 

.32 
   2.23 

.15 
   9.73 

.004 
  

CC 
3,25 

(1,28) 
.931 
.440 

   11.26 
< .001 

30.68 
< .001 

1.16 
.29 

4.89 
.04 

2.11 
.40 
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Table K.4. Statistical findings from subphase 3 angular displacement. Separate MANOVAs were used to compare the three planes of 
motion for the rearfoot complex (RC), calcaneonavicular complex (CNC), and the calcaneocuboid complex (CC).  Follow-up ANOVAs were 
used to identify any significant differences.  For the medial forefoot (MFF), 1st metatarsophalangeal joint (MTP), and lateral forefoot 
(LFF) only the sagittal plane was examined and mixed within- and between-subjects ANOVAs were used.  All results are reported as F-
statistic (top number) and p-value (bottom number). 

Joint 
MANOVA 
(ANOVA) 

dF 

Within-subjects main effects 
(Time) 

Between-subjects main effects 
(Footstrike) 

Interaction 
effects 

MANOVA ANOVA 
Sagittal 

ANOVA 
Frontal 

ANOVA 
Trans. 

MANOVA ANOVA 
Sagittal 

ANOVA  
Frontal 

ANOVA  
Trans. 

MANOVA ANOVA 
Sagittal 

RC 
3,24 

(1,26) 

3.49 
.031 

6.57 
.02 

5.44 
.03 

.182 

.67 
1.02 
.403 

   
 

.023 

.995 
 

CNC 
3,25 

(1,27) 
.038 
.990 

   .198 
.897 

   .186 
.905 

 

MFF (1,26) 
 4.02 

.06 
   3.29 

.08 
   1.70 

.20 

MTP (1,27) 
 25.93 

< 
.001 

   6.46 
.02 

   .12 
.73 

LFF (1,27) 
 7.86 

.009 
   .01 

.92 
   .27 

.61 

CC 
3,25 

(1,28) 
.623 
.607 

   1.51 
.235 

   .846 
.481 
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Table K.5. Statistical findings from subphase 4 angular displacement. Separate MANOVAs were used to compare the three planes of motion for the rearfoot 
complex (RC), calcaneonavicular complex (CNC), and the calcaneocuboid complex (CC).  Follow-up ANOVAs were used to identify any significant differences.  
For the medial forefoot (MFF), 1st metatarsophalangeal joint (MTP), and lateral forefoot (LFF) only the sagittal plane was examined and mixed within- and 
between-subjects ANOVAs were used.  All results are reported as F-statistic (top number) and p-value (bottom number). 

Joint 
MANOVA 
(ANOVA) 

dF 

Within-subjects main effects 
(Time) 

Between-subjects main effects 
(Footstrike) 

Interaction effects 

MANOVA ANOVA 
Sagittal 

ANOVA 
Frontal 

ANOVA 
Trans. 

MANOVA ANOVA 
Sagittal 

ANOVA  
Frontal 

ANOVA  
Trans. 

MANOVA ANOVA 
Sagittal 

ANOVA  
Frontal 

ANOVA 
Trans. 

RC 
3,24 

(1,26) 

7.18 
.001 

 
.002 

 
.006 

 
.006 

.246 

.863 
   

 
.230 
.875 

   

CNC 
3,25 

(1,27) 

8.93 
< .001 

19.59 
< 
.001 

.001 

.973 
.112 
.74 

.914 

.449 
   .726 

.546 
   

MFF (1,26) 
 22.52 

< 
.001 

   0.20 
.89 

   .038 
.85 

  

MTP (1,27) 
 12.95 

.001 
   .635 

.43 
   .001 

.98 
  

LFF (1,27) 
 1.24 

.28 
   .392 

.54 
   1.25 

.27 
  

CC 
3,25 

(1,28) 
1.01 
.405 

   2.64 
.071 

   3.24 
.038 

4.25 
.049 

.365 

.55 
4.90 
.04 
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Appendix L: Abstract presented at American Society of Biomechanics Annual Conference 

 
IDENTIFYING TOE-OFF EVENT RUNNING ON A TREADMILL USING KINEMATIC DATA 

 
1,2 Rhiannon M. Seneli, 2,3Robin L. Pomeroy, and 2 Stephen C. Cobb 

 
1 St. Ambrose University, Davenport, IA, USA 

2 University of Wisconsin-Milwaukee, Milwaukee, WI, USA 
3Shiner’s Hospitals for Children-Northern California, Sacramento, CA, USA 

e-mail:  senelirhiannonm@sau.edu 

 
INTRODUCTION 
 
Many running analysis studies are conducted on a runway with a force plate to identify stance 
phase using the ground reaction force. Running on a treadmill offers the opportunity to evaluate 
subsequent steps and evaluate running biomechanics at different time points of an 
uninterrupted run.  Force plate instrumented treadmills have been on the market for some time, 
but are often expensive and many motion analysis laboratories do not possess such equipment.  
Therefore, some researchers have tested various methods for establishing the stance phase of 
running on a treadmill using kinematic data [1-3]. Previously proposed methods for identifying 
toe-off may require additional markers and joint measurements than what is used when tracking 
foot and leg motion or may have inaccurate estimations when compared to ground reaction force 
data.  Therefore, the purpose of this research was to establish an accurate kinematic method for 
identifying toe-off while running on a treadmill using a multi-segment foot model. 
 
METHODS 
 
Twelve runners (≥ 10 miles/week, 26.3 ± 4.85 years) volunteered for the study.  Six participants 
conducted overground running on a 25 m platform with a force plate (1000 Hz) and six ran on a 
treadmill.  Each participant was equipped with 6.4 mm retroreflective markers identifying the leg 
and six-segments of the foot: rearfoot complex, calcaneonavicular, medial forefoot, first 
metatarsophalangeal (MTP), lateral forefoot, and calcaneocuboid.  Three-dimensional positions 
of markers were captured at 200 Hz with a 10-camera Eagle system. 
 
For the overground methods, five successful trials of running at 4.0 (±10%) m/s were evaluated 
for finding toe-off.  The gold standard measurement for toe-off was the timing of when the 
vertical ground reaction force was less than 10 N after initial contact.  For treadmill methods, one 
corner of the treadmill was positioned on the force plate.  All subjects ran on a treadmill at 3.3 
m/s and 10 s of running was captured.  Five consecutive steps were used to analyze toe-off 
timing.  Because the treadmill was not instrumented with a force plate, the gold standard 
measurement for comparison used a ground reaction force baseline for each subject as the 
threshold level.  This baseline varied for each subject as the treadmill was moved between 
participants and was not always positioned identically.   
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Gold standard measurements were then compared to three different kinematic methods for 
determining toe-off.  First, toe-off was defined as the maximum sagittal plane angle of the MTP 
joint after initial contact (SagM).  Second method used the vertical position of the toe tip and 
identified its minimum to be toe-off (VTOE) [3].  The third method used the local maximum of 
the vertical acceleration of the toe tip after initial contact and then linearly interpolated the jerk 
of the toe tip to find where jerk was equal to zero (ATOE) [3].  This interpolation allowed to 
identify exact timing between frames.  All three methods were then compared to ground reaction 
force data for each trial and the difference in frames was recorded.  The differences were then 
averaged for each subjects’ five trials and then mean and standard deviations were recorded for 
the group (overground and treadmill).  Positive frame differences indicated that the kinematic 
method identified an earlier toe-off while negative numbers identified a later toe-off when 
compared to ground reaction force.  Root mean square differences (RMS) were then calculated 
to assess error. 
 
RESULTS AND DISCUSSION 
 
For both overground and treadmill running, the SagM method was the most accurate with a 
frame error that corresponded to 0.007 s and -0.006 s respectively (Table 1).  Small RMS values 
also indicate that this level of accuracy was seen for all subjects in each group (Table 2).  The use 
of VTOE was moderately accurate for overground methods (-0.04 s), but not for treadmill running 
(0.22 s) (Table 1) and had corresponding RMS results (Table 2).  The ATOE also had moderately 
accurate results for both the overground (-0.03 s) and treadmill running (-0.07 s) (Table 1) with 
similar RMS results as well (Table 2). 
 
The maximal MTP dorsiflexion occurs as the runner is pushing off and gives an accurate estimate 
as to when toe-off occurs while running overground and on a treadmill.  One disadvantage to this 
method is that it requires a model in which the MTP is identified with markers and many running 
studies treat the foot as a single, rigid segment.  The other methods, VTOE and ATOE, do not 
require this, but rather just one marker at the toe tip.  However, they do not appear to be as 
accurate and VTOE does not seem adequate for estimating toe-off with treadmill running.  The 
results found from these two methods are similar to results found by Zeni, et al. [3] which had a 
difference in contact time of approximately 0.02-0.05 s when using the ATOE toe-off prediction 
and .16 s when using the VTOE method with treadmill running.   
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CONCLUSIONS 
 
Various kinematic methods for determining toe-off during running gait have been researched 
and found to have varying levels of accuracy.  Using maximal dorsiflexion angle of the first 
metatarsophalangeal joint may provide a very accurate option for identifying toe-off when 
running overground and on a treadmill, but would require the use of a multi-segment foot model.  
 
REFERENCES 
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2. Maiwald C, et al. Footwear Science 1, 111-118, 2009. 
3. Zeni JA, et al. Gait Posture 27, 710-714, 2008. 

 

Figure 1:  Ground reaction force (GRF) 
data and first metatarsophalangeal 
(MTP) sagittal plane angle while 
running on a treadmill.  Dotted line 
indicates threshold for determining 
toe-off using GRF (solid arrow).  
Maximum MTP angle used to 
determine toe-off with kinematic 
methods (dashed arrow). 
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Participant _____________________ 
Running Log  

 

Date Sandal 
Goal 

Sandal 
distance 

Total 
distance 

Comfort level (5= very comfortable, 
1=painful) 

Notes 

 
 

 
1 mile 

   
5         4          3          2          1 

 

  
1 mile 

   
5         4          3          2          1 

 

  
1 ½ mile 

   
5         4          3          2          1 

 

  
2 mile 

   
5         4          3          2          1 

 

  
2 ½ mile 

   
5         4          3          2          1 

 

  
3 mile 

   
5         4          3          2          1 

 

  
3 ½ mile 

   
5         4          3          2          1 

 

  
4 mile 

   
5         4          3          2          1 

 

  
4 ½ mile 

   
5         4          3          2          1 

 

  
5 mile 

   
5         4          3          2          1 

 

 
Begin the adjustment into your new sandals by completing 1 mile of your normal running distance in the sandals for your next 
two runs.  Then, increase the distance in the new sandals by ½ mile every time you run.  If the sandals cause irritation or pain, 
DO NOT increase amount from the previous run until irritation or pain subsides.  If you are not able to build up to at least a 3 
mile distance in the sandals within 10 days, please report it to the study coordinator, Rhiannon Seneli (lange3@uwm.edu) prior 
to your next appointment.  
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Appendix N: Participant Running Information Form 

 
Please complete the following questions to the best of your knowledge. 
 

1. On average, how many miles do you run weekly? _______________ 

2. How long have you been running over 10 miles a week? _________________ 

3. How many years of running experience total do you have? ________________ 

4. Have you run a 5K in the last year?   Yes   No 

If yes, what was your most recent 5K time? ___________________ 

 

5. What other length races have you recently run and what was the completion time?  

 10 km _________________  

 ½ Marathon ________________  

 Marathon __________________ 

 Other(specify) __________________ _______________________ 

 
6. What is your current foot strike pattern when running (what do you hit the ground with first)? 

 Forefoot strike (toe)   Midfoot strike (flat)  Rearfoot strike (heel) 
 

7. How many years have you run in your current strike pattern? ______________ 

 
8. What type of footwear do you regularly run in? 

 Traditional running shoe  Minimalist shoe  Motion control shoe/Stability 
 Barefoot    Neutral shoe  

 
9. How long have you been in those types of shoes? _______________________ 
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Appendix O: Extended Joint Coupling Variability Statistical Results   

Table O. Statistical results from mixed between-within subjects ANOVA for joint coupling variability in 
the foot and ankle.  Joint couples includes functional articulations rearfoot complex (RC), 
calcaneonavicular (CNC), calcaneocuboid (CC), medial forefoot (MFF), lateral forefoot (LFF), and 1st 
metatarsophalangeal (MTP) completed in the sagittal (sag), frontal (fron), and transverse (tran) planes.   

   Within-subjects Between-subjects Interaction 

Joint Couple dF Phase F-stat P-value F-stat P-value F-stat P-value 

RCsag-CNCsag 1,28 

1 0.030 0.863 0.049 0.826 0.010 0.921 

2 0.492 0.489 37.375 < 0.001 1.271 0.269 

3 0.088 0.769 1.261 0.271 1.791 0.192 

4 0.600 0.445 2.878 0.101 0.127 0.724 

RCfron-CNCfron 1,28 

1 1.760 0.195 1.803 0.190 0.367 0.549 

2 2.717 0.110 1.100 0.303 0.078 0.782 

3 0.478 0.495 2.652 0.115 0.977 0.331 

4 0.180 0.675 0.280 0.601 0.001 0.981 

RCtran-CNCtran 1,28 

1 0.577 0.454 2.312 0.140 0.346 0.561 

2 14.764 0.001 0.288 0.595 1.637 0.211 

3 2.634 0.116 0.049 0.826 0.079 0.780 

4 0.003 0.954 0.115 0.737 1.254 0.272 

CNCfron-MFFsag 1,27 

1 0.020 0.888 4.219 0.050 0.064 0.803 

2 5.115 0.032 45.677 < 0.001 5.830 0.023 

3 0.012 0.913 0.719 0.404 0.998 0.327 

4 0.721 0.403 0.001 0.979 0.706 0.408 

MFFsag-MTPsag 1,27 

1 0.166 0.687 28.206 < 0.001 0.044 0.836 

2 1.435 0.241 1.758 0.196 3.257 0.082 

3 0.987 0.329 3.754 0.063 1.657 0.209 

4 0.587 0.450 0.001 0.978 5.262 0.030 

RCsag-CCsag 1,28 
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3 0.158 0.694 0.006 0.937 0.014 0.908 

4 0.063 0.804 0.842 0.367 0.886 0.355 

RCfron-CCfron 1,28 

1 2.813 0.105 0.593 0.448 1.526 0.227 

2 11.475 0.002 5.557 0.026 0.357 0.555 

3 0.109 0.743 1.006 0.324 1.548 0.224 

4 0.130 0.722 1.425 0.243 0.476 0.496 

RCtran-CCtran 1,28 

1 0.011 0.918 3.246 0.082 0.407 0.529 

2 9.876 0.004 0.963 0.335 3.176 0.086 

3 0.268 0.609 0.407 0.529 0.073 0.789 

4 1.099 0.303 0.003 0.957 0.495 0.488 

CCfron-LFFsag 1,27 

1 0.110 0.742 4.287 0.048 0.125 0.726 

2 8.329 0.008 0.175 0.679 2.048 0.164 

3 0.461 0.503 4.596 0.041 1.641 0.211 

4 0.407 0.529 2.136 0.155 0.140 0.711 

RCtran-RCfron 1,28 

1 1.185 0.286 3.971 0.056 0.029 0.866 

2 9.589 0.004 0.014 0.907 2.610 0.117 

3 0.002 0.969 0.093 0.762 0.018 0.893 

4 0.187 0.669 0.161 0.691 0.936 0.342 
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Figure P.1- Time series for joints in RFS runners at the beginning of the 5 km run.  Shaded area indicates standard deviation. 
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Figure P.2- Time series for joints in RFS runners at the end of the 5 km run.  Shaded area indicates standard deviation. 
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Figure P.3- Time series for joints in FFS runners at the beginning of the 5 km run.  Shaded area indicates standard deviation. 
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Figure P.4- Time series for joints in FFS runners at the end of the 5 km run.  Shaded area indicates standard deviation. 
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Figure P.5. Time series for the rearfoot complex (top row), calcaneonavicular complex (middle row), and calcaneocuboid 
complex (bottom row) for RFS (red) and FFS (blue) runners at the beginning (solid line) and end (dashed line) of a  maximal 5 
km run. 
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