University of Wisconsin Milwaukee UWM Digital Commons

Theses and Dissertations

May 2016

Detecting Association of Gene-Environment Interactions in Common and Rare Variants for Hypertension

Miguelangel Diaz Medina University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd Part of the Biostatistics Commons

Recommended Citation

Diaz Medina, Miguelangel, "Detecting Association of Gene-Environment Interactions in Common and Rare Variants for Hypertension" (2016). *Theses and Dissertations*. 1135. https://dc.uwm.edu/etd/1135

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

DETECTING ASSOCIATION OF GENE-ENVIRONMENT INTERACTIONS IN COMMON AND RARE VARIANTS FOR HYPERTENSION

by

Miguelangel Diaz Medina

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

> Master of Science in Mathematics

> > at

The University of Wisconsin-Milwaukee

May 2016

ABSTRACT

DETECTING ASSOCIATION OF GENE-ENVIRONMENT INTERACTIONS IN COMMON AND RARE VARIANTS FOR HYPERTENSION

by

Miguelangel Diaz Medina

The University of Wisconsin-Milwaukee, 2016 Under the Supervision of Professor Xuexia Wang and Daniel Gervini

Subsequent malignant neoplasms (SMNs) or secondary cancers are one of the most negative effects resulting from cancer treatment such as chemotherapy or radiation. Given the severity and high incidence of mortality faced by cancer survivors, it is critical that we understand the cause of SMNs so that preventive measures or intervention can be done for individuals facing a higher risk of SMN incidence. The purpose of this thesis is to test the efficacy of newly developed statistical methods used to identify gene-environment interactions that are associated with a specific disease, in this case, SMNs, considering both common and rare variants, using optimally weighted combinations and generalized linear models.

The models proposed are a variation of the model to Test the effect of an Optimally Weighted combination of variants (TOW) and the Variable Weight TOW (VW-TOW). Two newly proposed weighting schemes, Inverse Standard Deviation (ISD) and the Correlation Coefficient Method (CCM) are tested. In order to test the models, real life data from previous studies is analyzed to target and identify genetic variants that have been shown to have an association with a disease, in this case, hypertension, comparing the analyses and results to a study done in testing rare variants for hypertension using family-based tests with different weighting schemes. The study focuses on data from Chromosome 3 genotyped during the Genetic Analysis Workshop 18 (GAW18), obtaining similar

ii

results to those in the hypertension study and the GAW18 study. Partial results from simulated studies are shown to support the methods' development and preliminary analyses. Comparisons are then done with existing methods to show when they exceed current standards.

TABLE OF CONTENTS

Contents

1	Intr	oduction	1
	1.1	Basics of Biology and Statistical Genetics	1
	1.2	Data Management	3
2	The	e Methods: TOW-SE & VW-TOW-SE	4
	2.1	Testing the effect of an Optimally Weighted combination of variants (TOW).	4
	2.2	VW-TOW	6
	2.3	Adjusting for Confounder Covariates	7
	2.4	Testing the effect of an Optimally Weighted combination of variants considering SNP-Environmen	ıt
		interaction (TOW-SE)	9
	2.5	Comparison Methods: iSKAT & MinP	10
3	\mathbf{Sim}	ulations and Partial Preliminary Results	11
4	Rea	l Data Analysis: GAW18	16
	4.1	Results for Quantitative Environmental Variable: Age at Diagnose	17
	4.2	Results for Binary Environmental Variable: Smoker Status	18
5	Refe	erences	21

LIST OF FIGURES

1	DNA Chains and Base Pairs	2
2	Power Comparison as the Proportion of Causal Variants Increases, when There is a Main	
	Effect from the SNP	12
3	Power Comparison as the Proportion of Causal Variants Increases, when There is No Main	
	Effect from the SNP	13
4	Power Comparison as the Proportion of Protective Variants Increases, when There is a Main	
	Effect from the SNP, on gene 3	14
5	Power Comparison as the Proportion of Protective Variants Increases, when There is a Main	
	Effect from the SNP, on gene 4	15
6	Power Comparison as the Proportion of Protective Variants Increases, when There is No Main	
	Effect from the SNP, on gene 3	15
7	Power Comparison as the Proportion of Protective Variants Increases, when There is No Main	
	Effect from the SNP, on gene 4	16

LIST OF TABLES

1	Example of SNPs	2
2	Data Coding: A_1 Considered to be the Disease Allele	3
3	P-values from the Considered Methods for Age at Diagnose	17
4	P-values from the Considered Methods for Smoker Status	18
5	Range of SNPs Inside the Potentially Significant Windows for the Age Evironmental Variable	19
6	Range of SNPs Inside the Potentially Significant Windows for the Smoker Status Environ-	
	mental Variable	20

ACKNOWLEDGMENTS

I would like to begin by thanking my main advisor Dr. Xuexia Wang for allowing me to work with her for my thesis and support our ongoing research through the work done in the thesis. I would like to thank my co-advisor Dr. Daniel Gervini for allowing me to work with him along with a professor from a different department and for giving me useful feedback. Thanks to both Dr. Wang and Dr. Gervini I was introduced into a field I had never thought of studying and discovered how interesting it could be. I would like to thank Dr. Jugal Ghorai for being part of my committee and also providing useful feedback.

1 Introduction

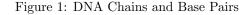
In the study of statistical genetics, statistical models are used to analyze, in a broad sense, inherited traits and genetic data. Genetic data refers mainly to biological material that is inherited during reproduction through sperm and egg cells (Laird et al, 2011). In the past, it was difficult to perform such analyses, having mostly statistical experimental studies in plants and animals. However, as technological power increases, our ability to gather and manipulate data has become more efficient, hence allowing us to reach milestones that in the past may have seen impossible, such as mapping up to 90% of the humane genome (National Human Genome Research Institute, 2015), comparing the genetic sequences of individuals in order to identify chromosomal regions where genetic variants are shared (International Hapmap Project, 2016), identifying and categorizing the functions of specific genes. (National Center for Biotechnology Information, 2016), and performing Genome Wide Association Studies(GWAS); studies which aim to determine genetic variation associated with disease traits. Due to the increase of technological power, we are in an era where statistical genetic studies will provide significant insight into disease etiology, aiding us in developing effective preventive measures as well as more successful disease treatments.

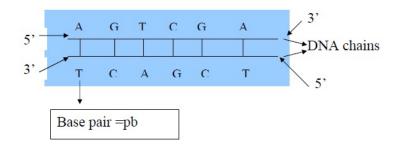
In this thesis, the focus is to test the efficacy of newly developed statistical methods to identify geneenvironment interactions that are associated with a specific disease, considering both common and rare variants, using optimally weighted combinations and generalized linear models proposed by Dr. Xuexia Wang.

1.1 Basics of Biology and Statistical Genetics

In order to yield a proper understanding of the material being discussed in this thesis, it is important to clarify some terminology that will be used through the text; terminology that might be foreign to the reader. The thesis is focused on the analysis of the association between *gene-environment* interactions and a disease trait, in both common and rare *variants*. For the context of this thesis, *Gene* refers to a single-nucleotide polymorphism (SNP); however, a gene can be any segment of DNA within a chromosome possessing a specific genetic function. *Environment* refers to any variable, continuous or discrete, that is applied to the individual, such as smoking status, dosage of medicine applied for treatment, age at disease diagnose, etc.

As it is known, the genetic information of a human individual is contained in 23 pairs of chromosomes, 22 autosomal (homologous) pairs, and one sex chromosome pair. Furthermore, there are two DNA chains or sequences in each chromosome, they have a direction; one end is called 5' and the other end is called





3'; they are defined according to the asymmetrical bonding of sugar and phosphate, and they are read, by convention, from left to right, beginning at the 5' strand. DNA itself has four bases: Adenine(A), Cytosine(C), Guanine(G), and Thymine(T). Adenine pairs with Thymine and Guanine pairs with Cytosine. We define a base pair (bp) as the two bases from the two DNA chains in a chromosome, hence a base pair can be (AT) or (CG) (See Figure 1). Base pairs are used as the unit of length of chromosomes or DNA sequences. A *marker or locus* is a specific position in a chromosome. It could range from 1 bp to hundreds of bp. An *allele* is a DNA sequence within a marker; however, the terms gene, allele, and sometimes base, are usually interchangeable.

There are several types of markers, such as SNPs, Indels, Variable Numbers of Tandem Repeats (VNTRs), and Structural Variants, but SNPs are one of the main markers studied nowadays, since they explain a large portion of genetic variation in the human genome. A SNP is a single base pair marker that has two bases for the whole human population. The two bases can be from any of the four, not taking into consideration the usual AT or CG pairing (See Table 1).

Since SNPs have two alleles, we can determine their occurrence within a population. Consider SNP_A in a

Individual	SNP 1	SNP 2	SNP 3	SNP 4
1	А	Т	Т	А
2	А	G	Т	\mathbf{C}
3	G	G	Т	\mathbf{C}
4	А	Т	А	\mathbf{C}

Table 1: Example of SNPs

population of n individuals. Let A_1 and A_2 be the alleles corresponding to SNP_A . Let a_1 be the number of A_1 alleles and a_2 be the number of A_2 alleles. Then A_1 is the minor allele if $a_1 < a_2$ and it's frequency, denoted as the minor allele frequency MAF, is $\frac{a_1}{n}$. The concept of Minor Allele Frequency (MAF) is used to determine whether a SNP is a common or rare variant. Usually, SNPs with a MAF > .05 are considered common variants, and SNPs with MAF < .05 are considered rare variants. However, this is not a set rule, and it can vary depending on the researcher and methods being used to analyze the data.

1.2 Data Management

Since there are around 10million SNPs in the human genome, data management can be a difficult task. For example, considers a study on 200 individuals at 300,000 variants. Depending on the kind of analysis desired, the processing time for this amount of data can be extensive. Fortunately, there are tools that allow us to perform analyses in an efficient way. Notwithstanding, some knowledge in statistical software and basic Unix scripting is fundamental when deciding the right approach in a study.

Genomic data can be inconvenient to manipulate if it is analyzed as the letters corresponding to the alleles in the SNPs, which is why it is ideal to recode the data, and this can be done in several manners, such as additive recoding, recessive recoding, or dominant recoding. Consider again SNP_A with alleles A_1 and A_2 . Now assume that allele A_1 is suspected to be the disease allele. If data is recoded additively, then it takes the values $i \in \{0, 1, 2\}$ where *i* denotes the number of disease alleles. If data is recoded recessively, then a recessive disease model is considered; it is assumed that only individuals with two disease alleles in the marker will have the disease, and the data is recoded to take the values $i \in \{0, 1\}$ where *i* denotes whether there are two disease alleles in the marker. If data is recoded dominantly, then a dominant disease model is considered; it is assumed that individuals with either 1 or 2 disease alleles will have the disease, and the data is recoded to take the values $i \in \{0, 1\}$ where *i* denotes whether there is at least 1 disease allele in the marker (See Table 2). The data used in this thesis is coded additively, as it provides the most information out of the three methods.

Table 2: Data Coding: A_1 Considered to be the Disease Allele

Alleles	Additive Coding	Recessive Coding	Dominant Coding
A_1A_1	2	1	1
A_1A_2	1	0	1
A_2A_2	0	0	0

2 The Methods: TOW-SE & VW-TOW-SE

The Methods TOW-SE and VW-TOW-SE are based on previously developed methods TOW and VW-TOW by Sha et al, 2012. The hypothesis stated is that the risk of treatment-related SMNs is associated with joint effects of therapeutic exposures and susceptible genes such as drug-metabolizing genes, drug transport genes, and DNA repair genes. (Wang, 2015).

Consider a sample of n individuals that have been genotyped at M variants (SNPs). Let y_i denote the disease trait for the i^{th} individual (discrete or continuous), E_i as the environmental variable (discrete or continuous), Z_{ic} as the C potential covariates, and G_{im} as the genotypic scores, coded additively, at the M variants.

2.1 Testing the effect of an Optimally Weighted combination of variants (TOW).

The Test for testing the effect of an Optimally Weighted combination of variants (TOW) derives a combination of optimal weights to test the effect of $\sum_{m}^{M} w_{m}^{0} g_{im}$. Consider the following generalized linear model:

$$h(E(y_i \mid G_i)) = \beta_0 + \beta_1 g_{i1} + \dots + \beta_M g_{iM}$$
(1)

We use the generalized linear model (GLM) to model the relationship between disease traits y_i and genotypes G_i , where $h(\cdot)$ is a monotone link function, β_j are the regression parameters, $j \in \{0, 1, ..., M\}$. Depending on whether the disease trait is discrete or continuous, two models, the logistic regression model with the Logit link for a binary trait or the linear model with the identity link for continuous or quantitative traits, can be used. We consider the following score test statistic for the null hypothesis $H_0: \beta = 0$ [Sha et al, 2012]:

$$S = U^T V^{-1} U \tag{2}$$

where $U = \sum_{i=1}^{n} (y_i - \bar{y})(g_i - \bar{g})$ and $V = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (g_i - \bar{g})(g_i - \bar{g})^T$. The score test statistic S follows asymptotically a chi-square distribution with rank(V) degrees of freedom (Sha et al, 2012). Although powerful when testing common variants, this test loses power when rare variants are introduced into the model, which is why the weighted combination of variants is introduced. In order to test the effect of $g_i^w = \sum_m^M w_m^0 g_{im}$ the test score statistic becomes:

$$S(w_1, ..., w_M) = n \frac{(\sum_{i=1}^n (y_i - \bar{y})(g_i - \bar{g}))^2}{\sum_{i=1}^n (y_i - \bar{y})^2 \sum_{i=1}^n (g_i - \bar{g})^2} = n \frac{(\sum_m^M w_m \sum_{i=1}^n (y_i - \bar{y})(g_{im} - \bar{g}_m))^2}{\sum_{i=1}^n (y_i - \bar{y})^2 \sum_{i=1}^n (g_i - \bar{g})^2}$$
(3)

Since rare variants can be assumed to be independent, we have that:

$$\sum_{i=1}^{n} (g_i - \bar{g})^2 = \sum_{m=i}^{M} \sum_{l=1}^{M} w_m w_l \sum_{i=1}^{n} (g_{im} - \bar{g}_m) (g_{il} - \bar{g}_l) \approx \sum_{m=1}^{M} w_m^2 \sum_{i=1}^{n} (g_{im} - \bar{g})^2$$
(4)

If we let:

$$a_m = \frac{\sum_{i=1}^n (y_i - \bar{y})(g_{im} - \bar{g}_m)}{\sqrt{\sum_{i=1}^n (g_{im} - \bar{g}_m)^2}}$$
(5)

and

$$u_m = w_m \sqrt{\sum_{i=1}^n (g_{im} - \bar{g}_m)^2}$$
(6)

this yields a score test statistic

$$S_0(w_1, ..., w_M) = n \frac{(\sum_{m=1}^M a_m u_m)^2}{\sum (y_i - \bar{y})^2 \sum_{m=1}^M u_m^2}.$$
(7)

Since the goal is to obtain the optimal weight, we consider the maximum of $S_0(w_1, ..., w_M)$, considering it as a function of $(u_1, ..., u_M)$ it would reach its maximum at $u_M = a_M$ or

$$w_m \sqrt{\sum_{i=1}^n (g_{im} - \bar{g}_m)^2} = \frac{\sum_{i=1}^n (y_i - \bar{y})(g_{im} - \bar{g}_m)}{\sqrt{\sum_{i=1}^n (g_{im} - \bar{g}_m)^2}}$$

$$\Rightarrow w_m = \frac{\sum_{i=1}^n (y_i - \bar{y})(g_{im} - \bar{g}_m)}{\sum_{i=1}^n (g_{im} - \bar{g}_m)^2}, \text{ for } m \in \{1, ..., M\}$$
(8)

Let w_m^0 denote the optimal weights given by (8) and let $g_i^0 = \sum_{m=1}^M w_m^0 g_{im}$. Then

=

$$S_0(w_1^0, ..., w_M^0) = n \frac{\sum_{i=1}^n (y_i - \bar{y})(g_i^0 - \bar{g}^0)}{\sum_{i=1}^n (y_i - \bar{y})^2}.$$
(9)

Then the statistic to Test the effect of the Optimally Weighted combination (TOW) of variants $\sum_{m=1}^{M} w_m^0 g_{im}$ is defined as

$$T_T = \sum_{i=1}^n (y_i - \bar{y})(g_i^0 - \bar{x}^0).$$
(10)

By using a permutation method to evaluate the *P*-values, the term $\sum_{i=1}^{n} (y_i - \bar{y})^2$ can be considered as a constant (Sha et al, 2012) and hence the statistic T_T is equivalent to $S_0(w_1^0, ..., w_M^0)$.

Notice that the optimal weight w_m^0 is essentially $\frac{\rho(y,g_m)}{\sum_{i=1}^n (g_{im} - \bar{g}_m)^2} = w_m^{0*}$ where $\rho(y,g_m)$ is the correlation coefficient between $y = (y_1, ..., y_n)$ and $g_m = (g_{1m}, ..., g_{nm})$. It is clear then that since w_m^{0*} is proportional to $\rho(y,g_m)$, w_m^0 will assign heavy weights to the variants that have strong association with the disease trait of interest and will also adjust the direction of the association, allowing us to consider both causal and

protective variants. Also, since w_m^{0*} is proportional to $(\sum_{i=1}^n (g_{im} - \bar{g}_m)^2)^{-1}$, w_m^0 will assign heavy weights to rare variants. As Sha et al mention, similarly to most methods that target rare variants, TOW will lose power when testing the effects of common and rare variants together, which is why the method VW-TOW was proposed.

2.2 VW-TOW

In order to preserve the power of the analysis when dealing with both common and rare variants at the same time, the Variable Weight to Test the effects of the Optimally Weighted combination (VW-TOW) of variants is i proposed. We begin by dividing the variants into common and rare, using a rare variant threshold (RVT), usually considered to be 0.05. Variants with a MAF < RVT are considered rare variants, and those with MAF > RVT are considered common variants. After separating the variants into common and rare, we apply the method TOW to each group and obtain the two test statistics T_r and T_c , representing the TOW test statistic for the rare and common variant groups, respectively (Sha et al, 2012). Then consider $T_{\lambda} = \lambda \frac{T_r}{\sqrt{var(T_r)}} + (1 - \lambda) \frac{T_c}{\sqrt{var(T_c)}}$ and let p_{λ} denote the *P*-value of T_{λ} . Then the VW-TOW test statistic is defined as

$$T_{VW-T} = \min_{0 \le \lambda \le 1} p_{\lambda}.$$
 (11)

In order to evaluate the minimization, a simple method was used. The interval [0,1] is divided into K equivalent non-overlapping intervals and we let $\lambda = k/K$ for $k \in \{0, 1, ..., K\}$. Then we get that $\min_{0 \le k \le 1} p_{\lambda} = \min_{0 \le k \le K} p_{\lambda_k}$. The standard permutation test is used to evaluate the *P*-value of the TOW test statistic T_T , but a variation is used to evaluate the *P*-value of the VW - TOW test statistic T_{VW-T} . Consider a number of Q permutations, and let $T_r^{(q)}$ and $T_c^{(q)}$ be the values of T_r and T_c for the q^{th} permutation, for $q \in \{0, 1, ..., Q\}$, where q = 0 denotes the values from the original data. Then we proceed to calculate the value of $T_{\lambda_k}^{(q)}$ for all values of q and k, estimating $var(T_r)$ and $var(T_c)$ using $T_r^{(q)}$ and $T_c^{(q)}$ (Sha et al, 2012). Lastly, we obtain $p_{\lambda_k}^{(b)}$ using

$$p_{\lambda_k}^{(q)} = \frac{\#\{T_{\lambda_k}^{(d)} > T_{\lambda_k}^{(q)} \mid d \in \{0, 1, ..., Q\}\}}{Q}.$$
(12)

Then considering $p^{(q)}$ as $\min_{0 \le k \le K} p_{\lambda_k}^{(q)}$ we determine the *p*-value of T_{VW-T} by

$$\frac{\#\{p_{\lambda_k}^{(q)} > p_{\lambda_k}^{(0)} \mid q \in \{1, ..., Q\}\}}{Q}.$$
(13)

2.3 Adjusting for Confounder Covariates

In order to consider the model with the C potential covariates Z_c we need to take into account certain aspects before applying the methods. We begin by adjusting both the disease traits y_i and the genotypic scores g_{im} by applying a simple linear regression and obtaining the residuals (Sha et al, 2012). We get

$$y_i = \alpha_0 + \alpha_1 z_{i1} + \dots + \alpha_c z_{ic} + \epsilon_i \tag{14}$$

and

$$g_{im} = \alpha_0 + \alpha_1 z_{i1} + \dots + \alpha_c z_{ic} + \tau_i \tag{15}$$

Obtaining the residuals \tilde{y}_i and \tilde{g}_{im} for the disease trait and the genotypic scores, respectively, we proceed to apply the TOW and VW-TOW methods, defining their test score statistics as

$$T_{TOW} = T_T \mid_{y_i = \tilde{y}_i, g_{im} = \tilde{g}_{im}} \tag{16}$$

and

$$T_{VW-TOW} = T_{WV-T} \mid_{y_i = \tilde{y}_i, g_{im} = \tilde{g}_{im}}$$

$$\tag{17}$$

respectively. Using this approach is equivalent to applying the linear model directly to the disease trait including the confounder covariates

$$y_i = \alpha_0 + \alpha_1 z_{i1} + \dots + \alpha_c z_{ic} + \beta_1 g_{i1} + \dots + \beta_m g_{im} + \epsilon_i = \boldsymbol{\alpha}^T Z_i + \boldsymbol{\beta}^T G_i + \epsilon_i$$
(18)

where $\boldsymbol{\alpha} = (\alpha_0, ..., \alpha_c)^T$, $\boldsymbol{\beta} = (\beta_1, ..., \beta_M)^T$, $G_i = (g_{i1}, ..., g_{iM})^T$, and $Z_i = (z_{i1}, ..., z_{ic})^T$. Then the score test statistic for the null hypothesis $H_0: \boldsymbol{\beta} = 0$ becomes

$$SC = \tilde{U}^T \tilde{V}^{-1} \tilde{U} \tag{19}$$

where $\tilde{U} = \sum_{i=1}^{n} \tilde{y}\tilde{G}_{i}, \ \tilde{V} = \frac{1}{n} \sum_{i=1}^{n} \tilde{y}_{i}^{2} \sum_{i=1}^{n} \tilde{G}_{i}\tilde{G}_{i}^{T}.$

The proof of this statement is the following.

Let $Y = (y_1, ..., y_n)^T \epsilon = (\epsilon_1, ..., \epsilon_n) \sim^{iid} N(0, \sigma^2)$, then the log-likelihood of (18) is given by

$$\log l = -\frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}(Y - Z\alpha - G\beta)^T(Y - Z\alpha - G\beta).$$
⁽²⁰⁾

Then

$$\frac{\delta \log l}{\delta \boldsymbol{\beta}} = \frac{1}{\sigma^2} (Y - Z\boldsymbol{\alpha} - G\boldsymbol{\beta})^T G,$$
(21)

$$\frac{\delta \log l}{\delta \boldsymbol{\alpha}} = \frac{1}{\sigma^2} (Y - Z\boldsymbol{\alpha} - G\boldsymbol{\beta})^T Z, \qquad (22)$$

$$\frac{\delta^2 \log l}{\delta \boldsymbol{\beta} \boldsymbol{\beta}^T} = -\frac{1}{\sigma^2} G^T G, \ \frac{\delta^2 \log l}{\delta \boldsymbol{\alpha} \boldsymbol{\alpha}^T} = -\frac{1}{\sigma^2} Z^T Z, \text{ and } \frac{\delta^2 \log l}{\delta \boldsymbol{\alpha} \boldsymbol{\beta}^T} = -\frac{1}{\sigma^2} Z^T G.$$
(23)

Now let $\hat{\alpha}$ and $\hat{\sigma}^2$ denote the maximum likelihood estimators of α and σ^2 under $H_0: \beta = 0$. Then

$$\hat{\alpha} = (Z^T Z)^{-1} Z^T Y \text{ and } \hat{\sigma}^2 = \frac{1}{n} Y^T (\boldsymbol{I} - P) Y = \frac{1}{n} \tilde{Y}^T \tilde{Y}$$
(24)

where $P = Z(Z^T Z)^{-1} Z^T$ and $\tilde{Y} = (\tilde{y}_1, ..., \tilde{y}_n)$ is the vector of the residuals obtained from (14). Let $\theta = (\alpha^T, \beta^T)^T$, then we obtain the following score and information matrix

$$S = \frac{\delta \log l}{\delta \theta}\Big|_{\alpha = \hat{\alpha}, \beta = 0} = \frac{1}{\sigma^2 (0, U^T)^T}$$
(25)

and

$$I = -E \frac{\delta^2 \log l}{\delta \theta \theta^T}\Big|_{\alpha = \hat{\alpha}, \beta = 0} = \frac{1}{\sigma^2} \left(\begin{smallmatrix} Z^T Z & Z^T G \\ G^T Z & G^T G \end{smallmatrix} \right), \tag{26}$$

where $U = \tilde{Y}^T G$. Note that $(\mathbf{I} - P)$ is idempotent. Hence $U = \tilde{Y}^T G = \tilde{Y}^T (\mathbf{I} - P)G = \tilde{Y}^T \tilde{G}$ and $G^T (\mathbf{I} - P)G = \tilde{G}^T \tilde{G}$ where $\tilde{G} = (\tilde{G}_1, ..., \tilde{G}_n)$ is the $(n \ge M)$ matrix of the residuals obtained from (15). Then the test score statistic is

$$T_{linear} = \frac{1}{\sigma^2} U^T V^{-1} U \tag{27}$$

where $U = \tilde{Y}^T \tilde{G} = \sum_{i=1}^n \tilde{y}_i \tilde{G}_i$ and $V = \tilde{G}^T \tilde{G} = \sum_{i=1}^n \tilde{G}_i \tilde{G}_i^T$

Hence, T_{linear} and SC from (19) are proportional, which completes the proof

Now, similarly to the main model, the score test statistic to test the effect of the weighted combination of variants $g_i = \sum_{m=1}^{M} w_m g_{im}$ is given by $SC(w_1, ..., w_m) = n \frac{(\sum_{i=1}^{n} \tilde{y}_i \tilde{g}_i)^2}{\sum_{i=1}^{n} \tilde{y}_i^2 \sum_{i=1}^{n} \tilde{g}_i^2}$, and following the same procedure used in the non-covariate method we have that $SC(w_1, ..., w_M)$ reaches its maximum when $w_m = \frac{\sum_{i=1}^{n} \tilde{y}_i \tilde{g}_{im}}{\sum_{i=1}^{n} \tilde{g}_{im}^2}$ and hence the maximum of $SC(w_1, ..., w_M)$ is equivalent to T_{TOW} .

2.4 Testing the effect of an Optimally Weighted combination of variants considering SNP-Environment interaction (TOW-SE).

Considering the same set up form the beginning of the section, now we will use the following generalized linear model, which include the interaction term between the SNPs and the Environmental trait. Consider

$$f(E(y_i \mid G_i, E_i, Z_i)) = \alpha_0 + Z_i \boldsymbol{\alpha} + E_i G_i \boldsymbol{\beta} + G_i \boldsymbol{\xi} + \boldsymbol{\eta} E_i$$
(28)

and just as in the TOW method, for continuous or quantitative disease traits, $f(\cdot)$ will be the monotone link function, while for binary traits, the logit link function will be used. The parameters α_0 , α , β , ξ , and η are the respective regression coefficients of each term, and the corresponding null hypothesis becomes $H_0: \beta = 0$. However, since we are testing the SNP-Environment interaction, when we adjust for covariates we are interested in obtaining \tilde{y}_i as the residual of y_i and $\tilde{X}_i = (\tilde{x}_{i1}, ..., \tilde{x}_{iM})$ as the residuals of $E_iG_i =$ $(E_ig_{i1}, ..., E_ig_{iM})$ (Sha et al, 2015). Then the relationship between \tilde{y}_i and $\tilde{X}_i = (\tilde{x}_{i1}, ..., \tilde{x}_{iM})$ is modeled by the general linear model

$$f(E(\tilde{y}_i \mid \tilde{X}_i)) = \beta_0^* + \tilde{X}_i \boldsymbol{\beta}^*.$$
⁽²⁹⁾

Then the initial null hypothesis is equivalent to H_0 : $\beta^* = 0$. Since there is some particular interested in accurately identifying interactions between rare variants and the environmental trait, it is desired to efficiently deal with the data, to avoid losing power due to large degrees of freedom or due to sparse data. Hence, three different weighting schemes of the form $\sum_{m=1}^{M} w_i \tilde{x}_{im}$ are introduced as a solution to the problem (Wang et al,2015).

Optimal Weight and TOW-SE: The first weighting scheme uses the same score test as the initial TOW Method:

$$S(w_1, ..., w_M) = n \frac{(\sum_{i=1}^n (\tilde{y}_i - \bar{\tilde{y}})(\tilde{x}_i - \bar{\tilde{x}}))^2}{\sum_{i=1}^n (\tilde{y}_i - \bar{\tilde{y}})^2 \sum_{i=1}^n (\tilde{x}_i - \bar{\tilde{x}})^2} = n \frac{(\sum_m^M w_m \sum_{i=1}^n (\tilde{y}_i - \bar{\tilde{y}})(\tilde{x}_{im} - \bar{\tilde{x}}_m))^2}{\sum_{i=1}^n (\tilde{y}_i - \bar{\tilde{y}})^2 \sum_{i=1}^n (\tilde{x}_i - \bar{\tilde{x}})^2}$$
(30)

which reaches its maximum at $S_0(w_1^0, ..., w_M^0) = n \frac{\sum_{i=1}^n (\tilde{y}_i - \tilde{y})(\tilde{x}_i^0 - \tilde{x}^0)}{\sum_{i=1}^n (\tilde{y}_i - \tilde{y})^2}$ when $w_m = \frac{\sum_{i=1}^n (\tilde{y}_i - \tilde{y})(\tilde{x}_{im} - \tilde{x}_m)}{\sum_{i=1}^n (\tilde{x}_{im} - \tilde{x}_m)^2}$ and $\tilde{x}_i^0 = \sum_{m=1}^M w_m^0 \tilde{x}_{im}$. Then the test statistic is defined as in TOW as $T_{T-SE} = \sum_{i=1}^n (\tilde{y}_i - \tilde{y})(\tilde{x}_i^0 - \tilde{x}^0)$. In order to make T_{T-SE} equivalent to $S_0(w_1^0, ..., w_M^0)$ we use, once again, a permutation test to evaluate the *P*-values. Just as it TOW, the optimal weight w_m^0 assigns heavy weights to gene-environment interactions that have strong association with the studied disease trait, as well as adjusting for the direction of the interaction.

In order to maintain the power when testing for both common and rare variants at the same time, the method VW-TOW-SE is proposed.

VW-TOW-SE This method applies the procedures from VW-TOW in the exact same manner. We divide the variants into common and rare, using the RVT of 0.05. After separating the variants into common and rare, we apply the method TOW-SE to each group and obtain the two test statistics T_r and T_c , representing the TOW-SE test statistic for the rare and common variant groups, respectively. Then we consider $T_{\lambda} = \lambda \frac{T_r}{\sqrt{var(T_r)}} + (1-\lambda) \frac{T_c}{\sqrt{var(T_c)}}$ and let ρ_{λ} denote the *P*-value of T_{λ} . Then the VW-TOW-SE test statistic is defined as $T_{VW-TOW-SE} = \min_{0 \le \lambda \le 1} p_{\lambda}$. Then the standard, and the modification of the permutation methods mentioned above are used to obtain the *P*-values for both T_{T-SE} and $T_{VW-T-SE}$.

Inverse Standard Deviation (ISD) Method The second weighting scheme proposes a weight w_m based on the inverse standard deviation of $p_m = MAF_m$, where MAF_m is the Minor Allele Frequency of the m^{th} variant. Then the weight assigned to each variant is $w_m = \frac{1}{\sqrt{np_m(1-p_m)}}$. The focus of this weighting scheme is to put heavier weights to gene-environment interactions of rare variants.

Correlation Coefficient Method (CCM) Given the evidence that shows that there exists a positive correlation between environmental exposures and genetic factors (Wang, 2015), a weighting scheme using the correlation coefficient ρ_m between the genotypic score at the m^{th} variant and the environmental variable in individuals that have been diagnosed (i.e. cases). Then we define the weight w_m as $w_m = \rho_m$. Using this weighting scheme, we get that whenever ρ_m is positive and close to 1, it puts a heavy weight to the gene-environment interactions that have a strong and positive association with the disease trait; and if ρ_m is negative and close to -1, it puts a heavier weight to the gene-environment interactions that have strong and negative association with the trait of interest. This is also a good weighting scheme for adjusting for the direction of the gene-environment interaction.

2.5 Comparison Methods: iSKAT & MinP

In order to determine the usefulness of the newly proposed methods, a comparison with existing methods was necessary. The two methods chosen for comparison were the Test for Rare Variants by Environment Interactions using interaction Sequence Kernel Association Test (iSKAT) (Lin et al, 2015) and the Minimum P-value method.

3 Simulations and Partial Preliminary Results

The empirical Mini-Exome genotype data provided by the GAW17 was used for the performed simulation. The GAW17 dataset contains the haplotypes of 697 unrelated individuals on 3,205 genes. The four genes: ELAVL4 (gene1), MSH4 (gene2), PDE4B (gene3), and ADAMTS4 (gene4) with 10, 20, 30, and 40 variants were used, respectively, to simulate the data for the study. The four genes were merged to form a super gene (Sgene) with 100 variants. The distributions of MAFs in the 100 variants in the Sgene and in the 24,487 variants in all the 3,205 genes are given in Figure 2 (Sha et al, 2012). During the simulation studies, we generate genotypes based on the haplotypes of the 697 individuals in the Sgene. The haplotypes were provided from the initial study during the development of the TOW and VW-TOW methods (Sha et al, 2012). and all of the data simulated was done in the same manner as the data simulated for the TOW and VW-TOW simulations analyses (See Shat et al, 2012 for more information).

In order to determine the efficiency of the models proposed, a set of different combinations of important parameters was used. These initial parameter combinations were: the location of the gene ($gene \in \{3, 4, 5\}$), the proportion of causal variants ($pcau \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$), the proportion of protective variants ($nprot \in \{0, 0.2, 0.4\}$), whether there was a main effect from the SNP ($maineff \in \{0, 1\}$), the mean of the environmental trait, simulated to be Normal(envmean, 1) ($envmean \in \{0, 50, 100, 150, 200, 250\}$), the coefficient of the gene-environment interaction ($beta = \{log(1.5), log(2)\}$), and whether the disease trait was binary or continuous ($quan \in \{0, 1\}$, 0 for binary, 1 for continuous). In total, we considered 2160 combinations of variables to simulate potential situations where the method might be applied. For simplicity, we reduced the number of combinations by half, to 1080, by considering only a binary disease trait model.

For each combination, 500 replications of the model were done, in order to use the permutation tests described above. Below are some preliminary results from some of the most significant combinations. Consider Figure 2. We can see that as the proportion of causal variants increases, so does the power of each method. However, in most settings, the methods TOW-SE and VW-TOW-SE are consistently more powerful than the other methods, and although the Minimum P-value method is also higher, this method fails to keep the type I error under control, unless a permutation method is applied to it, which makes the method significantly more computationally intensive than the other methods, hence inconvenient to use in most settings. Notice that when the methods were applied in gene 5, the results were not as straight forward as in genes 3 and 4. Regarding this disparity in comparison with the other genes, min depth analysis needs to be done in gene 5 to discover the cause of the drastic results. Regarding Figure 3, where no main effect from the SNP was considered we can see that the results are almost identical to the ones where main effect was considered, and once again, the results from gene 5 seem to need further investigation.

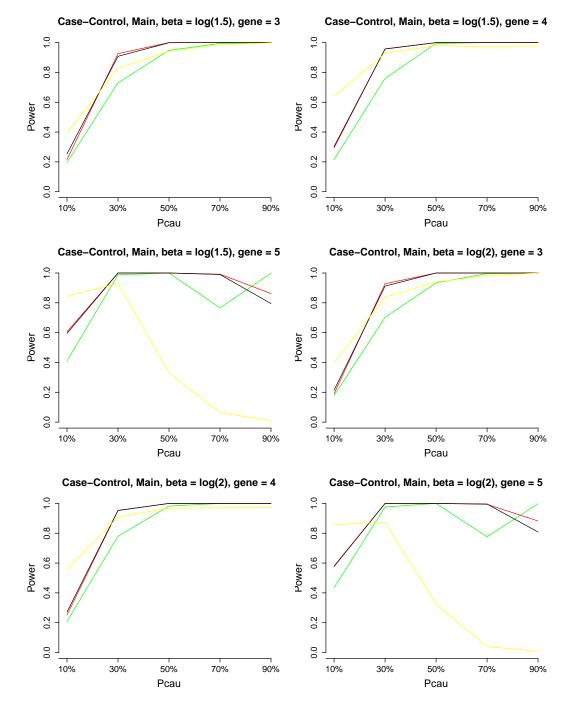
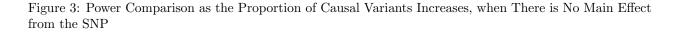
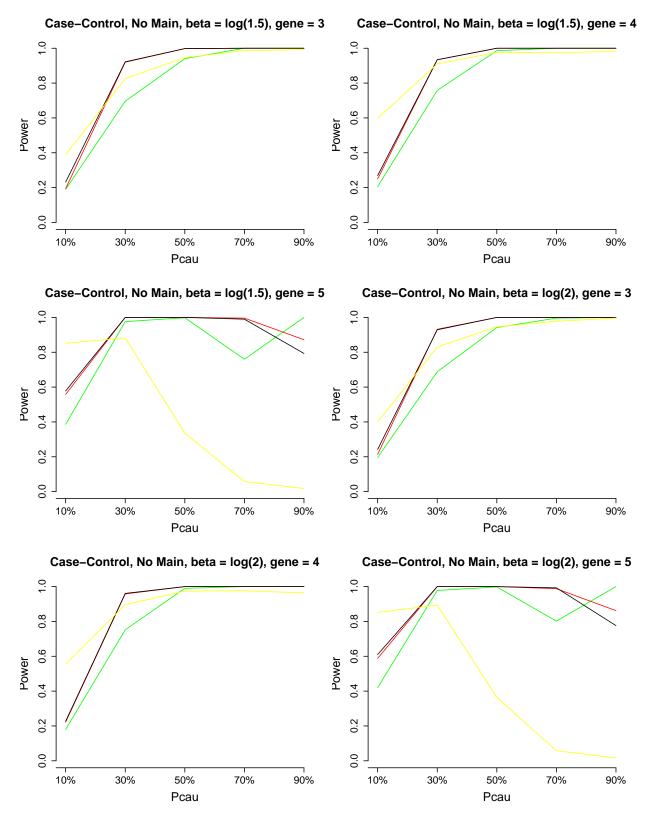


Figure 2: Power Comparison as the Proportion of Causal Variants Increases, when There is a Main Effect from the SNP

Green represents iSKAT, Red represents TOW, Black Represents VW-TOW, and Yellow represents MinP





Green represents iSKAT, Red represents TOW, Black Represents VW-TOW, and Yellow represents MinP

From a different perspective, we present the power of the different methods from the simulated data as the proportion of protective variants increased. The results agree with the ones from above (See Figures 4 and 5). Once again, we considered the two settings, main effect from the SNP and no main effect, and we show the results below. Since the results from gene 5 seem to need more information, only results from genes 3 and 4 are shown.

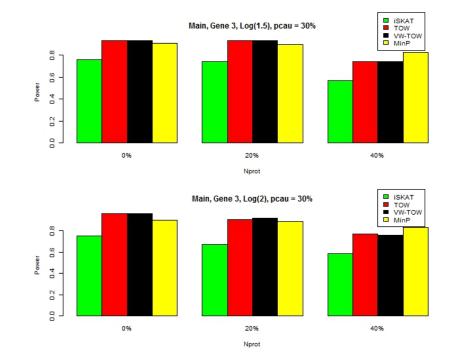


Figure 4: Power Comparison as the Proportion of Protective Variants Increases, when There is a Main Effect from the SNP, on gene 3

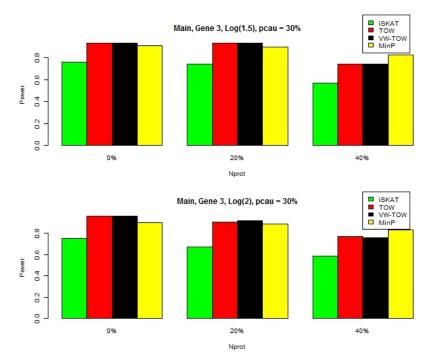
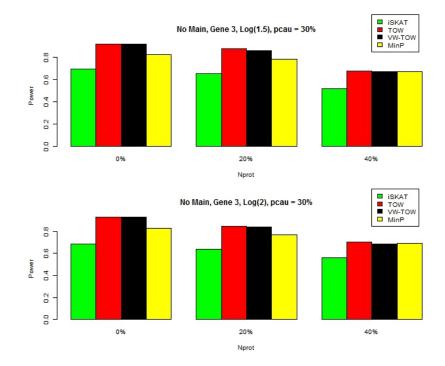


Figure 5: Power Comparison as the Proportion of Protective Variants Increases, when There is a Main Effect from the SNP, on gene 4

Figure 6: Power Comparison as the Proportion of Protective Variants Increases, when There is No Main Effect from the SNP, on gene 3



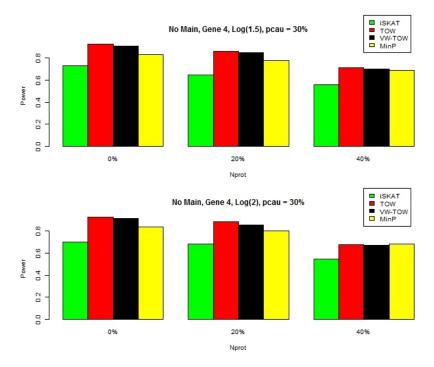


Figure 7: Power Comparison as the Proportion of Protective Variants Increases, when There is No Main Effect from the SNP, on gene 4

4 Real Data Analysis: GAW18

The methods TOW-SE and VW-TOW-SE seem to be useful in some settings, but in order to test accurate identification of SNPs that have an association with a disease trait, it is desired to test the methods in real data. Part of the data from the Genetic Analysis Workshop 18 (GAW18) was provided to test the methods and compare the results with variants identified by Wang et al in a previously released paper. The data provided was a set of 142 unrelated individuals genotyped at 1,215,399 variants. PLINK was used to further clean the data in order to remove noise and erroneous data. After cleaning the data for discarding genotypes that had less than 5% genotyping rate and non SNP data, only 585397 SNPs remained. The remaining SNPs were then divided into non-overlapping windows of 100 SNPs each in order to apply the methods. The goal was to identify regions that contained SNPs that have a strong association with hypertension. Two environmental traits were considered, a quantitative trait, age at disease diagnose, and a binary trait, smoker status, with 0 denoting non-smoker status. Since the Bonferroni correction would have been considerably conservative for this particular dataset $(\frac{0.05}{585397} = (0.085)10^{-6})$, a different method was used to identify significant windows. Using PLINK, the number of independent windows was identified (72, 217), and that number was used to consider as the threshold for significance $(\frac{0.05}{72217} = (0.0692)10^{-5})$.

4.1 Results for Quantitative Environmental Variable: Age at Diagnose

"Window"	"P-value IS	D"	"Window"	"P-value CO	CM"	Window	P-value TOW
4353	0.000127796	6260687041	2670	0.003322274	02518026	1900	0.00010651
4458	0.000142648	3480121133	4927	0.009363176	95426392	2635	0.000107272
3552	0.000161628	3226907351	5452	0.009549811	.06807906	1912	0.000107821
448	0.000197890	0706833959	2623	0.012099117	037367	435	0.000108369
146	0.000258317	337306635	105	0.012695717	3768499	358	0.000108533
5452	0.000265360	363298828	3711	0.013338649	924398	491	0.000108851
2671	0.000276883	896236702	4796	0.013937757	4657057	4452	0.000112642
2669	0.000288000	11006147	2762	0.014138759	9509206	5721	0.000114368
2762	0.000303103	8474680544	4576	0.014711022	8354675	146	0.000115835
4927	0.000307281	789389546	3421	0.015394640	4175944	5536	0.000126842
	"Window"	"P-value i	SKAT"	"Window"	"P-value	MinP"	
	3103	NA		1890	0.0001001	2207331567	1
	2640	0.00013819	92609795085	4004	0.0001008	5675192279	8
	3150	0.00031262	28808616267	2918	0.0001009	4775980724	7
	2613	0.00032945	52154594012	2789	0.0001009	8075069636	8
	1899	0.00037411	10321790022	2691	0.0001010	7820907798	2
	2612	0.00049498	80527388722	1136	0.0001012	0901652532	4
	5257	0.00066582	23643444807	283	0.0001012	6339973452	9
	3491	0.00138761	1693100742	941	0.0001013	4790454753	9
	2607	0.00139720	0380658059	2886	0.0001013	5242665599	9
	2603	0.00141196	6166729574	4049	0.0001013	9316634322	2

Table 3: P-values from the Considered Methods for Age at Diagnose

We can see that none of the obtained *P*-values imply significance in any window according to the current threshold $(0.0692)10^{-5}$. However, we should still consider the windows with the lowest *P*-values. We have at most 50 different windows, for each phenotype considered, that could potentially hold significance.

Tables 5 and 6 show the windows that are significant when compared to the GAW18 and family based hypertension studies results. From these results we can see that indeed the newly developed methods succeed at identifying gene - environment associations with the disease. Furthermore, out of all the methods, the Correlation Coefficient Method signaled the window that have the variants that explain the most variation in the genome, when considering the discrete environmental variable (Table 6, highlighted in bold).

Further Research

After showing the methods' efficacy and superiority to current standards in certain cases, the next step is to analyze real data on Secondary Malignant Neoplasms (SMNs) in order to identify variants that have either a positive or negative association with the disease. The implication of this discovery could help effectively treat cancer patients and decrease the rate of SMN incidence.

4.2 Results for Binary Environmental Variable: Smoker Status

"Window"	"P-value	ISD"		"Window"	"P-value (CCM"	Win	dow	P-value TOW
129	0.000110	8741962279	06	4739	0.00192100	6680326731	251		0.000118549
4986	0.000113	4302705526	61	2192	0.00328418	856545478	5773	3	0.000126155
2225	0.000123	9861141264	51	1630	0.00352376	6924683095	2785	5	0.000129112
5784	0.000129	4500308797	19	1321	0.00465613	3439361845	872		0.000131648
871	0.000141	8778562939	37	4847	0.00471203	3141365995	1570)	0.000138966
1189	0.000149	5612677933	08	4204	0.00479930	0828540953	5662	2	0.000140556
3101	0.000149	7364813822	79	2952	0.00482673	32467899	3399)	0.000143583
2195	0.000183	8578606402	35	508	0.00495076	6607465683	2507	7	0.000144919
1108	0.000200	1586151760	83	1707	0.00496337	7757485787	642		0.00014917
5773	0.000200	8314015236	05	2193	0.00572825	5733223425	5784	1	0.00015146
Windo		Window	P-	value iSKAT	Window	P-value Min	пP		
		32	6.3	30E-05	234	0.000104629)		
		2196	0.0	001177747	5452	0.000190207	7		
		4006	0.0	001707146	299	0.000218275	5		
		5248	0.0	001757833	3423	0.000229582	2		
		3805	0.0	002247517	5665	0.000236041	L		
		2693	0.0	002446083	235	0.000249251	L		
		5215	0.0	002464846	4991	0.000272212	2		
		5791	0.0	002493754	5160	0.000318506	3		
		4653	0.0	002695548	1707	0.000404151	L		
		2194	0.0	003138554	5404	0.000422441	L		

 Table 4: P-values from the Considered Methods for Smoker Status

Window	Starting SNP loc	Ending SNP loc	Significant	Signaled by
105	$3_2576692_G$	$3_2606480C$	yes	CCM
1136	$3_32652332_G$	$3_32666083_A$	yes	$\operatorname{Min} P$
146	$3_3473240_A$	$3_3497291_A$	yes	ISD
1890	$3_{-60995600}C$	$3_61023120_C$	yes	$\operatorname{Min} P$
1899	$3_61226363_A$	$3_61256364_T$	yes	iSKAT
1900	$3_{61256686}A$	$3_61297908_C$	yes	TOW-SE
1912	$3_61625274_C$	$3_61656548_G$	yes	TOW-SE
2603	$3_84413353_A$	$3_84427677_A$	no	iSKAT
2607	$3_84526588_C$	$3_84558280_T$	no	iSKAT
2612	$3_84695126_G$	$3_84726805_A$	no	iSKAT
2613	$3_84727898_C$	$3_84756552_T$	no	iSKAT
2623	$3_84992877_T$	$3_85031666_G$	no	CCM
2635	$3_85459212_T$	$3_85492002_A$	no	TOW-SE
2640	$3_85588494_C$	$3_85600771_G$	no	iSKAT
2669	$3_86547035_C$	$3_86576946_G$	no	ISD
2670	$3_86577017_C$	$3_86605162_A$	no	CCM
2691	$3_87295368_T$	$3_87339402_A$	no	Min P
2762	$3_89549919_C$	$3_89595252_T$	no	CCM
2789	$3_94053165_A$	$3_94078802_G$	no	Min P
283	$3_6787821_G$	$3_6805408_A$	yes	Min P
2886	$3_97152615_A$	$3_97191431_T$	no	Min P
2918	$3_98096781_T$	$3_98120608_A$	no	Min P
3103	$3_104235682_G$	$3_104255789_G$	no	iSKAT
3150	$3_105681971_C$	$3_105693714_C$	no	iSKAT
3421	$3_115221939_T$	$3_115260435_G$	yes	CCM
3491	$3_117453184_T$	$3_117492046_C$	yes	iSKAT
3552	3_119399641_A	3_119421703_A	yes	ISD
358	3_8718008_A	3_8730289_G	no	TOW-SE
3711	$3_125129489_T$	$3_125174636_C$	yes	CCM
4004	3_134649566_A	$3_134673394_T$	yes	Min P
4049	3_136773875_C	3_136800244_T	yes	Min P
435	$3_11062062_T$	3_11099571_A	yes	TOW-SE
4353	3_147386728_C	$3_147417839_T$	yes	ISD
4452	3_150510227_A	$3_{150554959}T$	yes	TOW-SE
4458	$3_{150726830_T}$	3_150774782_A	yes	ISD
448	3_11591200_G	3_11629420_G	yes	ISD
4576	$3_{154915593}G$	$3_154955403_T$	yes	CCM
4796	$3_{162611646_T}$	3_162632550_A	yes	CCM
491	$3_{13045939}T$	3_13075350_A	yes	TOW-SE
4927	$3_{166715641}G$	3_166750007_C	yes	CCM
4 <i>32</i> 7 5257	$3_{178567095}C$	$3_178601948_G$	yes	iSKAT
5257 5452	$3_186259233_G$	3_186288565_A	yes	CCM
$5452 \\ 5536$	3_189058427_C	3_189085393_T	yes	TOW-SE
$5530 \\ 5721$	3_193972501_A	$3_189085393_1$ $3_194006998_T$		TOW-SE
941	3_27088978_C	$3_27102630_A$	yes yes	Min P

Table 5: Range of SNPs Inside the Potentially Significant Windows for the Age Evironmental Variable

Window	Starting SNP loc	Ending SNP loc	Significant	Signaled by
32	3_991242_C	3_1017394_A	no	iSKAT
1108	$3_31929486_A$	$3_31957631_A$	yes	ISD
1189	$3_34549511_C$	$3_34589833_C$	yes	ISD
129	$3_3093955_C$	$3_3123326_G$	yes	ISD
1321	$3_39240559_T$	$3_39275010_A$	yes	CCM
1570	$3_48623124_A$	$3_48721040_A$	yes	CCM
1630	$3_52659079_C$	$3_52697566_C$	yes	CCM
1707	$3_55302446_G$	$3_55333080_C$	yes	CCM
2192	$3_70021965_C$	$3_70069611_A$	yes	CCM
2193	$3_70069621_A$	$3_70114499_C$	yes	CCM
2194	$3_70115600_T$	$3_70172654_C$	yes	iSKAT
2195	$3_70172923_T$	$3_70198308_C$	yes	ISD
2196	$3_70198406_G$	$3_70232626_T$	yes	iSKAT
2225	$3_71384708_T$	$3_71421152_T$	yes	ISD
234	$3_5729514_C$	$3_5755612_G$	yes	Min P
235	$3_5755763_G$	$3_5785973_G$	yes	Min P
2507	3_80479403_A	$3_80515770_T$	yes	TOW-SE
251	3_6051816_A	3_6087578_A	yes	TOW-SE
2693	3_87354731_A	3_87369511_G	no	iSKAT
2785	3_93827350_A	$3_93936708_G$	no	TOW-SE
2952	3_99083010_T	$3_99108384_T$	no	CCM
299	3_7230063_C	3_7266362_G	yes	Min P
3101	3_104164622_A	3_104202009_G	no	ISD
3399	$3_{114110629_T}$	3_114144714_A	yes	TOW-SE
3423	3_115297011_A	3_115327361_A	yes	Min P
3805	3_127832554_G	3_127881613_A	yes	iSKAT
4204	$3_142703435_T$	$3_142750908_G$	yes	CCM
4653	3_157729011_A	$3_157788588_T$	yes	iSKAT
4739	$3_{161151867_T}$	$3_{161175643_T}$	yes	CCM
4847	3_164105512_C	3_164125983_C	yes	CCM
4986	3_169121931_A	$3_{169148465_T}$	yes	ISD
4991	$3_{169262775_C}$	3_169288729_T	yes	Min P
508	3_13522177_A	$3_{13557469_T}$	yes	CCM
5160	$3_175211459_G$	3_175246745_C	yes	Min P
$5100 \\ 5215$	$3_175211455_0$ $3_177007214_C$	3_177067087_G	yes	iSKAT
$5210 \\ 5248$	$3_178291260_A$	3_178330596_A		iSKAT
$5248 \\ 5404$	3_184409373_A	3_184441278_A	yes	Min P
$5404 \\ 5452$	$3_{186259233}G$	3_186288565_A	yes	Min P
$\frac{5452}{5662}$	$3_{192287194_T}$	3_192315287_G	yes	TOW-SE
$\frac{5002}{5665}$	$3_{192367902}G$	3_192315287_G 3_192395378_C	yes	Min P
$\frac{5005}{5773}$	3_195238993_G	3_192395378_C 3_195282609_C	yes	ISD
	3_195238993_G 3_195546145_G	$3_{195282609}C$ $3_{195563248}A$	yes	
5784 5701			yes	ISD SV AT
5791 649	3_195763241_C	3_195789428_C	yes	iSKAT
642 971	3_18228007_A	3_18278139_A	yes	TOW-SE
871 872	$3_25062752_C$	3_25084111_C	no	ISD
872	$3_25084308_G$	$3_25114861_G$	no	TOW-SE

Table 6: Range of SNPs Inside the Potentially Significant Windows for the Smoker Status Environmental Variable

5 References

- 1. Laird N,Lange C: The Fundamentals of Statistical Genetics. New York, Springer, 2011.
- Lin X, Seunggeun L, C. Wu M, Wang C, Chen H, Li Z, Lin X. 2016 Test for Rare Variants by Environment Interactions in Sequencing Association Studies. Biometrics 72(1):156-64.
- 3. National Center for Biotechnology Information. Bethesda, Web, 2016.
- National Human Genome Research Institute. An Overview of the Human Genome Project. Web. 2015.
- Sha Q, Zhang Z, Zhang S. 2011. An improved score test for genetic association studies. Genet Epidemiol 35:350–359.
- Wang X, Zhao X, Zhou J. Testing Rare Variants for Hypertension Using Family-Based Tests with Different Weighting Schemes. TS. 2015.