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ABSTRACT

OPTIMAL PAIRS TRADING RULES

by

Eric Mueller

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Chao Zhu

This thesis derives an optimal trading rule for a pair of historically correlated stocks.

When one stock's price increases and the other one's decreases, a trade of the pair is

triggered. The idea is to short the winner and to long the loser with the hope that the

prices of the two assets will converge again. In this thesis the spread of the two stocks

is governed by a mean-reverting model. The objective is to trade the pair in such a way

as to maximize an overall return. The same slippage cost is imposed on every trade.

Furthermore, a local-time process to the spread is introduced in order to avoid in�nitely

large gains.

We use the associated Hamilton-Jacobi-Bellman equations to characterize the value func-

tions which are solved by using the smooth-�t method. It is shown that the solution of

the optimal pairs trading problem can be obtained by solving a set of nonlinear equations.

Additionally, a set of su�cient conditions is provided in form of a veri�cation theorem.

The thesis concludes with a numerical example.
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1 Introduction

The research on optimal trading rules may be started from Øksendal (2003) (Example

10.2.2., pp. 219 and Example 10.4.2., pp. 227), where an optimal selling rule for a stock

holder was studied. Guo and Zhang (2005) extended the case to a regime switching mar-

ket, where the stock prices were driven by a geometric Brownian motion combined with

a Markov chain. Using a smooth-�t approach they discovered that the optimal trading

rules are of a threshold type. Zhang and Zhang (2008) studied the optimal trading rules

for both buying and selling in a mean reverting market.

Pairs trading, a convergence trading strategy, involves identifying two stocks whose prices

showed similar behavior over a long period of time, i.e., they are historically correlated.

If the spread of the two asset prices increases one buys the loser and shorts the winner,

betting that history repeats and the prices eventually converge again. This trading strat-

egy was developed in the mid-80's and has been a popular tool used by hedge funds and

investment banks since then. For being a successful strategy, it is of great importance

to know when to initiate the pairs trade and when to close all positions. The objective

of this thesis is to �nd such rules and establish their optimality. As in Song and Zhang

(2013) we consider a mean-reverting model. However, the state process used in this thesis

is the di�erence of the log- prices in contrast to the di�erence of the real prices used by

Song and Zhang. Because of the proportional slippage cost for each transaction in our

formulation (see equation (10) for details), and the fact that the di�erence of the prices

of the underlying stocks can be negative, it is possible to have a risk-free positive pro�t.

Therefore in order to work with well-posed problem, we introduce a local time process to

the spread, which ensures that the di�erence of the prices is bounded from below.

The thesis is structured as follows. In Section 2 the pairs trading model is introduced

and is followed by the formulation of the optimization problem. In addition, we de�ne

the reward function and state important properties of the value function at the end of

the section. As in Song and Zhang (2013) and Zhang and Zhang (2008) we follow a
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dynamic programming approach to solve the optimal stopping time problem. The associ-

ated Hamilton-Jacobi-Bellman equations for the value function are established in Section

3, where we also solve them with the help of the smooth-�t method. It is shown that the

three threshold levels z∗0 , z0 and z1 can be used to construct an optimal trading times.

These levels are obtained by solving a set of nonlinear equations. Additionally, we pro-

vide su�cient conditions for their optimality in terms of a veri�cation theorem which is

proven in Section 4. We conclude the thesis by giving a numerical example in Section 5

which shows the practicability of our computations in the previous sections.
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2 Pairs trading model

Let {Ω,F , {Ft}t≥0,P} be a complete �ltered probability space, in which the �ltration

{Ft}t≥0 satis�es the usual condition. Consider two risky asset prices S1(t) and S2(t).

They are co-integrated in the sense that Xj(t) := log(Sj(t)), j = 1, 2 satisfy the stochastic

di�erential equations

dX1(t) = [k̂1 − θ1Ẑ(t)] dt+ σ1 dW1(t),

dX2(t) = [k̂2 − θ2Ẑ(t)] dt+ σ1 dW̃2(t),

(1)

where W1 and W̃2 are one-dimensional Brownian motions with correlation coe�cient

ρ ∈ [−1, 1], i.e., E[dW1(t)dW̃2(t)] = ρdt. Let's write W̃2(t) := ρW1(t) +
√

1− ρ2W2(t) ,

t ≥ 0, where W2 is a one-dimensional Brownian motion that is independent of W1. The

stochastic process Ẑ(t) satis�es

Ẑ(t) = â+X1(t) + cX2(t), (2)

for some constant c. As a straightforward derivative of the above dynamics, we see

dẐ(t) =
[
(k̂1 + ck̂2)− (θ1 + cθ2)Ẑ(t)

]
dt+ σ1 dW1(t) + cσ2 dW̃2(t)

=
[
(k̂1 + ck̂2)− (θ1 + cθ2)Ẑ(t)

]
dt+ [σ1 + cσ2ρ] dW1(t)

+ cσ2

√
1− ρ2 dW2(t).

(3)

Note that if (θ1 +cθ2) is positive, then Ẑ(t) is a mean-reverting process. When c = −1,

â = 0, Ẑ(t) is the di�erence between the log-prices of the two risky assets; it is called

the spread of the stocks at time t. This case corresponds to a commonly referred pairs

trading scenario: Buy the one stock with lower price and sell the one with higher price

simultaneously, and close both positions when the lower one gets higher and the higher

one gets lower at some time later. In other words: Short the pair when the di�erence is

large and close the position when it is small. Intuitively, this scenario shall work since

the di�erence is following a mean reverting process. We let c = −1 for simplicity in this
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thesis; it is straightforward to extend our results to the case of arbitrary c ∈ R. Let

k = k̂1 − k̂2,

σ2 = σ2
1 − 2ρσ1σ2 + σ2

2,

θ = θ1 − θ2.

(4)

The process Ẑ(t) has a long-time average k/θ. For convenience, we will consider the

adjusted process Z(t), de�ned as follows: Z(t) := Ẑ(t) − k
θ
. Then Z(t) has a long-time

mean zero. Moreover, thanks to (2), we have

X2(t) = â− k

θ
+X1(t)− Z(t) = a+X1(t)− Z(t), (5)

where a := â− k
θ
. The corresponding dynamics of X1, X2 and Z become

dX1(t) = (k1 − θ1Z(t)) dt+ σ1 dW1(t), (6)

dX2(t) = (k2 − θ2Z(t)) dt+ ρσ2 dW1(t) + σ2

√
1− ρ2 dW2(t), (7)

dZ(t) = −θZ(t) dt+ (σ1 − ρσ2) dW1(t)− σ2

√
1− ρ2 dW2(t), (8)

where ki = k̂i−kθi/θ. Assume the initial conditions of (6) and (8) are given byX1(0) = x

and Z(0) = z, respectively. Note that thanks to (5), X2(0) = a + x − z is the initial

condition of (7). We will use the above dynamics in the rest of this thesis. We assume

θ1 > θ2 > 0. As a result, θ = θ1− θ2 > 0. Note the setting implies that the �rst asset has

faster reverting rate hence we shall buy it when the pair (di�erence) is far away from the

long-time average, and short the second one with slower reverting rate. Let us introduce

S(t) = S1(t)− S2(t) = eX1(t) − eX2(t) = eX1(t)
(
1− ea−Z(t)

)
, t ≥ 0, (9)
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where the last equality follows from (5). Note that S(t) can take negative values.

Denote

Λ0 = (τ1, ν1, τ2, ν2, . . . ), Λ1 = (ν1, τ2, ν2, τ3, . . . ),

in which τi, i = 1, 2, 3, . . . denote the trading times at which we long the pair, i.e.

buy S1 and sell S2, and νi, i = 1, 2, 3, . . . denote the trading times at which we sell the

pair. Assume that τ1 < ν1 < τ2 < ν2 < . . . are Ft-stopping times. The two sets Λ0 and

Λ1 represent trading sequences with di�erent �rst trading types. As required, no short

selling of the pair is allowed. It means that we may long the pair or wait for a chance

when no positions in hands, and may close all positions or wait when the pair is in hands.

Moreover, given initial conditions X1(0) = x, Z(0) = z, we de�ne the reward function as

follows

Ji(z, x,Λi) =
E
[
∞∑
n=1

(e−ανnS(νn)(1− δ)− e−ατnS(τn)(1 + δ))

]
, i = 0,

E
[
e−αν1S(ν1)(1− δ) +

∞∑
n=2

(e−ανnS(νn)(1− δ)− e−ατnS(τn)(1 + δ))

]
, i = 1,

(10)

where α ∈ (0, 1) is the discount factor , and δ ∈ (0, 1) is the transaction rate or slippage

cost. Without loss of generality, we assume the same rate for buying and selling. For

simplicity, the term E
∞∑
n=1

Yn, for an arbitrary sequence of random variables Yn, will be

interpreted as

lim sup
N→∞

E
N∑
n=1

Yn

throughout this thesis. The initial net position is represented by i: i = 0 means we have

no position in hands while i = 1 means we have a long position in the pair. As such
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de�ned, J0 is the expected value of cumulative discounted gain (loss) excess transaction

cost, given no position in hands initially and J1 is the expected value, given a current

position of the pair in hands. Since S(t) can take negative values there is the possibility to

gain an in�nitely large pro�t just by waiting long enough. To exclude this case one could

introduce a stop-loss level κ > 0, as in Song and Zhang (2013), then a selling decision

would have to be made before S(t) reaches that level. Another possibility, which we will

use in this thesis, is to introduce a local time process to Z so that Z(t) ≥ a for all t ≥ 0

a.s. In this case, Z is a re�ected di�usion process with re�ection point a. So we modify

the SDE (8) by

Z(t) = z −
t∫

0

θZ(s) ds+

t∫
0

(σ1 − ρσ2) dW1(s)−
t∫

0

σ2

√
1− ρ2 dW2(s) + La(t),

where z ≥ a and La is the local time process of Z at a; that is, for a.e. ω ∈ Ω, La(t)

satis�es

(i) Z(t) ≥ a for all 0 ≤ t ≤ ∞,

(ii) La(0) = 0, La(·) is non-decreasing and

(iii) La(·) is �at o� {t ≥ 0 : Z(t) = a}, i.e,
∞∫
0

1{Z(s)>a} dLa(s) = 0.

See, for example, Sections 3.6 and 3.7 of Karatzas and Shreve (1991) for details on

local time processes. Consequently S(t) ≥ 0 for all t ≥ 0. We use the term "buy

the pair" to denote the action of longing one share of S1 and shorting one share of S2

simultaneously. Similarly "sell the pair" means to sell one share of S1 and buy one share

of S2 simultaneously. For i = 0, 1 let Vi(z, x) denote the value functions with the initial

state Z(0) = z > a, X1(0) = x and the initial net positions of the pair i = 0, 1. That is,

Vi(z, x) = sup
Λi

Ji(z, x,Λi). (11)

We will solve the optimization problem (11) to �nd optimal pairs trading rules Λ∗i for

i = 0, 1.
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2.1 Properties of the value function

First we notice that Λ0 = (τ1, ν1, τ2, ν2, . . . ) can be interpreted as a combination of a buy

at τ1 followed by the sequence Λ1 = (ν1, τ2, ν2, . . . ) starting with a sell. Therefore

V0(z, x) ≥ J0(z, x,Λ0)

= E[e−αν1S(ν1)(1− δ) +
∞∑
n=2

(
e−ανnS(νn)(1− δ)− e−ατnS(τn)(1 + δ)

)
− e−ατ1S(τ1)(1 + δ)]

= J1(Z(τ1), X1(τ1),Λ1)− Ee−ατ1S(τ1)(1 + δ).

Now by setting τ1 = 0 and taking the supremum over all Λ1 we obtain

V0(z, x) ≥ V1(z, x)− ex(1− ea−z)(1 + δ). (12)

Similarly, one can regard Λ1 = (ν1, τ2, ν2, . . . ) as a combination of a sell at ν1 followed

by a sequence starting with a buy Λ0 = (τ2, ν2, . . . ). Hence

V1(z, x) ≥ J1(z, x,Λ1)

= E[e−αν1S(ν1)(1− δ) +
∞∑
n=2

(
e−ανnS(νn)(1− δ)− e−ατnS(τn)(1 + δ)

)
]

= J0(Z(ν1), X1(ν1),Λ0) + Ee−αν1S(ν1)(1− δ).

Let ν1 = 0 and take the supremum over all Λ0 to get

V1(z, x) ≥ V0(z, x) + ex(1− ea−z)(1− δ). (13)

In the next lemma we will establish bounds for Vi(z, x).
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Lemma 1

There exists a constant K0 such that the following inequalities hold for z ≥ a and x ∈ R

0 ≤ V0(z, x) ≤ K0, (14)

ex(1− ea−z)(1− δ) ≤ V1(z, x) ≤ K0 + ex(1− ea−z)(1 + δ). (15)

Proof. The lower bounds follow from the de�nitions of Vi(z, x). For the upper bounds

consider the following process

Y (t) =

(
X1(t)
Z(t)

)
.

Then

dY (t) =

(
k1 − θ1Z(t)
−θZ(t)

)
dt+

(
σ1 0

σ1 − ρσ2 −σ2

√
1− ρ2

)
d

(
W1(t)
W2(t)

)
+

(
0
1

)
dLa(t).

Then the generator A of Y is given by

Af = (k1 − θ1z)
∂f

∂x
− θz ∂f

∂z
+

1

2
σ2

1

∂2f

∂x2
+

1

2

[
(σ1 − ρσ2)2 + σ2

2(1− ρ2)
] ∂2f

∂z2

+ σ1(σ1 − ρσ2)
∂2f

∂x∂z
.

Since σ1
∂f
∂x
, (σ1 − ρσ2)∂f

∂z
and −σ2

√
1− ρ2 ∂f

∂z
are all continuous for

f(t, z, x) = e−αtex(1− ea−z), they are bounded on [0, t]. Therefore

0 = E
t∫

0

σ1e
−αseX1(s)(1− ea−Z(s))dW1(s)

= E
t∫

0

(σ1 − ρσ2)e−αseX1(s)ea−Z(s)dW1(s)

= E
t∫

0

−σ2

√
1− ρ2e−αseX1(s)ea−Z(s)dW2(s).
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Then according to Dynkin's formula, we have

Ee−ανnS(νn)− Ee−ατnS(τn) = E
νn∫
τn

(A− α)e−αteX1(t)(1− ea−Z(t))dt,

where

(A− α)e−αtex(1− ea−z)

= −αe−αtex(1− ea−z) + (k1 − θ1z)e−αtex(1− ea−z)

− θze−αtexea−z +
1

2
σ2

1e
−αtex(1− ea−z)− 1

2

[
(σ1 − ρσ2)2 + σ2

2(1− ρ2)
]
e−αtexea−z

+ σ1(σ1 − ρσ2)e−αtexea−z

= e−αt
[
ex(1− ea−z)(−α + k1 +

1

2
σ2

1 − θ1z)

+ exea−z(−θz − 1

2
σ2

1 + σ1σ2ρ−
1

2
σ2

2ρ
2 − 1

2
σ2

2 +
1

2
σ2

2ρ
2 + σ2

1 − σ1σ2ρ)
]

= e−αt
[
ex(1− ea−z)(k1 − α +

1

2
σ2

1 − θ1z) + exea−z(
1

2
σ2

1 −
1

2
σ2

2 − θz)
]
.

For V0(z, x) to have an upper bound we need (A− α)e−αtex(1 − ea−z) to be bounded

from above. At �rst we consider the limits when (x, z)→ (∞,∞) and (x, z)→ (−∞,∞).

Since z ≥ a, we don't have to examine the cases when z → −∞.

• (x, z) → (∞,∞): Since ex and (1 − ea−z) are positive and (k1 − α + 1
2
σ2

1 − θ1z)

becomes negative for z large enough the limit of ex(1 − ea−z)(k1 − α + 1
2
σ2

1 − θ1z)

is negative. Similar for exea−z(1
2
σ2

1 − 1
2
σ2

2 − θz).

• (x, z)→ (−∞,∞): ex and ea−z converge to 0 and (1− ea−z) to 1 but always stays

positive. However, as before (k1 − α + 1
2
σ2

1 − θ1z) and (1
2
σ2

1 − 1
2
σ2

2 − θz) become

negative, which means that the limits of both ex(1− ea−z)(k1−α+ 1
2
σ2

1 − θ1z) and

exea−z(1
2
σ2

1 − 1
2
σ2

2 − θz) are negative.

• Because of the connection between Z(t) and X1(t), z converges to in�nity when x

does and vice versa. So all in all (A−α)e−αtex(1− ea−z) cannot get in�nitely large

and therefore is bounded from above.
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Let C be an upper bound. Then

Ee−ανnS(νn)− Ee−ατnS(τn) ≤ C · E
νn∫
τn

e−αtdt.

With the de�nition of J0(z, x,Λ0) it follows

J0(z, x,Λ0) =E
∞∑
n=1

(
e−ανnS(νn)(1− δ)− e−ατnS(τn)(1 + δ)

)
=E

∞∑
n=1

(
e−ανnS(νn)− e−ατnS(τn)

)
− δ

(
e−ανnS(νn) + e−ατnS(τn)

)︸ ︷︷ ︸
≥0

≤
∞∑
n=1

(
Ee−ανnS(νn)− Ee−ατnS(τn)

)
≤
∞∑
n=1

C · E
νn∫
τn

e−αtdt ≤ C

∞∫
0

e−αtdt =
C

α
:= K0.

Thus, 0 ≤ V0(z, x) ≤ K0. Since V0(z, x) ≥ V1(z, x) − ex(1 − ea−z)(1 + δ) we have

ex(1− ea−z)(1− δ) ≤ V1(z, x) ≤ K0 + ex(1− ea−z)(1− δ). This completes the proof.
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3 HJB equation and its solution

Following the dynamic programming method to solve the considered stochastic opti-

mization problem, the associated Hamilton-Jacobi-Bellman (HJB) equations are formally

given by


min{(α−A)v0(z, x), v0(z, x)− v1(z, x) + ex(1− ea−z)(1 + δ)} = 0,

min{(α−A)v1(z, x), v1(z, x)− v0(z, x)− ex(1− ea−z)(1− δ)} = 0,

∂v0
∂z

(a, x) ≤ 0, ∂v1
∂z

(a, x) = 0.

If i = 0, i.e., no position at hand, intuitively, one should buy when the spread

is small (say equal or less than z0 > a). Then the continuation region, on which

(α − A)v0(z, x) = 0, should include (z0,∞). Furthermore, because of the mean re-

verting character of Z(t) it makes sense not to buy when the spread is close to a. We

want to be sure that the prices really diverge and not immediately return to the equi-

librium level. Therefore the continuation region should additionally include the interval

(a, z∗0) for a < z∗0 < z0. Then the action region is given by (z∗0 , z0) on which we have

v0(z, x) = v1(z, x) − ex(1 − ea−z)(1 + δ). On the other hand, if i = 1, i.e., a position at

hand, one should sell if the spread is large (say equal or greater than z1 > z0). Then the

continuation region is given by (a, z1), on which one should have (α−A)v1(z, x) = 0. Con-

sequently, for z > z1 (the action region) we have v1(z, x) = v0(z, x) + ex(1− ea−z)(1− δ).

These regions are illustrated in Fig. 1.

First of all we try to solve the equations (α − A)vi(z, x) = 0, i = 0, 1. Suppose a

11



i = 0

i = 1

(α−A)v0(z, x) = 0

a z∗0 z0

z1a

(α−A)v0(z, x) = 0v0(z, x) = v1(z, x)− ex(1− ea−z)(1 + δ)

v1(z, x) = v0(z, x) + ex(1− ea−z)(1− δ)(α−A)v1(z, x) = 0

Figure 1: Continuation and action regions

possible solution has the form u(z, x) = exg(z). Thus

(α−A)u(z, x) = 0

⇔ αu(z, x)− (k1 − θ1z)ux(z, x) + θzuz(z, x)− 1

2
σ2

1uxx(z, x)

− 1

2
(σ2

1 − 2σ1σ2ρ+ σ2
2)uzz(z, x)− σ1(σ1 − σ2ρ)uzx(z, x) = 0

⇔ αexg(z)− (k1 − θ1z)exg(z) + θzexg′(z)− 1

2
σ2

1e
xg(z)

− 1

2
(σ2

1 − 2σ1σ2ρ+ σ2
2)exg′′(z)− σ1(σ1 − σ2ρ)exg(z) = 0

⇔ ex
(
g(z)[α− 1

2
σ2

1 − k1 + θ1z] + g′(z)[−σ2
1 + σ1σ2ρ+ θz]

− g′′(z)
1

2
[σ2

1 − 2σ1σ2ρ+ σ2
2]
)

= 0

⇔ g′′(z) +
2(σ2

1 − σ1σ2ρ− θz)

(σ2
1 − 2σ1σ2ρ+ σ2

2)
g′(z) +

2(1
2
σ2

1 + k1 − α− θ1z)

(σ2
1 − 2σ1σ2ρ+ σ2

2)
g(z) = 0. (16)

Next de�ne

A :=
2(σ2

1 − σ1σ2ρ)

σ2
1 − 2σ1σ2ρ+ σ2

2

, B :=
−2θ

σ2
1 − 2σ1σ2ρ+ σ2

2

< 0,

C :=
2(1

2
σ2

1 + k1 − α)

σ2
1 − 2σ1σ2ρ+ σ2

2

, D :=
−2θ1

σ2
1 − 2σ1σ2ρ+ σ2

2

< 0.

Then equation (16) becomes

g′′(z) + (A+Bz)g′(z) + (C +Dz)g(z) = 0
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and the solution is given by

g(z) = C1e
−D
B
zKummerM

(
1

2

B2C +D2 − ABD
B3

,
1

2
,−1

2

B2z + AB − 2D2

B3

)
+ C2e

−D
B
zKummerU

(
1

2

B2C +D2 − ABD
B3

,
1

2
,−1

2

B2z + AB − 2D2

B3

)
.

For some constants C1 and C2. Note that D/B = θ1/θ. Hence

g(z) = C1e
− θ1
θ
zKummerM

(
1

2

B2C +D2 − ABD
B3

,
1

2
,−1

2

B2z + AB − 2D2

B3

)
+ C2e

− θ1
θ
zKummerU

(
1

2

B2C +D2 − ABD
B3

,
1

2
,−1

2

B2z + AB − 2D2

B3

)
.

For simplicity let the following

φ1(z) := e−
θ1
θ
zKummerM

(
1

2

B2C +D2 − ABD
B3

,
1

2
,−1

2

B2z + AB − 2D2

B3

)
,

φ2(z) := e−
θ1
θ
zKummerU

(
1

2

B2C +D2 − ABD
B3

,
1

2
,−1

2

B2z + AB − 2D2

B3

)
.

With respect to the continuation regions and our value functions this means there exist

constants A1, A2, B1, B2 and C1, C2 such that v0(z, x) = ex(A1φ1(z) +A2φ2(z)) on (a, z∗0)

and v0(z, x) = ex(C1φ1(z) +C2φ2(z)) on (z0,∞) and v1(z, x) = ex(B1φ1(z) +B2φ2(z)) on

(a, z1). Consider �rst the interval (z1,∞), since according to Lemma 1 v0(z, x) is bounded

from above and φ1(z) −−−→
z→∞

∞ this implies C1 = 0 and v0(z, x) = exC2φ2(z). So in total

v0(z, x) =


exC2φ2(z) on (z0,∞),

ex(A1φ1(z) + A2φ2(z)) on (a, z∗0),

and

v1(z, x) = ex(B1φ1(z) +B2φ2(z)) on (a, z1).

It is easy to see that both v0 and v1 are twice continuously di�erentiable on their contin-

uation regions. We want to apply the smooth-�t method which requires the solutions to

13



be continuously di�erentiable

• at z∗0 :

v0(z∗0 , x) = v1(z∗0 , x)− ex(1− ea−z∗0 )(1 + δ),

∂v0(z, x)

∂z

∣∣∣∣
z∗0

=
∂v1(z, x)

∂z

∣∣∣∣
z∗0

− exea−z∗0 (1 + δ),

which is equivalent to

A1φ1(z∗0) + A2φ2(z∗0) = B1φ1(z∗0) +B2φ2(z∗0)− (1− ea−z∗0 )(1 + δ),

A1φ
′
1(z∗0) + A2φ

′
2(z∗0) = B1φ

′
1(z∗0) +B2φ

′
2(z∗0)− ea−z∗0 (1 + δ).

(17)

• at z0:

v0(z0, x) = v1(z0, x)− ex(1− ea−z0)(1 + δ),

∂v0(z, x)

∂z

∣∣∣∣
z0

=
∂v1(z, x)

∂z

∣∣∣∣
z0

− exea−z0(1 + δ),

which is equivalent to

C2φ2(z0) = B1φ1(z0) +B2φ2(z0)− (1− ea−z0)(1 + δ),

C2φ
′
2(z0) = B1φ

′
1(z0) +B2φ

′
2(z0)− ea−z0(1 + δ).

(18)

• at z1:

v1(z1, x) = v0(z1, x) + ex(1− ea−z0)(1− δ),
∂v1(z, x)

∂z

∣∣∣∣
z1

=
∂v0(z, x)

∂z

∣∣∣∣
z1

+ exea−z0(1− δ),

14



which is equivalent to

B1φ1(z1) +B2φ2(z1) = C2φ2(z1) + (1− ea−z1)(1− δ),

B1φ
′
1(z1) +B2φ

′
2(z1) = C2φ

′
2(z1) + ea−z1(1− δ).

(19)

• Additionally, we need v0 and v1 to satisfy the following at a:

∂v0(z, x)

∂z

∣∣∣∣
a

= 0,

∂v1(z, x)

∂z

∣∣∣∣
a

= 0,

which is equivalent to

A1φ
′
1(a) + A2φ

′
2(a) = 0,

B1φ
′
1(a) +B2φ

′
2(a) = 0.

(20)

For simplicity de�ne

Φ(z) =

(
φ1(z) φ2(z)
φ′1(z) φ′2(z)

)

and assume that it is invertible. Then we can now rewrite equations (17)-(20) in terms

of Φ(z):

(
A1

A2

)
=

(
B1

B2

)
− (1 + δ)Φ−1(z∗0)

(
1− ea−z∗0
ea−z

∗
0

)
, (21)

C2Φ−1(z0)

(
φ2(z0)
φ′2(z0)

)
=

(
B1

B2

)
− (1 + δ)Φ−1(z0)

(
1− ea−z0
ea−z0

)
, (22)
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(
B1

B2

)
= C2Φ−1(z1)

(
φ2(z1)
φ′2(z1)

)
+ (1− δ)Φ−1(z1)

(
1− ea−z1
ea−z1

)
, (23)

(φ′1(a), φ′2(a))

(
A1

A2

)
= 0,

(φ′1(a), φ′2(a))

(
B1

B2

)
= 0.

(24)

Now multiply both sides of equation (21) by (φ′1(a), φ′2(a)) from the left and use equa-

tion (24) to obtain

(φ′1(a), φ′2(a)) Φ−1(z∗0)

(
1− ea−z∗0
ea−z

∗
0

)
= 0. (25)

Next combine equations (22) and (23)

C2

[
Φ−1(z0)

(
φ2(z0)
φ′2(z0)

)
− Φ−1(z1)

(
φ2(z1)
φ′2(z1)

)]
= (1− δ)Φ−1(z1)

(
1− ea−z1
ea−z1

)
− (1 + δ)Φ−1(z0)

(
1− ea−z0
ea−z0

)
.

(26)

By multiplying both sides of equation (23) by (φ′1(a), φ′2(a)) from the left and again by

using equation (24) we obtain

0 = C2 (φ′1(a), φ′2(a)) Φ−1(z1)

(
φ2(z1)
φ′2(z1)

)
+ (1− δ) (φ′1(a), φ′2(a)) Φ−1(z1)

(
1− ea−z1
ea−z1

)
,

(27)
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which leads to, provided that (φ′1(a), φ′2(a)) Φ−1(z1)

(
φ2(z1)
φ′2(z1)

)
6= 0,

C2 =

−(1− δ) (φ′1(a), φ′2(a)) Φ−1(z1)

(
1− ea−z1
ea−z1

)
(φ′1(a), φ′2(a)) Φ−1(z1)

(
φ2(z1)
φ′2(z1)

) . (28)

Finally, plug this into equation (26) to get

−(1− δ) (φ′1(a), φ′2(a)) Φ−1(z1)

(
1− ea−z1
ea−z1

)
(φ′1(a), φ′2(a)) Φ−1(z1)

(
φ2(z1)
φ′2(z1)

)
×
[
Φ−1(z0)

(
φ2(z0)
φ′2(z0)

)
− Φ−1(z1)

(
φ2(z1)
φ′2(z1)

)]
= (1− δ)Φ−1(z1)

(
1− ea−z1
ea−z1

)
− (1 + δ)Φ−1(z0)

(
1− ea−z0
ea−z0

)
.

(29)

First, one can obtain the triple (z∗0 , z0, z1) by solving the equations (25) and (29). In

order to get the constants C2, A1, A2 and B1, B2 one has to solve �rst equation (28) and

then (21) and (23).

Furthermore, we need additional requirements for vi(z, x). The value functions have

to satisfy the following conditions for being solutions to the HJB-equations:

(α−A)v0(z, x) ≥ 0,

(α−A)v1(z, x) ≥ 0,

v0(z, x) ≥ v1(z, x)− ex(1− ea−z)(1 + δ),

v1(z, x) ≥ v0(z, x) + ex(1− ea−z)(1− δ).

Let us examine these inequalities on the intervals (a, z∗0), (z∗0 , z0), (z0, z1) and (z1,∞). On

(a, z∗0), the �rst two inequalities become equalities. Therefore, only the last to inequalities
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have to hold which is equivalent to

ex(1− ea−z)(1− δ) ≤ v1(z, x)− v0(z, x) ≤ ex(1− ea−z)(1 + δ). (30)

On (z∗0 , z0), we have v0(z, x) = v1(z, x) − ex(1 − ea−z)(1 + δ) which implies v1(z, x) ≥

v0(z, x) + ex(1 − ea−z)(1 − δ). Hence we only need (α − A)v0(z, x) ≥ 0 to hold since

(α − A)v1(z, x) = 0 on (a, z1). We use v0(z, x) = v1(z, x) − ex(1 − ea−z)(1 + δ) and

(α−A)v1(z, x) = 0 to obtain

(α−A)v0(z, x) = (α−A)(v1(z, x)− ex(1− ea−z)(1 + δ))

= (α−A)v1(z, x)− (α−A)ex(1− ea−z)(1 + δ)

=

[
ex(1− ea−z)(k1 − α +

1

2
σ2

1 − θ1z) + exea−z(
1

2
σ2

1 −
1

2
σ2

2 − θz)

]
(1 + δ) ≥ 0,

which is equivalent to

(1− ea−z)(k1 − α +
1

2
σ2

1 − θ1z) + ea−z(
1

2
σ2

1 −
1

2
σ2

2 − θz) ≥ 0. (31)

On (z0, z1) the �rst two inequalities are already ful�lled and similar to (a, z∗0) we need

vi(z, x) to satisfy

ex(1− ea−z)(1− δ) ≤ v1(z, x)− v0(z, x) ≤ ex(1− ea−z)(1 + δ). (32)

Finally, On (z1,∞), we have v1(z, x) = v0(z, x) + ex(1 − ea−z)(1 − δ) which implies

v0(z, x) ≥ v1(z, x)− ex(1− ea−z)(1 + δ). Hence we only need (α−A)v1(z, x) ≥ 0 to hold

since (α−A)v0(z, x) = 0 on (z0,∞). We use v1(z, x) = v0(z, x) + ex(1− ea−z)(1− δ) and

(α−A)v0(z, x) = 0 to obtain

(α−A)v1(z, x) = (α−A)(v0(z, x) + ex(1− ea−z)(1− δ))

= (α−A)v0(z, x) + (α−A)ex(1− ea−z)(1− δ)

=

[
ex(1− ea−z)(−k1 + α− 1

2
σ2

1 + θ1z) + exea−z(−1

2
σ2

1 +
1

2
σ2

2 + θz)

]
(1− δ) ≥ 0,
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which is equivalent to

(1− ea−z)(k1 − α +
1

2
σ2

1 − θ1z) + ea−z(
1

2
σ2

1 −
1

2
σ2

2 − θz) ≤ 0. (33)

Note that the inequalities in (30) and (32) are equivalent to the following

∣∣∣∣(B1 − A1)φ1(z) + (B2 − A2)φ2(z)− (1− ea−z)
1− ea−z

∣∣∣∣ ≤ δ on (a, z∗0),∣∣∣∣B1φ1(z) + (B2 − C2)φ2(z)− (1− ea−z)
1− ea−z

∣∣∣∣ ≤ δ on (z0, z1).

(34)

In the following section we show that the triple (z∗0 , z0, z1) satisfying the conditions above

can be used to construct the optimal trading rules.

19



4 Veri�cation theorem

In this section we show that the triple (z∗0 , z0, z1) satisfying the conditions in Section 3

can be used to construct optimal trading rules. In addition, we show that the functions

vi(z, x), i = 0, 1 given in Section 3 are equal to the value functions Vi(z, x), i = 0, 1 de�ned

in (11).

Theorem 2 (Veri�cation Theorem)

Let (z∗0 , z0, z1) be a solution to (25) and (29) such that

(1− ea−z)(k1 − α +
1

2
σ2

1 − θ1z) + ea−z(
1

2
σ2

1 −
1

2
σ2

2 − θz) ≥ 0 ∀z ∈ (z∗0 , z0),

(1− ea−z)(k1 − α +
1

2
σ2

1 − θ1z) + ea−z(
1

2
σ2

1 −
1

2
σ2

2 − θz) ≤ 0 ∀z ∈ (z1,∞).

(35)

Furthermore, let A1, A2, B1, B2 and C2 be constants given by (28), (21) and (23) satisfying

(34). Let

v0(z, x) =


ex(A1φ1(z) + A2φ2(z)) on [a, z∗0),

ex(B1φ1(z) +B2φ2(z)− (1− ea−z)(1 + δ)) on [z∗0 , z0),

exC2φ2(z) on [z0,∞),

v1(z, x) =


ex(B1φ1(z) +B2φ2(z)) on [a, z1),

ex(C2φ2(z) + (1− ea−z)(1− δ)) on [z1,∞).

Moreover, assume v0(z, x) ≥ 0. Then, vi(z, x) = Vi(z, x), i = 0, 1. Additionally, if

i = 0, let

Λ∗0 = (τ ∗1 , ν
∗
1 , τ

∗
2 , ν

∗
2 , . . . ),
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where the stopping times τ ∗i and ν∗i , i = 1, 2, . . . are de�ned in the following way for n ≥ 1

τ ∗i =


inf{t ≥ 0 : z∗0 ≤ Z(t) ≤ z0}, if i = 1,

inf{t > ν∗n : z∗0 ≤ Z(t) ≤ z0}, if i = n+ 1,

ν∗n = inf{t > τ ∗n : z1 < Z(t)}.

Likewise, if i = 1, let

Λ∗1 = (ν∗1 , τ
∗
2 , ν

∗
2 , τ

∗
3 , . . . ),

where for n ≥ 2

ν∗i =


inf{t ≥ 0 : z1 < Z(t)}, if i = 1,

inf{t > τ ∗n : z1 < Z(t)}, if i = n,

τ ∗n = inf{t > ν∗n−1 : z∗0 ≤ Z(t) ≤ z0}.

Then Λ∗0 and Λ∗1 are optimal.

Proof. The proof of the theorem consists of two parts. First, we show that vi(z, x) ≥

Ji(z, x,Λi), i = 0, 1 for all x ∈ R and z ≥ a. Subsequently, we prove vi(z, x) = Ji(z, x,Λ
∗
i )

which implies vi(z, x) = Vi(z, x) and the optimality of Λ∗i .

At �rst denote I0 = (a, z∗0)∪ (z∗0 , z0)∪ (z0,∞) and I1 = (a, z1)∪ (z1,∞). It is easy to see

that v0(z, x) ∈ C2(I0×R) and v1(z, x) ∈ C2(I1×R). Additionally, both are in C1([a,∞]).

Furthermore, v1 and v2 satisfy (α −A)vi(z, x) ≥ 0 on I0 and I1, respectively.With these

inequalities and Dynkin's formula, we have for any stopping times 0 ≤ σ1 ≤ σ2

Ee−ασ2vi(Z(σ2), X1(σ2))− Ee−ασ1vi(Z(σ1), X1(σ1))

=E
σ2∫
σ1

e−αt (−α +A)vi(Z(t), X(t))︸ ︷︷ ︸
≤0

dt ≤ 0.

Note that since vi(z, x) ∈ C2 and ∂vi(a,x)
∂z

= 0, Dynkin's formula is applicable in this
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situation. Hence,

Ee−ασ2vi(Z(σ2), X1(σ2)) ≤ Ee−ασ1vi(Z(σ1), X1(σ1)). (36)

Since τ1 ≥ 0, this implies

v0(z, x) = Ee−α·0v0(Z(0), X1(0)) ≥ Ee−ατ1v0(Z(τ1), X1(τ1))

≥ Ee−ατ1 [v1(Z(τ1), X1(τ1))− S(τ1)(1 + δ)]

= Ee−ατ1v1(Z(τ1), X1(τ1))− Ee−ατ1S(τ1)(1 + δ).

In the second line we used v0(z, x) ≥ v1(z, x) − ex(1 − ea−z)(1 + δ). Thanks to (36) we

have Ee−ατ1v1(Z(τ1), X1(τ1)) ≥ Ee−αν1v1(Z(ν1), X1(ν1)) which leads to

v0(z, x) ≥ Ee−αν1v1(Z(ν1), X1(ν1))− Ee−ατ1S(τ1)(1 + δ)

≥ Ee−αν1 [v0(Z(ν1), X1(ν1)) + S(ν1)(1− δ)]− Ee−ατ1S(τ1)(1 + δ)

= Ee−αν1v0(Z(ν1), X1(ν1)) + E
[
e−αν1S(ν1)(1− δ)− e−ατ1S(τ1)(1 + δ)

]
.

Next, note that again because of (36), Ee−αν1v0(Z(ν1), X1(ν1)) ≥ Ee−ατ2v0(Z(τ2), X1(τ2)).

Then with v0(z, x) ≥ v1(z, x)− ex(1− ea−z)(1 + δ) we have

v0(z, x) ≥ Ee−ατ2v0(Z(τ2), X1(τ2)) + E
[
e−αν1S(ν1)(1− δ)− e−ατ1S(τ1)(1 + δ)

]
≥ Ee−ατ2 [v1(Z(τ2), X1(τ2))− S(τ2)(1 + δ)]

+ E
[
e−αν1S(ν1)(1− δ)− e−ατ1S(τ1)(1 + δ)

]
= Ee−ατ2v1(Z(τ2), X1(τ2))− Ee−ατ2S(τ2)(1 + δ)

+ E
[
e−αν1S(ν1)(1− δ)− e−ατ1S(τ1)(1 + δ)

]
.

Continue this way and recall that v0(z, x) ≥ 0 to �nally obtain

v0(z, x) ≥ E
N∑
n=1

[
e−ανnS(νn)(1− δ)− e−ατnS(τn)(1 + δ)

]
.
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By sending N → ∞ we get v0(z, x) ≥ J0(z, x,Λ0) for all possible trading strategies Λ0.

This implies v0(z, x) ≥ V0(z, x). In a similar way we can show that v1(z, x) ≥ V1(z, x).

In the next part we show the equalities. First recall

(α−A)v0(z, x) = 0 on (a, z∗0) ∪ (z0,∞),

(α−A)v1(z, x) = 0 on (a, z1),

v0(z, x) = v1(z, x)− ex(1− ea−z)(1 + δ) on (z∗0 , z0),

v1(z, x) = v0(z, x) + ex(1− ea−z)(1− δ) on (z1,∞).

Now let τ ∗1 and ν∗1 as de�ned above. Then τ ∗1 <∞ and ν∗1 <∞ a.s. (see Zhang & Zhang

2008, Lemma 6).Thanks to Dynkin's formula we have

v0(z, x) = Ee−ατ∗1 v0(Z(τ ∗1 ), X1(τ ∗1 ))

= Ee−ατ∗1 [v1(Z(τ ∗1 ), X1(τ ∗1 ))− S(τ ∗1 )(1 + δ)]

= Ee−ατ∗1 v1(Z(τ ∗1 ), X1(τ ∗1 ))− Ee−ατ∗1S(τ ∗1 )(1 + δ)

and

Ee−ατ∗1 v1(Z(τ ∗1 ), X1(τ ∗1 )) = Ee−αν∗1v1(Z(ν∗1), X1(ν∗1))

= Ee−αν∗1 [v0(Z(ν∗1), X1(ν∗1)) + S(ν∗1)(1− δ)]

= Ee−αν∗1v0(Z(ν∗1), X1(ν∗1)) + Ee−αν∗1S(ν∗1)(1− δ).

It follows that

v0(z, x) = Ee−αν∗1v0(Z(ν∗1), X1(ν∗1)) + E
[
e−αν

∗
1S(ν∗1)(1− δ)− e−ατ∗1S(τ ∗1 )(1 + δ)

]
.

Repeat this process to obtain

v0(z, x) = Ee−αν∗nv0(Z(ν∗n), X1(ν∗n)) + E
n∑
k=1

[
e−αν

∗
kS(ν∗k)(1− δ)− e−ατ∗kS(τ ∗k )(1 + δ)

]
.
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In a similar way we can show

v1(z, x) = Ee−αν∗1v1(Z(ν∗1), X1(ν∗1))

= Ee−αν∗1 [v0(Z(ν∗1), X1(ν∗1)) + S(ν∗1)(1− δ)]

= Ee−αν∗1v0(Z(ν∗1), X1(ν∗1)) + Ee−αν
∗
1S(ν∗1)(1− δ)

...

= Ee−αν∗nv0(Z(ν∗n), X1(ν∗n)) + Ee−αν
∗
nS(ν∗n)(1− δ)

+ E
n∑
k=2

[
e−αν

∗
kS(ν∗k)(1− δ)− e−ατ∗kS(τ ∗k )(1 + δ)

]
.

In order to complete the proof we have to show that Ee−αν∗nv0(Z(ν∗n), X1(ν∗n)) −−−→
n→∞

0.

Recall that the value function is bounded from above by a constant K0. Hence

Ee−αν∗nv0(Z(ν∗n), X1(ν∗n)) ≤ K0 · Ee−αν
∗
n .

Since ν∗n
a.s.−−−→
n→∞

∞ and e−αν
∗
n ≤ 1 we can apply the dominated convergence theorem and

obtain

lim
n→∞

K0 · Ee−αν
∗
n = K0 · E lim

n→∞
e−αν

∗
n = 0,

and therefore v0(z, x) = V0(z, x) and v1(z, x) = V1(z, x).

Although this veri�cation theorem provides su�cient conditions for the triple (z∗0 , z0, z1)

in order to guarantee the optimality of our results, it is not known if these constants even

exist yet if they are unique. However, we will illustrate a solution in a numerical example

in the next chapter.
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5 A numerical example

We use the following parameters for our model

α = 0.1, δ = 0.02, a = −0.8,
σ1 = 0.5, σ2 = 0.5, k1 = 2.5,
k2 = 12, θ1 = 2, θ2 = 0.7,
θ = 1.3, ρ = 0.8.

The following computations were carried out by using the computer software MATLAB.

First we solved equation (25) for z∗0 . Using that, (z0, z1) can be obtained by solving

equation (29). Finally, C2 can be obtained from equation (28) and (A1, A2), (B1, B2)

from (21) and (23), respectively. We obtained the following results:

z∗0 = −0.1209, z0 = 1.1026, z1 = 1.3693
C2 = −0.2777, A1 = 0.0005, A2 = 0.8871,

B1 = 0, B2 = 0.

Furthermore, the obtained parameters satisfy the conditions (35) and (34) given in the

veri�cation theorem. Hence one could construct optimal trading strategies in the de-

scribed way. This illustrates the possible practical use of our computations.

Figure 2: v0(z, x)

25



Figure 3: v1(z, x)
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6 Conclusion and open problems

The goal of this thesis was to �nd an optimal trading strategy for a pair of historically

correlated stocks. We showed that these optimal trading rules can be constructed by

using three threshold levels. If the spread of the asset prices falls below the level z0 then

one should buy the pair. If it reaches the level z1 after some time, an investor should

sell the pair. It was shown that following these rules maximizes the total pro�t. The

three key levels could be attained by solving a set of nonlinear equation. To get these

equations we followed the dynamic programming approached and solved the associated

Hamilton-Jacobi-Bellman equations by utilizing the smooth-�t method.

Although we were able to prove the optimality of the trading rules constructed with

the threshold levels we had to use some assumptions, such as the existence of the inverse

of the matrix Φ(z) for all z ≥ a or that v0 is positive. Nevertheless it was possible to

illustrate a numerical example for which a solution (z∗0 , z0, z1) existed which satis�ed the

conditions of the veri�cation theorem. However, it became apparent that with that many

parameters for the model it is di�cult to monitor the in�uence of a particular variable

on the behavior of the resulting threshold levels.

Therefore it would be interesting to examine these dependencies in more details as well

as to be able to prove the existence and uniqueness of the three threshold levels for a set

of predetermined model parameters. In this context it is also noteworthy to mention the

di�culties arising with the choice of our model settings in contrast to comparable studies

such as Song, Q. and Zhang, Q. (2013). The source of most of the di�culties was our

choice of the state variable. In taking the di�erences of the log-prices the price of a posi-

tion in the pair depended on two variables and hence we had to deal with two-dimensional

functions instead of one-dimensional ones as Song and Zhang did by choosing the original

di�erence and therewith the price of the pair as state variable. This fact made not only

the computations more complex but also exacerbated the �nding of an upper bound for

the value functions. With all these di�culties in mind it would be also interesting to �nd
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a real life example where one could apply our results.
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