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ABSTRACT 

EFFECTS OF SURFACE TOPOGRAPHY AND VIBRATIONS ON WETTING: 

SUPERHYDROPHOBICITY, ICEPHOBICITY AND CORROSION RESISTANCE  

by 

Rahul Ramachandran 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Michael Nosonovsky 

 

Concrete and metallic materials are widely used in construction and water industry. The 

interactions of both these materials with water and ice (or snow) produce undesirable results and 

are therefore of interest. Water that gets absorbed into the pores of dry concrete expands on 

freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as 

roadways can have disastrous consequences. Metallic components used in the water industry 

undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to 

make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. 

Recent advances in micro/nanotechnology have made it possible to design functional 

micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some 

examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, 

and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before 

freezing, or delay ice nucleation. This dissertation investigates the effects of surface 

micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of 

concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of 

metallic surfaces to prevent corrosion. 
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The relationship between surface micro/nanotopography and small fast vibrations is 

established using the method of separation of motions. Both these small scale effects can be 

substituted by an effective force or energy. The structure-property relationships in materials and 

surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting 

properties such as contact angle and surface free energy. 

Hydrophobic engineered cementitious composite samples are produced by controlling 

their surface topography and surface free energy. The surface topography is controlled by 

varying the concrete mixture composition. The surface free energy of concrete is lowered using a 

hydrophobic emulsion. The hydrophobic concrete samples were able to repel incoming water 

droplets as well as resist droplet pinning. 

Corrosion resistance is achieved in cast iron samples by rendering them 

superhydrophobic. The corrosion resistance of superhydrophobic surfaces with 

micro/nanotopography may be explained by the low effective contact area with the electrolyte. 

The experimental results matched the theoretical predictions based on surface roughness and 

wettability. 

The icephobicity of engineered cementitious composite samples is achieved by 

hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol 

fibers), and by controlling the surface topography. Two aspects of the icephobicity of concrete, 

namely, the repulsion of incoming water droplets before freezing and the ice adhesion strength, 

are investigated experimentally. It is found that icephobic performance of concrete depends on 

these parameters – the hydrophobic emulsion concentration, the polyvinyl alcohol fiber content, 

the water to cement ratio, and the sand to cement ratio. 
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The potential for biomimetic icephobicity of thermogenic skunk cabbage plant is 

investigated, and it is found that the surface topography of its leaves can affect the heat transfer 

from the plant to the surrounding snow. The hierarchical microstructure of the leaf surface 

coupled with its high adhesion to water suggests the presence of an impregnated wetting state, 

which can minimize the heat loss. 

Thus functional materials and surfaces, such as hydrophobic and icephobic engineered 

cementitious composites and corrosion resistant metallic surfaces, can be produced by 

controlling the surface micro/nanotopography.  
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CHAPTER 1: INTRODUCTION 

Surfaces phenomena are increasingly important for various novel micro/nanodevices and 

applications, because these devices have small size and, therefore, large surface-to-volume 

ratios. The intensity of surface forces (for example, adhesion and friction) tends to be 

proportional to the surface area, and, therefore, they are scaled as the second power of the 

characteristic length of a device, whereas the volume forces (for example, inertia) tend to scale 

as the third power of the characteristic length. Therefore, at micro/nanometer scales, the surface 

effects are predominant, whereas the volume effects are negligible. The common definitions of 

macro, micro, and nanoscales are as follows. Length scales in the range from 1 mm down to 100 

nm are usually called the microscale, while length scales in the range from 100 nm down to 1 nm 

are called the nanoscale. Length scales larger than 1 mm are the macroscale and length scales 

smaller than 1 nm are the atomic scale.  

Recent advances in micro/nanotechnology have made it possible to design functional 

micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Surface 

topography is characterized by the deviations of a surface from a perfectly flat plane as a result 

of roughness, porosity etc. Some examples of such functional surfaces are superhydrophobic 

(lotus-effect) surfaces which are extremely water repellent, and gecko-effect surfaces which 

exhibit controlled adhesion as a result of their surface micro/nanotopography. Many of these 

surfaces are inspired by materials and surfaces found in living nature and are called biomimetic 

surfaces. Advances in nanotechnology has enabled to create materials such as engineered 

cementitious composites and metal matrix composites which have shown higher performance, 

durability and sustainability than regular concrete and alloys. 
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The functional surfaces for water and ice-related applications are of special importance in 

a place like Milwaukee in Wisconsin, which is a hub of the fresh water industry due to its 

proximity to the Great Lakes, as well as the multitude of water-related industries. Metallic 

materials (such as steel, brass and cast iron) are common raw materials for the water industry. 

Milwaukee also receives an annual average snowfall of 133 cm due to the lake effect as well as 

the Northern latitudes. The salt used for ice and snow removal is corrosive and can affect the 

durability and performance of metallic components for example, automobile components, 

metallic reinforcements, or water pipelines.  

Concrete is another common material used in the construction of buildings and 

pavements. Dry concrete is porous and hydrophilic. When the absorbed water freezes in cold 

weather, it expands and cracks the concrete. This freeze-thaw cycling of the concrete leads to its 

deterioration and failure. Making the concrete water repellent can reduce or prevent water 

penetration into the pores. Rendering metallic surfaces hydrophobic can reduce exposure to 

water as well as corrosive aqueous solutions. Concrete and metallic surfaces with ice-repellant 

properties make ice removal easy, as well as reduce the need for corrosive salts. Due to the 

importance of these materials, the present study is concentrated on the interaction of 

micro/nanostructured metallic materials and concrete with water and ice.   

In order to understand the structure-property relationships in these novel materials and 

surfaces, it is important to study the fundamental aspects of how micro/nanotopography affects 

surface properties at the macroscale. The surface micro/nanotopography can be viewed as a 

combination of spatial patterns, while small amplitude fast vibrations constitute periodic 

temporal patterns. A vibration is said to be fast or slow by comparing it against the natural 
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oscillations of the physical system it acts on. The frequency of a fast vibration is much greater 

than the natural frequency of the oscillations of the system. 

The method of separation of motions is a mathematical tool used to study dynamics of 

rigid bodies in rapidly oscillating fields. Using this method, the fast vibrations can be substituted 

by an effective force. This effective force is obtained by averaging the vibrations over their time 

period. The simplest mechanical example of vibrations manifesting as an effective force is the 

vibration-induced stabilization of an inverted pendulum. The method of separation of motions 

offers a powerful technique to study the effect of small patterns on macroscopic state or 

properties of a system. This method can be used in the areas of surface engineering, physical 

chemistry, and material science due to a similarity between the effects of small amplitude 

patterns and small fast vibrations.  

Closely correlated to the superhydrophobicity is the property of the icephobicity. A 

surface is said to be icephobic if the ice does not form readily on the surface, or if the ice formed 

on the surface can be easily removed on account of low adhesion. Both the superhydrophobicity 

and the icephobicity are manifestation of the adhesion. Surface micro/nanotopography affects the 

adhesion of liquids to solids (in the case of the superhydrophobicity), as well as solids to solids 

(in the case of the icephobicity). The research on the icephobicity is still in its infancy, having 

only gained popularity in the 2010s. 

1.1 Objectives of the Dissertation 

The main goal of this dissertation is to study the effects of surface topography and 

vibrations on wetting and adhesion properties in application to the novel areas of surface 
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engineering such as the hydrophobicity, corrosion resistance and the icephobicity. The particular 

objectives of this work can be listed as follows:  

First, to establish a relationship between small amplitude fast vibrations and small 

amplitude spatially periodic patterns. For example, the method of separation of motions can be 

employed to demonstrate that small fast vibrations and spatially periodic patterns can be 

substituted by an effective force or energy, and Kirchhoff’s dynamical analogy can be employed 

to establish an isomorphism between rigid body dynamics and the static bending shape of an 

elastic flexible beam.  

Second, to study the effects of both vibrations and surface topography on the wetting 

properties including the contact angle and the surface free energy, and also to understand their 

structure-property relationships. The method of separation of motions will be used to study the 

structure-property relationships in novel materials and surfaces. Small patterns and vibrations 

will be averaged using the method of separation of motions and be substituted by an effective 

force or energy term. 

Third, based on the understanding of the structure-property relationships, apply this to 

novel materials. In particular, I will study how desired surface topography could control the 

wettability of concrete with the goal of producing hydrophobic concrete. Dry concrete, which is 

normally a porous hydrophilic material, absorbs water. This is undesirable, especially in cold 

conditions. Concrete will be hydrophobized by controlling the surface topography as well as the 

surface free energy using appropriate additives. 

Fourth, based on the understanding of the structure-property relationships, apply this to 

metallic materials to study how producing material with desired surface topography could 
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control the wettability and thus prevent corrosion of metallic materials. Metals and alloys easily 

undergo corrosion to return to their stable oxidized native states. Metals and alloys normally 

have high energy surfaces which are easily wetted by corrosive aqueous solutions. Such surfaces 

will be hydrophobized by controlling the surface topography as well as the surface free energy to 

reduce wettability and thereby prevent corrosion.  

Fifth, based on the understanding of the structure-property relationships, to study how 

producing material with desired surface topography could control the icephobicity of the surface. 

This study will be focused on concrete which is normally hydrophilic. Water absorbed into the 

pores of dry concrete expands upon freezing. This can lead to crack formation and deterioration. 

Concrete will be rendered icephobic by controlling the surface topography as well as the surface 

free energy. 

1.2 Organization of the Dissertation 

In Chapter 2, the general concepts related to wetting such as the equilibrium contact 

angle, models of wetting and contact angle hysteresis, and the effect of surface topography on 

wetting will be reviewed. This will be followed by a review of the general concepts related to 

vibrational mechanics. This chapter will introduce the method of separation of motions, which is 

a powerful mathematical tool used to study dynamics of rigid bodies. The method of separation 

of motions will be used to formulate an effective force that can be substituted for small fast 

vibration. This force will be obtained by averaging the vibration over its time period. 

In Chapter 3, a relationship between small amplitude fast vibrations and small amplitude 

spatially periodic patterns will be established. The method of separation of motions discussed in 

Chapter 2 will be used demonstrate that both small fast vibrations and spatially periodic patterns 
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can be substituted by an effective force or energy. The method of separation of motions will be 

applied to various examples such as inverted pendulum, multiple pendulums and flexible rope. 

The latter will be studied by a specially designed experimental setup. The method of separation 

of motions will be used to understand the structure-property relationships in materials and 

surfaces, in particular the wetting properties such as contact angle and surface free energy, and 

fluid flow through membranes. Kirchhoff’s analogy will also be used to establish the relationship 

between vibrations and small spatial patterns. The bending of a tensile-loaded slender elastic 

flexible beam will be shown to be similar to the dynamics of an inverted pendulum. This analogy 

will be used to obtain the geometrical conditions for stability (unbuckled state) of such a beam. 

In Chapter 4, the understating of the structure-property relationships developed in 

Chapter 3 will be used to study how desired surface topography could control the wettability of 

concrete. Hydrophobic concrete samples will be prepared by controlling the surface topography 

as well as the surface free energy. The ability to repel incoming liquid droplets is an important 

wetting characteristic of a hydrophobic surface, as well as a desirable property for a ubiquitous 

construction material such as concrete. Therefore the dynamics of impacting water droplets on 

the hydrophobic concrete will be studied by a specially designed experiment and also modeled 

theoretically. The performance of hydrophobic concrete with different droplet impact velocities, 

as well as in two different environmental conditions will be investigated. 

In Chapter 5, the understating of the structure-property relationships developed in 

Chapter 3 will be used to study how desired surface topography could control the wettability and 

thus prevent corrosion of metallic materials. The chapter in particular deals with the material 

ADI90 cast iron which is of interest to the fresh water industry. First, the concepts of electro-

chemical corrosion will be briefly discussed. This will be followed by a review of the recent 
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literature correlating superhydrophobicity and corrosion resistance. The effects of surface 

roughness and wettability on corrosion will be studied theoretically. Corrosion rate experiments 

will be carried out on cast iron samples with different surface roughness and wetting properties. 

The experimental data will be used to validate the theoretical predictions. 

In Chapter 6, the understating of the structure-property relationships developed in 

Chapter 3 will be used to study the effect of surface topography on the icephobicity of materials, 

in particular the concrete. First, the three aspects of icephobicity and the hydrophobic 

interactions essential for designing an icephobic surface will be discussed. This will be followed 

by a brief review of the recent literature in the area of icephobicity. The icephobicity of concrete 

based on the repulsion of incoming water droplets before freezing, as well as the ice adhesion 

strength will be investigated. Finally, structure-property relationships as well as the experimental 

results will be used to study how the three aspects of icephobicity can be optimized by 

controlling the surface topography and the wetting properties. 

In Chapter 7, the potential for biomimetic icephobicity of skunk cabbage, and the effect 

of surface topography on its icephobicity will be investigated. Skunk cabbage is a plant that is 

commonly found in the marshes of Wisconsin. The plant is known for its ability to melt snow. 

The first section of this chapter will review the literature on the heat generating property of the 

skunk cabbage. Next, the surface micro/nanotopography of the leaf and spathe of the plant will 

be investigated using scanning electron microscopy. A theoretical model correlating the surface 

topography with the heat transfer rate will be developed to better understand the effect of surface 

topography on the icephobicity and the potential for biomimetic icephobicity of skunk cabbage. 

The conclusions of this dissertation will be summarized in Chapter 8.  
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CHAPTER 2: CONCEPTS OF WETTING AND VIBRATIONAL MECHANICS 

As discussed in the previous chapter, the goals to this dissertation are to study the effect 

of surface topography and vibrations on wetting properties, to establish a relationship between 

small amplitude fast vibrations and small amplitude spatially periodic patterns, to understand the 

structure-property relationships in materials and surfaces, and to apply this to produce 

hydrophobic, icephobic and corrosion resistant surfaces. To achieve these, it is important to 

understand the concept of wetting and vibrational mechanics. In the first part of this chapter, the 

terms such as the contact angle, contact angle hysteresis, superhydrophobicity are briefly 

discussed. 

The second part of this chapter deals with the vibrational mechanics. Vibrational 

mechanics is a general approach to study the effect of vibrations on nonlinear mechanical 

systems. This approach uses the method of separation of motions to study dynamics. The method 

of separation of motions is a powerful mathematical tool used to solve problems of rigid body 

dynamics. This method will be discussed in the second part of the chapter. 

2.1 Contact Angle and Models of Wetting 

Contact angle (CA) is the main parameter characterizing wettability of a solid surface by 

a liquid, such as water. Hydrophilic surfaces have water CA less than 90° while hydrophobic 

surfaces have water CA greater than 90°. For an ideally smooth, chemically homogenous 

surface, the equilibrium contact angle  0  of a liquid droplet (say, of water) is given by the 

Young equation 
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0cos SA SW

WA

 





          (2.1) 

where
SA ,

SW , and
WA are the surface free energies (also called as surface or interfacial tensions) 

of the solid-air, solid-water, and water-air interfaces [1,2]. 

 
Figure 2.1. (a) Surface tension forces at the three-phase line on a non-deformable solid surface. The 

vertical components of the forces remain unbalanced. (b) The equilibrium of surface tensions at the three-

phase line of liquid phases A, B and C. Note the deformation of the interface between A and C. 

Note that Young’s equation implies only the equilibrium, at the solid-liquid-vapor three-

phase (triple) line, of the horizontal (parallel to the solid surface) components of the surface 

tension forces,
SLSVLV  cos , whereas the vertical component  cosLV

 remains 

unbalanced. It is however understood that this unbalanced component may result in the 

deformation of the substrate or even in substrate’s dissolution under the droplet. The balance of 

forces on a liquid substrate (i.e., in a three-phase liquid system) is described by the so-called 

Neumann’s triangle of forces [3]. Figure 2.1a shows the surface tension forces on a solid 

substrate, while Figure 2.1b shows the equilibrium of surface tension forces in a three-liquid 

system [4]. 

On real surfaces with roughness and chemical heterogeneity, the observed contact angles 

are much different from
0 [5,6]. The effect of roughness and chemical heterogeneity on CA is 

incorporated into two models of wetting, namely the Wenzel [7] and Cassie-Baxter [8] models.  
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The Wenzel model gives the effective contact angle on a rough, chemically homogenous 

surface. According to the Wenzel model, the effective contact angle
W of a rough surface is 

given by 

 0cos cosW fR 
         (2.2) 

where the so-called roughness factor Rf ≥1 is the ratio of the solid surface area to the projected 

area. It can be seen from Eq. 2.2 that roughening a hydrophobic surface makes it more 

hydrophobic (larger CA), while roughening a hydrophilic surface makes it more hydrophilic 

(lower CA). In the Wenzel wetting state, the surface below the droplet is completely wetted by 

the liquid, creating a homogenous solid-liquid interface (Figure 2.2a).  

The Cassie-Baxter model explains how interfacial heterogeneities affect wetting. For a 

smooth but chemically heterogeneous surface consisting of n components each with an area 

fraction
if and equilibrium CA

i , the effective contact angle
CB is given by[9] 

 1

cos cos
n

CB i i

i

f 



         (2.3) 

If some air is trapped between the rough solid surface and the liquid, then the effective contact 

angle can be obtained by modifying Eq. 2.3 

 
0cos cos 1CB f SL SLr f f            (2.4) 

where rf is the roughness factor of the wet area, and 0≤ fSL ≤1 is the fractional solid-liquid 

interfacial area. Note that Eq. 2.4 applies only when cavities on the surface harbor pockets of air 

and there is no liquid penetration into the cavities [10]. In the Cassie-Baxter state, the interface 
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below the droplet is non-homogenous involving solid, water, and air pockets (Figure 2.2b). In the 

so-called “impregnating” Cassie wetting regime, the cavities on the surface are impregnated with 

water [11]. The effective contact angle is 

 
 0cos 1 cos 1CB SLf   

        (2.5) 

The highest possible contact angle on any smooth solid is believed to be 119° [12]. 

Therefore, only a rough surface may have larger contact angles. Non-homogenous wetting 

occurs only when the CA is greater than 
1 1

cos SL

f SL

f
r f

  
  

[11]. 

 
 Figure 2.2. (a) A liquid droplet in Wenzel state, with a homogenous solid-liquid interface below the 

droplet. (b) A liquid droplet in Cassie-Baxter state, with a composite solid-liquid-vapor interface below 

the droplet. (c) Contact angle hysteresis (CAH) measurement by tilting the droplet. The maximum or 

advancing (θadv) and minimum or receding (θrec) contact angles are measured at the front and rear of a 

moving droplet respectively. 

2.2 Contact Angle Hysteresis 

When contact occurs with a rough or chemically heterogeneous surface (and practically 

all surfaces are rough or heterogeneous to a certain extent), the contact angle can attain a range 

of values, demonstrating hysteresis: rec≤≤adv, where rec and adv denote the receding and 

advancing contact angles, respectively. Contact angle hysteresis (CAH) is the difference between 
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the maximum CA (adv, for example, in front of a moving droplet) and minimum CA (rec, for 

example, at the rear of a moving droplet). 

   
adv recCAH             (2.6) 

The contact angles can be measured also on a tilted surface (Figure 2.2c), although it is 

recognized that the values measured in this way do not always provide true values of the 

advancing and receding angles [13]. Contact angle hysteresis is small when the solid-liquid 

adhesion is small and it is large when the adhesion is large. This makes contact angle hysteresis 

an important parameter characterizing adhesion, wetting, and energy dissipation during the 

droplet flow. 

When the concept of contact angle hysteresis was originally introduced, the phenomenon 

was associated with surface contaminants. This phenomenon was described in 1891 in a letter 

from a German scientist Agness Pockels, who had no formal education and made observations 

on dishes in a kitchen sink. She observed that water droplets behaved differently on clean and 

contaminated glass surfaces. She wrote a letter to Lord Rayleigh, who published it in the journal 

Nature: “The surface tension of a strongly contaminated water surface is variable; that is, it 

varies with the size of the surface. The minimum of the separating weight attained by 

diminishing the surface is to the maximum, according to my balance, in the ratio of 52:100.  If 

the surface is further extended, after the maximum tension is attained, the separating weight 

remains constant, as with oil, spirits of wine, and other normal liquids. It begins, however, to 

diminish again, directly the partition is pushed back to the point of the scale at which the increase 

of tension ceased. The water surface can thus exist in two sharply contrasted conditions; the 
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normal condition, in which the displacement of the partition makes no impression on the tension, 

and the anomalous condition, in which every increase or decrease alters the tension.” [14] 

This phenomenon was later investigated and Adam and Jessop (1925) who wrote: “In the 

extreme cases, the angle when the liquid is advancing over the solid may be 60o greater than 

when it is receding. It is not necessary that there should be actual motion, for a force on the 

liquid tending to move it has the same effect. The phenomenon is obvious on inspection of a 

drop of water on slightly dirty glass plate; it appears to have been first described in detail by 

Pockels… The cause of this dragging effect (often called “hysteresis” of the angle of contact) 

seems to us to lie, not in any absorption of the liquid by the solid, but in a simple friction of the 

liquid on the surface.” [15] 

Adam and Jessop [15] related contact angle hysteresis to the “friction force” per unit 

length of the three-phase line, F, acting upon the droplet in its motion as

 cos cosLV adv rec F    .  Using similar models, Good [16], and Shepard and Bartell [17] 

investigated later the effect of surface roughness on contact angle hysteresis, which is similar to 

the effect of surface contamination or chemical heterogeneity. 

The contact angle hysteresis is related to the more general phenomenon known as 

adhesion hysteresis, which is observed also during solid-solid contact. When two solid surfaces 

come in contact, the energy required to separate them is always greater than the energy gained by 

bringing them together, and thus the loading-unloading cycle is a thermodynamically irreversible 

dissipative process. The energy gained for surfaces coming to contact is greater than the energy 

required for their separation (or the work of adhesion) by the quantity W, which constitutes the 

adhesion hysteresis. For a smooth surface, the difference between the two values of the interface 
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energy (measured during loading and unloading) is given by W0. These two values are related 

to the advancing and receding contact angles of the smooth surface, assuming that for a smooth 

surface, the adhesion hysteresis is the main contributor into the contact angle hysteresis, plus a 

surface roughness term Hr [18] 

 0cos cosadv rec r

LV

W
H 




           (2.7) 

A number of other quantitative theories of contact angle hysteresis have been developed 

by scientists including an important thermodynamic theory by Tadmor [2] involving the concept 

of line tension and used by several scientists [5,19-21]. While CA characterizes wetting during 

normal loading, CAH characterizes wetting during shear loading at the solid-liquid interface. 

Adhesion under both these types of loadings can be measured separately using the centrifugal 

adhesion balance.[22,23] The angle of tilt of the substrate at which a droplet deposited on it rolls 

off, called as the roll-off angle, is also used as a parameter to characterize the adhesion between a 

liquid and a surface. 

2.3 Superhydrophobicity and Biomimetic Self-Cleaning Surfaces 

The effect of surface roughness and chemical heterogeneity on CA was discussed in 

section 2.1, Surfaces that exhibit water CA in the range 120° to 150° are said to be 

overhydrophobic.[24] Surfaces that exhibit water CA greater than 150° and very low CAH 

(<10°) are said to be superhydrophobic. However there are a number of important exceptions, 

such as the rose petal. The rose petal has high CA, often in the superhydrophobic region and, at 

the same time, strong adhesion with water and, therefore, large CAH. This is sometimes called 

the “petal effect” [25,26]. An alternative term suggested for the petal effect in the literature is the 
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“parahydrophobic state” [27].  Superhydrophobic surfaces have a non-homogeneous interface 

below the droplet, with pockets of air trapped on the surface. On superhydrophobic surfaces 

water beads up into a near-spherical shape. Underwater superhydrophobic surfaces help reduce 

drag and biofouling. Marmur [28] studied the thermodynamic feasibility of underwater 

superhydrophobic surfaces. A superhydrophilic (superwetting) surface is one on which water 

(liquid) spreads completely [29]. 

If an oil (or organic liquid) droplet makes a CA>90° on a surface in air, then the surface 

is oleophobic. Otherwise the surface is oleophilic. If a surface makes oil CA>90° while being 

immersed in water instead of air, the surface is said to be underwater oleophobic [30,31]. Liu et 

al. showed that a hydrophilic surface in air may become oleophobic in water [32]. 

Superoleophobic surfaces exhibit oil CA>150°. Surfaces that form robust composite interfaces 

and exhibit CA greater than 150° and low CAH for both polar and nonpolar liquids are said to be 

omniphobic [33].  

An important application of superhydrophobicity is in self-cleaning surfaces. Self-

cleaning surfaces are those surfaces which remain clean on account of their low adhesion to 

water. Water generally beads up and rolls off at the slightest tilt, carry away dirt off the self-

cleaning surface. Self-cleaning surfaces were inspired by the remarkable self-cleaning 

mechanism (the so-called “lotus-effect”) exhibited by the lotus (Nelumbo nucifera) leaf. The 

hierarchical or multiscale roughness on the leaf surface is instrumental in the self-cleaning effect 

[34,35]. The adaxial surface of the lotus leaf consists of papillose epidermal cells which provide 

micrometer scale roughness. The leaf surface is also covered with epicuticular wax tubules while 

provide nanometer scale roughness. Applying the methods and systems found in nature to design 
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and study artificially engineered systems is called Biomimetics. The term “biomimetics” was 

coined by Otto Schmitt in 1957 [36]. 

Surface coatings of a number of superhydrophobic plant leaves are hydrophilic [37]. This 

is not what one would expect from Eq. 2.2, according to which, roughening a hydrophilic surface 

makes it more hydrophilic (lower CA). The superhydrophobicity in the above mentioned plant 

leaves is due to the so-called “re-entrant” surface texture [38,39]. For a re-entrant surface texture, 

the surface topography cannot be described by a function z=f(x,y), and the vector projected 

normal to the x-y plane intersects the texture more than once [40]. Tuteja et al. [33]showed that 

robust omniphobic surfaces can be produced by using the re-entrant surface curvature on low 

surface energy solids. 

Besides water-repellency and self-cleaning, the superhydrophobic surfaces have many 

emerging applications such as drag reduction in water flow [41], antifouling [42], oleophobicity 

[32], icephobicity [43-45], water filtering [46] and corrosion inhibition [47]. 

2.4 Geometric Interpretation of the Surface Tension at Equilibrium 

The equilibrium of surface tensions was discussed in section 2.1, with the Young 

equation (Eq. 2.1) being derived from the balance of forces. The surface tension forces are not 

forces in the strictly mechanical sense of the word, because they are applied to the imaginary 

three-phase (triple) line in equilibrium instead of a physical body. Nosonovsky and 

Ramachandran [4] suggested treating tensions as generalized forces, i.e., the derivative of surface 

energy by a generalized coordinate, such as the position of a three-phase line. In that case there is 

no need to perceive surface tensions as applied to a particular object, but as vector quantities in 

general. It is known that both Young, Wenzel and Cassie equations can be derived from 
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variational principles [48]. A geometric interpretation of the surface tension balance extending 

the well-known Neumann’s triangle approach was suggested. Phases are represented by points, 

while tensions are vectors connecting these points. When a three-phase line propagates (Figure 

2.3a) for a short distance dr , the change of free energy is given by the interfacial area  times the 

scalar product of dr by the normal to the three-phase line, n  in the plane of the interface:

dE drn . The surface tension vector as a generalized force is a vector given by a derivative 

 d drn
n

dr


           (2.8) 

which is not a mechanical force and thus it is not applied to a particular point or a body. 

 

Figure 2.3. (a) When the interface between A and B is displaced along the vector 𝑑𝑟⃗⃗⃗⃗ , the surface tension 

force acts on the three-phase line l in the direction of the normal �⃗� . (b) Equilibrium of surface tension 

vectors at the three-phase line. (c) The Neumann’s triangle for a three-phase system. (d) The Neumann’s 

triangle for a three-phase system in the Wenzel state. 
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Consider a droplet of water placed on a solid surface in air. Let the points S, A and W 

denote the three phases solid, air and water respectively. The equilibrium of the surface tensions 

is shown  in Figure 2.3b. The surface tensions can be represented as the sides of the triangle with 

vertices S, A and W (Figure 2.3c). Mechanical equilibrium of the droplet requires that the vector 

sum of the surface tensions be zero i.e., 0SA WA SW     [4]. 

The Neumann’s vector triangle for a droplet in the Wenzel wetting state is shown in 

Figure 2.3d. The water-air interface which remains unaffected by the roughness and hence its 

surface tension remains the same. The roughness effectively changes the solid-water and solid-

air surface tensions by a factor Rf. For a smooth, chemically heterogeneous solid surface which 

consists of two different materials S1 and S2, with area fractions f1 and f2 (Figure 2.4a,b) the 

droplet is in the Cassie-Baxter wetting state. The effect of surface heterogeneity can be 

interpreted as a linear combination of vectors 1 1,S W S A  and 2 2,S W S A  which correspond to two 

components of the interface, with the weight factors of f1 and f2 (Figure 2.4c) [4].  

A similar approach to the contact angle hysteresis leads to the vector triangle as shown in 

Figure 2.4d. The change in the solid-air interfacial tension can be obtained as rec adv

SA SA SA     . 

Similarly the change in the solid-water interfacial tension is rec adv

SW SW SW     . It is visible from 

the triangle that a range of contact angles are possible under a constraint that WA remains constant 

in magnitude. The contact angle hysteresis
adv rec     can be interpreted as the rotation of the 

vector WA  in Figure 2.4d [4]. 
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Figure 2.4. The Neumann’s triangles for the three-phase systems (a) S1AW, and (b) S2AW respectively. 

(c) The Neumann’s triangle for a three-phase Cassie-Baxter state. (d) Contact angle hysteresis represented 

using Neumann’s triangle as a rotation of the vector 𝛾𝑤𝑎⃗⃗ ⃗⃗ ⃗⃗  . A range of contact angles are possible under a 

constraint that |𝛾
𝑤𝑎

⃗⃗⃗⃗⃗⃗ | remains constant. 

The same approach can be used for four phase systems. If the four phases are solid (S), 

water (W), oil (O) and air (A), the three-phase systems SWO, WOA, SWA and SWA can be 

represented by four triangles as discussed above. If the four phases exists in mechanical 

equilibrium (Figure 2.5a), the pyramid (or tetrahedron) SAOW with the vectors representing the 

interfacial tensions can be drawn as shown in Figure 2.5b. If the vector triangles SWA and SWO 

are drawn, the surface tension of oil-water interface can be inferred from the magnitude of OW

[4]. 
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Figure 2.5. (a) A four-phase system. The pockets of air trapped on the solid surface constitutes the fourth 

phase [31]. (b) Tetrahedron of surface tension vectors in 3D space for a four-phase system. 

In the previous sections, the concepts related to wetting were discussed. It was seen that 

surface patterns (surface roughness and chemical heterogeneity) can affect the wetting state of 

the surface. The effect of surface patterns is incorporated into the two models of wetting, namely, 

the Wenzel and the Cassie-Baxter models. In the following section an important mathematical 

tool from mechanics, namely, the method of separation of motions, is discussed. This method 

which can be used to substitute the effect of small vibrations with an equivalent force, is not 

well-known outside the domain of mechanics. The method of separation of motions and idea of 

averaging the small patterns (temporal or spatial) is central to this dissertation, and is used to 

substitute small patterns with an effective force or energy. 

2.5 Separation of Motions and Effective Forces 

In the previous sections, the concepts and terms related to wetting were discussed. To 

study the relationship between surface topography and vibrations, and their effect on wetting, as 

well as to study the dynamics of non-wetting droplets over vibrating liquid, it is necessary to 

understand the method of separation of motions and the concepts of vibrational mechanics. 
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The method of separation of motions was first suggested by Kapitza [49] to study the 

stability of a pendulum on a vibrating foundation and then generalized for the case of an arbitrary 

motion in a rapidly oscillating field by Landau and Lifshitz [50]. Kapitza thought of such 

systems to be in a state of slow oscillation with a fast vibration superimposed upon it. The effect 

of fast vibrations can be isolated as a change in the effective potential energy of the system. 

Consider a material point with mass m in a potential energy field  x , where x is the 

spatial coordinate, with the minimum corresponding to the stable equilibrium. The force acting 

on the mass is given by d dx  , therefore, the equation of motion of the particle is

  d xx dm   . In addition to the time-independent potential field  x , a “fast” external 

periodic force cosf t acts upon the mass with a small amplitude f and high frequency

 2 2d dx m   . The equation of motion of the particle becomes 

  cosmx d dx f t             (2.9) 

The particle will travel a smooth path due to the slow force d dx  , and at the same 

time execute small oscillations ( )t of frequency Ω about the smooth path due to the fast force

cosf t . The location of the mass can be expressed as, 

    ( )x t X t t           (2.10) 

where  X t describes the smooth path of the particle averaged over the fast oscillations. The 

mean value  t of the fast oscillation over its period 2  is zero, whereas  X t changes only 

slightly during the same period. 
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2

0

0
2

t t dt



 





          (2.11) 

     X t X t           (2.12) 

Therefore the mean location of the mass can be written as 

         x t X t t X t           (2.13) 

and the second derivative 

    x t X t            (2.14) 

Substituting Eq. 2.10 in Eq. 2.9 and using the Taylor series first-order terms in powers of  

  
 2

2

cos
cos

f td d
mX m f t

dx dx X
  

  
      


    (2.15) 

The slow and fast terms in Eq. 2.15 must separately be equal. The second derivative of 

small fast oscillations is proportional to 2 which is a large term. On the other hand, the terms 

on the right hand side of Eq. 2.15 containing the small can be neglected. The term d dx  is a 

slow restoring force. The remaining fast terms can be equated, cosm f t   . Integrating this 

equation with respect to time t, 

2

cosf t

m



 


          (2.16) 
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Averaging Eq. 2.15 with respect to time, substituting the relation

2

0

cos 0
2

f tdt








  , 

and combining Eq. 2.11 to 2.14, and Eq. 2.16 gives, 

   
2

cos cos1
cos

f t f td d
mX f t

dX X dX m X

    

      
  

    (2.17) 
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This can be written as effd
mX

dX


  where

eff is an effective potential energy given by 

 
2 2

2 2

2 2

0

1
cos

2 2 4 2
eff

f m
f t dt
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      (2.18) 

 
 

Figure 2.6. (a) Unstable equilibrium corresponding to the maximum potential energy (b) A metastable 

equilibrium due to the stabilizing effect of the external force. 

Thus the effect of fast vibrations when averaged over the time period 2  is equivalent 

to the additional term 2 2m on the right hand side in Eq. 2.18. This term is the mean kinetic 

energy of the system under fast oscillations. Thus small fast vibrations can be substituted by an 
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additional term in the potential energy resulting in the same effect oscillations have on the 

system. The most interesting case is when this term affects the state of the equilibrium of a 

system. Let us say, in the absence of vibrations a system has an effective potential energy

eff  with a local maximum of the potential energy (Figure 2.6a). Vibrations can bring this 

system to a stable equilibrium due to the additional term discussed before, creating a local 

minimum of the potential energy (Figure 2.6b). In such cases the small fast vibrations have a 

stabilizing effect on the state of equilibrium. 

2.6 Vibrational Mechanics 

Blekhman [51] has applied the method of separation of motions to many mechanical 

systems and suggested what he called the “vibrational mechanics” as a tool to describe diverse 

range of effects in the mechanics of solid and liquid media, from effective “liquefying” of the 

granular media which can flow through a hole like a liquid when on a vibrating foundation to the 

opposite effect of “solidifying” liquid by jamming a hole in a vessel on a vibrating foundation, to 

vibro-synchronization of the phase of two rotating shafts on a vibrating foundation.  

Blekhman [51] has also suggested an elegant interpretation of the separation of motions. 

According to his interpretation, there two different observers who can look at the vibrating 

system. One is an ordinary observer in an inertial frame of reference who can see both small,

and large, X, oscillations.  The other one is a “special” observer in a vibrating frame of reference, 

who does not see the small-scale motion , possibly, due to a stroboscopic effect or just because 

his vision is not sensitive enough to see the small scale motion. As a result, what is seen for the 

ordinary observer as an effect of the fast small vibrations is perceived by the special observer as 

an effect of some new effective force. This fictitious force is similar to the inertia force which is 
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observed by observers in a non-inertial frame of reference. Furthermore, when the stabilizing 

effect occurs, the special observer attributes the change in effective potential energy to fictitious 

slow stabilizing forces or moments. The additional slow stabilizing force for the system (or 

torque for rotational systems) V can be written as 

  
2 2

2

2 2

0

1
cos

2 2 4

f
V f t dt

X m X m





     
             

     (2.19)  

The method of separation of motions is a powerful tool to substitute small scale effects 

with an equivalent force or energy averaged over temporal or spatial domains. The effective 

potential energy in Eq. 2.18 and the effective stabilizing force in Eq. 2.19 were obtained as an 

average over the time period. The method of separation of motions as well as Eq. 2.18 and Eq. 

2.19 will be frequently revisited in this dissertation. 

2.7 Conclusion 

In this chapter, the concepts of wetting and vibration mechanics were reviewed. The 

method of separation of motions was discussed. Using this method, small fast vibrations can be 

substituted by an effective force or energy. The equations for effective force and energy were 

formulated. In the next chapter, the method of separation of motions will be used to study the 

similarity between small amplitude fast vibrations and surface micro/nanotopography. 

2.8 References 

[1] Young, T. An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal 

Society of London (1776-1886) 1805, 95, 65-87.  

[2] Tadmor, R. Line Energy and the Relation between Advancing, Receding, and Young Contact 

Angles. Langmuir 2004, 20, 7659-7664.  



26 
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CHAPTER 3: EFFECTS OF VIBRATIONS AND SPATIAL MICRO/NANO PATTERNS 

ON EQUILIBRIUM, WETTING, FLOW AND PHASE TRANSITION 

In the previous chapter, the concept of wetting and vibrational mechanics were discussed. 

The method of separation of motions was introduced, and equations for effective force and 

energy were formulated. In this chapter, the relationship between small amplitude fast vibrations 

and small amplitude spatially periodic patterns is investigated. The effects of both vibrations and 

surface topography on the wetting properties including the contact angle and the surface free 

energy are studied. Also, the method of separation of motions is used to understand the structure-

property relationships in materials and surfaces. 

3.1 Effective Force Corresponding to Small Fast Vibrations 

This section deals with the study of pure mechanical systems undergoing fast vibrations 

in a time-independent potential field. Two different approaches have been developed to separate 

the fast small vibrations from the overall motion of the system; the Mathieu equation approach 

and Kapitza’s method of separation of motions. The latter method was further developed by 

Blekhman who suggested an interesting interpretation with two observers. One observer can see 

the small vibrations while the other one who does not see the vibration (for example, due to a 

specially designed stroboscopic light) however, observes their effect as a fictitious force, similar 

to the force of inertia.   

First the method of separation of motions is applied to the classic example of an inverted 

pendulum on a vibrating foundation, and a mathematical expression for an effective stabilizing 

force is derived. This is followed by a review of the Mathieu equation approach to study stability 

of an inverted pendulum. Then, the stabilization of multiple pendulums, as well as a continuous 
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system involving a rope are investigated. Replacing fast vibrations with an effective force can 

not only be applied to systems described above, but also to non-coalescing droplets on a 

vibrating bath and other liquid systems which will be discussed in later sections. 

3.1.1 Inverted pendulum and vibro-levitation 

I now consider the classic problem of stability of an inverted pendulum to apply the 

method of the separation of motions and determine an effective stabilizing force. A simple 

pendulum is a common example used in mechanics to introduce one to the fundamentals of 

simple harmonic motion. Consider a pendulum with a point mass m connected to the end of a 

pivoted link of length L. The angular position of the pendulum about its pivot is described by the 

angle ψ. It has its stable equilibrium at its vertical lower position 0ψ where the potential 

energy is minimum as shown in Figure 3.1. Any small perturbations from this position results in 

oscillations about the equilibrium with natural frequency g L  where g is the acceleration 

due to gravity. Eventually the pendulum returns to its equilibrium due to the restoring force

 cosd mgL

d


ψ

ψ
. 

A pendulum also has an unstable equilibrium that corresponds to the point of inflection at 

180ψ  (Figure 3.1).  When the foundation of the pendulum is subjected to vertical harmonic 

oscillations cosA t , where A is the amplitude and  is the frequency, the equilibrium at 

180ψ can, under certain conditions, become stable. A pendulum on a vibrating foundation is 

called “Kapitza’s pendulum” after Peter Kapitza. The equation of motion can be written as, 

2sin sin cosL g A t   ψ ψ ψ        (3.1) 
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The form of Eq. 3.1 is similar to that of Eq. 2.9 with 2 sinf mA   ψ . Substituting f into Eq. 

2.18, the effective potential energy can be obtained as  

 

2 2
2cos sin

4
eff

A
mgL

gL

 
    

 
ψ ψ        (3.2) 

 
Figure 3.1. The potential energy Π of a pendulum as a function of its angular displacement ψ. 

Now the stabilized inverted pendulum appears upright and stationary. By differentiating 

the effective potential energy in Eq. 3.2 the generalized force (with the dimension of torque) 

acting upon the pendulum can be obtained. In addition to the term involving sin ψ, this 

generalized force now involves the term given by Eq. 2.19 

 

2 2 2 2
2sin sin 2

4 4

mA mA
V

   
    
  

ψ ψ
ψ

      (3.3) 

Note that V is dimensionally a torque, because the spatial coordinate ψ is angular displacement. 

This additional effective force can have a stabilizing effect on the unstable equilibrium. The 

effect of this force is equivalent to that of a spring with the torsional spring constant 
2 2

2

mA
k
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when the angle ψ is close to 180°. This is equivalent to the upright pendulum supported by a 

spring (Figure 3.2). Since this effective force provides a support to the pendulum as if it is 

suspended upright, it can be called a “vibro-levitation” force [1]. The vibration-induced 

levitation is referred to in this study as “vibro-levitation”. 

 
Figure 3.2. The figure on the left shows an inverted pendulum stabilized by a foundation vibrating with a 

periodic displacement AcosΩt. The same system can be represented as shown in the figure on the right 

with the pendulum being stabilized by a spring of effective spring constant k. 

The equilibrium is stable when the effective potential energy in Eq. 3.2 is a positive-

definite function near the state of equilibrium, which yields the stability criterion 

 2 2 2A gL            (3.4) 

Thus, when the amplitude and frequency of the small fast vibrations of the foundation satisfy Eq. 

3.4, the otherwise unstable equilibrium at 180ψ can correspond to a local minimum for the 

effective potential energy, i.e., to become a stable equilibrium. Thus, the expression for the 

stabilizing force (Eq. 3.3) and a stability criterion for the inverted pendulum (Eq. 3.4) has been 

derived using the separation of motions method. 

 



34 

3.1.2 Mathieu equation method 

The result of Eq. 3.4 has been historically obtained using a different method, namely, the 

parametric resonance Mathieu equation analysis suggested by A. Stephenson in 1908 [2,3]. The 

motion of a pendulum on vibration foundation is an example of parametric oscillations. The 

differential equation of motion of such a pendulum contains time-varying coefficients and is 

called Mathieu equation. Stephenson found that when the pivot of a pendulum is subjected to a 

vertical periodic motion at a frequency 2 n  where n is any integer, then the oscillations of the 

pendulum are gradually amplified. The pendulum eventually becomes highly unstable. 

Stephenson used Mathieu equation approach to study the conditions for stability and instability 

of the pendulum. This section briefly describes the Mathieu equation approach to determining 

the stability criteria of an inverted pendulum. 

The equation of motion of a pendulum on vibrating foundation (Eq. 3.1) can be rewritten 

as 

 

2

cos sin 0
g A

t
L L

 
    
 

ψ ψ        (3.5) 

To study the stability of a solution of Eq. 3.5 using the Lindstedt–Poincaré perturbation method 

[4,5] , the variables     2

4 4, ,
g At

LL
   


z =ψ where 1and 2 t  , are introduced. 

For small values of z,  sin z z  and the equation of motion for a pendulum reduces to the 

canonical form of the Mathieu equation 

  cos 2 0z z             (3.6) 
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Figure 3.3. The region of stability for an inverted pendulum as seen in the Ince-Strutt diagram. 

The stability of a pendulum with vibrating foundation is studied in the parameter plane

 , , with regions of stability and instability, the graphical representation of which is called the 

Ince-Strutt diagram. For an inverted pendulum the stability criteria is 

 2 21 1
.. 1 ...

2 32

1

8
              (3.7) 

and is represented by the shaded region in Figure 3.3. For stability at any δ, there is an upper and 

lower bound for ϵ. It follows that for a certain length of the inverted pendulum there exists a 

stability range of frequencies
1 2  . From Eq. 3.7, the stability criterion can be obtained 

as follows. Since this study is concerned with an inverted pendulum, one needs to consider the 

set of negative values of δ in the vicinity of zero. From Eq. 3.7  

 
21

2
             (3.8) 

Substituting 2

4 4 and 
g A

LL
  


into Eq. 3.8 the same stability criteria in Eq. 3.4 can be 

obtained. Mathieu equation approach is another way of analyzing the vibro-levitation of an 

inverted pendulum. 

 The Mathieu equation approach provides the same stability criterion as the method of 

separation of motion. However, the latter has a more general application and is not limited to the 



36 

parametric excitation of a pendulum. Therefore the method of separation of motions is applied to 

more complex problems of the multiple pendulum, the continuous pendulum (flexible beam with 

some stiffness), and liquid systems such as non-coalescing droplets. An analogy is drawn 

between the mechanical systems undergoing vibration and non-linear behavior in vibrating fluids 

that lead to phase transition. 

3.1.3 Multiple pendulums and the so-called “Indian rope trick”  

In the previous sections, I have discussed the stabilization of a single inverted pendulum 

by small amplitude fast vibration of the pendulum’s foundation. Inverted multiple pendulums 

consisting of a number of freely jointed links connected end to end can also be stabilized by 

applying a harmonic oscillation at the foundation as long as the frequency of the oscillation is 

sufficiently large. The theoretical proof was put forward by Stephenson [6] who derived the 

stability criteria. Acheson derived the stability criterion for a multiple pendulum using Mathieu 

equation approach. He showed that the region of stability in the Ince-Strutt diagram diminishes 

as the number of links in the pendulum increased. As the number of links approached infinity, 

such as in the case of a perfectly flexible string, the region of stability vanishes [7]. Acheson and 

Mullin later experimentally demonstrated the stability of double and triple inverted pendulums 

[8]. 

An even more complex albeit related case is a continuous system consisting of a flexible 

beam. Since it has been shown that the limiting case of multiple pendulums i.e., a string, cannot 

be stabilized in the upside-down position, flexural stiffness should be introduced.  

Interestingly, some researchers have suggested that stabilization by a vibrating 

foundation can explain the so-called “Indian rope trick.” This trick involves a magician (an 
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Indian fakir) throwing one end of a flexible rope vertically upwards, which under certain 

conditions levitates like a vertical rod. In certain versions of the trick even a small animal (an 

ape) could climb the rope leaving the audience in awe. This defies the empirical observation that 

an upright column exceeding a critical length will buckle under its own weight. While accounts 

for the trick remain controversial, it has been shown that a rope with bending stiffness can be 

stabilized with sufficiently high frequencies. A piece of steel curtain wire longer than its critical 

buckling length was able to stay upright when its pivot was vibrated within a certain range of 

frequencies
1 2  . When the frequencies were reduced below

1 , the wire fell over, while 

increasing the frequencies above 
2 resulted in instabilities in the wire [9]. 

Now the expression for the stabilizing force for multiple pendulums and a flexible stiff 

rope (i.e. a flexible rope which still possesses some stiffness akin to a stiff beam) are derived. 

First consider a double pendulum as shown Figure 3.4 with point masses m1 and m2 attached to 

links of lengths L1 and L2 respectively. The foundation of the pendulum is subjected to a 

harmonic oscillation cosA t . Let the angular displacements of masses m1 and m2 be
1ψ and 

2ψ

respectively. 

 
Figure 3.4. An inverted double pendulum whose foundation is subjected to a sinusoidal vibration AcosΩt. 
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For m1 one can write the horizontal and vertical displacements as 
1 1 1sinx L ψ  and

1 1 1cos cosy L A t  ψ respectively. Similarly for m2, the horizontal and vertical displacements 

are
2 1 1 2 2sin sinx L L ψ ψ and

2 1 1 2 2cos cos cosy L L A t   ψ ψ  respectively. The 

corresponding x and y components of velocities are
1 1 1 1cosx L ψ ψ ,

1 1 1 1sin siny L A t    ψ ψ ,
2 1 1 1 2 2 2cos cosx L L ψ ψ ψ ψ  and

2 1 1 1 2 2 2sin sin siny L L A t     ψ ψ ψ ψ . 

The kinetic energy of the system is given by    2 2 2 2

1 1 1 2 2 2

1 1

2 2
K m x y m x y    . The 

potential energy of the system is given by
1 1 2 2m gy m gy   . The Lagrangian of the system can 

be written in terms of the angular displacements and their derivatives as L K   
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The equations of motion is then given by the Lagrange equations 

 
1 1 2 2

0 and 0
d L L d L L

dt dt

      
      

      ψ ψ ψ ψ
     (3.10) 

Substituting for L and simplifying 
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and 

   2 2

2 2 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 2cos sin sin sin cos 0m L m L m L m gL m A t        ψ ψ ψ ψ ψ ψ ψ ψ ψ  

Rewriting the equations of motion in the form of Eq. 2.9 
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1 2 1 1 2 2 2 1 2 2 2 2 1 2 1 1 1 2 1 1

2

1 2 1

cos sin sin sin

sin cos

m m L m L m L m gL m gL

m m A t

      

   

ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ
 

and    2 2

2 2 2 2 1 1 1 2 2 1 1 1 2 2 2 2 2 2cos sin sin sin cosm L m L m L m gL m A t       ψ ψ ψ ψ ψ ψ ψ ψ ψ  

Comparing these with Eq. 2.9 

   2 2

1 1 2 1 2 2 2sin  and  sinf m m A f m A      ψ ψ      (3.11) 

 
Figure 3.5. A multiple pendulum which is being stabilized by vibrating its foundation is equivalent to a 

multiple pendulum which is stabilized by a system of generalized vibro-levitation forces V1, V2 … Vn. 
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Using Eq. 2.19 the effective generalized forces on m1 and m2 can be written as 
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For any mass mi in system of n connected pendulums as shown in Figure 3.5 
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 ψ         (3.13) 

and the stabilizing effective generalized force is  
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     (3.14) 

The multiple pendulums is stabilized due the system of effective generalized forces

 1 2, ,... nV V V  as shown in Figure 3.6. For small angular displacements of the system of n 

connected pendulums, the equivalent spring constant at the first link is 

    

22 2
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112
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i

i

A
k m
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          (3.15) 

In this section, the stabilization of multiple pendulums was studied theoretically using the 

method of separation of motions. In the following section, the vibration-induced stabilization of 

a plastic rope is investigated using a specially designed experimental setup. 
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3.1.4 Experimental 

The vibration-induced stabilization of a plastic rope with inherent flexural stiffness was 

investigated. An experimental setup similar to the one used by Walker [10] was specially 

designed. A 6.5 inch speaker cone (Pyle Company) formed the vibrating foundation in this study. 

Sinusoidal waves at a desired frequency (10 Hz < Ω < 1000 Hz) were generated using a Matlab 

code, which were then amplified using a 20W amplifier (Lepai) and fed to the speaker (Figure 

3.6a). The vibration of the speaker cone was of the form sinA t . Since the amplitude of the 

sound wave was not a controlled parameter, the loudness setting was kept constant during the 

experiment.  

A piece of plastic rope 7 mm long, 4 mm wide and 1 mm thick was affixed to the center 

of the speaker cone using adhesive tape. Then the sound was turned on so that the speaker cone 

started to vibrate harmonically and the motion of the rope was observed. 

3.1.5 Results and discussion 

The plastic rope became unstable from its static equilibrium position when the foundation 

was vibrated at certain frequencies (Figure 3.6b). Instabilities were seen to set in at around 17 

Hz. The rope became highly unstable in the range of frequencies 50 Hz to 130 Hz. The 

instabilities slowly disappeared around 200 Hz and the rope returned to its static equilibrium 

(buckled) state, which is consistent with the vibration-induced stabilization of inverted and 

multiple pendulums. The instabilities in the rope are caused by effective forces as given by Eq. 

3.14. Flexural stiffness in the rope is essential for its vibration-induced stabilization. 
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Figure 3.6. (a) Experimental setup (b) Instabilities in the plastic rope with the foundation vibrating at 130 

Hz. 

Studies on the “Indian rope trick” usually approximate the rope or wire to continuum 

objects such as rod or column with appreciable stiffness. Champneys and Fraser [11] studied the 

“Indian rope trick” for a linearly elastic rod. The equation of motion in terms of the lateral 

displacement u at arc length s is, 

   
2 4

2 4
1 cos 1 0

u u u
t s b

t s s s
 
    

     
    

     (3.16) 

where η, ε and b are the dimensionless acceleration, amplitude and stiffness. Comparing with Eq. 

2.9 one can write  1
u

f s
s s


  

  
  

and formulate the effective vibro-levitation force using 

Eq. 2.19. 

Shishkina et al. investigated a rope treated as a flexible Euler beam with the stiffness k 

subjected to the gravity and an axial load oscillating near the constant value of c2 with the 

amplitude 
2a  and frequency . The transversal deflection of the beam u(x,t) is governed by 

   
2 4 2

2 2 2 2

2 4 2
sin sin 0

u u u u
k c t c t x

t x x x
 

   
         

   
    (3.17) 
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They showed that effect of the oscillating load is equivalent to the increase of the effective 

flexural stiffness of the rope k, which becomes equal to
2 2

2

2
effk k x

 
  , where x is the distance 

along the rope (Figure 3.7a, b). This increase can be significant to exceed the critical value of the 

stiffness and prevent buckling of the beam (Figure 3.7c, d) [12]. 

 
Figure 3.7. (a) A rope which is under no vibration, buckles under its own weight (b) Vertical vibrations 

results in an increased effective stiffness which prevents buckling (c) For any beam there is a critical 

force (Fcr) that depends on the beam material and geometry. Any load (F) greater than this will cause the 

beam to buckle (d) Vibrating the foundation leads to an increase in the effective stiffness of the beam, and 

the beam is able to resist buckling. 

For a multiple pendulum of n connected links, as n→∞ the system becomes more flexible 

and its stiffness decreases. Now the system is similar to a limp rope. From Eq. 3.14 the vibro-

levitation force is proportional to the mass. Therefore as n→∞, the vibro-levitation force 

becomes infinite. It follows that the “Indian rope trick” cannot be performed if the rope does not 

have sufficient inherent stiffness.  

In the previous section, the method of separation of motions was applied to various 

mechanical systems undergoing vibration, and in each case an effective stabilizing force was 
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derived.  The next section deals with non-coalescing droplets stabilized by vibrations. The 

method of separation of motions is once again used to formulate an expression for the effective 

force that causes their non-coalescing behavior. 

3.2 Vibro-Levitation of Droplets 

 Water droplet is seen to float on surface of water momentarily and then coalesce into the 

bulk fluid. Sometimes it emits a smaller droplet as a result of coalescence, which then undergoes 

the same fate as the parent droplet [13]. This phenomenon is called coalescence cascade. Such 

non-coalescing droplets have been noticed as early as 1881 when Reynolds studied the influence 

of surface impurities on this peculiar behavior of droplets. He concluded that a pure liquid 

surface is required for droplets to float over it.[14]  Walker demonstrated with a simple 

experiment that droplets of an aqueous soap solution can levitate in a non-coalescent state above 

a vibrating bath of the same bulk solution. The droplets could levitate indefinitely if standing 

waves (Faraday instabilities) were setup on the bulk liquid surface.[10] Recently this 

phenomenon has attracted the attention of researchers once again. Couder et al.[15] demonstrated 

that silicone oil droplets could be levitated indefinitely over a sinusoidally vibrating  cosA t

bath of oil. While Walker noticed indefinitely levitating droplets only in the presence of standing 

waves on the bulk liquid surface, Couder et al. were able to obtain indefinitely levitating droplets 

over a stable liquid surface. In both the cases, vibration stabilizes the droplet in a non-coalescing 

state about the liquid bath. Therefore such a droplet can be referred to as a vibro-levitating 

droplet [1].  

A vibro-levitating droplet is in a repetitive cycle of impact and bounce-off at the liquid 

surface. If its radius is larger than the capillary length ( g  , where and  are the liquid 
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surface tension and density respectively) the droplet undergoes continuous deformation from 

spherical to oblate and prolate shapes, which may setup oscillations along the droplet surface 

[16]. When the droplet impacts the liquid surface, the kinetic energy of the droplet is dissipated 

into surface energy by flattening of the droplet, oscillations of the droplet and viscous damping 

in the air-film between the droplet and the liquid surface [17]. The droplet does not coalesce with 

the bulk liquid surface so long as the thin air film is replenished and stabilized due to the applied 

vibrations. 

The vibro-levitating droplets produced weak surface waves every time they bounced off 

the liquid surface. These surface waves grew larger in amplitude when the amplitude A of the 

applied vibration was increased. At a critical value of A near the onset of Faraday’s instabilities, 

the levitating droplets started to move in seemingly random horizontal trajectories over the 

vibrating liquid surface. This motion is due to the interaction between the surface wave and the 

levitating droplet on each impact. Couder et al. called the system of the droplet and its associated 

wave as a “walker” [18]. These walkers can interact and orbit with each other, and can also form 

self-assembled ordered patterns [19-21]. Within certain range of frequencies, the vibro-levitating 

droplets can roll over the liquid bath due to internal rotation [22]. 

Vibro-levitating droplets draw parallels with the wave-particle duality from quantum 

mechanics [23]. But this comes with a caveat that there is a lot of difference between the physics 

at macro and subatomic domains. The droplets illustrate several quantum mechanical phenomena 

such as single-particle diffraction, quantized orbits, tunneling etc.[24-26] The discussion on these 

topics is beyond the scope of this chapter. 



46 

There are models which describe the levitation and horizontal motion of these non-

coalescent droplets [15,27-29]. The effect of bouncing droplets is thought to be similar to the 

acoustic levitation due to non-linear viscosity in a thin film which leads to hysteresis. However, a 

detailed model of such effects remains quite complex. In the following section, an analogy 

between the vibro-levitating droplets and an inverted pendulum is suggested. 

3.2.1 Vibro-levitating droplets and inverted pendulum 

The potential energy function of a droplet as it moves from a non-coalescing state to 

completely coalesced state is similar to that of a pendulum as it swings from an inverted state to 

stable state. Consider a liquid droplet above a bath of the same liquid. The droplet radius (R0) is 

small (compared to the capillary length) so that gravitational effects can be neglected. Assume 

that the droplet takes the shape of a truncated sphere (Figure 3.8a) as it coalesces into the bath. 

The droplet can be characterized by the radius R, height h, and the radius of the foundation x 

(Figure 3.8a, b). The volume, surface area, and the position of the center of mass above the 

foundation of the truncated sphere are given by    2 3 31 1
3 2 3cos cos

3 3
V h R h R        ,

 2 22sA Rh x h    ,
 

 

2
3 2

4 3

R h
z

R h





 respectively, where θ is the contact angle of the 

droplet, sin x R  and 
2 22x Rh h  .  

As the droplet spreads from the initial spherical shape along the flat surface, the total 

volume of the droplet remains constant. Therefore  33
0 4 2 3cos cosR R     . The change in 

the net surface free energy during spreading is given by the free surface energy   times the area 

of the droplet minus the foundation area. 
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Figure 3.8. (a) and (b) The droplet as it spreads from a full sphere to a spherical cap of radius R, (c) 

Energy of a droplet (corn oil, Ro = 0.25mm, γ= 0.032N/m) as it coalesces with the bulk liquid, and the 

similarity of this energy function to that of an inverted pendulum. 

The plot of energy as a function of θ for a corn oil droplet of R0= 0.25 mm and = 0.032 

N/m is shown in (Figure 3.8c), and it is observed that 180  corresponds to the unstable 

equilibrium, similar to an inverted pendulum. Therefore, it is convenient to introduce the variable 

180   to characterize the shape of the droplet so that   is equal to zero at the unstable 

equilibrium [1]. 

Now consider a vibro-levitating droplet over the sinusoidally vibrating liquid bath, whose 

vertical displacement is sinu A t  . The dynamic equation of motion of the droplet in the 

vicinity of the unstable equilibrium can be written as 
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Q 



  


         (3.19) 

where χ is the inertial coefficient associated with droplet’s shape change, β is the viscous 

coefficient, and Q
is the periodic force from the substrate affecting the droplet shape change. 

The force Q
includes a term proportional to the area of contact, and a term proportional to the 

length of the contact line  02 R  ; however, for small φ, the second term prevails. Furthermore, 

assuming that non-linear viscous force acts in the thin air-film between the droplet and the liquid 

bath, one can assume that Q
includes a term proportional to the velocity  u and squared velocity

 2u . The latter term is present due to hysteresis, i.e., the viscous force during the forward 

motion is different from that during the backward motion. Therefore, 

  
2

0 1 22 sin sinQ R A t A t          
 

     (3.20) 

where
1 and

2 are coefficients corresponding to the linear and non-linear components of the 

force. The values of the parameters χ and β can be estimated using the following considerations. 

When the droplet is deformed, the work done per unit time is proportional to the momentum of 

droplet and thus
dx

m dx d
dt

  , where m is the mass of the droplet. From Figure 3.8a,

 33
0 sin 4 2 3cos cosx R       . For  180 or 0   ,

0dx d R  which yields 

 
2

0mR            (3.21) 

Similarly, one can argue that the viscosity of the liquid, μ is related to β as 

 
0R            (3.22) 
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Using in Eq. 3.20    
2

sin 1 cos 2 2t t    and substituting the amplitudes 1 0 12f R A  

and
2 2

1 0 22f R A   into Eq. 2.19 yields an expression for the effective vibro-levitation force 

[1]. 
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          (3.23) 

In the following section a simple experiment to study the vibro-levitation of droplets is 

described. 

3.2.2 Experimental 

 
Figure 3.9. (a) Experimental setup (b) A droplet of corn oil levitating on the surface of corn oil vibrating 

at 150 Hz. 

The levitation of oil droplets over a vibrating oil bath was investigated experimentally 

using the setup discussed in the section 3.1.5. Liquids studied were water, corn oil, SAE 30 

engine oil, and 10W40 engine oil. The working liquid was placed at the center of the speaker 

cone to form a bath. Once the speaker was excited by the sound wave, a small drop of the same 

liquid was dropped on to the surface of the liquid bath using a syringe. This produced satellite 

droplets which levitated at certain frequencies of vibration of the speaker cone. Levitating 
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droplets could also be produced by pinching and lifting off the liquid surface using a pipette 

tip/needle [1]. The results from this experimental study is discussed in the following section. 

3.2.3 Results 

It was seen that pure water did not produce levitating droplets in the tested range of 

frequencies. However, the higher viscosity liquids, corn oil (Figure 3.9b), SAE 30, and 10W40 

all produced levitating drops in the range of frequencies listed in Table 3.1. Note, however, that 

in each case a certain range of frequencies was observed. In other words, besides a lower 

frequency limit corresponding to the stability onset there was an upper frequency limit above 

which the droplet was not stable. Using the analogy with the inverted pendulum, this may be due 

to the fact that for high frequency the assumptions of small vibration may not be valid. 

Table 3.1. The range of frequencies where stable levitating droplets were observed. 

Liquid Viscosity (Pa s) Surface tension (N/m) Frequency range (Hz) 

Water 0.001 0.072 NA 

Corn oil 0.052 0.032 35-350 

10W40 0.160 0.031 30-400 

SAE 30 0.400 0.031 30-400 

 

The droplets were seen to levitate for several minutes. However, the droplets coalesced 

with the bath as soon as the sound generation stopped. Outside the specified range of 

frequencies, the levitating droplets were highly unstable, coalescing with the bath after a short 

while. At low frequencies it was clearly visible that the interaction between the levitating droplet 

and the bulk liquid surface created a surface wave. It was also possible to have multiple droplets 

levitating at the same time. The dependence of the stability of multiple levitating droplets on the 

frequency was not conclusive from the experiments conducted. Increasing the amplitude of 



51 

vibration by increasing the loudness resulted in the levitating droplet 'walking' on the surface of 

the liquid bath. Again, the dependency of horizontal motion of droplets to the amplitude could 

not be conclusively studied since the loudness could not be precisely regulated [1]. 

Thus vibro-levitating droplets can remain in a non-coalescent state above a vibrating 

liquid bath under certain condition. The following section is a discussion on the vibration-

induced phase transitions in continuum systems. 

3.3 Vibration-Induced Phase Transition and Locomotion 

 Destabilization of a system with a finite number of degrees of freedom is closely related 

to a much more complex phenomenon of the phase transition in a continuum system. For 

example, melting of a solid phase which turns into liquid can be viewed as a destabilization of 

the solid phase via nucleation of a new phase.  

There phase transition of the first kind (with energy released or consumed during the 

phase transition), such as melting and boiling and phase transitions of the second kind (when no 

additional energy is released or consumed), such as the transition between the elastic 

deformation and a plastic flow. The shifting of the stability region in beam can be viewed as a 

transition from a soft to a hard “quasi-phase” analogous to the elastic-plastic transition in 

continuous medium. Thus, it has been suggested by K. Lurie [30] that a dynamic composite 

material with fiber reinforcement can be created using tunable dielectrics, optical pumping with 

high-energy pulse compression, or electromagnetic stealth technology in such a way that 

stiffness of the reinforcement fibers can be controlled by an external fast oscillating electric field 

thus controlling the phase transition in the composite (the parametric stiffness modulation). 

Blekhman suggested dynamic materials whose flexural rigidity can be controlled by changing 
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the amplitude and frequency of vibrations. This section covers a discussion of the effective 

freezing of bouncing droplets and other vibration-induced phenomena which can be interpreted 

as effective or apparent phase transitions.    

3.3.1 Effective freezing 

In previous section it was shown that liquid droplets can effectively be confined to a 

spherical shape using vibrations under certain conditions. The vibro-levitating droplets are 

effectively “frozen” in the spherical shape due to the vibro-levitation force. As soon as the 

exciting vibration is turned off, the droplet “melts” and coalesces into the bulk liquid. It was also 

seen that vibration cause an increased stiffness of a rope. A soft rope effectively becomes stiff 

due to the exciting vibrations, making the “Indian rope trick” possible. Turning off the vibrations 

once again results in the rope going limp. These vibration-induced stabilizations can be viewed 

analogous to the latent heat-induced solid-liquid phase transition. 

3.3.2 Cornstarch monsters 

Colloidal suspension of cornstarch in water is a common example of dilatant or shear-

thickening fluid. If the cornstarch suspension is taken in hand and squeezed, it can be observed 

that the suspension turns solid and its surface feels powdery. As soon as the pressure is released, 

it returns back to its initial flowing state. 

 Peclet number (Pe) which is the ratio of hydrodynamic to diffusion transport rates 

governs the behavior of colloids. 

 
2 u

Pe r D
y





         (3.24) 
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where r is the particle radius, D is the diffusion coefficient, and  u y  is the shear rate. At high 

Pe (high shear rates) the hydrodynamic forces are too strong for the diffusion transport to restore 

the equilibrium of colloidal particles in the suspension. This non-equilibrium state consists of 

particles clustering together, called hydroclusters [31]. The hydroclusters are an unstable state, 

returning to the equilibrium state of randomness and fluidity once the shear stress is removed. It 

is important to study the effect of vibrations on cornstarch suspension because of the hysteresis 

observed during its shear loading. 

 
Figure 3.10. Cornstarch monsters in sample A at 30 Hz. 

The experimental set-up discussed in the section 3.1.5 was used to study the behavior of 

cornstarch suspensions under harmonic excitation of the foundation. Two samples of cornstarch 

suspension in water, with the starch-to-water volume proportions of 1.5:1 (sample A) and 2:1 

(sample B) were used. Both the suspensions formed the so-called cornstarch monsters (or 

“figurines” with long “fingers”) within a certain range of frequencies (Figure 3.10). The typical 

figurines were visible in both the samples from 15 Hz to around 200 Hz after which they slowly 

disappeared. The visible difference between the samples was that sample A produced longer 

cornstarch figurines than sample B. 

The “cornstarch monsters” levitate on a vibrating surface like an inverted pendulum or 

the rope in the “Indian rope trick” within certain range of frequencies. The harmonic vibration of 
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foundation again is seen to stabilize this system in its otherwise-unstable equilibrium state. The 

hydroclusters formed in cornstarch on application of stress can be simplified into a system of 

multiple pendulums as shown in Figure 3.6. High strain rates due to the harmonically vibrating 

foundation causes formation of hydroclusters of cornstarch particles in water. The hydroclusters 

of masses m1, m2…, mn (separated by distances l1, l2…, ln) are assumed to be held together by the 

viscous forces in the surrounding medium. This reduces the phenomenon of “cornstarch 

monsters” into a problem of stability of a chain of inverted pendulums.[1] 

3.3.3 Effective liquid properties and surface tension of granular materials 

 Small-amplitude fast vibrations have an important effect on the properties of the granular 

materials. Thus, vibrations can overcome jamming of the granular material due to friction. This 

is because vibrational acceleration creates an inertia force which can overcome dry Coulomb 

friction between the grains of the granular medium. As a result, granular medium can flow into a 

narrow pipe (Figure 3.11), demonstrating an effective liquid-like behavior, which is used for 

certain industrial applications [32]. Note that from the viewpoint of the rheological models, dry 

friction represents the key mechanisms of the plasticity. Therefore, the vibration-induced 

effective “melting” of the granular flow can be interpreted as an elastic-plastic transition rather 

than a true melting (which is a phase transition of the first kind). 

An opposite effect of the “vibrational injection” of gas into liquid and effective locking or 

jamming of a valve in a vibrating vessel with a liquid (thus preventing leaking of the liquid 

through the valve) has also been reported in the literature and studied both theoretically and 

experimentally by Blekhman [33]. This “vibro-jet effect,” when applied at the microscale, can 
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have broad consequences for such phenomena as the multiphase flow separation and the control 

of liquid penetration through a semi-preamble membrane (osmosis). 

 
Figure 3.11. Vibrations can result in flow of granular material. This vibration-induced effective liquid-like 

behavior is similar to melting phase change. 

 Another effect of vibration on the granular media is the emergence of the apparent 

surface tension.  Clewett et al. [34] studied the vertical vibration of a layer of bronze spheres 

with the diameter between 150 m and 180 m placed between flat glass substrates. The 

vibrated particles formed 2D clusters demonstrating behavior similar to 3D liquid droplets thus 

suggesting the presence of an effective surface tension consistent with Laplace’s equation, 

demonstrating the existence of an actual surface tension. The surface tension results 

predominantly from an anisotropy in the kinetic energy part of the pressure tensor, in contrast to 

thermodynamic systems where it arises from either the attractive interaction between particles or 

entropic considerations. The spheres inside the cluster had on average more collisions with 

neighboring spheres than those at the border of the clusters. Since the collisions are not pure 

elastic and some energy is dissipated during the collisions, the average energy at the border of 

the clusters are larger than that inside the clusters, and the trend to minimize energy results in the 

clusters attaining the circular shape. 
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Thus small fast vibrations can cause granular media to exhibit fluid-like properties, such 

as fluidity and surface tension. In the following section the locomotion by vibration in viscous 

liquids is discussed. 

3.3.4 Locomotion in viscous liquid 

 Another vibrational effect which is worth to mention is the propulsion in a viscous 

medium due to small-amplitude fast vibrations, which is believed to be a principle of aquatic 

locomotion of many microorganisms living in water [35]. Due to the small size of these 

microorganisms, the viscosity prevails over inertia on them, and a regular way of swimming 

practiced by large organisms would result in the back-and-forth motion rather than in a 

successful locomotion.    

The so-called “scallop theorem” states that to achieve propulsion at low Reynolds 

number in Newtonian fluids a swimmer must deform in a way that is not invariant under time-

reversal. Similarly to what has been observed in the preceding sections, such a motion (fast 

vibration) results in the effective propulsion force which drags the microorganism forward 

facilitating aquatic locomotion.  

Purcell [35] studied a microscopic swimmer with two hinged paddles in a Newtonian 

fluid. It swims in a loop by rotating its paddles. Using the approach similar to Eq. 2.19, the 

propulsion force when averaged during the entire cycle is equal to zero. However, in non-

Newtonian fluids reciprocal motions can propel microscopic swimmers [36]. The viscosity 

depends on the shear rate, and thus the angular velocities of the paddles. As a result, the net 

propulsion force over a cycle is non-zero. Thus, the hysteresis in the viscosity of a non-

Newtonian fluid, coupled with non-reciprocal motion manifests as a net propulsion force.  
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The effect of vibrational locomotion is not limited to the microorganisms and is 

widespread among aquatic animals, including the whales [33]. In general, a system should 

involve an asymmetry to realize this effect. According to Blekhman’s classification [33], there 

are six main types of such asymmetry caused by force, kinematic, structural, gradient, wave, and 

initial conditions asymmetry which can lead to an effective propulsion force. 

3.4 Effect of the Surface Texture on Stability and Phase Transitions 

 Vibrations are temporal periodic structures, whereas surface micro-structure provides 

spatial patterns. It is remarkable that, similarly to small fast vibrations, surficial micro/nano 

patterns can affect bulk properties of a liquid phase and in particular, they result in effective 

phase transitions of the material. In this section, the so-called “Kirchhoff’s dynamical analogy” 

between the dynamics of motion of a rigid body and static bending of a beam is considered, 

which establishes parallelism between time and spatial coordinates. This is followed by a review 

of the recent findings in the area of surface texture-induces phase behavior.       

3.4.1 Kirchhoff’s analogy between spatial and temporal patterns 

Gustav Kirchhoff (1824-1887) was a German physicist who made a significant 

contribution into mechanics by developing a theory of bending of deformable elastic rods and 

beams. One particular result of Kirchhoff’s theory was establishing an isomorphism between the 

static bending shape of an elastic flexible beam and the dynamics of motion of a rigid body, such 

as a pendulum or a hydroscope, in the 3D space [37,38]. This isomorphism, referred to as 

“Kirchhoff’s dynamical analogy,” is due to the fact that the differential equations describing 

bending of an elastic rod are the same as the differential equations describing the dynamics of the 
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rigid body with the local orientation of the rod corresponding to the position of the pendulum and 

the length of the rod corresponding to the time variable. 

 
Figure 3.12. Kirchhoff’s analogy between a pendulum and a beam.  Deflection of the beam due to a (a) 

compressive load (corresponding to the stable equilibrium of the regular pendulum) and (b) tensile 

(buckled configuration corresponding to the unstable equilibrium of an inverted pendulum) force F. The 

waviness in the case (c) would promote stable (unbuckled) equilibrium similarly to the vibrations 

stabilizing an inverted pendulum.    

Consider a slender elastic flexible beam of area moment of inertia I, and modulus of 

elasticity E, whose end points are loaded by an axial compressive force F as shown in Figure 

3.12a. The slope at any point (x,y) is denoted by the angleψ . For any small element ds on the 

beam sindy ds  ψ . Bending moment at (x,y) is given by dEI Fy
ds

 ψ . By combining these 

equations, a second-order differential equation which describes the spatial bending patterns on 

the beam can be obtained [39]. 

2

2
sin 0

d F

ds EI
 

ψ
ψ          (3.25) 

This is similar to the differential equation of oscillation of a simple pendulum of length L, 
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2

2
sin 0

d g

dt L
 

ψ
ψ           (3.26) 

Eq. 3.26 describes the deflection of the pendulum. Note how the spatial variable s in Eq. 

3.25 corresponds to time variable t in Eq. 3.26. Static bending of a beam is a boundary value 

problem, while motion of a pendulum is an initial value problem. However, despite this 

difference, an analogy exists between the motion of a pendulum and the shape of a buckled 

elastic rod. Now the analogy of a beam to an inverted pendulum is considered. 

Consider the bending of the beam under a tensile load F as shown in Figure 3.12b. The 

beam is bent 360° making an approximate circle. The inset in Figure 3.12b shows a free-body 

diagram of a small section of the beam near its end. The equilibrium of the beam corresponds to 

the value of the bending moment M=FΔy, which is proportional to the displacement Δy. The 

expression for the bending moment can be written as dEI F y
ds

 ψ . Here we study whether 

the equilibrium of the beam is stable (straight beam) or unstable (bended beam). Differentiating 

the expression for the bending moment with respect to s and assuming
0

lim
s

y

s 





ψ one can obtain 

2

2
0

d F

ds EI
 

ψ
ψ          (3.27) 

which is similar to the equation of motion of an inverted pendulum for small angular 

displacement,

2

2
0

d g

dt L
 

ψ
ψ .The equation for the inverted pendulum has a solution of the 

exponential form
1 2

g Lt g Lt
c e c e


 ψ  . The angular displacement grows exponentially with 

time t implying instability. Eq. 3.27 for the beam has a trivial solutionψ = 0 , and a nontrivial 
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solution
1 2

F EIs F EIs
c e c e


 ψ . The nontrivial solution suggests that the slope of the beam 

grows exponentially from the point of application of the force. 

On the basis of Kirchhoff’s analogy, the beam under compressive loading corresponds to 

the stable regular pendulum (Figure 3.12a), whereas the buckled beam under tensile loading 

corresponds to the unstable inverted pendulum (Figure 3.12b). An inverted pendulum can be 

stabilized by harmonically vibrating its foundation. Similarly, a buckled beam can be stabilized 

by a spatial periodicity in the geometry of the beam (Figure 3.12c). 

If the properties of the elastic rod are changed in a periodic manner with small amplitude

1h  and frequency  about the stationary value 0EI such that 

 
 

0
0 1 cos

1 cos

EI
EI EI h s

h s
    

  
      (3.28) 

Eq. 3.27 attains the form  

 
2

2

0

1 cos 0
d F

h s
ds EI

    
ψ

ψ        (3.29) 

which is similar to Eq. 3.1 for an inverted pendulum on a harmonically vibrating foundation. Eq. 

3.29 can be converted into the canonical form of the Mathieu equation 

 
2

2
cos 2 0

d

d
  


  

z
z          (3.30) 
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where     2

0 0

4 4
, ,

2

s F Fh
s

EI EI
   


   

 
, z =ψ . The stability and instability of the 

Mathieu equation can be studied by Lindstedt–Poincaré perturbation method [4,5]. The stability 

curves are obtained as 

21
...

8
     , 21 1

1 ...
2 32

             (3.31) 

and can be represented on the Ince-Strutt stability diagram (Figure 3.13). The solution of Eq. 

3.30 is stable for values of (δ,ε) that lie in the shaded region between the stability curves shown 

in Figure 3.13. The negative values of δ is of importance in this discussion because of the tensile 

nature of the force F. For example, F = -350 N, flexural rigidity
0EI = 14 Nm2, h =0.001 m, 

=10 m-1 yields the values 0.01, 1     which lie in shaded region. Thus, in this case the beam 

is stabilized by the spatial periodicity in its geometry. 

 
Figure 3.13. Ince-Strutt stability diagram for a beam.  

The spatial periodicity of the beam can be interpreted as distributed bending moments 

along the beam, which can be replaced by an effective stabilizing shear force, V as shown in 

Figure 3.12c. Therefore, the periodicity in the geometry of the beam manifests as an effective 

shear force. This shear force can stabilize the beam when the condition 
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2 21 1 1
1

8 2 32
                 (3.32) 

is satisfied. Else, the beam is unstable with an exponentially increasing slope. It can be 

concluded that a pattern on the surface profile of a rod affects destabilization of the rod just as 

small fast vibrations affect the stability of an inverted pendulum. In the next section, surface 

texture-induced superhydrophobicity, phase transitions and propulsion will be discussed. 

3.4.2 Surface patterns leading to the superhydrophobicity, phase transition and propulsion 

Surface texture (roughness) is an essential parameter in determining the wettability (or 

non-wettability) of a surface. On a superhydrophobic surface, a water droplet effectively 

“freezes” into a spherical shape. The roughness features on the superhydrophobic surface also 

harbor and stabilize pockets of air. On a superhydrophilic surface, a water droplet effectively 

“melts” into a thin film, similarly to the coalescence of a droplet into a liquid bath. 

Consider a solid rough surface of length L along the x-axis and unit width, roughness 

profile of which is described by the function F(x) and the local surface free energy γ(x). The 

roughness factor of the surface can be written in the integral form as 

2

0

1 ( )
1

L

f

dF x
R dx

L dx

 
   

 
          (3.33) 

Similarly to the averaging of small fast vibrations over time in Eq. 2.19, the effect of surface 

topography and chemical heterogeneity can be incorporated into the effective surface free 

energies of the interface as an integral over the spatial coordinate x. 



63 
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1

L

eff

dF x
x dx

L dx
 

 
   

 
        (3.34) 

For a chemically homogenous rough surface, γ is independent of x, and Eq. 3.34 yields 

the Wenzel equation in which the surface free energy is augmented by Rf. For a chemically 

heterogeneous smooth surface, Eq. 3.34 yields the Cassie-Baxter equation. The modification of 

the surface free energies in Eq. 3.34 using the average of the product of the surface free energy 

and the surface profile over a length is similar to the augmentation of the effective potential 

energy in Eq. 2.18 with a term averaged over time. The effective surface energy and thus the 

contact angle can be modified by controlling the surface texture and chemistry (Figure 3.14). 

 
Figure 3.14. A Surface can be made hydrophobic or hydrophilic by controlling the surface texture. 

Marmur suggested that appropriate texturing of a surface can lead to stable air films on 

underwater surfaces resulting in underwater superhydrophobicity [40]. Later on, Patankar and 

co-workers studied surface texture-induced phase transitions [41-43]. They investigated how 

surface texture affects the Leidenfrost effect [44] manifested by water droplets levitating over a 

sufficiently hot skillet due to the presence of an evaporating vapor film (Figure 3.15a). Such a 

film is formed only when the hot surface is above a critical temperature, whereas at lower 

temperatures the vapor film collapses. However, the critical temperature can be reduced, and the 
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vapor film collapse can even be completely suppressed [45] when micro-textured 

superhydrophobic surfaces are used [41]. Their result demonstrated that the surface texturing can 

potentially be applied to control other phase transitions, such as ice or frost formation and to the 

design of low-drag surfaces at which the vapor phase is stabilized in the grooves of textures 

without heating. 

Jones et al. [42] has later demonstrated that rough textured surfaces may be used to 

manipulate the phase of water since nanoscale roughness pattern stabilizes the vapor phase of 

water, even when liquid is the thermodynamically favorable phase. Furthermore, the reverse 

phenomenon exists when patterned hydrophilic surfaces keep a liquid phase layer of water under 

conditions for boiling. They used molecular dynamics simulations to demonstrate the stability of 

the vapor and liquid phases of water adjacent to textured surfaces. Patankar [43] has also 

identified the  critical  roughness  scale  below  which  it  is  possible  to  sustain the  vapor  

phase  of  water and/or  trapped  gases  in  roughness  valleys, thus  keeping  the  immersed  

surface  dry.  

 
Figure 3.15. (a) Levitating liquid droplet over a sufficiently hot surface due to the Leidenfrost effect. (b) 

Self-propelled Leidenfrost droplets on an asymmetric saw-tooth surface. The temperature of the surface is 

usually much greater than the boiling point of the liquid. 

Linke et al. [46] demonstrated that hot surfaces with small asymmetric texture (saw-tooth 

profile) can induce self-propulsion in Leidenfrost droplets, and in the process, the droplets climb 
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over the steep sides of the surface texture [47]. The temperature of the textured surface has to be 

much greater than the boiling point of the liquid. A thin film of the vapor phase thus formed at 

the textured surface supports the Leidenfrost droplets. The vapor phase is expelled from under 

the droplet due to the pressure gradient in the film between the peaks and the valleys of the 

surface profile. Due to the inherent asymmetry of the surface texture, the vapor leaks out 

asymmetrically from under the droplet, causing a net directional flow of vapor. The resultant 

viscous forces entrain the droplet in the same direction (Figure 3.15b) [48-50]. The self-

propulsion effect has potential application such in a sublimation heat engine [51]. 

Dupeux et al. [48] derived the viscous force generated per tooth of the saw-tooth profile 

using momentum balance as  

   i c

F

U
f r

h
            (3.35) 

where η is the viscosity of the vapor, U is velocity of the vapor flow, hf is the average thickness 

of the vapor film, rc is the contact radius of the droplet, and λ is the tooth length. If there are N 

teeth below the droplet, then the net propulsion force can be obtained as, 
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U U
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h h
   



           (3.36) 

For the values η=1.9x10-5 Pa s, U =0.2 ms-1, hf =10 μm, rc =2.5 mm, λ=1 mm, and N=5, the force 

F=4.75 μN. The summation of forces over an area due to surface patterns in Eq. 3.36 is similar to 

the integration of small fast vibrations in Eq. 2.19. The vibrations can be substituted by an 

effective stabilizing force. Similarly, the surface topography manifests as a propulsion force. 
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Thus asymmetric surface patterns on a surface can be substituted by an effective force 

that spontaneously propels a Leidenfrost droplet over steep inclines. In general, the phenomenon 

of surface texture-based phase transition can be described as suppressing the boiling point and 

thus it is similar to superheating or subcooling of water. Similar to the vibration-induced phase 

transitions, the effect of the small spatial pattern is in changing the phase state of the material. 

3.5 Effect of the Patterns on Fluid Flow Through Membranes 

In the preceding section it was seen that small fast vibrations or small-amplitude spatial 

structures can be substituted by an effective energy term, which can lead either to an effective 

force (such as the vibro-levitation force) or affect mechanical or phase equilibrium. This section 

deals with the effects of small vibrations and structures on wetting, and specifically, on the 

filtration. 

3.5.1 Water penetration through a hole in a vibrating vessel 

In this section deals with the effects of small fast vibrations on the flow through a hole. 

First consider a macroscopic flow of a fluid through a pipe as shown in Figure 3.16a, with the 

mean flow velocity v related to the pressure loss P by the nonlinear relation 

2P av            (3.37) 

where a is a constant. The quadratic term represents a non-linearity, which may be a 

consequence of various factors, such as the turbulence, non-linear viscosity, or asymmetric 

variations in the pipe profile. The non-linearity is essential since it results in hysteresis [32]. 

Assume a slow velocity v0 which changes negligibly over a time period 2  . If the pipe is 

subjected to a fast external vibration (Figure 3.16b) of the form cosx h t  , where h is a small 
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constant amplitude, then the additional fast component of velocity is sinx h t    . The 

standard assumption of the method of separation of motions is that the flow velocity is small in 

comparison with the amplitude of the velocity of vibrations, h. The flow velocity can be 

written as the sum of the slow and fast components. 

0 sinv v h t             (3.38) 

Substituting Eq. 3.38 in Eq. 3.37, 

 
2

0 sinP a v h t             (3.39) 

 
22

0 0sin 2 sinP av a h t av h t       
 

 
2

0 0sin 2 sinP P a h t av h t               (3.40) 

where 0P is the pressure loss due to v0, which changes negligibly over 2  . Averaging Eq. 

3.40 over the period 2  , similarly to the temporal averaging in Eq. 2.19 gives 
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             (3.41) 
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P P h              (3.42) 
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Figure 3.16. (a) Fluid flow through a pipe where the pressure difference ΔP0 is a nonlinear function of the 

flow velocity v0. (b) Longitudinal external vibrations hcosΩt results in an additional pressure difference 

ΔPv. (c) Pressure difference as a function of the velocity hΩ. The hysteresis (ΔP2 –ΔP1) due to a small 

change in velocity ±δv can significantly alter the flow characteristics. (d) Pressure difference as a function 

of hΩ for three different fluids with a=700, 1000 and 1200  kgm-3. 

The effect of the fast vibrations is perceived as the additional pressure difference in Eq. 

3.42,  
2

2vP a h   , which can intensity or weaken the fluid flow thought the pipe. Eq. 3.42 is 

similar to Eq. 2.18 in which vibrations augment the potential energy of the system. At certain 

values of h in Eq. 3.42 the vibrations can effectively stop the fluid flow. A representative plot 

of Eq. 3.42 is shown in Figure 3.16c. For any small change in velocity v due to the external 

vibrations, the corresponding change in P are different as shown. The pressure difference 2P

for a small increase in velocity is greater than the pressure difference 1P for a small decrease in 
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velocity.  This hysteresis can affect the flow in the pipe and under certain conditions even stop 

the flow. Using values of 0P =1 kPa, and a=700, 1000, 1200 kg/m3 (similar to the densities of 

gasoline, water and glycerin respectively), a plot of Eq. 3.42 is shown in Figure 3.16d. If the 

hydrostatic pressure driving the flow is inP , the fluid in the vibrating pipe ceases to flow when  

 
2

2
in

a
h P             (3.43) 

If instead of a vibrating pipe, a vibrating fluid container with a hole at the bottom is 

considered, the velocity of the fluid drainage is related to the static pressure head (H) of the fluid 

in the container as 2v gH . Therefore the non-linearity in Eq. 3.37, and Eq. 3.43 still holds. 

Thus the drainage of fluid through the hole can be stopped by controlling the amplitude and 

frequency of the vibrations. Thus small fast vibrations can affect fluid flow through a hole and 

under certain conditions effectively act as a valve. Next, this result is extended to the case of 

vibrating membranes on the micro/nano scale. 

3.5.2 Liquid penetration through pores in vibrating or patterned membranes 

 Semipermeable membranes allow solvent molecules (usually water) to diffuse through, 

but prevent larger molecules such as solutes and ions. Osmosis is the transport of solvent 

molecules through a semipermeable membrane from a region of higher to lower solvent 

chemical potential, until the chemical potentials equilibrate. Osmosis is omnipresent in nature at 

the cellular level. Transport across the semipermeable membrane of living cells is by osmosis. 

The driving force behind osmosis is the concentration gradient of solute across the membrane or 

in other words the chemical potential difference of the solvent across the membrane. 
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Figure 3.17. (a) Both sides of the semipermeable membrane have pure solvent and hence equal chemical 

potential. Therefore an osmotic equilibrium exists. (b) Osmosis across the semipermeable membrane 

continues until the chemical potentials equilibrate. (c) The flux of solvent molecules can be reversed by 

applying a pressure larger than the osmotic pressure. This process is called reverse osmosis. 

 Consider two columns of liquid separated by a semipermeable membrane as shown in 

Figure 3.17. If both columns carry pure solvent at pressure P1, osmotic equilibrium exists, i.e., 

the chemical potentials equate. In such a case the heights of the pistons equilibrate and there is 

no net flow of solvent molecules across the membrane (Figure 3.17a). Let the chemical potential 

of pure solvent at P1 and temperature T be given by *

solvent . A small amount of solute is added to 

the left column to make it a dilute solution (at P1) (Figure 3.17b). This dilution results in 

lowering of the chemical potential of the solvent in the solution below that of the pure solvent. 

There is a net flow of solvent molecules from the pure solvent, across the membrane into the 

solution. The chemical potential of the solvent solvent in the dilute solution at P1 is given by the 

relation 

* lnsolvent solvent solventRT x           (3.44) 
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where R is the gas constant, T is the absolute temperature, and xsolvent is the mole fraction of the 

solvent in the solution. The equilibrium can be restored by increasing the pressure on the solution 

to a value P2. This raises the chemical potential of the solvent in the solution to that of pure 

solvent. The relation for change in chemical potential with pressure can be obtained from the 

Gibbs free energy relation. 

2

1

*

P

solvent solvent solvent

P

V dP            (3.45) 

where
solventV is the partial molar volume of the solvent. Substituting Eq. 3.45 in Eq. 3.44, and 

integrating  

  2 1 lnsolvent solventV P P RT x           (3.46) 

 The excess external pressure  2 1P P that must be applied to prevent osmotic flow and 

restore equilibrium is called osmotic pressure, π. Thermodynamically, it is the excess external 

pressure that must be applied to the solution to raise the vapor pressure of the solvent to that of 

pure solvent.  For a dilute solution,  ln ln 1solvent solute solutex x x    , 
solute solute solventx n n  , and 

volume of the solution solvent solventV n V . Using these relations Eq. 3.46 can be written as 

 solute
solute

n
RT c RT

V
            (3.47) 

which is the van’t Hoff equation, where csolute is the molar concentration of the solute in the 

solution. Note its similarity to the ideal gas law. When an external pressure P greater than the 
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osmotic pressure π is applied to reverse the flux of solvent molecules then the process is called 

reverse osmosis (RO) (Figure 3.17c). 

 
Figure 3.18. Vibrations can change the permeability of membranes. This may lead to a reverse osmotic 

flux even when the applied pressure is less than the osmotic pressure.  

In the previous section, it was shown that vibrations could manifest as pressure affecting 

the fluid flow. For a vibrating membrane (Figure 3.18) consisting of several holes, the vibrations 

manifest as an effective pressure  
2

2a h as seen in Eq. 3.42. The vibrations can change the 

effective membrane permeability if  

 
2

2

a
h             (3.48) 

The RO process is used commonly to desalinate water. RO membranes are porous 

structures used in the RO process. Solvents usually take a tortuous path through the RO 

membranes. Note that RO is used for separation of a solvent from a solution. However, a 

completely different principle can be used to separate liquid mixtures using patterned 

superhydrophobic surfaces.  
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The RO process is used commonly to desalinate water. RO membranes are porous 

structures used in the RO process. Solvents usually take a tortuous path through the RO 

membranes. Note that RO is used for separation of a solvent from a solution. However, a 

completely different principle can be used to separate liquid mixtures using patterned 

superhydrophobic surfaces.  

One of the recent applications of surfaces with tailored wettability is in separation of oil-

water mixtures [52]. Porous media/meshes which are selectively wetted by either water or 

organic solvents can be used in this process. These porous material are analogous to the RO 

membranes used in desalination. Surfaces that are superhydrophobic and oleophilic, or 

hydrophilic and underwater oleophobic can be used to separate out oil from water. 

Natural and artificial materials have been used for oil-water separation. Kapok plant fiber 

which is naturally hydrophobic and oleophilic was seen to separate diesel oil from water. Kapok, 

which is wetted by diesel due to capillary rise, can be dried and reused [53]. Artificial 

membranes are made by using porous/meshed structures with specific pore sizes, which may be 

roughened and coated with a surface agent to tailor the wetting property. The wetting properties 

depend on the pore size, surface roughness and surface agent used. Stainless steel and copper 

meshes, and filter paper [54] were commonly used to separate mixtures in which oil is layered 

over water. If one of the phases in oil-water mixture is dispersed in the other as small droplets 

(smaller than the pore size) the meshes become ineffective. Hydrophobic porous media has been 

developed for separation of oil-water emulsions with and without surfactants [55-58]. Table 3.2 

summarizes the literature which discusses various types of oil-water filtering membranes. 
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Table 3.2. Summary of recent literature on oil-water separation using selectively wettable membranes. 

Porous 

material 

Surface texturing and 

treatment 
Wetting property Separates 

Kapok plant 

fiber [53] 
None 

Hydrophobic, 

oleophilic 
Diesel from water 

Stainless 

steel mesh 

[59] 

Polyacrylamide hydrogel 

polymerisation 

Superhydrophilic, 

underwater 

superoleophobic 

Vegetable oil, gasoline, 

diesel, crude oil, hexane, 

and petroleum ether from 

water with 99% efficiency 

Stainless 

steel mesh 

[60] 

Vertically-aligned multi-

walled carbon nanotubes 

Superhydrophobic, 

superoleophilic 
Diesel from water 

Copper mesh 

[61] 

Etching followed by 

immersion in 1-

Hexadecanethiol 

Superhydrophobic, 

superoleophilic 

Diesel from water 

 

Filter paper 

[54] 

Hydrophobic silica + 

polystyrene 

Superhydrophobic, 

oleophilic 

Diesel from water with 

96% efficiency 

Stainless 

steel mesh 

[62] 

Spray coating an emulsion 

of PTFE, polyvinyl 

acetate, polyvinyl alcohol 

and sodium dodecyl 

benzene sulfonate in water 

Superhydrophobic, 

superoleophilic 

Diesel from water 

 

Copper mesh 

[63] 

Copper hydroxide needles 

grown electrochemically 

and coated with silane 

Superhydrophobic, 

superoleophilic 
n-hexane 

Stainless 

steel mesh 

[64] 

Zinc oxide nano rod 

coating followed by 

immersion in stearic acid 

Superhydrophobic, 

superoleophilic 
Toluene from water 

Stainless 

steel mesh 

[65] 

Hexagonal ZnO nano rods 
Superhydrophobic, 

superoleophilic 
Paraffin oil from water 

 

Consider a mesh with pores of radius w used for oil-water separation. The rough surface 

of the mesh is wetted partially by oil, water and air. The effective surface free energy of a rough 

chemically heterogeneous surface is given by Eq. 3.34. The solid-liquid interface area in any 
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single pore is augmented by the factor  SL f L
f r .The capillary pressure

capP across the interface of 

the liquid L is given by the force balance  2

02 coscap SL f LVL
P w wf r   which simplifies as 

  
  02 cosSL f LVL

cap L

f r
P

w

 
        (3.49) 

where LV is the surface free energy of the liquid-vapor interface. Note that the effect of the 

surface micro/nanotopography is incorporated into Eq. 3.49 via the roughness factor. The 

roughness factor is the surface profile averaged over an area. This is similar to the effect of 

vibrations averaged using the temporal integral in Eq. 2.19. The capillary pressure at a solid-oil 

interface is  

 
 2 cosoil f oil oiloil

cap oil

f r
P

w

 
        (3.50) 

whereas the capillary pressure at a solid-water interface is 

 
 2 coswater f water waterwater

cap water

f r
P

w

 
       (3.51) 

where , , ,oil water oil water    are the surface free energy of the oil-vapor interface, the surface free 

energy of the water-vapor interface, the equilibrium CA of oil and the equilibrium CA of water 

respectively. 

The capillary pressure (Eq. 3.49) determines if the liquid spontaneously flows through the 

mesh. For a hydrophobic, oleophilic mesh  cap water
P is negative whereas  cap oil

P is positive as a 

result of which oil selectively permeates though the pores; water permeates only if an external 
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pressure is applied to negate  cap water
P . For example, the capillary pressures for a mesh of pore 

size w=10 μm with the values rf =2.0,γwater =72 mNm-1,θwater =107°, fwater =0.19,γdiesel =23 mNm-

1, θdiesel =60°, fdiesel =1.0, are  cap water
P = -1.6 kPa and  cap diesel

P = 4.6 kPa. The mesh will stop 

the water, while allowing diesel through the pores. In the case of a mesh used for oil-water 

separation, micro/nano topography augments the capillary pressure and is therefore a critical 

factor. 

Eq. 3.43 is the critical condition for flow through a vibrating pipe or out of a vessel, while 

Eq. 3.48 is the critical condition for the permeability of a vibrating membrane. The vibrations 

were averaged over time. In Eq. 3.49 the surface micro/nano topography was averaged over area. 

In essence micro/nano topography can affect the mesoscale transport through porous media 

while small fast vibrations can affect the molecular transport through porous media.  

Note the similarity between Eq. 3.47 for osmotic pressure and Eq. 3.49 for the capillary 

pressure. Also note that the osmotic pressure is independent of the membrane properties, 

whereas the capillary pressure for wetting is dependent on the surface characteristics. The effect 

discussed in this section is different from the classical osmosis. The osmosis is a molecular scale 

effect and the expression for the osmotic pressure (Eq. 3.47) is derived from thermodynamics. 

The pattern-induced liquid separation, or “pseudo-osmosis” is a mesoscale effect with a 

characteristic length scale, i.e., the superhydro/oleophobic/philic surface pattern, of nanometers. 

3.6 Conclusion 

In this chapter, the method of separation of motions was used to establish a relationship 

between surface micro/nanotopography and small fast vibrations. Both small fast vibrations as 
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well as surface micro/nanopatterns can be substituted by an effective force or energy. This 

effective force or energy is obtained by averaging the small scale effects over their temporal or 

spatial domain. Kirchhoff’s analogy was also used to study the similarity between surface 

topography and vibrations. The method of separation of motions was used as a tool to understand 

the structure-property relationships in materials and surfaces. The effects of vibrations and 

surface topography on wetting properties were also studied. Surface patterns averaged over the 

projected area can be incorporated into the effective surface free energy for a textured surface. 

 The effective stabilizing force was formulated for systems undergoing small fast 

vibrations such as the inverted pendulum, multiple pendulums connected end to end, and vibro-

levitating droplets. Non-coalescing, vibro-levitating oil droplets were observed over a vibrating 

bath of oil within a range of frequencies of vibrations, similarly to the vibration-induced 

stabilization of an inverted pendulum. Vibration-induced phase transition was observed in non-

Newtonian colloidal suspensions. Using the method of separation of motions, it was shown that 

vibrations can stop the fluid flow through a hole, effectively acting as a valve. Thus vibrations 

can affect membrane permeability. An equation for the capillary pressure in an oil-water 

separating superhydro/oleophobic/philic mesh was formulated using the method of separation of 

motions. 

 Using Kirchhoff’s analogy it was shown that a slender elastic flexible beam in tension 

can be stabilized using spatial periodicity in the geometry of the beam. Thus surface topography 

can manifest as an effective stabilizing shear force on the beam. 

  It is important to note that in all the cases discussed in this chapter, vibrations or surface 

patterns leads to some nonlinearity which results in peculiar behavior such as stabilization and 
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transition. Thus spatial patterns and vibrations can affect material and surface properties. 

Potential applications include smart materials with tunable properties. The approach developed 

in this chapter allows estimating system design and performance by knowing the properties of 

small scale vibrations and patterns. In the following chapters the structure-property relationships 

are applied to novel materials. In the next chapter, the surface micro/nanotopography is used to 

control the wetting of concrete. 
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CHAPTER 4: DYNAMICS OF INCOMING DROPLETS ON TEXTURED 

HYDROPHOBIC CONCRETE 

In the previous chapter, the relationship between surface micro/nanotopography and 

small fast vibrations was investigated. Vibrations and micro/nanopatterns can be substituted by 

an effective force or energy obtained by using the method of separation of motions. The 

structure-property relationships in materials and surfaces were established. Surface topography 

as well as vibrations can affect wetting properties such as the contact angle and the surface free 

energy. In this chapter, the surface topography is used to control the wettability of concrete, and 

thereby produce hydrophobic concrete. 

4.1 Introduction 

There are two well recognized facets to superhydrophobicity, namely the contact angle 

(CA) and contact angle hysteresis (CAH). There is another important, although less frequently 

discussed, facet which is the ability to repel incoming water droplets [1]. Although the ability to 

repel impinging water droplets is not measured by a single parameter unlike CA or CAH, it can 

be used to characterize the wetting property of a surface [2]. When a water droplet impinges on a 

surface, it flattens out into a pancake (lamella) shape with conversion of droplet kinetic energy 

into surface energy. What happens next depends on the wettability of the surface. On a 

hydrophilic surface, the droplet continues to flatten out and wet the surface. But on a 

hydrophobic surface the droplet recedes back from the pancake-like shape to form a spherical 

cap. In certain cases the droplet has inertia sufficient to bounce off completely or eject a jet 

depending on the energy dissipation during the whole process (Figure 4.1). If it is desirable that a 

surface repels incoming droplets, the droplets themselves should be of low viscosity and high 
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surface tension [3]. If complete bouncing off does not happen, then the droplet is pinned either 

partially (Figure 4.1) or completely to the surface. This often involves the transition from the 

Cassie-Baxter to Wenzel state. Pinning has also been shown to be influenced by the contact time 

with the surface [4,5]. High kinetic energy droplet may also break-up into smaller ones. 

 
Figure 4.1. Water droplet impacting hydrophobic concrete at room temperature. The droplet is seen to 

flatten out into a ‘pancake shape’ in the second frame. In the third frame, it retracts and a jet is expelled. 

The parent droplet however remains partially pinned due to longer contact time with the surface. 

Previous studies have dealt with droplets impacting carbon nanofiber surface [6], 

electrospun nanofiber membranes [7], carbon nanotube films [8], micro-patterned elastomer 

[9,10], silicon oil-wetted surface [11], carbon soot[12], polyvinyl chloride, wax and glass [13]. 

Bird et al. [14] showed that contact time between a drop and a surface can be reduced by using 

patterns that induce non-axisymmetric recoil. Surface roughness has little impact on the behavior 

of impacting low velocity droplets, but it can influence the location of transition region between 

bouncing and pinned states [6,13]. For porous membranes, impacting droplets above a threshold 

velocity penetrate the pores irrespective of their native wettability [7]. Droplet impact dynamics 

have been studied in freezing conditions to simulate the icephobicity [8,15]. Water droplets can 

bounce-off superhydrophobic surface at -25 ºC before ice nucleation can start [15]. A carefully 

textured surface topography can help resist pinning of water even at -30 ºC [16]. The so called 

‘jumping-drop superhydrophobic surfaces’ [17] can slow down frost formation by continuously 
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ejecting condensate droplets, and thus lead to less ice accretion [18].   In this chapter, impinging 

water droplets on hydrophobic concrete are studied. 

Concrete, which is a mixture of portland cement, water and aggregates, is a versatile 

construction material. Dry concrete being porous and hydrophilic absorbs water. When such 

concrete undergoes the freeze-thaw cycling, it can lead to progressive deterioration and failure of 

concrete. Novel hydrophobic fiber-reinforced concrete was prepared to reduce water penetration, 

and some samples indicated superhydrophobic behavior (water apparent CA>150°) while others 

were strongly hydrophobic with CA approaching the superhydrophobicity area [19]. This new 

material was designed to ensure that beneficial structure is reproduced upon wear. This advanced 

material can find many applications, especially, in cold regions where there is occurrence of 

freezing environment combined with deicing agents such as salt. Therefore, the performance of 

hydrophobic concrete when water and salt solution droplets are impinged upon them both at 

room temperature and sub-freezing condition is of interest. Ability to repel incoming water 

droplets can help to prevent ice growth and accretion. 

4.2 Experimental 

In this section, the ability of concrete to repel incoming water droplets is studied. 

4.2.1 Materials 

The concept of superhydrophobic concrete was proposed and realized by Professor 

Konstantin Sobolev from the Department of Civil and Environmental Engineering at the 

University of Wisconsin-Milwaukee. Some specimens and the coatings used in this study were 

prepared by Dr. Marina Kozhukhova [20-22]. 
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Mortar specimens were prepared using portland cement type I, standard quartz sand and 

tap water. The mortar mixes were modified with polyvinyl alcohol (PVA) fibers to induce a 

certain “self-reproducing” surface structure, important for icephobic properties. The PVA fibers 

also have a low dielectric constant which may weaken ice adhesion to the surface. An admixture 

was used to improve the workability of the mortar mixes. The details about the constituents of 

the mortar mixes are described in the Appendix. Six concrete samples were prepared in the form 

of mortar tiles. The sample compositions were as given in Table 4.1. 

Table 4.1. Composition of the hydrophobic concrete samples. 

Mixture ID M1 M2 A3 A4 B3 B4 

Water-cement ratio 0.25 0.3 0.3 0.4 0.3 0.4 

Sand-cement ratio 0 1 1 1 0.5 0.5 

Super-plasticizer, % solids 0.1 0.1 0.1 0.1 0.1 0.1 

PVA fibers, vol % 1 1 1 1 2 2 

 

The surfaces of the samples to be hydrophobized were subjected to mechanical abrasion 

using 60 grit sand paper for 30 sec. The samples were then coated with hydrophobic emulsions 

to achieve hydrophobicity. For this purpose, a water-based “shell type” siloxane emulsion was 

used. Polymethylhydroxysilane (PMHS) and PVA were used as the hydrophobizing agent and 

surfactant respectively. Silica fume particles were used to stabilize the emulsion, and also to 

provide micro-roughness when the emulsion is applied to the mortar surface. Two emulsions 

with different concentrations of hydrophobic agent and silica fume were prepared at proportions 

of 25% : 5% and 5% : 1%, by weight, respectively. Sample M2 was treated with the emulsion 

based on 25% and 5% of hydrophobic agent and silica fume respectively, while the other 
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samples were treated with the emulsion containing 5% and 1% of the components. More 

information about the components of the emulsion is described in the Appendix. The procedure 

of emulsion preparation was described in detail in [19,23,24]. 

4.2.2 Contact angle and surface roughness measurement 

A ramé-hart goniometer (model 100-25-M) was used to measure the CA and CAH of the 

six samples. Distilled water droplets of 10 μl were used and at least five readings were taken for 

each sample. The samples were observed at 20X with an Olympus Lext OLS4100 laser scanning 

microscope and average surface roughness (Sa) of an area 0.625μm x 0.625μm was measured. 

4.2.3 Droplet impact test 

Distilled water droplets of around 14μl were dropped onto horizontal concrete samples 

from sixteen different heights (7 𝑚𝑚 ≤ 𝐻 ≤ 140 𝑚𝑚). Schematic for the experimental setup is 

shown in Figure 4.2a. The video of droplet impacts on the surfaces were recorded at 420 fps 

using a camera (Canon EX-FH25). The heights of first rebound (h) were measured from the 

videos. At least five impacts were measured at each height for each sample. The concrete 

samples were then kept at 45° incline so that impact is non-axisymmetric. Distilled water 

droplets (14 μl) as well as droplets of NaCl solution in water (1:4 by weight) were dropped from 

three different heights (10 mm, 50 mm, and 140 mm). Schematic for the experimental setup is 

shown in Figure 4.2b. The impact and interaction of the droplets with the surfaces were recorded. 

The ambient conditions were 20 °C and 38% relative humidity. 

Next, the concrete samples were pre-cooled at -20 °C for two hours. Then they were 

taken to a room at -5 °C and 34% relative humidity, where distilled water droplets (14μl) as well 
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as droplets of NaCl solution in water (1:4 by weight) were dropped from three different heights 

(10 mm, 50 mm, 140 mm) on the concrete samples kept at 45° incline (Figure 4.2b). The impact 

and interaction of the droplets with the surfaces were recorded. 

 
Figure 4.2. The experimental setups for the droplet impact test. (a) Experiment to measure the height of 

first bounce of droplet on horizontal hydrophobic concrete sample. The trajectory of the bouncing droplet 

which is a vertical line, is exaggerated into a parabola to identify h. (b) Experiment to study impact of 

droplets impinging at 45º and icephobic performance under sub-zero conditions. 

4.3 Results 

4.3.1 Contact angle and surface roughness 

The CA, CAH, and Sa measurements for the samples are given in Table 4.2 below. All 

the samples were over-hydrophobic (120º < CA < 150º). All of them also exhibited very high 

contact angle hysteresis. The droplets remained adherent to the surfaces even when vertical. The 

equilibrium contact angle based on the equation suggested by Tadmor [25] is also listed in Table 

4.2. These values are much different from the observed contact angles. Figure 4.3 shows the 3D 

surface profiles of the scan area of samples. The surface of M1 (Figure 4.3a) is different from the 

rest of the samples (Figures 4.3b-f) due to the absence of sand particles. This causes roughness 

on a different scale as opposed to the case when sand is present. 
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Table 4.2. CA, CAH, equilibrium contact angle from Tadmor equation and Sa for concrete samples. 

Sample ID CA CAH 
Calculated 

equilibrium CA 

Average roughness 

Sa (μm) 

M1 140.9º±7.8º 67.5º±2.3º 98.8º 6.09 

M2 132.0º±6.6º 51.7º±7.5º 102.4º 3.82 

A3 121.4º±4.2º 55.6º±3.6º 100.4º 2.72 

A4 129.7º±6.7º 66.3º±3.7º 98.3º 2.53 

B3 139.9º±5.1º 55.7º±7.9º 100.9º 2.49 

B4 139.7º±4.6º 60.5º±9.4º 102.7º 3.57 

 

Figure 4.3. 3D surface topography of the samples. (a) M1 (b) M2 (c) A3 (d) A4 (e) B3 (f) B4. M1 has 

dense distribution of asperities due to the lack of aggregates in the sample. 

4.3.2 Analysis of vertical impacts 

For experiments as shown in Figure 4.2a, droplets bounced off sample M1 quite easily. 

Droplets freely falling from a height (H) up to 90 mm were seen to bounce off with very rare 

instances of pinning. Beyond 90 mm, the droplets got pinned to the surface frequently. Droplets 

falling from a height of 110 mm and above were seen to break-up into smaller droplets on 

impact. These smaller droplets adhered strongly to the surface. For M2 the interaction was quite 
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different. Even some low velocity droplets (H~10 mm) got pinned to the surface on impact. 

Droplets falling from 60 mm broke-up or got pinned on impact. Free falls from 80 mm or higher 

always resulted in break-up of droplets. For A3, frequent pinning was observed for free-fall from 

heights up to 60 mm, beyond which the droplets bounced off. At 110 mm and higher the droplets 

broke-up on impact and the resulting smaller droplets adhered to the surface. For A4, droplets 

from heights of 110 mm and above broke-up into smaller droplets. The droplets also got pinned 

frequently on impact from heights up to 100 mm. Sample B3 and B4 resisted pinning for low 

velocity droplets (H~15 mm). For B3, droplets broke-up on free-fall from heights over 100 mm, 

while for B4 it was 120 mm. 

 
Figure 4.4. Coefficient of restitution at various Weber numbers (We) for the hydrophobic concrete 

samples. The curves show a similar trend, with a more negative slope at low We and less negative slope at 

higher We. 
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The velocities of the droplets in free fall from a height 𝐻 were calculated as 𝑣~√2𝑔𝐻. 

Weber number (We) was calculated for distilled water droplets impacting on horizontal concrete 

surfaces. 𝑊𝑒 =
𝜌𝑟𝑣2

𝛾
, where density 𝜌 = 1000𝑘𝑔/𝑚, surface tension 𝛾 = 0.072𝑁/𝑚 and radius 

of droplet 𝑟 = 1.5𝑚𝑚. Coefficient of restitution was calculated as 𝐶𝑂𝑅 = √ℎ/𝐻, where h is the 

height of first rebound. The variation of COR with We for the concrete samples are shown in 

Figure 4.4. The curves for each sample apparently has two distinct parts, one that shows a sharp 

negative slope at low We (0-10), and the other with a gradual negative slope at larger We. Since 

COR embodies the kinetic energy dissipation, this may mean that two different dissipative 

mechanisms are at play at low and high impact velocities. This is discussed further in the 

following section.  

4.3.3 Analysis of oblique impacts 

Stacked images in Figures 4.5-4.7 show the interaction of droplets with the samples at 

45ᵒ inclination. The images clearly show the trajectory of the droplet. Whether the droplet wets 

the surface, or bounces off can also be observed from the Figures. Droplets that bounce off have 

an apparent parabolic trajectory after impact. For droplets falling from 10 mm (Figure 4.5), 

sample M1 was seen to repel both water and salt solution droplets at 20 °C and -5 °C. In case of 

M2, both water and salt solution droplets wetted or stuck to the surface. At -5 °C the wetted area 

can inhibit ice accretion if more water droplets impinge at the same location subsequently. Water 

droplets falling from 10 mm was seen to stick to A3, A4, B3 and B4 at -5 °C, while salt solution 

bounces off. But all four of them repelled both water and salt solution at 20 °C.  
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Figure 4.5. Interaction of distilled and salted water droplets falling from 10 mm, with the samples at 45° 

inclination, at 20 °C and -5 °C. 
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Figure 4.6. Interaction of distilled and salted water droplets falling from 50 mm, with the samples at 45° 

inclination, at 20 °C and -5 °C. 
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Figure 4.7. Interaction of distilled and salted water droplets falling from 140 mm, with the samples at 45° 

inclination, at 20 °C and -5 °C. 

For droplets falling from 50 mm (Figure 4.6), M1 repelled water and salt solution 

effectively at -5 °C. At 20 °C, even though the droplets broke-up they still bounced off. Droplets 
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wetted or stuck to M2 at -5 °C, but at 20 °C both salt solution and water rolled off. A3, A4, B3 

and B4 repelled both water and salt solution droplets at -5 °C and 20 °C. At -5 °C, the water 

droplets just about rolled off the surfaces. But at the same temperature the salt solution droplets 

bounced off along a longer trajectory. This difference in trajectories can be attributed to change 

in droplet properties with temperature and salt addition. Similar trajectories were observed at 20 

°C for both water and salt solution. 

For droplets falling from 140 mm (Figure 4.7), all samples except M2 repelled water and 

salt solution droplets at both 20 °C and -5 °C. Droplets broke-up on impact, but clearly bounced 

off. Pinning was not observed. This was unlike what was observed with the droplets impinging 

horizontal samples. The angle of incoming droplets seemed to affect what happened after impact. 

For horizontal samples pinning was seen to set in even at low We. In case of M2, the droplets 

wetted the surface or was pinned. 

4.4 Discussion 

When a water droplet impinges on a hydrophobic surface, part of its kinetic energy (𝐾) is 

dissipated. For droplets under consideration, the Reynolds number based on velocity of 

impact (𝑣) is 553 < 𝑅𝑒 < 2476. Viscous damping and pinning are assumed to be the 

predominant modes of energy dissipation. The damping force 𝐹𝑣𝑖𝑠𝑐𝑜𝑢𝑠 ∝ 𝑣, and the resulting 

energy dissipation is ∆𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 ∝ 𝑊𝑒
1

2. The energy dissipation of the droplet due to pinning is 

the result of water hammer-type pressure induced Cassie-Baxter to Wenzel transition [26]. Water 

hammer-type pressure is given by 𝑃 = 0.2𝜌𝐶𝑣, where 𝜌 is the liquid density, 𝐶 is the speed of 

sound in the liquid and 𝑣 is the impact velocity of the droplet. The force from the water hammer-

type pressure acts on the area of contact between the liquid droplet and the surface. Assuming 
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that there is no rotation of the droplets at impact, then the deformation/flattening of the droplet 

can be assumed to be proportional to the impact velocity. If 𝑋 is the deformation of the droplet 

dimension in unit of length, the energy dissipated due to pinning can be written as ∆𝐸𝑝𝑖𝑛𝑛𝑖𝑛𝑔 ∝

𝑉𝑋2 ∝ 𝑊𝑒
3

2. Kinetic energy of the droplet dissipated on impact, ∆𝐾~∆𝐸𝑝𝑖𝑛𝑛𝑖𝑛𝑔 + ∆𝐸𝑣𝑖𝑠𝑐𝑜𝑢𝑠 

∆𝐾 ∝ 𝑊𝑒0.5 + 𝑊𝑒1.5         (4.1) 

𝐶𝑂𝑅 = √1 −
∆𝐾

𝐾
= √1 −

𝑎𝑊𝑒0.5+𝑏𝑊𝑒1.5

𝑊𝑒
       (4.2) 

𝐶𝑂𝑅~1 − 𝛼(𝑊𝑒)−0.5 − 𝛽(𝑊𝑒)0.5       (4.3) 

where the parameters 𝛼 and 𝛽 depend on the liquid viscosity and the surface topography 

respectively. 

 
Figure 4.8. Theoretical Coefficient of restitution (COR) vs. Weber number (We) plot. 

Assigning nominal values to the parameters 𝛼 and 𝛽, the curve in Figure 4.8 was 

obtained. The shape of these theoretical curves is much similar to the plot obtained in Figure 4.4. 

Also, pinning can set in at different We for different surface topographies (based on the value of 

𝛽). This agrees with experimental observations for the different samples. Thus modifying the 

surface texture of concrete can produce pinning-resistant hydrophobic concrete. 
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At an incline of 45°, M1 was seen to repel both water and salt solution droplets at 20 °C 

and -5 °C. A3, A4, B3 and B4 were seen to repel droplets at 20 °C, and -5 °C except for water 

droplets falling from 10 mm. The performance of inclined samples at 20 °C was unlike that of 

horizontal samples. They were seen to better resist pinning. Pinning is caused by water hammer-

type pressures which are the result of sudden change in momentum of the droplet. When the 

samples are horizontal, pinning can also happen at lower We because the velocity vector is 

normal to the surface of impact. But when the samples are tilted at 45° inclination, the impact is 

asymmetric and only the component of velocity normal to the surface causes the water hammer-

type pressure. The change in momentum associated with this component is lower than the 

change in momentum associated with the total vertical velocity. Thus the droplets resist pinning 

on inclined surfaces at similar We. The We range studied in this paper is similar to what is 

observed for raindrops in light rain (We ~28) [27]. Heavy rain with large droplets and higher 

terminal velocities may result in very large We. During rain however, water droplets break up 

before they reach the critical size of 6mm [28,29]. 

M2 was seen to be the worst at repelling incoming droplets, with droplets either getting 

pinned or leaving a wet streak behind in most cases. This wet streak inhibited ice accretion in 

case of subsequent droplet impacts. Therefore it is important to have surfaces which resist 

wetting or pinning to reduce chance of ice accretion. Manipulating the composition of concrete 

can yield samples with specific porosity and roughness. Aggregate (sand) added to concrete 

results in surface roughness on a scale similar to the size of sand particles. Since sample M1 with 

no sand content effectively repels incoming droplets at both room and sub-zero temperatures, it 

is clear that surface roughness on the scale of sand particles is detrimental to the performance. 

The PVA fiber content does not seem to affect the performance on itself, but the roughness 
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created by the fibers in tandem with aggregates seems to degrade the performance of 

hydrophobic concrete as seen with M2. Since incoming angle is a dominant factor in the fate of 

the impacting droplet, it is apparent that asymmetric impact can reduce water hammer-type 

pressure. Designing ribs or features of dimension comparable to droplet size can also provide 

asymmetry needed to prevent pinning. 

4.5 Conclusion 

In this chapter, surface micro/nanotopography was used to control the wettability of 

concrete. Micro/nanotextured concrete was produced by controlling the concrete mixture 

composition. The concrete surface was hydrophobized by coating with a hydrophobic emulsion. 

The dynamics of droplets impacting the surface of micro/nanotextured hydrophobic concrete was 

studied. Whether the droplets were pinned, broke-up on impact, or bounced-off depended on the 

droplet velocity as well as the surface topography. Kinetic energy of the droplet is mostly 

dissipated due to viscous damping or pinning. At low Weber numbers, the droplet bounces off, 

but at higher Weber numbers, droplet pinning takes effect. The transition Weber number 

between bouncing off and pinning was seen to be not well defined and it depended on the surface 

topography. Also inclined surfaces were seen to resist pinning/break-up of droplets at higher 

velocities. This is due to the asymmetric impact resulting in lower water hammer pressure. The 

surfaces which showed a delayed onset of pinning are less susceptible to ice accretion. The 

ability of hydrophobic concrete to repel incoming rain and corrosive solutions can be optimized 

by changing the mixture composition.  
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CHAPTER 5: CORROSION RESISTANT SUPERHYDROPHOBIC METALLIC 

SURFACES 

In the previous chapter, surface topography was used to control the wettability of 

concrete. In this chapter surface topography is used to control corrosion of metallic surfaces. 

When a superhydrophobic surface is immersed in water, it would have less interfacial contact 

area between water and the solid on account of the solid-water-air non-homogeneous interface at 

the superhydrophobic surface. Electrolytes which cause electrochemical corrosion are usually 

aqueous solutions. Corrosion of metallic surfaces can be controlled if the metal-electrolyte 

contact area is reduced. In this study, the metallic surfaces are modified by changing their 

surface micro/nanotopography as well as lowering their surface free energy. Electrochemical 

corrosion tests are conducted on the metallic surfaces to investigate the effect of surface 

modification. 

5.1 Introduction 

Corrosion of metals is a highly undesirable process since it damages metallic materials 

used for various components leading to their gradual destruction. Consequently, various types of 

anti-corrosive coatings have been developed, including ones which prevents the contact of the 

material with corrosive environment, such as aqueous solutions. A relatively new type of coating 

which repel water and aqueous solutions is the superhydrophobic coating which modifies wetting 

properties of a material [1]. There are a number of recent experimental studies of how 

superhydrophobicity can reduce corrosion, although there are few studies of the fundamental 

physicochemical mechanisms involved or potential applications to fresh water materials. 

Typically, electrochemical corrosion occurs when a metallic surface is oxidized while in contact 
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with an electrically conducting solution called electrolyte. A typical electrolyte used in corrosion 

studies is 3.5 wt. % aqueous solution of sodium chloride in water, with an electrical conductivity 

of 5.3 Ω-1m-1 due to solvated ions. A hydrophobic/superhydrophobic surface with a non-

homogeneous interface would have a reduced interfacial contact area between the electrolyte and 

the metallic surface.  

Making a metallic surface superhydrophobic is a challenging task. Typically, a stable 

combination of a low-energy surface coating with a hierarchical roughness having roughness 

details of characteristic length scales from microns down to nanometers is needed. Several 

attempts to create corrosion-resistant superhydrophobic coatings have been reported in the 

literature [1]. To operate in an aggressive corrosive environment, a superhydrophobic surface 

needs to resist chemical etching as well as degradation due to prolonged exposure. Also the 

surfaces roughness features and coatings need to withstand mechanical wear. Mechanical 

abrasion [2-4], etching [5,6], oxidation [7,8], galvanic replacement [9], and templating [10-13] 

are some of the methods used to create roughness on these surfaces. Several methods such as 

immersion coating [2,4,6-8,14-17], spin coating [18], chemical vapor deposition [9], spray 

coating [3,19], etc. are used to reduce surface energy. Such surfaces exhibit reduction in 

corrosion current and maintain superhydrophobicity on prolonged exposure to corrosive 

environments.  

Superhydrophobicity as a means of corrosion inhibition has been studied on several 

metallic materials such as stainless steel [3], cold rolled steel [10-13] copper,[4,5,19-22], zinc 

[9,23], aluminum [2,6,14,24], titanium [7,8,17], and magnesium alloys [15,16,25]. The results 

from literature of corrosion tests on some of the aforementioned materials are summarized in 

Table 5.1. The general trend observed in these results is that the corrosion current decreases 
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several folds when the surface is rendered superhydrophobic. Also the corrosion potential tends 

to become more positive. These two tendencies are interpreted as the signs of reduced corrosion 

rates for superhydrophobic surfaces. Most of the methods to produce superhydrophobic surfaces 

involved polymer coatings which might act as diffusion barriers, oxide formation which resulted 

in passivation of materials, or fillers which reduced the coating permeability. Each of these 

factors contributed to corrosion inhibition. Therefore, the superior corrosion resistance was not 

the result of the superhydrophobicity alone, but a synergistic effect of several factors listed 

above. The influence of the superhydrophobicity alone in reducing corrosion current can be 

determined by comparing the entries of columns pertaining to flat-coated and rough-coated 

samples in Table 5.1. 

Figure 5.1 shows the corrosion current density as a function of the contact angle based on 

the same data. In Figure 5.1a this dependency is shown for materials with the tendency of low 

corrosion in their native state, whereas Figure 5.1b shows the data for materials with high 

tendency of corrosion in their native state. In all these cases, the corrosion current density 

decreased significantly as soon as the contact angle became greater than 90° indicating that 

hydrophobicity leads to corrosion inhibition. Further decrease in corrosion current density is seen 

as stable air pockets are established in the Cassie-Baxter state. Feng et al.[2] reported 

superhydrophobic aluminum alloy surfaces with 𝑓𝑆𝐿~0.05, which showed 87% reduction in 

corrosion current density compared to uncoated alloy. Similarly, Xu et al.[15] reported 

superhydrophobic magnesium alloy surfaces with 𝑓𝑆𝐿~0.046 with a 90% reduction in corrosion 

current density. Effective corrosion resistant surfaces require not only large contact angles, but 

also minimal fractional solid-liquid interfacial area. It can be concluded that the mechanisms 
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which correlate the superhydrophobicity to the corrosion rates, such as the formation of Cassie 

heterogeneous interface, may explain the experimental data reported in the literature. 

 
Figure 5.1. (a) and (b) Corrosion current density as a function of contact angle from published literature. 

The trend clearly shows a significant decrease in corrosion current densities with increase in contact 

angle. The lowest corrosion current densities occur in the Cassie-Baxter domain, where contact angle is 

much greater than 90°. 
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5.2 Electrochemical Foundations of Corrosion and Wetting 

Corrosion current is the main characteristic of the rate of the electrochemical corrosion. 

This type of corrosion happens when a metal (electrode) comes in contact with an electrolyte. 

During corrosion, a metal (M) transform from its pure state to more stable oxidized states. This 

involves an anodic oxidation reaction 

 𝑀 → 𝑀𝑧+ + 𝑧𝑒−         (5.1) 

where 𝑒−denotes electrons, and 𝑧 is the number of electrons involved in the reaction. These 

excess electrons in the electrode should be consumed by a reduction reaction to prevent charge 

accumulation on the metal (Figure 5.2a). The common cathodic reduction reactions are hydrogen 

evolution 

 2𝐻+ + 2𝑒− → 𝐻2         (5.2) 

or reduction of dissolved oxygen in the electrolyte 

 𝑂2 + 4𝐻+ + 4𝑒− → 2𝐻2𝑂        (5.3) 

When a metal comes in contact with an electrolyte, an ionic double layer is formed at the 

electrode surface. Due to that the electrode attains an electrochemical potential referred to as 

corrosion or open circuit potential, 𝐸𝑐𝑜𝑟𝑟 or 𝐸𝑜𝑐. This potential is essentially the difference of the 

potentials between the electrode and electrolyte or a “reference electrode” immersed in the 

electrolyte next to the working electrode. At the corrosion potential, the anodic and cathodic 

reactions are in dynamic equilibrium, so that no net charge transfer between the electrode and 

electrolyte occurs (Figure 5.2b). The anodic current density of oxidation of metal, 𝑖𝑎𝑛𝑜𝑑𝑒 , is 
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exactly balanced by the cathodic current density of reduction, 𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒, and it is also equal by 

absolute value to the corrosion current density 𝑖𝑐𝑜𝑟𝑟 associated with the transfer of the electrons 

in the electrode from the anodic to cathodic spots (|𝑖𝑐𝑜𝑟𝑟| = |𝑖𝑎𝑛𝑜𝑑𝑒| = |𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒| ≠ 0).   

 
Figure 5.2. (a) A typical electrochemical corrosion process in the presence of an electrolyte. Material is 

removed from anodic sites and then deposited as corrosion products (rust) at  cathodic sites. (b) The 

dynamic equilibrium current is zero. 

While the total current between the electrode and electrolyte is zero, the transfer of ions 

(such as 𝑀𝑧+ or 𝐻+ ) occurs in both directions, and the transfer rate is proportional to the anodic 

/ cathodic / corrosion current. The ion transfer effectively results in corrosion of the metal (for 

example, rusting). Therefore, the corrosion current can be used as a measure of the corrosion 

rate. However, the corrosion current cannot be measured directly. Various corrosion tests have 

been developed to evaluate the corrosion current. 

One such corrosion test that is commonly used is the potentiodynamic polarization test 

(PPT). During the PPT, the potential of the sample electrode is changed above and below𝐸𝑜𝑐, 

and corresponding changes in the current are measured as a function of the potential. The value 

of the potential above or below 𝐸𝑜𝑐 is called the overpotential, overvoltage, or polarization, 𝜂. 

During an anodic polarization, the potential is increased with respect to 𝐸𝑜𝑐 resulting in oxidation 
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of the electrode, while during a cathodic polarization the potential is decreased resulting in 

reduction of the electrode. The electric current density 𝑖 as a function of the overpotential is 

given by the Butler-Volmer equation involving both the anodic and cathodic exponential terms. 

 𝑖 = 𝑖𝑐𝑜𝑟𝑟 [exp (
𝛼𝑎𝜂𝑧𝐹

𝑅𝑇
) − exp (−

𝛼𝑐𝜂𝑧𝐹

𝑅𝑇
)]      (5.4) 

where 𝛼𝑎 and 𝛼𝑐 are the anodic and cathodic charge transfer coefficients, F=96,485 C mol-1 is 

the Faraday constant, R=8.31 J K-1 mol-1 is the universal gas constant, T is the absolute 

temperature, and z is the number of electrons involved in the reaction per molecule. Note that 

zero overpotential 𝜂 = 0 corresponds to the dynamic equilibrium |𝑖𝑎𝑛𝑜𝑑𝑒| = |𝑖𝑐𝑎𝑡ℎ𝑜𝑑𝑒| as it has 

been explained above. Therefore, in order to find 𝑖𝑐𝑜𝑟𝑟 from the experimental data plot of 𝑖 vs 𝜂, 

one should subtract the exponential term, either anodic or cathodic, from the net dependency and 

consider the difference at 𝜂 = 0 (Figure 5.3a).    

Since the current changes over several orders of magnitude during a typical corrosion 

test, a plot of 𝜂  vs log 𝑖 called the Tafel plot is usually made (Figure 5.3b). The linear regions of 

the anodic and cathodic plots correspond to the exponential terms of the Butler-Volmer equation, 

and tangential straight lines can be extrapolated as to intersect at 𝑖𝑐𝑜𝑟𝑟. 

The typical set-up used in a PPT test is shown in Figure 5.3c. It employs a three electrode 

electrochemical cell. In a three electrode system, one electrode is the working electrode which 

undergoes corrosion, the second is a reference electrode to measure potential difference between 

the working electrode and the electrolyte, and the third is a counter electrode (usually of an 

electrochemically inert material, such as gold, platinum, or carbon), which completes the circuit 

by allowing the current flow. There is negligible current flow through the reference electrode due 
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to high resistance of the voltmeter. The electrode potential of the reference electrode is known 

and highly stable (saturated calomel is often used as the reference electrode material). A 

potentiostat is used to sweep across a range of voltages, and measure the corresponding currents. 

 
Figure 5.3. (a) A typical i vs  dependency based on the Butler-Volmer equation (b) Red curves show the 

Tafel plot of the net (anodic and cathodic) current. Corrosion current can be obtained by extrapolating 

along the tangential lines corresponding to the exponential polarization curves. (c) A typical three 

electrode set-up for the PPT corrosion measurement. The red arrows show current flow during anodic 

polarization, and the broken green arrows show current flow during cathodic polarization. 

 Wetting and electric properties of an interface are related to each other by the so-called 

Lippmann equation of electrowetting, which states that the contact angle at a solid-liquid 

interface subjected to the applied voltage  is given by  

 cos 𝜃∗ = cos 𝜃0 + 
𝐶𝜂2

2𝛾𝑊𝐴
        (5.5) 

where C is the specific capacitance per unit area of the double layer at the interface. A more 

general form of the Lippmann equation appropriate for a heterogeneous surface has been 

recently suggested by Bormashenko & Gendelman [26]. While normally changing potential is 
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used to control wetting properties [27], it has been demonstrated that a reverse process 

(controlling the electrode potential by changing the wetting properties) is feasible as well [28].  

Note that the effect of the electric potential applied to the interface on the surface energy 

and equilibrium contact angle (Eq. 5.5) is similar to the effects of roughness (Eq. 2.2) and 

heterogeneity (Eq. 2.4). In accordance with Le Châtelier’s principle, one could expect that 

changing the wetting properties would result in a certain compensatory change of the corrosion 

potential, which, in turn, could lead to a change of the corrosion current and, finally, of the rate 

of corrosion. 

This chapter correlates wetting and corrosion. Surface wettability is determined by 

factors such as surface energy, roughness and homogeneity of the interface. The effect of these 

factors on the corrosion current and the rate of corrosion is studied theoretically in the following 

section. Experiments are performed to correlate wetting properties with corrosion rate. This is 

followed by discussion and comparison to theoretical predictions. 

5.3 Theoretical Model 

The effect of the surface roughness and the wetting state on corrosion rate is discussed in 

this section. First, I establish how the solid-liquid contact area and surface roughness affect the 

electric current in the Cassie-Baxter state in accordance with the Ohm’s law. Then, the corrosion 

rate is related to the current using the Faraday’s law of electrolysis. Finally, the Nernst equation 

is used to relate the corrosion rate to the surface energy due to the decrease of the chemical 

potential. 
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5.3.1 Ohm’s law and the wetting states 

Ohm’s law 𝐸 = 𝐼𝑅 provides the relationship between the interfacial potential 𝐸 and 

current 𝐼 with the interfacial resistance 𝑅. The resistance is inversely proportional to the 

interfacial solid-liquid contact area 𝐴𝑆𝐿. One can write,  

 𝐼 ∝ 𝐴𝑆𝐿 ∝ 𝑟𝑓𝑓𝑆𝐿         (5.6) 

 
 

Figure 5.4. (a) Variation of the current I with contact angle θ and fractional solid-liquid interfacial area fSL 

(b) Rate of corrosion reaction r as a function of contact angle θ for different values of roughness factor rf. 

The equilibrium contact angle of the surface was assumed to be 50°. 

Figure 5.4a shows variation of the current with contact angle (θ) for a substrate whose 

equilibrium contact angle is 75°. Non-homogeneity (Cassie-Baxter state) created by pockets of 

trapped air is considered here. The corrosion current decreases with increasing apparent contact 

angle.  As the value of 𝑓𝑆𝐿 decreases, the current across the interface also decreases. The air 

pockets serve to increase the interfacial electrical resistance. The theory predicts a large 

reduction in corrosion current with a decrease in solid-liquid interfacial area. Generating a stable 
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hydrophobic surface can significantly decrease corrosion. The main factor affecting corrosion 

current in Cassie-Baxter state is 𝑓𝑆𝐿. 

5.3.2 Faraday’s law of electrolysis and wetting properties 

Mass of material removed in corrosion reaction is given by Faraday’s law of electrolysis,  

𝑚 =
𝐴  𝑖𝑐𝑜𝑟𝑟 𝑡

𝑧𝐹
           (5.7) 

where 𝐴 is the atomic (or equivalent) weight of the corroding substance, 𝑡 is the corrosion time, 

𝑧 is the number of electrons transferred in the corrosion reaction. 

5.3.3 Rate of corrosion and the surface free energy 

From absolute reaction theory, the rate at which the metal molecules are oxidized can be 

written as 𝑟 =
𝑘𝑇

ℎ
exp (−

∆𝐺

𝑅𝑇
), where 𝑟 is in s-1, 𝑘 is Boltzmann’s constant, ℎ is Planck’s constant, 

and ∆𝐺 is the activation energy. The activation energy for a corrosion reaction of a metal can be 

written as ∆𝐺0 = 𝐺𝑂
0 − 𝐺𝑅

0, where  𝐺𝑂
0 and 𝐺𝑅

0 are free energies associated with the oxidized state 

and the metal respectively. If the metal surface is not ideally smooth, but is instead composed of 

surface asperities, assuming complete oxidation of the surface 

 ∆𝐺∗ = (𝐺𝑂
0 + 𝛾𝐴𝑟𝑓) − (𝐺𝑅

0 + 𝛾𝐴𝑟𝑓𝑓𝑆𝐿)      (5.8) 

Then the rate of corrosion reaction is  

 𝑟 = 𝑟0exp (−
𝛾𝐴𝑟𝑓(1−𝑓𝑆𝐿)

𝑅𝑇
)        (5.9) 
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where 𝑟0 is the rate of corrosion reaction at ideal surface conditions. Figure 5.4b shows the rate 

of reaction as a function of apparent contact angle in Cassie-Baxter state. The rate of reaction 

decreases with increase in contact angle. Increasing the surface roughness decreases the rate of 

reaction in Cassie-Baxter state. 

 The main conclusion of this section is that rendering the electrode surface rough and the 

interface with the electrolyte non-homogeneous provides a coupling mechanism for the wetting 

and corrosion properties. In other words, both increased surface roughness rf and decreased 

solid-liquid (electrode-electrolyte) contact area, fSL, simultaneously affect the effective surface 

energy and the rate of corrosion. 

5.4 Experimental 

To further investigate the relationship of the corrosion rate and wetting, several 

experiments were conducted on metallic materials typically used for fresh water industry 

applications (for example, water pipes and other similar components) including steel and cast 

iron. Out of these two, cast iron turned out to be a material of interest which can relatively easily 

be hydrophobized and also subjected to corrosion at a significant rate. For that end, a procedure 

was developed which is outlined in this section, and followed by PPT tests on ADI90 cast iron 

(CI) samples.  

5.4.1 Surface roughening 

CI samples were cut into 25 mm squares of approximately 6 mm thickness. The sample 

set identifiers are given in parenthesis, the number 1 denotes uncoated, while 2 and 3 denote two 

types of hydrophobic coatings. The surfaces were roughened as described below, and then the 
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samples were ultrasonically cleaned in water, then in ethanol, and then air dried. One set of 

samples were mechanically abraded by successively using 320, 400, 600, 800, 1200 grit silicon 

carbide papers, followed by polishing with a soft cloth impregnated with 3 μm alumina particles 

to obtain a smooth surface (Samples P1). Another set was abraded by using 320 grit silicon 

carbide paper to obtain a rough surface (Samples R1). A third set was roughened by sandblasting 

for 30 s to obtain an extremely rough surface (Samples S1). 

5.4.2 Hydrophobic coating 

Following the procedure of hydrophobization suggested by Yuan[29] with some 

modifications, the samples (P2, R2, and S2) were immersed in acetic acid (CH3COOH) solution 

(36%) for two hours, followed by hydrogen peroxide solution (15%) for three hours. After that, 

the samples were immersed in a 0.01 M solution of stearic acid (CH3(CH2)16COOH) in ethanol 

for 24 hours. Then the samples were taken out of the solution and air dried. Stearic acid coating 

was used to study if hydrophobization by monolayers can inhibit corrosion. 

Another set of samples (P3, R3, and S3) were spray coated with a commercial liquid 

repelling treatment (Rust-Oleum® NeverWet®). First the samples were spray coated with a base 

coat and allowed to dry for 30 min. Then four top coats were applied with 2 minutes between 

each coat. The top coat was allowed to dry for 3 hours. 

5.4.3 Contact angle and surface roughness measurements 

The as-placed water contact angles (CA) were measured using a ramé-hart goniometer 

(model 100-25-M) by placing three pure water droplets of 10 μl at different locations on the 

surface. The contact angle hysteresis (CAH) were calculated by the tilting plate method. The 
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samples were observed at 20X with an Olympus Lext OLS4100 laser scanning microscope and 

average surface roughness (Sa) of an area 0.625 μm x 0.625 μm was measured. 

5.4.4 Potentiodynamic polarization test 

The corrosion behavior of samples was studied using the PPT procedure. A standard 

three electrode system with the sample as the working electrode, saturated calomel as the 

reference electrode, and platinum as the counter electrode was used. A potentiostat (Biologic SP-

200) with EC-Lab software was used for voltage sweep and data acquisition. The electrolyte was 

3.5 wt % NaCl solution. The exposed area of the working electrode was circular with the 

diameter of 1 cm or approximately 0.79 cm2. The samples were kept in contact with the 

electrolyte for 30 min to reach the open circuit potential. The potential was varied at the rate of 

0.116 mV/s during the tests. The results from the experiments are discussed in the following 

section. 

5.5 Results and Discussion 

The polished sample P1 had the lowest CA of 50.5° among uncoated samples, while P2 

had the lowest CA of 95.4° among stearic acid-coated ones. Roughening of the samples led to 

increase in CA in uncoated samples. All the uncoated samples showed significant CAH. Once 

the stearic acid coating was applied, all the samples became hydrophobic with CA>90°. The 

sample P2 was only slightly hydrophobic with the CA of 95.4°. The sample R2 had a CA of 

110.0°. The sand blasted sample S2 had the highest CA of 124.4° among stearic acid coated 

ones. The stearic acid-coated samples also showed large CAH values. Water droplet was placed 

on each of the samples P1, R1, S1, P2, R2, and S2 and then the samples were tilted to a vertical 

position. The water droplet clung to the surface in all the cases, showing strong adhesion with the 
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surface. This also suggested that most of the surface cavities were filled with water, than air. 

CAH of the samples also reveal high adhesion with water. The adhesive forces can be quantified 

using a centrifugal adhesion balance.[30] All the samples coated with NeverWet were 

superhydrophobic. It was extremely difficult to place water droplets on the surface for CA 

measurement. They rolled off at the slightest disturbance, making CAH measurement extremely 

difficult. Sample P3, R3 and S3 had contact angles of 160.3°, 158.5°, and 150.7° respectively, 

with negligible CAH. The results of the CA measurements are presented in Table 5.2. 

It is difficult to conclude from direct observations whether the wetting state for the 

samples P2, R2, and S2 were Wenzel or Cassie-Baxter; however, it was found that surfaces 

immersed in water tended to reflect light indicating possible presence of air pockets. Due to the 

extreme water repellency observed for P3, R3 and S3, it can be concluded that they were in the 

Cassie-Baxter state. 

The average surface roughness for samples P1 and R1 were 0.042 and 0.144 μm. For S1 

the roughness was on the micron scale with a value of 2.335 μm. The samples P2, R2 and S2 had 

average surface roughness values of 0.086, 0.216, and 2.843 μm respectively. These roughness 

values are higher than those for corresponding hydrophilic samples. The average surface 

roughness values for P3, R3, and S3 were substantially higher than those for corresponding 

hydrophilic and hydrophobic samples. The optical images of samples P1, P2, and P3 are shown 

Figure 5.5, while the surface topographies of all the samples are shown in Figure 5.6. 
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Table 5.2. The contact angles (CA), contact angle hysteresis (CAH), average surface roughness (Sa), 

corrosion current density (icorr), corrosion potential (Ecorr), and corrosion rate (in millimeters per year, 

mmpy) for the samples. 

Sample ID 
CA 

(deg) 

CAH 

(deg) 
Sa (μm) 

icorr 

(μA/cm2) 

Ecorr 

(mV) 

Corrosion 

rate (mmpy) 

P1 50.5 27.5 0.042 5.81 -646.9 0.144 

R1 73.5 24.7 0.144 5.22 -641.2 0.130 

S1 69.9 27.5 2.335 18.01 -602.6 0.449 

P2 95.4 24.7 0.086 - - - 

R2 110.0 36.5 0.216 - - - 

S2 124.4 60.0 2.843 11.98 -608.0 0.299 

P3 160.3 - 9.001 6.33 x10-6 -315.9 0.158 x 10-6 

R3 158.5 - 8.849 3.16 x10-8 -40.3 0.789 x 10-9 

S3 150.7 - 9.884 7.10 x10-4 -298.5 0.177 x 10-4 

 
Figure 5.5. Optical images of surfaces of the samples (a) P1, (b) P2, and (c) P3. The coating on P3 is 

visibly different with cracks and bubbles on the surface. 
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Figure 5.6. (a) to (i) shows the surface topographies of P1, P2, P3, R1, R2, R3, S1, S2, and S3 

respectively. Coating with the liquid repellent spray results in drastic change in surface roughness as seen 

in the case of P3, R3, and S3. All scales are in μm. 
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Figure 5.7. Potentiodynamic polarization curves for the samples. Rendering the surface superhydrophibic 

is seen to shift decrease the corrosion current density as well as shift the corrosion potential closer to the 

refernce electrode potential. 

The Tafel plots were obtained from the EC-Lab software (Figure 5.7). For the samples P2 

and R2 the PPT did not produce any characteristic Tafel plots, which might be caused by poor 

stability of the stearic acid coating on the samples with low roughness. Consequently, no 

corrosion current and potential was measured on these samples.  

Corrosion current densities, corrosion potentials, and corrosion rates were obtained from 

these plots using the software. These values are presented in Table 5.2. The polished sample P1 

had an icorr of 5.81 μA/cm2. After rendering it superhydrophobic, the resulting sample P3 had an 

icorr of 6.33x10-6 μA/cm2.The sample R1 had an icorr of 5.22 μA/cm2. Rendering it 

superhydrophobic resulted in sample R3 with icorr 3.16 x10-8 μA/cm2. The samples S1, S2 and S3 
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had an icorr of 18.01, 11.98, and 7.10 x10-4 μA/cm2 respectively. The corrosion potentials also 

showed significant change with the wettability of the surface. The absolute values of the 

corrosion potentials decreased by more than 50% for the superhydrophobic samples. 

Consequently, the corrosion rates of the superhydrophobic samples were several orders smaller 

than those of the hydrophilic and hydrophobic samples. Repeated PPT on samples give corrosion 

current values of similar magnitudes. 

The hydrophilic samples P1, R1 and S1 showed significant rusting on their surfaces after 

PPT. The hydrophobic samples P2, R2 and S2 also showed rusting on their surfaces, with a loss 

of hydrophobicity after PPT. The loss of hydrophobicity on P2, R2 and S2 is due to the 

combined effect of corrosion as well as destruction of trapped air pockets under hydrostatic 

pressure. The superhydrophobic samples P3, R3 and S3 however had no visible rusting on their 

surfaces following the PPT. These samples were robust, retaining their superhydrophobicity and 

ability to trap pockets of air at the surface. 

The trends observed in the experimental data were that the corrosion current density 

decreased and the corrosion potential increased as a result of rendering a surface 

superhydrophobic. The corrosion potentials of most metals and alloys in their native state are 

negative. Therefore, these metals and alloys have the tendency to get oxidized into corrosion 

products. The corrosion potential of a hydrophobic surface typically shifts to a value closer to 

that of the reference electrode. This means a lower thermodynamic tendency to oxidize. Also, the 

reduction in the solid-liquid interfacial contact area by formation of trapped air pockets results in 

excellent corrosion resistance. 
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The experimental results obtained with CI samples showed a similar trend to the results 

from published literature. Corrosion current densities decreased by several magnitudes and 

corrosion potentials shifted in the positive direction once the surfaces were made 

superhydrophobic. These were signs of corrosion inhibition.  

The samples P1 and R1 had sub-micron scale surface roughness. As the roughness of the 

samples increased from P1 to R1, the corrosion current density decreased and the corrosion 

potential increased, but only slightly. Interestingly, when the roughness increased to the scale of 

microns for S1, the corrosion current density increased three folds. This can be explained by the 

formation of homogenous solid-liquid interfacial contact. Roughness at such an interface can 

amplify the effects of corrosion similar to what is observed in Wenzel model. Increase in surface 

roughness leads to increase in surface area exposed to the electrolyte. Therefore more reaction 

sites are available for corrosion to proceed and hence the increased corrosion current density. 

Having a homogenous solid-liquid interface is detrimental to the metal or alloy.  

When the samples were hydrophobized with stearic acid, the surface roughness changed. 

This is due to the reaction of cast iron with acetic acid, as well as hydrogen peroxide. The stearic 

acid coating as well as the surface roughness is seen to impart hydrophobicity to the samples. 

The corrosion current density decreases in the case of S2 when compared with S1. The 

difference between S1 and S2 is in the type of interface formed when in contact with the 

electrolyte. The sample S1, as seen before, has an amplified corrosion tendency due to its very 

rough surface and hydrophilicity. The sample S2 is hydrophobic and can sustain some trapped 

pockets of air compared to S1 as observed when S2 was dipped in water. These air pockets 

results in reduced electrode-electrolyte contact. Hence the decrease in corrosion current density 
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from S1 to S2. But hydrophobic S2 has higher corrosion current densities than hydrophilic P1 

and R1. Even though S2 has a non-homogenous interface, its effective solid-liquid contact is 

more than P1 and R1 due to its high surface roughness. This suggests that as long as the wetting 

regime on a surface is not purely Cassie-Baxter, the effect of roughness is more pronounced than 

contact angle on corrosion. 

In case of samples P3, R3, and S3, the roughness of the cast iron itself was not of 

particular importance. After applying the spray coating, the surface roughness of all three 

samples increased drastically. The coating itself was visible to the naked eye, and felt rough to 

touch. Under the microscope, the coating was seen to have cracks and bubbles on the surface 

(Figure 5.5c). These surface features resulted in the extremely high surface roughness values. 

The surfaces of P3, R3, and S3 looked unaffected to the naked eye after the PPT.  

For the samples P2, R2, and S2, the stearic acid coating was not visible to the naked eye. 

These surfaces showed signs of corrosion after the PPT. Stearic acid usually form a monolayer 

on the surface that renders the surface hydrophobic. This layer is not robust like the spray 

coating. Such a fragile layer may also undergo a Cassie-Baxter to Wenzel wetting transition due 

to the hydrostatic pressure in the corrosion cell. This may be a reason for the relatively feeble 

performance of S2.  

In most of the published literature, epoxy or similar coatings were employed. These 

coatings themselves act as diffusion barriers to ionic species or are less permeable to air. Such 

coatings were far superior offering 85% or higher drop in corrosion current densities compared 

to uncoated metals or alloys. In the experiments described here, both thick coatings as well as 

monolayers were employed. Therefore, the effects of surface roughness and non-homogenous 
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hydrophobic interface on corrosion inhibition were isolated in this study. The thickness of 

coating on P3, R3 and S3 was much larger than the stearic acid monolayer on S2. This suggests 

that thickness of coating has a significant part to play in corrosion inhibition. Thicker coatings 

provide a tortuous path for the corrosive agents. In the case of a Cassie-Baxter to Wenzel 

transition, a relatively thick coating can act as a second line of defense against the corrosive 

agents. 

The general principle of chemical equilibrium (Le Châtelier’s principle) states that when 

many factors affect equilibrium of a system, any change in status quo prompts an opposing 

reaction in the responding system. Further studies of fundamental mechanisms of corrosion on 

non-wetting surfaces may be required to understand the underlying mechanisms. However the 

observed trends are consistent with this principle. In the case of an electrode immersed in 

electrolyte, the equilibrium surface energy depends both on the inherent surface energy of the 

material and on the potential of the electrode. By rendering the electrode surface hydrophobic, 

the inherent surface energy is decreased. This shift in equilibrium of the system is compensated 

by a change in the potential difference between the surface and the wetting liquid. A positive 

change in potential was observed in all the cases discussed here. However, the absolute value of 

the potential decreased, which, in accordance with the electrowetting laws, such as the Lippmann 

equation (Eq. 5.5) corresponds to increasing surface energy.  This change in corrosion potential 

can lead to a decrease in the corrosion current density for the surface, and thus the rate of 

corrosion. This trend is also universally observed in the cases discussed here.  
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5.6 Conclusion 

In this chapter the principles of corrosion and electrowetting as well as mechanisms 

which lead to their correlation with the superhydrophobicity were discussed.  The mechanism of 

electrochemical corrosion was discussed and the technique for measuring corrosion parameters 

was introduced. Corrosion test data were compiled from recent literature to highlight the trends 

observed in critical parameters related to corrosion. A facile, scalable hydrophobic coating using 

stearic acid was developed on cast iron. A commercial liquid repelling spray was used to render 

cast iron superhydrophobic. Corrosion tests were performed on cast iron in hydrophilic, 

hydrophobic and superhydrophobic states. Both the compiled data as well as the experimental 

results of this study showed a decrease up to eight orders of magnitude in corrosion current 

density and an increase in corrosion potential after superhydrophobization. This can be explained 

in light of Le Châtelier’s principle. A stable non-homogenous solid-electrolyte-air interface was 

essential for superior corrosion resistance. Surface micro/nanotopography coupled with low 

surface free energy helps sustain a non-homogeneous interface. However, increasing the surface 

roughness without hydrophobization led to increase in corrosion current density. A theoretical 

model was developed and validated with the experimental data. This will provide a fundamental 

understanding of wetting phenomena in corrosion inhibition. 

A relatively new area of corrosion inhibition employing hydrophobic/superhydrophobic 

surfaces was studied. Existence of a stable non-homogenous interface and the significant 

reduction in corrosion current density meant that similar coating will find applications in the 

water industry such as water pipelines, gauges, probes, etc. An ideal superhydrophobic coating 

for corrosion inhibition should satisfy two requirements: it should be able to withstand Cassie-
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Baxter to Wenzel transition under duress, and it should provide a tortuous path for the corrosive 

agents trying to attack the metallic surface. Therefore corrosion of metallic surfaces can be 

controlled by changing the surface micro/nanotopography. In the next chapter, the effect of 

surface micro/nanotopography on the icephobicity of materials will be investigated. 
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CHAPTER 6: ANTI-ICING SUPERHYDROPHOBIC SURFACES 

In the previous chapters the effect of surface micro/nanotopography on wetting and 

corrosion were investigated. It was seen that surface micro/nanotopography can be used to 

control wetting properties with applications such as hydrophobicity, and corrosion resistance. In 

this chapter, the effect of surface micro/nanotopography on the icephobicity of materials will be 

studied. In particular, the icephobicity of concrete is experimentally investigated. 

6.1 Introduction 

Undesirable ice formation, accretion and adhesion causes various problems ranging from 

slippery sidewalks and roadways, cracked concrete structures, to icing of airplane wings and 

windmill propeller blades. Various approaches are used for ice control and removal including 

active methods, for example, electro-thermal systems or mechanical actuators, and passive 

methods, for example, adding antifreeze/freezing point depressants (e.g., a salt) or applying 

surface coatings. However, active ice removal methods consume energy, and freezing point 

depressants are not environmentally friendly. This is why surface coatings that prevent ice 

buildup or reduce ice adhesion have become a focus of active research [1]. In cold conditions, a 

functional icephobic surface should prevent freezing of condensing and incoming water droplets, 

and upon freezing should result in a weak adhesion with ice when it forms. Surfaces or surface 

coatings that satisfy one of the above mentioned criteria are often called icephobic. The 

icephobicity is analogous to the hydrophobicity, although an exact accepted definition of the 

icephobicity is still missing from the literature. 

There are three features required to define an ideal icephobic surface. These three 

features deal with surface’s interaction with the solid, liquid, and vaporous states of water.  The 
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first condition is to have a low adhesive strength of the ice to the surface [2,3]. The second is the 

ability of the surface to repel incoming supercooled water droplets before these freeze at the 

surface [4,5]. The third is the ability of expelling water condensate before it undergoes 

nucleation or delaying the nucleation of ice on the surface from the saturated vapor, thereby 

delaying the frost formation [6,7]. The first property is analogous to the adhesion of water 

droplet to a surface. The second is similar to the ability of a superhydrophobic surface to repel 

incoming water droplets [8]. These three approaches are reviewed and discussed in the following 

section. An ideal icephobic surface should prevent the condensation of water, delay ice 

nucleation, and induce a weak bond with ice. 

In cold conditions, the precipitation of water can result in sleet, snow, hail, or freezing 

rain. When the ambient temperature is below the freezing point, there are two ways of how ice 

can form: by the heterogeneous and homogeneous nucleation.  The nucleation occurs when the 

energy gained in forming the new phase is greater than the energy cost due to creation of a new 

interface. The rate of nucleation is related to the nucleation energy barrier. The heterogeneous ice 

nucleation is caused by a seed of the new phase which may be a foreign object (for example, a 

particle) in liquid water or vapor that acts as a preferential nucleation site. The homogenous ice 

nucleation occurs spontaneously and randomly for supercooled (metastable) water in the absence 

of foreign nucleation sites [9]. The heterogeneous ice nucleation in a droplet deposited on a 

surface starts at the edge of droplets or at surface heterogeneities (chemical or morphological). 

An important consideration while designing the icephobic surfaces is to delay the heterogeneous 

ice nucleation so that the supercooled water droplet may be removed by some means (such as the 

vibration or moving air) before it freezes.  
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Ice formation is correlated to the hydrophobic/philic properties of a surface.  Li et al. [10] 

showed that at the same temperature, ice nucleation rates on hydrophilic surfaces are about one 

order higher than those on hydrophobic surfaces. It was also shown that at low relative humidity, 

superhydrophobic surfaces have higher nucleation barriers for temperatures ≥ -20 °C, thereby 

considerably slowing down the formation of ice [11]. However, superhydrophobic surfaces rely 

on the surface roughness. Although surface roughness does not play a significant role in ice 

nucleation from liquid water [12], the roughness can promote ice formation from vapor since the 

details of rough profile could serve as seeds for heterogeneous nucleation. Therefore, the 

hydrophobicity does not always translate into the icephobicity [13]. In addition, the icephobicity 

of a hydrophobic surface decreases significantly in humid environments [14]. 

It has been shown that at low humidity, fluorosilicone containing block copolymer can 

increase the delay in ice formation as well as decrease the adhesion strength of ice on the surface 

[15,16]. Fluoroalkyl silane coating was seen to reduce ice adhesion compared to just 

hydrophobic nanoparticle coating [17]. Stainless steel rendered superhydrophobic using 

nanoparticles and a fluoropolymer was seen to retain its superhydrophobicity after several cycles 

of icing/deicing [18]. 

Several new ideas in designing of non-adhesive surfaces were inspired by nature [19]. 

This includes the “lotus effect” [20] and the so-called “Slippery Liquid-Infused Porous Surfaces 

(SLIPS)” inspired by the pitcher plant (Nepenthes) [21]. The latter showed icephobic properties 

at 60% relative humidity [7,22]. Bilayer anti-icing coatings inspired by the stimuli-responsive 

skin of poison dart frogs, have an outer porous superhydrophobic surface over an antifreeze-
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infused superhydrophilic surface. These coatings repel incoming water droplets and delay frost 

formation because ice or water comes into contact with the underlying antifreeze liquid [23]. 

In this chapter, the fundamental physical interactions related to ice adhesion and 

nucleation and their similarity to the hydrophobic interactions are discussed. Experimental 

results on icephobic properties of a superhydrophobic concrete is reported. The effect of surface 

topography and heterogeneity on the icephobic properties are studied. This is followed by 

suggestions on how the icephobic properties can be improved and optimized. 

6.2 Hydrophobic Interactions Essential for Ice Repulsion 

Hydrophobic forces play an important role for both wetting and ice adhesion to solids. 

These forces are believed to be of entropic nature and they have several important properties 

including the embedded ability for the self-organization through the effect called “self-organized 

criticality,” which leads to the formation of fractal structures such as snowflakes and has 

parallels with such effects as polymer chain folding. 

6.2.1 Entropic and hydrophobic forces 

The classical example of an entropic force is the elasticity of a polymer chain. Unlike in 

other materials, the elastic force of a polymer chain is caused by maximizing the configurational 

entropy (attaining the most probable state). An ideal polymer chain is a simple model with N 

monomers connected in series with bonds that are linear and free to orient at any angle and also 

intersect other bonds any number of times. Thus the chain is assumed to be a random walk 

consisting a succession of random steps. Consider an ideal chain where the bond between any 

two monomer units is represented by the vector
ir (Figure 6.1). The end-to-end displacement 
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along the chain is given by the vector
1

N

i

i

R r


 . For a freely fluctuating polymer chain with large 

N, the mean (over time) end-to-end vector 0R  as the chain is free to fluctuate in any positive 

or negative direction with equal probability. The root mean square end-to-end distance (mean 

size) of the chain is given by
2

R R Nr  where r is the size of the bond between 

monomers. For a non-ideal chain (without self-intersections), the effect of the excluded volume 

should be considered, which leads to the power exponent of R~N3/5 [24]. 

 
Figure 6.1. Random walk along an ideal polymer chain. The chain attains the most probable 

configuration. 

When an ideal polymer chain is isothermally stretched from its natural state (entropy S1) 

to a taut state (entropy S2), the number of configurations it can take is vastly reduced. The change 

in entropy is
2 1 0S S S    . From the Helmholtz free energy relation A U T S     where A, U 

and T are the free energy, internal energy, and temperature respectively, 0A  . This implies 

work done on the system. The force required to do this mechanical work is purely entropic in 

nature. The force required to isothermally stretch the polymer chain to larger values of R is 

 dA dS
F T

dR dR
              (6.1) 

The entropy of the chain can be written using the Boltzmann’s relation as 
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 ln ( )BS k p R              (6.2) 

where kB is the Boltzmann’s constant and ( )p R is the probability of finding a polymer chain of 

end-to-end distance R. In three dimensions ( )p R is given by the Gaussian distribution function
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Combining Eq. 6.1 to 6.3, the restoring entropic force can be written as 

 
2

3
B

R
F k T

Nr
              (6.4) 

Thus a change in configurational entropy can manifest as an effective force.  

Similarly to the polymer chain elasticity, entropic effects are responsible for the so-called 

hydrophobic force. When a hydrophobic molecule (for example, a hydrocarbon immiscible with 

water, such as decane) is added to water, the water molecules arrange themselves around it to 

form a “clathrate cage”. This arrangement allows a maximum number of hydrogen bonds 

between neighboring water molecules and thus achieving minimum energy state [25]. However, 

despite the energetic profitability of such a configuration in terms of the bond energy, the 

molecules that form the cage are constricted in their motion thus forming an entropically 

unfavorable ordered (less random) state. At ambient temperatures, the entropic effect overcomes 

the energy gain. As a result, when two hydrophobic molecules are introduced, the system is 

forced to spontaneously reduce the size of the cage by pushing the molecules to aggregate 

together (Figure 6.2a). 
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The urge for aggregation of hydrophobic molecules or particles in water is called the 

hydrophobic interaction or hydrophobic force [26]. It should be noted that the hydrophobic force 

is not a result of attraction between hydrophobic molecules, but the result of increase in 

configurational entropy of the system, similarly to the elastic force in a polymer chain. 

Hydrophobic forces increase with increasing temperature [27]. Although there is a general 

consensus that hydrophobic interactions act over long ranges compared to van der Wall’s forces, 

there is still a debate on the exact range of these forces. Hydrophobic forces over distance of 

several microns between superhydrophobic surfaces have been reported due to formation of 

cavitation bubbles between the surfaces (Figure 6.2b) [28]. These forces, however, are similar to 

the capillary force and they may have complex molecular origin. Israelachvili et al. reports the 

range of hydrophobic forces as 10-20 nm with exponential decay [29]. The hydrophobic force also 

leads to the preferential attraction of hydrophobic particles towards each other (Figure 6.2c) as well 

as a hydrophobic surface in water [26]. 

 
Figure 6.2. (a) Entropic origin of hydrophobic interaction. Aggregation of hydrophobic molecules frees 

up water molecules to increase the configurational entropy of the system (attaining the most probable 

configuration). Hydrophobic interaction is manifested as a hydrophobic force which results in (b) 

clustering of hydrophobic particles in water, and (c) attraction of hydrophobic particles towards a 

hydrophobic surface in water. 
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6.2.2 Self-organized criticality and hysteresis of the contact angle  

An important effect associated with the hydrophobic force is self-organized criticality 

(SOC). Bak et. al [30] demonstrated that many dynamical systems can evolve naturally into 

stable critical points which separate two states of the system. In other words, the system is 

spontaneously attracted to this critical point irrespective of its starting point. A commonly cited 

example is SOC in a sand pile. As sand is poured, it falls in a heap. At some point adding a grain 

of sand, which is a minor event, can trigger an avalanche, a major event, leading to the pile being 

flattened, and thus the sand pile maintains a certain critical angle dependent on the coefficient of 

friction between the sand grains. The value of the critical angle is the critical point, separating 

between the state with the sand flow and a stable pile. Further addition of sand leads to formation 

of a pile until the next avalanche is triggered. The intensity and the frequency of avalanches 

follows a power law distribution. SOC has characteristic properties by which it can be detected: 

the power law distribution of the magnitudes of the avalanche events, the formation of fractal 

structures, and the “one-over-frequency noise” [30].  

Another example of SOC is wetting of a rough or chemically heterogeneous surface and 

certain types of nanoscale friction [31,32]. If a surface with a sessile droplet on it is tilted, the 

solid-liquid-vapor triple line advances in intermittent steps (Figure 6.3a). Each of these steps are 

the result of the energy barriers associated with surface defects (Figure 6.3b). As the surface tilts, 

gravitational potential energy is added to the droplet which at some point causes triple line to 

overcome the energy barrier due to surface defects and results in an advance of the triple line 

(analogous to an avalanche of the sand pile). The advancing triple line then halts at another 

surface defect until the critical point is reached again [33]. This leads to contact angle hysteresis, 
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the difference between the larger contact angle at the front and the smaller contact angle at the 

rear of a moving droplet. There are various thermodynamic theories predicting the values of 

contact angle hysteresis [34-39]. 

 
Figure 6.3. (a) Intermittent pinning and advancing of the triple line. (b) Energy barriers associated with 

contact angle hysteresis. 

An important function of hydrophobic forces is in protein folding. Proteins are long chain 

molecules made of amino acids (AA), and the sequence of the amino acids (the primary structure 

of the protein) is encoded by genes in the DNA. A protein molecule folds, somewhat similarly to 

a polymer chain. However, unlike a polymer chain which folds randomly, a protein molecule 

forms a stable 3D “native configuration’ (a so-called “tertiary structure”).  

The amino acids can be hydrophobic or hydrophilic. The interaction of these hydrophobic 

or hydrophilic side chains with each other and the surrounding aqueous medium governs the 

folded shape of the protein. The folded shape in turn governs function of the protein. The protein 

chain clusters such that the hydrophobic side chains are attracted to each other and away from 

water (Figure 6.4a). This behavior is similar to the hydrophobic interaction observed between 

hydrophobic molecules in water. Thus entropic forces lead to folding of the protein. 

According to [40,41], protein folding governed by the hydrophobic forces is controlled 

by SOC, which is a universal feature of hydrophobic interactions present during both wetting of 
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hydrophobic surfaces and protein folding. Furthermore, folding of proteins is thought to be the 

main driving force of the evolution on the gene level [42] which also demonstrates power law 

and fractal quantitative behavior [43]. The formation of ice (snow) crystals also demonstrates 

fractal characteristics typical for SOC. 

 
Figure 6.4. (a) Folding of protein molecule from a linear primary structure to 3D tertiary (native) structure 

is similar to the elastic force in a polymer chain. For a polymer chain the force can be attractive or 

repulsive depending on the end-to-end distance. For a protein molecule the attractive hydrophobic force 

causes the hydrophobic side chains to retract to the interior of the cluster. (b) Parallelism with snow 

crystal growth as opposed to the hydrophobic interaction of a particle and a surface. The red vectors 

denote the entropic force F in each case. 
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6.2.3 Ice crystal formation 

Ice (snow) crystal formation is another process governed by interactions, which are 

similar to the hydrophobic forces. It is similar to the hydrophobic interaction between a particle 

and a surface in water. However, ice crystals can form very complex structures, as opposed to a 

simple spherical shape formed by a hydrophobic substance in water. This is partially similar to 

how a protein forms a complex 3D structure as opposed to the random folding of a simple 

polymer chain (Figure 6.4). For a simple polymer chain, the most probable configuration does 

not depend on the shape of the polymer chain (but only on the distance between its ends). 

However, much more complex protein folding depends on the interaction between amino acids, 

and thus on the 3D shape of the molecule.  Similarly, in the case of the hydrophobic attraction of 

two particles the shape formed by the hydrophobic phase does not matter, since only its surface 

area is minimized. However, a more complex interaction of a vapor molecule with solid / ice 

favors certain directions or shapes (Figure 6.4b). 

Another parallel between the random polymer versus protein folding and the hydrophobic 

attraction versus ice crystal formation is in the fractal geometry of both the snow crystals and the 

protein globules. In a non-ideal polymer chain (using the excluded volume approach) the end-to-

end displacement and the radius of gyration are scaled as R~N3/5 [24]. More accurate estimates 

using the renormalization group predict the power exponent of 0.588. For the folded polymer 

chain forming a sphere, the radius of gyration is proportional to the power 1/3 of the volume, 

R~N1/3. However, folded proteins tend to show the power exponent of 0.4 rather than 0.333 [44] 

thus demonstrating scaling of a fractal object. Similarly, hydrophobic liquid droplets in water 
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would form spheres (with a two dimensional surface), whereas snow crystals, according to the 

literature, may have a fractal shape with the fractal dimension of about 1.85 [45]. 

A snow crystal is a single crystal of water molecules arranged in a hexagonal crystal 

lattice, while many snow crystals clustered together make a snow flake. A snow crystal is formed 

when water molecules from the vapor attaches to a dust nucleus in a supersaturated atmosphere. 

The crystal grows as more water molecules from vapor phase hydrogen bond to the water 

molecules already on the nucleus. The crystal may start out as a spherical particle. Smooth 

surfaces of a crystal have fewer free sites for incoming water molecules to form hydrogen bonds, 

while irregular rough surfaces have many. Thus rough surfaces grow relatively fast compared to 

smooth surfaces. This process leads to evolution of snow crystals into hexagonal prisms with two 

basal and six prismatic planes or facets. When prismatic facets grow faster than basal facets, 

plate-like snow crystals are produced. When prismatic facets grow slower than basal facets, 

columnar snow crystals are produced (Figure 6.5a). Snow crystals formed in very cold and dry 

conditions are small and have simple geometries due to their slow growth [46]. 

 
Figure 6.5. (a) Simple snow crystals are either plate-like or columnar. (b) Evolution of intricate shapes in 

a snow crystal by diffusion-limited aggregation and Mullins-Sekerka growth instability. 

It is easier for water molecules from air to diffuse to the corners rather than face centers 

in a hexagonal prism. Thus corners grow faster (instability) leaving behind irregular steps on the 
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face centers. This irregularity causes face centers to grow fast and catch up with the corners, 

thereby minimizing the interfacial energy. This balance between the diffusion and minimization 

of the interfacial energy helps maintain the hexagonal structure as the crystal grows. Therefore 

the hexagonal structure acts as a stable critical point in the SOC of a growing snow crystal. 

At some limiting value of roughness of the face centers, the corners grow much faster due 

to the Mullins-Sekerka growth instability. The perturbations at the corners due to diffusion of 

water molecules (as well as latent heat) can no longer be stabilized by minimizing the interfacial 

energy of the crystal. This results in hexagonal prisms sprouting digits (instabilities) at the 

corners. These digits continue to grow until they come under the influence of the growth 

instability when they start sprouting branches [47]. As a result, fractal geometries are produced 

in snow crystals. Note that fractal shapes are a characteristic of SOC. Figure 6.5b shows the 

evolution of an intricate geometry as a result of diffusion and Mullins-Sekerka growth instability. 

Ukichiro Nakaya extensively studied the shapes of snow crystals and summarized the 

relationship between the shapes and atmospheric conditions (temperature, and supersaturation of 

atmosphere) in the form of the so-called “Nakaya diagram” (Figure 6.6) [48]. He found that the 

shape of snow crystals change as they pass through regions of different temperature and 

supersaturation. This is known as “habit change” which can be explained by Kuroda-Lacmann 

model [49]. The complexity of the crystal structure increases with the supersaturation in 

atmosphere. Colder and dryer atmosphere promote the growth of simple geometric structures. 

Natural snow crystals are not always symmetrical. But the intricate shape of a snow crystal 

suggests an apparent synchronization between the branches of the crystal as it falls through 

different regions of temperature and supersaturation in the atmosphere. This can perhaps be 



142 

explained by an “icephobic interaction” of entropic origin as shown in Figure 6.4b, similar to the 

hydrophobic interaction. 

 
Figure 6.6. The Nakaya diagram. The geometry of a snow crystal is dependent on the supersaturation and 

temperature of the atmosphere in which it grows. 

The shape and direction of snow / ice crystal growth is governed by the roughening 

transition which happens above a critical roughening temperature. The equilibrium surface 

configuration depends on the minimization of free energy of the surface. The change of Gibb’s 

free energy is given by G H T S     where H is the change in enthalpy. At temperatures 

above the roughening temperature, the entropic contribution to the free energy dominates, 

thereby resulting in a rough equilibrium surface configuration. Thus, the growth of snow / ice 

crystals is governed entropically, similar to the aggregation of hydrophobic molecules in water. 
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The fundamental physical interaction related to ice nucleation and adhesion were 

discussed. These interactions are believed to be of entropic nature, and are similar to 

hydrophobic interactions. There are several similarities between the hydrophobicity and the 

icephobicity as summarized in Table 6.1. Next, the three aspects of the icephobicity are 

discussed. 

Table 6.1. Similarities between the hydrophobicity and the icephobicity. 

Property Water Ice 

Definition of 

“phobicity” 

Low surface energy / low 

adhesion 

High contact angle 

Low CA hysteresis 

Bouncing-off incoming 

droplets 

Reject condensate droplets 

Low adhesion 

Low normal strength (maximum 

stress) 

Low shear strength 

Bouncing-off incoming supercooled 

droplets 

Delay ice nucleation to reject 

condensate droplets 

Interaction Hydrophobic interaction Growth of dendritic structures in ice 

and snow crystals 

Thermodynamic 

relationship 

Minimization of free 

energy 

ΔG=ΔH-TΔS 

Surface roughening transition 

ΔG=ΔH-TΔS 

Typical manifestation 

of the interaction 

Hydrophobic molecules in 

water 

Water vapor molecules in 

supercooled saturated environment 

Effects Protein folding (including 

fractal shapes), self-

organized criticality, long-

range hydrophobic force, 

wetting transition 

Snow crystals (fractal shapes) 
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6.3 Three Approaches to Synthesizing Icephobic Surfaces 

In the preceding section, the superhydrophobicity (very low adhesion of water to a solid) 

and “icephobic interactions” governing vapor water molecule interaction with a solid surface, 

such as an ice surface were discussed.  This section covers with the three approaches to the 

icephobicity: low ice adhesion to solid, bouncing off water droplets and suppressing frost 

formation from vapor can be utilized for anti-icing surfaces.  

6.3.1 Ice adhesion to solids 

High contact angle does not always yield low ice adhesion. The adhesion of ice to solid 

surfaces is a result of the synergetic effect of van der Wall’s forces, chemical bonding, and direct 

electrostatic interactions. Hydrogen bonding between the surface groups and the water molecules 

can enhance ice adhesion [1,50]. The electrostatic interactions are the significant factor for 

metals because charges on the ice surface induce mirror charges thus causing adhesion. Whereas 

these mirror charges can be reduced by dielectrics [51], the ice adhesion decreases significantly 

only at low values of the dielectric constant. Thus superhydrophobic surfaces coated with 

polytetrafluoroethylene with the dielectric constant of about 2 demonstrated negligible ice 

adhesion [52]. According to Kulinich and Farzaneh, the ice adhesion to a superhydrophobic 

surface is correlated with contact angle hysteresis, rather than contact angle itself, which can be 

explained by the reduction of the ice-solid contact area [3]. High valued of the contact angle 

coupled with low contact angle hysteresis imply the Cassie wetting state with air pockets on the 

surface [53]. The cavities or voids with air pockets can act as stress concentrators at the ice-solid 

interface. In this case, the size of the microvoids and cracks at the ice-solid interface becomes a 

critical parameter controlling the ice adhesion on a surface. According to the analysis of Hejazi 
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and Nosonovsky, who applied the linear fracture mechanics model, if the cracks are not 

sufficiently large, the superhydrophobic surface may exhibit strong ice adhesion [13]. 

Another effect which should be taken into account is the latent heat released during 

freezing of a droplet. This heat tends to increase the vapor pressure near the solid-ice-vapor 

contact line resulting in the desublimation of supersaturated water vapor referred to as a “frost 

halo” surrounding the three phase contact line thus increasing the ice-solid interfacial area and 

eventually the adhesion force between ice and the solid surface [54]. 

Table 6.2. Ice adhesion strength of some materials from literature. 

No. Reference Material 

Ice adhesion 

strength (kPa) 

at -10 °C 

1 Mobarakeh et al. [55] 

untreated aluminum 350±25 

plasma polymerized hexamethyldisiloxane 

coating on aluminum 
100±25 

2 Farhadi et al. [14] 
mirror-polished aluminum 362±26 

superhydrophobic aluminum 55 to 110 

3 Fu et al. [17] 

glass 820±96 

glass coated with hydrophobic nanoparticles 

and fluoroalkyl silane 
75±19 

4 Saleema et al. [52] 

bare aluminum 420±27 

polytetrafluoroethylene coated on aluminum 188±12 

polytetrafluoroethylene coated etched 

aluminum 
“Unobtainable” 

5 Kim et al. [7] 
aluminum 1360±210 

SLIPS coated aluminum 15.6±3.6 

6 Hejazi et al. [53] 
aluminum 110 

co-polypropylene 71.81 
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The quantitative parameter characterizing ice adhesion to a solid surface is the adhesion 

strength. There are several method for measuring the adhesion strength. One method is the 

centrifuge adhesion test [56]. Samples with ice are rotated and the adhesion strength is calculated 

from the speed at which ice detaches from the sample surface [55,57]. Another method is by 

shear ice adhesion test. A shear stress can be applied to the interface so that the maximum shear 

strength at which the ice detaches is measured experimentally. Li et al. [15,16] used this method 

to study the icephobicity of block copolymer coatings. A variation of this method was used by 

Fu et al. [17], where a piston was used to shear off the ice from the sample surface. Aizenberg 

and colleagues reported ice adhesion measurement on SLIPS coated aluminum and found that it 

was two orders of magnitude lower than for aluminum without the coating [7]. Interestingly, a 

study by Varanasi and colleagues [58] demonstrated that the low ice adhesion force on lubricant-

infused surfaces was a result of a thick layer of a lubricant on top of a textured surface. For a 

surface with a stable lubricant film, the ice adhesion strength decreases with increasing surface 

texture density increases. Ice adhesion strength of some surfaces and coatings from literature are 

listed in Table 6.2. 

6.3.2 Decreasing contact time for droplets approaching the solid surface 

Icephobic surfaces should be able to prevent or delay freezing of incoming water 

droplets. This can be by bouncing off, breaking up. Minimizing the duration of contact when a 

droplet interacts with a surface can reduce the heat transfer time and the probability of 

heterogeneous ice nucleation. Hydrophobic and superhydrophobic self-cleaning surfaces can 

easily repel incoming water droplets at room temperature. However, the increase in viscosity of 

supercooled water below 0 °C prevails over the increase in surface forces and increases the 
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contact time with the surface [59]. High contact angles together with low contact angle hysteresis 

help minimizing the time of contact and thus maximizing droplet shedding. 

Water pressure during the impact can cause the Cassie-Wenzel wetting regime transition, 

which is usually undesirable because it increases the solid ice contact area and contact time due 

to pinning of the incoming droplet. This, in turn, increases the rate of heat transfer at the 

interface [60]. Asymmetric and oblique impacts can reduce chances of this wetting transition as 

well as droplet pinning [5,61]. Functionalized carbon nanotube superhydrophobic surfaces repel 

obliquely impacting water droplets at -8 °C [62]. Mishchenko et al. showed that nanostructured 

silicon superhydrophobic surface could repel low velocity supercooled water droplets at -25 °C 

and thus remain ice free. Despite droplet freezing at temperatures under -25 °C, their removal 

was easy because the droplets remained in the Cassie-Baxter wetting state before they froze [4]. 

Hydrophobic fiber-reinforced concrete can repel impacting water droplets (Weber number ~ 55) 

in an oblique manner at 20 °C and -5 °C [5]. 

6.3.3 Suppression of frost formation 

Water vapor condenses below the dew point temperature. Humid and supercooled 

conditions can cause water to condense and freeze on a surface. Therefore, the ability to expel 

condensing water droplets and delay the process of frost formation and ice nucleation on a 

surface is important for icephobic surfaces. Water droplets that condense in capillaries of a 

superhydrophobic surface may undergo the Cassie-Wenzel wetting transition, and adhere 

strongly to the surface [63]. The energy released during droplet coalescence can eject condensing 

water droplets spontaneously [64]. Condensation frosting occurs on a surface as a result of 

formation of inter droplet frost bridges. This makes eventual frost formation on 
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superhydrophobic surfaces inevitable. However jumping-drop superhydrophobic surfaces can 

slow down frost formation by ejecting condensate droplets at -20 °C before they undergo 

nucleation, and by lowering the chance of frost bridge formation between droplets [65]. Chen et 

al. reported a hierarchical superhydrophobic surface that can delay ice nucleation and suppress in 

the inter droplet frost bridge formation [66]. 

Ice nucleation being a molecular scale phenomenon, is difficult to notice. But the 

freezing front in a droplet can be observed by change in opacity of the droplet. Water droplets 

are placed on supercooled test surfaces, and the time taken for a freezing front to appear is noted 

to quantify the icephobicity [15,57]. Eberle et al. [6] showed that the delay in ice nucleation can 

constitute up to 25 hours for a droplet at -21 °C if nanoscale roughness of the surface is carefully 

controlled. The SLIPS coated surfaces were seen to exhibit delayed ice nucleation for longer 

time than textured or regular hydrophobic surfaces. This may be because the smooth and 

chemically heterogeneous surface of the impregnating liquid in SLIPS offers fewer sites for 

heterogeneous nucleation of ice [22]. Water droplets condensing and coalescing on tilted SLIPS 

at -10 °C rolled-off before freezing [7]. 

The nucleation and formation of frost on a surface is similar to the formation of snow 

crystals. The entropic force and the growth instability are instrumental in the formation of 

dendritic structures in snow crystals. Water vapor molecules diffuse from the saturated 

atmosphere to a supercooled surface due to the entropic (icephobic) forces that minimize the 

surface energy of the clustered water molecules. This leads to the buildup of ice on surfaces with 

roughness greater than the critical value for ice nucleation. 
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Having discussed the theoretical foundations of the icephobicity it was found that the 

solid-ice interaction is governed by mechanisms similar to the solid-water interactions, in 

particular, by entropic and hydrophobic forces. It was also found that the superhydrophobicity 

can be utilized to make icephobic surfaces. In the following section, the icephobic characteristics 

of rough heterogeneous surfaces are demonstrated. Concrete substrates are used for this purpose. 

Regular concrete, being porous and hydrophilic, imbibes water. The imbibed water expands 

upon freezing and initiate the cracks within cementitious matrix. This limits the material’s 

durability required for many civil engineering applications, especially in Northern climates 

where concrete is exposed to numerous freezing-thawing cycles. Therefore there is the need to 

make concrete hydrophobic and also icephobic. The icephobic properties of superhydrophobic 

concrete used in this work is induced using two approaches – by minimization of ice adhesion 

strength, and by minimizing the contact time for incoming droplets. 

6.4 Experimental 

In this section, the icephobic characteristics of rough heterogenic surfaces are estimated 

based on concrete mortars. The icephobicity of concrete is studied using two approaches 

described previously – by measuring the ice adhesion strength, and studying the interaction of 

incoming water droplets with the surface. 

6.4.1 Materials 

The concept of superhydrophobic concrete was proposed and realized by Professor 

Konstantin Sobolev from the Department of Civil and Environmental Engineering at the 

University of Wisconsin-Milwaukee. Some specimens and the coatings used in this study were 

prepared by Dr. Marina Kozhukhova [67-69]. 
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Mortar specimen used in this study were prepared using a commercial Type-I portland 

cement, standard quartz sand with an average particle size of 425 μm and tap water. Polyvinyl 

alcohol (PVA) fibers (RECS 15x12 mm Kuralon K-II) with a diameter of 15 μm and length of 

12 mm, and high-range water-reducing admixture (polycarboxylate ether super-plasticizer with a 

31% solid concentration) were also used while preparing the mix. The PVA fibers induce a 

certain “self-reproducing” surface structure, important for icephobic properties. Further details 

about the constituents of the mortar mixes are described in the Appendix. 

A water-based “shell type” siloxane emulsion was used in this study for hydrophobizing 

the mortar surfaces. Polymethylhydroxysilane (PMHS) and PVA were used as the 

hydrophobizing agent and surfactant respectively. Silica fume particles were used to stabilize the 

emulsion, and also to provide micro-roughness when the emulsion is applied to the mortar 

surface. More information about the components of the emulsion is provided in the Appendix. 

The procedure of emulsion preparation was described in detail in [70-72]. 

6.4.2 Contact angle and roll-off angle 

The hydrophobic characteristics were estimated for samples by measuring the contact 

angle (CA) and roll-off angles (ROA) of water droplets on the mortar tiles and cubes using Krüss 

Drop Shape Analysis System DSA100. These tests were conducted by Dr. Marina Kozhukhova 

[67]. 

6.4.3 Ice adhesion strength 

Ice adhesion strength on mortar samples was measured using the shear test [53]. Contact 

angle (CA) values, roll-off angle of water droplet as well as concrete mortar formulation were 
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the main parameters for the icephobicity assessment. Three sets of samples of 10 different 

formulations were used in the experiment. The first set was used without any treatment as a 

reference, and two others were differently modified with hydrophobic “shell type” emulsions, as 

discussed in Flores-Vivian et al.[71] The shear tests were performed by Dr. Marina Kozhukhova 

[67]. The procedure for the shear tests are described in detail in the Appendix. 

6.4.4 Interaction of incoming droplets 

In this section the second aspect of the icephobicity of a surface, i.e. minimizing the 

contact time for incoming droplets, was studied using concrete mortars. The interaction of 

incoming droplets with the concrete surfaces were studied at -5 °C and 20 °C. Qualitative 

observations were made if the droplets got pinned, bounced off or froze on the surface. It was 

observed that droplets bouncing off generally had very low contact time with the surfaces. 

The interaction between the incoming droplets and concrete surfaces were studied at -5 

°C and 20 °C. Distilled water droplets (14 μl) were dropped using a micro syringe from a height 

of 50 mm onto the samples set at 45° inclination. The samples were then precooled for two hours 

at -20 °C. Distilled water droplets (14 μl) stored at 0 °C were dropped from 50 mm height onto 

the samples inclined at 45°, at an ambient temperature of -5 °C and relative humidity of 34%. 

The experiments were performed carefully and quickly at -5 °C, so that the water at 0 °C could 

not freeze in the dispensing syringe. The interactions were video recorded at 420 fps using a 

Canon EX-FH25 camera in both cases. Stacked images were prepared using the frames captured 

from the videos to show the trajectories of droplets after impact at -5 °C and 20 °C. 
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6.4.5 Sample preparation 

For studying the ice adhesion strength, 3 sets of 10 different compositions of fiber 

reinforced concrete (compositions M1-M5)/mortar (compositions M6-M10) rectangular tiles 

were prepared in laboratory conditions with component proportions presented in Table 6.3.  

Table 6.3.The composition of concrete/mortar specimen (based on Dr. Kozhukhova’s PhD thesis). 

Mixture 

composition 

Water to 

cement ratio 

(W/C) 

Sand to 

cement ratio 

(S/C) 

Superplasticizer, 

% cement 

PVA Fibers, 

% vol 

M1 0.25 0 0.14 1.5 

M2 0.3 1 0.1 1.5 

M3 0.4 2 0.1 1 

M4 0.45 2.5 0.1 1 

M5 0.5 3 0.1 1 

M6 0.25 0 0.042 0 

M7 0.3 1 0.045 0 

M8 0.4 2 0.04 0 

M9 0.45 2.5 0.02 0 

M10 0.5 3 0.01 0 

M11 0.3 1 0.1 1 

M12 0.4 1 0.1 1 

M13 0.3 0.5 0.1 2 

M14 0.4 0.5 0.1 2 

 

In addition to these specimens, for water droplet bouncing tests, the fiber-reinforced 

concrete cubes with composition M11-M14 were also used. The compositions of the concrete 

mortar cubes are also listed in Table 6.3. The sample preparation procedure is described in detail 

in the Appendix. The difference between these two types of samples (tiles and cubes) was that 
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for the samples M1-M10 the top side of sample was used as a testing surface and for the samples 

M11- M14 a newly cut surface was used. Therefore, the direction of imbedded fibers was 

observed to be different. 

6.4.6 Surface roughness 

Uncoated mortar samples M1, M5, M6 and M10 were observed at 20x using a Laser 

Confocal microscope Olympus Lext OLS4100. The average surface roughness (Sa), and average 

line roughness (Ra) were obtained. The uncoated samples were chosen for microscopy to study 

the roughness imparted by the sand, and PVA fibers after the abrasion treatment. The samples 

M1, M5, M6 and M10 were selected to study the effect of PVA fibers and sand on surface 

roughness. 

6.5 Results and Discussion 

The controlling parameters of CA and ROA for the tile and cube surfaces were measured 

before the shear tests and droplet impact tests. 

6.5.1 Surface roughness results 

The 2D optical images and 3D surface topographies of the mortar surfaces are reported in 

Figures 6.7 and 6.8 respectively. The average surface roughness (Sa) of the samples are listed in 

Table 6.4. The PVA fibers are visible in samples M1 (Figures 6.7a, 6.8a) and M5 (Figures 6.7b, 

6.8b), emerging from the mortar surface. The surfaces of M5 (Figure 6.8b) and M10 (Figure 

6.8d) are wavy due to the presence of sand grains. The sample M6 (Figure 6.8c) which lacks 

PVA fibers as well as sand has the lowest value of Sa at 2.218 μm. The sample M1 which has 
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PVA fibers but no sand has Sa of 9.929 μm. This increase in roughness can be attributed to the 

effect of PVA fibers. 

Table 6.4. Average surface roughness (Sa) of the samples in μm, and the controlling parameters such as 

PVA fiber content and sand to cement ratio. 

Composition ID PVA fibers (%vol) Sand to cement ratio Sa (μm) 

M1 1.5 0 9.929 

M5 1 3 18.054 

M6 0 0 2.218 

M10 0 3 19.155 

 

 
Figure 6.7. Optical images of M1, M5, M6, and M10. The blue broken arrows show the PVA fibers, 

while the red arrows show the sand grains. The scale bar for M1, M5 and M6 is 100 μm, and for M10 it is 

200 μm. 

The mortar sample M10 without fibers has the highest Sa of 19.155 μm, whereas M5 

which has both sand and fibers has a Sa of 18.054 μm. Thus the presence of sand in the mortar 

significantly increases the surface roughness. While the surfaces are prepared by abrasion 

treatment using sand paper, the areas with stronger sand grains exposed wear differently 

compared to cement matrix zones due to difference in hardness. This explains the approach used 

to induce required roughness observed on samples containing sand. 
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Figure 6.8. The surface topographies of samples M1, M5, M6, and M10. (a) PVA fiber is visible in M1 

emerging from the surface; (b) PVA fibers as well as sand grains are observed in M5. The sand creates 

roughness on the surface (c) M6 has the lowest roughness due to absence of sand and PVA fibers. (d) The 

presence of sand creates distributed roughness in M10. 

Using the surface roughness data, and the mixture composition parameters as two 

independent variables, namely 
1x - the PVA fiber content and 

2x - the sand to cement ratio, a 

second degree polynomial model can be derived for the average surface roughness Sa. 

 
1 2 1 22.218 5.141 5.646 2.081aS x x x x          (6.5) 
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Although the surface roughness is a function of several parameters related to the mortar 

composition, Eq. 6.5 serves to demonstrate that the surface roughness of mortar can be 

controlled. 

6.5.2 Ice adhesion strength results 

In this study the assessment of icephobic characteristics of surfaces with hydrophobic 

properties was conducted using 3 sets of fiber-reinforced concrete and mortar tiles with different 

coatings: a) reference tiles without hydrophobic treatment (Set A); b) tiles treated with the 

emulsion containing 5% and 1% of hydrophobic agent and silica fume, respectively (Set B); c) 

tiles treated with the emulsion based on 25% and 5% of components (Set C). The test results of 

CA and ROA values are presented in Table 6.5.  

The reference set of samples (A) without hydrophobic treatment has hydrophilic 

properties with the values of CA barely exceeding 25°; at the same time, some of the samples 

demonstrate zero CA, which can be explained by a high absorption capability induced by 

capillary porous structure of concrete. Because of hydrophilicity, the roll-off angle parameter for 

those samples cannot be measured. 

The set B treated with emulsion containing low concentration of hydrophobic agent and 

silica fume (5% and 1%, respectively) demonstrated the best results for CA of up to 151° and 

roll-off angle of less than 1°.  The lowest values of roll-off angle <1° within the set belong to the 

fiber reinforced samples with higher surface roughness, which correlates with the CA data for 

the same samples. This approach for surface treatment results in over- and superhydrophobic 

characteristics. Herein, it is important to note that the lowest values of roll-off angle belong to 

the fiber reinforced samples, produced at low W/C and S/C ratios. 
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Table 6.5. Contact angle (CA), roll-off angle, and ice adhesion strength for concrete and mortar tiles 

(based on Dr. Kozhukhova’s PhD thesis). 

Set Composition ID CA 
Roll-off 

angle 

Ice adhesion 

strength (kPa) 

T
il

e 
sp

ec
im

en
s 

A 

M1 8.5° - 310.5±46.5 

M2 9.8° - 184.5±91.5 

M3 0° - 240±20 

M4 0° - 170±75 

M5 25.5° - 376.5±122.5 

M6 10° - 182±15 

M7 14.2° - 266±162 

M8 5.3° - 305±3 

M9 0° - 281±36 

M10 0° - 282.5±56.5 

 

 

 

B 

PMHS 5% 

Silica fume 1% 

M1 143.7° 2.4° 83±6.5 

M2 145.4° <1° 33±7 

M3 149.5° 5.9° 29±8 

M4 127.8° 7.9° 51±23 

M5 141.2° 11.7° 48.5±14.5 

M6 141.4° 4.1° 53±6 

M7 141° 7.5° 45.5±4.5 

M8 151° 4.4° 57±10 

M9 140° 14.4° 37±3 

M10 144.1° 9.1° 35±6 

C 

PMHS 25% 

Silica fume 5% 

M1 122.7° 90° 61±4 

M2 118.6° 81.2° 47±1 

M3 121.7° 66° 53.5±14.5 

M4 128.2° 58.5° 49±0 

M5 128.4° 62.4° 44.5±2.5 

M6 112.8° 56.5° 34.5±13.5 

M7 118.6° 61.3° 56±6 

M8 129.9° 63° 33.5±0.5 

M9 123.8° 57.6° 34±5.5 

M10 127° 52.2° 48±9 

Cube samples 

PMHS 5% 

Silica fume 1% 

M11 138.8° 11° – 

M12 138.2° 15.3° – 

M13 137.9° 18.5° – 

M14 140° 20° – 
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The set C, with tiles treated with high concentration emulsion demonstrated the 

hydrophobic and over-hydrophobic (water CA between 120° and 150°) characteristics, which 

can be explained by low surface energy of siloxane hydrophobic agent, covering the hydrophilic 

surface of the tiles. The best results were demonstrated by the samples with higher water to 

cement (W/C) 0.4–0.5 and sand to cement (S/C) 2.5–3 ratios which induce beneficial roughness 

of the surface. High roll-off angle can be observed, however, some of the samples reached the 

maximum value 90°.  

The cube samples M11-M14, which were treated with the emulsion based on 5% and 1% 

of hydrophobic agent and silica fume, respectively had over-hydrophobic characteristics with 

pretty equal CA values of average 138. 5° and, comparatively, low ROA values for all the cube 

samples. 

Based on the shear strength test, a linear dependence of ice adhesion strength on CA can 

be observed (Figure 6.9a). Higher the CA, lower the shear force that has to be applied to separate 

the ice from a sample surface and, thus, the lower the adhesion strength of ice to a surface. 

Comparing the set A of the samples which are hydrophilic, to the sets B and C which are 

hydrophobic, the ice adhesion strength is seen to differ by a factor of 10.  

At the same time, a slightly weaker ice adhesion to the surfaces of M6-M10 tiles treated 

with the emulsion containing higher concentration of hydrophobic agent (C set) can be observed. 

Therefore, lower adhesion strength in the case of C set of specimens is due to thicker 

hydrophobic layer which over covers the surface roughness and to some extent makes it smooth. 

This allows ice sliding easier on the surface while applying the shearing force.  
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Figure 6.9. (a) The correlation of water contact angle and ice adhesion strength for the samples (b) The 

correlation of water contact angle and the roll-off angle for the samples (based on Dr. Kozhukhova’s PhD 

thesis). 

There is no correlation between the roll-off angle values and adhesion strength. The 

correlation between roll-off angles of the samples and their CA is shown in Figure 6.9b. The tile 

specimen set C show high roll-off angles, whereas the cube specimens and the tile specimen set 

B which were hydrophobized using low concentration emulsion show both high CA as well as 

low roll-off angle. 

The carried out investigation on the icephobic capability of the concrete tiles with 

different hydrophobic coatings allows to make a conclusion that the controlling parameters 

governing the adhesion of ice are the CA values, the thickness of hydrophobic layer, as well as 

the roughness and structure of a surface. Fine tuning of these parameters can result in the 

concrete surfaces with adhesion strength of 10 times less than the reference. This finding can 

lead to the design of ice free roads and runways meeting the extreme durability and extended 

service life objectives [67-69]. 
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6.5.3 Interaction of incoming droplets 

For the bouncing droplet test, the tiles M1 and M2 from set B were chosen, because of 

the best CA and ROA results. The M11-M14 cube samples, treated with the emulsion containing 

5% and 1% of hydrophobic agent and silica fume respectively were also tested in this 

experiment. 

Figure 6.10 shows the stacked images for various samples. The droplets before impact at 

-5 °C and the droplets after impact at 20 °C are represented as clear shapes. The droplets after 

impact at -5 °C are represented in red. The trajectories of the droplets after impact at -5 °C and 

20 °C are distinct. The droplets bounce further at 20 °C.  In the case of M1, the droplets at -5 °C 

bounce off without freezing, while in the case of M2 the droplets freeze. Droplets either bounce 

off or roll off after impacting all the samples except M2. 

The marked difference in trajectories at 0 °C and 20 °C indicate a higher dissipation of 

energy of droplet at -5 °C. This can be accounted by the change in density, viscosity, and surface 

tension of water as well as the change in adhesion with the concrete surface. The surface is sticky 

at -5 °C resulting in a longer time of contact with the droplet. This results in heat transfer and 

heterogeneous nucleation of ice in the droplet, followed by freezing as seen in the case of the 

sample M2.  

The difference in the interaction of water droplets with samples M1 and M2 could be 

related to extent of surface roughness or relief caused by variation in W/C and S/C ratios of fiber 

reinforced concrete or mortar formulations. Surface density and porosity are the key parameters 

the substrate material. At the same time, both of the mentioned parameters significantly affect 

the height of incorporated PVA fibers, which emerge from the surface after abrasion treatment. 
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Comparing two samples M1 and M2, the surface roughness of the sample M2 is greater because 

of higher W/C and S/C ratios, as well as lower surface density and higher porosity. 

 
Figure 6.10. Stacked images showing the trajectory of water droplets falling from 50 mm impinging on 

concrete samples inclined at 45° at 0°C and 20 °C. The trajectory of droplets at -5 °C after bouncing is 

shown in red. 

The trajectory of a droplet after impact depends on the wetting state of the droplet on 

impact. The roughness of the concrete surface as well as the energy of incoming droplets can 

influence Cassie-Baxter to Wenzel wetting transition on impact. To prevent the wetting 

transition and resulting ice formation, the surface roughness and porosity needs to be optimized. 

This can be achieved by changing the W/C and S/C ratios, and the PVA fiber content. 

6.6 Optimization of Icephobic Surfaces 

This section covers the optimization of the three aspects of the icephobicity of a surface 

by controlling surface and material parameters. 
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6.6.1 Ice adhesion to solids 

As discussed in section 6.3.1, dielectric materials can reduce ice adhesion because of the 

induction of fewer number of mirror charges. Surface charge density of ice is  =1.6 x 10-2 C/m2 

[73]. Following Ryzhkin and Petrenko [51], the induced surface charge density on the dielectric 

coating in contact with the ice can be written as  

 ' 1

1







           (6.6) 

where 1  is dielectric constant of the coating material. The electrostatic interaction force 

scales as
'

elF  . The electrostatic interactions are thought to be one of the major causes of 

ice adhesion, therefore, one can assume that the adhesion strength of the ice-dielectric interface 

scales similarly to elF . Figure 6.11 shows the variation of the ice adhesion strength with dielectric 

constant assuming a proportionality constant of the unity. The trend is similar to the 

experimental results reported by Saleema et al. [52] There is no appreciable decrease in ice 

adhesion strength when the dielectric constant is larger than 10. However, for 10  the ice 

adhesion strength decreases considerably. 

 
Figure 6.11. Variation of ice adhesion strength with dielectric constant of the icephobic coating. 
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For water, 80  , while for air 1  . Thus having air pockets is favorable to lower the ice 

adhesion strength. Therefore, the Wenzel state is unfavorable for the icephobicity, whereas the 

Cassie-Baxter state with air pockets between the solid and water will lead to low ice adhesion 

strength when water freezes. The PVA fibers, which were used to increase concrete roughness, 

as described in the preceding sections, have the dielectric constant of about 2   [74], which, 

therefore, helps minimizing the ice adhesion strength.  

As discussed in the preceding section, the ice adhesion strength of the hydrophobic 

concrete is lower than that of the uncoated concrete. This can be attributed, at least partially, to 

the synergistic effect of the air pockets due to the hydrophobization as well as the exposed PVA 

fibers. Both these factors minimize the mirrored charges on ice, thereby weakening ice adhesion. 

6.6.2 Suppression of frost formation 

Nucleation occurs when the energy gained in forming a nucleus is greater than the energy 

cost due to creation of a new interface. The rate of nucleation is related to the nucleation energy 

barrier (ΔG*) as  *exp Brate G k T  . The nucleation energy barrier for homogeneous 

nucleation is  
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          (6.7) 

where Δμ is the difference in chemical potentials between the surrounding phase and the 

nucleating phase, γ is the interfacial tension of the nucleus, and the number density of the 

nucleating phase n is the number of possible nucleation sites per unit volume. Ice nucleation 

occurs when the critical radius of the nucleus is equal to or greater than [75] 
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The nucleation energy barrier for heterogeneous nucleation at a surface is less than the 

energy barrier for homogeneous nucleation. The heterogeneous nucleation energy barrier on a 

flat surface [76] is  
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       (6.9) 

while the heterogeneous nucleation energy barrier in a wedge [77] with a characteristic length 

greater than the critical radius *R is 

 * * 2 2 11
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   (6.10) 

where θ is the contact angle of the nucleus at the surface, α is the angle of the wedge, and 

cos cot cot
2 2

 
 (Figure 6.12a). Eq. 6.10 is valid for    180 2 180 2      and

00 180  . When α=180°,
* *

wedge flatG G   . 

Nucleation energy barrier for a wedge normalized using the homogeneous nucleation 

energy barrier varies with contact angle and wedge angle as shown in Figure 6.12b. The narrow 

wedges lower the energy barrier for nucleation. Thus, ice nucleation occurs readily at concave 

sites compared to flat or convex sites. For hydrophilic surfaces, the nucleation energy barrier is 

low whereas for hydrophobic surfaces the nucleation energy barrier is high. Thus, theoretically a 

smooth superhydrophobic surface should provide the highest energy barrier for heterogeneous 
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nucleation and frost formation. Molecularly smooth surfaces exhibit delayed ice nucleation in 

humid conditions compared to rough superhydrophobic surfaces [78]. 

 
Figure 6.12. (a) Water droplet making a contact angle θ inside a wedge of angle α. (b) Normalized 

nucleation energy barrier versus contact angle. The energy barrier increases as the wedge angle increases. 

(c) Surface topography with wide corners will have the highest possible nucleation energy barrier. 

The highest possible contact angle on any smooth surface is 119° [79]. Multiscale surface 

roughness is essential for large values of macroscopic contact angles. The critical radius of the 

ice nucleus R* is of the order of a few nanometers. The characteristic length scale of the surface 

features on a superhydrophobic surface is usually greater than R*. Therefore, the local contact 

angle θ of the material is critical for the ice nucleation energy barrier than the macroscopic 

contact angle. 

For rough surfaces, the aim must be to have the wedge angles as large as possible. For a 

surface topography as shown in Figure 6.12c, both the micro and nano scale features maintain 

wide angle corners to have high nucleation energy barriers.  
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For the concrete samples studied here, the surface topography is influenced by the sand to 

cement ratio and the PVA fiber content. The effect of these parameters on the surface roughness 

is given by Eq. 6.5. The mechanical abrasion of concrete prior to coating with emulsion also 

affects the surface topography. An appropriate grit sand paper can be selected so that the 

prepared surface has a topography resembling Figure 6.12c. 

6.6.3 Minimizing contact time for incoming droplets 

It was seen in the experiments with impinging droplets that the surface tends to be sticky 

at -5 °C. The stickiness of the surface can be explained by the spontaneous condensation of water 

from vapor into the cracks and pores on the concrete surface. The equilibrium curvature of the 

condensate meniscus is given by the Kelvin equation [25]. 

 
 ln

m
K

sat

V
r

RT p p


           (6.11) 

where
Kr

is the Kelvin radius, is the surface tension,
mV is the molar volume, p is the vapor 

pressure and
satp is the saturated vapor pressure at temperature T. For supercooled water at -5 °C, 

mV 18.026x10-6 m3/mol,   0.0764 N/m, and 
mV RT 0.62 nm. At saturated conditions

 1satp p  ,
Kr   . At 34% relative humidity  0.34satp p  , 

Kr  -0.57 nm. The negative 

value of curvature implies that condensation can occur at undersaturated conditions. The 

geometry of the surface topographical features plays an important role in the formation of 

thermodynamically stable interface. Spontaneous condensation can occur in hydrophilic pores of 

size greater than
Kr . 
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The condensate formed in nano and micro pores of the concrete surface results in the 

modification of the surface energy of concrete. An incoming liquid droplet encountering a 

condensate liquid film on the surface will experience an adhesion force [25] 

 4 cosadF R             (6.12) 

where R is the radius of the undeformed droplet and is the contact angle of the condensate film 

with the surface. The energy required to overcome this adhesion will scale as 4 cosR X  

where X is the size of the flattened face of the droplet on impact. Consider the concrete surface 

wetted by the nano scale condensate film  0   . For a 14 μl water droplet at -5 °C impacting 

the concrete surface at 0.99 m/s the kinetic energy at impact is of the order 10-6 J. If the droplet 

deformation is of the same order as R, the energy required to overcome adhesion and bounce off 

the surface is of the order 10-6 J. The significant energy loss incurred by the droplet results in the 

droplet wetting the surface followed by freezing.  

To minimize the contact time between the incoming droplets and a surface, it is essential 

to control the surface topography as well as the contact angle. Hydrophobizing the surface pores 

will result in a reduction of the adhesion force
adF . Sample M1 with no sand content 

demonstrated the best ability to repel incoming water droplets. The absence of sand resulted in 

smaller pores which do not sustain a thermodynamically stable continuous condensate film. The 

hydrophobic coating ensured a low adhesion force. The surface roughness of concrete can be 

optimized by controlling the parameters in Eq. 6.5. 
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6.7 Conclusion 

In this chapter, the theoretical mechanisms of ice-repellence were discussed. It was found 

that the interactions involved are similar to hydrophobic interactions. Furthermore, the 

requirements for an icephobic surface are analogous to the requirements for a superhydrophobic 

surface, as summarized in Table 6.1. Although it is well known that not all the superhydrophobic 

surfaces are icephobic, most surface properties needed to design a superhydrophobic surface, 

such as the surface micro/nanotopography and free energy, affect the icephobic performance. 

This finding led to development of an icephobic surface using the same approaches which were 

used for the superhydrophobic modification. For this study, concrete was selected. Concrete is 

typically hydrophilic and wicks water. Only recently hydrophobic and superhydrophobic types of 

concrete were synthesized. Concrete is a very common material in civil engineering and 

construction; therefore, addition of icephobic property can have a significant impact on many 

applications. 

The three aspects of the icephobicity are the reduced ice adhesion, repulsion of incoming 

droplets prior to freezing, and delayed frost formation. Two aspects of the icephobicity, namely, 

the ice adhesion to concrete and the repulsion of incoming droplets were studied. The 

icephobicity of concrete was achieved by hydrophobizing the surface so that it can maintain the 

Cassie state with air pockets between the solid and water, by using dielectric coatings, and by 

modifying the surface topography. Uncoated concrete samples were hydrophilic, and showed ice 

adhesion strength in the range 170-376 kPa. Concrete samples coated with hydrophobic 

emulsion showed water contact angle as high as 151° and roll-off angle as low as 1°. The ice 

adhesion strengths of the coated samples were one order lower in the range 29-83 kPa. The PVA 
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fibers as well as the air pockets on the surface, due to their low dielectric constants can minimize 

the mirror charges on the ice surface thereby reducing the ice adhesion strength. The addition of 

PVA fibers and sand to concrete resulted in a significant increase in surface roughness. The 

coated concrete samples could repel incoming water droplets at 20 °C as well as -5 °C. It was 

found that icephobic performance of concrete depends on these parameters – the hydrophobic 

emulsion concentration, the PVA fiber content, the water to cement ratio, and sand to cement 

ratio.  

The surface roughness of concrete can be optimized by controlling the sand and PVA 

fiber content. An optimally rough surface could prevent wetting transition for incoming droplets 

and minimize the resulting ice accretion, as well as delay the ice nucleation and frost formation 

by increasing the ice nucleation energy barrier for the surface. To conclude, surface 

micro/nanotopography can be used to control the icephobicity of materials. In the next chapter, 

the biomimetic potential and the effect of surface micro/nanotopography on the icephobicity of 

skunk cabbage are studied. 
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CHAPTER 7: BIOMIMETIC POTENTIAL OF THE ICEPHOBICITY OF SKUNK 

CABBAGE 

In the previous chapter, it was seen that surface micro topography as well as surface free 

energy affect the icephobic performance of a surface. This understanding was used to control the 

icephobicity of concrete. This chapter will focus on the icephobicity of a plant called skunk 

cabbage (Symplocarpus foetidus) which is a thermogenic plant that emerges through snow. The 

potential for the biomimetic icephobicity of skunk cabbage, and the effect of surface topography 

on its icephobicity are investigated. 

7.1 Introduction 

The lotus (Nelumbo nucifera) leaf with its hierarchical structure of papillae covered with 

rough wax served an initial source of inspiration for the artificial superhydrophobic surfaces. The 

lotus effect is characterized by high CA and small CAH. However, the petal effect is 

characterized by high CA (often in the superhydrophobic region) and large CAH. The 

observation caused a discussion of the very concept of the hydrophobicity and how it is possible 

for a surface to be “superhydrophobic” (meaning the strong repellence of water) simultaneously 

with having strong adhesion to water [1,2]. An alternative term suggested for the rose petal effect 

in the literature is the “parahydrophobic state” [3]. Among the proposed answers was that water-

to-solid adhesion is not characterized by a single number, such as the apparent CA. Instead, the 

normal and shear loading can be considered separately, presumably, with the CA and CA 

hysteresis being wetting characteristics during normal and shear loading. Shear and normal loads 

can be applied and measured independently using the centrifugal adhesion balance [4]. 

Furthermore, the very concept of static CA is not well defined since the CA may depend on how 
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water droplet was created and does not necessarily converge with time to a single value [5]. It 

has also been shown recently that surfaces can exhibit high contact angle coupled with either low 

or high adhesion by virtue of just surface topography alone [6]. 

 As seen in chapter 6, the icephobicity is closely correlated to the superhydrophobicity. 

The exact definition of the icephobicity remains the subject of debate, as well as its relationship 

with the superhydrophobicity [7-12]. However, given that ice will form on any surface, the 

parameter of practical importance is the work of adhesion between the substrate and ice [7]. 

 Besides the superhydrophobicity, another property which is unusual in lotus is the 

thermogenesis. Thermogenic plants, including the lotus, can raise their temperature above that of 

the surrounding air, sometimes exceeding the latter by 20 °C. The role of thermogenesis in plants 

is still debated by botanists; however, the most popular hypothesis is that heat helps to spread 

chemicals that attract pollinators to the plant [13,14]. The heat is generated in mitochondria of 

the plant cells. Besides lotus, only few plants have thermogenic properties including some 

tropical plants, such as the voodoo lily (Amorphophalus), and some plants common in the 

northern climate including the eastern skunk cabbage (Symplocarpus foetidus, also referred to in 

literature as eastern North American skunk cabbage) and several related plants from the Araceae 

(arum) family. The skunk cabbage is known for its ability to emerge from under snow. 

 Apparently, there is no direct correlation between the superhydrophobicity and 

thermogenesis, since besides lotus there are no examples of plants which possess both properties. 

However, since these both properties may involve certain common features, such as the ability to 

repel ice, the issue requires further investigation. In this chapter, the leaves of a thermogenic 
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plant, S. foetidus are studied. A theoretical model correlating the superhydrophobicity, the 

thermogenesis and the icephobicity is developed. 

7.2 Symplocarpus foetidus and the Icephobicity 

Eastern skunk cabbage (S. foetidus) is a member of Araceae family and is of particular 

interest due to its peculiar thermogenic and thermoregulatory property. The plant is native to 

North American wetlands. It blooms in late winter or early spring, when there is still a snow 

cover on the ground. The ability of the plant to survive and melt through thick snow in below-

freezing ambient conditions is of interest to us. 

 The parts of the skunk cabbage shoot are the green leaves (Figure 7.1a) and the purple 

modified leaves called spathes (Figure 7.1b) which enclose the flowering part of the plant called 

spadix. It is the spadix which emits the foul smelling odor that gives the plant its name. Spadix 

also plays an important role in thermogenesis. The plant is able to maintain an average spadix 

temperature of 15 °C when the ambient temperature is -15 °C [15]. Transpiration plays an 

important part in regulating the plant temperature. In hot tropical climate, thermogenic plants 

such as lotus maintain their temperature below that of surroundings by evaporating water. 

Similarly, plants reduce water loss by evaporation to maintain temperatures above that of 

surroundings. In plants, the water loss to atmosphere and gaseous exchange occurs through 

openings on leaf surface called stomata. Usually leaves of terrestrial plants have stomata on their 

lower (abaxial) surface. Aquatic plants such as lotus have stomata on their upper (adaxial) 

surface. Many plant leaves are usually covered by a thin wax coating called cuticle whose one of 

many functions is to prevent excessive water loss. The cuticle is sometimes further covered with 

epicuticular wax crystals of different geometries such as platelets, tubules, rodlets etc.[16] The 
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size and geometry of these wax crystals are some of the decisive factors in the wetting state of 

leaf, for example, lotus leaf. 

 
Figure 7.1. (a) the leaf of skunk cabbage enclosing spathe and spadix, and (b) the spathe. (c) Skunk 

cabbage as observed in its natural environment in wet land (Schlitz Audubon Nature Center, Milwaukee, 

WI) in the month of November. 

 The thermogenesis of skunk cabbage is well documented in literature [15,17,18]. There 

have been studies on the heat generation at the spadix. But according to the authors’ knowledge, 

there has been no study on regulation of heat loss through the leaves or spathe and of the plant’s 

icephobic properties. The ability of the skunk cabbage to repel ice formation is likely to be 

related with the elevated temperature of the leaves rather than with the surface structure, 

however, the surface microstructure should be investigated. In the following section, the surface 

morphology of the leaves and spathe of skunk cabbage are investigated. 
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7.3 Experimental 

A sample of the plant was collected in early November from a wet land in Milwaukee. 

The plant had none of its large leaves left at this time of the year. All that remained above ground 

was the spadix enclosed in a spathe and fresh unsprouted leaves, prepared to weather the long 

and frigid winter (Figure 7.1c).  

7.3.1 Contact angle measurement 

Water contact angles (CA) and contact angle hysteresis (CAH) on freshly cut (within 

three hours after cutting) spathe and leaf surfaces were measured. The as-placed water CA were 

measured using a ramé-hart goniometer (model 100-25-M) by placing three pure water droplets 

of 10 μl at different locations on the surface. CAH were calculated by the tilting plate method. 

7.3.2 Surface topography using SEM 

The microstructures of the leaf and spathe surfaces were studied using scanning electron 

microscopy (SEM). Three different sets of samples of leaves and spathe were prepared. 

Biological specimens, such as cells and tissues or tissue components, must first be fixed to 

preserve their native structure. Chemical fixation typically uses formalin or glutaraldehyde of 

varying per cent concentrations in a buffer of a specific pH. The first set (S1) was air dried in a 

desiccator for over two days at room temperature.[19] The second set (S2) was prepared by 

chemical fixation in liquid phase. A 10 ml aqueous solution of 2.5% glutaraldehyde, 0.1M 

HEPES buffer (pH 7.2) and 0.02% triton X-100 was prepared and the samples were left 

overnight in the solution. The samples were then washed thrice with distilled water and then left 

overnight in an 8 ml aqueous solution of 1% osmium tetroxide. The samples were then 
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dehydrated in a series of steps using anhydrous ethanol in 20%, 40%, 60%, 80% and 100% 

(thrice) solutions. This was followed by critical point drying (Blazers CPD 020) to remove 

ethanol from the samples. 

 Since triton X-100 removes all the epicuticular wax, a third set (S3) of samples were 

prepared using vapor phase fixation [20] to maintain the structure of the cells, while retaining the 

waxes on the surface. Samples were first exposed to vapor of 2% glutaraldehyde and then 2% 

osmium tetroxide both at room temperature. 

 All three sample sets were fixed on aluminum stubs using double sided tape. Then they 

were sputter coated in an Emitech K575X sputter coater with an Irridium target. The thickness of 

coating varied based on the fixation procedure- S1 required 4 nm while S2 required 5 nm and S3 

required 8 nm. Colloidal carbon paint was applied along the edges of the samples on stubs to 

further reduce charging. The paint was applied using a fine brush under an optical microscope to 

ensure that leaf surfaces remained intact. The samples were observed in Hitachi S-4800 FE-

SEM. 

7.4 Results 

The surfaces of both the leaf and spathe were seen to be hydrophobic (Figure 7.2a, b)). 

The leaf surface showed an average water CA of 92° and the spathe surface showed an average 

water CA of 97°. The surfaces also showed extremely high adhesion, with the water droplet not 

rolling off the vertical surface (Figure 7.2c). The advancing and receding CAs on the leaf surface 

was 110° and 83° respectively with a CA hysteresis of 27°. This is similar to the rose-petal effect 

where the droplet is usually thought to be in the Cassie-Baxter impregnating wetting state. On 

the other hand, Marmur showed that the contact area of a drop with the solid in the Wenzel state 
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can be higher by orders of magnitude compared with the Cassie-Baxter state, for the same 

contact angle.[21] It is therefore possible that a high contact angle and "adhesive" drop indicate 

the Wenzel “parahydrophobic” state.[3]  

 
Figure 7.2. Water droplets on (a) leaf (b) spathe (c) an adherent water droplet on the vertical surface of 

leaf. 

 It was seen that vapor phase fixation procedure (sample set S3) yielded the best scanning 

electron micrograph results while preserving the structure of the epicuticular wax crystals. The 

sample sets S1 and S2 did not preserve the wax crystals. But S2 provided insight into the 

underlying microstructure. The scanning electron micrographs of the adaxial and abaxial 

surfaces of both the leaf and the spathe are shown in Figure 7.3. The abaxial surface of the leaf 

showed pillars (~10 μm diameter) coated with wax rodlets (Figure 7.3e, f, g). The adaxial surface 

of the leaf displayed a different surface texture with lack of pillar like structures and visibly far 

less density of wax rodlets (Figure 7.3a, b). The adaxial and abaxial surfaces of the spathe also 

showed an absence of pillar like structures and dense wax rodlets (Figure 7.3c, d). Interestingly, 

the adaxial surface of the leaf and the adaxial and abaxial surfaces of the spathe carried stomata, 

with the spathe showing a denser distribution of stomata. But the stomata on the abaxial surface 

of the leaf lay beneath the dense canopy of wax rodlets. 

 Skunk cabbage is known to survive the sub-zero temperatures of winter and bloom in late 

winter or early spring. The abaxial surface of the leaf is all that covers the spathe and spadix of 
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the plant during the extremely cold winters. Therefore, from the stand point of conserving heat, it 

seems logical to have fewer numbers of stomata on the surface exposed to the outside weather. 

Stomata directly connect the interstitial spaces below the epidermis to the environment for 

transpiration. Reduced transpiration means, minimal heat loss to the surroundings. 

 
Figure 7.3. Scanning electron micrographs of skunk cabbage leaf and spathe surfaces. (a) Vapor phase 

fixed adaxial leaf surface, (b) scarcely distributed wax rodlets on the adaxial leaf surface, (c) adaxial 

surface of vapor phase fixed spathe showing stomata (d) abaxial surface of vapor phase fixed spathe 

showing stomata, (e) vapor phase fixed abaxial leaf surface showing pillars covered with wax rodlets, (f) 

the wax rodlets, and (g) liquid phase fixed abaxial surface of leaf showing the pillars tops void of wax 

rodlets. 

 The abaxial surface showed hierarchical roughness with high adhesion.[22] This may be 

similar to high contact angle coupled with high hysteresis seen in leaves of plants such as garlic 

and scallion of genus Allium. Such leaves have a rough surface covered with epicuticular wax 
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which results in high contact angle. But they also have strong smelling diallyl disulphide, a 

hydrophobic defect which causes contact line pinning, and thus high contact angle 

hysteresis.[23] Skunk cabbage is known to have dimethyl disulphide which is known to 

volatilize and cause the peculiar smell associated with the plant.[24] The dimethyl disulphide 

might be acting as hydrophobic defects on the skunk cabbage leaf resulting in high adhesion 

coupled with hydrophobicity. 

 In addition, a freezing test was performed. A small piece (2 x 2 cm) of skunk cabbage 

leaf was cut and a water droplet was placed on it. After that, the leaf was placed in a freezer of a 

kitchen refrigerator (temperature -5 °C). Several hours later, after the water droplet froze, the leaf 

was removed. The ice droplet was stuck to the leaf surface demonstrating relatively strong 

adhesion and thus no icephobic property of the cut leaf was found. 

7.5 Discussion 

The above results show that the leaf has complex micro/nanotopography which affects its 

wetting properties. The leaf is hydrophobic, however, no superhydrophobic properties were 

found. A cut leaf demonstrates strong adhesion to ice. This implies that the living leaf repels ice / 

snow due to its thermogenic properties. Suggested below is a model which relates the heat flow 

to the surface structure and wetting properties. 

Consider a leaf surface at temperature T1, initially covered with a layer of ice at 

temperature T2 and thickness a. It is assumed that the leaf surface maintains a steady temperature 

and the heat loss to the surrounding air is neglected. The leaf surface is rough and forms a solid-

liquid-vapor composite interface as shown in Figure 7.4a. When T1 > T2, heat flows from the 
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plant surface to ice and it melts to form water. At any time t, let the water-ice interface be located 

at a distance ‘x’ from the plant surface. The heat flow from the leaf to ice can be written as 

 𝑄 = 𝐿𝐴
𝑑𝑥

𝑑𝑡
          (7.1) 

where 𝐿 is the latent heat of fusion of ice, 𝐴 is the projected area of the leaf surface and 
𝑑𝑥

𝑑𝑡
 is the 

velocity at which the water-ice interface advances. In order to reach the water-ice interface, this 

heat has to flow through the water, as well as the leaf-water interface. Therefore 

 𝑄 = ℎ𝑊𝐴(𝑇𝑖 − 𝑇2)         (7.2) 

and  

 𝑄 =
𝑇1−𝑇𝑖

𝑅𝑡ℎ
          (7.3) 

where 𝑇𝑖is the leaf-water interface temperature, ℎ𝑊 is the heat transfer coeffient of water and 𝑅𝑡ℎ 

is the thermal resistance of the composite interface. From Eq. 7.2 and Eq. 7.3,  

 𝑄 =
𝑇1−𝑇2
1

ℎ𝑊
+𝑅𝑡ℎ

          (7.4) 

The thermal resistance of the composite interface can be represented as electrical resistors 

connected in parallel as shown in Figure 7.4b. If ℎ𝐴 is the heat transfer coeffient of air and 𝑓𝑊𝐴 is 

the fractional flat area of the water-air interface,  

 1/𝑅𝑡ℎ = ℎ𝐴𝐴𝑓𝑊𝐴 + ℎ𝑊𝐴(1 − 𝑓𝑊𝐴)       (7.5) 
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Figure 7.4. (a) Heat transfer at composite interface on the leaf surface resulting in melting of ice and an 

advancing water-ice interface (b) equivalent electrical circuit showing thermal resistances at the 

composite interface. 

Combining Eq. 7.1, 7.4 and 7.5, 

 (
1

ℎ𝑊
+

1

ℎ𝐴𝑓𝑊𝐴+ℎ𝑊(1−𝑓𝑊𝐴)
)𝑑𝑥 = (𝑇1 − 𝑇2)𝑑𝑡      (7.6) 

Integrating, 
𝐿

(𝑇1−𝑇2)
(

1

ℎ𝑊
+

1

ℎ𝐴𝑓𝑊𝐴+ℎ𝑊(1−𝑓𝑊𝐴)
)∫ 𝑑𝑥

𝑎

0
= ∫ 𝑑𝑡

𝑡

𝑜
, the time required to melt an ice 

layer of thickness ‘a’ can be obtained 

  𝑡 =
𝐿𝑎

(𝑇1−𝑇2)
(

1

ℎ𝑊
+

1

ℎ𝐴𝑓𝑊𝐴+ℎ𝑊(1−𝑓𝑊𝐴)
)       (7.7) 

If the leaf-water interface has a roughness factor  𝑟𝑓, then  

 𝑡 =
𝐿𝑎

(𝑇1−𝑇2)
(

1

ℎ𝑊
+

1

ℎ𝐴𝑓𝑊𝐴+ℎ𝑊𝑟𝑓(1−𝑓𝑊𝐴)
)       (7.8) 

 The plots in Figure 7.5 are obtained using nominal values of ℎ𝐴 = 10 𝑊/𝑚2𝐾, ℎ𝑊 =

20 𝑊/𝑚2𝐾, 𝐿 = 334 𝑘𝐽/𝑘𝑔, 𝑇1 = 15 ℃ and 𝑇2 = 0℃. As the wetted area of the leaf surface 

decreases, the longer it takes for the heat transfer to occur (Figure 7.5a). Therefore more the air 

pockets on leaf surface, the longer the heat is retained. Figure 7.5b shows that as the surface 
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becomes rougher, the heat loss speeds up. It is also seen that roughness is a predominant factor 

for heat loss only when the fractional flat area of the water-air interface (𝑓𝑊𝐴) is low. As 𝑓𝑊𝐴 

increases, the effect of 𝑟𝑓 on heat loss wanes. 

 
Figure 7.5. (a) Time for melting of ice layer (thickness, a) at different fractional flat area of the water-air 

interface (b) time for melting an ice layer 1mm thick at different fractional flat area of the water-air 

interface (fWA) and roughness factors (rf). 

 
Figure 7.6. The heat produced by the skunk cabbage plant in tandem with the high adhesion can maintain 

a slippery layer of water on the leaf surface. Thus the ice slips off the leaf surface. 

 From the above discussion, it is clear that changing the surface texture (𝑟𝑓and 𝑓𝑊𝐴) can 

either help to conserve heat in extreme cold, or melt the ice cover. In the case of skunk cabbage 

leaf, water droplets are in a Cassie-Baxter impregnating wetting state with high adhesion 

possibly due to hydrophobic defects. The heat produced by the plant should be able to maintain a 
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thin impregnated layer of liquid water and air pockets between the leaf surface and surrounding 

ice (Figure 7.6). This ensures minimal adhesion between ice and leaf surface, and ice readily 

slips off under its own weight. This process can be thought of as similar to the Nepenthes pitcher 

plant inspired slippery liquid-infused porous surfaces.[25,26] Also, maintaining a water-air 

composite interface is conducive to heat conservation because water and air have thermal 

conductivities of 0.56 W/mK  and 0.02 W/mK (at 275 K, 1 atm) respectively, while ice has a 

thermal conductivity of 2.2 W/mK (at 273 K). Note also that the skunk cabbage plant is able to 

produce heat with the output up to 1 W.[14] Given the latent heat of melting of ice 334 J/g, such 

heat output is sufficient to melt one gram of ice in 334 seconds.   

 Taking inspiration from the skunk cabbage plant, surfaces with Cassie-Baxter 

impregnating wetting state can be used in tandem with a heat source as functional icephobic 

surfaces. Such surfaces meet one of the definitions of the icephobicity i.e., low adhesion between 

the surface and ice. The heat and the surface topography should ensure a slippery water layer on 

the surface. Also, the Cassie-Baxter impregnating wetting state helps to reduce heat loss 

compared to Wenzel wetting state. Thus by controlling the wetting state of a surface one can 

control not only contact angle and contact angle hysteresis, but also other surface properties such 

as local heat transfer coefficient, ice adhesion and rate of corrosion. 

7.6 Conclusion 

In this chapter the surface topography and wetting properties of the thermogenic skunk 

cabbage was investigated. The water contact angle was found to be 92° with very high adhesion 

displaying rose-petal like or “parahydrophobic” effect. The microstructure of the leaf was bumpy 

with hair-like wax rodlets, indicating the possibility of Cassie-Baxter impregnated wetting state 
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with air pockets trapped between the surface and water. Experiment with ice (on a cut leaf) 

showed strong adhesion of ice to the surface. It is therefore likely that elevated temperature is 

responsible for ice repellence in the living plant. The leaf’s microstructure could maintain a 

slippery water layer on it, reducing ice adhesion. Also, the composite interface can minimizes 

heat loss. As far as the biomimetic potential of the plant, it can be concluded that the rose-petal 

effect-like structure can be used to decrease ice contact area for icephobic surfaces. 
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CHAPTER 8: CONCLUSION 

The effects of surface micro/nanotopography and small amplitude fast vibrations on 

wetting properties were studied. Samples of functional surfaces were produced to have 

hydrophobic, icephobic, and corrosion resistant properties. Surface topography can be used to 

control the wetting property of hydrophobic concrete, corrosion resistance of hydrophobic 

metallic surfaces, and the icephobicity of concrete. 

In Chapter 1, the motivation and the goals of this dissertation were discussed. 

In Chapter 2, the concepts related to wetting and vibrational mechanics were reviewed. 

Also, the method of separation of motions was discussed. Using the method of separation of 

motions, small fast vibrations can be substituted by an effective force or energy obtained by 

averaging the vibrations over their time period. The equations for effective force and energy 

were also formulated in this chapter. 

In Chapter 3, the relationship between surface topography and vibrations was established 

using the method of separation of motions. Similarly to small fast vibrations, spatially periodic 

micro/nanopatterns can be substituted by an effective force or energy obtained by averaging the 

patterns over their spatial domain. The method of separation of motions was used to study and 

understand the structure-property relationships in materials and surfaces. 

Kirchhoff’s analogy was also used to study the similarity between surface topography 

and vibrations. Using the analogy of an inverted pendulum it was shown that a slender elastic 

flexible beam in tension can be stabilized using spatial periodicity in the geometry of the beam. 

Thus surface topography manifests as an effective stabilizing shear force on the beam.  
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The effective force for vibration-induced stabilization of the inverted and the multiple 

pendulums were formulated using the method of separation of motions. The limiting case of 

multiple pendulums, a string, cannot be stabilized unless flexural stiffness is introduced. The 

vibration-induced stabilization of a flexible rope was studied experimentally. The rope was seen 

to execute whipping motions, due to instabilities, within a range of frequencies of vibration. The 

rope remained buckled and static at other frequencies of vibration. This is similar to the 

vibration-induced stabilization of inverted and multiple pendulums. 

Several examples of how vibrations affect viscous non-Newtonian liquids with were 

studied experimentally and theoretically. An analogy was drawn between the mechanical 

systems undergoing vibration and non-linear behavior in vibrating fluids. Thus, vibro-levitating 

droplets of oil were observed over a vibrating bath of oil within a certain range of frequency of 

vibrations, similarly to the vibration-induced stabilization of an inverted pendulum. Then, 

vibration-induced phase transition of a cornstarch suspension, and granular media was discussed 

and demonstrated experimentally. In addition, it was theoretically shown that vibrations could 

stop fluid flow through a hole, thereby affecting membrane permeability. In each case, the 

method of separation of motions was used to formulate effective forces. 

The effect of surface topography can be incorporated into the surface free energy by 

averaging the surface patterns over the projected area. The effective surface energy can be 

observed as the macroscopic contact angle. Surface topography can be used to control wetting 

properties, for applications such as superhydrophobic surfaces. A new application of 

superhydrophobic surfaces is in separation of oil-water mixtures. Superhydro/oleophobic/philic 

meshes can be used to separate organic liquids (such as oil) from water. An equation for the 
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capillary pressure in an oil-water separating superhydro/oleophobic/philic mesh was formulated 

using the method of separation of motions. Oil-water separation was found to be analogous to the 

molecular scale phenomenon of reverse osmosis. Surface topography as well as vibrations can 

affect wetting properties such as the contact angle and the surface free energy. Thus, structure-

property relationships in materials and surfaces were established. 

In Chapter 4, based on the understanding of the structure-property relationships, the 

surface topography was used to control the wettability of concrete. Surface topography and 

wettability of concrete samples were manipulated by changing the concrete mixture composition 

and using hydrophobic emulsion. The wetting properties of hydrophobic concrete samples such 

as the contact angle and contact angle hysteresis were experimentally measured using a contact 

angle goniometer. The surface topographies of the samples were studied and the surface 

roughness values were measured using a laser scanning microscope. The dynamics of incoming 

water droplets on hydrophobic concrete surface was studied because repulsion of incoming 

droplets is a desirable property for any hydrophobic surfaces. An experimental method was 

developed for that purpose. Whether the droplets were pinned, broke-up on impact, or bounced-

off the hydrophobic concrete surface depended on the droplet velocity as well as the surface 

topography. The ability of the concrete to repel incoming droplets can be optimized by changing 

the concrete composition. 

In Chapter 5, the surface topography was used to control wetting and thus prevent 

corrosion of metallic materials. Hydrophilic, hydrophobic, and superhydrophobic cast iron 

samples with different surface roughness values were prepared. The wetting properties of the 

samples such as the contact angle and contact angle hysteresis were experimentally measured 
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using a contact angle goniometer. The surface topographies of the samples were studied and the 

surface roughness values were measured using a laser scanning microscope. Potentiodynamic 

polarization tests were carried out on the samples.  

A decrease of up to eight orders of magnitude in corrosion current density and an 

increase in corrosion potential was observed after superhydrophobization of the cast iron. 

However, increasing the roughness without hydrophobization leads to the formation of a 

homogenous solid-liquid interface thereby increasing the corrosion current density. The trend 

observed in the experimental results match the theoretical predictions, as well as the data from 

literature. A stable non-homogeneous solid-electrolyte-air interface is essential for superior 

corrosion resistance. 

In Chapter 6, the effect of surface topography on the icephobicity of materials, 

particularly concrete, was studied. The essential mechanisms needed for ice repellence are 

similar to the hydrophobic interactions. In this chapter, two aspects of the icephobicity of 

hydrophobic concrete, namely, the repulsion of incoming water droplets before freezing as well 

as the ice adhesion strength were investigated experimentally. An experimental method was 

designed for that purpose. The icephobicity of concrete samples was achieved by 

hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol 

fibers), and by controlling the surface topography. The surface topography of the concrete 

samples were studied using a laser scanning microscope and average surface roughness values 

were measured. The surface roughness of the concrete depends on the polyvinyl alcohol content 

and the sand to cement ratio of the concrete mixture. 
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Ice accretion on the concrete surface is reduced if the incoming droplets do not undergo 

wetting transition. Wetting transition can be prevented by optimizing the surface roughness of 

the concrete. The ice adhesion strength of hydrophobized concrete samples were one order in 

magnitude less than that of regular concrete samples. It was found that icephobic performance of 

concrete depends on these parameters – the hydrophobic emulsion concentration, the PVA fiber 

content, the water to cement ratio, and the sand to cement ratio. Optimizing the roughness of a 

surface and hydrophobizing it will minimize ice accretion from incoming droplets, as well as 

delay ice nucleation at the surface. 

In Chapter 7, the potential for biomimetic icephobicity of skunk cabbage, and the effect 

of surface topography on its icephobicity were investigated experimentally and theoretically. The 

ability of the plant to melt ice is related to the heat generated by thermogenesis. The wetting 

properties such as the contact angle and contact angle hysteresis of the plant leaves were 

measured using a contact angle goniometer. Although the skunk cabbage leaves are slightly 

hydrophobic, they exhibit high adhesion to water. The surface topography of the plant leaves 

were investigated using a scanning electron microscope. The abaxial surface of the leaves have a 

hierarchical microstructure which consists of pillars covered with hair-like wax rodlets. The 

surface micro/nanotopography of the leaf coupled with its high adhesion to water suggested an 

impregnated wetting state.  

A theoretical model correlating the heat transfer from the leaf with its 

micro/nanotopography was developed. The surface topography of the leaf could maintain a layer 

of liquid water on it, thereby reducing ice adhesion. Also, a composite interface at the leaf 

surface can minimizes heat loss. As far as the biomimetic potential of the plant, it can be 
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concluded that the rose-petal effect-like structure can be used to decrease ice contact area for 

icephobic surfaces. 

This study established that the method of separation of motions can be used to study the 

effect of small patterns on macroscopic properties of a system. Small patterns can be substituted 

by an effective force or energy similarly to small amplitude fast vibrations. The method of 

separation of motions is suited not only for the study of rigid body dynamics, but also the areas 

of surface science, physical chemistry and material science. 

Surface micro/nanotopography and small amplitude fast vibrations affect wetting and 

adhesion properties of various surfaces studied experimentally and theoretically in this 

dissertation. Functional materials and surfaces such as hydrophobic and icephobic engineered 

cementitious composites, and corrosion resistant metallic surfaces can be produced by 

controlling the surface micro/nanotopography. Such materials can find many environmentally 

friendly applications in fresh water industry, as well as in cold regions.  
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APPENDIX 

In the experimental study for chapters 4 and 6, the concrete samples used were obtained 

from Prof. Konstantin Sobolev’s laboratory at the Department of Civil and Environmental 

Engineering at the University Wisconsin-Milwaukee.  Some specimens and the coatings used in 

this study were prepared by Dr. Marina Kozhukhova. 

Materials 

Portland cement Type I (PC) supplied by Lafarge (Alpena, MI, USA) was used to prepare 

the mortar specimens. All the required characteristics of the cement, according to the ASTM150, 

are presented in Table A1. Standard quartz sand with an average particle size of 425 µm, 

according to the ASTM C778 and a regular tap water were used to produce the mortar samples. 

Kuralon K-II RECS15x12 polyvinyl alcohol (PVA) fibers (supplied by Kuraray Co. Osaka, 

Japan) were used to modify mortar mixes and induce a certain “self-reproducing” surface 

structure. The fibers had diameter of 45 μm with the length of 12 mm. It order to improve the 

workability of fiber reinforced mortars, polycarboxylate ether (PCE) high-range water-reducing 

admixture supplied by Handy Chemicals (Montreal, Canada) was used.  

“Shell type” water-based siloxane emulsion was used in this study for hydrophobic 

modification of the mortars surfaces. Polymethylhydroxysilane (PMHS) was used for emulsion 

preparation as a hydrophobic agent and polyvinyl alcohol (PVA) with molecular weight of 

16000 (supplied by Across Chemicals) was used as a surfactant. Silica fume particles were 

incorporated in order to stabilize the emulsion and also to serve as micro-roughness forming 

elements when attached to the rough mortar surface coated by the emulsion. For the experiment 

two emulsions with different concentrations of hydrophobic agent and silica fume were prepared 



199 

at proportions of 25% : 5% and 5% : 1%, by weight, respectively. The concentration of the PVA 

surfactant in water was kept constant at 5% for both types of emulsions. 

Table A1. Chemical and physical properties of portland cement. 

Chemical 

Composition 

Spec 

Limit, % 

Test 

Result, % 
 

Physical 

Properties 

Spec 

Limit 

Test 

Result 

 SiO2 - 20.6 

 

Air content, % - 3.2 

Al2O3 - 4.7 

 

Time of setting, min 

  Fe2O3 - 2.7 

 

Initial 45 min 110 

CaO - 63.9 

 

Final 375 max 225 

MgO 6.0 max 2.3 

 

Compressive strength, MPa 

 SO3 3.0 max 2.4 

 

1 day - 12.4 

Ignition Loss 3.0 max 2.1 

 

3 days 12.0 min 21.7 

Free Lime - 1.1 

 

7 days 19.0 min 27.6 

Limestone - 3.4 

 

28 days 28.0 min 37.9 

CO2 - 1.3 

 

Blaine fineness, m2/kg 260 min 380 

C3S - 54.5 

 

Autoclave expansion, % 0.8 max 0.02 

C2S - 17.9 

 

Heat of hydration at 7 

days, kJ/kg - 411 

C3A - 7.9 

 

Passing 325 mesh, % - 95.4 

C4AF - 8.2 

    C4AF+2(C3A) - 24.2 

    C3S+4.75(C3A) - 93 

    Na2Oeq 0.6 max 0.55       

 CaCO3 in LS 

 

93       

  

Preparation of Concrete Tiles 

Small rectangular tile specimens of 10x10x5 mm were cast, compacted using shaking 

table and placed in a curing room for 24 hours. These were then demolded and placed into the 
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moist room (RH= 90 ±5%) for total of 28 days of curing.  Later, the tiles were dried in an oven 

for 2 days at 70 °C. The dried samples were sealed in ziplock bags filled with paper to adsorb 

extra water (if any), and stored at laboratory conditions (22±3 °C and RH= 55%) before further 

testing. 

Before coating with hydrophobic emulsions tile surfaces were subjected to mechanical 

abrasion using 60 grit sand paper for 30 sec. Thus prepared samples were treated with two 

hydrophobic emulsions, with different concentration of hydrophobic agent and silica fume. Upon 

coating, the samples were cured for 48 hours at a room temperature of 22±3 °C and relative 

humidity of 55%. 

Preparation of Concrete Cubes 

The fiber-reinforced concrete cubes were prepared as follows. The procedure involved 

the production of 40x40x160 mm beams using the same approach as described above. These 

beams were cut into cubes of 40x40x40 with diamond saw. 

Ice Adhesion Strength Measurement 

In order to estimate the icephobicity, which was defined by the adhesion strength 

between the ice and concrete samples, PASCO CI-6746 stress-strain apparatus was employed to 

test the adhesion strength by measuring the shear force, applied to a cylindrical mold filled with 

ice and attached to the surface of a tile.  

All mortar tiles and cylindrical molds were placed into freezing room and stored at -18 

°C for 24 hours. After that, molds were placed on the top on the tiles and filled with cool water 

(0 °C). The samples with attached cylinders were cooled for an additional 5 hours at -18 °C to 
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achieve the complete crystallization of ice. Three sets of the specimens with different 

hydrophobic surfaces were tested for icephobic characteristics. Two specimens of each 

composition were prepared and tested and the average value of the shear strength was calculated 

and reported. The shear test, including settling of a sample and applying force, was conducted at 

a temperature of 0±2 °C for 2 minutes in order to avoid melting of ice.  
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