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ABSTRACT 
NUMERICAL AND EXPERIMENTAL STUDIES OF ATOMIC LAYER 

DEPOSITION FOR SUSTAINABILITY IMPROVEMENT 

 

by 

Dongqing Pan 

 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Chris Yingchun Yuan 

 

Atomic layer deposition (ALD) is an approved nano-scale thin films fabrication technique 

with remarkable uniformity and conformity in surface geometry. This dissertation presents 

numerical and experimental studies to investigate the transient physical and chemical ALD 

process in order to improve its sustainability performance in terms of throughput, wastes 

and emissions.  

 

To be specific, in this dissertation, the transient process of ALD is studied extensively 

through both numerical and experimental approaches to find the influential factors on the 

two main critical sustainability issues: low throughput and negative environmental impacts. 

Different numerical schemes are developed and studied for ALD process simulations. In 

particular, the gas fluid dynamics of the carrier gas flow is studied numerically by 

introducing and comparing two Lattice Boltzmann Method (LBM) models. To account for 

the surface deposition process, the strong-coupled physical and chemical process of ALD is 

recovered numerically by Finite Volume Method (FVM). The 3D transient reactive 
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thermal-fluid dynamic model adopts surface reaction kinetics and mechanisms based on the 

atomic-level calculations to study the surface deposition process.  

 

Experimental investigations are carried out to characterize the growth rate under different 

deposition conditions. The experimental observations are correlated with the simulations for 

better understanding the transient physical and chemical ALD process. The 

experimentally-validated numerical model is further applied for in-depth investigation of 

two types of batch and spatial ALD process for throughput improvement. A multi-wafer 

batch ALD with vertical and horizontal wafer arrangements is studied to investigate the 

influences of wafer layout on the deposition process with both experimental and numerical 

approaches. An in-line spatial ALD is also studied numerically to investigate three 

geometric and process factors, gap size, temperature, and pressure on the precursor 

intermixing and chemical deposition process. Spatial ALD is shown significantly effective 

in improving the throughput of ALD thin film depositions. 

 

To study the adverse environmental impacts of ALD nano-manufacturing technology on 

Al2O3 nano-scale thin films, numerical simulations with detailed ALD surface reaction 

mechanisms developed based on Density Functional Theory (DFT) are performed to 

investigate the effects of four process parameters on ALD film deposition rate, process 

emissions and wastes. The influential factors on process emissions and wastes are studied 

and identified. 
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The studies presented in this dissertation provide valuable knowledge in understanding the 

transient physical and chemical processes, and identifying the influential process or 

geometric factors to improve its throughput and minimize its emissions and wastes. 
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CHAPTER 1  INTRODUCTION 

1.1 Nano-manufacturing and atomic layer deposition 

1.1.1 Nano-manufacturing technology 

Nanotechnology refers to the technologies to understand and manipulate materials in the 

dimensions between 1 and 100 nanometers [Wang, 2009]. In nano scale, materials tend to 

exhibit unique characteristics which potentially imply exciting applications. For instance, in 

the area of energy, applications of nanotechnologies such as solid state lighting, low-power 

display, fuel cells, hydrogen storage, battery materials, solar power, catalysis, etc. can be 

foreseen in the near future [Wang, 2009]. In the domain of environment, nanotechnologies 

can provide new pathways towards novel sensors, emission reduction, membrane 

separations, coating, radioactive waste containment, etc. [Wang, 2009].  

 

Nanotechnologies have gained extensive attentions from both academic and public in the 

past decades. They have shown strong potentials to revolutionize many aspects of our 

society. Their value has been recognized by many governments worldwide. For example, in 

the U.S., a national nanotechnology initiative (NNI) was established in 2001 to coordinate 

research and development activities among different agencies in nanotechnologies.  

 

Nano-manufacturing technology is particularly the process of manipulation of matters to 

develop nanomaterials, or fabricate 2D and 3D nanoscale structures [Busnaina, et al., 2013]. 

Nano-manufacturing has been shown very versatile in many research and application 
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frontlines, such as microelectronics, energy, environmental and human health. 

Nano-manufacturing, which is highly interdisciplinary, implies diverse subjects such as 

surface science, organic chemistry, molecular biology, semiconductor physics, 

micro-fabrication, etc. [Puurunen, 2003]. 

 

Based on the way of manipulating materials, nano-manufacturing technologies fall into the 

following two main categories: top-down and bottom-up [Sengul, et al., 2008, Wang, 2009]. 

Top-down techniques are subtractive methods, which achieve nanoscale features through 

carving or grinding methods (e.g., lithography, etching, and milling). Bottom-up methods 

are additive which form the nano structures through nucleation or growth from gas,  liquid, 

or solid precursors by chemical or physical processes [Sengul, et al., 2008]. Table 1 lists the 

major nano-manufacturing techniques [Sengul, et al., 2008]. 

 

It is widely accepted that bottom-up techniques are less waste-producing than top-down 

methods, although top-down nano-manufacturing is more commonly used to fabricate 

nanoproducts. Bottom-up techniques generate nano structures through specific physical 

processes or chemical reactions at the molecular level, and hence minimize unwanted waste 

with careful process design and optimization [Sengul, et al., 2008].  
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Table.1.1 Major nano-manufacturing techniques [Sengul, et al., 2008]. 

Top-down 
techniques 

Lithography 

Conventional lithography 
ü Photolithography 
ü E-beam lithography 

Next-generation lithography 
ü Immersion lithography 
ü Lithography with lower wavelengths 
ü Lithography with particles 

Nanoimprint lithography ü Step-and-flash imprint lithography  

Soft lithography - 

Etching 

Wet etching - 

Dry etching 
ü Reactive ion etching 
ü Plasma etching 
ü Sputtering 

Electrospinning - - 

Milling 

Mechanical milling - 

Cryomilling - 

Mechanochemical bonding - 

Bottom-up 
techniques 

Vapor-phase 
techniques 

Deposition techniques 

ü Vapor phase epitaxy 
ü Chemical vapor deposition 
ü Molecular beam epitaxy 

ü Atomic layer deposition 
ü Pulsed laser deposition 
ü Sputtering 
ü Evaporation. 

Nanoparticle/nanostructured 
materials synthesis 

techniques 

ü Evaporation 
ü Laser ablation 
ü Flame synthesis 

 
Liquid-phase 

techniques 

Precipitation - 

Sol-gel - 

Solvothermal synthesis - 

Sonochemical synthesis - 

Microwave irradiation - 

Reverse micelle - 

Self-assembly 
techniques 

Electrostatic self-assembly - 

Self assembled monolayers - 

Langmuir-Blodgett 
formation 

- 

 



 

4 

1.1.2 Atomic layer deposition 

As a vapor-phase bottom-up nano-manufacturing method, atomic layer deposition (ALD) is 

operated by alternately injecting two or more chemical precursors into a chamber to enable 

material deposition on substrates layer by layer. The one-by-one injections of precursors 

result in sequential saturated surface reactions, which make the ALD process highly 

self-limited. As a result, the resultant films are perfectly uniform in surface geometry which 

makes ALD ideal to fabricate conformal nano-films on complex structures. Due to 

depositions in atomic level, the film thickness can be accurately controlled in Ångstrom or 

monolayer level with high precisions [George, 2010]. The method is capable to deposit 

ultra-thin films in a few Ångstrom. ALD has been adopted extensively in silicon 

microelectronics and thin-film device industries, and is on rapid expansion to more 

industrial applications [George, 2010].  

 

A typical ALD reaction cycle with two precursors is illustrated schematically in Figure 1.1. 

The main idea of ALD is to separate the half surface reactions in time or space. As shown in 

Figure 1.1, before the ALD cycles, substrates are cleaned, and ALD equipment is prepared. 

Then, the growth of thin film by ALD involves repeating the following four steps [Puurunen, 

2005]: 

(1) Pulse the reactant A into ALD chamber to enable the first half surface reaction; 

(2) Purge the un-reacted reactants and the gaseous by-products out of the reactor; 

(3) Pulse the second reactant B into the chamber to enable the second half surface reaction; 
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(4) Purge the un-reacted reactants and the gaseous by-products out of the reactor. 

 

Through the four steps, a certain amount of material is added to the substrate surface in each 

reaction cycle until desired thickness is achieved.  

 

Figure 1.1 Schematic illustrations of ALD reaction cycles. 

 

ALD has many variations based on the scalability and the process conditions. Table 1.2 

presents the various types of ALD [Delft, et al., 2012]. As shown in Figure 2.2, based on 

scalability, single-wafer ALD is the most common variation, which can only process a 

single wafer at one time. Multi-wafer batch ALD reactors allow multiple substrates to be 

processed simultaneously. Spatial ALD is totally based on a brand new concept [Johansson, 

et al., 2010]. In conventional ALD, the precursors are dosed one by one, and separated in 

time by a purging step, but with the spatial idea, the ALD surface reactions are separated in 
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space other than in time, and precursors are dosed simultaneously and continuously with the 

relative movement of wafer belt [Poodt, et al., 2013]. Roll-to-roll ALD is capable to process 

flexible substrate continuously. Based on the process conditions, there are thermal ALD, 

plasma-enhanced ALD (PEALD), etc. as presented in Table 1.2 [George, 2010, Groner, et 

al., 2004]. 

 

Figure 1.2 Various ALD reactors: (a) Showerhead type single-wafer ALD reactor; (b) Multi-wafer 

batch ALD reactor; (c) In-line spatial ALD reactor; (d) Roll-to-roll ALD reactor [Delft, et al., 2012]. 

 

A typical thermal ALD reactor mainly consists of a precursor delivery unit, a carrier gas 
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delivery unit, a heating unit, a pumping unit and a chamber. For instance, the Cambridge 

Nanotech Savannah S100 ALD system shown in Figure 1.3 consists of precursor cylinders, 

precursor manifold, carrier gas manifold, chamber, outlet pipe and a vacuum pump.  

Table 1.2 ALD variations based on the scalability and the process conditions [Delft, et al., 2012, 

George, 2010, Groner, et al., 2004]. 

Based on scalability Based on process conditions 

Single-wafer ALD Thermal ALD 

Multi-wafer batch ALD Plasma-enhanced ALD 

Spatial ALD Low temperature ALD 

Roll-to-roll ALD Low-pressure ALD 

- Atmospheric pressure ALD 

 

 

Figure 1.3 Cambridge Nanotech Savannah S100 ALD system consists of precursor cylinders, 

precursor manifold, carrier gas manifold, chamber, outlet manifold and a vacuum pump (not shown 

in the figure). 

 

Precursors stored in separate cylinders are injected into chamber by their own vapor 
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pressure at room temperature (25°C), and pulsing (in milliseconds) is controlled by ALD 

stop valves. Nitrogen or argon is the carrier gas flowing through the system continuously 

during all the operations. A vacuum pump is connected with outlet pipe to maintain the low 

vacuum pressure (~10-1 torr) in chamber. The reactor chamber (with 150mm inner diameter) 

is designed for deposition of films on substrates with diameter up to 100mm and can be 

heated from 100°C to 250°C depending on specific deposition conditions.  

 

1.1.3 ALD of Al2O3 

Al2O3 thin film is one of most widely studied materials fabricated by ALD due to its high 

dielectric constant, high thermal stability and good adhesion to many surfaces [Li, et al., 

2007]. These unique properties make Al2O3 an excellent material in the silicon 

microelectronics and thin-film device industries. Al2O3 thin film is extensively used as the 

high-k gate dielectric in transistors. For instance, Intel deposited Al2O3 thin film as the gate 

oxide in its 45 nm transistor as shown in Figure 1.4 [Mistry, et al., 2007].  

 

Other applications of Al2O3 thin film include dynamic random access memory (DRAM) 

with trench structures. ALD allows trench features to be scaled to less than 100 nm and 

provides an effective means of depositing thin films like the trench capacitor dielectric 

material [Ko and Lee, 2007]. Figure 1.5 presents the cross-sectional SEM image of an 300 

nm Al2O3 ALD thin film on a Si wafer with a trench structure for DRAM application 

[George, 2010]. Besides, Al2O3 thin film is also promising to replace Si2O3 as the gate 
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dielectric material for metal oxide semiconductor field effect transistors (MOSFETs) [Li, et 

al., 2007]. 

 

Figure 1.4 TEM of high-k dielectric with metal gate for 45 nm PMOS transistor with ALD-deposited 

high-k Al2O3 dielectric [Mistry, et al., 2007]. 

 

Al2O3 film was firstly reported to be deposited by ALD using trimethylaluminum [Al(CH3)3, 

or Al(Me)3, or TMA] as the metal provider, and H2O as the oxidant [Higashi and Fleming, 

1989, Soto and Tysoe, 1991], and then more precursors such as TMA and ozone were 

developed [Goldstein, et al., 2008, Li, et al., 2007, McDonnell, et al., 2012, Mousa, et al., 

2014]. Table 1.3 lists the common precursors used to deposit Al2O3 thin films [Puurunen, 

2005]. 

 

For the Al2O3 ALD deposition process using TMA and water as the precursors, the overall 

reaction with the two reactants is as following, 

 3 3 2 2 3 42Al(CH ) 3H O Al O 6CH+ Þ + ­   (1-1) 

 

In ALD, the reaction is separated into two half surface reactions as following, 
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 3 3 3 2 4Al OH* Al(CH ) Al O Al(CH ) * CH- + Þ - - + ­   (1-2) 

 3 2 4Al CH * H O Al OH* CH- + Þ - + ­   (1-3) 

where *items denote surface species. 

Table 1.3 Common precursors developed to deposit Al2O3 thin films [Puurunen, 2005]. 

Metal provider Oxidant 

AlCl3 H2O 

AlCl3 O2 

AlBr3 H2O 

Al(CH3)3 H2O 

Al(CH3)3 H2O2 

Al(CH3)3 O3 

Al(CH3)3 N2O 

Al(CH3)3 NO2 

Al(CH3)3 N2O4 

 

Figure 1.5 Cross-sectional SEM image of an 300 nm Al2O3 ALD thin film on a Si wafer with a 

trench structure for DRAM application [George, 2010]. 

 

In the first half reaction, Al(CH3)3 is absorbed on the surface by substituting the surface H 
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atom with CH3 and releasing a CH4, and in the second half, the methyl ligand is substituted 

by hydroxyl ligand. As a result, oxygen atom is deposited on the surface. At this point, the 

surface is coated with one layer of aluminum and oxygen atoms foming the Al2O3 film 

materials. Multilayer depositions are achieved by repeating the two half reactions. 

 

1.2 ALD applications 

1.2.1 Microelectronics applications 

Currently, the majority of ALD applications are in the field of microelectronics. Large 

amount of materials have been fabricated by ALD for the microelectronics applications. To 

be specific, high-k dielectric materials such as Al2O3, HfO2, ZrO2 are prepared by ALD for 

gate oxides to substitute SiO2 gate dielectric in metal-oxide-semiconductor field-effect 

transistors (MOSFETs) [George, 2010, Groner, et al., 2004, Mistry, et al., 2007, Scarel, et 

al., 2003]. Also, ALD is an excellent method to fabricate transition-metal nitrides such as 

TiN, WN, TaN , MoN , HfN, and TaCN, which are used as metal barriers and gate metals in 

modern Cu-based chips. In such Cu-based chips, in order to avoid diffusion of Cu into the 

surrounding materials, and prevent Cu contamination by elements diffusing from the 

insulators, the metal barriers are required pure, dense, conformal, and thin, and they must 

have good adhesion towards metals and insulators [Anacleto, et al., 2010, Klaus, et al., 2000, 

Lee, 2005]. There requirements are perfectly fulfilled by the superiorities of ALD. 

 

Another important microelectronic application of ALD is in Dynamic Random-Access 
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Memory (DRAM) capacitors. Major efforts are being put into reducing the size of the 

DRAM capacitor which will effectively allow for greater memory density. In order to 

reduce the capacitor size without affecting the capacitance, different cell orientations are 

being used. Some of these include stacked or trench capacitors. The huge challenge for 

trench capacitors is fabrication due to the small size in trench and high aspect ratio. ALD 

allows trench features to be scaled to below 100 nm, and provides an effective means of 

depositing perfectly uniform thin films on the trench structures [Ko and Lee, 2007] [Ritala, 

et al., 1999]. 

 

Noble metals are excellent conductors, but they are more notable for the catalytic effects in 

many oxidation, reduction, and hydrogenation reactions to accelerate or control the rate of 

reactions [Hamalainen, et al., 2014]. Noble metals and their oxides including ruthenium, 

osmium, rhodium, iridium, palladium, platinum, silver, and gold can be prepared by ALD 

through thermal or plasma-enhanced ALD process [Hamalainen, et al., 2014]. Also, ALD is 

capable to fabricate magnetic materials such as magnetic nanopowders and nanofibers. 

They have multiple applications in electrochemical biosensing, bioseparation and detection 

ᔏ ᘀ ⡺뤌漀Ĩ ㅨ 뤉Ὠ 漀ĨⰀ cells and proteins, separation of catalyst materials, controlled drug 

and gene delivery and release, and magnetic resonance imaging (MRI) [Santala, et al., 

2009].  

1.2.2 Energy conversion and storage applications 

Besides microelectronics, ALD applications are expanded to the energy conversion and 
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storage applications such as fuel cells, solar cells, and batteries, e.g., lithium-ion batteries 

(LIBs). In fuel cells, ALD is mostly used to fabricate platinum electrocatalysts on carbon 

nanotubes (CNTs). For instance, since ALD is a dry process and it has some advantages for 

deposition of Pt nanoparticle catalysts on CNTs with especially high surface area in proton 

exchange membrane fuel cells (PEMFCs) [Hsueh, et al., 2012, Shu, et al., 2012]. In solid 

oxide fuel cells (SOFCs), ALD is used to coat catalysts with Pt surface to improve the fuel 

cell performance [Shim, et al., 2010].  

 

ALD applications in solar cells include fabrication of nanostructured electrodes or charge 

transporters (e.g., ZnO, TiO2, Fe2O3, Cu2O), forming heterojunction (e.g., AlZnO,TiO2), 

inert surface passivation of trap states (e.g., Al2O3), and preparation of catalytic noble 

metals (e.g., Pt, Pd, Ru, Ir) [Niu, et al., 2015]. In lithium-ion batteries, ALD is particularly 

used to fabricate novel battery components with nanostructured anode materials to improve 

the electrodes performance of batteries [Meng, et al., 2012]. Also, ALD is used for surface 

modification of battery electrodes, since LIBs currently suffer from capacity fading during 

electrochemical cycling and potential safety risks caused by unwanted side reactions 

occurring during charge-discharge cycles, causing electrolyte decomposition, solid 

electrolyte interphase (SEI) formation, and active material dissolution [Meng, et al., 2012]. 

Other application of ALD can also be found in Lithium–Sulfur (Li–S) rechargeable batteries 

for modification of graphene-sulfur composite with an ALD-Al2O3 coating [Yu, et al., 

2014]. 
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1.2.3 Medical and environmental health applications 

The newly developed application for ALD is in medical and biological area. ALD is 

adopted to create flexible sensors, bioelectronic device, implantable device, drug delivery 

device, tissue engineering scaffold and bioassay device, modify nanoporous membranes, 

and create thin biocompatible coatings [Skoog, et al., 2013]. For example, atomic layer 

deposition is used to functionalize nanoporous alumina membranes coated with platinum 

for medical and environmental health applications [Narayan, et al., 2010]. 

 

1.3 Research motivation and objectives 

1.3.1 ALD sustainability limitations 

With more than three decades’ development, ALD has been developed into one of the 

well-established nano-manufacturing techniques to fabricate ultra-thin films of various 

materials with excellent uniformity and conformity in surface geometry [George, 2010, 

Haukka, 2007]. Since the materials are deposited layer by layer in atomic level, ALD is an 

excellent technology to precisely control the thickness of deposited thin films [Pan, et al., 

2015, Pan, et al., 2014]. However, this intrinsic superiority comes along with one of the 

serious sustainability limitations, especially in the industrial level ALD applications: low 

material deposition efficiency or throughput [Haukka, 2007]. Because of the 

one-atomic-layer growth pattern per cycle in ALD process, the low deposition efficiency 
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remains an inherent challenge for the ALD community, especially for the single-wafer 

reactors [Delft, et al., 2012]. The conventional single-wafer ALD, for instance, can only 

achieve 1.1~1.3 Å/cycle growth rate, that is a few nm per min for deposition of Al2O3 

[Poodt, et al., 2013]. This growth rate is considered too low [Delft, et al., 2012]. 

 

Another serious sustainability issue is the negative environmental impacts of the technique. 

Taking Al2O3 ALD for example, one of the reactants, TMA, is extremely flammable and 

highly toxic. It can cause severe skin burns and eye damage even when one is exposed to 

TMA for a very short time [Yuan and Dornfeld, 2010]. The un-reacted TMA may be purged 

out of the system as one of the emissions that poses a high risk to the public health and 

environment. The by-product, methane, is one of the major greenhouse gases [Yuan and 

Dornfeld, 2010]. Nano-particles can also be formed in the space of chamber in the ALD 

system due to gaseous reactions between the two precursors and other complex side 

reactions. Although these emissions are very little, even negligible in a few hundred 

reaction cycles of ALD process in lab level, in the context that the large amount of dielectric 

material is demanded in the semiconductor industry globally, the amount of emissions is 

extremely high [Yuan and Dornfeld, 2010]. With the great application potential of ALD 

technology in the semiconductor and a number of other industrial sectors, the sustainability 

performance of ALD technology becomes astonishingly critical and needs to be improved 

prior to its large scale industrial applications. 
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Since the deposition efficiency and material utilization are influenced by a lot of factors, 

such as process temperature, process pressure, precursor dosage, purge time, etc., choice of 

process parameters, e.g., pulsing time, purging time, temperature, have a crucial influence 

on the overall ALD deposition process [Lankhorst, et al., 2007]. Therefore, detailed 

information on the transient physical and chemical processes must be obtained before the 

improvement and optimization of the process.  

 

1.3.2 Previous research of ALD process 

Previous ALD research is mainly focused on development of new precursors, but details on 

ALD physical and chemical process are not yet well understood [Puurunen, 2005]. In 

general, studies of ALD process have been developing into two domains: experimental and 

numerical.  

 

Experimental researchers improve the deposited films by adjusting experimental conditions, 

e.g., process pressure, temperature, dosage, etc.[Cheng, et al., 2005, King, et al., 2011, 

Krajewski, et al., 2009, Kukli, et al., 2002, Rai, et al., 2012, Wind and George, 2010]. Li et 

al. studied the effects of process temperature and pressure on Al2O3 film properties by 

characterizing the film thickness uniformity, impurity incorporation, and the step coverage 

in high aspect ratio features [Li, et al., 2007]. Mousa et al. presented a study of the effects of 

temperature and gas velocity on film growth in Al2O3 and ZnO ALD, respectively [Mousa, 

et al., 2012]. Sammelselg et al. studied the growth unevenness and film compositions in 
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ALD of TiO2 thin films [Sammelselg, et al., 1998]. Influence of growth temperature on 

properties of zirconium dioxide films by ALD was examined by Kukli et al.[Kukli, et al., 

2002]. Similar research was conducted by Scarel et al. to study the electric properties of 

ZrO2 films [Scarel, et al., 2003].  

 

Confined by technical, economic and time feasibilities in experimental implementations, 

ALD experiments are always facing a “black box” without knowing enough details about 

the transient process, and thus they only focus on the “output”, such as growth rate, film 

properties. Consequently, they are not able to shed adequate light on the detailed 

information of ALD process. With progresses in computing technologies, many researchers 

are devoted to studying physical interactions and chemical kinetics of ALD by numerical 

approaches.  

 

ALD process is in essence a multi-scale process, which not only involves atomic bonds 

formations, species chemisorptions and nano-film deposition (in molecular scale), but also 

includes material interactions and energy transport in macroscopic scale (in chamber scale). 

In molecular scale, most numerical investigations adopt the first principle methods, such as 

the density function theory (DFT) method to explore surface reaction mechanisms and 

chemical reaction pathways [Afshar and Cadien, 2013]. In the paper of Delabie et al., ALD 

of Al2O3 using TMA and water was studied using DFT to investigate reaction pathways and 

possible mechanisms for growth inhibition in ALD cycles [Delabie, et al., 2012]. The 
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atomic-scale structure of alumina film by ALD was also studied by Elliott et al. using the 

DFT method [Elliott and Greer, 2004]. Besides DFT, Puurunen derived a mathematical 

model to describe the growth rate in ALD [Puurunen, 2003]. In the cited research, “ligand 

exchange” and “dissociation or association” were proposed as two types of chemisorption 

mechanisms [Puurunen, 2003]. The above atomic-level models revealed certain microscopic 

details of the surface reaction mechanisms and chemical kinetics, but few of them 

considered the material and energy transfer processes in ALD.  

 

On the other hand, some researchers took the macroscopic transport processes into 

consideration using methods such as Monte Carlo method, molecular dynamics and Lattice 

Boltzmann method. Gilmer et al. applied the Monte Carlo models to simulate film 

deposition in atomic scale [Gilmer, et al., 2000]. Kinetic Monte Carlo methods were 

proposed in the cited work to investigate ALD process of HfO2 and Al2O3, respectively 

[Dkhissi, et al., 2008, Mazaleyrat, et al., 2005]. Hu et al. used molecular dynamics model to 

study the structure of Al2O3 film in the aspects of surface composition, roughness and 

growth rate [Hu, et al., 2009]. Similar method was adopted by Gou et al. to simulate surface 

interactions on silicon wafer in ALD [Gou, et al., 2008]. Lattice Boltzmann method is a 

relatively new but rapidly developing mesoscopic approach, which uses the lattice schemes 

to solve the Boltzmann equation [Pan, et al., 2014]. He et al. firstly applied the Lattice 

Boltzmann method to simulate diffusion-convection processes with surface chemical 

reactions on solid surfaces[He, et al., 2000]. Lately, we extended the method and used it in 
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simulating the gas flow in ALD which is also presented in Chapter 2 [Pan, et al., 2014].  

 

Due to multiple scales both in space and time, ALD simulation in chamber scale still 

remains challenging. In this filed, Adomaitis developed numerical models to describe the 

ballistic transport of chemical precursor species in ALD process [Adomaitis, 2011]. 

Holmqvist et al. claimed a mechanistic model of continuous flow reactors [Holmqvist, et al., 

2012, Holmqvist, et al., 2013]. By continuum-based models in the cited research, gas-phase 

fluid dynamics, mass transport, and heterogeneous gas-surface reaction mechanisms were 

analyzed numerically. We recently constructed a similar mechanistic model with detailed 

chemical kinetics to study alumina ALD process [Xie, et al., 2015]. In a paper published by 

Adomaitis, a multiscale model of ALD was developed by coupling the lattice Monte Carlo 

method with a continuum approach of precursor transport [Adomaitis, 2010].  

 

These chamber-scale models can fundamentally describe the ALD process together with the 

chemical kinetics in a larger picture. However, most of them lack detailed surface reaction 

mechanisms and numerical results are not well correlated with the experimental 

observations. Without these detailed information, the process improvements and 

optimizations cannot be convincing. 

 

1.3.3 Research objective and outline 

The main research objective of this dissertation is to model the ALD process mathematically, 
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and study the transient process of ALD in detail to find the influential factors on the two 

main critical sustainability issues: low throughput, and negative environmental impacts, 

through both numerical and experimental approaches.  

 

In particular, the gas fluid dynamics of the carrier gas (nitrogen) flow is studied numerically 

by introducing and comparing two LBM models in Chapter 2. To account for the surface 

deposition process, the strong-coupled physical and chemical processes of ALD are 

recovered numerically by Finite Volume Method (FVM) in Chapter 3. The 3D transient 

numerical model adopts surface reaction kinetics and mechanisms based on the atomic-level 

calculations [Delabie, et al., 2012, Puurunen, 2003] to study the surface deposition process. 

The numerical model developed for ALD is validated by experiments investigating the 

growth rate under different deposition conditions. Then, the experimentally-validated 

numerical model is used for in-depth investigation of two types of batch and spatial ALD 

process for throughput improvement. In Chapter 4, a multi-wafer batch ALD with vertical 

and horizontal wafer arrangements is studied to investigate the influences of wafer layout 

on the deposition process with both experimental and numerical approaches. An in-line 

spatial ALD is studied numerically in Chapter 5 to investigate three geometry and process 

factors, gap size, temperature, and pressure on the precursor intermixing and chemical 

deposition process. In Chapter 6, the reactive model is improved with detailed ALD surface 

reaction mechanisms based on DFT calculations regarding the Al2O3 ALD reactions, and the 

effects of the four process parameters of temperature, pulse and purge time as well as the 
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carrier gas flow rate on material deposition, process wastes and emissions are explored and 

characterized. Important conclusions of the studies in this dissertation are summarized, and 

recommendations for future study are presented in Chapter 7. 

 

1.4 Summary and conclusions 

ALD is an approved nano-scale thin films fabrication technique with remarkable uniformity 

and conformity in surface geometry. Since the materials are deposited layer by layer in 

atomic level, ALD is an excellent technology to precisely control the thickness of deposited 

thin films. ALD plays a great role in microelectronics to fabricate ultra-thin films used in 

transistors, memory devices, electrodes, etc. It is on a rapid expansion to fields such as 

energy conversion, energy storage, medical devices and health and environmental 

applications. However, ALD has several critical sustainability limitations: low throughput 

and negative environment impacts such as gaseous emissions, nano-wastes, which pose 

high risk to the public health and the environment in the context of strong industrial demand 

of thin film materials by ALD globally. This dissertation presents numerical and 

experimental studies of the ALD process to investigate the transient physical and chemical 

ALD process in detail to improve the technique in the aspect of sustainability.  
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CHAPTER 2  NUMERICAL SIMULATIONS OF ALD FLUID 

DYNAMICS BY LATTICE BOLTZMANN METHOD 

2.1 Introduction 

ALD process is a complex system which involves not only the chemisorptions and surface 

reaction processes in microscopic scale but also the gas flow, precursor transport, and heat 

transfer in larger scales. In the macroscopic scale, flow and precursor transport in an ALD 

reactor can be described by the continuum-based Navier–Stokes equations [Lankhorst, et al., 

2007], but they are not able to take the molecule nature of gas flow into account when it 

comes to the surface deposition in smaller scale. Due to the intrinsic philosophy of 

recovering the macroscopic physical phenomena from the microscopic perspective, the 

mesoscopic methods such as LBM and direct simulation Monte Carlo method are promising 

in the ALD simulation.  

 

In fact, the direct simulation Monte Carlo methods have been used to simulate the transition 

regime flows and rarefied gas flows in Chemical Vapor Deposition (CVD) [Adomaitis, 2010, 

Coronell and Jensen, 1992, Coronell and Jensen, 1994]. Other attempts of ALD simulation 

also includes solving the Boltzmann equation directly [Gobbert, et al., 2002],developing 

analytical models of mass transport and kinetic description of the surface 

reactions[Ylilammi, 1995] [Yanguas-Gil and Elam, 2012]. 

 

In this chapter, the Lattice Boltzmann Method (LBM) through a comparative study of two 
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LBM models is introduced to study the carrier gas fluid dynamics in ALD reactor. 

Numerical models of gas flow are constructed and implemented in two-dimensional 

geometry based on Lattice Bhatnagar-Gross-Krook (LBGK)-D2Q9 model and 

Two-Relaxation-Time (TRT) model. Both incompressible and compressible scenarios are 

simulated and the two models are compared in the aspects of flow features, stability and 

efficiency.  

 

2.2 Computational fluid dynamics (CFD) for ALD 

In computational fluid dynamics (CFD), a number of models are available for different 

scales and applications [Raabe, 2004].As shown in Figure 2.1, in atomic scale, the 

Molecular Dynamics Method is a microscopic approach by determining the motion of 

atoms and molecules, and numerically solving the Newton's equations of motion for a 

system of interacting particles [Raabe, 2004]. In the conventional continuum scale, with the 

conservation laws of mass, momentum and energy in a fluid domain, macroscopic 

properties such as velocity, pressure, temperature, etc. are achieved by solving the partial 

differential equations (PDEs) numerically. This approach is widely adopted in commercial 

CFD solver packages, such as Fluent, Comsol, etc. and applied in large scale system 

modeling.  

 

Between the microscopic and macroscopic approaches, pseudo-particle, or mesoscopic 

methods, are derived from the molecular dynamics method by coarse graining to reduce the 
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complexity of the target system. In the pseudo-particle method group, off-lattice approaches 

such as Dissipative Particle Dynamics method, Direct Simulation Monte Carlo method 

simulate the fluid mechanics by pseudo-particles which move continuously in space [Aarik, 

et al., 2006, Li, et al., 2007, Mousa, et al., 2012].In lattice-based pseudo-particle models 

such as Lattice Gas Cellular Automata (LGCA) and Lattice Boltzmann Method (LBM), 

pseudo-particles travel along a fixed lattice in the domain. 

 
Figure 2.1 Comparisons of CFD models and their preferred application range [Raabe, 2004]. 

 

As illustrated in Figure 2.1, the Molecular Dynamics Method fits for large Knudsen number 

system in microscopic scale but it is computation-intensive due to the high system 

complexity. The continuum-based macroscopic approaches are preferred for larger-scale 

systems with smaller Knudsen number, since it presumes the fluid domain as a continuum. 

The pseudo-particle methods are devised to overcome the deficiencies of both microscopic 

and macroscopic methods. They simplify the fluid system, and hence improve the 
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computational efficiency. They have been tested effective for various applications from 

larger-size systems to larger Knudsen-number flows. 

 

Dissipative Particle Dynamics method and Direct Simulation Monte Carlo are off-lattice 

pseudo-particle methods in conjunction with Newtonian dynamics [Aarik, et al., 2006, Li, et 

al., 2007, Mousa, et al., 2012].However, the exact Newtonian dynamics are not explicitly 

taken into account in the lattice-based pseudo-particle methods like Lattice Boltzmann 

Method [Raabe, 2004]. LBM employs sets of particle velocity distribution functions instead 

of single pseudo-particles as used in direct simulation Monte Carlo method. Therefore, 

LBM gains more system simplicity and requires lower memory use and has higher 

processing speed. Lattice-based pseudo-particle methods are superior to the off-lattice 

pseudo-particle methods in both aspects of computational efficiency and application range. 

 

LBM is rooted on the classical kinetic theory of gases to study flow properties. It dates back 

to the late 1980s and adopts the idea of Lattice Gas Cellular Automata (LGCA) to imitate 

the gas flow phenomena in streaming and collision processes. LBM has advantages over 

other CFD methods especially when it is used to simulate multiphase flows, 

multi-component flows and flows in complex geometries, due to its relatively simple but 

effective schemes to treat the boundary conditions [Li, et al., 2012, Martys and Chen, 1996, 

Martys and Douglas, 2001].Without complying with the continuity hypothesis, LBM, in 

essence, is promising to model the rarefied gas flow with large Knudsen number range, 
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which the macroscopic methods fail [Sbragaglia and Succi, 2005, Shokouhmand and 

Isfahani, 2011]. 

 

2.3 Lattice Boltzmann Method 

LBM is rooted on the Boltzmann Transport Equation, a fundamental equation in the kinetic 

theory developed by Ludwig Boltzmann in 1872 [Mohamad, 2011]. The equation takes the 

form as, 

 ( , , ) ( , , ) ( , , )f t f t f t
t m

¶ ¶ ¶
+ × + × = W

¶ ¶ ¶
r v r v F r vv

r v
  (2-1) 

where ( , , )f tr v is the probability density function which stands for the probability of 

appearance of a particle in position r , with velocity v , at time t . F is the external force 

acting on the particles of mass m . W  is called collision item, which is a function of

( , , )f tr v .  

 

With the “molecular chaos assumption” proposed by Boltzmann himself, which only 

considers the 2-body collisions in the particle interactions, the collision item is an 

integro-differential form which makes it complicated to solve the Boltzmann Transport 

Equation analytically [Mohamad, 2011]. 

 

The Lattice Boltzmann Method is achieved numerically by discretization of the Boltzmann 

Transport Equation in space and time dimensions as well as velocity space along specific 

directions [Raabe, 2004]. The solution domain is divided into lattices. At each lattice node, 
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the probability density functions are calculated after collisions and then move along 

specified directions to the neighboring nodes. Numerous models have been constructed for 

the various applications in LBM [Li, et al., 2012, Martys and Chen, 1996, Martys and 

Douglas, 2001] [Sbragaglia and Succi, 2005, Shokouhmand and Isfahani, 2011]. In this 

chapter we report the two most popular schemes, LBGK-D2Q9 and MRT. 

 

2.3.1 The LBGK-D2Q9 model 

To approximate the collision item with simpler operator without introducing significant 

error, in 1954 Bhatnagar, Gross and Krook (BGK) proposed a model for the collision item 

as[Mohamad, 2011], 

 1( ) ( )EQ EQf f f fw
t

W = - = -   (2-2) 

where 1 /w t= is called collision frequency (relaxation factor), andt is relaxation time; 

EQf is local equilibrium distribution function, which is the Maxwell–Boltzmann distribution 

function [Mohamad, 2011]. 

 

The number of streaming directions depends on lattice arrangements, which are denoted as 

DmQn. m represents the number of dimensions, n is the number of possible streaming 

directions. Most common arrangement in two dimensions is D2Q9. For D2Q9, the local 

equilibrium distribution function is calculated as, 

 
2

2
2 2 2

1 1[1 ( ) ], 0,1, 2,...8
2 2

EQ
k k

s s s

f w k
c c c

r
× ×

= + + - =k kc u c u u   (2-3) 
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where r is the density; kc is the particle velocity vector at direction k ; u is the flow 

velocity vector; sc is the lattice speed of sound, 1/ 3sc = ; kw are weighting factors, 

 
4 / 9 0;
1/ 9 1,2...4;
1/ 36 5,6...8.

k

k
w k

k

=ì
ï= =í
ï =î

  (2-4) 

 
Figure 2.2 The D2Q9 lattice arrangement in LBM. 

 

The Lattice BGK (LBGK) model is based on the BGK approximation [Eq.(2-2)]. It is also 

called Single Relaxation Time (SRT) model since only one relaxation time factor is used. 

More sophisticated models such as Multiple-Relaxation-Time (MRT), 

Two-Relaxation-Time (TRT), Entropy LBM models based on the LBGK model are also 

proposed to improve the LBM scheme, especially the computational stability [d'Humieres, 

et al., 2002, Lallemand and Luo, 2000, Luo, et al., 2011]. 

 

By Finite Difference approximations to the derivative items, the Boltzmann Transport 

Equation of BGK approximation without external forces becomes, 

 

( , ) ( , ) [ ( , ) ( , )]EQ
k k k k k

tf r c t t t f r t f r t f r t
t
D

+ D + D = + -            (2-5) 
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Equation (2-5) is called Lattice Boltzmann Equation (LBE). The Navier–Stokes equations 

for incompressible flow can be recovered from LBE at its low Mach number limit [Guo, et 

al., 2000, Regulski and Szumbarski, 2012]. To model a flow by LBM, the Reynolds number 

is conserved,  

 Re latticeu NUL
n a

= =     (2-6) 

where U and L are characteristic velocity and characteristic length in macro-scale;n  is the 

kinetic viscosity of the fluid; latticeu and N are the corresponding lattice characteristic velocity 

and number of lattices;a is the lattice viscosity, which has a correlation with the relaxation 

factorw as, (2 ) / 6a w w= - .  

 

The numerical error in LBM is in order of 2Ma [Mohamad, 2011].Mach number is 

calculated as, Ma ( 0.5) Re/ 3Nw= - .To minimize the numerical error, lattice number N

and relaxation frequencyw should be designated properly to ensure a sufficiently small 

Mach number. The pressure p in LBM is related to the density r as, 2
sp c r= . 

 

2.3.2 The MRT and TRT models 

Although LBGK models are popular for their simplicity, the LBGK models suffer from 

deficiency of the instability with high Reynolds number [Chai, et al., 2011, Chai, et al., 

2006, Lallemand and Luo, 2000, Luo, et al., 2011]. In this respect, 

Multiple-Relaxation-Time (MRT) models are developed to improve the LBGK scheme by 
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taking account of the kinetic theory [Lallemand and Luo, 2000, Luo, et al., 2011].Numerical 

studies show that the MRT model performs better in stability to simulate lid-driven flow and 

other simple flows [Lallemand and Luo, 2000, Luo, et al., 2011]. In MRT modeling, 

collision item is treated differently. The general LBE is, 

( , ) ( , )t t t t+ D + D - =kf r c f r W                       (2-7) 

where for D2Q9 lattice arrangement, f is a nine-dimensional vector; W  is a 

nine-dimensional collision vector, which is constructed as,  

[ ]EQ× × -Μ Τ m mW =                             (2-8) 

whereΜ is a 9-by-9 transformation matrix;Τ is a non-negative diagonal relaxation matrix 

which contains 9 relaxation time factors in the diagonal positions; m , a nine-dimensional 

vector, represents the 9 velocity modes (or moments) in the 9 streaming directions; EQm is 

the equilibrium vector for the 9 modes. 

 

The main principle of MRT lies in the kinetic theory, which states that the physical process 

in fluids, e.g. the viscous transport, involves interactions among different modes, and these 

modes are directly related to the moments [Lallemand and Luo, 2000].  

 

In MRT, the 9 modes (moments) are defined as: r ,density mode; e ,energy mode; e ,energy 

square mode; xj ,x-direction momentum mode; xq ,x-direction energy flux mode;

yj ,y-direction momentum mode; yq ,y-direction energy flux; xxp ,normal stress tensor;

xyp ,shear stress tensor. In LBM, if the fluid is assumed as athermal [Lallemand and Luo, 
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2000], only density and linear momentum modes are conserved and are not changed by the 

collision process.  

 

The transformation matrix,Μ , is compromised by these 9 modes, 

1 1 1 1 1 1 1 1 1
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4 2 2 2 2 1 1 1 1
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           (2-9) 

 

The equilibrium vectors EQm is constructed by [Lallemand and Luo, 2000],  

 ( )TEQ EQ EQ EQ EQ EQ EQ
x x y y xx xyρ,e ,ε , j ,q , j ,q , p , p=m   (2-10) 

 

The diagonal relaxation matrix is (0, ,0, ,0, , ).e q qdiag , ,e n nw w w w w wΤ = Relaxation factors

iw correspond to the 9 velocity modes. Their values are in the range of 0 2iw£ £ .Among 

these relaxation factors, nw  is the viscosity relaxation factor which is related to the shear 

stress tensor, thus the fluid shear viscosityn .The factor nw  is correlated with the lattice 

viscositya as, (2 ) / 6 (2 1) / 6n na w w t= - = - . 

 

The other three relaxation factors ( ,e q, ew w w ) are adjustable so that optimal numerical 

simulation results can be obtained. The SRT (LBGK) model is merely a special case of 
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MRT when all the three factors are set as 1 /e q= e nw w w w t= = = [Lallemand and Luo, 

2000].The TRT model allows only two relaxation factors adjustable, as 1 /e = e nw w t w= = ,

8(2 ) / (8 )q n nw w w= - - [Ginzburg, 2005, Ginzburg, et al., 2008, Luo, et al., 2011].The TRT 

model keeps the simplicity of LBGK models, while inheriting the benefits of the MRT 

model in terms of flexibility and stability [Ginzburg, 2005]. 

 

2.3.3 Conservation laws 

By solving LBE numerically, the density functions kf are obtained. The macroscopic 

parameters depicting the fluid properties are recovered from the density functions by 

following conservation equations. In D2Q9 scheme, by mass conservation, the flow density

r is, 

 
8

0
k

k
fr

=

= å   (2-11) 

 

By momentum conservation, the fluid velocity u satisfies, 

 
8

0
k

k
fr

=

= å ku c   (2-12) 

2.4 Numerical methods 

The objective of this work is to use LBM models to simulate the flow pattern of the carrier 

gas (nitrogen) in ALD fabrication process. In this section, numerical models are constructed 

and developed based on actual ALD technical parameters and system characteristics. The 
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numerical simulations are implemented in two dimensions by comparing the two LBM 

models, as illustrated in the following. 

 

2.4.1 Two-dimensional geometry 

The numerical LBM modeling is performed on the Cambridge Nanotech’s Savannah S100 

ALD system. The flow rate of carrier gas at the inlet is 20 sccm, and a vacuum pump is 

connected to the outlet. The ALD reactor is a low-vacuum system [Chun, et al., 2008], with 

only 0.39 Torr background pressure inside the chamber. Figure 2.3 is the numerical 

two-dimensional geometry of ALD vacuum reactor. The flow enters into the chamber via 

the inlet through the chamber. A wafer is located in the center of the chamber to be 

deposited. 

 

 
Figure 2.3 Two-dimensional geometry of ALD vacuum reactor based on Cambridge Nanotech’s 

Savannah S100 ALD system. Grey area denotes the solid wall nodes, and white is the fluid domain. 

Chamber is connected with the inlet pipe and outlet pipe. Wafer is located in the center of the 

chamber. 
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2.4.2 Boundary conditions and initial conditions 

(1) Walls: bounce-back boundary condition 

The grey nodes in Figure 2.3 represent solid walls in the ALD geometry, which are modeled 

by the bounce-back scheme. The main principle is that, every particle bounces back into 

fluid when they come across the liquid-solid interface. As illustrated in Figure 2.4, for the 

density functions at the interface which travel into the solid ( 1 5 8, ,f f f ), their values can be 

obtained by the streaming step from the previous nodes, while for 3 6 7, ,f f f , which come 

from the solid side, their values are unknown. By applying the bounce-back scheme, they 

can be obtained as, 3 1 6 8 7 5; ; .f f f f f f= = =  

 

Figure 2.4 Scheme of bounce-back boundary condition for the solid wall nodes (grey) in the domain. 

 

(2) Inlet: velocity boundary condition 

For velocity boundary condition, Zou and He proposed a method to calculate the unknown 

distribution functions based on the known distribution functions, specified macro values and 
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the conservation relations [Zou and He, 1997]. In our simulation, velocity boundary 

condition is applied at inlet, where the velocity vectors are specified at the boundary of 

ALD reactor. Shown in Figure 2.5, for all the lattice nodes along the inlet boundary line, 

density functions 1 3 4 7 8, , , ,f f f f f in solid lines are known from the streaming step of 

neighboring nodes, while the functions 2 5 6, ,f f f in dash lines are unknown. 

 

Applying the conservation laws (mass and momentum) at the boundary nodes yields, 

 0 1 2 3 4 5 6 7 8f f f f f f f f fr = + + + + + + + +   (2-13) 

 1 5 8 3 6 70 ( )u f f f f f fr = = + + - + +   (2-14) 

     2 5 6 4 8 7( )v f f f f f fr = + + - + +   (2-15) 

 

 

Figure 2.5 Scheme of velocity boundary condition which is applied at the inlet. Velocities in both x 

and y directions are specified. 

 

In addition, proposed by Zou and He, the bounce-back rule is imposed for the 

non-equilibrium part of the particle distribution which is normal to the inlet boundary 
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[Gobbert, et al., 2002]. Then, 

2 2 4 4
EQ EQf f f f- = -                            (2-16) 

where, the local equilibrium functions are calculated as Eq.(2-3). 

 

Solving the above 4 equations for the four unknown quantities, we get, 

0 1 3 4 7 8
1 [ 2( )]

1
f f f f f f

v
r = + + + + +

-
               (2-17) 

2 4
2
3

f f vr= +                                    (2-18) 

5 7 1 3
1 1( )
2 6

f f f f vr= - - +                          (2-19) 

6 8 1 3
1 1( )
2 6

f f f f vr= + - +                          (2-20) 

 

(3) Outlet: pressure boundary condition 

Pressure boundary condition is employed at the outlet. If the pressure (density) is specified 

at the boundary, the unknown quantities can be obtained by solving similar system of 

equations as Eq.[(2-13)-(2-16)] [Zhang and Kwok, 2006]. 

 

(4) Initial conditions 

The initial density for the fluid domain is set as unity, while the initial velocities are 0. If the 

condition of incompressible flow is considered, the initial outlet density is set the same as 

the initial density. In real cases, the pressure (density) is slightly decreased even in the 

incompressible flow, and then the compressibility should be taken into account. In this work, 

both of the two conditions are simulated. 
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2.4.3 Numerical parameters setup 

LBM simulates the real flow with the same Re number calculated using Eq.(2-6). If the 

fluid has a higher viscosity, the friction effect is dominant and thus it takes more relaxation 

time for the particles to get back to the equilibrium status after collisions. Therefore, in a 

flow with a high Re number, the particles collide rapidly, so that it is inclined to form 

turbulences. In numerical methods, these phenomena may cause the computational 

instability.  

 

From Eq.(2-6), lattice velocity and lattice number are both positively related to the lattice 

viscosity, while they have a negative relationship with each other. In LBM simulation, as 

long as the Re number is conserved, all these three parameters can be adjusted in certain 

ranges. To minimize the simulation error, a small lattice velocity value should be guaranteed 

to ensure a sufficiently small Ma number. The number of lattice determines the scale of 

numerical calculations, which are directly related to the computational efficiency. A smaller 

lattice viscosity leads to a bigger viscosity collision factor nw which can only be adjusted in 

the range of 0~2. Too high collision frequency tends to cause the computations unstable. An 

effective way is to determine the lattice scale, and then make sure a small lattice velocity 

while ensuring a small lattice viscosity based on the available computational resources. In 

our simulation, inlet lattice number is set at 10, and the lattice velocity is tuned with 

viscosity relaxation factor. 



 

38 

2.4.4 Relation of lattice and physical values 

LBM is in essence a pseudo-particle dimensionless modeling method [Al-Jahmany, et al., 

2004, Regulski and Szumbarski, 2012]. The bridge connecting to the physical world is the 

same Re number determined by Eq.(2-6). Hence, for Newtonian fluid, the derivation of 

physical values from the LBM simulation result is straight forward. The physical velocity is 

directly from Eq.(2-6), 

latticeu NU
L

n
a

=                               (2-21) 

 

The relation of physical time step in seconds and lattice time steps (ts) is implicit. The 

lattice time is identical to physical time as, 

[ ] [ ]
lattice

N Lts s
u U

=                           (2-22) 

 

Considering the Re number is same for both systems, Eq.(2-22) becomes, 

2 2

[ ] [ ]
Re Re

N Lts s
a n

=                        (2-23) 

 

Therefore, the physical time corresponding to one lattice time step is as following, 

            
2

21[ ] [ ]Lts s
N

a
n

=                          (2-24) 
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2.5 Results and discussion  

2.5.1 Simulations of gas flow in ALD: LBGK-D2Q9 vs. TRT 

In this section, the numerical simulations of carrier gas flow in ALD system using 

LBGK-D2Q9 and TRT are compared in details. In our simulations, we consider both 

conditions of incompressible and compressible flows. 

 

(1) Simulations of incompressible flow 

In this simulation, the ideal incompressible flow is assumed first and the ratio of chamber 

average density to the outlet density is set as 1:1. The viscosity relaxation factor nw varies 

from 1.95 to 1.99. The dimensionless simulation results of LBGK-D2Q9 and TRT are 

presented in Figure 2.6 and Figure 2.7, respectively. 

 
Figure 2.6 Dimensionless velocity magnitude contour plots of carrier gas in ALD for incompressible 

flow by D2Q9: (a) viscosity relaxation factor 1.95nw = , (b) 1.97nw = , (c) 1.99.nw =  

 



 

40 

The two plots from D2Q9 in Figure 2.6 and TRT in Figure 2.7 with same viscosity 

relaxation factor are similar in the contour plots. The flows develop both in evident multiple 

layers as a laminar flow. Both contour plots show velocity concentrations at the corners and 

around the wafer area. The values of velocity magnitude are close to each other. However, 

D2Q9 displays unsteady flows in the inlet area as shown by the wavy contour lines. The 

irregular contour lines are the evidences of turbulence and numerical instability of D2Q9. 

The irregularity observed by D2Q9 simulations is even more severe at lower relaxation 

factors as shown in Figure 2.6 (a) and Figure 2.6 (b). For instance, when 1.95nw = , the wavy 

contour lines are observed almost in the whole entrance area. On the contrary, TRT shows 

better stability with laminar flow features at the inlet.  

 

Figure 2.7 Dimensionless velocity magnitude contour plots of carrier gas in ALD for incompressible 

flow by TRT. (a) 1.95nw = , (b) 1.97nw = , (c) 1.99.nw =  

 



 

41 

This is mainly attributed to the schemes of the two models. TRT assigns different values to 

the three adjustable relaxation factors, and thus the three corresponding modes are relaxed 

at different rates. This grants flexibility to the scheme and ability to overcome the instability. 

It is also observed that the flow develops more easily with a larger relaxation factor. From 

Section II, the lattice viscosity is related with the relaxation factor as,

(2 ) / 6 1 / 3 1 / 6n n na w w w= - = - . A larger relaxation factor means a smaller viscosity, and 

hence the inertia effects are dominant in the flow. Figure 2.6 (c) and Figure 2.7 (c) are the 

cases of gas flow, which has very low viscosity. 

 

For the computational efficiency, the curves in Figure 2.8 show that the running time for 

TRT to converge is nearly 20 times of D2Q9. The reason is that in each calculation cycle 

there are 9 modes relaxed and calculated in TRT, but only one in D2Q9. Overall, the TRT 

model performs better in stability than D2Q9 especially at the entrance and D2Q9 is 

superior to TRT in the aspect of computational efficiency. 

 
Figure 2.8 Computational efficiency: D2Q9 vs. TRT for incompressible flow simulations. 
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(2) Simulations with compressibility 

Actual gas flow is always not ideally incompressible, and then the compressibility must be 

considered with pressure or density variations in the flow domain. We set the compressible 

ratio as 1:0.96, and the viscosity relaxation factor nw is changed from 1.74 to 1.89. The 

results are listed in Figure 2.9 and Figure 2.10. 

 
Figure 2.9 Dimensionless velocity magnitude contour plots of carrier gas in ALD with compressible 

ratio (1:0.96) by D2Q9. From (a), (b), (c) to (d): 1.74,1.79,1.84,1.89.nw =  

 

When the viscosity relaxation factor is small, e.g., 1.74 and 1.79, D2Q9 and TRT yield 

similar velocity contour plots as presented in Figure 2.8 (a), (b), and Figure 2.9 (a), (b). 

Both contour plots at same relaxation level display similar features of laminar flow. By 
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increasing the relaxation factor, the results from both D2Q9 and TRT start to deteriorate, but 

D2Q9 shows much more rapid deterioration than TRT as shown in Figure 2.8 (c) and Figure 

2.9 (c) in which both models use 1.84nw = . From the simulation, it is found that both 

simulations tend to diverge at 1.89nw = . The results reveal that D2Q9 is less stable than TRT 

if the compressibility of flow is considered. 

 

Figure 2.10 Dimensionless velocity magnitude contour plots of carrier gas in ALD with 

compressible ratio (1:0.96) by TRT. From (a), (b), (c) to (d): relaxation factor

1.74,1.79,1.84,1.89.nw =  

 

With smaller relaxation factors, the flow has a higher viscosity, such as high viscous liquids, 



 

44 

the effect of inlet velocity boundary condition is dominant as show in figure (a) and (b) in 

both Figure 2.9 and Figure 2.10. For gas flow with lower viscosity (higher relaxation factor), 

the influence of compressibility is significant. TRT model shows more resistant to the 

deterioration caused by flow compressibility than D2Q9 model. In all, TRT shows better 

computational stability and reliability in both incompressible and compressible flow 

simulations than the D2Q9 model, though it is less advantageous in the computational 

efficiency. 

 

Figure 2.11 Comparision of velocity (m/s) countour plots  by LBM-TRT with conventional 

continuum-based solver packages. (a) dimensional velocity (m/s) contour plots by LBM, (b) flow 

simulation result (m/s) by Comsol and Fluent, (c) flow simulation result (m/s) by Fluent. 

 

(3) Verification of LBM-TRT modeling results 

To validate the LBM modeling results, in this section, the simulation result by LBM-TRT 
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model is compared with conventional continuum-based CFD solvers, Comsol and Fluent. 

Figure 2.11 presents the modeling results from LBM, Comsol and Fluent, respectively. 

Using Eq.(2-21) and Eq.(2-24), the dimensionless velocity contour plot for incompressible 

flow by TRT model at 1.99nw =  in Figure 2.7 (c) is converted to dimensional plot in 

Figure 2.11 (a). By comparisons, it is found that LBM-TRT yields quite similar contour plot 

as Comsol and Fluent. The velocity magnitude values are in the same range. 

 

Figure 2.12 Plots of velocity variations along flow streamline by LBM, Comsol and Fluent, 

respectively. Position 1 and 2 are located in the inlet area, 3-7 in the chamber, 8 and 9 in the outlet 

field. It is shown that LBM repeats the velocity variations observed by Comsol and Fluent in the 

same way.  

 

To further compare the results from the three methods, the velocity values along the flow 

streamline in the ALD system are achieved in Figure 2.12. As marked in Fig. 2.3, position 1 

and 2 are located in the inlet area, 3-7 in the chamber, 8 and 9 in the outlet field. It is 

revealed that the result from LBM agrees well with the variations of velocity observed by 
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both Comsol and Fluent. It has been shown that LBM yields very similar results as the 

conventional CFD methods. LBM is verified as an effective mesoscopic method of 

modeling carrier gas flow in the ALD system. 

 

2.5.2 ALD carrier gas flow characterization and discussion 

With the velocity field obtained by TRT in Figure 2.11 (a), the carrier gas flow in the ALD 

vacuum reactor is recovered numerically by LBM. The flow is fully developed in the 

reactor and the flow pattern signifies evident laminar flow features. It is also observed that, 

the velocity is concentrated when the fluid domain experiences significant geometry 

changes, such as the inlet and outlet corners and the substrate area.  

 

In ALD, precursors are stored in cylinders with control valves, and the precursor materials 

form a saturated vapor by evaporation and diffusion. The precursors are driven into the 

ALD system by the pressure difference inside and outside the cylinder in a very short time 

(~0.015s).The precursors enter into the inlet pipes first and then are delivered by the inertial 

carrier gas. Since the carrier gas flows continuously during ALD cycles, materials are 

mainly transported by the convection mechanism.  

 

As shown in the velocity contour plot by LBM-TRT, the carrier gas flow is in a laminar 

steady state during the ALD procedure. The precursor molecules move together with the 

carrier gas owing to the convection effect and hence they transport faster in the areas where 
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carrier gas have larger velocities. As a result, precursors tend to be concentrated in 

lower-velocity areas. The precursor distribution is largely influenced by the velocity field of 

the carrier gas. In areas such as the corners and the substrate area presented in Figure 2.11 

(a), the precursor has relatively low concentration. 

  

Precursor materials get in contact with the substrate surface species as a result of material 

diffusion and the Brownian motion. The precursor materials will be absorbed and deposited 

more easily with more contacts. Therefore, in the areas where the effects of diffusion and 

random molecular motion are superior to the convection, the absorption and deposition is 

stronger. This can be realized by heating the ALD system to accelerate the molecular 

motions.  

 

In general, a stable carrier gas flow with lower velocities will contribute to better 

depositions of materials on the wafer surface, especially when the convection effect is much 

weaker than the molecular diffusion effect. Fluctuations in the flow around the wafer area 

would make it more difficult for the precursor molecules to contact with the wafer surface. 

As shown by the simulation result in Figure 2.11 (a), high velocities and drastic changes of 

carrier gas flow velocity at the top of wafer area may deteriorate the deposition efficiency. 

Sudden geometric changes around the wafer should be avoided. The influence of flow field 

by wafers should also be considered.  
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2.6 Summary and conclusions 

In this chapter, the carrier gas flow in ALD vacuum reactor was modeled numerically using 

two LBM models: LBGK-D2Q9 and TRT. Numerical modeling and simulations were 

implemented in 2D ALD geometry. The two models in both incompressible and 

compressible scenarios were compared between in the aspects of flow features, stability and 

efficiency.  

 

The simulations show that, for the specific ALD reactor, TRT model generates better steady 

laminar flow features all over the domain with better stability and reliability than 

LBGK-D2Q9 model especially if the compressible effects of the gas flow are considered. 

The LBM-TRT is verified with two conventional continuum-based computational fluid 

dynamics (CFD) solvers and it shows very good agreement with these conventional 

methods.   

 

The flow in ALD is in a laminar steady state with velocity concentrated at the corners and 

around the wafer. Steady and evenly-distributed velocity field contribute to higher precursor 

concentration near the wafer, and lower velocities achieve better surface adsorption and 

deposition. The ALD reactor geometry needs to be considered with caution if a steady and 

laminar flow field around the wafer is desired for better surface deposition. 
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CHAPTER 3  A COMBINED NUMERICAL AND EXPERIMENTAL 

STUDY OF THE PHYSICAL AND CHEMICAL DETAILS OF AL2O3 

ALD 

3.1 Introduction 

Al2O3 thin film is typically studied as a model ALD process due to its high dielectric 

constant, high thermal stability and good adhesion on various wafer surfaces. In despite of 

extensive applications of Al2O3 ALD in microelectronics industries, details on the physical 

and chemical processes are not yet well understood. ALD experiments are not able to shed 

adequate light on the detailed information regarding the transient ALD process. Most of 

current numerical approaches lack detailed surface reaction mechanisms and their results 

are not well correlated with experimental observations. In this chapter, a combined 

experimental and numerical study on the details of flow and surface reactions in Al2O3 ALD 

using TMA and water as precursors is present. Results obtained from experiments and 

simulations are compared and correlated.  

 

3.2 Experiments 

The surface reaction process and Al2O3 film growth rate are characterized by the Cambridge 

NanoTech Savannah 100 ALD system using TMA+H2O reactions. The ALD system is 

shown in Figure 1.3. 
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In experiments, Al2O3 thin films are deposited on substrates of crystal silicon 100 with 

dimensions of 10 mm by 10 mm, using 99.9% TMA as the metal provider and 99.0% 

distilled water as the oxidant. The wafers are prepared by firstly being immersed in 5% HF 

acid solution for five minutes, and rinsed in distilled water. With HF treatment, the layers of 

native oxide are removed [Kurhekar and Apte, 2013]. Then, the wafers are immersed in 30% 

H2O2 and 70% H2SO4 mixed acid solution for five minutes and washed by distilled water. 

For each experiment, five samples are placed inside the chamber, with one in the center, the 

other four around equilaterally. Specifically, substrate A is placed at the inlet, C at the outlet, 

B and D at the upper and lower positions, and E in the center of chamber. 

 

Before depositions, each component of ALD system is heated to the prescribed temperature 

and the system is stabilized for 300 seconds. Pulsing time for both TMA and water vapor is 

0.015 s, while purging time for both TMA and water vapor is tested with 8 s and 20 s, 

respectively. In ALD cycle, TMA is pulsed, and then purged in the first half cycle, and in 

the second half cycle, water is injected and purged. To be specific, the ALD cycle in 8 s 

purging experiment is TMA/Purge/Water/Purge=0.015 /8/0.015/8 s and in 20 s purging 

experiment, TMA/Purge/Water/Purge=0.015 s/20 /0.015/20 s. Nitrogen is flowing through 

the system at 20 sccm. A total of 60 cycles are deposited in the experiments. The 

accumulated film thickness by ALD is characterized by the UVISEL Spectroscopic 

Ellipsometer (HORIBA, Ltd.). 
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3.3 Mathematical modeling 

ALD cycle can be decoupled into several physical and chemical procedures, such as 

momentum transport (material flow), convective heat transfer (system heating), mass 

transfer (species transport), as well as chemical reactions (surface species chemisorption). 

Each process is governed by corresponding PDEs which can be solved numerically on the 

defined domain. These PDEs are derived using the Finite Volume Method (FVM).The 

surface reaction kinetics and mechanisms are defined on surface sites to simulate the 

material deposition process. 

 

3.3.1 Fluid dynamics 

The continuum-based Finite Volume Method assumes the concerned domain as a continuum. 

The continuity equation conserves mass [Fox, et al., 2009, Munson, 2008], 

 ( ) mV S
t
r

r
¶

+ Ñ× =
¶

v
 (3-1) 

where r is the density, V
v

is the velocity vector, mS is a mass source term.  

 

The flow in S100 ALD system was confirmed as a laminar flow as presented in Chapter 1 

[Pan, et al., 2014]. The process of momentum transport within the laminar flow in the ALD 

chamber is governed by the momentum conservation equation [Fox, et al., 2009, Munson, 

2008], 

 

 ( ) ( )V VV P g F
t

r r t r
¶

+ Ñ× = -Ñ + Ñ× + +
¶

v v v vv%  (3-2) 



 

52 

where P is the static pressure; gr v and F
v

are the gravitational body force and external body 

forces, respectively; t% is the stress tensor which is defined as [Fox, et al., 2009, Munson, 

2008], 

 
2[( ) ]
3

TV V VIt m= Ñ + Ñ - Ñ×
v v v%%  (3-3) 

where m is the fluid dynamic viscosity, I% is the unit tensor, and the term 
2
3

VIÑ×
v%  is the 

effect of volume dilation. 

 

To model the species transport in ALD system, the convection-diffusion equation is adopted. 

In ALD system, the two-component gaseous mixture is concerned: (1) water vapor and 

nitrogen; (2) TMA vapor and nitrogen. The convection-diffusion equation for species i takes 

the following form [Mills, 2013], 

 ( ) ,( )i i m i i ic cV J R S
t

r r
¶
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¶

v v
 (3-4) 

where ic is the local molar fraction of species i , iR is the net rate of production of species i by 

chemical reaction and iS is the source of species i . 

 

The diffusion flux, ,m iJ
v

, is the mass diffusion due to the gradients of concentration and 

temperature. In a mixture, when concentration of one species is much lower than the major 

component, the dilute approximation is satisfied, and Fick’s law is used to model mass 

diffusive flux of the dilute species [Mills, 2013]. In ALD system, although each precursor is 

pulsed in a very short time (e.g., 0.015 s), the amount of precursor injection is shown large 

in our numerical flow characterization and experimental observations. The dilute 
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approximation does not hold in our case, so the Maxwell-Stefan equation for full 

multi-component diffusion is more appropriate [Mills, 2013], 
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where ijD is the binary Maxwell–Stefan diffusive coefficient of species i and j ; N is the total 

number of species in the mixture. 

 

3.3.2 Heat transfer 

In ALD process, heat transfer is in forms of conduction between chamber and pipe, and 

convection between wall and gaseous mixture. Also, there is heat transfer by species 

diffusion, e.g., heat transfer because of mass diffusion caused by material concentration 

gradients [Bergman and Incropera, 2011, Kays, et al., 2005, Mills, 2013].  

 

With the very small portion of radiation between chamber and gases neglected, the overall 

heat transfer within ALD chamber is governed by the energy equation, 
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where k is the material thermal conductivity, and ih is the enthalpy of mixture species i; ,h iJ
v

is 

the diffusion heat flux of mixture species i. S is the source term of heat which is due to 

chemical reaction or other heat sources. The term E is defined as [Bergman and Incropera, 

2011, Kays, et al., 2005], 
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In summary, precursor distribution in the ALD system is achieved by solving the species 

transport Eq.(3-4) with incorporation of the momentum conservation Eq.(3-2) and energy 

Eq.(3-6). 

 

3.3.3 Chemical kinetics 

Because gas flow in the concerned ALD system is shown as laminar, a laminar finite-rate 

method is adopted to couple the surface reactions with species transport. In laminar 

finite-rate model, the effect of turbulent fluctuations is ignored and the finite reaction rates 

are determined by Arrhenius expressions. To model the reactions accompanying species 

transport in ALD chamber, the production rate of species i by chemical reactions, iR in 

Eq.(3-4) is calculated through the laminar finite-rate model using Arrhenius expressions, 

 , ,
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i w i i r
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R M R
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where ,w iM is the molecular weight of species i and ,
ˆ

i rR is the Arrhenius molar rate of creation 

or destruction of species i in reaction r . 

 

In actual ALD system, there are two kinds of reactions involved: gaseous volumetric 

reaction and solid surface reaction. However, in alumina ALD, gaseous volumetric reactions 

happen only when the two gaseous precursors (TMA and water) coexist in ALD chamber. 

The general form of the rth irreversible surface reaction in ALD chamber takes the form as, 
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where G, B, and S denote gaseous species, bulk (solid) species, and surface species, 

respectively; Ng, Nb and Ns are the total number of the corresponding gaseous, bulk and 

surface species; ,i rg¢ ,i rb¢ and ,i rs¢ are the stoichiometric coefficients for each reactant species i;

,i rg¢¢ ,i rb¢¢ and ,i rs¢¢ are the stoichiometric coefficients for each product species i; the rate 

constant rk is evaluated by the Arrhenius expression, 

 exp rr
r r
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where rA is the pre-exponential factor; rb is the temperature exponent; rE is the activation 

energy; R is the universal gas constant. 

 

The reaction rate of surface reaction, rÂ represented by Eq.(3-9) is calculated as, 
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where, for gaseous species, [ ]w represents molar concentrations on wall surfaces and for 

surface species, [ ]w is the surface coverage. The bulk species are not included, because 

reaction rate is independent of bulk species. The net molar rate of production or 

consumption of each species is given by, 
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where RN represents the total number of surface reactions in ALD chamber. By substituting 

Eq.(3-12) into Eq.(3-8), the production (or destruction) rate of species i , iR in Eq.(3-4) can be 
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evaluated. 

 

3.3.4 Surface reaction mechanisms 

The surface deposition mechanisms of alumina ALD are quite complicated. In a theoretical 

model by Puurunen, two possible chemisorption mechamisms of ALD surface reactions 

were proposed: “ligand exchange” and “dissociation and association”[Puurunen, 2003, 

Puurunen, 2005]. Delabie et al. studied the pathways of TMA and H2O surface reactions 

using DFT method [Delabie, et al., 2012]. ALD surface reactions are accomplished through 

two possilbe mechanisms, namely, “ligand exchange reaction” and “chemisorption reaction” 

[Delabie, et al., 2012]. At the initial state, wafer surface is covered by hydroxyl group. In 

the ligand exchange mechanism, surface species *OH sites are exchanged with a methyl 

group of TMA, 

 3 3 3 3 2Al(CH ) *OH *CH Al(CH ) OH+ ® +  (3-13) 

 

For the chemisorption reaction type, the H atom from the surface sites is transferred to one 

of the methyl groups of TMA, resulting in gaseous CH4 and Al-O bond, 

 3 3 3 4Al(CH ) *OH *O-AlCH (s) CH+ ® +  (3-14) 

It was shown by the DFT calculations the chemisorption reactions are strongly favored 

kinetically over the ligand exchange reactions [Delabie, et al., 2012]. Therefore, in this 

study, the chemisorption reaction mechanism is adopted to study the reactions in TMA and 

water pulsing steps.The corresponding complete surface reactions are formulated by two 
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half reactions as, 

3 3 3 3 2 4

2 3 3 2 4

TMA pulse :
2Al(CH ) (g) 3*OH(s) *AlCH (s) *Al(CH ) (s) 3O<s>+3CH (g)

Water pulse :
3H O(g) *Al-CH (s) *Al-(CH ) (s) 3*OH(s)+2Al<s> 3CH (g)

+ ® + +

+ + ® +

 (3-15) 

where <s> denotes solid(or bulk) species; g stands for the gaseous species. The two half 

reactions involve two gaseous species, three surface species and two bulk species. These 

processes are also illustrated in Figure 3.1. The first half reaction represents TMA pulse, and 

the second half reaction for water pulse shown by Figure 4.3 (a) and (b), respectively. 

 

Figure 3.1 Illustrations of surface chemisorption reaction mechanism for: (a) TMA pulse; and (b) 

water pulse. 

 

Besides, for the numerical model in this study, the following assumptions are presumed for 

the reaction mechanisms: (1) Only surface reactions are considered; (2) Both half surface 

reactions are irreversible considering generations of gaseous methane; (3) At the initial state, 

full coverage of hydroxyl group on wafer surfaces is assumed. 
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3.4 Numerical methods 

A transient 3D numerical model based on the Cambridge Nanotech S100 ALD system is 

created and solved under the framework of ANSYS Fluent. The computational domain is 

shown in Figure 3.2.  

 

The boundary condition for carrier gas nitrogen is volumetric flow rate, e.g., 20sccm. By 

continuous operations of vacuum pump, the background pressure of the ALD chamber is 

maintained at ~0.30 torr. Precursors are stored in cylinders at room temperature, and 

precursors are injected into the system by their vapor pressure. In the numerical model, 

pressure boundary conditions are imposed on the two precursor inlets: 9.43 torr for TMA 

vapor, and 23.68 torr for water vapor, which are both assumed as saturated vapor pressure at 

25°C. The outlet is connected with a vacuum pump and boundary condition for the outlet is 

pressure boundary and set as background pressure, which is also the full-load working 

pressure of the vacuum pump. By doing so, the steady flow field is actually presumed. 

 

Figure 3.2 3D computational domain in the numerical model is based on S100 ALD reactor system. 

There are three inlets, one outlet and surface reactions are enabled only on the chamber bottom wall. 
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Materials are deposited on the inner surfaces of the whole ALD system in actual ALD 

process, but in numerical modeling, for computational simplicity, deposition reactions are 

only enabled on the bottom wall of chamber, where the wafers are placed. Boundary 

conditions for any other inner walls are assumed no-slip, no-flux of mass, but their 

temperature is maintained at certain levels. 

 

Using the numerical model, a full cycle of precursor pulsing and purging process is 

investigated to retrieve the information regarding flow field and material distribution. 

Mechanisms of surface reactions formulated in Eq.(3-15) are enabled on the chamber 

bottom wall surface to study the surface deposition process. Numerical simulation is 

implemented on the 3D domain (Figure 3.2.) with a non-structural meshing scheme by the 

commercial solver package of ANSYS Fluent. Second-order upwind method is adopted for 

spatial discretization and approximation of the continuity equation, energy equation and 

species transport equations. By FVM with a pressure-velocity coupled scheme, the values at 

each domain node are calculated. Second-order implicit method is used for the time 

discretization and approximation. The second order numerical methods are adopted in our 

simulation to ensure a sufficient computational accuracy. 

 

3.5 Results and discussion 

3.5.1 Experiments: effects of purging time and process temperature 

Alumina thin film is deposited at four levels of chamber temperature: 100°C, 150°C, 200°C 
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and 250°C, each with five wafer samples. The deposited Al2O3 film thickness in 60 cycles is 

measured using a spectroscopic ellipsometer (Horiba UVISEL model).  

 

Figure 3.3 Al2O3 film growth rate in Å/cycle for: (a) 8s purging experiments; (b) 20s purging 

experiments. Sample A is located in the inlet area, and sample C in the outlet area. 

 

Figure 3.3 presents film growth per cycle (GPC) in Å/cycle at each temperature for 8s and 

20s purging time, respectively. To be more specific, purging time is defined as the time 

between two precursor injections, and in one purging period, both precursor stop valves are 

closed, and carrier gas is flowing through the system continuously with the vacuum pump 

working. All the five samples have similar dependence on process temperature. Specifically, 
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for 8s purging experiments as indicated in Figure 3.3 (a), ~0.06Å of GPC is increased with 

every 50°C increase of process temperature below 200°C. A slight decrease (<0.02 Å/cycle) 

for sample A is seen from 200°C to 250°C, but a larger decrease is shown from the outlet 

sample C. In the case of 20s purging time as presented in Figure 3.3 (b), the turning 

temperature for sample D and E is lowered to 150°C and other three samples have same 

turning temperature as seen in 8s purging process.  

 

From these experimental results, film growth rate varies greatly at different chamber 

positions. This is due to the surface saturation conditions. Generally, as surface reactions get 

saturated, growth rate reaches its peak. As long as the surface saturation is not achieved, 

more seconds it takes in the purging step, more likely precursor molecules collide with the 

reactive surface species on wafer surfaces and thus more materials are deposited. To be 

specific, the highest growth rate for inlet sample A is ~1.18 Å/cycle at 200°C with 8s 

purging time. The reactive surface species is not saturated under this condition. With extra 

12s purging time, its growth rate reaches to its peak of ~1.24 Å/cycle at same temperature in 

the case of 20s purging time. For the sample at outlet (sample C), surface reaction has been 

already saturated in 8s purging process, and hence its highest growth rate is kept at ~1.09 

Å/cycle in 20s purging.  

 

The possible reason for different turning temperature observed in sample D and E is that 

collision probabilities are increased by the extra time in 20s purging, and the surface 
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deposition process is expedited so that surface species have been saturated at lower 

temperature (150°C). The slightly increased peak growth rate (sample D from 1.16 Å/cycle 

to 1.18 Å/cycle; sample E from 1.15 Å/cycle to 1.19 Å/cycle) is also due to the longer 

contacting time of precursor molecules with wafer surfaces. 

 

The overall temperature effect on GPC presented in Figure 3.3 can be well interpreted by 

the concept of “ALD window” [George, 2010]. At lower temperature, e.g., 100°C, the 

growth rate is low because the precursor would condense on the surface in liquid state or 

there is no sufficient thermal energy to enable and finish the surface reactions[George, 

2010]. The decreased growth rate at higher temperature (250°C) is attributed to the 

enhanced desorption of the formed surface species at higher temperature [George, 2010]. 

 

Another interesting feature exposed by the growth rate experiments is that at each 

deposition temperature, materials are deposited faster on inlet wafers than outlet substrates. 

In 8 s purging time, growth rate of outlet sample is ~0.10 Å/cycle lower than the inlet 

sample. The lower deposition rate on sample C is possibly attributed to the following facts: 

(1) The outlet sample C is close to the vacuum pump, and the flow at outlet is much faster 

than at inlets. The convective effect on precursor transport is much stronger at outlet, and 

consequently, weaker diffusive effect decreases the deposition rate; (2) For the sample C, 

although all the precursor molecules gather at outlet, most precursor molecules are 

consumed in the surface reactions on the wafers and also the system inner surfaces. In fact, 
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the amount of precursor molecules reaching at outlet would be much smaller than the inlet 

area. Furthermore, precursors are diluted by the resultant gas product CH4, and hence its 

concentration is largely decreased at the outlet. Therefore, lower GPCs are observed at 

outlet sample. Additional light is also shed on this observation in the aspect of unevenness 

of precursor distributions inside the chamber by simulations and numerical analysis in the 

following section. 

 

Surface-averaged growth rates from both experimental and numerical investigations are 

demonstrated in Figure 3.4. Deposition rates obtained from numerical simulation are close 

to the experimental results. The numerical alumina growth rate is achieved by considering 

the resulted bulk species from both half reactions described in Eq.(3-15) and is averaged for 

the five sample surfaces. The numerical GPC increases from ~1.10 Å/cycle at 100°C to 

~1.22 Å/cycle at 200°C. A slight decrease is also seen at 250°C as the experimental curves.  

 

Figure 3.4 Comparisons of surface-averaged Al2O3 film growth rates in Å/cycle by experimental and 

numerical investigations. 
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The numerical GPC is ~0.05 Å/cycle larger than the experimental results averagely. The 

larger values are mainly due to the presumed assumptions in numerical modeling. The 

theoretical modeling process has simplified the actual process with several assumptions 

listed in the previous section, while in experiments several factors are involved to hinder the 

deposition process. For instance, at the initial state, hydroxylization of the wafer surfaces 

cannot be perfectly 100% (which is assumed in numerical modeling). Also, calculations 

based on DFT showed that complex intermediate products are generated in ALD reactions 

[Delabie, et al., 2012]. However, for computational feasibility and simplicity, numerical 

model neglects these intermediate species. The involvement of intermediate reactions is 

difficult to be predicted without actual experimental conditions, because they are heavily 

dependent on precursor dosage, purging time, local precursor concentration, surface species 

coverage, and local temperature, etc.[Cheng, et al., 2005, King, et al., 2011, Krajewski, et 

al., 2009, Kukli, et al., 2002, Puurunen, 2005, Rai, et al., 2012, Wind and George, 2010]. 

The agreement of GPC between experimental and numerical results confirms the validity of 

our numerical model, which are used for further exploration of ALD process in detail. 

 

3.5.2 Numerical investigations 

(1) Full cycle flow simulation: effect of carrier gas flow rate 

To correlate the growth rate observed in experiments (Figure 3.3) with material distributions, 

precursor concentrations are obtained by solving the species transport Eq.(3-4) with 

incorporation of the momentum conservation Eq.(3-2) and the energy Eq.(3-6). The 
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numerical study is implemented by running a full cycle of ALD simulation.  

 

Molar concentrations of TMA and water are probed during the transient calculations at five 

spots corresponding to the samples in experiments. Figure 3.5 (a) and (b) show TMA 

distribution for purging flow rate 20 sccm and 200 sccm, respectively. At the initial state, 

only N2 exists in chamber. TMA vapor is injected into the system by opening the ALD stop 

valve for 0.015s.The inlet sample (point A) responds much faster than any other samples. 

TMA at both point C and E reach to the highest concentration within the pulsing step, but 

the peak molar fraction at B and D is only ~60%. 

 

In the following 10 s precursor purging step, TMA is diluted in chamber by the 

continuously incoming carrier gas and purged by the vacuum pump. TMA concentration at 

point A decreases dramatically from its peak value, but molar fractions at B and D increase 

to nearly 80% at the end of purging process (10.015 s) after a slight decrease. In the first 

half ALD cycle (0.015/10 s), TMA at point A remains at higher concentration level for 

longer time than any other samples. Higher concentration increases the collision 

probabilities of precursor molecules with the surface sites and results in higher deposition 

rates in the inlet area observed in experimental GPC results (Figure 3.3). On the other hand, 

the lower deposition rates at sample B and D are due to the lower precursor concentration 

levels.  
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By comparing Figure 3.5 (a) and (b), it is concluded carrier gas flow rate exerts little 

influence on pulsing step, but it largely determines precursor distributions during purging 

step. In the case of 20sccm flow rate, TMA concentrations remain high in the most area of 

chamber (at B, D, and E > 50%), while much lower concentrations (all the samples < 20%) 

are observed for 200 sccm flow rate. 

 

 

Figure 3.5 Precursor distributions during the full cycle of flow simulations for: (a) TMA molar 

fraction for carrier gas flow rate of 20sccm; (b) TMA molar fraction for carrier gas flow rate of 

200sccm; (c) Water molar fraction for carrier gas flow rate of 20sccm; (d) Water molar fraction for 

carrier gas flow rate of 200sccm. A is located in inlet area, and C in the outlet area.  
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In the second-half cycle, water vapor is introduced into chamber. Figure 3.5 (c) and (d) 

demonstrate water vapor distribution for carrier gas flow rate of 20sccm and 200sccm, 

respectively. Comparing with TMA, water vapor molecules take the whole chamber space 

much faster. Different purging gas flow rate makes no difference on water distributions in 

the pulsing step, neither. However, for 20 sccm flow rate as shown in Figure 3.5 (c), 

precursor concentrations at the four samples except A are kept at higher levels through the 

10s purging step. This implies that 20sccm flow rate is not sufficient to purge all the 

precursor material out of ALD system. By 200sccm flow rate, the situation is much 

improved as shown in Figure 3.5 (d).  

 

From simulations, it has been shown the driving force to inject precursors into ALD system 

is mainly due to the relatively strong flow field caused by high precursor vapor pressure, but 

after the very rapid pulsing (0.015s) process, precursor molecules are mainly driven by the 

relatively weak flow field formed from carrier gas. During the slow purging procedure, 

precursor molecules still have chances to collide and react with the reactive surface sites. 

This is why longer purging time slightly increases the growth rate as seen in experiments.  

 

Increasing carrier gas flow rate will speed up the purging procedure, but this will also 

shorten collision time of precursor molecules with surface species which hence will result in 

lower deposition rate. An alternative way is to increase the purging time. However, this 

implies longer ALD cycle time, which is usually unfeasible in real applications considering 
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hundreds of cycles needed to deposit a film.  

 

(2) Surface chemistry simulation: effect of process temperature 

To further study the surface reaction details numerically, ALD surface chemical kinetics 

modeled by Eq.(3-12) and Eq.(3-8) is integrated into species transport and flow simulation 

by evaluating the production or destruction rate of species i , iR in Eq.(3-4).  

 

Figure 3.6 shows the correlations of surface deposition rate of O<s> and TMA molar 

fraction with surface coverage of *Al(CH3)2(s) for TMA pulsing step at 100°C, 150°C, 

200°C and 250°C, respectively. Coverage of species *Al(CH3)2(s) increases in the first 

0.005s, and O<s> deposition rate reaches its peak. When *Al(CH3)2(s) is saturated to 50% 

[another half is taken by *AlCH3 (s)], the deposition rate declines drastically. Thereafter, 

despite the increasing TMA concentration, the surface coverage and deposition rate remain 

unchanged. 

 

The grey dot lines indicated in Figure 3.6 show temperature effect on surface reactions. The 

mass deposition rate increases with temperature from 100°C to 250°C in the first 0.004s. 

However, at 0.004 s, deposition rate of 250°C is seen slightly lower than that of 200°C. The 

reason can be found by observing *Al(CH3)2(s) surface coverage at 250°C. At 0.004 s, 

surface species has already been saturated at 250°C, compared to an unsaturated condition 

at 200°C. This implies that surface depostion is highly dependent on surface coverage 
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conditions.  

 
Figure 3.6 Correlations of surface deposition rate of O<s> and TMA molar fraction with coverage of 

*Al(CH3)2(s) for TMA pulsing step at 100°C, 150°C, 200°C and 250°C, respectively. The grey dot 

lines show the temperature effect on surface deposition.  

 

It is also worthwhile to point out that the peak deposition rate is independent of process 

temperature. With temperature changing from 100°C to 200°C, the peak values of 

deposition rate are mostly the same. However, higher temperature indeed accelerates the 

deposition process before surface species get saturated. 

 

Figure 3.7 presents the relation of mass deposition rate of Al<s> with H2O concentration 

and surface coverage of species *OH during water pulsing step. As water vapor is injected 

into the system, water concentration is increased and *OH coverage is approaching its 

saturation status. The mass deposition rate increases and then is restrained as surface sites 

are saturated with *OH. 
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Figure 3.7 Relation of surface deposition rate of Al<s>, H2O molar fraction and coverage of species 

*OH for water pulsing step at 100°C, 150°C, 200°C and 250°C, respectively. The grey dot lines 

show the process temperature effect on surface deposition.  

 

Temperature effect on the second half surface reaction shows more complicated features. 

Surface deposition rate is increasing with temperature only in a very short time, and after 

0.003 s, the surface deposition becomes hindered by higher temperature. This could be 

explained by surface species coverage in Figure 3.7. With increasing temperature, higher 

deposition rate corresponds to higher coverage (~50%) of *OH at 250°C. Surface species 

*OH at 250°C gets saturated much faster than other temperature conditions. Decreased 

deposition rates are resulted from smaller coverage of reactive species *Al(CH3)2(s) and 

*AlCH3(s). However, the peak value of surface deposition rate in pulsing process is 

increased by higher temperature. 

 

Figure 3.8 presents bulk Al2O3 mass deposition rate in pulsing step at five probed points for 
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the four temperature treatments. Bulk Al2O3 growth rate is obtained from summation of the 

resulted bulk species O<s> and Al<s> in the two half reactions. Inlet sample (point A) is 

shown having a quicker and larger response of surface deposition rate.  

 

These observations are consistent with the flow simulation results shown in Figure 3.5: the 

sample which has a quicker and larger response to the precursor flow has a quicker and 

larger response to the surface reactions. Flow impacts the deposition process through 

material distributions. This also agrees with the experimental observations presented in 

Figure 3.3 in which the highest deposition rate is observed at the inlet sample.  

 

To summarize, both our experimental and numerical investigations on alumina ALD process 

show that the film deposition rate is dependent on process temperature. Higher temperature 

accelerates surface deposition processes, but surface reactions also heavily depend on the 

surface conditions, such as precursor concentration, precursor contacting time with the 

wafer surface and surface species saturation status. Before surface species get saturated, 

deposition rate is increasing with precursor concentration and the rate is largely restrained 

once the surface sites are fully taken by non-reactive surface species. Surface reactions are 

strictly self-terminated after reactive surface species are totally substituted, even though 

precursor concentration is still being increased. This is the self-limiting nature of ALD 

operations, which ensures the uniformity and accurate thickness controllability of deposited 

films. 
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Figure 3.8 Surface deposition rate of bulk Al2O3<s> at five different positions in TMA pulsing step 

for 100°C, 150°C, 200°C and 250°C, respectively. Point A is located in the inlet area, and point C in 

the outlet area.  

 

3.6 Summary and conclusions 

This chapter presented a combined numerical and experimental study on the physical and 

chemical details of Al2O3 ALD using TMA and water. It’s been found in our experiments 

that the film deposition rates of all the five samples are positively dependent on temperature 

below 200°C. The growth rate is seen increasing with process temperature, but declines at 

higher temperature, e.g., 250°C for 8 s purging time. The inlet sample has higher growth 

rate than other samples. Longer purging time slightly increases the surface-averaged growth 
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rate, but specific sample responds differently.   

 

By numerical simulations, several insightful observations were made to better understand 

the ALD process. The discrepancies revealed among the five samples in experiments were 

correlated with precursor distributions during pulsing and purging processes. Higher GPC 

observed at inlet sample in experimental treatments is mainly due to the longer and larger 

precursor concentrations. Pulsing is a quite rapid procedure in milliseconds, but purging is a 

relative slow procedure during which precursor materials also react with the reactive surface 

sites. This was confirmed by the increased growth rate with extra purging time observed in 

the experiments.   

 

By tuning the carrier gas flow rate from 20 sccm to 200 sccm, it was observed the flow rate 

has little influence on pulsing process. However, the amount of residual precursors left in 

the system after purging procedure is largely determined by carrier gas, because purging 

process is mainly driven by the flow field formed from carrier gas. The purpose of 

introducing inert gases such as nitrogen and argon into ALD system is more to “purge” the 

precursor out of ALD system than to “carry” the precursor molecules into the chamber.  

 

The results from numerical chemistry simulations confirmed the self-limiting feature of 

ALD cycles. Surface deposition was seen a strictly self-limited process: surface deposition 

reactions are restrained once the surface species get saturated, even though the precursor 
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material is still being introduced into the system. By the transient numerical simulations, 

effect of chamber temperature was shown to increase the deposition rate, but this effect is 

confined by the saturation conditions of surfaces sites. The differences of surface reactions 

among the five samples are consistent with the observations from experiments. The ALD 

process is a complex strong-coupled fluid, thermal and chemical process which is not only 

heavily dependent on the chemical kinetics and surface conditions but also the flow and 

material distributions. 
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CHAPTER 4  EXPERIMENTAL AND NUMERICAL 

INVESTIGATIONS OF MULTI-WAFER BATCH ALD FOR 

THROUGHPUT IMPROVEMENT 

4.1 Introduction 

In order to achieve higher throughput for fabrication of ALD thin films with hundreds of 

nanometers, in early 1970s batch reactors were already utilized, for example, to 

manufacture flat panel displays [Haukka, 2007]. At the very initial stage of ALD research 

for semiconductor applications, most ALD studies were conducted in single-wafer ALD 

systems, and at that time, throughput and other economic considerations were the secondary 

concern to devise and develop ALD equipment [Granneman, et al., 2007]. As the 

semiconductor industries are seeking higher volume manufacturing techniques, the cost of 

ALD process becomes more sensitive in today’s business decisions. As a result, batch-type 

ALD systems are being introduced in cost-sensitive fields such as DRAMs and flash 

memories [Granneman, et al., 2007]. 

 

Batch ALD reactors can be largely divided into two categories: multi-wafer and spatial ALD. 

Figure 4.1 shows the schematics for the two types of batch ALD systems. Multi-wafer ALD 

reactor as presented in Figure 4.1 (a) is a traditional technique in which multiple wafers are 

coated simultaneously, and the substrates remain stationary in the pulse-purge sequence 

[Granneman, et al., 2007, Johansson, et al., 2010]. Multi-wafer ALD systems have already 

been made commercially available by a number of ALD manufacturers, such as Cambridge 
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Nanotech (Phoenix series), Picosun (SUNALE P-series), BENEQ (TFS series), etc. Spatial, 

or continuous ALD system as shown in Figure 4.1(b), is based on a brand new concept 

[Johansson, et al., 2010]. With the spatial concept, the ALD cycles occur in the spatial 

domain, and materials are deposited continuously on the wafer [Delft, et al., 2012]. As 

shown in Figure 4.1 (b), the wafer is moving under the precursor containers and contacting 

with the precursors one after another. It’s been widely accepted that scaling up from 

single-wafer ALD to the batch-type ALD process can largely increase the throughput of 

ALD cycles [Delft, et al., 2012]. 

 

Figure 4.1 Schematics of the two main categories of batch ALD systems: (a) vertical stack-type 

multi-wafer ALD reactor [Granneman, et al., 2007]; and (b) in-line spatial ALD reactor [Johansson, 

et al., 2010, Poodt, et al., 2012]. 

 

Currently, various multi-wafer ALD systems have been already developed, but meanwhile 
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most efforts are being made in designing various structures of multi-wafer reactor systems. 

The complex physical and chemical processes in multi-wafer ALD, however, remain not 

well understood [Granneman, et al., 2007, Hirvikorpi, et al., 2014, Johansson, et al., 2010, 

Maydannik, et al., 2011, Okuyama, et al., 2005, Owyang and Bartholomew, 2005, Poodt, et 

al., 2012, Poodt, et al., 2010, Puurunen, 2005]. In fact, ramping-up from single-wafer to 

multi-wafer system is not straightforward. Due to the larger volume and presence of 

multiple wafers, the gas flow field in multi-wafer ALD chamber is altered, e.g., in the 

stack-type multi-wafer reactors as illustrated in Figure 4.1 (a), the gas flow is blocked by 

the rows of wafers inside the chamber. Consequently, precursor exposure and purging times 

may need to be prolonged in multi-wafer ALD reactors [Delft, et al., 2012].Meanwhile, the 

process pressure and process temperature need to be re-evaluated for multi-wafer ALD 

process.  

 

Because of these issues, detailed knowledge on the ALD process is crucial to search for the 

optimal operation parameters to ensure an excellent film deposition uniformity, high 

deposition rates and high material utilization efficiency. Experimental trial-and-error 

methods are always time-consuming and expensive. To better serve this purpose, 

researchers resort to numerical methods instead of experimental trials to study the physical 

and chemical procedures both in atomic and reactor level. Numerous publications on 

single-wafer ALD process are available both in atomic and chamber scale [Adomaitis, 2011, 

Afshar and Cadien, 2013, Delabie, et al., 2012, Dkhissi, et al., 2008, Elliott and Greer, 2004, 
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Gilmer, et al., 2000, Gou, et al., 2008, Holmqvist, et al., 2013, Hu, et al., 2009, Mazaleyrat, 

et al., 2005, Pan, et al., 2015, Pan, et al., 2014, Puurunen, 2003, Xie, et al., 2015]. 

 

Unfortunately, the literatures regarding multi-wafer ALD process are very limited. 

Lankhorst et al. presented their numerical studies by transient, three-dimensional, 

multi-scale simulations on the precursor pulse step during the HfO2 ALD process, and 

identified several time scales in multi-wafer vertical batch ALD process [Lankhorst, et al., 

2007]. Granneman et al. analyzed several configurations of single-wafer reactors and 

multi-wafer batch reactor systems from an industrial perspective [Granneman, et al., 2007]. 

It is worthwhile to be noted that the available numerical models on multi-wafer ALD 

process lack detailed surface reaction kinetics and mechanism information, or the numerical 

results are not well validated and correlated with the experimental observations [Pan, et al., 

2015]. 

 

In this chapter, the transient multi-wafer batch ALD process of depositing Al2O3 thin films 

on silicon wafers using TMA and water is studied by both experimental and numerical 

approaches. To find the influence of wafer layout on the deposition process, two types of 

wafer arrangements, i.e., vertical and horizontal multi-wafer ALD, are specifically 

investigated. In particular, the two arrangements are compared in terms of alumina thin film 

growth rate. Further investigation on the detailed knowledge of the precursor transient 

pulsing process is carried out by 3D numerical simulations. 
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4.2 Experiments 

Experimental characterizations of the Al2O3 film growth rate for vertical and horizontal 

multi-wafer batch ALD are performed on the Cambridge Nanotech Savannah 100 ALD 

reactor with a dome lid using TMA+H2O reactions. The Savannah 100 ALD reactor with a 

flat lid is shown in Figure 4.2 (a) and consists of precursor cylinders, precursor delivery 

manifold, carrier gas manifold, chamber, outlet pipe and a vacuum pump. TMA and water 

are stored in separate precursor cylinders, and the pulsing (in milliseconds) process of 

precursors is controlled by ALD stop valves. Nitrogen is flowing through the system 

continuously as a carrier gas. A vacuum pump is connected with outlet pipe to maintain the 

low vacuum pressure (~10-1 Torr) in chamber. The ALD system can be equipped with a 

dome lid as presented in Figure 4.2 (b) to enable multi-wafer batch depositions. 

 

In the study, experiments of two types of multi-wafer arrangements are implemented. Figure 

4.2 (c) presents the vertical multi-wafer experimental setup, in which 27 silicon wafer 

samples are processed simultaneously. In the experiments, alumina films are deposited on 

wafers of crystal silicon 100 with dimensions of 15×20 mm approximately, using 99.9% 

TMA as the metal provider and 99.0% distilled water as the oxidizer. The wafers are 

prepared by being washed in 99.9% acetone solution in an ultrasonic cleaning machine for 

five minutes, and then washed in 99.5% ethanol solution for five minutes. Finally, the 

wafers are rinsed and cleaned by 99.0% distilled water using the ultrasonic cleaning 
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machine for five minutes. The wafers are attached to the wafer tape frame after cleaned.   

 

Figure 4.2 (a) Cambridge Nanotech Savannah S100 ALD reactor with a flat lid consists of precursor 

cylinders, precursor manifold, carrier gas delivery manifold, chamber, outlet manifold and a vacuum 

pump (not shown in the figure); (b) S100 equipped with dome lid for batch ALD; (c) vertical 

multi-wafer batch ALD setup with 27 silicon wafer samples; and (d) horizontal multi-wafer batch 

ALD setup with 27 silicon wafer samples. 

 

By vertical arrangement, it means the wafer surfaces are perpendicular to the flow direction. 

Similarly, the horizontal multi-wafer arrangement as shown in Figure 4.2 (d) also process 

the same number of wafer samples simultaneously. The wafer surfaces in horizontal 

arrangement are parallel with the gas flows. To compare the two arrangements of wafer 

configurations in the aspect of film deposition rate, the wafers are placed on the same 

locations. To be convenient, each wafer is labeled by letters or numbers in three 
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dimensional coordinates, as illustrated in both Figure 4.2 (a) and (b). Each wafer sample is 

uniquely marked by a combination of the above three letters or numbers. A, B, and C are 

used for X direction, a, b, and c for Y direction, and 1, 2, and 3 for Z direction. For instance, 

the center wafer is labeled as B-b-2. This labeling method is used through the entire chapter. 

 

Before deposition process begins, the ALD system is heated to the targeted temperatures 

(chamber: 200°C, inlet and outlet manifolds: 150°C) and stabilized for 3600 s. Pulsing time 

for water is set at 0.015 s, and for TMA is 0.03 s. The purging time for both TMA and water 

is 30 s. Hence, an ALD cycle in our experiments is TMA/purge/water/purge= 

0.03/30/0.015/30 s. Nitrogen is flowing through the system at 20 sccm. A total of 100 cycles 

are deposited for both vertical and horizontal multi-wafer arrangements. The deposited 

alumina film thickness on the silicon wafers is characterized by a spectroscopic ellipsometer 

(HORIBA, UVISEL). 

 

4.3 Model equations 

ALD modeling involves decoupling and coupling steps. First, ALD is decoupled into 

several physical and chemical processes, namely, momentum transport (gas flow), 

convective heat transfer, species transport, and surface reactions. Each process is 

represented by corresponding partial differential equations (PDEs). These PDEs can be 

solved numerically on the defined nodes in meshed domains. Second, to obtain solutions to 

the entire numerical ALD process, the system of PDEs must be coupled together by taking 
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interactions between each physical and chemical process into account. The mathematical 

modeling process and assumptions are described in detail in Chapter 3 [Pan, et al., 2015]. In 

this chapter, we focus on applying the model to simulate the deposition process in the 

multi-wafer batch ALD system. The chemisorption reaction mechanism is adopted to model 

the reactions in Al2O3 ALD process [Delabie, et al., 2012, Pan, et al., 2015].The surface 

reactions are formulated by the same half reactions as presented in Eq.(3-15). 

 

4.4 Numerical solutions 

Three-dimensional numerical domains based on the Cambridge Nanotech S100 ALD 

reactor with the dome lid are presented in Figure 4.3 (a) and (b). The domains include the 

main parts of the ALD system, including chamber, wafers, inlet pipes, and outlet. To 

compare and validate the numerical solutions with experiments, the domains are created 

accurately according to the two experimental setups shown in Figure 4.2 (c) and (d).  

 
Figure 4.3 3D computational domains in the numerical model are based on S100 ALD reactor with 

the dome lid: (a) vertical multi-wafer arrangement; and (b) horizontal multi-wafer arrangement.  
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Numerical solutions to the model equations are obtained under the framework of ANSYS 

Fluent using the method of Finite Volume Method (FVM). The 3D domains are processed 

with a non-structural meshing scheme as shown in Figure 4.3. The model equations are first 

discretized in space by the second-order upwind method. By FVM with a pressure-velocity 

coupled scheme, the values at each domain node are calculated. Second-order implicit 

method is used for the discretization of time domain. The choice of the implicit method is to 

ensure computational stability, and the second-order method is for a sufficient 

computational accuracy. 

 

Boundary conditions are essential in numerical solutions. In our models, the boundary 

conditions at inlets, outlet, wall and wafer surface sites are specified according to the actual 

experimental conditions. For carrier gas inlet, volumetric flow rate is set at 20 sccm. The 

chamber is maintained in low pressure (~10-1 torr) by a vacuum pump which is connected 

with the outlet pipe. Since precursors are stored in separate cylinders as shown in Figure 4.2 

(a) at room temperature and injected into the system by the pressure difference with the 

chamber, pressure boundary conditions are enforced on the two precursor inlets. The outlet 

is connected with the pump and the system background pressure is assigned, which is also 

the full-load working pressure of the vacuum pump.  

 

In actual process, materials are deposited on the entire inner surface of the ALD system, but 

in numerical solutions, for computational simplicity without losing its accuracy, we only 
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calculate depositions on the wafers. Any other inner wall surfaces are assumed non-slip, 

non-flux of mass. At the initial state, full coverage of hydroxyl group on wafer surfaces is 

assumed for both vertical and horizontal multi-wafer arrangements. Thermal boundary 

conditions are enforced on the walls. Temperature at wafer surfaces is maintained at 200°C, 

and other parts of the system are 150°C. 

 

4.5 Results and discussion 

4.5.1 Experimental and numerical characterizations of film deposition rate 

In this section, material deposition rate is characterized by both experimental and numerical 

approaches. In both vertical and horizontal multi-wafer experiments, Al2O3 film thickness is 

measured using the Horiba UVISEL spectroscopic ellipsometer after 100 cycles of 

depositions. Since the flow domains are symmetric with respect to the flow direction (X 

direction), material distributions are similar at the two sides of the center line of chamber. 

Hence, to simplify our data analysis, 18 wafers from b and c in Y direction labeled as A (B, 

C)-b (c)-1 (2, 3) are considered. The experimental results are presented in Figure 4.4, which 

are obtained by averaging two measurement data points for each wafer sample. 

 

To obtain bulk Al2O3 deposition rate from numerical simulations, mass deposition rates of 

species O<s> and Al<s> in the two half reactions [Eq.(3-15)] are integrated over pulsing 

time, i.e., for TMA pulse, 0.03s, and water pulse, 0.015s. The resulted mass deposition is 

finally converted to film thickness by introducing alumina film density [Groner, et al., 
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2004]. The data of film thickness in one cycle for the 18 wafers from both vertical and 

horizontal simulations are also demonstrated in Figure 4.4. 

 
Figure 4.4 Al2O3 film growth rate in Å/cycle for vertical and horizontal multi-wafer arrangements 

obtained from both experiments and simulations. The 18 wafers are labeled in three directions using 

A, B, C for X direction, b, c for Y direction, and 1, 2, 3 for Z direction. 

 

As demonstrated in Figure 4.4, the data of film growth rate from numerical simulations 

match well with the experiments both in vertical and horizontal multi-wafer ALD processes. 

This agreement validates our numerical solutions. In Figure 4.4, vertical arrangement is 

clearly shown having higher film deposition rate than the horizontal arrangement from both 

experimental and numerical results. In the horizontal multi-wafer arrangement, the growth 

rates are ~1.1 Å/cycle from both experiments and simulations. The increase of growth per 

cycle (GPC) in vertical multi-wafer ALD is ~0.1 Å/cycle on average. This improvement is 

significant considering that hundreds of cycles are required to deposit a thin film. The 
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deposition results signify that the wafer layout is a significant influential factor in the 

deposition process of multi-wafer batch ALD. Apparently, vertical multi-wafer process is 

shown superior to the horizontal arrangement in film deposition rate.  

 

This phenomenon is mainly attributed to the collision conditions between precursor 

molecules and wafer surfaces. In the vertical arrangement, collisions are greatly enhanced, 

because the wafer surfaces in this case are confronting the material flow directly. By gas 

flow, precursor material is transferred in the way of convection which results in strong 

interactions between precursor molecules and wafers.  

 

Further information on the flow field verifies the above statement. Figure 4.5 shows the 

numerical velocity contour plots and the mass fluxes to the wafer surface during TMA 

pulsing process on wafer B-b-2. As presented in Figure 4.5 (a) and (b), the velocity for both 

vertical and horizontal arrangements are quite similar in magnitude. However, because of 

the different wafer arrangements, precursor flow velocity normal to the wafer surface varies 

dramatically from one to another. This is also confirmed by the mass fluxes to the wafer 

surface presented in Figure 4.5 (c) and (d) for vertical and horizontal arrangement, 

respectively. Mass flux is obtained from the velocity field and precursor density as, 

 

 m p nJ ur=   (4-1) 

where pr  is the precursor density, and nu  is the normal component of velocity to the 
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wafer surface. 

 

Figure 4.5 Numerical velocity contour plots and mass fluxes normal to the wafer (B-b-2) surface 

during TMA pulsing process: (a) and (b) velocity contour plots for vertical and horizontal 

arrangement at 0.015 s, respectively; (c) and (d) mass flux normal to the wafer surface for vertical 

and horizontal arrangement, respectively. 

 

By comparing Figure 4.5 (c) and (d), the normal mass flux to B-b-2 wafer surface in vertical 

arrangement is much larger than in horizontal arrangement during TMA pulsing process. In 

horizontal arrangement since the wafer surfaces are parallel with the flow direction, 

material transportation to the surface sites are mainly driven by a diffusive effect, which is 

much weaker than the convection [Mills, 2013]. On the other hand, due to the larger normal 

velocity, the mass transfer process to the wafer surface is significantly strengthened by 
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convective flow in vertical arrangement, and thus the contacting and collision probabilities 

are increased, which leads to more surface reactions on the surfaces, and therefore higher 

film growth rates as shown in Figure 4.4.  

 

Figure 4.6 Transient normal velocity at (a) B-b-2 wafer, and (b) the space between B-b-2 and B-c-2 

in TMA pulsing process for the vertical arrangement. 

 

It is also expected that the surface deposition process in vertical arrangement could be 

further accelerated if the wafers are placed in such an interlined way that the wafers in the 

second row align to the interspace between the two wafers in the first row. This is verified 
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by the comparison of normal velocity at the B-b-2 wafer and the space between B-b-2 and 

B-c-2 in the vertical arrangement as shown in Figure 4.6. It is found that the normal velocity 

is much higher in the space between the two wafers. 

 
Figure 4.7 Averaged Al2O3 film growth rates for the three directions from both experimental and 

numerical investigations: (a) averaged GPCs of the wafers in Y, Z direction; (b) averaged GPCs of 

the wafers in X, Z direction; and (c) averaged GPCs of the wafers in X, Y direction. 

 

From Figure 4.4, the wafer position dependence of deposition rates is shown very weak by 

both experimental and numerical results. Further analysis of this observation is performed 

by taking average of the deposition rates for the three directions. The results are presented 
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in Figure 4.7. It is again shown that numerical data agree well with the experimental results. 

By Figure 4.7 (a), it is found that wafers located on the middle row (row B in X direction) 

have higher GPCs than those located on the other two rows. Shown in Figure 4.7 (b) and (c), 

little difference of deposition rates is seen in wafers located on the side column (c in Y 

direction) and bottom layer (layer 3 in Z direction).  

 

4.5.2 Numerical investigations of ALD transient deposition process 

To further study the physical and chemical details in multi-wafer batch ALD, the transient 

deposition process is studied using the numerical model. To be specific, TMA and water 

pulsing processes are simulated with the vertical multi-wafer arrangement. In this part, the 

pulsing times are doubled in order to observe the entire pulsing processes, i.e., for TMA 

pulse, 0.06 s, and water pulse, 0.03 s. Precursor concentration, surface species coverage, 

methane generation and bulk material deposition rate in the transient pulsing processes are 

correlated in Figure 4.8. The data are extracted at the center wafer (B-b-2) for both TMA 

and water pulses. 

 

It is observed in Figure 4.8 (a) that surface deposition rate increases with TMA 

concentration from the very beginning of pulsing step, and as the deposition continues, 

surface coverage of the initial species, i.e., *OH, declines. The gaseous product, methane is 

generated once the reaction is activated. In the first 0.006 s, deposition rate is increasing 

slowly, and meanwhile hydroxyl coverage experiences a slow decline. Thereafter, the 
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process is expedited as TMA concentration is increasing steadily. As a result, 

methane-terminated species (*AlMe and *AlMe2) coverage is increasing quickly.  

 
Figure 4.8 Correlations of precursor concentration, surface species coverage, methane generation 

and bulk material deposition rate in the transient pulsing processes by vertical multi-wafer ALD 

simulation: (a) TMA pulse; and (b) water pulse. Data are extracted from the center wafer (B-b-2) for 

both TMA and water pulses. The pulsing times are doubled from experiments in order to observe the 

entire pulsing processes. 

 

At about 0.015 s, the deposition rate reaches its peak and then declines steadily despite the 

precursor concentration is still increasing. As the surface reaction continues, the available 
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reactive hydroxyl sites become scarce, and most of the hydroxyl surface species are 

converted to methane-terminated species. Accompanying this process, more methane is 

generated. At about 0.034 s, hydroxyl coverage declines to zero, and *OH species is no 

longer available on wafer surfaces, and consequently surface deposition process is 

terminated. Nevertheless, it is noted that the precursor concentration is still increasing to 

higher levels. Methane generation becomes steady as the deposition process is approaching 

its end, and slightly declines after the reaction is terminated. Finally, *AlMe2 surface species 

becomes saturated to 50% (another half is taken by *AlMe). In the process, 

hydroxyl-terminated surface sites are completely converted to methane-terminated species 

as described in Figure 4.8 (a). Precursor pulse, in essence, is a surface species conversion 

process, during which materials are being deposited. 

 

In comparison with TMA pulse process, similar phenomena are observed in water pulse as 

presented in Figure 4.8 (b). In water pulse, however, the deposition process happens much 

faster. The reaction reaches its peak in only 0.006 s, and is completely terminated at ~0.02 s. 

This reveals the huge difference of chemical kinetics in the two half deposition processes. 

By Figure 4.8 (b), water pulse is shown kinetically faster than TMA pulse. This also 

validates the choice of shorter pulse time (0.015 s) for water pulse in the experimental 

treatments. The information of this critical pulse time is essential to improve the 

sustainability performances, such as deposition efficiency and material utilization in ALD, 

since any longer precursor pulsing will be a waste of time and materials once the deposition 
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process is terminated. In water pulse process, methane-terminated species are converted to 

hydroxyl-terminated surface sites, which are prepared for the next TMA pulsing step. Bulk 

species Al<s> is deposited in water pulse, and since it is heavier than O<s> in mass, the 

mass deposition rate in water pulse is higher than in TMA pulse as given in Figure 4.8.  

 
Figure 4.9 Correlations of precursor concentration, surface species coverage, and bulk material 

deposition rate in the transient pulsing processes by vertical multi-wafer ALD simulation for the 6 

wafers located on the middle layer: (a) and (b) TMA pulse for the 6 wafers; (c) and (d) water pulse 

for the 6 wafers. Data are extracted from the middle wafers (layer 2 in Z direction), A (B, C)-b (c)-2, 

for both TMA and water pulses. The pulsing times are doubled from experiments in order to observe 

the entire pulsing processes. 

 

Further data are extracted from various wafers on the middle layer (layer 2 in Z direction) 

and presented in Figure 4.9 to study position dependence of the deposition process. Figure 
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4.9 shows that in X direction (from A, B to C), precursor concentration at each wafer 

experiences different process in both TMA and water pulsing processes, and consequently 

the deposition process varies differently. The wafers located near the inlet area (row A) gain 

high precursor concentration first (red and blue curves), and their deposition rates reach 

peaks much faster than those on the other two rows.  

 

In Y direction, wafers on column b experience faster deposition processes than those on 

column c, although this difference deceases from row A, B to C. Nevertheless, faster 

deposition process does not necessarily result in higher material deposition rate, because the 

final material deposition rate is achieved by integrating deposition rate over pulse time. 

Considering that at last all the deposition processes is completed as shown in Figure 4.9 (a) 

and (b), the time integration for different wafers exposes little difference on film deposition 

rate, which is also seen in Figure 4.4 and Figure 4.7.  

 

The experimental results given in Figure 4.4 also indicate that no evident pattern could be 

identified regarding the position dependence of deposition rate. Considering the fact that the 

experiments only take half of the pulsing time in simulations, from Figure 4.9 the wafers 

located on row C have a little lower deposition rate than those on the other rows because 

their deposition processes are not finally terminated within the pulsing step. As a result, 

deposition rate of wafers on row C is a little lower as indicated in Figure 4.7 (a). Row B, 

however, yields the highest deposition rate. This is mainly attributed to the longer time these 
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center wafers have experienced with higher deposition rate, although their peaks are not the 

highest compared to the first row wafers. 

 
Figure 4.10 Correlations of precursor concentration, surface species coverage, and bulk material 

deposition rate in the transient pulsing processes by vertical multi-wafer ALD simulation for the six 

wafers located on the middle row: (a) and (b) TMA pulse; (c) and (d) water pulse. Data are extracted 

from the middle wafers (row B in X direction), B-b (c)-1 (2, 3) for both TMA and water pulses. 

 

Figure 4.10 compares the deposition processes of the six wafers located on the middle row 

(row B in X direction) for both TMA and water pulses. These wafers are located in the 

similar distance from the inlet, and thus, they have very similar precursor distributions as 

shown in Figure 4.10. Hence, their depositions also experience the similar process from 1, 2 

to 3 in Z direction. This is confirmed by the experimental results given in Figure 4.7 (c) that 

the differences of film deposition rate in Z direction are negligible. In fact, as presented in 
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Figure 4.4, with numerical integration of the deposition rate curves over time, the resultant 

overall deposition rates make no evident difference.  

 

Therefore, it is concluded that, in general, the position dependence of deposition rate in 

multi-wafer ALD process is very weak and negligible, and the wafer positions make no 

evident difference in film growth rate. This makes great sense in large-area wafer ALD 

coating applications. Even on very large-area wafers, the ALD fabricated films can still be 

highly uniform. 

 

To summarize the information on the transient ALD deposition process, it is concluded that 

the surface deposition rate is heavily dependent on precursor concentrations in the first half 

of deposition process, and declines steadily as the surface species conversion approaches its 

end. In both TMA and water pulsing processes, as the precursor molecules are being 

introduced into chamber, surface reactions are initiated and then speeded up with more 

precursor molecules. As the reactions continue, the available reactive species are consumed 

and converted to the product surface species. In this process, the deposition rate reaches its 

peak.  

 

After the peak, the surface reaction rate is largely determined by the availability of reactive 

surface species. Since wafers that are located in different areas of the space, they experience 

high precursor concentration at different times, resulting in the different deposition 
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processes. To be short, in the first half pulsing process, precursor concentration is dominant 

in determining the reaction rate, and in the second half, deposition rate depends more on the 

available reactive surface species. Process deposition is under a joint influence of both 

precursor concentration and number of reactive surface species. 

 

4.6 Summary and conclusions 

This chapter compared the two different wafer arrangements in multi-wafer batch ALD 

process both experimentally and numerically. It’s seen from both experiments and 

simulations that the wafer layout indeed influences the deposition rates significantly. The 

vertical multi-wafer arrangement is superior to the horizontal one in film growth rate. An 

increase of ~0.1 Å/cycle in deposition rate is observed from our experimental and numerical 

results. This is mainly attributed to the enhanced convective effect of chemical species 

transport to wafer surfaces in the vertical multi-wafer batch ALD process.  

 

By 3D modeling of multi-wafer batch ALD, the transient deposition process including fluid 

dynamics and surface reaction kinetics was studied in detail for vertical multi-wafer 

arrangement. The numerical results revealed the self-limiting details of the flow and surface 

reaction processes. Deposition process is under a joint influence of precursor concentration 

and surface site saturation status. In the first half reaction before the deposition rate reaches 

its peak, precursor distribution is dominant to determine the bulk material deposition rate, 

whereas film growth rate is largely confined by the available coverage of surface reactive 
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sites in the second half reaction. Finally, the reaction is terminated due to no more presence 

of reactive surface species. The ALD deposition process is, in essence, a conversion of 

surface species. This is the basic chemical kinetics behind the ALD process. 

 

By transient simulations, the deposition process is shown highly “self-limited”: surface 

reactions in ALD are completely terminated once the surface species conversion is finished, 

even though precursor molecules are still being introduced into the ALD system. This 

feature confirms the advantages of this thin film fabrication technique: ALD is perfect to 

produce highly uniform films, and the film thickness can be accurately controlled in an 

atomic level. Further data from the transient simulations also showed that the deposition 

rate is not sensitive to the wafer positions, although the time-dependent deposition process 

varies differently from wafers. The overall position dependence of deposition rate in 

multi-wafer ALD process is weak and negligible.  
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CHAPTER 5  EFFECTS STUDY OF IN-LINE SPATIAL ALD FOR 

THROUGHPUT IMPROVEMENT 

5.1 Introduction 

ALD has a serious low-throughput limitation especially in the industrial level applications 

[Haukka, 2007, Suh, et al., 2012]. The conventional single wafer ALD, for instance, can 

only achieve 1.1~1.3 Å/cycle growth rate, that is a few nm per min for deposition of Al2O3 

[Poodt, et al., 2013]. The multi-wafer batch ALD still adopts the original conventional ALD 

philosophy of separating the two half ALD reactions in time.  

 

Spatial ALD, however, as illustrated in Figure 5.1 (b), is totally based on a brand new 

concept [Johansson, et al., 2010]. In conventional ALD, the precursors are dosed one by one, 

and separated in time by a purging step, but with the spatial idea, the ALD surface reactions 

are separated in space other than in time, and precursors are dosed simultaneously and 

continuously with the relative movement of wafer belt [Poodt, et al., 2013]. Particularly, as 

shown in Figure 5.1 (b), the precursors are introduced at different positions on the wafer 

surface to enable the corresponding half ALD surface reactions. By introducing a pumping 

system and an inert separating gas, e.g., nitrogen or argon, the precursors and the reactions 

are separated in space. A complete full cycle of ALD is achieved by the relative movement 

of wafer belt. This continuous dosing process makes the spatial ALD system highly superior 

in film grow rate. It is demonstrated the spatial ALD can achieve as high as a few nm/s 

deposition rate, compared to a few nm/min in the conventional ALD system [Poodt, et al., 
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2010, Poodt, et al., 2013].  

 

Figure 5.1 (a) stack-type multi-wafer batch ALD reactor [Granneman, et al., 2007]; (b) in-line 

spatial ALD reactor [Johansson, et al., 2010, Poodt, et al., 2012]; and (c) rotary spatial ALD reactor. 

 

Following the same idea, spatial ALD reactors have two variations in structure: in-line 

spatial ALD as illustrated in Figure 5.1 (b), and rotary spatial ALD in Figure 5.1 (c). A 

typical thermal spatial ALD system (in-line or rotary) includes a wafer belt driving system, 

a heating unit, an exhaust pumping system, and a gas delivery system, which consists of 

precursors and separating gas injecting pipelines, the precursor dosing cylinders, and 

separating gas injecting cylinders. The pumping system is to maintain a relatively low 

pressure (~ 10-1 torr) in the system, and to purge the residual gases. A gap must be kept 

between the gas cylinders and the wafer belt to allow gas flow development and the 

wafer-cylinder relative movement.  
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Choice of gap size is a critical issue in designing spatial ALD reactors, because 

inappropriate gap size may result in intermixture of precursor gases, and hence intermixing 

reactions [Suh, et al., 2012]. To investigate the influence of the gap on the flow fields, Suh 

et. al. performed gas flow simulations and Al2O3 deposition experiments for a rotary spatial 

ALD reactor with a gap of 5 mm [Suh, et al., 2012]. Generally, too big gaps (> 5 mm) will 

inevitably cause precursor gases intermixing, whereas too smaller gaps (<1 mm) will hinder 

the gas flow, and thus the deposition process. Smaller gaps also pose a practical problem of 

wafer movement in massive production when the large wafer size and uneven wafer 

surfaces are considered [Suh, et al., 2012]. 

 

Besides, the deposition process in a thermal spatial ALD system is also highly dependent on 

a variety of process factors, such as temperature, precursor surface concentration, system 

pressure, and the precursor exposure time [Poodt, et al., 2013]. Since the chemical kinetic 

information involved in the ALD deposition process is highly temperature-dependent, the 

deposition rate is largely affected by the deposition temperature [George, 2010]. Precursor 

concentration on the wafer surface is determined by the mass flow field, which is influenced 

by the precursor and pumping pressures, and the gap size as well. The exposure time is 

determined by the configuration of spatial ALD rectors (e.g., size of dosing cylinders, gap 

size, etc.) and the relative movement speed of the wafer belt.  
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Due to the above complexity, studying these influential factors is crucial in designing spatial 

ALD systems, not only avoiding unnecessary long cycle time but also the non-uniform 

depositions due to the fluctuations in deposition temperature, gas flows and exposure times 

[Poodt, et al., 2013]. Poodt et. al. carried an experimental study on the chemical kinetics of 

depositing Al2O3 in a rotary spatial ALD system at atmospheric pressure [Poodt, et al., 

2013]. The effects of deposition temperature, precursor pressures, and precursor exposure 

times were investigated and discussed for a rotary spatial ALD system in this cited work. As 

an important factor in gas flow development and deposition process, the gap size, however, 

is not included in their studies. Furthermore, the results obtained from the rotary spatial 

reactor may not apply to the in-line ALD system.  

 

To better serve the purpose of investigating the effects of the geometric and process 

parameters on the in-line spatial ALD process, in this chapter we have implemented a 

systematic study using an experimentally-verified fluid dynamic and chemical kinetic 

model for an in-line spatial ALD system. To be specific, the transient spatial ALD process 

of depositing Al2O3 films on a silicon wafer belt using trimethylaluminum (TMA) and water 

is studied numerically. Three geometric and process factors (gap size, deposition 

temperature, and pumping pressures) are considered in two essential aspects of flow field 

and surface chemical deposition kinetics. Their influences on the fluid dynamics and surface 

chemical kinetics are explored and discussed in the following sections.   
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5.2 In-line spatial ALD process modeling 

ALD is a strongly coupled process, but mathematical modeling is more feasible for the 

weakly-coupled or uncoupled process. Therefore, modeling spatial ALD firstly involves 

decoupling of the ALD processes. In a word, the mathematical modeling requires separating 

or decoupling the actual processes, but seeking solutions to the targeted system from 

mathematical models requires integrating and coupling each specific process.  

 

Particularly, in the concerned in-line spatial system, ALD can be dissociated into several 

physical and chemical processes. ALD is a dry film fabrication technique, and the materials 

interact with solid surfaces in gaseous states, so the process is firstly decoupled into gas 

dynamics (momentum transport). ALD process involves two or more precursor species, e.g., 

TMA and water in Al2O3 ALD, and hence it is also a multi-species transport process. To 

activate the surface chemistry in ALD process, the system is heated to certain temperature, 

and thus heat transfer is also considered. The knowledge in these fields is well-established, 

and the individual mathematical model is readily available. 

 

The precursor materials in ALD react with the ligand-terminated surface sites, and thus, the 

surface chemical kinetics is considered for the deposition process. Owing to the complexity 

of ALD actual reaction mechanisms, detailed chemical modeling of ALD still remains a big 

challenge [Pan, et al., 2015]. The main reason is that few experimental studies can be found 

on the detailed information of the ALD chemical kinetics and side reactions. Theoretical 
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studies regarding ALD surface reaction mechanisms and chemical reaction pathways are 

mainly based on the first principle methods, such as density functional theory (DFT) 

method [Afshar and Cadien, 2013, Delabie, et al., 2012, Elliott and Greer, 2004, Puurunen, 

2003]. The detailed modeling process can be found in our previous chapters.  

 

5.3 Numerical implementations 

5.3.1 System boundary definition 

The system boundary is firstly defined to model the spatial ALD process. The spatial ALD 

cycle is defined in space, and therefore the system boundary is determined by relevant 

components. Figure 5.2 illustrates the 3D computational domain of in-line spatial ALD 

reactor. A complete inline spatial ALD cycle of Al2O3 goes through half reactions. Since a 

specific position on wafer can only complete a half reaction at one time experiencing one 

precursor material flow under the dosing cylinder, a complete cycle requires the position 

move to the second precursor dosing cylinder. Consequently, the system includes two 

precursor cylinders in order to model a complete spatial ALD cycle. Additionally, between 

water and TMA dosing cylinders, separating gas (nitrogen) is introduced to separate the two 

precursors. Besides, two exhaust cylinders are connected to a vacuum pump as shown in 

Figure 5.2 (a). The system boundary is presented as the three-dimensional domain in  

Figure 5.2. 
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Figure 5.2 3D computational domain of in-line spatial ALD reactor: (a) fluid domain in the two 

precursor dosing cylinders, one separating gas injecting cylinder, two exhaust cylinders, and the gap 

spaces between each arrangement, dimension scale in meters, and (b) center slice of the 3D domain, 

A, B, C and D are the probing points for the flow or chemical deposition analysis.  

 

5.3.2 Boundary conditions 

Boundary conditions are the physical (fluid, thermal, etc.) and chemical constraints 

(concentration, surface coverage, etc.) defined on each boundary of the fluid domain, such 

as inlets, outlets, walls, and reactive surfaces in the spatial ALD domain [Chapra, et al., 

2010, Hoffman and Frankel, 2001]. Water/TMA inlets are defined as the vapor partial 

pressure entering the system with room temperature (25°C). The actual partial pressure is 
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determined by the saturated precursor vapor pressure and the background pressure in the 

ALD system. Separating gas is fed at a certain flow rate to ensure proper separation of the 

precursor gases.  

 

The spatial ALD reactor is driven by a vacuum pump with base pressure as low as 0.22 torr. 

The high vacuum environment is desirable for better surface reactions and gas separation. 

The exhaust outlet is the pumping pressure which can be adjusted from 0.22 to 0.32 torr. 

When assigning a pressure boundary condition, for an incompressible flow, it implies the 

flow velocity can be computed via Bernoulli’s equation as following [Fox, et al., 2009, 

Munson, 2008], 

 

 2
0

1
2

p p Vr= +   (5-1) 

where p is the boundary partial pressure, p0 is the base pressure, V is the gas flow velocity. 

With the equation, the boundary mass flow rate and fluxes of momentum, energy, and 

species can then be computed from the velocity information. 

 

The system wall (cylinder and pipe wall) is treated as stationary wall boundary conditions 

with no mass transfer but only heat transfer across the boundary. Thermal constraint for the 

wall is a certain maintained temperature condition. To prevent precursor vapors from 

condensing, 150°C is maintained on these walls. The moving wafer belt usually has relative 

higher temperature, e.g., 200°C, to activate the surface reaction.  
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For computational simplicity, the shear effect caused by the moving wafer is neglected 

without influencing the accuracy of simulations. The shear stress is mainly determined by 

the fluid viscosity and the velocity gradient in the perpendicular direction as shown in 

following equation, and the reason is two-fold.  

 du
dy

t m=   (5-2) 

where τ is the shear stress, μ is the fluid dynamic viscosity, u is the fluid velocity along the 

boundary, and y is the direction perpendicular to the boundary. 

 

Firstly, the spatial ALD system is in vacuum with ~ 0.22 torr background pressure, gaseous 

mixture viscosity is much smaller compared to the case of atmospheric pressure. 

Furthermore, as revealed in our numerical flow field, the velocity is highly concentrated in 

the gap area, and hence the velocity gradient is small near the wafer surface. As a result, the 

viscous drag effect by the moving wafer surface is considered to be too small to affect the 

precursor distributions as well as the surface reactions. Hence, the wafer belt is assumed 

stationary in our numerical treatment. The wafer top surface is defined as reactive sites, 

where there are both heat and mass transfers. 

 

5.3.3 Initial conditions 

For a transient system, numerical methods are approaching to the analytical solutions 

iteratively starting from the initial values, and hence the fluid, thermal and chemical initial 
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numerical values need be assigned before calculations [Chapra, et al., 2010, Hoffman and 

Frankel, 2001]. Specifically, in actual spatial ALD applications, the separating gas is firstly 

injected into the system for a few minutes to purge the air out and stabilize the system to the 

prescribed base pressure. The system domain is fully taken by the separating gas, nitrogen 

before depositions. Therefore, in our simulations, the pressure, velocity, concentration 

values of nitrogen are adopted as the initial conditions.  

 

For chemical initial values, full coverages of hydroxyl and methanl group are assumed on 

the wafer surfaces under TMA and water dosing cylinder, respectively. Three levels of gap 

size (1, 1.5, and 2 mm), temperature (150°C, 200°C and 250°C), and pumping pressure 

(0.22, 0.27 and 0.32 torr) are simulated to study their effects on the flow and suface 

depostion process. 

 

5.3.4 Numerical calculations 

Numerical calculations of the model equations are carried out within the framework of 

ANSYS Fluent using the Finite Volume Method (FVM). The 3D domain is firstly divided 

into numerous finite volumes with a non-structural tetrahedron meshing scheme as shown in 

Figure 5.2 (a). The actual meshing size is finally decided by a compromise between 

calculation accuracy and computational cost. 

 

The model equations are then discretized in space by the second-order upwind method and 



 

109 

the values at each domain node are calculated by FVM with a pressure-velocity coupled 

scheme. The second-order implicit method is used for the discretization of the model 

equations in time domain. The implicit method is to ensure computational stability, and the 

second-order method is for a sufficient computational accuracy. As shown in Figure 5.2 (b), 

during the calculations, transient values at the four points on the wafer top surface are 

probed for species concentrations (position B and C) and surface depositions (position A 

and D). With species concentration information, flow and intermixing of precursor materials 

are investigated, and with surface reactions, the film deposition process is studied. 

 

5.4 Results and discussion 

5.4.1 Effects on the in-line spatial ALD flow field 

In this section, effects of the three factors on the spatial ALD flow field are characterized 

numerically, including gap size, temperature and pumping pressure. The main concern of 

precursor intermixture in in-line spatial ALD is paid special attention in this part, because 

the intermixture would deteriorate the film deposition quality by enabling the chemical 

vapor deposition (CVD)-type reactions in the system. Figure 5.3 shows the transient process 

during the dosing steps for different gap sizes.  

 

The precursor concentrations at point B and C are shown in Figure 5.3 (a) and (b), 

respectively. It’s seen that TMA material is indeed present at the water side for all the gap 

sizes, and water is detected at the TMA side. Both precursor concentrations are increasing 
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until the steady states are achieved during the 0.1 s dosing process. TMA concentration 

level (in 10-5 mol/m3), however, is much lower than water concentration (in 10-3 mol/m3) as 

shown in Figure 5.3 (a).  

 
Figure 5.3 The effects of gap size on precursor intermixing with ideal pumping condition (0.22 torr) 

and 200°C deposition temperature: (a) TMA and water concentration in mol/m3 at water side 

(position B) with gap size 1, 1.5, and 2 mm, and (b) at TMA side (position C) with gap size 1, 1.5, 

and 2 mm. 

 

Comparing the steady concentration levels, it is found that gap size influences the precursor 
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distributions significantly. In Figure 5.3 (a), 1.5 mm and 2 mm gap sizes both result in lower 

TMA concentration levels (<10-5 mol/m3), and 1 mm gap yields the highest level (>3×10-5 

mol/m3). Together with Figure 5.3 (b), it is found that intermixing is reversely related to the 

gap size from 1 mm to 2 mm. Bigger gap spatial ALD reactor has less intermixing, and 

smaller gap makes the dosing process much longer. As indicated by both figures, it takes 

much longer time for the spatial ALD process with 1 mm gap to reach the steady state. 

 

The observations are mainly due to the weaker convective mass transfer in smaller gap 

spatial ALD reactor. With 1 mm gap, for instance, the gas flow is largely hindered by the 

narrow gap. Considering the fact that in-line spatial ALD is a high vacuum system (0.22 

torr), the material transport in such cases is mainly driven by mass and thermal diffusions 

other than convection. Because mass diffusive effect is much weaker compared to 

convection, the mass transfer process is much prolonged. These diffused molecules are 

accumulated in the exhaust cylinder due to lack of convective forces, and consequently a 

relative higher concentration is resulted in 1 mm gap in-line spatial ALD reactor as shown 

in Figure 5.3. However, in the case of large gas size, e.g., 5 mm, stronger convective mass 

transport also increases the intermixing. 

 

At TMA side (position C) as shown in Figure 5.3 (b), a relatively higher intermixing is 

observed, especially for 1 mm gap size compared to the water side. Water concentration is 

~5×10-4 mol/m3 at position C. As a comparison, TMA concentration is ~2×10-3 mol/m3 with 
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a relative intermixing ratio (defined as the concentration ratio of the foreign gas to the home 

gas) 1:4 for 1 mm gap size. This is owing to the fact that water has a relative higher inlet 

vapor pressure resulting stronger water diffusive process. This is further confirmed by 

Figure 5.4, which compares the relative intermixing ratio at both sides. As revealed in both 

Figure 5.3 and 5.4, intermixing is weaker at water side. At both sides, increasing gap size 

from 1 mm to 2 mm decreases the intermixing. 

 

Figure 5.4 Comparison of relative intermixing ratios for position B (water side) and C (TMA side) 

with different gap sizes, and the relative intermixing ratios is defined as the concentration ratio of 

the foreign gas to the home gas.  

 

The effect of pumping pressure on material transport is examined by changing the relative 

pressure (to the base pressure) from 0, 0.05, to 0.1 torr, while the gap size and wafer 

temperature are fixed at 0.15 mm and 200°C. The values are consider no less than the base 

pressure because in actual in-line spatial ALD system the pumping pressure is usually a 
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little higher than the stable base vacuum pressure due to the imperfection of vacuum pump.  

 
Figure 5.5 The effects of relative pumping pressure (0, 0.05, to 0.1 torr) on the precursor intermixing 

with gap size and wafer temperature fixed at 1.5 mm and 200°C: (a) TMA and water concentration 

in mol/m3 at water side (position B), and (b) at TMA side (position C). The simulation time is 0.04 s 

with 1.5 mm gap size. 

    

Figure 5.5 presents the effects of pumping pressure on precursor distribution and 

intermixing for position B and C. It is found that higher pumping pressure (e.g., 0.1 torr) 
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results in higher TMA concentration at water side (position B) and higher water 

concentration at TMA side (position C). For instance, water steady concentration level is 

~2×10-4, 3×10-4, and 5×10-4 mol/m3 for 0, 0.05 and 0.1 torr pumping pressure at position C 

(TMA side), respectively. Hence, properly maintained pumping and base pressure in ALD 

reactor is crucial to avoid precursor intermixing. 

 

Wafer temperature effects on the flow field and precursor intermixing in in-line spatial ALD 

reactor are investigated numerically with 1.5 mm gap and 0.22 torr pumping pressure. The 

results presented in Figure 5.6 show that at both sides higher wafer temperature yields 

higher precursor concentration level from the other side. With the wafer temperature as high 

as 250°C, the mass diffusive process is accelerated, and hence higher TMA concentration 

level is seen at water side (position B) as Figure 5.6 (a), and higher water concentration 

level at TMA side (position C) as Figure 5.6 (b). 

 

From the above flow and species transport simulations, it’s concluded that in the high 

vacuum in-line spatial ALD system, diffusive mass transfer is the major reason for 

precursor intermixing, especially in scenarios of very small gap size. As demonstrated by 

the numerical studies, 1 mm gap size yields highest intermixing level because of the 

dominant mass diffusive effect. Higher pumping pressure decreases the pressure difference 

from inlets to outlets, and thus weakens the flow convective effect. The intermixing 

concentration level is seen lower if the low pumping pressure is well maintained. Because 
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higher temperature increases the mass diffusion process, it results in higher intermixing 

concentration level.  

 

Figure 5.6 The effects of wafer temperature (150°C, 200°C and 250°C) on the precursor intermixing 

with gap size and pumping pressure fixed at 1.5 mm and 0.22 torr: (a) TMA and water concentration 

in mol/m3 at position B (water side), and (b) at position C (TMA side). The simulation time is 0.04 s 

with 1.5 mm gap size. 

 

In summary, bigger gap (~2 mm), lower pump pressure, and lower wafer temperature are 
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desirable to minimize the intermixing level in the concerned in-line spatial ALD system. 

However, the optimal choices of these factors must also be reconsidered in terms of 

chemical deposition process. For example, lower wafer temperature is beneficial for 

avoiding intermixing, but it is not favorable for material deposition process, because lower 

temperature may decrease the film deposition rate. Further numerical investigations on 

material deposition process are presented in the following section. 

 

5.4.2 Effects on the in-line spatial ALD chemical depositions 

The effects of the three factors on the chemical depositions of bulk Al2O3 in the in-line 

spatial ALD reactor is studied numerically in terms of growth per cycle (GPC) of thin films 

on the silicon wafer belt. Bulk Al2O3 mass growth rate is obtained from integral of the 

resulted bulk species O(b) and Al(b). Thickness growth per cycle in Å/cycle is then 

determined by introducing alumina thin film density [Groner, et al., 2004]. 

 

Figure 5.7 presents Al2O3 deposition GPCs under different deposition temperature 

conditions from 150, 200 to 250°C. The gap size and pumping pressure are set as 1.5 mm 

and 0.22 torr. From the GPC curves, material depositions are saturated at about 0.015 s 

dosing time, or the critical dosing time. This critical dosing time is shown sufficient to 

complete the surface reactions, which completely consume all the reactive surface sites. In 

this case beyond the critical dosing time, the GPC remains unchanged even if the precursor 

is still being dosed. This is the very desirable self-limiting feature of ALD process. However, 
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if dosing is shorter than the critical time, the deposition rate increases rapidly with the 

precursor dosing time. This is called the unsaturated growth period. 

 

Figure 5.7 Growth per cycle of bulk Al2O3 thin films with different deposition temperatures, 150°C, 

200°C and 250°C with 1.5 mm gap size and the ideal pumping condition (0.22 torr). 

 

With the critical dosing time, the wafer belt moving speed is readily to be defined. For a 

specific point on the wafer belt, it takes 0.015 s to complete the half surface reactions 

contacting with the precursor molecules under the dosing cylinders. The diameter of 

precursor dosing cylinder in our in-line spatial ALD reactor is 1 cm, and hence the wafer 

belt movement speed is promptly calculated as ~0.67 m/s.  

 

The overall throughput of the in-line spatial ALD system can also be achieved from the 

critical dosing time. For example, as shown in Figure 5.7, GPC at 200°C is ~1.2 Å/cycle, 

and the critical dosing time is ~0.015 s. Since an ALD cycle takes two half reactions, the 
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growth thickness per second is calculated using the total cycle time, which is 0.03 s. 

 GPC 1.2 / cycle 1.2 0.03s m /Å Å / 4n s= = =   (5-3) 

The overall throughput is significantly improved compared to a few nanometers per minute 

of growth rate in the conventional ALD system [Poodt, et al., 2010, Poodt, et al., 2013]. 

 

By Figure 5.7, it is seen higher temperature does increase the saturated GPC, but the 

increment is much smaller and even negligible during the unsaturated growth period, i.e., 0 

~ 0.015 s. The numerical simulation results have an excellent agreement with the 

experimental results of cited work as presented in Ref. [Poodt, et al., 2013]. The 

temperature effects reveal the chemical kinetic information on the surface reactions. During 

the surface reactions, the introduced thermal energy has to overcome the reaction barrier 

(activation energy) to enable the reactions. Higher temperature increases the reactivity of 

surface species as well as the species molecule kinetic energy, and hence increases the 

collision probabilities, which finally results in a higher reaction rate.  

 

The effects of gap size on the chemical deposition process are presented in Figure 5.8. It 

takes much longer dosing time for GPC to get saturated for smaller gap size spatial ALD 

process. For instance, with 1mm gap size, ~0.025 s dosing is required for GPC to get 

saturated, compared to ~0.01 s for 2 mm gap. This is mainly attributed to the slower mass 

transportation process caused by the narrower gap as illustrated in Figure 5.3. From the 

GPC curves in Figure 5.8, however, 1 mm gap size has a relatively higher saturated GPC 
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level. Spatial ALD process with 1.5mm gap size has a saturated GPC level as high as 1mm 

gap size, and requires shorter dosing time (~0.012 s) to get saturated. This shows that the 

depositions process is highly affected by the flow and mass transfer process. 

 

Figure 5.8 Growth per cycle of bulk Al2O3 thin films with different gap sizes 1, 1.5 and 2 mm with 

ideal pumping condition (0.22 torr) and 200°C wafer temperature. 

 

The effect of pumping pressure on the surface deposition process is shown relatively weaker 

in Figure 5.9. During the unsaturated growth period before 0.015 s, smaller pumping 

pressure increases the film deposition rate slightly. Once saturated, they have the same level 

of GPC. With different pumping conditions on the outlet boundaries, as given by Figure 5.5 

the precursor intermixing is altered, but the dominant precursor concentrations are 

comparable for all the pumping cases. For instance, water concentration difference as 

shown in Figure 5.5 (a) is within 1×10-3 mol/m3 from 0 to 0.1 torr relative pumping pressure. 
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This is well correlated with the similar thin film deposition rate as illustrated in Figure 5.9.  

 
Figure 5.9 Growth per cycle of bulk Al2O3 thin films with different relative pumping pressure (to the 

base pressure, 0.22 torr) 0, 0.05 and 0.1 torr with 1.5 mm gap size and 200°C wafer temperature. 

 

To depict the overall transient flow and reaction process, Figure 5.10 presents the slice 

contours of transient flow and deposition process in the in-line spatial ALD reactor at 0.005, 

0.015, 0.025 and 0.035 s, respectively for 1 mm gap size, 0.22 torr pumping pressure, and 

250°C deposition temperature. The most left cylinder is for water dosing, and the right one 

for TMA. The left wafer surface under water dosing cylinder shows the half reaction of 

water dosing, and the right for TMA dosing. At the initial state, the system is full of the 

separating gas, nitrogen. With dosing proceeds, precursor molecules gradually fill the 

dosing cylinders. The middle three slice contours show methane generation and distribution 

in the system. Methane is generated from the both half reactions on the wafer surfaces, and 

is purged out through the two pumping cylinders. Very few methane can be detected in the 
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middle separating cylinder during the whole process as shown in Figure 5.10 (c) and (d). 

 

Figure 5.10 Slice contours of transient flow and deposition process in the in-line spatial ALD reactor 

at 0.005, 0.015, 0.025, and 0.035 s for 1 mm gap size, 0.22 torr pumping pressure, and 250°C wafer 

temperature.  

 

To summarize the information on the in-line spatial ALD growth process, the deposition is a 

strictly self-limiting process depending on the reactive surface site status. The film growth 

is saturated to certain levels within different critical dosing times under different deposition 

conditions. Demonstrated by the simulation results, the saturated GPC level is heavily 
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dependent on the wafer temperature, gap size, but rarely on pumping pressure. To be 

specific, higher wafer temperature (e.g., 250°C), a slightly smaller gap size (e.g., 1.5mm) 

and better maintained pumping condition (e.g., 0.22 torr) are desirable to achieve higher 

film growth rate. It is also revealed that the chemical deposition process is highly affected 

by the flow and concentration conditions of precursors. Surface chemical kinetics of the 

in-line spatial ALD is a function of deposition temperature, flow conditions, reactive surface 

sites, and precursor distributions.  

 

5.5 Summary and conclusions 

This chapter systematically studied an in-line spatial ALD system by numerical 

investigations of the gas flow and surface chemical deposition processes in ALD of Al2O3. 

The effects of three geometric and process parameters, namely, gap size, temperature, and 

pumping pressure, were considered with three levels, respectively. The information on the 

fluid dynamics in spatial ALD system is crucial to avoid the precursor intermixing. By 

simulations, it’s found that bigger gap (e.g., 2 mm) results in less precursor intermixing. 

However, when it comes to the surface chemistry, larger gap size generates slightly lower 

saturated deposition GPC level, despite the critical dosing time is shorter. The optimal gap 

size is heavily dependent on the geometrical and process parameter setup, as well the 

trade-off between precursor intermixing and deposition rate. 

 

Wafer temperature is a significant factor in both flow and surface deposition processes. 
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Higher temperature, 250°C for example, accelerates the diffusive mass transport which 

largely contributes to the precursor intermixing. However, high temperature also increases 

the film deposition rate and results in a higher saturated GPC level. Well-maintained 

pumping pressure is beneficial to decrease the concentration of precursor from the other 

side, but its effect on the deposition process is seen very weak. 

 

It is also concluded that the time scale of in-line spatial ALD process is only in tens of 

milliseconds. As demonstrated in our study, the typical critical dosing time of a half cycle in 

in-line spatial ALD system is ~0.015 s, and it only takes 30 milliseconds for a specific point 

on the moving wafer belt to complete a full deposition cycle. With this critical dosing time, 

it is possible to define the wafer belt moving speed as ~ 0.67 m/s. Considering the in-line 

spatial ALD is a continuous process without purging step, the ALD cycle time is greatly 

shortened, and the overall throughput is shown as high as ~4 nm/s, which is much higher 

compared to the conventional sing-wafer ALD with several nanometers growth in a minute. 
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CHAPTER 6  NUMERICAL MODELING AND EXPERIMENTAL 

INVESTIGATION OF ALD WASTES AND EMISSIONS FOR 

SUSTAINABLE NANO-MANUFACTURING 

6.1 Introduction 

The serious sustainability issue of the negative environmental impacts of ALD is largely due 

to the highly toxic chemicals used in the process, greenhouse gas emissions and 

nano-particle generations [Ma, et al., 2015, Yuan and Dornfeld, 2008, Yuan and Dornfeld, 

2010]. Taking Al2O3 ALD as an example, one of the common precursors, TMA, is 

extremely flammable and highly toxic, and can cause severe skin and eye damage [Yuan 

and Dornfeld, 2008, Yuan and Dornfeld, 2010]. The un-reacted TMA molecules are purged 

out of the ALD system as one of the toxic wastes that pose a high risk to the public health 

and environment. The by-product, methane, is one of the major greenhouse gases [Yuan and 

Dornfeld, 2010]. Nano-particles can also be formed in ALD chamber, and the nano-particle 

emissions might be more hazardous to human health. These wastes and emissions may not 

be significantly noticeable in a few hundred deposition cycles in lab scale, but considering 

the large amount of dielectric materials demanded in the semiconductor industry, the 

amount of ALD wastes and emissions and their potentials to impact the environment can be 

seriously significant [Yuan and Dornfeld, 2010]. 

 

The previous studies show that ALD process features low material utilization efficiency. For 

instance, in Al2O3 ALD, only 50.4% of TMA is deposited on wafers by experiments [Yuan 
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and Dornfeld, 2008, Yuan and Dornfeld, 2010]. ALD process is also shown highly 

energy-intensive. In Al2O3 ALD process, ~ 4.09MJ energy is consumed for deposition of a 

30 nm film [Yuan and Dornfeld, 2010]. Our experimental study on nano-particle emissions 

in Al2O3 ALD process show that the total nano-particle emissions with diameter less than 

100 nm are in the range of 6.0×105 and 2.5×106 particles in 25 cycles of Al2O3 ALD [Ma, et 

al., 2015]. 

 

This chapter focuses on the gaseous material wastes and emissions in the process of Al2O3 

ALD. To be specific, the deposition process is characterized, and methane emissions in the 

process are investigated numerically and experimentally. The previously-established ALD 

numerical model is improved with detailed surface chemical kinetics and reaction 

mechanisms achieved from DFT calculations [Pan, et al., 2015]. The effects of four process 

parameters including temperature, pulse time, purge time, and carrier gas flow rate on 

deposition and material wastes and emissions are investigated systematically using the 

improved numerical model. 

 

6.2 Al2O3 ALD modeling with detailed chemical reaction mechanisms 

6.2.1 Physical process modeling 

The physical thermal-fluid process of ALD includes momentum transport, mass transport 

and heat transfer, and the modeling process is described in great detail in our previous 

chapters. In this chapter, more modeling endeavors are invested in the improvement of 
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reaction mechanisms and chemical kinetic models. 

 

6.2.2 Detailed surface reaction mechanism 

The surface chemical kinetics of ALD is of critical importance to characterize the film 

deposition process, emissions and wastes. However, it is extremely challenging to obtain the 

detailed information regarding the surface reactions in atomic level by in-situ experimental 

characterizations [Remmers, et al., 2015]. With great capabilities to obtain the energetic and 

structural information about the molecular interactions that are essential to understand 

chemical reactions, computational quantum chemistry approaches such as DFT method 

provide a satisfactory alternative to study the ALD surface reaction mechanisms and 

pathways [Remmers, et al., 2015]. Quite a few studies regarding the molecular interactions 

of Al2O3 ALD using DFT methods have been reported [Delabie, et al., 2012, Elliott and 

Greer, 2004, Halls and Raghavachari, 2004, Halls and Raghavachari, 2003, Hass, et al., 

1998, Remmers, et al., 2015, Widjaja and Musgrave, 2002]. This chapter takes advantage of 

these DFT reaction calculations and chemical kinetic data to improve our numerical ALD 

model. 

 

The overall Al2O3 ALD using TMA and water can be expressed as, 

 g g b g
3 3 2 2 3 42Al(CH ) 3H O Al O 6CH+ Þ + ­   (6-1) 

where superscripts g and b represent gas and bulk (solid) species, respectively. This overall 

reaction equation cannot be directly used in the chemical kinetic model because it reveals 
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nothing regarding the actual ALD pulse process in Al2O3 ALD. 

 

A more complex chemisorption reaction mechanism in Al2O3 ALD depicting the actual 

sequencial ALD pulse and reaction steps is modeled by following two half reactions: 

 g * * * b g
3 3 3 3 2 42Al(CH ) 3OH Al-CH Al-(CH ) 3O +3CH+ Þ + + ­   (6-2) 

 g * * * b g
2 3 3 2 43H O Al-CH Al-(CH ) 3OH +2Al 3CH+ + Þ + ­   (6-3) 

where superscripts * represents surface site species. These two irreversible equations reveal 

the actual Al2O3 ALD reaction sequences, and with suffient chemical kinetic information, 

this mechanism is proper to simplify and approximate the actual suface reaction and 

material deposition processes in ALD reactors [Pan, et al., 2015]. However, the above two 

half reactions hardly include the knowledge regarding the elementary reaction steps as well 

as the kinetic information of ALD process, which are specially important to model the 

process wastes and emissions. 

 

With the aid of detailed DFT quantum chemistry calculations, much more detailed chemical 

deposition mechanisms and pathways of Al2O3 ALD are proposed as illustrated in the 

following section [Delabie, et al., 2012, Elliott and Greer, 2004, Halls and Raghavachari, 

2004, Halls and Raghavachari, 2003, Hass, et al., 1998, Remmers, et al., 2015, Widjaja and 

Musgrave, 2002].  

 

For the substrate surface initiations, in both our numerical and experimental settings, we use 
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silicon as substrate, and materials are deposited on the Si (100) surface. In DFT studies, 

Si9H12 cluster is used to investigate the chemical reactivity and vibrational properties of the 

Si (100) surface [Halls and Raghavachari, 2004]. 

 

Regarding the the initial suface species in Al2O3 ALD, Delabie et al. studied the possible 

CH3 and OH terminated surface species on silicon surface using DFT approach [Delabie, et 

al., 2012]. The cited work shows that the hydrolysis of the SiCH3 is kinetically unfavorable 

due to the five coordinated Si atoms in the transition state structure, which makes the 

following surface reation with water extremely difficult [Delabie, et al., 2012]. Their studies 

imply that in actual Al2O3 ALD, it is unlikely to have methyl-covered surface on Si (100) 

surface. Meanwhile, OH-terminated Si (100) surface reacting with TMA results in 

experimentally-consistent results. It is reasonable to presume that the silicon surface is 

hydroxylated with OH groups initially. 

 

In TMA pulse step, with OH-terminated silicon suface, the ALD deposition begins by 

interacting with gaseous TMA molecules forming a bond between O and Al atoms [Halls 

and Raghavachari, 2004, Remmers, et al., 2015, Widjaja and Musgrave, 2002]. The 

formation is reversible and generates an intermediate surface species as shown in Reaction 

R1. 

 
f

g * *
3 3 3 3b

R1:Al(CH ) O H (CH ) Al O H
^ ^

+ Û   (6-4) 

where f and b represent the forward and backward reactions, respectively, and the symbol ^
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denotes the surface bond linkage with surface group. 

 

The above intermediate surface group *
3 3(CH ) AlOH

^
 further proceeds to a transition state 

structure by forming a bond between the O atom and an H atom from one of the three 

methyl ligands, and finally evolves to a more stable structure with two methyl-terminated 

ligands by releasing a methane molecule. This process is represented by Reaction R2.  

 ** g
3 3 3 3 3 2 4R 2: (CH ) AlOH (CH ) AlOH (CH ) AlO CH

^ ^ ^
Û Þ + ­‡   (6-5) 

where the superscript ‡  represents the transition state. The energy profiles of these two 

reactions can be found in the cited paper [Halls and Raghavachari, 2004] . The emission of 

gaseous methane makes this process irreversible. 

 

The energy profile of DFT study [Halls and Raghavachari, 2004] shows that the formed 

surface species *
3 2(CH ) AlÔ  is in high energy state, and is kinetically inclined to interact 

with the nearby OH* group resulting an intermediate surface group as shown in following 

reaction, R3, 

 
f

* * *
3 2 3 2 2b

R 3: (CH ) AlO O H (CH ) AlO H
^ ^ ^

+ Û   (6-6) 

 

In the complex of *
3 2 2(CH ) AlO H

^
, a linkage between the Al atom and the hydroxyl O 

atom is formed. A transition structure is readily formed when the stand-alone hydroxyl H 

atom is attached to one of the two methyl ligands. As a result, a methane molecule is 

emitted as shown in Reaction R4. 
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 ** g
3 2 2 3 2 2 3 2 4R 4 : (CH ) AlO H (CH ) Al O H CH AlO CH

^ ^ ^
Û Þ + ­‡   (6-7) 

 

At this point, much more stable species AlCH3* indicated by the energy profile terminates 

the surface species evolutions in TMA pulse step. The initial OH-terminated substrate 

surface in R1 is transformed to Al (CH3)2* by R2, and AlCH3* by R4, leaving O and Al 

atoms anchored in the formed surface structures. Since the double-methyl-mounted species 

(Al (CH3)2*) is kinetically unstable, the most part of the final substrate surface after TMA 

pulse is likely covered by AlCH3* with only a smaller number of Al (CH3)2*. 

 

For water pulse step, due to the coexistence of the two possible methyl-terminated surface 

species, the surface reaction mechanisms are two-fold. In the case of the 

double-methyl-terminated species Al (CH3)2*, a water molecule is chemisorbed by the Al 

atom resulting two stand-alone H atoms as shown in Reaction R5. One of the H atoms is 

attracted by the C atom of the methyl group resulting in a temporary O-H-C linkage. The 

transitional bond is finally broken at the O-H bond leaving the surface site terminated with a 

heterogeneous mixture of OH and CH3. Presented in Reaction R6, a methane molecule is 

emitted in the process. 

 
f

* g *
3 2 2 3 2 2b

R 5 : (CH ) AlO H O (CH ) O AlOH
^ ^

+ Û   (6-8) 

 * * g
3 2 2 3 2 2 3 4R6: (CH ) OAlOH (CH ) OAlOH CH OAlOH CH

^ ^ ^
Û Þ + ­‡   (6-9) 

 

Contacting with another water molecule, the surface site further evolves to an intermediate 
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structure denoted as *
3 2CH OAlOHOH

^
 shown in the following Reaction R7. A transition 

state structure is further generated in R8 when a similar transitional O-H-C bond is formed. 

The transition state structure 3 2CH OAlOHOH
^

‡ is the barrier before reaching the final stable 

OH-terminated structure.  

 
f

* g *
3 2 3 2b

R 7 : CH O AlOH H O CH O AlOHOH
^ ^

+ Û   (6-10) 

 * * g
3 2 3 2 2 4R8: CH OAlOHOH CH OAlOHOH OAl(OH) CH

^ ^ ^
Û Þ + ­‡   (6-11) 

 

With breakage of the transitional bond, a methane molecule is generated, which leaves the 

surface sites fully covered by two OH groups. The structure has no more place for extra 

water molecules, and the transformation of the double-methyl-terminated species Al 

(CH3)2* to double-hydroxyl-terminated species *
2Al(OH) is finalized. 

 

The process of single-methyl-terminated species AlCH3* interacting with water molecules 

is similar and presented in the following Reactions R9 and R10.  

 
f

* g *
3 2 3 2b

R 9 : AlCH H O CH AlOH
^ ^

+ Û   (6-12) 

 * * g
3 2 3 2 4R10: CH AlOH CH AlOH AlOH CH

^ ^ ^
Û Þ + ­‡   (6-13) 

Water molecule is firstly adsorbed by the Al atom resulting in an intermediate species 

denoted as *
3 2CH AlOH

^
. With extra energy, the species further evolves into a transition 

state structure by forming the O-H-C bond. The excited structure is finally transformed to a 

single-hydroxyl-terminated species by emitting a methane molecule. During the process, an 

extra Al-O is formed. 
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As described in the above deposition reactions R1-R10, the ALD deposition process is 

actually involved with the transformations of different surface species. TMA pulse leaves 

the substrate surface with O-Al bonds and methyl-terminated surface sites, which are 

further converted in water pulse by forming Al-O bonds leaving the surface covered by 

hydroxyl-terminated sites. Within one ALD cycle, the silicon surface is reconstructed with 

the O-Al-O bonds which reprensents a single layer of Al2O3 film. Revealed by the DFT 

energy profiles of the mechanisms [Delabie, et al., 2012, Elliott and Greer, 2004, Halls and 

Raghavachari, 2004, Hass, et al., 1998, Widjaja and Musgrave, 2002], the success of these 

atomic-level transformations heavily depends on the energy conditions, the availability of 

gaseous species and surface species. The reaction conditions are defined by the macro-level 

process parameters, such as the temperature, precursor distributions. 

 

6.2.3 Surface chemical kinetics 

For an irreversible reaction, the reaction rate constant of rth surface reaction
 
is determined 

by the Arrhenius expression, 

 exp a
r

Ek A
RT
-æ ö= ç ÷

è ø
 (6-14) 

where A is the pre-exponential factor, aE is the activation energy, T is temperature in K, and 

R is the universal gas constant.  
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The pre-exponential factor, also known as the frequency factor represents the frequency of 

collisions between reactant molecules. It is practically unfeasible to obtain the 

pre-exponential factor empirically by experiments in our case, and the collision theory 

estimation is not accurate for gas-solid surface interactions [Atkins and de Paula, 2011, 

Chang, 2005]. The transition state theory gives more accurate representation of the 

pre-exponential factor through the Eyring equation [Chang, 2005]. Detailed derivations of 

the following expression for pre-exponential factor can be found in the citied literatures 

[Chang, 2005, Davis and Davis, 2012]. 

 0expB Sk TA
h R

æ öDæ ö= ç ÷ç ÷
è ø è ø

‡

  (6-15) 

where h and kB are Planck's constant and Boltzmann's constant, respectively. 0SD ‡  is the 

change in standard entropy of forming the transition state.  

 

The activation energy in Arrhenius expression is the change in standard enthalpy of forming 

the transition state as following, 

 0aE H= D ‡   (6-16) 

The activation energy is the energy barrier which can be characterized from the energy 

profiles achieved from DFT calculations, while entropy change 0SD ‡  is evaluated through 

the equilibrium constant of forming the transition state, which is expressed as [Davis and 

Davis, 2012], 

 0
0 ln HS R K

T
D

D = +
‡

‡ ‡   (6-17) 

where the equilibrium constant is computed using statistical mechanics methods and the 
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molecular partition functions [Remmers, et al., 2015].  

 

The backward reaction constant kb in the ALD reversible reactions are evaluated by the 

equilibrium constant K, 

 f
b

k
k

K
=   (6-18) 

The equilibrium constants pertaining to these ALD reactions are listed in the cited reference 

[Remmers, et al., 2015].The reaction energy data such as change of enthalpy can be found 

in the cited DFT studies [Delabie, et al., 2012, Elliott and Greer, 2004, Halls and 

Raghavachari, 2004, Hass, et al., 1998, Widjaja and Musgrave, 2002]. 

 

With the improved ALD chemical kinetic model, three levels of four process parameters,  

temperature (150°C, 200°C and 250°C), pulse time (0.015, 0.02, and 0.025 s), purge time (5, 

10 and 15 s) and carrier gas flow rate (10, 20 and 30 sccm) are simulated to study their 

effects on the surface depostion, process wastes and emissions. 

 

6.3 Experiments 

Based on the same ALD system in the numerical model, experiments of characterizing the 

surface reaction process and emissions in Al2O3 ALD are carried out in the Cambridge 

NanoTech Savannah 100 ALD reactor. To benchmark the numerical model especially the 

chemical kinetics in terms of film growth rate, Al2O3 films are deposited on substrates of Si 

using 99.9% TMA and 99.0% distilled water under three levels of deposition temperatures, 
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150°C, 200°C and 250°C. The ALD cycle starts with 300 seconds stabilization, followed by 

0.02 s pulse and 10 s purge procedures for both TMA and water. The Al2O3 films are 

deposited with 500 cycles, and the film thickness is characterized by the UVISEL 

Spectroscopic Ellipsometer (HORIBA, Ltd.). 

 

Figure 6.1 Experimental ALD system with residual gas analyzer (RGA) to characterize the methane 

emissions. 

 

In the proceeding of ALD cycles, an in-situ gas analyzer is used to characterize methane 

emissions in Al2O3 ALD as shown in the scheme of Figure 6.1. Precursors stored in separate 

cylinders are injected sequentially into the ALD chamber when the corresponding ALD 

valve is open. Si wafers with 10 mm by 20 mm are placed in the center of the chamber. A 

residual gas analyzer (Extorr XT Series RGA) is connected in the outlet after a gas 

particulate filter with 100 nm pore size filter element. The emissions are sampled through a 

capillary tube into the RGA device. In our specific experimental setup, due to the possible 

condensation of water vapor in the cooler outlet and RGA tubing, and considering the 
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possible reactions of TMA wastes with the condensed water, it is extremely difficult to 

accurately characterize either TMA waste or water vapor in our ALD system. In our 

experiments, we particularly focus on methane emissions. 

 

6.4 Results and discussion 

6.4.1 Al2O3 ALD deposition process 

Using the reaction mechanisms and the chemical kinetic model, a full cycle of Al2O3 ALD 

with 0.02 s pulse and 10 s purge is simulated with the chamber temperature 200°C. The 

contour plots of gaseous species distributions and the bulk species deposition rates in the 

entire ALD system are presented in Figure 6.2 (a) and (b) at the end of the two pulse steps, 

0.02 s and 10.04 s, respectively, and Figure 6.3 shows the gaseous species distributions in 

the full ALD cycle with the data probed in the center area of the ALD chamber. 

 

At the initial state, only carrier gas N2 exists in the chamber. As the ALD valve is open for 

TMA pulse, TMA concentration increases steadily, while N2 concentration decreases as seen 

in Figure 6.3. The increasing methane concentration shows the surface reactions are 

activated and material deposition is initiated. Methane concentration reaches its peak during 

the 0.02 s pulse step and declines slightly after that. The declined methane concentration is 

mainly due to the fact that the reaction rate decreases as the reactive surface sites OH* is 

being consumed. 
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Figure 6.2 Contour plots of gaseous species distributions and the bulk species deposition rates (a) 

0.02 s at the end of TMA pulse and (b) 10.04 s at the end of water pulse. 

 

Methane generation rate is further decreased as the TMA pulse process ends. As TMA 

concentration declines during the purge step, the low level of methane concentration in the 

center area of chamber is maintained by the TMA residuals during the first half of purge 

step. The increasing carrier gas concentration shows that N2 dominates the chamber space 

again during the purge step. The materials are not evenly distributed in the entire ALD 
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geometry, and along the flow field, the inlet area encounters the precursor flow first as 

shown in Figure 6.2. 

 

Figure 6.3 Gaseous species distributions during the full ALD cycle. 

 

The material concentrations in water pulse process have the similar variations as seen in 

TMA pulse step. As water is being injected into the chamber, methane concentration 

increases steadily and reaches a higher peak. In the second purge process, as water 

concentration declines promptly, much less methane can be detected in the center area. The 

gaseous material distribution variations in the center area are profoundly related to the 

surface species coverage as presented in Figure 6.4. The contour plots of surface coverage 

and precursor distributions in the entire ALD system for TMA and water pulse steps are 

shown in Figure 6.5 (a) and (b), respectively. A full coverage of OH* is assumed initially, 

and its coverage declines slightly in the first few milliseconds as shown in Figure 6.4, and 

deceases promptly following that, until it reaches ~ 20% at the end of the TMA pulse step. 
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To be specific, 21.8% OH* species are left on the surface and are further consumed in the 

following purge step. This indicates that within TMA pulse step, the surface reactions are 

not saturated as also shown by the contour plots in Figure 6.5 (a), especially in the outlet 

area. Part of surface reactions is completed during the following purge step. 

 
Figure 6.4 Surface coverage for the main surface species during the full ALD cycle. 

 

Meanwhile, the two types of methyl-terminated species, Al (CH3)2* and AlCH3* are being 

generated on the surface. At the end of TMA pulse step as shown in Figure 6.5 (a), the 

majority of the surface area is covered by AlCH3* (~ 77.5% in the center area), while only ~ 

1.7% is covered by Al (CH3)2*. Other intermediate surface species involved in R1-R10 have 

much lower level coverage (in the level of 10-6) as indicated in Figure 6.5. This is consistent 

with conclusion from DFT studies that Al (CH3)2* is not stable [Halls and Raghavachari, 

2004]. At the end of the first purge step, 98% substrate surface in the center area is covered 

by AlCH3* and less than 2% is covered by Al (CH3)2*. In water pulse, these two 
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methyl-terminated surface species are converted back to OH* species as shown in Figure 

6.4 and Figure 6.5 (b). At the end of pulse process, ~ 96.7% surface sites are covered by 

hydroxyl-terminated species. A very small portion of surface reactions are completed in the 

second purge step. 

 

Figure 6.5 Contour plots of surface coverage and precursor distributions in the entire ALD system (a) 

0.02 s at the end of TMA pulse and (b) 10.04 s at the end of water pulse. 

 

Figure 6.6 presents the bulk species deposition rate correlated with precursor concentrations 
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during the full ALD cycle in the center area. It’s found that the bulk species deposition rate 

is proportional to the corresponding precursor concentration. As shown in Figure 6.6, both 

of the Al and O deposition rates take the parabolic shape with peak values in the pulse 

process. This is due to the fact that deposition process is not only dependent on the gaseous 

species concentration, but also influenced by the reactive surface species. Although the 

precursor concentrations are increasing during the pulse steps, the increased deposition rate 

is balanced by the deceasing reactive surface sites. 

 

 
Figure 6.6 Correlation of the bulk species deposition rate and precursors concentration during the 

ALD cycle. 

 

Together with the analysis of the elementary chemical reactions in the previous section, the 

full-cycle ALD simulations confirm that the processes of the chemisorption of the gaseous 

species and conversion of the surface species bulk material depositions in ALD. 
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Accompanying the deposition process, methane emissions are generated, and process 

wastes are released. The actual deposition process is heavily dependent on interactions of 

the gaseous, surface and bulk species, which are essentially influenced by the process 

parameters such as temperature, pulse and purge procedures as well as the carrier gas flow 

rate. In the section that follows, these influential factors are investigated systematically. 

 

6.4.2 Effects of process parameters on ALD wastes and emissions 

In this section, the four process parameters, temperature, pulse time, purge time, and carrier 

gas flow rate are specially investigated to explore their effects on the gaseous wastes and 

emissions. The objective of the effect studies is to minimize the negative environmental 

impacts such as wastes and emissions while maintaining a high material deposition rate in 

the concerned ALD process. 

 

Temperature is an essential factor in ALD chemical process defined in the Arrhenius 

equation(6-14). Same as experimental settings, the inlet and outlet tubing of numerical 

model is heated to 150°C, and chamber temperature is adjusted in three levels of 150°C, 

200°C and 250°C. The effects of chamber temperature on total precursor dosage, precursor 

wastes and methane emissions are presented in Figure 6.7 with 0.02/10/0.02/10 s ALD cycle 

and 30 sccm carrier gas flow rate. The experimental results are also plotted in Figure 6.7 to 

benchmark the numerical results. It is found that precursor dosage is barely affected by the 

process temperature. In fact, precursor dosage is mainly determined by the pressure 
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difference between precursor cylinder and the vacuum chamber, which is rarely influenced 

by the chamber temperature [Pan, et al., 2015]. 

 

As described in the reaction mechanisms, methane emissions are closely pertinent to the 

deposition process. The actual ALD involves both chemisorption and desorption or 

decomposition (backward reactions). Higher temperature of 200°C accelerates both 

chemisorption and desorption, but the overall effect as shown by the results in Figure 6.7 is 

the enhancement of chemisorption process. As a result, methane emissions are increased as 

shown in Figure 6.7 (a) from 150°C to 200°C. This is consistent with the film growth rate 

presented in Figure 6.7 (b). When the chamber is further heated to 250°C, however, the 

growth rate is shown decreased in both experimental and numerical results. 

 

This is largely because the enhanced desorption process dominates over the chemisorption 

at higher temperature of 250°C. Taking Reactions R1 and R5 as examples, the extra energy 

at 250°C in the system can be sufficient to overcome the energy barriers of the reverse 

reactions which are 0.6 eV and 0.85 eV for R1 and R5, respectively [Halls and 

Raghavachari, 2004]. This leads to the breakage of the formed O-Al bond in R1 and Al-O 

bond in R5. 

 

With the enhanced desorption process, surface reactions cannot proceed to form O or Al 

atom depositions on the substrate surface, and as an undesirable result, the precursor 
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molecules are returned to chamber and purged out as wastes. As shown in Figure 6.7 (a), the 

total precursor wastes are increased at 250°C from 200°C. Presented in Figure 6.7 (b), the 

precursor wastes are reversely related to the deposition rate. 

 

Figure 6.7 Effects of chamber temperatures on the process wastes and emissions (a) precursor 

dosage, precursor wastes and methane emissions and (b) film growth rate and precursor waste rate. 

 

The experimental data of methane emission in 500 cycles of depositions are also plotted to 
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benchmark the numerical results in Figure 6.7. As an overall remark on the effects of 

temperature in terms of material deposition, wastes and emissions, the results show that at 

moderate temperature of 200°C, more precursors are utilized for film depositions with the 

lowest precursor waste rate (65.4%), and in the meantime, the highest growth rate of 1.17 

Å/cycle is achieved. 

 
Figure 6.8 Effects of pulse time on the process wastes and emissions (a) precursor dosage, precursor 

wastes and methane emissions and (b) film growth rate and precursor waste rate. 
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Precursor dosage is directly proportional to the pulse time as shown in Figure 6.8, in which 

ALD process is simulated at three levels of pulse time 0.015 s, 0.02 s and 0.025 s with 10 s 

purge time at 200°C and 30 sccm carrier gas flow rate. Driven by the pressure difference, 

the precursor dosage in one ALD cycle is increased from 0.187 mg to 0.308 mg as pulse 

time is prolonged from 0.015 s to 0.025 s. With more precursor molecules injected into the 

reactor, the reactions are driven to the forward direction, and the reverse reactions are 

restrained, which results in more material depositions and methane generations. As shown 

in Figure 6.8 (a), methane emissions per cycle are increased from 4.5×10-3 mg to 6.3×10-3 

mg, and meanwhile, the growth rate presented in Figure 6.8 (b) is significantly increased 

from 0.91 Å/cycle to 1.17 Å/cycle when the pulse time is increased to 0.02 s from 0.015 s.  

 

When pulse time is further increased to 0.025 s, slight increments are seen for both methane 

emissions and growth rate. In the case of 0.025 s pulse time when too much precursor is 

supplied to the substrate surface, these extra materials cannot be absorbed in a limited time, 

and are finally purged out of the system due to the possible saturation of the surface 

reactions. As revealed in Figure 6.8 (a), a significant increment of precursor wastes is 

observed at 0.025 s pulse. In such a condition, precursors are greatly overdosed, and this 

seriously deteriorates the sustainability performance of ALD. As presented in Figure 6.8 (b), 

the precursor waste rate is as high as 86.2% at 0.025 s pulse time compared to 70% of 0.02 s. 

Fewer precursors are wasted at 0.015 s pulse time, but the growth rate is low, only 0.91 

Å/cycle as shown in Figure 6.8 (b). As a trade-off, 0.02 s might be the optimal value for 
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pulse time which yields higher growth rate with a relatively higher material usage 

efficiency. 

 

Figure 6.9 shows the effects of purge time on the process wastes and emissions at three 

levels (5 s, 10 s and 15 s) with 0.02 s pulse time at 200°C and 30 sccm carrier gas flow rate. 

The effect of purge time on precursor dosage is very weak as shown in Figure 6.9 (a), while 

it increases the precursor wastes especially from 5 s purging time to 10 s. With longer purge 

time, more precursor residuals in the chamber are purged by the carrier gas. As the majority 

of precursor residuals are cleaned within 10 s, there is no evident increase in the precursor 

wastes with 15 s purge. 

 

Methane emissions are increased from 5 s purge time to 10 s and a slightly increment is 

seen at 15 s as shown in Figure 6.9 (a). The similar effect of purge time on material 

deposition rate is observed in Figure 6.9 (b). Methane generation is positively related to the 

material deposition process, and longer purge time implies more surface reactions on the 

substrate surface due to the longer contact of precursor molecules with the surface sites. As 

a result, the growth rate is increased from 1.15 Å/cycle with 5 s purge time to 1.17 Å/cycle 

with 10 s. 
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Figure 6.9 Effects of purge time on the process wastes and emissions (a) precursor dosage, precursor 

wastes and methane emissions and (b) film growth rate and precursor waste rate. 

 

When the purge process is further prolonged to 15 s, the growth rate is seen at the same 

level as 10 s. This is mainly due to the fact that in the first 10 s, the majority of the reactive 

surface species has been consumed. Lack of reactive surface species has inhibited the 

material chemisorption. The material waste rate shown in Figure 6.9 (b) is higher in longer 
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purge process. From the results in Figure 6.9, shorter purge process, e.g., 5 s, generates 

fewer precursor wastes, but also results in lower growth rate. With both deposition 

throughput and sustainability performance taken into account, 10 s might be the optimal 

choice for the purge time. 

 

Figure 6.10 Effects of carrier gas flow rate on the process wastes and emissions (a) precursor dosage, 

precursor wastes and methane emissions and (b) film growth rate and precursor waste rate. 

 

Carrier gas flow rate affects the surface deposition process and emissions by enhancing the 

convective heat and mass transfer in ALD system as revealed by Figure 6.10, in which three 



 

150 

levels of carrier gas flow rate 10, 20 and 30 sccm are investigated with 0.02/10/0.02/10 s 

ALD cycle at 200°C chamber temperature. As shown in Figure 6.10 (a), precursor wastes 

increase with higher flow rate. Total precursor wastes gathered from the outlet increase 

from 0.13 mg/cycle with 10 sccm flow rate to 0.18 mg/cycle with 30 sccm. Higher carrier 

gas flow rate shortens the contact time of precursors with substrate surface, and thus more 

unreacted precursor materials are carried out of the system. 

 

As more unreacted precursor materials are purged by higher N2 flow rate, less surface 

reactions are resulted in due to lower gaseous precursor concentrations on the wafer surface. 

The growth rate is decreased from 1.19 Å/cycle with 10 sccm carrier gas flow rate to 1.17 

Å/cycle with 30 sccm. Methane emissions also decrease due to the weakened surface 

reactions. Because more precursor molecules are purged out without reacting with the 

surface species on substrate, the precursor waste rate is seen higher at higher flow rate in 

Figure 6.10 (b). From the results presented in Figure 6.10, lower carrier gas flow rate, e.g., 

10 sccm is desirable to achieve higher growth rate, and meanwhile restrain the precursor 

waste rate. 

 

6.5 Summary and conclusions 

This chapter systematically studied the transient deposition process and sustainability 

performance with the aid of DFT calculations regarding the Al2O3 ALD reaction 

mechanisms. The detailed ALD surface reaction mechanisms including 10 elementary 
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surface reactions in Al2O3 ALD process were examined and developed based on the DFT 

atomic-level investigations. The improved surface reaction mechanisms with accurate 

kinetic data were coupled and integrated in the physical thermal-fluid model. Using the 

numerical model, the transient deposition process was studied and analyzed by probing the 

distribution variations of the gaseous, surface and bulk species in a full Al2O3 ALD cycle. 

The full-cycle ALD simulations revealed that the depositions of bulk material in ALD are in 

essence the chemisorption of the gaseous species and the conversion of surface species. The 

actual deposition process is heavily dependent on the interactions of these various species, 

which are essentially influenced by the process parameters. 

 

To explore the effects of the four process parameters of temperature, pulse and purge 

procedures as well as the carrier gas flow rate on material deposition, process wastes and 

emissions, film growth rate on Si substrate was characterized, and methane emissions were 

gathered in both actual ALD system and numerical simulations. It is found by the studies 

that ALD process has very high material waste rate, and ~ 60% precursor dosage is wasted. 

It is also concluded that methane emissions are positively proportional to the film 

deposition process. Temperature fundamentally affects the ALD chemical process by 

changing the energy states in the surface reactions. Both experimental and numerical results 

show that moderate chamber temperature of 200°C results in higher growth rate and fewer 

precursor wastes. Too high temperature decreases the film growth rate by enhancing the 

decomposition process. 
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Pulse time is directly related to the precursor dosage. Longer pulse time enhances the 

deposition process, but also increases the precursor wastes which can weaken the 

sustainability performance. Purge time and carrier gas flow rate have very weak influences 

on deposition process, wastes and emissions. Purge time influence the ALD process by 

changing the gas-surface interaction time, and high carrier gas flow rate alters the ALD flow 

field by enhancing the convective heat and mass transfer in ALD process. The effects of the 

process parameters must be considered by minimizing the process wastes and emissions 

while maintaining a high deposition rate. In many cases, a trade-off must be made in 

defining the optimal process parameters. 
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CHAPTER 7  CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE STUDY 

7.1 Conclusions 

ALD was born with two serious sustainability issues, especially for industrial-level 

applications. One is the low throughput defined by its nature of depositing material in atomic 

level. Another is the potential negative environmental impacts, largely due to the highly toxic 

chemicals used in ALD process, toxic wastes, greenhouse gas emissions and nano-particle 

generations. This dissertation extensively studied the ALD process using both numerical and 

experimental methods with aims to better understand the transient physical and chemical 

processes, and identify the influential process or geometric factors to improve its throughput 

and minimize its emissions and wastes. 

 

A mesoscopic numerical model was built based on Lattice Boltzmann Method to study the 

carrier gas flow in ALD vacuum reactor using two LBM models: LBGK-D2Q9 and TRT. The 

two models in both incompressible and compressible scenarios were compared in the aspects 

of flow features, stability and efficiency. The simulations showed that TRT model is superior 

to the LBGK-D2Q9 model with better stability and reliability especially in compressible 

scenarios. The flow in ALD was shown in a laminar steady state with velocity concentrated at 

the corners and around the wafer. Steady and evenly-distributed velocity field was 

demonstrated to contribute to higher precursor concentration near the wafer.  
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To further characterize the deposition process, a combined experimental and numerical study 

on the physical and chemical details of Al2O3 ALD using TMA and water was conducted. 

Found in our experiments, the film deposition is positively dependent on temperature below 

200°C. The growth rate declines at higher temperature, e.g., 250°C. The inlet sample has 

higher growth rate than other samples. Longer purging time slightly increases the growth rate, 

but specific sample responds differently. The reactive thermal-fluid dynamic model and 

simulation showed that ALD is a strictly self-limited process: surface deposition reactions are 

restrained once the surface species get saturated, even though the precursor material is still 

being introduced into the system. The ALD process is a complex strong-coupled fluid, 

thermal and chemical process which is not only heavily dependent on the chemical kinetics 

and surface conditions but also the flow and material distributions. The numerical simulations 

also clarified the experimental observations by correlating the deposition rate with precursor 

distributions. ALD process is a complex strong-coupled fluid, thermal and chemical process 

which is not only heavily dependent on the chemical kinetics and surface conditions but also 

the flow and material distributions. 

 

Multi-wafer batch ALD process was studied to explore the effects of geometric factor on 

deposition process by comparing vertical and horizontal wafer arrangements. It was found 

from both experiments and simulations that the wafer layout indeed influences the 

deposition rates significantly. The vertical multi-wafer arrangement is superior to the 

horizontal one in film growth rate. By transient simulations, the experimental difference in 
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deposition rate was explained due to the significantly enhanced convective effect of 

chemical species transport to wafer surfaces in the vertical multi-wafer batch ALD process. 

The numerical simulations further revealed more details of the flow and surface reaction 

processes. Deposition process is under a joint influence of precursor concentration and 

surface site saturation status. The ALD deposition process is, in essence, a conversion of 

surface species with adsorptions of certain atoms on the substrate surface. Further data from 

the transient simulations also showed the overall position dependence of deposition rate in 

multi-wafer ALD process is weak and negligible. 

 

Spatial ALD is promising in improving the ALD throughput. An in-line spatial ALD system 

was studied by numerical investigations in depositing Al2O3 thin films. The effects of three 

geometric and process parameters, namely, gap size, temperature, and pumping pressure, 

were considered with three levels, respectively. By simulations, it’s found that bigger gap 

(e.g., 2 mm) results in less precursor intermixing, but it generates slightly lower saturated 

deposition GPC level. The optimal gap size is heavily dependent on the trade-off between 

precursor intermixing and deposition rate. Wafer temperature is a significant factor in both 

flow and surface deposition processes. Higher temperature, 250°C for example, accelerates 

the diffusive mass transport which largely contributes to the precursor intermixing. 

Well-maintained pumping pressure is beneficial to decrease the concentration of precursor 

from the other side, but its effect on the deposition process is seen very weak. It was also 

concluded that the time scale of in-line spatial ALD process is only in tens of milliseconds. 
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As demonstrated in our study, it only takes ~ 30 milliseconds for a specific point on the 

moving wafer belt to complete a full deposition cycle, with which, it is possible to define 

the wafer belt moving speed as ~ 0.67 m/s. Considering the in-line spatial ALD is a 

continuous process without purging step, the overall throughput is shown as high as ~4 nm/s, 

which is much higher compared to the conventional sing-wafer ALD with several 

nanometers growth in a minute. 

 

In order to study and understand the formations of gaseous wastes and emissions in ALD 

process, the transient deposition process with detailed chemical reaction mechanisms of 

Al2O3 ALD obtained from DFT calculations was investigated numerically and 

experimentally. The improved surface reaction mechanisms with accurate kinetic data were 

coupled and integrated in the physical thermal-fluid model to explore the effects of the four 

process parameters of temperature, pulse and purge procedures as well as the carrier gas 

flow rate on material deposition, process wastes and emissions.  

 

It was found by the studies that ALD process has very high material waste rate, and ~ 60% 

or more precursor dosage is wasted. It was also concluded that methane emissions are 

positively proportional to the film deposition process. Both experimental and numerical 

results showed that moderate chamber temperature of 200°C results in higher growth rate 

and fewer precursor wastes. Longer pulse time enhances the deposition process, but also 

increases the precursor wastes which can weaken the sustainability performance. Purge time 
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and carrier gas flow rate have very weak influences on deposition process, wastes and 

emissions. The effects of the process parameters must be considered by minimizing the 

process wastes and emissions while maintaining a high deposition rate.  

 

7.2 Recommendations for future study 

In this dissertation, ALD process was explored extensively using both numerical and 

experimental methods. The LBM method was introduced in modeling the ALD flow. A 

robust reactive thermal-fluid dynamic numerical model was developed, and experiments 

were carried out to study the influential factors on throughput and ALD emissions. However, 

ALD is an extremely complex physical and chemical process, and there is still plenty of 

work to be done in better understanding the ALD process and improve its sustainability 

performance. 

 

Firstly, mesoscopic methods such as the LBM method are versatile in simulating fluid 

phenomena especially for the cases with relatively higher vacuum such as ALD process. 

The theoretical part of LBM needs to be further developed to simulate phenomena including 

heat/mass transfer process, multi-component flow, multi-phase flow, as well as gas-solid 

surface reactions. 

 

Secondly, fundamental experiments need to be carried out extensively in understanding the 

transient ALD deposition process. Especially, more surface chemical information needs to 
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be obtained from these experiments regarding the complex surface reaction mechanisms. 

For instance, the reactive thermal-fluid dynamic model is thirsty for such experimental data 

to be more accurate in characterizing the ALD deposition process. The possible complex 

side reactions involved in ALD process should also be explored experimentally. 

 

In understanding and minimizing the potential hazard of ALD emissions and wastes, the 

experimental work on ALD wastes and emissions, especially nano-wastes formation 

mechanisms need to be carried out. Novel and effective in-situ nano-particle investigation 

methods need to be developed. The effective methods to collect and characterize 

nano-particles are needed. Numerical models which are capable of simulating the 

nano-wastes process in ALD are also needed in optimizing the deposition process. 

 

Finally, in further improving the throughput of ALD, further systematic optimization work 

needs to be done both experimentally and numerically. Better ALD equipment can be 

devised such as plasma-enhanced ALD, roll-to-roll fast ALD. 
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