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ABSTRACT

DETECTING ASSOCIATION OF GENE-ENVIRONMENT
INTERACTIONS IN COMMON AND RARE VARIANTS FOR

HYPERTENSION

by

Miguelangel Diaz Medina

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Xuexia Wang and Daniel Gervini

Subsequent malignant neoplasms (SMNs) or secondary cancers are one of the

most negative effects resulting from cancer treatment such as chemotherapy or

radiation. Given the severity and high incidence of mortality faced by cancer

survivors, it is critical that we understand the cause of SMNs so that preventive

measures or intervention can be done for individuals facing a higher risk of SMN

incidence. The purpose of this thesis is to test the efficacy of newly developed

statistical methods used to identify gene-environment interactions that are

associated with a specific disease, in this case, SMNs, considering both common

and rare variants, using optimally weighted combinations and generalized linear

models.

The models proposed are a variation of the model to Test the effect of an

Optimally Weighted combination of variants (TOW) and the Variable Weight

TOW (VW-TOW). Two newly proposed weighting schemes, Inverse Standard

Deviation (ISD) and the Correlation Coefficient Method (CCM) are tested. In

order to test the models, real life data from previous studies is analyzed to target

and identify genetic variants that have been shown to have an association with a

disease, in this case, hypertension, comparing the analyses and results to a study

done in testing rare variants for hypertension using family-based tests with

different weighting schemes. The study focuses on data from Chromosome 3

genotyped during the Genetic Analysis Workshop 18 (GAW18), obtaining similar

ii



results to those in the hypertension study and the GAW18 study. Partial results

from simulated studies are shown to support the methods’ development and

preliminary analyses. Comparisons are then done with existing methods to show

when they exceed current standards.
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1 Introduction

In the study of statistical genetics, statistical models are used to analyze, in a broad sense, inherited traits

and genetic data. Genetic data refers mainly to biological material that is inherited during reproduction

through sperm and egg cells (Laird et al, 2011). In the past, it was difficult to perform such analyses, having

mostly statistical experimental studies in plants and animals. However, as technological power increases,

our ability to gather and manipulate data has become more efficient, hence allowing us to reach milestones

that in the past may have seen impossible, such as mapping up to 90% of the humane genome (National

Human Genome Research Institute, 2015), comparing the genetic sequences of individuals in order to identify

chromosomal regions where genetic variants are shared (International Hapmap Project, 2016), identifying

and categorizing the functions of specific genes. (National Center for Biotechnology Information, 2016), and

performing Genome Wide Association Studies(GWAS); studies which aim to determine genetic variation

associated with disease traits. Due to the increase of technological power, we are in an era where statistical

genetic studies will provide significant insight into disease etiology, aiding us in developing effective preven-

tive measures as well as more successful disease treatments.

In this thesis, the focus is to test the efficacy of newly developed statistical methods to identify gene-

environment interactions that are associated with a specific disease, considering both common and rare

variants, using optimally weighted combinations and generalized linear models proposed by Dr. Xuexia

Wang.

1.1 Basics of Biology and Statistical Genetics

In order to yield a proper understanding of the material being discussed in this thesis, it is important to

clarify some terminology that will be used through the text; terminology that might be foreign to the reader.

The thesis is focused on the analysis of the association between gene-environment interactions and a disease

trait, in both common and rare variants. For the context of this thesis, Gene refers to a single-nucleotide

polymorphism (SNP); however, a gene can be any segment of DNA within a chromosome possessing a specific

genetic function. Environment refers to any variable, continuous or discrete, that is applied to the individual,

such as smoking status, dosage of medicine applied for treatment, age at disease diagnose, etc.

As it is known, the genetic information of a human individual is contained in 23 pairs of chromosomes,

22 autosomal (homologous) pairs, and one sex chromosome pair. Furthermore, there are two DNA chains

or sequences in each chromosome, they have a direction; one end is called 5’ and the other end is called
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Figure 1: DNA Chains and Base Pairs

3’; they are defined according to the asymmetrical bonding of sugar and phosphate, and they are read,

by convention, from left to right, beginning at the 5’ strand. DNA itself has four bases: Adenine(A),

Cytosine(C), Guanine(G), and Thymine(T). Adenine pairs with Thymine and Guanine pairs with Cytosine.

We define a base pair (bp) as the two bases from the two DNA chains in a chromosome, hence a base pair

can be (AT) or (CG) (See Figure 1). Base pairs are used as the unit of length of chromosomes or DNA

sequences. A marker or locus is a specific position in a chromosome. It could range from 1 bp to hundreds

of bp. An allele is a DNA sequence within a marker; however, the terms gene, allele, and sometimes base,

are usually interchangeable.

There are several types of markers, such as SNPs, Indels, Variable Numbers of Tandem Repeats (VNTRs),

and Structural Variants, but SNPs are one of the main markers studied nowadays, since they explain a large

portion of genetic variation in the human genome. A SNP is a single base pair marker that has two bases

for the whole human population. The two bases can be from any of the four, not taking into consideration

the usual AT or CG pairing (See Table 1).

Since SNPs have two alleles, we can determine their occurrence within a population. Consider SNPA in a

Table 1: Example of SNPs

Individual SNP 1 SNP 2 SNP 3 SNP 4

1 A T T A
2 A G T C
3 G G T C
4 A T A C

population of n individuals. Let A1 and A2 be the alleles corresponding to SNPA. Let a1 be the number

of A1 alleles and a2 be the number of A2 alleles. Then A1 is the minor allele if a1 < a2 and it’s frequency,

denoted as the minor allele frequency MAF , is a1
n . The concept of Minor Allele Frequency (MAF ) is used

to determine whether a SNP is a common or rare variant. Usually, SNPs with a MAF > .05 are considered

common variants, and SNPs with MAF < .05 are considered rare variants. However, this is not a set rule,
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and it can vary depending on the researcher and methods being used to analyze the data.

1.2 Data Management

Since there are around 10million SNPs in the human genome, data management can be a difficult task.

For example, considers a study on 200 individuals at 300, 000 variants. Depending on the kind of analysis

desired, the processing time for this amount of data can be extensive. Fortunately, there are tools that allow

us to perform analyses in an efficient way. Notwithstanding, some knowledge in statistical software and basic

Unix scripting is fundamental when deciding the right approach in a study.

Genomic data can be inconvenient to manipulate if it is analyzed as the letters corresponding to the alleles

in the SNPs, which is why it is ideal to recode the data, and this can be done in several manners, such as

additive recoding, recessive recoding, or dominant recoding. Consider again SNPA with alleles A1 and A2.

Now assume that allele A1 is suspected to be the disease allele. If data is recoded additively, then it takes

the values i ∈ {0, 1, 2} where i denotes the number of disease alleles. If data is recoded recessively, then

a recessive disease model is considered; it is assumed that only individuals with two disease alleles in the

marker will have the disease, and the data is recoded to take the values i ∈ {0, 1} where i denotes whether

there are two disease alleles in the marker. If data is recoded dominantly, then a dominant disease model

is considered; it is assumed that individuals with either 1 or 2 disease alleles will have the disease, and the

data is recoded to take the values i ∈ {0, 1} where i denotes whether there is at least 1 disease allele in the

marker (See Table 2). The data used in this thesis is coded additively, as it provides the most information

out of the three methods.

Table 2: Data Coding: A1 Considered to be the Disease Allele

Alleles Additive Coding Recessive Coding Dominant Coding

A1A1 2 1 1
A1A2 1 0 1
A2A2 0 0 0
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2 The Methods: TOW-SE & VW-TOW-SE

The Methods TOW-SE and VW-TOW-SE are based on previously developed methods TOW and VW-TOW

by Sha et al, 2012. The hypothesis stated is that the risk of treatment-related SMNs is associated with joint

effects of therapeutic exposures and susceptible genes such as drug-metabolizing genes, drug transport genes,

and DNA repair genes. (Wang, 2015).

Consider a sample of n individuals that have been genotyped at M variants (SNPs). Let yi denote the

disease trait for the ith individual (discrete or continuous), Ei as the environmental variable (discrete or

continuous), Zic as the C potential covariates, and Gim as the genotypic scores, coded additively, at the M

variants.

2.1 Testing the effect of an Optimally Weighted combination of variants (TOW).

The Test for testing the effect of an Optimally Weighted combination of variants (TOW) derives a com-

bination of optimal weights to test the effect of
∑M
m w0

mgim. Consider the following generalized linear model:

h(E(yi | Gi)) = β0 + β1gi1 + ...+ βMgiM (1)

We use the generalized linear model (GLM) to model the relationship between disease traits yi and genotypes

Gi, where h(·) is a monotone link function, βj are the regression parameters, j ∈ {0, 1, ...,M}. Depending

on whether the disease trait is discrete or continuous, two models, the logistic regression model with the

Logit link for a binary trait or the linear model with the identity link for continuous or quantitative traits,

can be used. We consider the following score test statistic for the null hypothesis H0 : β = 0 [Sha et al, 2012]:

S = UTV −1U (2)

where U =
∑n
i=1(yi − ȳ)(gi − ḡ) and V = 1

n

∑n
i=1(yi − ȳ)2

∑n
i=1(gi − ḡ)(gi − ḡ)T . The score test statistic

S follows asymptotically a chi-square distribution with rank(V ) degrees of freedom (Sha et al, 2012). Al-

though powerful when testing common variants, this test loses power when rare variants are introduced into

the model, which is why the weighted combination of variants is introduced. In order to test the effect of

gwi =
∑M
m w0

mgim the test score statistic becomes:

S(w1, ..., wM ) = n
(
∑n
i=1(yi − ȳ)(gi − ḡ))2∑n

i=1(yi − ȳ)2
∑n
i=1(gi − ḡ)2

= n
(
∑M
m wm

∑n
i=1(yi − ȳ)(gim − ḡm))2∑n

i=1(yi − ȳ)2
∑n
i=1(gi − ḡ)2

(3)
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Since rare variants can be assumed to be independent, we have that:

n∑
i=1

(gi − ḡ)2 =

M∑
m=i

M∑
l=1

wmwl

n∑
i=1

(gim − ḡm)(gil − ḡl) ≈
M∑
m=1

w2
m

n∑
i=1

(gim − ḡ)2 (4)

If we let:

am =

∑n
i=1(yi − ȳ)(gim − ḡm)√∑n

i=1(gim − ḡm)2
(5)

and

um = wm

√√√√ n∑
i=1

(gim − ḡm)2 (6)

this yields a score test statistic

S0(w1, ..., wM ) = n
(
∑M
m=1 amum)2∑

(yi − ȳ)2
∑M
m=1 u

2
m

. (7)

Since the goal is to obtain the optimal weight, we consider the maximum of S0(w1, ..., wM ), considering it

as a function of (u1, ...uM ) it would reach its maximum at uM = aM or

wm

√√√√ n∑
i=1

(gim − ḡm)2 =

∑n
i=1(yi − ȳ)(gim − ḡm)√∑n

i=1(gim − ḡm)2

=⇒ wm =

∑n
i=1(yi − ȳ)(gim − ḡm)∑n

i=1(gim − ḡm)2
, for m ∈ {1, ...,M} (8)

Let w0
m denote the optimal weights given by (8) and let g0

i =
∑M
m=1 w

0
mgim. Then

S0(w0
1, ..., w

0
M ) = n

∑n
i=1(yi − ȳ)(g0

i − ḡ0)∑n
i=1(yi − ȳ)2

. (9)

Then the statistic to Test the effect of the Optimally Weighted combination (TOW) of variants
∑M
m=1 w

0
mgim

is defined as

TT =

n∑
i=1

(yi − ȳ)(g0
i − x̄0). (10)

By using a permutation method to evaluate the P -values, the term
∑n
i=1(yi − ȳ)2 can be considered as a

constant (Sha et al, 2012) and hence the statistic TT is equivalent to S0(w0
1, ..., w

0
M ).

Notice that the optimal weight w0
m is essentially ρ(y,gm)∑n

i=1(gim−ḡm)2 = w0∗
m where ρ(y, gm) is the correlation

coefficient between y = (y1, ..., yn) and gm = (g1m, ..., gnm). It is clear then that since w0∗
m is proportional

to ρ(y, gm), w0
m will assign heavy weights to the variants that have strong association with the disease trait

of interest and will also adjust the direction of the association, allowing us to consider both causal and
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protective variants. Also, since w0∗
m is proportional to (

∑n
i=1(gim − ḡm)2)−1, w0

m will assign heavy weights

to rare variants. As Sha et al mention, similarly to most methods that target rare variants, TOW will lose

power when testing the effects of common and rare variants together, which is why the method VW-TOW

was proposed.

2.2 VW-TOW

In order to preserve the power of the analysis when dealing with both common and rare variants at the

same time, the Variable Weight to Test the effects of the Optimally Weighted combination (VW-TOW)

of variants is i proposed. We begin by dividing the variants into common and rare, using a rare variant

threshold (RVT), usually considered to be 0.05. Variants with a MAF < RV T are considered rare variants,

and those with MAF > RV T are considered common variants. After separating the variants into common

and rare, we apply the method TOW to each group and obtain the two test statistics Tr and Tc, representing

the TOW test statistic for the rare and common variant groups, respectively (Sha et al, 2012). Then consider

Tλ = λ Tr√
var(Tr)

+ (1 − λ) Tc√
var(Tc)

and let pλ denote the P -value of Tλ. Then the VW-TOW test statistic

is defined as

TVW−T = min
0≤λ≤1

pλ. (11)

In order to evaluate the minimization, a simple method was used. The interval [0, 1] is divided into K

equivalent non-overlapping intervals and we let λ = k/K for k ∈ {0, 1, ...,K}. Then we get that min
0≤λ≤1

pλ =

min
0≤k≤K

pλk
. The standard permutation test is used to evaluate the P -value of the TOW test statistic TT , but

a variation is used to evaluate the P -value of the VW −TOW test statistic TVW−T . Consider a number of Q

permutations, and let T
(q)
r and T

(q)
c be the values of Tr and Tc for the qth permutation, for q ∈ {0, 1, ..., Q},

where q = 0 denotes the values from the original data. Then we proceed to calculate the value of T
(q)
λk

for all

values of q and k, estimating var(Tr) and var(Tc) using T
(q)
r and T

(q)
c (Sha et al, 2012). Lastly, we obtain

p
(b)
λk

using

p
(q)
λk

=
#{T (d)

λk
> T

(q)
λk
| d ∈ {0, 1, ..., Q}}
Q

. (12)

Then considering p(q) as min
0≤k≤K

p
(q)
λk

we determine the p-value of TVW−T by

#{p(q)
λk

> p
(0)
λk
| q ∈ {1, ..., Q}}
Q

. (13)
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2.3 Adjusting for Confounder Covariates

In order to consider the model with the C potential covariates Zc we need to take into account certain

aspects before applying the methods. We begin by adjusting both the disease traits yi and the genotypic

scores gim by applying a simple linear regression and obtaining the residuals (Sha et al, 2012). We get

yi = α0 + α1zi1 + ...+ αczic + εi (14)

and

gim = α0 + α1zi1 + ...+ αczic + τi (15)

Obtaining the residuals ỹi and g̃im for the disease trait and the genotypic scores, respectively, we proceed to

apply the TOW and VW-TOW methods, defining their test score statistics as

TTOW = TT |yi=ỹi,gim=g̃im (16)

and

TVW−TOW = TWV−T |yi=ỹi,gim=g̃im (17)

respectively. Using this approach is equivalent to applying the linear model directly to the disease trait

including the confounder covariates

yi = α0 + α1zi1 + ...+ αczic + β1gi1 + ...+ βmgim + εi = αTZi + βTGi + εi (18)

where α = (α0, ..., αc)
T , β = (β1, ..., βM )T , Gi = (gi1, ..., giM )T , and Zi = (zi1, ..., zic)

T . Then the score test

statistic for the null hypothesis H0 : β = 0 becomes

SC = ŨT Ṽ −1Ũ (19)

where Ũ =
∑n
i=1 ỹG̃i, Ṽ = 1

n

∑n
i=1 ỹi

2∑n
i=1 G̃iG̃i

T
.

The proof of this statement is the following.

Let Y = (y1, ..., yn)T ε = (ε1, ..., εn) ∼iid N(0, σ2), then the log-likelihood of (18) is given by

log l = −n
2

log(σ2)− 1

2σ2
(Y − Zα−Gβ)T (Y − Zα−Gβ). (20)
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Then

δ log l

δβ
=

1

σ2
(Y − Zα−Gβ)TG, (21)

δ log l

δα
=

1

σ2
(Y − Zα−Gβ)TZ, (22)

δ2 log l

δββT
= − 1

σ2
GTG,

δ2 log l

δααT
= − 1

σ2
ZTZ, and

δ2 log l

δαβT
= − 1

σ2
ZTG. (23)

Now let α̂ and σ̂2 denote the maximum likelihood estimators of α and σ2 under H0 : β = 0. Then

α̂ = (ZTZ)−1ZTY and σ̂2 =
1

n
Y T (I − P )Y =

1

n
Ỹ T Ỹ (24)

where P = Z(ZTZ)−1ZT and Ỹ = (ỹ1, ..., ỹn) is the vector of the residuals obtained from (14). Let

θ = (αT , βT )T , then we obtain the following score and information matrix

S =
δ log l

δθ |α=α̂,β=0
=

1

σ2(0, UT )T
(25)

and

I = −E δ
2 log l

δθθT |α=α̂,β=0
=

1

σ2

(
ZTZ ZTG
GTZ GTG

)
, (26)

where U = Ỹ TG. Note that (I − P ) is idempotent. Hence U = Ỹ TG = Ỹ T (I − P )G = Ỹ T G̃ and

GT (I −P )G = G̃T G̃ where G̃ = (G̃1, ..., G̃n) is the (nxM) matrix of the residuals obtained from (15). Then

the test score statistic is

Tlinear =
1

σ2
UTV −1U (27)

where U = Ỹ T G̃ =
∑n
i=1 ỹiG̃i and V = G̃T G̃ =

∑n
i=1 G̃iG̃i

T

Hence, Tlinear and SC from (19) are proportional, which completes the proof

Now, similarly to the main model, the score test statistic to test the effect of the weighted combination of

variants gi =
∑M
m=1 wmgim is given by SC(w1, ..., wm) = n

(
∑n

i=1 ỹig̃i)
2∑n

i=1 ỹ
2
i

∑n
i=1 g̃

2
i
, and following the same procedure

used in the non-covariate method we have that SC(w1, ..., wM ) reaches its maximum when wm =
∑n

i=1 ỹig̃im∑n
i=1 g̃

2
im

and hence the maximum of SC(w1, ..., wM ) is equivalent to TTOW .
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2.4 Testing the effect of an Optimally Weighted combination of variants con-

sidering SNP-Environment interaction (TOW-SE).

Considering the same set up form the beginning of the section, now we will use the following generalized

linear model, which include the interaction term between the SNPs and the Environmental trait. Consider

f(E(yi | Gi, Ei, Zi)) = α0 + Ziα+ EiGiβ +Giξ + ηEi (28)

and just as in the TOW method, for continuous or quantitative disease traits, f(·) will be the monotone

link function, while for binary traits, the logit link function will be used. The parameters α0, α, β, ξ,

and η are the respective regression coefficients of each term, and the corresponding null hypothesis becomes

H0 : β = 0. However, since we are testing the SNP-Environment interaction, when we adjust for covariates

we are interested in obtaining ỹi as the residual of yi and X̃i = (x̃i1, ..., x̃iM ) as the residuals of EiGi =

(Eigi1, ..., EigiM ) (Sha et al, 2015). Then the relationship between ỹi and X̃i = (x̃i1, ..., x̃iM ) is modeled by

the general linear model

f(E(ỹi | X̃i)) = β∗0 + X̃iβ
∗. (29)

Then the initial null hypothesis is equivalent to H0 : β∗ = 0. Since there is some particular interested

in accurately identifying interactions between rare variants and the environmental trait, it is desired to

efficiently deal with the data, to avoid losing power due to large degrees of freedom or due to sparse data.

Hence, three different weighting schemes of the form
∑M
m=1 wix̃im are introduced as a solution to the problem

(Wang et al,2015).

Optimal Weight and TOW-SE: The first weighting scheme uses the same score test as the initial

TOW Method:

S(w1, ..., wM ) = n
(
∑n
i=1(ỹi − ¯̃y)(x̃i − ¯̃x))2∑n

i=1(ỹi − ¯̃y)2
∑n
i=1(x̃i − ¯̃x)2

= n
(
∑M
m wm

∑n
i=1(ỹi − ¯̃y)(x̃im − ¯̃xm))2∑n

i=1(ỹi − ¯̃y)2
∑n
i=1(x̃i − ¯̃x)2

(30)

which reaches its maximum at S0(w0
1, ..., w

0
M ) = n

∑n
i=1(ỹi−¯̃y)(x̃0

i−¯̃x0)∑n
i=1(ỹi−¯̃y)2

when wm =
∑n

i=1(ỹi−¯̃y)(x̃im−¯̃xm)∑n
i=1(x̃im−¯̃xm)2

and

x̃0
i =

∑M
m=1 w

0
mx̃im. Then the test statistic is defined as in TOW as TT−SE =

∑n
i=1(ỹi − ¯̃y)(x̃0

i − ¯̃x0). In

order to make TT−SE equivalent to S0(w0
1, ..., w

0
M ) we use, once again, a permutation test to evaluate the

P -values. Just as it TOW, the optimal weight w0
m assigns heavy weights to gene-environment interactions

that have strong association with the studied disease trait, as well as adjusting for the direction of the

interaction.
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In order to maintain the power when testing for both common and rare variants at the same time, the

method VW-TOW-SE is proposed.

VW-TOW-SE This method applies the procedures from VW-TOW in the exact same manner. We

divide the variants into common and rare, using the RVT of 0.05. After separating the variants into common

and rare, we apply the method TOW-SE to each group and obtain the two test statistics Tr and Tc,

representing the TOW-SE test statistic for the rare and common variant groups, respectively. Then we

consider Tλ = λ Tr√
var(Tr)

+ (1 − λ) Tc√
var(Tc)

and let ρλ denote the P -value of Tλ. Then the VW-TOW-SE

test statistic is defined as TVW−TOW−SE = min
0≤λ≤1

pλ. Then the standard, and the modification of the

permutation methods mentioned above are used to obtain the P -values for both TT−SE and TVW−T−SE .

Inverse Standard Deviation (ISD) Method The second weighting scheme proposes a weight wm

based on the inverse standard deviation of pm = MAFm, where MAFm is the Minor Allele Frequency of the

mth variant. Then the weight assigned to each variant is wm = 1√
npm(1−pm)

. The focus of this weighting

scheme is to put heavier weights to gene-environment interactions of rare variants.

Correlation Coefficient Method (CCM) Given the evidence that shows that there exists a positive

correlation between environmental exposures and genetic factors (Wang, 2015), a weighting scheme using

the correlation coefficient ρm between the genotypic score at the mth variant and the environmental variable

in individuals that have been diagnosed (i.e. cases). Then we define the weight wm as wm = ρm. Using

this weighting scheme, we get that whenever ρm is positive and close to 1, it puts a heavy weight to the

gene-environment interactions that have a strong and positive association with the disease trait; and if ρm

is negative and close to -1, it puts a heavier weight to the gene-environment interactions that have strong

and negative association with the trait of interest. This is also a good weighting scheme for adjusting for

the direction of the gene-environment interaction.

2.5 Comparison Methods: iSKAT & MinP

In order to determine the usefulness of the newly proposed methods, a comparison with existing methods

was necessary. The two methods chosen for comparison were the Test for Rare Variants by Environment

Interactions using interaction Sequence Kernel Association Test (iSKAT) (Lin et al, 2015) and the Minimum

P-value method.
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3 Simulations and Partial Preliminary Results

The empirical Mini-Exome genotype data provided by the GAW17 was used for the performed simulation.

The GAW17 dataset contains the haplotypes of 697 unrelated individuals on 3,205 genes. The four genes:

ELAVL4 (gene1), MSH4 (gene2), PDE4B (gene3), and ADAMTS4 (gene4) with 10, 20, 30, and 40 variants

were used, respectively, to simulate the data for the study. The four genes were merged to form a super

gene (Sgene) with 100 variants. The distributions of MAFs in the 100 variants in the Sgene and in the

24,487 variants in all the 3,205 genes are given in Figure 2 (Sha et al, 2012). During the simulation studies,

we generate genotypes based on the haplotypes of the 697 individuals in the Sgene. The haplotypes were

provided from the initial study during the development of the TOW and VW-TOW methods (Sha et al,

2012). and all of the data simulated was done in the same manner as the data simulated for the TOW and

VW-TOW simulations analyses (See Shat et al, 2012 for more information).

In order to determine the efficiency of the models proposed, a set of different combinations of important

parameters was used. These initial parameter combinations were: the location of the gene (gene ∈ {3, 4, 5}),

the proportion of causal variants (pcau ∈ {0.1, 0.3, 0.5, 0.7, 0.9}), the proportion of protective variants

(nprot ∈ {0, 0.2, 0.4}), whether there was a main effect from the SNP (maineff ∈ {0, 1}), the mean of

the environmental trait, simulated to be Normal(envmean, 1) (envmean ∈ {0, 50, 100, 150, 200, 250}), the

coefficient of the gene-environment interaction (beta = {log(1.5), log(2)}), and whether the disease trait was

binary or continuous (quan ∈ {0, 1}, 0 for binary, 1 for continuous). In total, we considered 2160 combi-

nations of variables to simulate potential situations where the method might be applied. For simplicity, we

reduced the number of combinations by half, to 1080, by considering only a binary disease trait model.

For each combination, 500 replications of the model were done, in order to use the permutation tests de-

scribed above. Below are some preliminary results from some of the most significant combinations. Consider

Figure 2. We can see that as the proportion of causal variants increases, so does the power of each method.

However, in most settings, the methods TOW-SE and VW-TOW-SE are consistently more powerful than the

other methods, and although the Minimum P-value method is also higher, this method fails to keep the type

I error under control, unless a permutation method is applied to it, which makes the method significantly

more computationally intensive than the other methods, hence inconvenient to use in most settings. Notice

that when the methods were applied in gene 5, the results were not as straight forward as in genes 3 and 4.

Regarding this disparity in comparison with the other genes, min depth analysis needs to be done in gene

5 to discover the cause of the drastic results. Regarding Figure 3, where no main effect from the SNP was

considered we can see that the results are almost identical to the ones where main effect was considered, and

once again, the results from gene 5 seem to need further investigation.
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Figure 2: Power Comparison as the Proportion of Causal Variants Increases, when There is a Main Effect
from the SNP

Case−Control, Main, beta = log(1.5), gene = 3
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Figure 3: Power Comparison as the Proportion of Causal Variants Increases, when There is No Main Effect
from the SNP

Case−Control, No Main, beta = log(1.5), gene = 3
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From a different perspective, we present the power of the different methods from the simulated data as

the proportion of protective variants increased. The results agree with the ones from above (See Figures 4

and 5). Once again, we considered the two settings, main effect from the SNP and no main effect, and we

show the results below. Since the results from gene 5 seem to need more information, only results from genes

3 and 4 are shown.

Figure 4: Power Comparison as the Proportion of Protective Variants Increases, when There is a Main Effect
from the SNP, on gene 3
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Figure 5: Power Comparison as the Proportion of Protective Variants Increases, when There is a Main Effect
from the SNP, on gene 4

Figure 6: Power Comparison as the Proportion of Protective Variants Increases, when There is No Main
Effect from the SNP, on gene 3
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Figure 7: Power Comparison as the Proportion of Protective Variants Increases, when There is No Main
Effect from the SNP, on gene 4

4 Real Data Analysis: GAW18

The methods TOW-SE and VW-TOW-SE seem to be useful in some settings, but in order to test accurate

identification of SNPs that have an association with a disease trait, it is desired to test the methods in

real data. Part of the data from the Genetic Analysis Workshop 18 (GAW18) was provided to test the

methods and compare the results with variants identified by Wang et al in a previously released paper.

The data provided was a set of 142 unrelated individuals genotyped at 1, 215, 399 variants. PLINK was

used to further clean the data in order to remove noise and erroneous data. After cleaning the data for

discarding genotypes that had less than 5% genotyping rate and non SNP data, only 585397 SNPs remained.

The remaining SNPs were then divided into non-overlapping windows of 100 SNPs each in order to apply

the methods. The goal was to identify regions that contained SNPs that have a strong association with

hypertension. Two environmental traits were considered, a quantitative trait, age at disease diagnose, and

a binary trait, smoker status, with 0 denoting non-smoker status. Since the Bonferroni correction would

have been considerably conservative for this particular dataset ( 0.05
585397 = (0.085)10−6), a different method

was used to identify significant windows. Using PLINK, the number of independent windows was identified

(72, 217), and that number was used to consider as the threshold for significance ( 0.05
72217 = (0.0692)10−5).

Below we can see the top ten windows according to the p-values obtained from each of the compared methods.
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4.1 Results for Quantitative Environmental Variable: Age at Diagnose

Table 3: P-values from the Considered Methods for Age at Diagnose

”Window” ”P-value ISD” ”Window” ”P-value CCM”
4353 0.000127796260687041 2670 0.00332227402518026
4458 0.000142648480121133 4927 0.00936317695426392
3552 0.000161628226907351 5452 0.00954981106807906
448 0.000197890706833959 2623 0.012099117037367
146 0.000258317337306635 105 0.0126957173768499
5452 0.000265360363298828 3711 0.013338649924398
2671 0.000276883896236702 4796 0.0139377574657057
2669 0.00028800011006147 2762 0.0141387599509206
2762 0.000303103474680544 4576 0.0147110228354675
4927 0.000307281789389546 3421 0.0153946404175944

Window P-value TOW
1900 0.00010651
2635 0.000107272
1912 0.000107821
435 0.000108369
358 0.000108533
491 0.000108851
4452 0.000112642
5721 0.000114368
146 0.000115835
5536 0.000126842

”Window” ”P-value iSKAT” ”Window” ”P-value MinP”
3103 NA 1890 0.000100122073315671
2640 0.000138192609795085 4004 0.000100856751922798
3150 0.000312628808616267 2918 0.000100947759807247
2613 0.000329452154594012 2789 0.000100980750696368
1899 0.000374110321790022 2691 0.000101078209077982
2612 0.000494980527388722 1136 0.000101209016525324
5257 0.000665823643444807 283 0.000101263399734529
3491 0.00138761693100742 941 0.000101347904547539
2607 0.00139720380658059 2886 0.000101352426655999
2603 0.00141196166729574 4049 0.000101393166343222

We can see that none of the obtained P -values imply significance in any window according to the current

threshold (0.0692)10−5. However, we should still consider the windows with the lowest P -values. We have

at most 50 different windows, for each phenotype considered, that could potentially hold significance.

Tables 5 and 6 show the windows that are significant when compared to the GAW18 and family based

hypertension studies results. From these results we can see that indeed the newly developed methods succeed

at identifying gene − environment associations with the disease. Furthermore, out of all the methods, the

Correlation Coefficient Method signaled the window that have the variants that explain the most variation

in the genome, when considering the discrete environmental variable (Table 6, highlighted in bold).

Further Research

After showing the methods’ efficacy and superiority to current standards in certain cases, the next step is to

analyze real data on Secondary Malignant Neoplasms (SMNs) in order to identify variants that have either

a positive or negative association with the disease. The implication of this discovery could help effectively

treat cancer patients and decrease the rate of SMN incidence.
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4.2 Results for Binary Environmental Variable: Smoker Status

Table 4: P-values from the Considered Methods for Smoker Status

”Window” ”P-value ISD” ”Window” ”P-value CCM”
129 0.000110874196227906 4739 0.00192106680326731
4986 0.000113430270552661 2192 0.0032841856545478
2225 0.000123986114126451 1630 0.00352376924683095
5784 0.000129450030879719 1321 0.00465613439361845
871 0.000141877856293937 4847 0.00471203141365995
1189 0.000149561267793308 4204 0.00479930828540953
3101 0.000149736481382279 2952 0.004826732467899
2195 0.000183857860640235 508 0.00495076607465683
1108 0.000200158615176083 1707 0.00496337757485787
5773 0.000200831401523605 2193 0.00572825733223425

Window P-value TOW
251 0.000118549
5773 0.000126155
2785 0.000129112
872 0.000131648
1570 0.000138966
5662 0.000140556
3399 0.000143583
2507 0.000144919
642 0.00014917
5784 0.00015146

Window P-value iSKAT Window P-value MinP
32 6.30E-05 234 0.000104629
2196 0.001177747 5452 0.000190207
4006 0.001707146 299 0.000218275
5248 0.001757833 3423 0.000229582
3805 0.002247517 5665 0.000236041
2693 0.002446083 235 0.000249251
5215 0.002464846 4991 0.000272212
5791 0.002493754 5160 0.000318506
4653 0.002695548 1707 0.000404151
2194 0.003138554 5404 0.000422441
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Table 5: Range of SNPs Inside the Potentially Significant Windows for the Age Evironmental Variable

Window Starting SNP loc Ending SNP loc Significant Signaled by

105 3 2576692 G 3 2606480 C yes CCM
1136 3 32652332 G 3 32666083 A yes Min P
146 3 3473240 A 3 3497291 A yes ISD
1890 3 60995600 C 3 61023120 C yes Min P
1899 3 61226363 A 3 61256364 T yes iSKAT
1900 3 61256686 A 3 61297908 C yes TOW-SE
1912 3 61625274 C 3 61656548 G yes TOW-SE
2603 3 84413353 A 3 84427677 A no iSKAT
2607 3 84526588 C 3 84558280 T no iSKAT
2612 3 84695126 G 3 84726805 A no iSKAT
2613 3 84727898 C 3 84756552 T no iSKAT
2623 3 84992877 T 3 85031666 G no CCM
2635 3 85459212 T 3 85492002 A no TOW-SE
2640 3 85588494 C 3 85600771 G no iSKAT
2669 3 86547035 C 3 86576946 G no ISD
2670 3 86577017 C 3 86605162 A no CCM
2691 3 87295368 T 3 87339402 A no Min P
2762 3 89549919 C 3 89595252 T no CCM
2789 3 94053165 A 3 94078802 G no Min P
283 3 6787821 G 3 6805408 A yes Min P
2886 3 97152615 A 3 97191431 T no Min P
2918 3 98096781 T 3 98120608 A no Min P
3103 3 104235682 G 3 104255789 G no iSKAT
3150 3 105681971 C 3 105693714 C no iSKAT
3421 3 115221939 T 3 115260435 G yes CCM
3491 3 117453184 T 3 117492046 C yes iSKAT
3552 3 119399641 A 3 119421703 A yes ISD
358 3 8718008 A 3 8730289 G no TOW-SE
3711 3 125129489 T 3 125174636 C yes CCM
4004 3 134649566 A 3 134673394 T yes Min P
4049 3 136773875 C 3 136800244 T yes Min P
435 3 11062062 T 3 11099571 A yes TOW-SE
4353 3 147386728 C 3 147417839 T yes ISD
4452 3 150510227 A 3 150554959 T yes TOW-SE
4458 3 150726830 T 3 150774782 A yes ISD
448 3 11591200 G 3 11629420 G yes ISD
4576 3 154915593 G 3 154955403 T yes CCM
4796 3 162611646 T 3 162632550 A yes CCM
491 3 13045939 T 3 13075350 A yes TOW-SE
4927 3 166715641 G 3 166750007 C yes CCM
5257 3 178567095 C 3 178601948 G yes iSKAT
5452 3 186259233 G 3 186288565 A yes CCM
5536 3 189058427 C 3 189085393 T yes TOW-SE
5721 3 193972501 A 3 194006998 T yes TOW-SE
941 3 27088978 C 3 27102630 A yes Min P
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Table 6: Range of SNPs Inside the Potentially Significant Windows for the Smoker Status Environmental
Variable

Window Starting SNP loc Ending SNP loc Significant Signaled by

32 3 991242 C 3 1017394 A no iSKAT
1108 3 31929486 A 3 31957631 A yes ISD
1189 3 34549511 C 3 34589833 C yes ISD
129 3 3093955 C 3 3123326 G yes ISD
1321 3 39240559 T 3 39275010 A yes CCM
1570 3 48623124 A 3 48721040 A yes CCM
1630 3 52659079 C 3 52697566 C yes CCM
1707 3 55302446 G 3 55333080 C yes CCM
2192 3 70021965 C 3 70069611 A yes CCM
2193 3 70069621 A 3 70114499 C yes CCM
2194 3 70115600 T 3 70172654 C yes iSKAT
2195 3 70172923 T 3 70198308 C yes ISD
2196 3 70198406 G 3 70232626 T yes iSKAT
2225 3 71384708 T 3 71421152 T yes ISD
234 3 5729514 C 3 5755612 G yes Min P
235 3 5755763 G 3 5785973 G yes Min P
2507 3 80479403 A 3 80515770 T yes TOW-SE
251 3 6051816 A 3 6087578 A yes TOW-SE
2693 3 87354731 A 3 87369511 G no iSKAT
2785 3 93827350 A 3 93936708 G no TOW-SE
2952 3 99083010 T 3 99108384 T no CCM
299 3 7230063 C 3 7266362 G yes Min P
3101 3 104164622 A 3 104202009 G no ISD
3399 3 114110629 T 3 114144714 A yes TOW-SE
3423 3 115297011 A 3 115327361 A yes Min P
3805 3 127832554 G 3 127881613 A yes iSKAT
4204 3 142703435 T 3 142750908 G yes CCM
4653 3 157729011 A 3 157788588 T yes iSKAT
4739 3 161151867 T 3 161175643 T yes CCM
4847 3 164105512 C 3 164125983 C yes CCM
4986 3 169121931 A 3 169148465 T yes ISD
4991 3 169262775 C 3 169288729 T yes Min P
508 3 13522177 A 3 13557469 T yes CCM
5160 3 175211459 G 3 175246745 C yes Min P
5215 3 177007214 C 3 177067087 G yes iSKAT
5248 3 178291260 A 3 178330596 A yes iSKAT
5404 3 184409373 A 3 184441278 A yes Min P
5452 3 186259233 G 3 186288565 A yes Min P
5662 3 192287194 T 3 192315287 G yes TOW-SE
5665 3 192367902 G 3 192395378 C yes Min P
5773 3 195238993 G 3 195282609 C yes ISD
5784 3 195546145 G 3 195563248 A yes ISD
5791 3 195763241 C 3 195789428 C yes iSKAT
642 3 18228007 A 3 18278139 A yes TOW-SE
871 3 25062752 C 3 25084111 C no ISD
872 3 25084308 G 3 25114861 G no TOW-SE
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