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ABSTRACT 

 

THE INFLUENCE OF ASSIMILATED TARGETED OBSERVATIONS  
UPON ENSEMBLE FORECASTS OF CONVECTION INITIATION 

 

by 

 

Alexandra Marie Keclik 

 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Clark Evans and Professor Paul Roebber 

 

The influence of assimilating targeted meso-α- to synoptic-scale observations collected in 

the upstream, pre-convective environment upon subsequent short-range ensemble forecasts of 

convection initiation (CI) across the central United States for the fifteen aircraft missions 

conducted by the Mesoscale Predictability Experiment (MPEX) in May and June 2013 is 

evaluated in this study. Utilizing the ensemble Kalman filter implementation within the Data 

Assimilation Research Testbed software package as coupled to version 3.4.1 of the Advanced 

Research version of the Weather Research and Forecasting model, two nearly-identical thirty-

member ensembles of short-range forecasts are conducted for each mission. Initial conditions for 

one ensemble are generated through a cycled data assimilation process that incorporates the 

targeted MPEX dropsonde observations from that day's mission, and initial conditions for the 

other ensemble are generated through a cycled data assimilation process that excludes the 

targeted MPEX dropsonde observations. All forecasts for a given mission begin at 1500 UTC, 

extend forward 15 h, and are conducted on a domain encompassing the conterminous United 

States with 3 km horizontal grid spacing and 40 vertical levels. Verification is conducted over 
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spatiotemporal thresholds of 50 km/0.5 h, 100 km/1 h, and 200 km/2 h of an observed CI event 

to assess the skill of probabilistic forecasts and quantify the influence that assimilating targeted 

observations has upon forecast skill for the events considered. Forecasts without the targeted 

observations have high probabilities of detection but also greatly overproduce CI, and the 

inclusion of targeted observations minimally improves some forecasts and minimally degrades 

other forecasts. Within the 100 km/1 h threshold, the targeted observations on average reduce 

distance errors between matched modeled and observed objects by 0.22 km while adding a time 

bias of 0.24 minutes. The forecast performance of specific cases as well as implications for CI 

predictability are discussed. 
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1.    Introduction 

Convection initiation (CI) or the formation of deep, moist convection is a sequence of 

events in which air parcels accelerate beyond their level of free convection to create a visible 

cloud top (Kain et al. 2013). CI is triggered by a convergence mechanism; common examples 

include drylines, elevated convergence zones, frontal boundaries, gust fronts, horizontal 

convective rolls, orographic circulations, sea breezes, and undular bores (Jorgensen and 

Weckwerth  2003; Weckwerth and Parsons 2006; Burghardt et al. 2014). Further, CI is a classic 

scale interaction problem, requiring a favorable interaction between phenomena from multiple 

scales. The synoptic and meso-α scales establish the thermodynamic and kinematic environment 

favorable for CI (Weisman et al. 2008). The meso-β scale contributes to horizontal variability in 

the large-scale environment in which CI occurs, and meso-γ to microscale phenomena determine 

local planetary boundary layer (PBL) lifting, moistening, and environmental variability crucial to 

CI timing and location (Markowski et al 2006; Weckwerth et al. 2008; Burghardt et al. 2014). 

In a favorable atmospheric environment with sufficiently large vertical wind shear, CI 

can lead to the development of severe thunderstorms capable of producing damaging surface 

winds, flash flooding, large hail and tornadoes. Severe storms annually cause substantial loss of 

life and are responsible for the largest amount of U.S. billion-dollar natural disaster events during 

1980–2014, with an average billion-dollar severe storm event cost of approximately $2.2 billion 

(NOAA 2015). Despite the significant societal impacts that can result, accurately predicting the 

initiation, intensity, and evolution of deep, moist convection remains a significant challenge for 

numerical weather prediction models and human forecasters. Contributions to forecast error 

include the stochastic nature of the atmospheric system, the dependence of CI upon processes on 

multiple scales, shortcomings in physical parameterization packages employed within 
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convection-permitting numerical simulations, and data quality and availability (Weckwerth and 

Parsons 2006).  

Characteristics of convective storms are strongly tied to the environment in which they 

develop, so it is important to accurately represent the initial environment when forecasting such 

events (Benjamin et al. 2010; Wandishin et al. 2010; Weisman et al. 2015). Several efforts in 

operational and experimental convection-permitting NWP (CP; horizontal grid spacing of 4 km 

or less) have been made in recent years to explicitly forecast CI. Duda and Gallus (2013) utilized 

the Advanced Research Weather Research and Forecasting (ARW-WRF; Skamarock et al. 2008) 

with 3-km horizontal grid spacing and Kain et al. (2013) utilized the ARW-WRF Model with 4-

km horizontal grid spacing, and simulations in both studies showed no discernible timing error in 

forecasted CI. Large-scale forcing features were well-simulated and small-scale features that 

influence the timing and location of CI, such as storm-scale outflow boundaries and horizontal 

convective rolls in the boundary layer, were at least partially resolved. Burghardt et al. (2014) 

utilized the ARW-WRF model with a 429 m horizontal resolution on 25 cases in the west-central 

high plains and found a mean model distance error of 48.0 km and mean model early bias of 

about 3 min for the predictability of CI within a 100 km/1 h spatiotemporal threshold. In 

addition, an overproduction of modeled CI events caused high false alarm and bias ratios 

(Burghardt et al. 2014).  

A key finding from NCAR’s experimental forecasts with the WRF Model is that initial 

conditions (ICs) often have a larger influence on short-term (0–36 h) convective forecast skill 

than does model configuration (Weisman et al. 2008; Romine et al. 2013). Targeted 

observations, or the augmentation of the regular observation network with additional, 

specifically chosen observations into numerical weather prediction models, is thought to improve 
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model ICs by providing a better synoptic to sub-synoptic atmospheric representation. Motivated 

by studies demonstrating the influence of the synoptic- and meso- scales upon deep, moist 

convection, the Mesoscale Predictability Experiment (MPEX; Weisman et al. 2015) 

hypothesized that the collection of non-routine synoptic- and meso-α-scale observations in the 

upstream, pre-convective environment across the Intermountain West and their subsequent 

assimilation into convection-permitting numerical forecasts significantly improves forecasts of 

the timing, location, and mode of CI and its subsequent downstream evolution.  

Prior to MPEX, observations have mostly been targeted at synoptic-scale systems for the 

purposes of improving global model 1–3 day forecasts (Majumdar et al. 2011). Targeted 

dropwindsonde observations from field projects such as the NOAA Synoptic Surveillance 

program (Aberson 2010) and Dropwindsonde Observations for Typhoon Surveillance near the 

Taiwan Region (DOTSTAR; Wu et al. 2007, Chou et al. 2011) have been found to be 

statistically beneficial for forecasting the track of tropical cyclones. Targeted observations have, 

on average, showed smaller yet still positive impacts upon extratropical, synoptic-scale forecasts. 

A campaign that found that targeted observations made a mix of improvements and degradations 

to forecasts is the Atlantic-THORPEX Regional Campaign (A-TReC) in which various forms of 

targeted observations, i.e. dropwindsondes, rawinsondes, drifting buoys, AMDAR, Doppler 

Wind Lidar (DWL), and rapid-scan atmospheric motion vectors, were assimilated to evaluate the 

impact of targeted observations on 1–3 day forecasts of high-impact weather over Europe 

(Rabier et al. 2008). Fourrié et al. (2006) suggested that the small number of targeted 

observations and their proximity to conventional observations rather than within areas that were 

deemed most sensitive to additional observations by various methods (i.e. Ensemble Kalman 

Filter, Hessian vectors, and singular vectors) and the lack of high-impact weather cases that were 
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difficult to predict played a role in mostly neutral results (Fourrié et al. 2006; Majumdar et al. 

2011). 

The International H2O Project (IHOP_2002) sampled the three-dimensional time-varying 

moisture field via in situ and remote sensing techniques to better understand convective 

processes (Weckwerth et al. 2008). Liu and Xue (2008) numerically simulated the IHOP_2002 

12–13 June 2002 convection initiation event over the Central U.S. Great Plains using the 3-km 

horizontal resolution Advanced Regional Prediction System (ARPS). Sensitivity experiments 

assess how data assimilation intervals and additional, nonstandard observations influence the 

prediction of CI. The simulation that assimilates the most data produces the best forecast as the 

additional observations removes the resolution-related delay of CI and overly moist initial 

conditions at the low-levels (Liu and Xue 2008). However, other experiments excluding the 

nonstandard observations did better in the timing and location of the initiation of some cell 

groups.  

Observational tools for MPEX included the NCAR G-V aircraft, which featured the 

Airborne Vertical Atmospheric Profiling System mini-dropsonde system and the JPL Microwave 

Temperature Profiling (MTP) system, as well as several ground-based mobile upsonde systems. 

Operations involved two missions per active program day: (1) an early morning mission with the 

NCAR G-V, well upstream of anticipated convective storms, and (2) an afternoon and early 

evening mission with the mobile sounding units, to sample the environment surrounding CI and 

the influence that convection has on its local and larger-scale environment (Weisman et al. 

2015). This study utilizes the MPEX dropsonde observations that were collected across the 

Intermountain West of the United States (Fig. 1) during the course of fifteen research flights 

(RFs) between 15 May and 15 June 2013. An average of 28 dropsondes were released during a 
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RF with a maximum of 33 dropsondes and a minimum of 17 dropsondes during an RF. By using 

ensembles of initial and lateral boundary conditions, one with and one without the MPEX 

dropsonde observations, we test the hypothesis that the assimilation of targeted meso-α to 

synoptic-scale observations are sufficient to increase 0–18 hour CI forecast skill. Section 2 

describes the methodology, including ensemble analysis and simulation configuration, the CI 

identification process, and forecast verification methods. Results from this work will be 

presented in section 3, and a summary and possible future work will be discussed in section 4.  

2.  Methodology 
 
a. Experimental design      

Two parallel cycles of Ensemble Kalman filter-initialized (EnKF), convection-permitting 

real-data numerical simulations, each containing thirty ensemble members, are identically 

configured and utilized to generate ensemble estimates of the initial, pre-convective atmospheric 

state for each of the fifteen RFs. The first, termed the Control ensemble, does not incorporate any 

MPEX observations. The second, termed the Perturbed ensemble, incorporates the MPEX 

dropsonde observations for that particular RF.  

The ensembles are initialized using analyses generated using the ensemble adjustment 

Kalman filter (EAKF; Anderson 2001, 2003) from the Data Assimilation Research Testbed 

(DART; Anderson et al. 2009). Cycling of the data assimilation system is conducted using 

version 3.4.1 of the WRF-ARW (Skamarock et al. 2008) numerical forecast model. The analysis 

domain upon which all data assimilation is conducted has a horizontal grid spacing of 15 km 

(415 x 325 grid points) and covers the conterminous United States, the Gulf of Mexico and 

portions of Canada, Mexico, the eastern North Pacific Ocean, and the western North Atlantic 

Ocean. The domain contains 40 terrain-following vertical levels between the surface and 50 hPa 

with approximately eight levels being in the planetary boundary layer (PBL). The Mellor-
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Yamada-Janjic (MYJ; Janjic 1994) PBL, Thompson et al. (2008) hybrid double-moment 

microphysical, RRTM longwave radiation (Mlawer et al. 1997), Goddard shortwave radiation 

(Chou and Suarez 1994), NOAH (Chen and Dudhia 2001) land-surface process parameterization, 

and Tiedtke (1989) cumulus convection schemes are utilized by the cycled analysis system 

(Table 1).  

The initial 15 km ensemble is produced by adding Gaussian random samples with zero 

mean and covariance provided by the WRFDA package (Barker et al. 2012) to the 1800 UTC 30 

April 2013 Global Forecast System (GFS) analysis interpolated to the 15-km WRF model 

domain (Schwartz et al. 2015). The lateral boundary conditions are generated utilizing the fixed 

covariance perturbation technique of Torn et al. (2006). Sampling errors are minimized by 

sampling error correction as well as horizontal and vertical observation localization applied via a 

Gaspari and Cohn (1999) weighting function, and ensemble spread is preserved with adaptive 

inflation (Anderson 2009). 

Analysis fields are updated by WRF-DART included horizontal and vertical velocity, 

perturbation potential temperature, geopotential height, water vapor, diabatic heating rate, and 

the mixing ratios and number concentrations for all carried microphysical species. Routine 

observations assimilated by WRF-DART included mandatory-level rawinsonde data; surface-

based METAR, buoy, and ship observations; Aircraft Meteorological Data Relay (AMDAR) 

reports; satellite-derived atmospheric horizontal motion vectors (Velden et al. 2005); and Global 

Positioning System (GPS)-derived radio occultation (Kursinski et al. 1997) observations (e.g., as 

in Romine et al. 2013; Schwartz et al. 2015; Torn and Romine 2015). AMDAR observations are 

averaged over boxes with dimensions of 30 km in the horizontal and 25 hPa in the vertical as in 

Torn (2010) and AMVs are averaged over 60 km in the horizontal and are excluded over land. 
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Both surface observations with model terrain and station height differing by more than 300 m or 

within three grid lengths of the lateral boundary conditions are excluded. In addition, radio-

occultation profiles are thinned to 15 levels and observations within three grid lengths of the 

lateral boundary conditions are excluded. The characteristics of all assimilated observations are 

compared to the pre-assimilation atmospheric state space provided by the ensemble, and 

observations whose squared difference from the ensemble mean estimate exceeded three times 

the sum of the prior ensemble and observational error variances are rejected by the assimilation 

system (Romine et al. 2013). The assumed errors for each observation type are the same as in 

Romine et al. (2013) and are listed in Table 3. 

Data is continuously cycled every 6 hours through 0000 UTC 15 June. However, hourly 

data assimilation begins at 0000 UTC the day of a given RF and continues for 15 hours, and the 

ensemble for a RF does not incorporate the previous RF’s hourly cyclic analysis. At 0900 UTC 

the day of an RF, the targeted observations are assimilated into one of the ensembles. The 

ensemble without the targeted observations is termed the Control ensemble and the ensemble 

with the targeted observations is termed the Perturbed ensemble. Data assimilation experiments 

for an RF do not include MPEX observations from a previous RF. The MPEX data are quality-

controlled by the staff of NCAR’s Earth Observing Laboratory prior to assimilation. 

Numerical simulations initialized from the analyses provided by the cycled EnKF-based 

data assimilation system are conducted upon a two-way-interacting 15 km/3 km nested domain. 

The outer 15 km domain is identical to the WRF-DART analysis domain. The inner 3 km 

domain (1046 x 871 grid points) extends from the Intermountain West of the United States to the 

Appalachian Mountains and from Baja California to the Canadian border (Fig. 2). The model 

configuration is identical to that utilized by the cycled EnKF data assimilation system with the 
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exception that cumulus convection is treated explicitly on the 3 km domain. The WRF 

simulations for the Control and Perturbed ensembles are initialized at 1500 UTC on the day of an 

MPEX RF and extend forward 15 h. 

b. CI event identification 

Following Burghardt et al. (2014), Kain et al. (2013), and references therein, CI objects 

are defined as radar reflectivity ≥ 35 dBZ at the –10°C isotherm for a minimum of half an hour. 

Radar reflectivity at the –10°C isotherm is selected to prevent brightbanding effects and the half 

hour time minimum is selected to prevent the inclusion of CI false alarms. Observed radar 

reflectivity from the Level-II Next Generation Weather Radar System (NEXRAD) is obtained 

for 42 radars extending eastward from the Continental Divide to the Mississippi River for the 

duration of each RF simulation (Fig. 3). The Warning Decision Support System – Integrated 

Information (WDSS-II; Lakshmanan et al. 2007) spatial analysis tools (Lakshamanan 2012) are 

used to generate a uniform 0.03° latitude × 0.03° longitude gridded domain and interpolate the 

NEXRAD data to the –10°C isotherm extracted from 13 km Rapid Update Cycle (RUC; 

Benjamin et al. 2004) 0-h analyses. The WDSS-II w2merger is used to merge all the data from 

the 42 radar locations (Lakshmanan et al. 2006; Lakshmanan and Humphrey 2013), and the 

w2segmotionll tool from WDSS-II is used to identify individual storm cells of a minimum of 4 

conjoined grid points (Lakshmanan et al. 2009) and track the cells forward in time (Lakshmanan 

and Smith 2010). Motion estimates and advection qualities are extracted and attributed to each 

CI object using w2segmotionll (Lakshmanan and Smith 2010; Lakshmanan et al. 2013). Forecast 

reflectivity at the –10°C level of each ensemble member is computed in-line by the WRF model 

and extracted every 5 min across the domain from each simulation and bilinearly interpolated to 
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the same grid as the observed reflectivity at –10°C RUC data. The resulting data are then 

provided to WDSS-II, which then identify and track CI events from the reflectivity field.  

c. Verification metrics 

Each ensemble member forecast is verified deterministically with ensemble performance 

evaluated over the range of ensemble members. Sets of modeled and observed CI objects within 

the area of NEXRAD radar coverage are listed and compared for each RF forecast. Following 

Burghardt et al. (2014), a flow-dependent error metric is utilized to quantify the proximity 

between the modeled and observed objects in both space and time dimensions. The error metric 

takes the form: 

C2 = (Errord)2 + (Velocityc × Errort)2.   (1) 

where C is the spatiotemporal error (km), Errord is the spatial difference between the forecasted 

and observed CI (km) and Errort is the temporal error (h). Velocityc is the speed of the observed 

CI object (km h-1) calculated using the time taken and distance traveled from when the object 

first reached 35 dBZ until it no longer met the CI criteria. The Velocityc used herein differs from 

that of Burghardt et al. (2014) which considers a velocity based off of the layer-mean wind field 

rather than object motion. The flow dependence allows for consistency in dimensional units of 

spatial and temporal errors and characterizes timing errors associated with differences in storm 

motion (Burghardt et al. 2014). Thereafter, spatiotemporal thresholds of maximum Errord and 

maximum Errort 50 km/0.5 h, 100 km/1 h, and 200 km/2 h are applied. There is a focus of a 

maximum Errord being 100 km and a maximum Errort of 1 hour as it represents a balance of 

space and time errors in the mesoscale and it allows for the comparison to the model 

performance found within Burghardt et al. 2014.  
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Verification of CI is performed through the use of a contingency table for dichotomous 

yes-no forecasts (Wilks 2011; Fowle and Roebber 2003; Kain et al. 2013; Burghardt et al. 2014; 

Table 2). In this study, true positives (a), false positives (b), and false negatives (c) are identified 

and used to compute four quality measures (Roebber 2009). True negatives (d) are not evaluated 

due to the object-based verification method selected. The probability of detection (POD; Eq. 2) is 

the ratio of correctly forecasted CI objects to the total number of observed CI objects and ranges 

from 0 to 1. The false alarm ratio (FAR; Eq. 3) is the ratio of unobserved forecast CI objects to 

the total number of forecast CI objects and also ranges from 0 to 1. The bias (Eq. 4) is the ratio 

of total forecast events to total observed objects. The Critical Success Index (CSI; Eq. 5), 

sometimes referred to as the Threat Score, is the ratio of correctly forecast objects to the total 

number of observed and forecast CI objects with a perfect score being 1. 

POD =
a

b+ c 
 

(2) 

FAR =
b

a+ b 
 

(3) 

bias =
a+ b
a+ c 

 

(4) 

CSI =
a

a+ b+ c 
 

(5) 

3. Results 

The control and perturbed ensembles are compared to each other and to observations to 

assess the impact of the MPEX targeted observations upon CI forecasts. The verification of CI 

occurrences is performed through the use of the contingency table. In general, false alarms and 

misses decrease and hits increase with increasing spatiotemporal thresholds, but there still 

remains a model overproduction of CI even at the most lenient spatiotemporal threshold, 200 
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km/2 h. Some cases show minimal improvement and others show nominal degradation of CI 

forecast skill with the addition of the MPEX observations. 

Within a 100 km/1 h threshold, the PODs averaged over all 15 RFs for the Control and 

Perturbed ensembles are 0.566 and 0.575, and the FARs are 0.695 and 0.691, respectively. There 

is also slight improvement regarding the mean C error as the Control has a value of 51.30 km 

and the Perturbed C error is 51.0 km, but the C errors remain slightly larger than the matches 

found from the matches from the deterministic forecasts of Burghardt et al. (2014) which had a 

mean C error of 48.0 km within the 100 km/1 h threshold. The average distance error for the 

Control is 45.68 km and the average distance error for the Perturbed is 45.46 km. The average 

time bias for the Control is 0.87 minutes (positive denotes later than observed) with a mean 

absolute time error of 26.66 minutes, while the average time bias for the Perturbed is 1.11 

minutes with a mean absolute time error of 26.55 minutes. The mean CSI scores for the Control 

(0.243) and the Perturbed (0.249) show better performance than the CSI score of 0.191 found by 

the deterministic forecasts of Burghardt et al. (2014). The maximum improvement of average 

CSI with the inclusion of MPEX dropsonde observations is 0.028 for RF12 and the most CSI 

degradation due to the targeted observations occurs for RF6 with 0.016 (Fig. 8; Table 4). 

When making the spatiotemporal thresholds stricter to 50 km/0.5 h, the decrease in 

matches causes mean PODs to decrease to 0.247 for the Control and 0.254 for the Perturbed. The 

mean false alarm ratio increases to 0.867 for the Control and 0.864 for the Perturbed ensembles 

due to the increase in false alarms. CSI scores also degrade to 0.093 and 0.096 for the Control 

and Perturbed ensembles, respectively, but are still slightly more skillful than the CSI of 0.088 at 

50 km/0.5 h found by Burghardt et al. (2014). However, the lower number of matches contains 

lower space and time errors and lower C errors. Mean C error values are 31.44 km for the 
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Control ensembles and 31.56 km for the Perturbed ensembles which are still slightly larger than 

the 30.2 km C error of Burghardt et al. (2014). 

Relaxing the spatiotemporal-matching thresholds to 200 km/2 h improves CI occurrence 

skill scores. The average PODs increase to 0.814 (Control) and 0.819 (Perturbed) while mean 

FARs decrease to 0.557 (Control) and 0.554 (Perturbed).  Thus, CSI scores show improvement, 

increasing to 0.397 and 0.401 for the Control and Perturbed ensembles, respectively. Despite the 

less strict threshold yielding more matches between observed and modeled CI objects, the 

matches are more distant in time and space, thus increasing average object C errors for CI cases. 

Mean C errors become 73.78 km (Control) and 72.9 km (Perturbed). Next, we examine the 

forecast performances of individual cases, namely RF6 and RF12. 

a. RF6: May 23 

The focus of RF6 was to sample the upstream environment of a surface front in northwest 

Texas and weak upper tropospheric potential vorticity (PV) features in New Mexico and Arizona 

that contributed to severe convection in west central Texas. The G-V flight sampled the 

environment in northwestern Texas, New Mexico, Arizona, and central Colorado (Fig. 6a). 

There was a severe, mesoscale convective system (MCS) over Oklahoma during the flight but 

convection did not interrupt the flight (UCAR 2013). The dropsonde soundings revealed a 

cyclonic wind shift over New Mexico in the 300-400 hPa layer around 09 UTC, and a lower 

tropopause and cooler, upper troposphere in accordance with this cyclonic anomaly. Severe 

convection occurred along a weak surface front in the Texas Panhandle by 19 UTC between 

Lubbock and Childress, TX (Fig. 10) which later merged with convection along the dry line in 

southeast New Mexico, forming an MCS over west Texas. In addition to the lifting mechanisms, 

low-level southerly flow from the Gulf of Mexico allowed for sufficient moisture with 2 m dew 
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point temperatures around 17–21°C over much of west central Texas. There was steep mid-level 

lapse rates as well as CAPE values over 3000 J/kg, making the environment favorable for CI. 

The POD and CSI for the RF6 forecasts of convection initiation have the worst overall 

performance among all the cases for the 50 km/0.5 h and 100 km/1 h spatiotemporal thresholds. 

The 100 km/1 h spatiotemporal threshold verification skill scores for RF6 also show the most 

degradation of forecast skill as the CSI decrease from 0.145 to 0.129 with the inclusion of MPEX 

observations. The Control members have a mean POD of 0.375 with a FAR of 0.810 whereas the 

Perturbed members have a mean POD of 0.326 and FAR of 0.824 (Fig. 7a). 

When the spatiotemporal threshold increases to 200 km/2 h, there is still a negative 

impact on forecast skill caused by targeted observations as the CSI increases to 0.364 (Control) 

and 0.306 (Perturbed). There are more matches at this threshold, but the mean distance at which 

the hits occur increases from 51.2 km (Control) and 53.25 km (Perturbed) at the 100 km/1 h 

threshold to 82.67 km (Control) and 86.77 km (Perturbed) at the 200 km/2 h threshold. This 

increase in threshold also results in an increase in time bias from 0.3 minute to 1.8 minutes in the 

Control and from –0.34 minute to 2.49 minutes for the Perturbed. The mean time error of 29.37 

minutes for the Control increases to 55.14 minutes, and the mean time error of 30.49 minutes for 

the Perturbed increases to 56.54 minutes with the larger spatiotemporal threshold. Due to these 

increases in spatiotemporal error, the C error also increases from 54.6 km (Control) and 56.57 

km (Perturbed) to 90.69 km (Control) and 94.75 km (Perturbed). 

Both the Perturbed and Control ensembles show evidence of gravity waves beginning at 

1500 UTC 23 May but by 1800 UTC, the models overcome the implied imbalance in the initial 

conditions. The models immediately overproduce CI as they show convection over western 

Texas as well as northeastern Mexico when convection does not occur there until after 1900 
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UTC (Fig. 10). The simulations show the ongoing convection in northwestern Oklahoma, albeit 

slightly displaced and intensified with a more widespread area of greater than 35 dBZ 

reflectivity. At 1900 UTC, convection in the Texas panhandle initiates along the stationary 

surface front enhanced by the outflow boundary caused by the convection in Oklahoma and the 

members begin to show CI except that this occurrence is displaced to the north. More members 

within both ensembles begin predicting convection in the Texas panhandle as observed 

convection continues to the south. Members also show more widespread convection over the 

western Texas panhandle. At 2100 UTC, more Control ensemble members predict convection in 

the area of observed CI, over western Texas, whereas the Perturbed ensemble keeps the bulk of 

the reflectivity to the southwest and northeast (Fig. 10). In addition, both ensembles show more 

widespread convection over eastern Texas. 

The Perturbed ensemble produces lower heights over western Texas, New Mexico and 

Mexico at 300 hPa indicating an amplification of the upper level trough, and there are also 

higher Perturbed heights at lower levels prior to and during convective initiation over the Texas 

panhandle (Fig. 11). In addition, there is slightly lower SLP and warmer 2 m temperatures 

indicating a minimal eastward shift in the area of convergence within the Perturbed ensemble. 

Perturbed dewpoint temperatures along the New Mexico and Texas borders show variation from 

the Control on the order of +/–4°C with the Perturbed dew points being higher in central and 

northern New Mexico as well as northern Mexico and lower in southeastern New Mexico. This 

shift in dew point temperatures indicate a shift in the dryline which is a possible cause for the 

Perturbed creating more convectively active events to the east of where the observed convection 

occurs in western central Texas.  
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b. RF12: June 8 

A trough embedded within strong, upper-tropospheric northwesterly flow over Wyoming 

and Colorado contributes to widespread convection from the Oklahoma Panhandle northeastward 

into Iowa during RF12. The GV flight sampled the environment in Northern Colorado, Eastern 

Nebraska, southwestern South Dakota, Wyoming, and eastern Idaho (Fig. 6b). The flight winds 

show a sharp trough over the Northeastern Colorado and a large contrast between the air within 

and ahead of the trough. The sounding in the trough is cooler throughout the tropospheric layer 

and has a lower tropopause (UCAR 2013). CI began in north central Kansas around 2000 UTC 

along a surface cold front with dew points near 21°C and 1500–2000 J/kg CAPE.  

In general, RF12 shows modest forecast skill relative to all the other RFs and is the case 

that has the most improvement of skill with the inclusion of targeted observations at the 100 

km/1 h and 200 km/2 h spatiotemporal thresholds. The CSI of the Control ensemble is 0.218 and 

the CSI of the Perturbed ensemble is 0.246 in the 100 km/1 h spatiotemporal threshold (Fig. 8b, 

7b) as the addition of the observations increases hits and reduces false alarms. In the Perturbed 

ensemble, radar reflectivity of greater than 35 dBZ is reduced over North Dakota and South 

Dakota where there is ongoing convection of less than 35 dBZ (Fig. 10). Both ensembles are 

delayed in developing the bulk of the CI which occurs along the cold front in central Kansas 

beginning around 2000 UTC and have the CI displaced further to the northwest. This is a 

possible reason for why RF12 has a late Control time bias of 8.46 minutes and a Perturbed time 

bias of 7.46 minutes. The added observations help to delay the early production of CI over 

western Texas as the Control has the majority of the members predicting CI in that area by 1900 

UTC when it does not begin until about 2100 UTC. Both ensembles indicate the CI along a weak 
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frontal boundary in southeastern Texas with each member having slightly different locations 

while the CI in Northern Mexico is overproduced by both the Control and Perturbed. 

When the spatiotemporal threshold is increased to 200 km/2 h, CSI increases to 0.376 for 

the Control and 0.409 for the Perturbed. The POD increases from 0.556 to 0.848 for the Control 

and 0.600 to 0.881 for the Perturbed, but there is an increase in mean time and distance errors. 

On average, the time errors become more biased as the ensemble CI objects match with the 

observed objects 16.2 (Control) and 16.21 (Perturbed) minutes late. The mean time errors 

increase from 27.26 minutes to 46.8 minutes for the Control and from 27.1 minutes to 45.07 for 

the Perturbed. Distance error increases from 48.41 to 67.93 (Control) and from 46.95 to 64.7 

(Perturbed).  

Differences between the Perturbed and Control height fields, primarily over Kansas and 

Nebraska, increase with decreasing pressure levels which indicates a deepening of the trough 

with increasing height (Fig. 14). The height differences correspond well to the decrease in 

surface temperature and minimal increase in mean sea level pressure from North Dakota 

southward through northern Texas (Fig. 15). In addition, there is a slight decrease in 2 m dew 

point temperatures from that of the Control in the vicinity of the observed cold front, supplying a 

possible reason for the decrease in CI overproduction by the Perturbed ensemble. 

4. Summary and discussion 

Two thirty-member WRF-DART simulations, one incorporating MPEX observations and 

one not, are run for fifteen cases to test the hypothesis that meso-α- to synoptic-scale targeted 

observations improve forecasts of convection initiation. All forecasts for a given mission begin at 

1500 UTC, extend forward 15 h, and are conducted on a domain encompassing the conterminous 

United States with 3 km horizontal grid spacing and 40 vertical levels. Convection initiation 
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events across the central United States are identified from objects in the convectively-active field 

with observed or simulated radar reflectivity of 35 dBZ or greater at the –10°C level for at least 

thirty minutes. Verification is conducted over multiple spatiotemporal thresholds: within 50 

km/0.5 h, 100 km/1 h, and 200 km/2 h of an observed convection initiation event. Each ensemble 

member forecast is verified deterministically with ensemble performance evaluated over the 

range of ensemble members.  

The inclusion of the MPEX targeted observations slightly improves some forecasts and 

marginally degrades some forecasts, but on average, there is minor improvement in the 

prediction of CI. Within the 100 km/1 h threshold, the targeted observations on average reduce 

distance errors between matched modeled and observed objects by 0.22 km while adding a time 

bias of 0.24 minutes and reducing the mean time error by 0.11 minutes. The average POD within 

the 100 km/1 h threshold is 0.566 for the Control and 0.575 for the Perturbed. However, due to a 

large overproduction of CI, FAR is 0.695 for the Control and 0.691 for the Perturbed. The 

overproduction of CI by convective-allowing, high-resolution simulations also occurs in the 25 

deterministic cases considered by Burghardt et al. (2014) as a mean FAR of 0.765 within the 100 

km/1 h threshold was found in that study. In addition, mean CSI values are 0.243 (Control) and 

0.249 (Perturbed), which are slightly higher than the CSI of 0.191 found by Burghardt et al. 

(2014). When the spatiotemporal threshold is loosened to 200 km/2 h, the forecasts become more 

skillful but the distance and time error between the observed and modeled matches increase. The 

inverse is true for when the spatiotemporal thresholds are made stricter; there are less matches 

and more false alarms with matches closer in time and space for 50 km/0.5 h. 

RF6 is a case in which a surface front and upper tropospheric potential vorticity 

contribute to severe convection over west central Texas. Utilizing the 50 km/0.5 h and 100 km/1 
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h spatiotemporal threshold, the simulations for this RF are the worst performing of the 15 RFs 

and show the most degradation in forecast skill by the addition of MPEX observations as CSI 

values decrease from 0.145 in the Control to 0.129 in the Perturbed within the 100 km/1 h 

threshold. The observed CI that occurs in north central is displaced to the north by the 

simulations, and the ensembles suggest CI over Northern Mexico that does not occur until later 

in the simulations. Difference fields between the Control and Perturbed ensemble mean states 

indicate minimal changes in height fields over northern Mexico, New Mexico, and Western 

Texas that contribute to the slight degradation in forecast skill while the remainder of the area 

height fields remain constant between the Perturbed and Control ensembles. 

           RF12 shows modest forecast skill relative to all the other RFs and is the case that has the 

most improvement of skill with the inclusion of targeted observations at the 100 km/1 h and 200 

km/2 h spatiotemporal thresholds. The CSI of the Control is 0.218 and the CSI of the Perturbed 

is 0.246 when utilizing the 100 km/1 h spatiotemporal threshold. The bulk of CI that occurs 

within this case occurs over central Kansas and is largely forced by a trough and associated cold 

front. Difference fields between the Control and Perturbed reveal more influence by the targeted 

observations within this case than for RF6. Decreases in height fields aloft and cooler conditions 

at the surface within the areal extent of the upper trough are probable causes for the decrease in 

overproduction of CI in North Dakota, South Dakota, and Nebraska.             

The simulation performances show similarities to previous works on high-resolution, 

convection-allowing simulations (e.g. Duda and Gallus 2013, Kain et al. 2013, Burghardt et al. 

2014), but are only valid for the model configuration and the object-oriented method utilized 

within this study. The results are limited by initial condition uncertainty and model physics error. 

Changes in the model configuration and data assimilation methods may possibly provide 
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different results. Also, the previous study of the 12–13 June IHOP_2002 case has a similar 

finding in that the inclusion of targeted observations does not always improve the skill of CI 

prediction. In that case study, it is found that the 3-hourly data assimilation cycle provide better 

skill in CI prediction than the hourly data assimilation (Liu and Xue 2007). Although the targeted 

observations utilized for the IHOP_2002 case are from a variety of sources (e.g. radiosondes and 

mesonet networks) whereas dropsonde data are the only targeted observations utilized within this 

study and the Advanced Regional Prediction System Data Analysis System rather than DART is 

utilized by Liu and Xue (2007), perhaps changing the data assimilation cycling rate of the 

targeted MPEX observations may add value to the forecasts of CI prediction and is subject to 

future work.  

	
  

	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 

Table 1. WRF options 
Parameter Cycled analysis domain High-resolution forecast domain 

Horizontal grid 415 x 325, ∆x = 15 km 1046 x 871, ∆x = 3 km 
Vertical grid 40 levels, ptop = 50 hPa Same 
PBL scheme Mellor-Yamada-Janjic Same 

Cumulus scheme Tiedtke None 
Explicit microphysics Thompson Same 
Radiation (shortwave) Goddard Same 
Radiation (longwave) RRTM Same 
Land surface scheme NOAH Same 

 
Table 2. 2 × 2 Contingency Table 

Contingency Table 
Event Observed 

Yes No 

Event 
Forecast 

Yes a b 

No c d 
 

Table 3. Assimilated observation types and assumed observation errors. 
Platform Variable Observation Error 

Radiosonde Temperature 
E–W, N–S winds 
Dewpoint 

NCEP statistics 
NCEP statistics 
Lin and Hubbard (2004) 

AMDAR Temperature 
E–W, N–S winds 

NCEP statistics 
NCEP statistics 

METAR Temperature 
E–W, N–S winds 
Altimeter 
Dewpoint 

2 K 
1.75 m s-1 
1 hPa 
Lin and Hubbard (2004) 

Buoy and ship reports Temperature 
E–W, N–S winds 
Altimeter 
Dewpoint 

2 K 
1.75 m s-1 
1 hPa 
Lin and Hubbard (2004) 

AMV E–W, N–S winds 50% NCEP statistics 

GPS (thinned to 15 levels) RO refractivity Kuo et al. (2004) 
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Table 4. RF cases and averaged ensemble performance for the 100 km/1 h threshold. 

RF Date (2013) Dropsondes Control 
CSI 

Perturbed 
CSI 

Control 
C error (km) 

Perturbed 
C error (km) 

1 15 May 27 0.2605 0.2880 53.88 53.61 

2 16 May 30 0.2466 0.2471 50.14 48.63 

3 18 May 17 0.2854 0.2827 52.45 52.46 

4 19 May 29 0.3259 0.3353 51.54 50.04 

5 21 May 27 0.2426 0.2644 53.39 53.69 

6 23 May 29 0.1445 0.1290 54.60 56.57 

7 27 May 29 0.1686 0.1644 52.59 52.59 

8 28 May 21 0.2675 0.2766 52.82 52.19 

9 30 May 26 0.2593 0.2622 52.42 52.68 

10 31 May 28 0.2991 0.2867 49.18 50.34 

11 03 June 32 0.2339 0.2341 46.00 43.68 

12 08 June 31 0.2176 0.2459 54.71 53.33 

13 11 June 33 0.2556 0.2691 47.86 48.21 

14 12 June 33 0.1536 0.1549 52.33 51.79 

15 14 June 33 0.2916 0.2934 45.58 45.19 
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Figure 1. The full domain of interest for MPEX morning dropsonde operations, along with a 

pre-vetted set of dropsonde sites (numbered stars). Operational National Weather Service (NWS) 

sounding sites are indicated by the red dots (Weisman et al. 2015). 
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Figure 2. The computational domain. 
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Figure 3. Domain covered by radars. 
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(a)                                                (b) 

 

Figure 4. An example of the CA algorithm output from 2200 UTC 31 May 2013 showing the (a) 

interpolated observed reflectivity and (b) identified convectively active objects. 

  

dBZ 
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Figure 5. Performance (Roebber) Diagram for the mean values of all 15 IOP With MPEX and 

Without MPEX ensembles for the three spatiotemporal thresholds: 50km/30 min (squares), 100 

km/60 min (circles), and 200 km/120 min (triangles). Red indicates the Perturbed ensemble and 

Blue indicates the Control ensemble. Filled shapes are the ensemble mean values and the hollow 

shapes are individual ensemble members. Bias is shown through the solid lines and CSI is 

represented by the dashed, curved lines. 
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(a) 

 
 

(b) 

 

Figure 6. The GV flight tracks for (a) RF6 and (b) RF12. 
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(a) 
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(b) 

 

Figure 7. Performance (Roebber) Diagram for (a) RF6 and (b) RF12 for the 50km/30 min 

(squares), 100 km/60 min (circles), and 200 km/120 min (triangles) spatiotemporal thresholds. 

Shaded shapes are the ensemble mean and hollow shapes are individual ensemble members. Red 

indicates the Perturbed ensemble and blue indicates the Control ensemble. 
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(a) 
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(c) 

 
Figure 8. CSI Ensemble CSI mean (diamond), minimum (left whisker), maximum (right 

whisker), lower quartile, median and upper quartile values are plotted for the 15 Control (blue) 

and 15 Perturbed (red) cases. 
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Figure 9. The count of observed CI events (black line), the mean Control CI objects (solid blue) 

and false alarms (dashed blue) as well as the mean Perturbed CI objects (solid red) and false 

alarms (dashed red) over the radar specified domain for (a) RF6 and (b) RF12. 

(a) 

(b) 
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Figure 10. The observed radar reflectivity at –10°C isotherm, probability of Control reflectivity 

greater than 35 dBZ at the –10°C isotherm, probability of Perturbed reflectivity greater than 35 

dBZ at the –10°C isotherm for RF6, respectively at (a-c) 1900 UTC, (d-f) 2000 UTC, (g-i) 2100 

UTC, and (j-l) 2200 UTC 23 May 2013.  
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Figure 11. 300 hPa Control height (m; contour), 300 hPa Perturbed – Control height (m; 

shaded), 300 hPa Perturbed – Control winds (kt; barb); 500 hPa Control height (m; contour), 500 

hPa Perturbed – Control height (m; shaded), 500 hPa Perturbed – Control winds (kt; barb); 700 

hPa Control height (m; contour), 700 hPa Perturbed – Control height (m; shaded), respectively 

for (a-c) 1800 UTC, (d-f) 1900 UTC, (g-i) 2000 UTC, (j-l) 2100 UTC, (m-o) 2200 UTC 23 May 

2013. 
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Figure 12. 2 meter Perturbed – Control dewpoint temperature (°C; shaded) and 10 meter 

Perturbed – Control winds (kt; barb); Perturbed – Control SLP (hPa; contour) and 2 meter 

Perturbed – Control temperature (°C; shaded) for (a-b) 1800 UTC, (c-d) 1900 UTC, (e-f) 2000 

UTC, (g-h) 2100 UTC, (i-j) 2200 UTC 23 May 2013. 
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Figure 13. The observed radar reflectivity at the –10°C isotherm, probability of Control 

reflectivity greater than 35 dBZ at the –10°C isotherm, probability of Perturbed reflectivity 

greater than 35 dBZ at the –10°C isotherm for RF12, respectively at (a-c) 1900 UTC, (d-f) 2000 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 



40 

UTC, (g-i) 2100 UTC, and (j-l) 2200 UTC 08 June 2013 (shading legend is the same as Figure 

10). 
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Figure 14. 300 hPa Control height (m; contour), 300 hPa Perturbed – Control height (m; 

shaded), 300 hPa Perturbed – Control winds (kt; barb); 500 hPa Control height (m; contour), 500 

hPa Perturbed – Control height (m; shaded), 500 hPa Perturbed – Control winds (kt; barb); 700 

hPa Control height (m; contour), 700 hPa Perturbed – Control height (m; shaded), respectively 

for (a-c) 1900 UTC, (d-f) 2000 UTC, (g-i) 2100 UTC, (j-l) 2200 UTC, (m-o) 2300 UTC 08 June 

2013 (shading legend the same as Figure 11). 
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Figure 15. 2 meter Perturbed – Control dewpoint temperature (°C; shaded) and 10 meter 

Perturbed – Control winds (kt; barb); Perturbed – Control SLP (hPa; contour) and 2 meter 

Perturbed – Control temperature (°C; shaded) for (a-b) 1800 UTC, (c-d) 1900 UTC, (e-f) 2000 

UTC, (g-h) 2100 UTC, (i-j) 2200, and (k-l) 2300 UTC 08 June 2013 (shading legend is the same 

as Figure 12). 
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