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ABSTRACT

DETECTING ASSOCIATION OF GENE-ENVIRONMENT
INTERACTIONS IN COMMON AND RARE VARIANTS FOR
HYPERTENSION

by
Miguelangel Diaz Medina

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Xuexia Wang and Daniel Gervini

Subsequent malignant neoplasms (SMNs) or secondary cancers are one of the
most negative effects resulting from cancer treatment such as chemotherapy or
radiation. Given the severity and high incidence of mortality faced by cancer
survivors, it is critical that we understand the cause of SMNs so that preventive
measures or intervention can be done for individuals facing a higher risk of SMN
incidence. The purpose of this thesis is to test the efficacy of newly developed
statistical methods used to identify gene-environment interactions that are
associated with a specific disease, in this case, SMNs, considering both common
and rare variants, using optimally weighted combinations and generalized linear
models.

The models proposed are a variation of the model to Test the effect of an
Optimally Weighted combination of variants (TOW) and the Variable Weight
TOW (VW-TOW). Two newly proposed weighting schemes, Inverse Standard
Deviation (ISD) and the Correlation Coefficient Method (CCM) are tested. In
order to test the models, real life data from previous studies is analyzed to target
and identify genetic variants that have been shown to have an association with a
disease, in this case, hypertension, comparing the analyses and results to a study
done in testing rare variants for hypertension using family-based tests with
different weighting schemes. The study focuses on data from Chromosome 3

genotyped during the Genetic Analysis Workshop 18 (GAW18), obtaining similar

ii



results to those in the hypertension study and the GAW18 study. Partial results
from simulated studies are shown to support the methods’ development and
preliminary analyses. Comparisons are then done with existing methods to show

when they exceed current standards.
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1 Introduction

In the study of statistical genetics, statistical models are used to analyze, in a broad sense, inherited traits
and genetic data. Genetic data refers mainly to biological material that is inherited during reproduction
through sperm and egg cells (Laird et al, 2011). In the past, it was difficult to perform such analyses, having
mostly statistical experimental studies in plants and animals. However, as technological power increases,
our ability to gather and manipulate data has become more efficient, hence allowing us to reach milestones
that in the past may have seen impossible, such as mapping up to 90% of the humane genome (National
Human Genome Research Institute, 2015), comparing the genetic sequences of individuals in order to identify
chromosomal regions where genetic variants are shared (International Hapmap Project, 2016), identifying
and categorizing the functions of specific genes. (National Center for Biotechnology Information, 2016), and
performing Genome Wide Association Studies(GWAS); studies which aim to determine genetic variation
associated with disease traits. Due to the increase of technological power, we are in an era where statistical
genetic studies will provide significant insight into disease etiology, aiding us in developing effective preven-

tive measures as well as more successful disease treatments.

In this thesis, the focus is to test the efficacy of newly developed statistical methods to identify gene-
environment interactions that are associated with a specific disease, considering both common and rare
variants, using optimally weighted combinations and generalized linear models proposed by Dr. Xuexia

Wang.

1.1 Basics of Biology and Statistical Genetics

In order to yield a proper understanding of the material being discussed in this thesis, it is important to
clarify some terminology that will be used through the text; terminology that might be foreign to the reader.
The thesis is focused on the analysis of the association between gene-environment interactions and a disease
trait, in both common and rare wvariants. For the context of this thesis, Gene refers to a single-nucleotide
polymorphism (SNP); however, a gene can be any segment of DNA within a chromosome possessing a specific
genetic function. Environment refers to any variable, continuous or discrete, that is applied to the individual,
such as smoking status, dosage of medicine applied for treatment, age at disease diagnose, etc.

As it is known, the genetic information of a human individual is contained in 23 pairs of chromosomes,
22 autosomal (homologous) pairs, and one sex chromosome pair. Furthermore, there are two DNA chains

or sequences in each chromosome, they have a direction; one end is called 5’ and the other end is called



Figure 1: DNA Chains and Base Pairs
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3’; they are defined according to the asymmetrical bonding of sugar and phosphate, and they are read,
by convention, from left to right, beginning at the 5 strand. DNA itself has four bases: Adenine(A),
Cytosine(C), Guanine(G), and Thymine(T). Adenine pairs with Thymine and Guanine pairs with Cytosine.
We define a base pair (bp) as the two bases from the two DNA chains in a chromosome, hence a base pair
can be (AT) or (CG) (See Figure 1). Base pairs are used as the unit of length of chromosomes or DNA
sequences. A marker or locus is a specific position in a chromosome. It could range from 1 bp to hundreds
of bp. An allele is a DNA sequence within a marker; however, the terms gene, allele, and sometimes base,
are usually interchangeable.

There are several types of markers, such as SNPs, Indels, Variable Numbers of Tandem Repeats (VNTRs),
and Structural Variants, but SNPs are one of the main markers studied nowadays, since they explain a large
portion of genetic variation in the human genome. A SNP is a single base pair marker that has two bases
for the whole human population. The two bases can be from any of the four, not taking into consideration
the usual AT or CG pairing (See Table 1).

Since SNPs have two alleles, we can determine their occurrence within a population. Consider SN P4 in a

Table 1: Example of SNPs

Individual SNP 1 SNP 2 SNP3 SNP 4
1

=0
HO QS
=3
aaax

2
3
4

population of n individuals. Let A; and As be the alleles corresponding to SN P4. Let a; be the number
of A; alleles and as be the number of A, alleles. Then A; is the minor allele if a; < as and it’s frequency,
denoted as the minor allele frequency MAF, is 9. The concept of Minor Allele Frequency (M AF) is used

to determine whether a SNP is a common or rare variant. Usually, SNPs with a M AF > .05 are considered

common variants, and SNPs with M AF < .05 are considered rare variants. However, this is not a set rule,



and it can vary depending on the researcher and methods being used to analyze the data.

1.2 Data Management

Since there are around 10million SNPs in the human genome, data management can be a difficult task.
For example, considers a study on 200 individuals at 300,000 variants. Depending on the kind of analysis
desired, the processing time for this amount of data can be extensive. Fortunately, there are tools that allow
us to perform analyses in an efficient way. Notwithstanding, some knowledge in statistical software and basic
Unix scripting is fundamental when deciding the right approach in a study.

Genomic data can be inconvenient to manipulate if it is analyzed as the letters corresponding to the alleles
in the SNPs, which is why it is ideal to recode the data, and this can be done in several manners, such as
additive recoding, recessive recoding, or dominant recoding. Consider again SN P4 with alleles A; and As.
Now assume that allele A; is suspected to be the disease allele. If data is recoded additively, then it takes
the values ¢ € {0,1,2} where i denotes the number of disease alleles. If data is recoded recessively, then
a recessive disease model is considered; it is assumed that only individuals with two disease alleles in the
marker will have the disease, and the data is recoded to take the values ¢ € {0,1} where i denotes whether
there are two disease alleles in the marker. If data is recoded dominantly, then a dominant disease model
is considered; it is assumed that individuals with either 1 or 2 disease alleles will have the disease, and the
data is recoded to take the values ¢ € {0, 1} where ¢ denotes whether there is at least 1 disease allele in the
marker (See Table 2). The data used in this thesis is coded additively, as it provides the most information

out of the three methods.

Table 2: Data Coding: A; Considered to be the Disease Allele

Alleles  Additive Coding Recessive Coding Dominant Coding

A A 2 1 1
A1Ay 1 0 1
Ay A, 0 0 0




2 The Methods: TOW-SE & VW-TOW-SE

The Methods TOW-SE and VW-TOW-SE are based on previously developed methods TOW and VW-TOW
by Sha et al, 2012. The hypothesis stated is that the risk of treatment-related SMNs is associated with joint
effects of therapeutic exposures and susceptible genes such as drug-metabolizing genes, drug transport genes,
and DNA repair genes. (Wang, 2015).

Consider a sample of n individuals that have been genotyped at M variants (SNPs). Let y; denote the
disease trait for the i'* individual (discrete or continuous), E; as the environmental variable (discrete or
continuous), Z;. as the C' potential covariates, and G, as the genotypic scores, coded additively, at the M

variants.

2.1 Testing the effect of an Optimally Weighted combination of variants (TOW).

The Test for testing the effect of an Optimally Weighted combination of variants (TOW) derives a com-

bination of optimal weights to test the effect of Z% w? gim. Consider the following generalized linear model:

h(E(y: | Gi)) = Bo + Bigin + ... + Bugim (1)

We use the generalized linear model (GLM) to model the relationship between disease traits y; and genotypes
G, where h(-) is a monotone link function, f; are the regression parameters, j € {0,1,..., M'}. Depending
on whether the disease trait is discrete or continuous, two models, the logistic regression model with the
Logit link for a binary trait or the linear model with the identity link for continuous or quantitative traits,

can be used. We consider the following score test statistic for the null hypothesis Hy : 3 = 0 [Sha et al, 2012]:

S=vtv-lu (2)

where U = >0 (yi — §)(9: — g) and V.= 237" (i — )2 311 (9: — )(9: — §)*. The score test statistic
S follows asymptotically a chi-square distribution with rank(V) degrees of freedom (Sha et al, 2012). Al-
though powerful when testing common variants, this test loses power when rare variants are introduced into
the model, which is why the weighted combination of variants is introduced. In order to test the effect of
g’ = Ei‘f w?, gim the test score statistic becomes:

(" (v — 9)(9i — 9))° (M w0 S0 (i — §) (Girm — Gim))?

=N )

Do (Y = 9)2 201 (g0 — 9)? S (i =920 (90 — 9)°

(3)

S(w1,...,wp) =n



Since rare variants can be assumed to be independent, we have that:

M M n M n
Z(gl Z Z Wm Wy Z Gim — gm, gzl - gl Z U) Z Gim — g (4)
' i=1

1 l= =1 m=1

s
[
-
3
Il
o

If we let:
P Y1 (Yi = 9)(gim — Gm) s
" \/Z?:l(gim - gm>2 ( )
and
=t (6)

this yields a score test statistic

(7)

So(wi,...,wpr) =n = 7

Since the goal is to obtain the optimal weight, we consider the maximum of Sg(w1, ..., was), considering it

as a function of (uq,...ups) it would reach its maximum at ups = aps or

2 _ Z?:l(yi —9)(Gim — Gm)
\/Z;L:1(gim - gm)Q

Z:‘L:l (gim - gm)2

Let w0, denote the optimal weights given by (8) and let g = 27]\;{:1 wY, Gim. Then

= w,, = ,forme{1,..,M} (8)

St (i — )9 — 3%

So(w(l),...,w?w) =n . (9)

> (yi — )2

Then the statistic to Test the effect of the Optimally Weighted combination (TOW) of variants Em LW, Gim

is defined as
n

Tr =" - (! — 7). (10)

=1

2

By using a permutation method to evaluate the P-values, the term Z?zl(yi — §)* can be considered as a

constant (Sha et al, 2012) and hence the statistic Tr is equivalent to So(w?, ..., w%,).

Notice that the optimal weight w?, is essentially s7 £(y:9m)

oy = wY* where p(y, g) is the correlation
—1Gim m

0x*

coefficient between y = (y1,...,yn) and gm = (Gim, -, gnm)- It is clear then that since wy;

is proportional
to p(y, gm), w?, will assign heavy weights to the variants that have strong association with the disease trait

of interest and will also adjust the direction of the association, allowing us to consider both causal and



0%
m

protective variants. Also, since wd! is proportional to (i (gim — Gm)?) ™', wl, will assign heavy weights
to rare variants. As Sha et al mention, similarly to most methods that target rare variants, TOW will lose
power when testing the effects of common and rare variants together, which is why the method VW-TOW

was proposed.

2.2 VW-TOW

In order to preserve the power of the analysis when dealing with both common and rare variants at the
same time, the Variable Weight to Test the effects of the Optimally Weighted combination (VW-TOW)
of variants is i proposed. We begin by dividing the variants into common and rare, using a rare variant
threshold (RVT), usually considered to be 0.05. Variants with a M AF < RVT are considered rare variants,
and those with M AF > RVT are considered common variants. After separating the variants into common
and rare, we apply the method TOW to each group and obtain the two test statistics 7). and T, representing
the TOW test statistic for the rare and common variant groups, respectively (Sha et al, 2012). Then consider
T\ = )\\/#W +(1- )\)#(Tc) and let py denote the P-value of T. Then the VW-TOW test statistic

is defined as

Tyw_r = OISH)}Igllpx- (11)

In order to evaluate the minimization, a simple method was used. The interval [0, 1] is divided into K
equivalent non-overlapping intervals and we let A = k/K for k € {0,1,..., K}. Then we get that 0121;211 Py =
o gllfng D, - The standard permutation test is used to evaluate the P-value of the TOW test statisti_c E“T, but
aivairiation is used to evaluate the P-value of the VW —TOW test statistic Ty w _7. Consider a number of @
permutations, and let T,SQ) and TCK'I) be the values of T, and T, for the ¢*" permutation, for ¢ € {0,1,...,Q},

where ¢ = 0 denotes the values from the original data. Then we proceed to calculate the value of Tf\z) for all

values of ¢ and k, estimating var(7,.) and var(T.) using 77 and T'9 (Sha et al, 2012). Lastly, we obtain
©

P, using
d
@ _ #HOW >1 defo,1,..,Q})
Py, = . (12)
Q
. . (q) . (q) . ~
Then considering p'? as . glilgnK Py, Wwe determine the p-value of Tyw_1 by
0
#p0 > o) | a € {1, QY (13)

Q



2.3 Adjusting for Confounder Covariates

In order to consider the model with the C potential covariates Z. we need to take into account certain
aspects before applying the methods. We begin by adjusting both the disease traits y; and the genotypic

scores g, by applying a simple linear regression and obtaining the residuals (Sha et al, 2012). We get

Y = Qg + Q121 + ...+ AeZic + €; (14)

and

Gim = Qo + @12;1 + ... + QcZic + T (15)

Obtaining the residuals g; and g;.,, for the disease trait and the genotypic scores, respectively, we proceed to

apply the TOW and VW-TOW methods, defining their test score statistics as

Trow =1T1r Yi=Ti,gim=Gim (16)

and

Tyw-row =Twv -1 |yi=§i7gim=§im (17)
respectively. Using this approach is equivalent to applying the linear model directly to the disease trait
including the confounder covariates

Yi = ap + @121 4 oo+ QeZic + B1gi1 F oo+ BmGim + €66 = QT Zi + BTGy + & (18)

where a = (g, ...,ae)”, B = (B1, ..., Bar)T, Gi = (gi1, ooy ging) T, and Z; = (241, ..., zic) . Then the score test

statistic for the null hypothesis Hy : 3 = 0 becomes

sc=vtv-Uu (19)
where U = Dict §Gi, V = % D gi? i ézézT
The proof of this statement is the following.

Let Y = (Y1, yn)T € = (€1, ..., €n) ~% N(0,0?), then the log-likelihood of (18) is given by

1
log | = ,g log(0?) — 55 (¥ — Za = GB)" (Y ~ Za - GP). (20)



Then

dlogl 1
6; = 5V ~Za - el)el (21)
dlogl 1
55 = 5V~ Za— GB) 7, (22)
5%log 1 5%log 1 §%log 1
W = _EGT s 6aaT = —;ZTZ, and Tﬂr = —;ZTG (23)

Now let & and 2 denote the maximum likelihood estimators of & and ¢ under Hy : 3 = 0. Then

1 1 epe
a=(Z"2)"'Z"vy and 6* = YT (I - P)Y = —YTY (24)
n

n

where P = Z(Z72)"'Z" and Y = (ji,...,9n) is the vector of the residuals obtained from (14). Let

0 = (T, 8T)T, then we obtain the following score and information matrix

dlogl 1
= —_ 2
80 |a=a,=0 o2(0,UT)T (25)
and
6% log | L (272 27c
e (GTZ GTG) ’ (26)

where U = YTG. Note that (I — P) is idempotent. Hence U = YTG = YT(I — P)G = YTG and
GT(I — P)G = GTG where G = (G4, ..., G,) is the (nxM) matrix of the residuals obtained from (15). Then
the test score statistic is

1 _
Tlinear = EUTV lU (27)

where U = YTG = Sy G;G; and V =GTG = Dy C;’ZGZT
Hence, Tjineqr and SC from (19) are proportional, which completes the proof

Now, similarly to the main model, the score test statistic to test the effect of the weighted combination of

. M .. ng.8:)? .
variants g; = >, _; WmGim is given by SC(wy, ..., wy,) = n%, and following the same procedure
i=1 91 i=1 914
used in the non-covariate method we have that SC(w1, ..., wps) reaches its maximum when w,, = W
i=1Jim

and hence the maximum of SC(wq, ..., wyr) is equivalent to Trow .



2.4 Testing the effect of an Optimally Weighted combination of variants con-
sidering SNP-Environment interaction (TOW-SE).

Considering the same set up form the beginning of the section, now we will use the following generalized

linear model, which include the interaction term between the SNPs and the Environmental trait. Consider

and just as in the TOW method, for continuous or quantitative disease traits, f(-) will be the monotone
link function, while for binary traits, the logit link function will be used. The parameters ag, a, 3, &,
and 7 are the respective regression coefficients of each term, and the corresponding null hypothesis becomes
Hy : B = 0. However, since we are testing the SNP-Environment interaction, when we adjust for covariates
we are interested in obtaining g; as the residual of y; and Xi = (&1, ..., Tipr) as the residuals of E;G; =
(Eigi1, -, Eiginr) (Sha et al, 2015). Then the relationship between g; and X, = (Zi1, ..., Zing) 1s modeled by
the general linear model

F(E®W: | X)) = B + XiB". (29)

Then the initial null hypothesis is equivalent to Hy : 8 = 0. Since there is some particular interested
in accurately identifying interactions between rare variants and the environmental trait, it is desired to
efficiently deal with the data, to avoid losing power due to large degrees of freedom or due to sparse data.
Hence, three different weighting schemes of the form Zﬁ:{:l w;Zim are introduced as a solution to the problem

(Wang et al,2015).

Optimal Weight and TOW-SE: The first weighting scheme uses the same score test as the initial
TOW Method:

S(wy,...,wpr) =n (30)

(Cima @ =)@ = 2))° (S m i (i = 9)(Fim = Tm))’
Do (T = 9)? 20 (% — 2)? D i (T = 9)? 20 (s — 2)?

S (Fi— ) (EI-3%) S (§i—0) Eim —Em)

S (Ti—9)? 2y (Bim—Tm)?

= and
70 =M w0 Fim. Then the test statistic is defined as in TOW as Tr_sg = Yo (5 — §)(70 — 7°). In

which reaches its maximum at Sp(w?,...,w%,) = n when w,, =

order to make Tr_gsp equivalent to Sp(w?,...,wq,;) we use, once again, a permutation test to evaluate the

0
m

P-values. Just as it TOW, the optimal weight w;, assigns heavy weights to gene-environment interactions
that have strong association with the studied disease trait, as well as adjusting for the direction of the

interaction.



In order to maintain the power when testing for both common and rare variants at the same time, the

method VW-TOW-SE is proposed.

VW-TOW-SE This method applies the procedures from VW-TOW in the exact same manner. We
divide the variants into common and rare, using the RVT of 0.05. After separating the variants into common
and rare, we apply the method TOW-SE to each group and obtain the two test statistics T, and T,
representing the TOW-SE test statistic for the rare and common variant groups, respectively. Then we
consider T = \——=— + (1 —

T
v/ var(Ty) /\) vwvar(Te)

test statistic is defined as Tyw_row_sg = OI<H)§I<11p>\. Then the standard, and the modification of the

and let p) denote the P-value of T). Then the VW-TOW-SE

permutation methods mentioned above are used to obtain the P-values for both Tr_sg and Tyw _1_sE.

Inverse Standard Deviation (ISD) Method The second weighting scheme proposes a weight w,y,

based on the inverse standard deviation of p,, = M AF,,, where M AF,, is the Minor Allele Frequency of the

h 1

———_ The focus of this weighting
nPm (1=pm)

mt" variant. Then the weight assigned to each variant is w,, =

scheme is to put heavier weights to gene-environment interactions of rare variants.

Correlation Coefficient Method (CCM) Given the evidence that shows that there exists a positive
correlation between environmental exposures and genetic factors (Wang, 2015), a weighting scheme using
the correlation coefficient p,, between the genotypic score at the m'" variant and the environmental variable
in individuals that have been diagnosed (i.e. cases). Then we define the weight w,, as w,, = pm,. Using
this weighting scheme, we get that whenever p,, is positive and close to 1, it puts a heavy weight to the
gene-environment interactions that have a strong and positive association with the disease trait; and if p,,
is negative and close to -1, it puts a heavier weight to the gene-environment interactions that have strong
and negative association with the trait of interest. This is also a good weighting scheme for adjusting for

the direction of the gene-environment interaction.

2.5 Comparison Methods: iSKAT & MinP

In order to determine the usefulness of the newly proposed methods, a comparison with existing methods
was necessary. The two methods chosen for comparison were the Test for Rare Variants by Environment
Interactions using interaction Sequence Kernel Association Test (iISKAT) (Lin et al, 2015) and the Minimum

P-value method.

10



3 Simulations and Partial Preliminary Results

The empirical Mini-Exome genotype data provided by the GAW17 was used for the performed simulation.
The GAW17 dataset contains the haplotypes of 697 unrelated individuals on 3,205 genes. The four genes:
ELAVLA4 (genel), MSH4 (gene2), PDE4B (gene3), and ADAMTS4 (gene4) with 10, 20, 30, and 40 variants
were used, respectively, to simulate the data for the study. The four genes were merged to form a super
gene (Sgene) with 100 variants. The distributions of MAFs in the 100 variants in the Sgene and in the
24,487 variants in all the 3,205 genes are given in Figure 2 (Sha et al, 2012). During the simulation studies,
we generate genotypes based on the haplotypes of the 697 individuals in the Sgene. The haplotypes were
provided from the initial study during the development of the TOW and VW-TOW methods (Sha et al,
2012). and all of the data simulated was done in the same manner as the data simulated for the TOW and
VW-TOW simulations analyses (See Shat et al, 2012 for more information).

In order to determine the efficiency of the models proposed, a set of different combinations of important
parameters was used. These initial parameter combinations were: the location of the gene (gene € {3,4,5}),
the proportion of causal variants (pcau € {0.1,0.3,0.5,0.7,0.9}), the proportion of protective variants
(nprot € {0,0.2,0.4}), whether there was a main effect from the SNP (maineff € {0,1}), the mean of
the environmental trait, simulated to be Normal(envmean,1) (envmean € {0, 50,100,150, 200,250} ), the
coefficient of the gene-environment interaction (beta = {log(1.5),log(2)}), and whether the disease trait was
binary or continuous (quan € {0,1}, 0 for binary, 1 for continuous). In total, we considered 2160 combi-
nations of variables to simulate potential situations where the method might be applied. For simplicity, we
reduced the number of combinations by half, to 1080, by considering only a binary disease trait model.

For each combination, 500 replications of the model were done, in order to use the permutation tests de-
scribed above. Below are some preliminary results from some of the most significant combinations. Consider
Figure 2. We can see that as the proportion of causal variants increases, so does the power of each method.
However, in most settings, the methods TOW-SE and VW-TOW-SE are consistently more powerful than the
other methods, and although the Minimum P-value method is also higher, this method fails to keep the type
I error under control, unless a permutation method is applied to it, which makes the method significantly
more computationally intensive than the other methods, hence inconvenient to use in most settings. Notice
that when the methods were applied in gene 5, the results were not as straight forward as in genes 3 and 4.
Regarding this disparity in comparison with the other genes, min depth analysis needs to be done in gene
5 to discover the cause of the drastic results. Regarding Figure 3, where no main effect from the SNP was
considered we can see that the results are almost identical to the ones where main effect was considered, and

once again, the results from gene 5 seem to need further investigation.
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Figure 2: Power Comparison as the Proportion of Causal Variants Increases, when There is a Main Effect
from the SNP
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Figure 3: Power Comparison as the Proportion of Causal Variants Increases, when There is No Main Effect
from the SNP
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From a different perspective, we present the power of the different methods from the simulated data as
the proportion of protective variants increased. The results agree with the ones from above (See Figures 4
and 5). Once again, we considered the two settings, main effect from the SNP and no main effect, and we
show the results below. Since the results from gene 5 seem to need more information, only results from genes

3 and 4 are shown.

Figure 4: Power Comparison as the Proportion of Protective Variants Increases, when There is a Main Effect
from the SNP, on gene 3
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Figure 5: Power Comparison as the Proportion of Protective Variants Increases, when There is a Main Effect
from the SNP, on gene 4
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Figure 6: Power Comparison as the Proportion of Protective Variants Increases, when There is No Main
Effect from the SNP, on gene 3
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Figure 7: Power Comparison as the Proportion of Protective Variants Increases, when There is No Main
Effect from the SNP, on gene 4
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4 Real Data Analysis: GAW18

The methods TOW-SE and VW-TOW-SE seem to be useful in some settings, but in order to test accurate
identification of SNPs that have an association with a disease trait, it is desired to test the methods in
real data. Part of the data from the Genetic Analysis Workshop 18 (GAW18) was provided to test the
methods and compare the results with variants identified by Wang et al in a previously released paper.
The data provided was a set of 142 unrelated individuals genotyped at 1,215,399 variants. PLINK was
used to further clean the data in order to remove noise and erroneous data. After cleaning the data for
discarding genotypes that had less than 5% genotyping rate and non SNP data, only 585397 SNPs remained.
The remaining SNPs were then divided into non-overlapping windows of 100 SNPs each in order to apply
the methods. The goal was to identify regions that contained SNPs that have a strong association with
hypertension. T'wo environmental traits were considered, a quantitative trait, age at disease diagnose, and
a binary trait, smoker status, with 0 denoting non-smoker status. Since the Bonferroni correction would
have been considerably conservative for this particular dataset (:2:9%- = (0.085)107%), a different method

585397

was used to identify significant windows. Using PLINK, the number of independent windows was identified

(72,217), and that number was used to consider as the threshold for significance (;592- = (0.0692)107°).

Below we can see the top ten windows according to the p-values obtained from each of the compared methods.
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4.1 Results for Quantitative Environmental Variable: Age at Diagnose

Table 3: P-values from the Considered Methods for Age at Diagnose

"Window” | ”P-value ISD” ?Window” | "P-value CCM” Window | P-value TOW
4353 0.000127796260687041 | 2670 0.00332227402518026 || 1900 0.00010651
4458 0.000142648480121133 | 4927 0.00936317695426392 || 2635 0.000107272
3552 0.000161628226907351 | 5452 0.00954981106807906 || 1912 0.000107821
448 0.000197890706833959 | 2623 0.012099117037367 435 0.000108369
146 0.000258317337306635 | 105 0.0126957173768499 358 0.000108533
5452 0.000265360363298828 | 3711 0.013338649924398 491 0.000108851
2671 0.000276883896236702 | 4796 0.0139377574657057 4452 0.000112642
2669 0.00028800011006147 | 2762 0.0141387599509206 5721 0.000114368
2762 0.000303103474680544 | 4576 0.0147110228354675 146 0.000115835
4927 0.000307281789389546 | 3421 0.0153946404175944 5536 0.000126842

?Window” | ”P-value iSKAT” ?Window” | ”P-value MinP”

3103 NA 1890 0.000100122073315671

2640 0.000138192609795085 | 4004 0.000100856751922798

3150 0.000312628808616267 | 2918 0.000100947759807247

2613 0.000329452154594012 | 2789 0.000100980750696368

1899 0.000374110321790022 | 2691 0.000101078209077982

2612 0.000494980527388722 | 1136 0.000101209016525324

5257 0.000665823643444807 | 283 0.000101263399734529

3491 0.00138761693100742 941 0.000101347904547539

2607 0.00139720380658059 2886 0.000101352426655999

2603 0.00141196166729574 4049 0.000101393166343222

We can see that none of the obtained P-values imply significance in any window according to the current
threshold (0.0692)107°. However, we should still consider the windows with the lowest P-values. We have
at most 50 different windows, for each phenotype considered, that could potentially hold significance.
Tables 5 and 6 show the windows that are significant when compared to the GAW18 and family based
hypertension studies results. From these results we can see that indeed the newly developed methods succeed
at identifying gene — environment associations with the disease. Furthermore, out of all the methods, the
Correlation Coeflicient Method signaled the window that have the variants that explain the most variation

in the genome, when considering the discrete environmental variable (Table 6, highlighted in bold).

Further Research
After showing the methods’ efficacy and superiority to current standards in certain cases, the next step is to
analyze real data on Secondary Malignant Neoplasms (SMNs) in order to identify variants that have either
a positive or negative association with the disease. The implication of this discovery could help effectively

treat cancer patients and decrease the rate of SMN incidence.
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4.2 Results for Binary Environmental Variable: Smoker Status

Table 4: P-values from the Considered Methods for Smoker Status

"Window” | ”P-value ISD” ?Window” | "P-value CCM” Window | P-value TOW
129 0.000110874196227906 | 4739 0.00192106680326731 || 251 0.000118549
4986 0.000113430270552661 | 2192 0.0032841856545478 5773 0.000126155
2225 0.000123986114126451 | 1630 0.00352376924683095 || 2785 0.000129112
5784 0.000129450030879719 | 1321 0.00465613439361845 || 872 0.000131648
871 0.000141877856293937 | 4847 0.00471203141365995 || 1570 0.000138966
1189 0.000149561267793308 | 4204 0.00479930828540953 || 5662 0.000140556
3101 0.000149736481382279 | 2952 0.004826732467899 3399 0.000143583
2195 0.000183857860640235 | 508 0.00495076607465683 || 2507 0.000144919
1108 0.000200158615176083 | 1707 0.00496337757485787 || 642 0.00014917
5773 0.000200831401523605 | 2193 0.00572825733223425 || 5784 0.00015146

Window

P-value iISKAT

2196
4006
5248
3805
2693
5215
5791
4653
2194

32 6.30E-05

0.001177747
0.001707146
0.001757833
0.002247517
0.002446083
0.002464846
0.002493754
0.002695548
0.003138554

Window | P-value MinP
234 0.000104629
5452 0.000190207
299 0.000218275
3423 0.000229582
5665 0.000236041
235 0.000249251
4991 0.000272212
5160 0.000318506
1707 0.000404151
5404 0.000422441

18




Table 5: Range of SNPs Inside the Potentially Significant Windows for the Age Evironmental Variable

Window Starting SNP loc Ending SNP loc Significant Signaled by
105 3.2576692_G 3.2606480_C yes CCM
1136 3.32652332_G 3.32666083_A yes Min P
146 3.3473240_A 3.3497291_A yes ISD
1890 3.60995600_C 3.61023120_C yes Min P
1899 3.61226363_A 3.61256364_T yes iSKAT
1900 3.61256686_A 3.61297908_C yes TOW-SE
1912 3.61625274_C 3.61656548_G yes TOW-SE
2603 3.84413353_A 3.84427677_A no iSKAT
2607 3.84526588_C 3-84558280_T no iSKAT
2612 3.84695126_G 3.84726805_A no iSKAT
2613 3.84727898_C' 3.84756552_T no iSKAT
2623 3.84992877_T 3_85031666_-G no CCM
2635 3.85459212_T 3.85492002_A no TOW-SE
2640 3-85588494_C' 3.85600771_G no iSKAT
2669 3.86547035_C 3.86576946_G no ISD
2670 3.86577017_C 3.86605162_A no CCM
2691 3.87295368_T 3.87339402_A no Min P
2762 3.89549919_C' 3.89595252_T no CCM
2789 3.94053165_A 3.94078802_G no Min P
283 3.6787821.G 3.6805408_A yes Min P
2886 3.97152615_A 3.97191431.T no Min P
2918 3.98096781_T 3.98120608_A4 no Min P
3103 3.104235682_G 3.104255789_G no iSKAT
3150 3.105681971_C 3.105693714_C no iSKAT
3421 3-115221939.T 3.115260435_G yes CCM
3491 3.117453184.T 3.117492046_C yes iSKAT
3552 3.119399641_A 3.119421703_A yes ISD
358 3.8718008_A 3.8730289_G no TOW-SE
3711 3.125129489.T 3.125174636_C' yes CCM
4004 3.134649566_A 3.134673394_T yes Min P
4049 3.136773875_.C 3.136800244_T yes Min P
435 3.11062062_T7 3.11099571_A yes TOW-SE
4353 3.147386728_C 3.147417839.T yes ISD
4452 3.150510227_A 3_150554959_T yes TOW-SE
4458 3.150726830_T 3.150774782_A yes ISD
448 3.11591200_-G 3.11629420_-G yes ISD
4576 3_154915593_G 3_154955403_T yes CCM
4796 3.162611646_T 3.162632550_A yes CCM
491 3.13045939_T 3.13075350_A yes TOW-SE
4927 3.166715641_G 3.166750007_C yes CCM
5257 3.178567095_C 3.178601948_G yes iSKAT
5452 3.186259233_G 3.186288565_A yes CCM
5536 3.189058427_C 3_189085393_T yes TOW-SE
5721 3.193972501_A 3.194006998_T yes TOW-SE
941 3.27088978_C' 3.27102630_A yes Min P

19



Table 6: Range of SNPs Inside the Potentially Significant Windows for the Smoker Status Environmental

Variable

Window Starting SNP loc  Ending SNP loc  Significant Signaled by
32 3991242 C 3.1017394_A no iSKAT
1108 3.31929486_A 3.31957631_A yes ISD
1189 3.34549511_C 3.34589833_C yes ISD
129 3.3093955_C 3.3123326_G yes ISD
1321 3.39240559_T 3.39275010_A yes CCM
1570 3.48623124 A  3.48721040_A yes CCM
1630 3.52659079_C 3.52697566_C yes CCM
1707 3.55302446_G 3.55333080-C yes CCM
2192 3.70021965_C 3.70069611_A yes CCM
2193 3.70069621_A 3.70114499_C yes CCM
2194 3_70115600_T 3.70172654_C yes iSKAT
2195 3.70172923_.T 3.70198308_C yes ISD
2196 3.70198406_G 3.70232626_T yes iSKAT
2225 3.71384708_T 3.71421152_T yes ISD
234 3.5729514_C 3.5755612_G yes Min P
235 3.5755763_G 3.5785973_G yes Min P
2507 3.80479403_A 3.80515770_T yes TOW-SE
251 3.6051816_A 3_6087578_A yes TOW-SE
2693 3.87354731_A 3.87369511_G no iSKAT
2785 3.93827350_A 3.93936708_G no TOW-SE
2952 3.99083010_T 3.99108384_T no CCM
299 3.7230063_C 3.7266362_G yes Min P
3101 3.104164622_A 3.104202009_G no ISD
3399 3.114110629_T 3.114144714_A yes TOW-SE
3423 3_115297011_A 3.115327361_A yes Min P
3805 3.127832554_G 3.127881613_A yes iSKAT
4204 3.142703435.T 3.142750908_G yes CCM
4653 3.157729011_A 3_157788588.T yes iSKAT
4739 3.161151867_T 3.161175643.T yes CCM
4847 3.164105512_C 3.164125983_C yes CCM
4986 3.169121931_A4 3.169148465.T yes ISD
4991 3.169262775_C 3.169288729_T yes Min P
508 3_13522177_A 3_13557469_T yes CCM
5160 3.175211459_G 3.175246745_C yes Min P
5215 3.177007214_C 3.177067087_G yes iSKAT
5248 3.178291260_A 3.178330596_A yes iSKAT
5404 3.184409373_A 3.184441278_A yes Min P
5452 3.186259233_G 3.186288565_A yes Min P
5662 3.192287194.T 3.192315287_G yes TOW-SE
5665 3.192367902_G 3.192395378_C yes Min P
5773 3.195238993_G 3-195282609_C yes ISD
5784 3.195546145_G 3.195563248_A yes ISD
5791 3.195763241_C 3.195789428_C yes iSKAT
642 3.18228007_A 3.18278139_A yes TOW-SE
871 3.25062752_C 3.25084111_.C no ISD
872 3.25084308_G 3.25114861_G no TOW-SE
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