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RESEARCH ARTICLE
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Curie temperatures of titanomagnetite in ignimbrites: Effects
of emplacement temperatures, cooling rates, exsolution, and
cation ordering
Mike Jackson1 and Julie A. Bowles2

1Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, USA,
2Department of Geosciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA

Abstract Pumices, ashes, and tuffs from Mt. St. Helens and from Novarupta contain two principal forms
of titanomagnetite: homogeneous grains with Curie temperatures in the range 350–500�C and oxyexsolved
grains with similar bulk composition, containing ilmenite lamellae and having Curie temperatures above
500�C. Thermomagnetic analyses and isothermal annealing experiments in combination with stratigraphic
settings and thermal models show that emplacement temperatures and cooling history may have affected
the relative proportions of homogeneous and exsolved grains and have clearly had a strong influence on
the Curie temperature of the homogeneous phase. The exsolved grains are most common where emplace-
ment temperatures exceeded 600�C, and in laboratory experiments, heating to over 600�C in air causes the
homogeneous titanomagnetites to oxyexsolve rapidly. Where emplacement temperatures were lower, Curie
temperatures of the homogeneous grains are systematically related to overburden thickness and cooling
timescales, and thermomagnetic curves are generally irreversible, with lower Curie temperatures measured
during cooling, but little or no change is observed in room temperature susceptibility. We interpret this irre-
versible behavior as reflecting variations in the degree of cation ordering in the titanomagnetites, although
we cannot conclusively rule out an alternative interpretation involving fine-scale subsolvus unmixing. Short-
range ordering within the octahedral sites may play a key role in the observed phenomena. Changes in the
Curie temperature have important implications for the acquisition, stabilization, and retention of natural
remanence and may in some cases enable quantification of the emplacement temperatures or cooling rates
of volcanic units containing homogeneous titanomagnetites.

1. Introduction

The titanomagnetites, spinels of the magnetite-ulv€ospinel solid-solution series (Fe32xTixO4 with 0� x� 1),
are the most important naturally occurring magnetic materials [Dunlop and €Ozdemir, 1997, 2007; Tauxe,
2010]. They are the major carriers of natural remanent magnetization (NRM) in most terrestrial rocks and
sediments, thereby providing critical information on geomagnetic field history and tectonic plate motions.
Furthermore, they are commonly significant sources of magnetic anomalies [Gee and Kent, 2007; Purucker
and Whaler, 2007], magnetic fabrics [Mart�ın-Hern�andez et al., 2004], and environmental magnetic signals
[Evans and Heller, 2003; Liu et al., 2012]. Despite their importance in rock magnetism, some important funda-
mental aspects of titanomagnetite mineral magnetism remain incompletely understood, especially concern-
ing (a) the arrangement of cations in the crystal structure, changes in the cation distribution with
temperature and time, and the effects of such changes on essential magnetic properties [e.g., Creer and Ste-
phenson, 1972; Lattard et al., 2006; Pearce et al., 2010; Lilova et al., 2012; Bowles et al., 2013; Harrison et al.,
2013] and (b) the thermodynamic stability of the magnetite-ulv€ospinel solid solution. Uncertainties in the
latter relate to its dependence on temperature, oxygen fugacity (fO2), composition (including substituted
cations), and cation site occupancies [e.g., Bowles et al., 2012; Lattard et al., 2012; Lilova et al., 2012].

Titanomagnetites crystallize in the spinel structure; a cubic framework of oxygen anions provides tetrahe-
drally coordinated (A) and octahedrally coordinated (B) sites, some fraction of which are occupied by metal
cations. The unit cell comprises 32 oxygens, defining 64 tetrahedral sites, 8 of which are occupied, and 32
octahedral sites, 16 of which contain cations. Simple spinels contain two cationic species and have a gener-
alized chemical formula AB2O4 (representing one eighth of the unit cell), where A and B can be divalent,
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trivalent, or quadrivalent ions in charge-balanced proportions. Spinels are categorized as normal or inverse
according to how these cations are distributed among the A and B sites: in a ‘‘normal’’ spinel the A cations
reside exclusively in the A (tetrahedral) sites and the B cations occupy the B sites [e.g., O’Neill and Navrotsky,
1983, 1984]. For example, the mineral spinel (structural formula Mg21[Al31

2]O4, where the square brackets
denote octahedral site occupancy) has 8 Mg21 and 16 Al31 ions per unit cell; all the divalent A ions occupy
tetrahedral A sites and all the trivalent B ions are in octahedral B sites, and this represents the ‘‘normal’’
arrangement for a 2–3 spinel (i.e., one with divalent A and trivalent B cations [O’Neill and Navrotsky, 1983,
1984]). In the ‘‘inverse’’ arrangement, the A sites contain B cations (half of them) and the A cations reside in
the B sites along with the rest of the B cations. The end-members of the titanomagnetite solid solution
series are both inverse spinels: magnetite (x 5 0; Fe31[Fe21Fe31]O4) and ulv€ospinel (x 5 1; a 4–2 spinel with
structural formula Fe21[Fe21Ti41]O4). In general, the degree of inversion (and order) for a simple 2-cation
spinel may be represented by an inversion parameter b: A12bBb[AbB22b]O4. A perfectly ordered normal spi-
nel is represented by b 5 0, a perfectly ordered inverse spinel by b 5 1, and a perfectly random (disordered)
distribution by b 5 2=3. A related parameter used in some thermodynamic models [e.g., Harrison and Putnis,
1999b, 1999a] is the order parameter Q, which has a value of zero in the fully disordered state and positive
and negative values, respectively, for normal and inverse ordering (Q 5 XB

oct – XB
tet 5 1–3b/2, where XB

oct

and XB
tet are, respectively, the fractions of octahedral and tetrahedral sites occupied by B cations).

Two important factors complicate the ideal ordered arrangement. First, the cation distribution is commonly
temperature-dependent, becoming more random at elevated temperatures [O’Neill and Navrotsky, 1983,
1984; Harrison and Putnis, 1999b, 1999a]. Second, intermediate titanomagnetite compositions (0< x< 1)
have three cationic species (Fe21, Fe31, and Ti41), and additional cation substitution (e.g., Mg21, Al31) is
common [e.g., Creer and Stephenson, 1972; Richards et al., 1973; Nishitani, 1981; Ghiorso and Evans, 2008].
Therefore, the number of possible ways to distribute the various cations into the A and B sites is large, and
as a result the ‘‘usual’’ cation distribution and its temperature dependence remain incompletely known for
the titanomagnetites [e.g., O’Donovan and O’Reilly, 1980; Trestman-Matts et al., 1983; Moskowitz, 1987; Kakol
et al., 1991; Wanamaker and Moskowitz, 1994; Hamdeh et al., 1999; Bosi et al., 2009; Lilova et al., 2012]. The
details of the cation site occupancy are important because they exert fundamental controls on the intrinsic
properties of these key magnetic minerals.

Magnetic ordering in ferrimagnetic spinels is dominated by antiferromagnetic exchange interactions
between A-site and B-site cations [N�eel, 1948, 1955]. Two magnetic sublattices are thereby defined: the tet-
rahedral sublattice, with eight cations per unit cell, whose moments are mutually parallel; and the octahe-
dral sublattice, with 16 cations per unit cell, whose mutually parallel moments are antiparallel to those of
the tetrahedral site cations (‘‘collinear antiferromagnetism’’). Because the octahedral sublattice contains
twice as many cations as the tetrahedral sublattice, a strong net spontaneous magnetization can result, but
its strength depends on the atomic moments of the cations involved and their distribution into the A and B
sites. For magnetite (Fe31[Fe21Fe31]O4), the Fe31contributions to the A- and B-sublattice magnetizations
are mutually canceling, and the net spontaneous moment per formula unit is equal to that of one Fe21 ion,
4lB (4 Bohr magnetons). Ulv€ospinel (Fe21[Fe21Ti41]O4) is a pure antiferromagnet (below its N�eel tempera-
ture) with no net spontaneous magnetization. Between these end-members, the net moment of the sublat-
tices depends on both x and b, as can be seen from the generalized structural formula
Fe21

12bFe31
b[Fe21

b1xFe31
222x2bTi41

x]O4 for 0� x� 0.5 (assuming that titanium is exclusively in the B site
[e.g., Wechsler et al., 1984]). Experimental data show considerable scatter in the dependence of the satura-
tion magnetization (MS) upon x, and various models have been proposed for the underlying cation distribu-
tions [Chevallier et al., 1955; N�eel, 1955; O’Reilly and Banerjee, 1965; Kakol et al., 1991; Hamdeh et al., 1999;
Bosi et al., 2009; Pearce et al., 2010].

The Curie temperature also depends on cation distribution, but in a less directly quantitative way. N�eel’s
model of MS(T), based on molecular field theory and modified by Stephenson [1972] to allow for two differ-
ent species of magnetic cation (e.g., Fe21 and Fe31), predicts a strong dependence of TC on total concentra-
tion of magnetic ions but a relatively weak dependence on how they are distributed within the sublattices
[O’Reilly, 1984]. Creer and Stephenson [1972] modeled the effects of varying cation distributions on TC in tita-
nomagnetites with x� 0.4 and having Al31 and Mg21 contents of up to 0.2 atoms per formula unit, and
they predicted that differing degrees of order would generally cause changes in TC of less than 20�C. How-
ever, experimental evidence from synthetic titanomagnetites [Lattard et al., 2006] and from synthetic
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magnesioferrites (Mg21
12bFe31

b[Mg21
bFe31

22b]O4) [Harrison and Putnis, 1999b, 1999a] suggests that these
models dramatically underestimate the effects of cation ordering on TC, probably due to associated effects
including cation vacancies [Lattard et al., 2006] and the interaction of magnetic ordering and cation order-
ing [Burton, 1991; Harrison and Putnis, 1999b, 1999a; Harrison et al., 2013]. In magnesioferrite, there is a
near-linear positive relationship between the cation order degree |Q| and the Curie temperature [O’Neill
et al., 1992; Harrison and Putnis, 1999b, 1999a]. Changes in TC of up to 100�C can be produced in magnesio-
ferrites by thermal treatments (annealing or quenching) that cause changes in the cation ordering [Harrison
and Putnis, 1999b, 1999a].

Recently, we have demonstrated that the Curie temperature is strongly sensitive to the experimental ther-
mal history in a set of natural homogeneous titanomagnetites from the pyroclastic deposits of historical
eruptions of Mt. St. Helens (Washington State) and Novarupta (Alaska), and we interpreted this sensitivity in
terms of time- and temperature-dependent cation ordering [Bowles et al., 2013], similar to that in the mag-
nesioferrite system. Irreversible thermomagnetic curves, with heating-leg Curie temperatures exceeding
those for the cooling leg by as much as 100�C, but with little or no change in the room-temperature suscep-
tibility or saturation magnetization, suggest rapid disordering of the cation distribution at temperatures
exceeding about 500�C. Thermal annealing of the same samples at 350�C or 400�C for time intervals rang-
ing from 1 to 1000 h caused the Curie temperatures to increase again by as much as 100�C. This change in
TC (DTC) scales proportionally with the logarithm of isothermal annealing time, suggesting slow approach to
an equilibrium state of higher order in the cation distribution [Bowles et al., 2013]. Subsequent thermomag-
netic measurements again exhibited the same sort of irreversibility as the untreated samples, and the cycle
was found to be repeatable: ordering by annealing raises TC and disordering at T> 500�C followed by rela-
tively rapid cooling freezes in the disordered distribution with its reduced TC.

A number of important aspects of this phenomenon remain unresolved, including the exact nature of the
crystal-chemical changes responsible for raising and lowering TC, the roles of substitute cations like Al31

and Mg21, how commonly it occurs in natural titanomagnetites, and how it affects their paleomagnetic
records. In this paper we present new data from additional annealing experiments on the same sample set
from Mt. St. Helens and Novarupta, allowing us to refine the kinetics of the processes responsible for the
sensitivity of Curie temperature to thermal history. In addition we present new data from additional Mt. St.
Helens samples in stratigraphic context, which clearly demonstrate the strong dependence of TC on cooling
history. We examine all of the experimental results to characterize the dependence of TC (and presumably
of cation ordering) on emplacement temperatures and cooling history of the pyroclastic material and on
composition of the titanomagnetites.

2. Geological Setting and Sampling

2.1. Novarupta 1912 Pyroclastic Eruptions, Valley of Ten Thousand Smokes (VTTS)
Approximately 11 km3 of ash flows and 17 km3 of air fall were deposited over a 60 h period in 1912 [Hildreth,
1987; Fierstein and Hildreth, 1992; Hildreth and Fierstein, 2000; Fierstein and Wilson, 2005; Hildreth and Fierstein,
2012]. The initial ash flows were rhyolitic with subsequent eruptions having increasing proportions of andesitic
and dacitic material [Fierstein and Wilson, 2005; Hildreth and Fierstein, 2012]. Fe-Ti oxide geothermometry indi-
cates magmatic temperatures of 805–850�C for the rhyolite, increasing to 955–990�C for the andesitic eruptions
[Hildreth and Fierstein, 2000], although recent work [e.g., Lattard et al., 2005] suggests that the method used
may overestimate magmatic temperatures for the relatively high fO2 conditions that are common for rhyolitic
to andesitic material. The valley-filling outflow sheets reach a thickness of >170 m in the upper VTTS [Kienle,
1991]. Fumarole temperatures as high as 645�C were measured at �3 km from the vent in 1919 [Zies, 1924],
providing a minimum emplacement temperature for near-vent deposits. Samples collected in 2010 (Figure 1)
from river-cut exposures include poorly to moderately welded ignimbrite, frequently with small (mm to cm-
sized) pumice and lithic fragments distributed in the ash matrix. All samples were collected from the upper,
more andesitic and dacitic sections, and the degrees of welding suggest emplacement at temperatures gener-
ally exceeding 550�C or 600�C [Riehle, 1973; Sheridan and Ragan, 1976; Grunder et al., 2005].

2.2. Mt. St. Helens 1980 Pyroclastic Eruptions
The 1980 eruptions of Mt. St. Helens were extremely well documented, with instrumentation and observers
on the scene for the initial and largest event on 18 May, and for subsequent major pyroclastic eruptions on
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25 May, 12 June, 22 July, 7 August,
and 17 October [Lipman and Mulli-
neaux, 1981]. The 18 May event
began with the earthquake-triggered
collapse of the inflated north flank of
the volcano, in an enormous rockslide
avalanche [Christiansen and Peterson,
1981; Rosenbaum and Waitt, 1981].
The rapid unloading triggered a
series of northward-directed hydro-
thermal steam blasts, followed by a
dacitic eruption which produced a Pli-
nian ash column more than 20 km
high and deposited voluminous
pumiceous ash flows on the north
slope. The subsequent eruptions
were smaller in scale but each left sig-
nificant deposits of nonwelded
dacitic pumice and ash [Christiansen
and Peterson, 1981].

Pre-eruptive magma temperature
estimates range from 950�C to
1030�C [Kuntz et al., 1981; Melson and
Hopson, 1981]. On eruption, the tur-
bulent pyroclastic flows cooled in
transit by entrainment of air and of
previously deposited material eroded
by the flows, especially on the higher
portions of the north flank of the vol-

cano. Farther downslope on the ‘‘pumice plain,’’ deposition dominated over erosion, and flow units are typi-
cally a few meters in thickness [Rowley et al., 1981].

Temperature-depth, T(z), profiles of the deposits were measured by thermocouple probes at numerous sites
soon after emplacement of each of the flow units [Banks and Hoblitt, 1981], and repeated measurements
over time intervals up to a few months allowed the construction of temperature-depth-time functions,
T(z,t), from which initial emplacement temperatures and in-situ thermal diffusivities could be determined
[Banks and Hoblitt, 1981, 1996]. In general, emplacement temperatures (Templ) were lowest for the initial 18
May deposits (100–325�C for the blast deposits, 300–420�C for the pyroclastic deposits), increasing for the
later events: 361–602�C for 12 June; 642–688�C for 22 July; 645–850�C for 7 August; and 567–849�C for the
second of two events on 17 October. Emplacement temperatures generally were highest near the eruptive
source, decreasing by about 200�C over the first few hundred meters, and thereafter much more slowly
with distance (at a rate on the order of 20�C km21) [Banks and Hoblitt, 1981, 1996].

Magnetic phases in the May–August pyroclastic pumice deposits were characterized soon after emplace-
ment, by optical microscopy on polished grain mounts and by thermomagnetic analysis [Kuntz et al., 1981].
Two populations of oxides were recognized in the microscopic study: (a) titanomagnetites and titanohema-
tites with grain sizes up to 250 lm, mostly homogeneous but with a few percent showing oxyexsolution,
interpreted as primary minerals that crystallized in the magma chamber and rapidly cooled on eruption;
and (b) titanomagnetites and titanohematites with complex intergrowth structures and altered margins,
interpreted as xenolith fragments or xenocrysts. The homogeneous magmatic grains were the volumetri-
cally dominant oxide phase in all of the pyroclastic flows after 18 May, with xenocrysts constituting only a
few percent of the oxides in the 25 May, June, and August deposits and up to 10% in the July deposits. In
the 18 May deposits, the basal layers were found to contain roughly equal amounts of primary magmatic
and xenolithic oxides, and the proportion of the latter decreased to about 2% in the uppermost layers
[Kuntz et al., 1981]. Thermomagnetic curves (saturation magnetization versus temperature) of magnetic

Figure 1. Novarupta 1912 eruption sampling locations (red circles). Pink shaded
area denotes extent of the all rhyolite ignimbrite that formed the first phase of the
eruption. Blue shaded area represents successive phases with increasing amounts
of andesite and dacite. Sampling locations are all in the more andesitic and dacitic
flows. Flow boundaries and vent location (heavy black line) from Fierstein and Wil-
son [2005].
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separates from pumice samples were found to be generally reversible, with a single dominant Curie tem-
perature of about 370 6 10�C in all of the flow units [Kuntz et al., 1981].

Our 2010 sampling expedition focused on oriented samples of the 1980 pumice pyroclastics with broad
areal coverage and a range of emplacement temperatures. A second, 2012 expedition focused on detailed
(unoriented) stratigraphic coverage of one of the 18 May pyroclastic flows. Figure 2a shows our site loca-
tions together with flow-unit boundaries [Kuntz et al., 1990] and emplacement temperatures [Banks and
Hoblitt, 1996]. Where multiple flow units are superposed it was difficult to recognize their boundaries and
to ascertain with certainty which units we sampled. Site MSH008, interpreted to be in the 18 May pyroclastic
deposits, was resampled in 2012 as site MSH12-08. At this location, the upper flow surface was clearly
marked by the distinctive overlying airfall ash deposits, and 21 levels were sampled below this surface, to a
maximum depth of 158 cm. For most levels the sample contained one or more pumice blocks, typically a
few cm in diameter, and 30–40 grams of ash matrix. Figure 2b shows a T(z,t) data set of Banks and Hoblitt
[1996] from their station b, approximately 2 km upslope from MSH12-08 (the nearest of their detailed

a

b

Figure 2. (a) Location of sites MSH002-MSH014 from the 2010 sampling of this study (numbers in black circles) on the northern flank of Mt. St. Helens. Also shown are pyroclastic flow
units of the 1980 eruptive sequence [Kuntz et al., 1990] and measured emplacement temperatures (corresponding colors) from Banks and Hoblitt [1996], including the locations of their
stations b and l. (b) Temperature profiles: measured (symbols) [from Banks and Hoblitt, 1996] and calculated T(z,t) (curves; assumed thermal diffusivity 5 2.5 3 1027 m/s2) for stations b
and l of Banks and Hoblitt [1996] in the May 18 pyroclastic deposits; locations are indicated in Figure 2a by temperatures of 342�C (Templ for station b) and 307�C (single measurement
for station l).
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profiles in the 18 May pyroclastic deposits), for which they determined an emplacement temperature of
342�C. Also shown is their single measurement from station l, approximately 300 m from our site MSH12-
08. Here the measured temperature of 307�C provides a minimum estimate of Templ for our site MSH12-08;
the similarity with the T(z,t) function for station b of Banks and Hoblitt [1996] suggests emplacement at
about 340�C.

3. Microscopic Observations and Microprobe Chemical Characterization

In order to maximize the number of magnetic crystals that could be analyzed, we used magnetic extracts
from ash or from crushed pumice fragments, pressed in phenolic resin and polished with diamond slurries
and colloidal silica. The extracts were examined in reflected light with a Leitz petrographic microscope. As
previously reported by Kuntz et al. [1981] for the Mt. St. Helens samples, we find that the magnetic oxides in
these pyroclastic deposits consist primarily of optically homogeneous titanomagnetites with typical sizes of
10–200 lm (Figures 3a and 3c). However we find significantly higher proportions of oxyexsolved grains in
many sites (Figures 3b and 3d) than found by Kuntz et al. [1981], ranging up to nearly 100% in some sam-
ples. The exsolution textures are very similar to those associated with slow cooling and/or oxidizing condi-
tions in other pyroclastic deposits [e.g., Saito et al., 2004; Turner et al., 2008], corresponding to oxidation
classes C2 and C3 of Haggerty [1991]. Magnetic force microscopy (results not shown) confirms that (a) the
optically homogeneous grains are magnetic and are homogeneous on scales down to tens of nanometers,
and (b) the lamellae in the oxyexsolved grains are nonmagnetic or paramagnetic at room temperature. To
the extent that we are able to relate the emplacement temperatures of Banks and Hoblitt [1996] to our site
locations, there is a strong association between the proportions of oxyexsolved grains and Templ, and there
are also generally higher proportions of them in ash matrix than in pumice fragments within each site.

(A) (B)

(C) (D)

Figure 3. Reflected-light microscopic images of oxide grains magnetically extracted from (a and b) two Mt. St. Helens samples and (c and d) two Novarupta samples, pressed in phenolic
resin and polished with diamond slurries and colloidal silica. MSH008-M (Templ � 340�C; dominant TC � 377�C; Figure 3a); oxides are optically homogeneous. MSH003-G (Templ � 650�C;
dominant TC � 529�C; Figure 3b); almost all oxide grains exhibit oxyexsolution lamellae. NV039A (dominant TC � 400�C; Figure 3c); oxides are optically homogeneous. NV037-Bx (domi-
nant TC � 523�C; Figure 3d); almost all oxide grains exhibit oxyexsolution lamellae. Scale bars are 50 lm for all images.
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Like most natural titanomagnetites, the homogeneous grains present in these rocks have moderate degrees of
Mg and Al substitution and minor amounts of Mn. Average compositions are Fe2.50Ti0.30Mg0.09Al0.09Mn0.01O4

for Mt. St. Helens and Fe2.57Ti0.26Mg0.06Al0.08Mn0.03O4 for Novarupta (see Bowles et al. [2013], for ternary plot
and table of sample-level results). This composition for the Mt. St. Helens titanomagnetites is very similar to
that of Melson and Hopson [1981] for the 1980 eruptive sequence: Fe2.47Ti0.31Mg0.08Al0.11Mn0.02O4. The compo-
sition of these titanomagnetites overlaps data from most andesites, dacites, and rhyolites [Ghiorso and Evans,
2008], as well as some basalts [e.g., Kawabata et al., 2011]. Most samples additionally contain a variable fraction
of oxyexsolved titanomagnetites, as described above. Transects measured across exsolution lamellae in several
exsolved crystals give average crystal compositions similar to that of the homogeneous grains, suggesting that
the exsolved grains resulted from oxidation of the homogeneous grains.

4. Thermomagnetic Behavior and Irreversibility

In contrast to the findings of Kuntz et al. [1981], we observe a broad range of Curie temperatures in the 1980
Mt. St. Helens and the Novarupta pyroclastics, extending from about 370�C to above 550�C, and our thermo-
magnetic curves are very commonly irreversible, in a distinctive way. For many samples, multicycle thermo-
magnetic analyses using low-field AC susceptibility k(T) or strong-field magnetization MS(T) initially show
reversible behavior up to 400�C or above, with persistent high k or MS in those heating/cooling cycles clearly
indicating that TC exceeds 400�C [see Bowles et al., 2013, Figure 2]. Commonly one or occasionally two subse-
quent cycles to higher temperatures are irreversible in the 450�C–500�C range; the Curie temperature for the
cooling leg (typically �375�C, matching that found by Kuntz et al. [1981]) is significantly lower than that of the
heating leg, but most often there is little or no change in the room temperature value of MS or k [see Bowles
et al., 2013, Figure 2]. Continued heating/cooling cycles to still higher temperatures (maximum of 600�C–
650�C) are reversible, with TC � 375�C. Many samples exhibit two-phase behavior, with a stable, higher-TC

(525�C–580�C) phase that does not change during the experiment, in addition to the lower-TC phase whose
Curie temperature is reduced by exposure to temperatures of 450�C or above. Comparison of thermomag-
netic behavior and microscopic observations clearly indicates that the stable, higher-TC (525�C–580�C) phase
is oxyexsolved titanomagnetite, with Ti-rich lamellae in a Ti-depleted host, and that the lower-TC phase associ-
ated with the irreversible behavior is optically homogeneous titanomagnetite. The reduced Curie tempera-
tures at the end of the thermomagnetic experiments (approximately 375�C, with some intersite variation)
agree with those reported by Kuntz et al. [1981] and are broadly compatible with the expected values for the
measured compositions [e.g., Creer and Stephenson, 1972; Richards et al., 1973; Nishitani, 1981; €Ozdemir and
O’Reilly, 1982; Hunt et al., 1995; Lattard et al., 2006], as we will show in more detail in section 4.3.

4.1. Spatial Variation in Curie Temperature
The thermomagnetic behavior for our MSH samples corresponds in a general way with emplacement tem-
perature, and more strongly with stratigraphic position within flow units. Curie temperatures of 550�C or
above, associated with the oxyexsolved titanomagnetites, occur most prominently in sites with Templ
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exceeding 600�C (sites which also commonly exhibited a pronounced reddish color, including MSH003,
MSH006, MSH007, and MSH011), and the high-TC phase is also generally more prominent in ashes than in
pumices from the same site (Figure 4e). The high-TC phase in the ash probably comes from both oxyexsolved
magmatic titanomagnetites and fragments of foreign lithic material, which are ‘‘ubiquitous’’ in the ash [Rowley
et al., 1981]. In most cases there is no systematic stratigraphic change in the relative proportions of the low-TC

and high-TC phases, except in the section containing sites MSH005 and MSH006 (respectively below and
above a height coordinate of 85 cm; Figure 4c; these sites were interpreted as representing different flow
units). The Novarupta samples generally contain relatively high proportions of oxyexsolved grains, attributable
to both comparatively high emplacement temperatures and small proportions of pumice. In cases where
pumice fragments could be separated out, thermomagnetic analyses indicated a higher ratio of homogene-
ous (TC< 400�C) to oxyexsolved (TC> 500�C) titanomagnetites than in the bulk Novarupta samples.

For the homogeneous titanomagnetites, there does not appear to be any simple, direct relationship
between TC and Templ. Initial TC,heating for this phase ranged from about 350�C to nearly 500�C in samples
from almost all sites (the lone exception being site MSH002, where thermomagnetic curves were all reversi-
ble, and Curie temperatures of untreated samples did not exceed 370�C). In samples with very high propor-
tions of oxyexsolved titanomagnetites (fexsolved> 0.75), it was often impossible to define a precise TC for the
homogeneous phase, but the values generally appeared to be similar to those in the other samples (TC,heat-

ing � 400�C–475�C; TC,cooling � 350�C–375�C). There are slight inter-site differences in TC,cooling that are prob-
ably due to variations in the composition of the homogeneous titanomagnetites.

The clearest and most striking relationship between natural thermal history and laboratory thermomagnetic
behavior is shown in the stratigraphic profile for MSH12-008. The initial Curie temperature measured during
heating varies strongly and systematically as a function of depth within the flow unit, increasing from near-
surface values of �380�C all the way to 500�C at a depth of 150 cm (Figure 5a). In contrast, the final TC,cooling

is essentially independent of depth (�380�C), as is the stable higher Curie temperature in the ash samples
where it is present (�550�C, not shown). We note again that the thermomagnetic data of Kuntz et al. [1981]
were all essentially reversible curves with TC � 375�C. It is now clear that because their sampling was neces-
sarily limited to the upper levels of each flow unit, the elevated Curie temperatures at depth were
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unobserved in their study. The lack of similar observed TC(z) trends at our other MSH and NV sites is
explained by the fact that most of the variation in TC occurs close to the flow surface. Sampling was not con-
ducted with the specific goal of capturing near-surface trends, and, with the exception of MSH12-008, the
upper parts of the flows have not been preserved or were not sampled.

This distinctive TC(z) pattern seems clearly to be a result of the post-emplacement thermal history, and is com-
patible with the cation-ordering mechanism proposed by Bowles et al. [2013]. At the high temperatures in the
magma chamber before eruption, the cation distribution should be very disordered (Figure 6a). On initial
rapid cooling during transport between eruption and emplacement, the distribution can be expected to
evolve, following the equilibrium state as it becomes progressively more ordered. When the titanomagnetites
cool to a closure temperature around 500�C, the cation distribution becomes ‘‘blocked’’ as the timescale of
redistribution becomes long compared to the cooling timescale. The emplacement temperature may in gen-
eral be higher or lower than the cation closure temperature, but here Templ � 350�C, well below the closure
temperature. In either case, post-emplacement cooling histories depend on depth within a flow: conductive
cooling models predict a post-emplacement quasi-isothermal time interval whose duration increases with
depth, during which the temperature (T � Templ) remains essentially constant before cooling resumes; during
this interval, the cation distribution evolves toward the equilibrium arrangement at Templ, and after the subse-
quent resumption of slow cooling it continues evolving slowly toward higher order (Figure 6a).

We can model this thermal evolution by supposing that these pyroclastic flows were emplaced essentially
isothermally (T(z,0) 5 Templ) and that subsequent cooling took place mainly by conduction to the surface
and to the cooler underlying rock; the data and calculations of Banks and Hoblitt [1996] are generally con-
sistent with this. Under such conditions, the temperature profile evolves according to the half-space error-
function cooling model [e.g., Turcotte and Schubert, 1982; Wallace et al., 2003]:

h5
Tðz; tÞ2Templ

Tsurf 2Templ
5erfc

z

2
ffiffiffiffiffi
jt
p

� �
(1)

where erfc is the complementary error function, Tsurf is the surface boundary-value temperature (held con-
stant), h is the dimensionless temperature ratio, and j is the thermal diffusivity. Banks and Hoblitt [1996]
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expected to have higher Curie temperatures. The equilibrium distribution (dashed green) is more random at elevated temperature and more ordered at lower T. Redistribution of cations
is also T-dependent, occurring rapidly at high temperature and more slowly at lower T. At the magmatic temperature Tmagma, the cation distribution is highly disordered. On eruption
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found in situ diffusivities in the range 2.2 3 1027 to 4.0 3 1027 m2/s; we used 2.5 3 1027 to match their
station b data in Figure 2b.

For specified values of Templ and Tsurf we can rearrange the above equation and solve for tcool(z), the depth-
dependent time required to cool from Templ to a specified temperature which we denote T(z, tcool):

hcool5
Tðz; tcoolÞ2Templ

Tsurf 2Templ

tcoolðzÞ5
z2

4j½erfc21ðhemplÞ�2
5cz2

(2)

As we will show later, isothermal annealing experiments indicate that the increase in TC with annealing
time is much slower at 300�C than at 350�C or 400�C, so we set T(z, tcool) 5 300�C and use (2) to calculate
the time required at each depth to cool to 300�C from an estimated emplacement temperature of 350�C,
with a surface temperature of 10�C and a thermal diffusivity of 2.5 3 1027 m2/s. This cooling time ranges
from less than 1 h for the shallowest sampled depths to more than 1000 h at depths greater than 200 cm
(Figure 5b). It is clear that the measured heating-leg Curie temperatures scale very closely with the loga-
rithm of tcool(z), i.e., the log of the time spent at elevated temperature (T� 300�C) after emplacement. This
is the same functional dependence found by Bowles et al. [2013] for increases in TC,heating produced by iso-
thermal annealing in the laboratory over times up to 1000 h, which we will revisit in detail below. The best-
fit line in Figure 5b (which excludes the data from depths less than 5 cm, with cooling times less than one
hour and with TC,heating � TC,cooling � 375�C) has a slope of dTC,heating/dlog(tcool(z)) 5 42.4. The same relation-
ship is shown by the solid curve in Figure 5a.

4.2. Isothermal Annealing Experiments
As documented by Bowles et al. [2013], the decrease in TC observed during thermomagnetic experiments
can be reversed by isothermal annealing at moderate temperatures (300�C–450�C) in the laboratory, a
change that we attributed to progressive ordering of the cation distribution from an initially more random
state. We expand upon those experiments here. Each sample is heated to the annealing temperature Tsoak

and held at that temperature, in air, for a chosen duration tsoak, after which it is removed from the furnace,
cooling within a few minutes to room temperature. It is then placed in a high-temperature susceptibility
instrument (Kappabridge KLY-2 with CS-2 furnace or MFK1-FA with CS-4 furnace) for k(T) thermomagnetic
measurements, usually a single-cycle run to a maximum temperature of 600�C or 650�C. Upon completion
of the k(T) run, TC has been reset to the lower value characteristic of the disordered, ‘‘quenched’’ state, and
the sample is returned to the annealing furnace for another treatment.

Heating for intervals as short as 0.3 h produces significant increases in TC,heating with accompanying thermo-
magnetic irreversibility, and longer soak times produce systematically larger effects (Figure 7) [Bowles et al.,
2013, Figure 3]. For each sample in all of the experiments with Tsoak< 500�C, the thermomagnetic cooling
curves are virtually identical, and it is only the heating curves that exhibit systematic changes related to the
annealing treatments (Figures 7a and 7b). For samples that contain both homogeneous and oxyexsolved
titanomagnetites, the annealing treatments have only minimal effects on the latter: TC remains nearly con-
stant (in the 525�C–580�C range), but the proportion of total susceptibility due to the oxyexsolved grains
increases slightly as the experiments progress, as a result of slow oxidation and unmixing during repeated
heatings [see Bowles et al., 2013, Figure 3]. Oxidation is much faster in heat treatments at 650�C, resulting in
irreversible transformation of the homogenous lower-TC grains (Figure 7c). Optical microscopy of grains
extracted and polished after the 46 h 650�C heat treatment shows that all of them contain lamellae, finer in
scale and somewhat less organized than those in Figures 3b and 3d.

In almost all of our experimental results, the homogeneous titanomagnetites exhibit a single dominant
‘‘inflated’’ Curie temperature in the heating leg of the k(T) curves (Figure 7a), indicating that the underlying
process occurs uniformly throughout the volume of the titanomagnetites. In a few cases involving relatively
high annealing temperatures (>400�C), two distinct Curie temperatures are observed in the k(T) heating
curves, one of which usually corresponds closely to the cooling-curve TC (Figure 7b). This indicates that
annealing in these cases affects only a fraction of the homogeneous titanomagnetite volume. There is no
permanent change produced by these annealing treatments, and subsequent treatments at lower
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temperatures again uniformly affect the total volume of homogeneous titanomagnetite, resulting in a single
dominant ‘‘inflated’’ Curie temperature.

In a few cases, we first measured low-temperature (20–300 K) susceptibility after an annealing treatment,
then measured a high-temperature k(T) curve, and then once again measured low-temperature susceptibil-
ity, in order to observe how the presumed relatively ordered and disordered cation distributions affect the
low-T behavior. The low-temperature measurements were made on a Quantum Designs MPMS at frequen-
cies between 1 and 1000 Hz; for clarity we show here (Figure 8) only the 1 Hz data. Generally the low-T sus-
ceptibility has a temperature dependence similar to those of synthetic titanomagnetites with x near 0.3
[Moskowitz et al., 1998; Carter-Stiglitz et al., 2006; Engelmann et al., 2010], with a very strong increase on
warming, especially below about 2120�C. In addition, a small but sharp drop just below 0�C indicates the
presence of a phase in the hematite-ilmenite solid-solution series with a composition of 0.75< y< 0.8 (75–
80% mole fraction of ilmenite) [Lagroix et al., 2004; Burton et al., 2008; Engelmann et al., 2010], and two sta-
ble (reversible) high-TC phases are evident, a Ti-poor titanomagnetite (540�C) and nearly pure magnetite
(580�C). Notably, there is no evidence for an ulv€ospinel (2153�C) or other Ti-rich cubic phase TC.

Significant changes in k(T) are clearly produced in the low-T range as well as at high temperature (Figure 8). After
annealing and before exposure to T> 450�C in the Kappabridge, susceptibility measured in the MPMS rises
monotonically from� 2243�C to a peak near� 220�C. Continued heating in the Kappabridge shows Curie
points of 465�C on heating and 388�C during cooling from the maximum temperature. Low-T measurements in
this disordered state show generally higher susceptibilities than in the initial run, and a nonmonotonic tempera-
ture dependence, with a clear peak near 2120�C (Figure 8). The changes in k(T) at low temperature, like those at
high T, can be repeatedly produced by annealing and undone by cooling from temperatures above about 500�C.

As shown by Bowles et al. [2013], the increase in TC,heating is closely proportional to the logarithm of anneal-
ing time for treatments in the temperature range 300�C–425�C (Figure 9). The linear trends on the TC-
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log(tsoak) plot are nearly parallel
for the different treatment tem-
peratures, and are generally
shifted toward the left (shorter
times) for higher temperatures.
Annealing at temperatures
>425�C (450�C and 500�C) pro-
duced little or no change in TC,
and as noted above, treatments
in air at still higher temperatures
(�600�C) resulted in rapid irre-
versible oxyexsolution of the
homogeneous titanomagnetites.
Within the 300�C–425�C treat-
ment range, there is little indica-
tion that the Curie temperature is
reaching a plateau even after
1000 h, suggesting that the cation
distributions are still evolving
toward equilibrium states of
greater order, and that kinetics in

this temperature range are too sluggish for full equilibration to occur within these annealing times. For
most samples the slope dTC/dlog(tsoak) is between 20� and 30� per log-hour at temperatures between 300
and 425�C, and slopes are slightly higher on average for the Mt. St. Helens samples than for those from
Novarupta.

Figure 8. A sequence of k(T) measurements made following a 475 h annealing at 350�C:
first while warming from 2253�C to 23�C in an MPMS at 1 Hz (red); then a heating (red)
and cooling (blue) cycle to 600�C in a Kappabridge; and finally another low-T run in the
MPMS (blue).
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Because of the somewhat noisy details and the overlap between data sets (Figure 9), the trends in DTC(Tsoak,
tsoak) can be seen more clearly when plotted as slopes and intercepts of the least-squares linear fits to
DTC(log(tsoak)), as in Figure 10. Such linear fits provide reasonable approximations of the DTC(Tsoak, tsoak)
behavior only over the range of soak times that we have explored in these experiments, and we expect that
a larger time window would show the form of the function to be sigmoidal, with a lower limiting value of
DTC 5 0 for shorter timescales, and an unknown upper limiting value for sufficiently long times, represent-
ing an equilibrium state which is presumably temperature-dependent. The linear fit parameters in Figure 10
nevertheless contain important information on the kinetics of the mechanism underlying the changes in
Curie temperature during the annealing experiments. The tendency noted above for the DTC(log(tsoak))
trends to shift leftward with increasing Tsoak is shown more clearly in the time-axis intercept plots, which
indicate that a given change in TC is produced 10–100 times faster at 425�C than at 350�C. The slopes
dDTC/d(log(tsoak)) vary nonmonotonically with Tsoak, having maxima near 350�C–375�C. Lower slopes above
375�C and below 350� can be interpreted in terms of two temperature-dependent controlling factors
(described more fully in the Discussion section below): the equilibrium cation distribution and its corre-
sponding Curie temperature; and the cation diffusion or redistribution rates.

4.3. Compositional Controls on TC(Tsoak, tsoak)
The cooling-leg Curie temperature for each specimen is observed to be essentially independent of experi-
mental thermal history, and inter-sample variations in this property are most likely due to differences in
composition of the titanomagnetites. Measured compositions [Bowles et al., 2013] show significant

Figure 10. (a and c) Slopes and (b and d) horizontal-axis intercepts of least squares best fit lines to the DTC (log(t)) data of Figure 9 for samples from Mt. St. Helens (Figures 10a and 10b)
andNovarupta (Figures 10c and 10d). Intercepts were poorly defined for 300�C and 450�C because of the shallow slopes, and values are not shown.
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variability in the concentrations of
Ti, Al, and Mg, and TC,cooling spans a
range of about 75�C, from 340�C to
415�C. It is therefore of interest to
examine the possible effects of
composition on the ordering
dynamics that are inferred to be
responsible for changing Curie
temperatures in these samples.
Each point in Figure 11 represents
a sample for which titanomagnetite
composition was determined by
microprobe measurements. For
each sample, the average TC,cooling

was calculated for all completed
k(T) runs (approximately 40 meas-
urements of TC,cooling). There is
clearly, and unsurprisingly, a gen-
eral negative correlation between
Curie temperature and concentra-
tion of Fe-substituting cations
(Table 1). The cooling-leg Curie
temperatures correspond reason-
ably well with published titano-
magnetite TC(x) compilations
(Figure 11) when plotted as a func-

tion of an ulv€ospinel compositional parameter x0 projected onto the magnetite-ulv€ospinel join (x05 Ti/
(Ti 1 Fe31/2) [Evans et al., 2006]). Some scatter about this trend is expected due to varying proportions and
differing effects of substituted Ti41, Al31, and Mg21. The largest deviations are for the two sites (MSH002
and MSH008) having the lowest proportions of oxyexsolved titanomagnetites.

The changes in TC depend on time, temperature, and composition. An overall picture is obtained by plotting
the slopes and intercepts of the DTC(log(tsoak)) trends against the average TC,cooling for each specimen (Fig-
ure 12). TC,cooling serves as a proxy for titanomagnetite composition and allows us to include data for addi-
tional samples for which microprobe data are not available. The time-axis intercepts can be considered to
represent a sort of threshold or activation time constant (at each soak temperature) for TC changes; for
shorter times DTC 5 0, and above this threshold the slopes indicate the changes in TC with each tenfold
increase in annealing time.

The time-axis intercepts generally decrease systematically with increasing Tsoak, as previously noted, and do
not appear to exhibit any systematic changes with composition (Figure 12b and Table 2), except perhaps at

Figure 11. TC,cooling is determined primarily by the concentration of Ti, Al, and Mg in
the titanomagnetites. x0usp is the ulv€ospinel compositional parameter calculated as
projected onto the magnetite-ulv€ospinel join [Bowles et al., 2013]. Solid curves are
TC(x) fits from Hunt et al. [1995] (black) and from Bleil and Petersen [1982] (gray); dotted
and dashed curves are, respectively, polynoms 1 and 3 of Lattard et al. [2006], for tita-
nomagnetites synthesized in equilibrium with ilmenite (dotted) or with ulv€ospinel
(dashed). Red squares indicate samples from Mt. St. Helens; blue circles are for Novar-
upta; numbers indicate site number.

Table 1. Compositions and Cooling-Leg Curie Temperaturesa

Sample IGSN Avg TC Cooling SD TC Cooling Al Ti Mg Fe21 Fe31 Mn x’

KM013-A IRMP00GLI 401.3 10.0 0.09 0.25 0.07 1.15 1.41 0.02 0.26
KM014-B IRMP00GLM 405.3 5.8 0.08 0.26 0.06 1.17 1.41 0.03 0.27
KM017-A IRMP00GDK 411.8 12.2 0.1 0.25 0.06 1.16 1.4 0.03 0.26
KM039-A IRMP00GDL 396.6 4.8 0.05 0.28 0.05 1.21 1.38 0.03 0.29
MSH002-G IRMP00GVT 341.0 9.4 0.12 0.31 0.12 1.18 1.26 0.01 0.33
MSH004-A IRMP00GI3 392.5 8.6 0.09 0.31 0.09 1.21 1.29 0.01 0.32
MSH005-E IRMP00GWQ 386.1 4.9 0.06 0.33 0.07 1.25 1.28 0.01 0.34
MSG008-J IRMP00GLE 372.1 10.5 0.08 0.26 0.1 1.15 1.4 0.01 0.27
MSH010-C IRMP00GPS 365.2 4.5
MSH011-F IRMP00GTW 357.5 2.6
MSH012-B IRMP00GMB 366.8 3.4
MSH12-09-A IRMP00LV7 386.2 5.1

aAverages and standard deviations calculated for all k(T) experiments on each sample (approximately 40 measured values). Microp-
robe chemical compositions from Bowles et al. [2013].
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the highest effective annealing temperature, 425�C. The very short timescale (�1028 h) obtained for
MSH002 at 425�C also has a large uncertainty due to heterogeneous reordering at that temperature (Figure
7b) and poor definition of TC for short anneal times, resulting in a more limited data set for the linear fitting

Figure 12. (a) Slopes and (b) time-axis intercepts of least squares best fit lines to the DTC (log(t)) data of Figure 10, as functions of titanomagnetite
composition (as indicated by TC,cooling). From left to right (increasingly pure magnetite), the samples are from sites MSH002, MSH011*, MSH010*,
MSH012*, MSH008, MSH005, MSH12-09*, MSH004, NV039, NV013, NV014, and NV017 (asterisks denote samples with annealing data for 350�C only).
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(Figure 9). On average there is a weak tendency for the time intercepts to increase with increasing cation
substitution (decreasing TC,cooling) for annealing temperatures of 300–375�C, and to remain flat or decrease
slightly for Tsoak� 400�C.

The slopes, in contrast, change strongly with both composition and temperature, becoming systemati-
cally larger in the more Ti-, Al-, and Mg-rich titanomagnetites, especially for annealing temperatures of
350�C–375�C (Figure 12a and Table 2). Calculated slopes range up to around 40�C per log unit, and maxi-
mum values are comparable to that inferred for the TC enhancement during natural slow cooling after
emplacement (Figure 5); such high slopes occur in the annealing experiments only for samples with
TC,cooling< 370�C.

5. Discussion

The results of the annealing experiments have implications for the mechanism responsible for the changes
in TC, and also for the interpretation of Curie temperatures found in the natural rocks. We will briefly discuss
the links between oxidation-exsolution, emplacement temperature and cooling times before focusing on
the dramatic TC variations found in the homogenous titanomagnetite grains.

5.1. Oxyexsolution
Oxidation exsolution (oxyexsolution) of titanomagnetites irreversibly increases TC [e.g., Lattard et al., 2012]
by transforming a single-phase cubic oxide into intergrowths of an Fe-rich cubic end-member (with a
higher Tc) and a Ti-rich rhombohedral end-member (typically paramagnetic at room temperature). In our
samples it occurs very slowly in the 300�C–425�C annealing experiments, gradually transforming the single-
phase titanomagnetites. Cumulative heating times approaching 9000 h in this moderate temperature range
have an effect comparable to that of a single 5 h treatment at 650�C (Figure 7c). High degrees of oxyexsolu-
tion (as observed to occur naturally in site MSH003) typically require heating in air for several hours at
600�C–700�C or for a few seconds at 1000�C–1300�C [Lattard et al., 2012].

Table 2. Rates of Change in Curie Temperatures During Experimental Annealinga

Ta Fit Parameters KM013 A KM014 B KM017 A KM039 A MSH00 2G MSH00 4A MSH00 5E MSH00 8J MSH01 0C MSH01 1F MSH01 2B MSH12 09-A

300 d(DTC)/d(log(ta)) 8.57 8.78 9.95 11.80 22.38 7.21 10.37 16.96
300 R2 0.92 0.99 0.86 0.88 0.86 0.54 0.80 0.79
300 slope SD err 1.46 0.56 2.01 2.20 4.03 4.02 1.13 2.43
350 d(DTC)/d(log(ta)) 15.40 16.96 12.48 22.94 39.30 18.94 24.24 24.96 38.49 40.41 36.90 29.09
350 R2 0.80 0.88 0.67 0.95 0.93 0.94 0.97 0.97 1.00 0.98 0.97 1.00
350 slope SD err 3.46 2.83 3.93 2.40 4.92 2.14 1.78 1.88 1.13 3.11 3.10 1.01
350 x0 2.53E-1 2.24E-1 1.31E-1 6.38E-1 6.85E-1 1.31E-1 3.05E-1 3.80E-1 1.89E10 1.56E10 1.86E10 9.08E-1
350 (Dx0)95

2 2.53E-1 2.22E-1 1.31E-1 5.39E-1 6.23E-1 1.20E-1 2.27E-1 2.81E-1
350 (Dx0)95

1 2.39E10 1.37E10 2.65E10 1.29E10 1.77E10 5.11E-1 4.79E-1 5.80E-1
375 d(DTC)/d(log(ta)) 22.44 22.54 22.67 25.22 37.86 20.26 25.08 30.16
375 R2 0.99 0.88 0.98 1.00 0.98 0.97 0.99 0.98
375 Slope std err 1.08 1.21 1.37 0.57 2.12 1.25 1.04 1.56
375 x0 1.49E-1 1.66E-1 1.88E-1 1.41E-1 2.54E-1 9.12E-2 1.22E-1 3.43E-1
375 (Dx0)95

2 8.20E-2 9.78E-2 1.19E-1 4.24E-2 1.45E-1 6.12E-2 6.05E-2 1.80E-1
375 (Dx0)95

1 1.34E-1 1.67E-1 2.15E-1 5.38E-2 2.40E-1 1.21E-1 9.35E-2 6.17E-1
400 d(DTC)/d(log(ta)) 16.68 18.69 17.41 24.41 28.46 20.88 27.39 29.63
400 R2 0.95 0.99 0.95 0.98 0.98 0.98 0.99 0.96
400 Slope std err 1.62 0.93 1.65 1.24 1.81 1.16 1.04 2.56
400 x0 5.77E-2 5.75E-2 4.64E-2 9.20E-2 7.42E-3 1.95E-2 5.94E-2 9.87E-2
400 (Dx0)95

2 5.09E-2 3.52E-2 3.99E-2 5.28E-2 6.38E-3 1.32E-2 2.84E-2 7.79E-2
400 (Dx0)95

1 1.64E-1 6.45E-2 1.21E-1 8.98E-2 2.24E-2 2.77E-2 4.33E-2 1.85E-1
425 d(DTC)/d(log(ta)) 15.63 21.61 16.08 23.29 13.06 15.22 23.79 16.75
425 R2 0.99 0.97 0.92 0.98 0.91 0.88 0.98 0.98
425 Slope std err 0.65 1.75 1.94 1.19 2.98 2.31 1.46 0.97
425 x0 4.46E-3 5.81E-2 8.80E-3 5.95E-2 1.50E-8 1.85E-3 6.64E-2 3.63E-4
425 (Dx0)95

2 3.05E-3 4.89E-2 8.53E-3 3.60E-2 1.50E-8 1.84E-3 4.50E-2 3.13E-4
425 (Dx0)95

1 6.78E-3 1.39E-1 5.25E-2 6.46E-2 1.66E-3 2.60E-2 9.01E-2 1.25E-3
450 d(DTC)/d(log(ta)) 21.62 2.29 27.12 20.31 29.31 23.66 21.82 4.87
450 R2 0.11 0.39 0.96 0.01 0.90 0.79 0.16 0.62
450 Slope std err 3.32 2.04 1.00 2.08 2.24 1.32 2.39 2.71

aFit parameters for linear regression of DTC(log(ta)) data of Figure 9. x0 is the x axis (log-time axis) intercept and the (Dx0)95 values are the positive and negative error bounds for the
intercept value at 95% confidence.
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It is conceivable that the variations in fexsolved between sites (Figure 4) are related to different posteruptive
thermochemical histories, especially involving different emplacement temperatures. However previous
studies [Saito et al., 2004; Turner et al., 2008] have linked the proportion of oxyexsolved grains in pyroclastic
deposits to different magmatic conditions prior to eruption. Slow magma ascent commonly results in for-
mation of lava domes, in which oxygen fugacities may be locally high enough for relatively rapid oxidation
and unmixing [Saito et al., 2004; Turner et al., 2008]. Dome collapse typically generates ‘‘block-and-ash’’
ignimbrite flows, and the 12 June deposits on Mt. St. Helens are described in this way [Christiansen and
Peterson, 1981; Moore et al., 1981; Olhoeft et al., 1981]. This may account for the higher degrees of oxidation
we find in MSH sites 003, 007, and 011. On the other hand, Kuntz et al. [1981] found low percentages of oxy-
exsolved titanomagnetite grains in pumices from all of the 1980 flow units. One way to reconcile our obser-
vations with those of Kuntz et al. [1981] is to postulate that significant oxyexsolution occurred in the high-
Templ deposits after emplacement, except in the most rapidly cooled surface samples which were accessible
for collection and analysis soon after each eruption. Alternatively, one could imagine that fexsolved varies by
location within some flow units as a consequence of spatial variations in oxidizing conditions within a lava
dome prior to eruption. Other factors including gas permeability are also likely to play a significant role
[e.g., Tait et al., 1998].

An interesting form of moderate-temperature oxidation in volcanic titanomagnetites has recently been
documented by Tanaka and Yamamoto [2014]. Their reflected-light and electron microscopic observations
as a function of thermal demagnetization temperature showed both a change in color and the emergence
of submicron-scale ‘‘stripes’’ after treatments in the 300�C–400�C range, coinciding with the onset of noni-
deal Thellier-Thellier paleointensity behavior, and often coinciding with irreversible increases in TC in step-
wise thermomagnetic runs. Despite the correspondence with the temperature range over which we
observe the strongest changes in TC for our samples (Figure 10), it is clear that there are two distinct phe-
nomena involved: moderate-temperature oxidation [Tanaka and Yamamoto, 2014] cannot account for the
decreases in Curie temperature that we observe during k(T) experiments.

5.2. Mechanism of Thermomagnetic Irreversibility in Homogeneous Titanomagnetites
Bowles et al. [2013] considered two possible temperature-dependent mechanisms for the observed changes
in TC in the homogeneous titanomagnetites: subsolvus unmixing/rehomogenization (into two cubic phases)
and cation ordering/disordering. For the binary magnetite-ulv€ospinel system, the full range of compositions
0� x� 1 is thermodynamically stable at sufficiently high temperatures; intermediate compositions become
unstable at lower temperatures, where unmixing is favored but limited by temperature-dependent kinetics.
Chemical unmixing may occur either by nucleation and growth of cubic-phase lamellae having near end-
member composition, or by spinodal decomposition, in which short-wavelength low-amplitude composi-
tional fluctuations develop and grow with time [e.g., Harrison and Putnis, 1999a]. The exact position and
shape of the binary solvus are imperfectly known, but its crest is generally considered to be near 775 K for x
� 0.55 [Lindsley, 1981; Price, 1981a; Trestman-Matts et al., 1983; Lilova et al., 2012]. Many of the significant
changes that we observe in our annealing experiments occur near or below the binary solvus temperatures
(Figure 13), suggesting that the observed increases in TC may be related to unmixing of the homogeneous
titanomagnetite into Ti-enriched and Ti-depleted regions, the latter having higher TC than the homogene-
ous composition. This explanation then requires rapid rehomogenization (within minutes) at temperatures
above about 450�C to account for the observed thermomagnetic irreversibility.

New annealing experiments (results not shown) have failed to produce any significant changes in TC for the
lower-x titanomagnetites in pyroclastic deposits from the Tiva Canyon Tuff (x � 0.1) [Schlinger et al., 1991;
Rosenbaum, 1993; Worm and Jackson, 1999] and the Bishop Tuff (x � 0.05) [Palmer et al., 1996; Gee et al.,
2010]. These compositions are far above the solvus at the experimental annealing temperatures, and the
lack of observable changes in TC in these samples thus appears to be consistent with the idea that subsol-
vus unmixing may play a role in the observed changes in the higher-x titanomagnetites of Novarupta and
Mt. St. Helens.

The alternative model, preferred by Bowles et al [2013] for reasons to be discussed below, involves time and
temperature-dependent redistribution of cations between and perhaps within the A and B sublattices of
the titanomagnetites. Ferrous-ferric exchange between sublattices in titanomagnetite is considered to be
fast even at room temperature [e.g., Jensen and Shive, 1973; Wechsler et al., 1984], involving only the transfer
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of electrons rather than of entire cations. The disequilibrium cation distributions postulated by Bowles et al.
[2013] therefore appear to require either (a) that intersite ferrous-ferric electron transfer is slowed signifi-
cantly by the presence of Ti, Al, and Mg; or (b) that these nonmagnetic cations have site occupancies that
are dependent on thermal history, and that their rearrangement can significantly affect the Curie tempera-
ture. Because the saturation magnetization at room temperature and at 10 K is unchanged by thermal treat-
ments [Bowles et al., 2013], we must discard the idea of A-B Fe21-Fe31 reordering (assuming collinear
antiferromagnetic ordering), and thus we suppose that the cation reordering model must involve changing
site occupancies of Al and Mg, or perhaps a short-range ordering mechanism operating within the octahe-
dral sublattice [Wechsler et al., 1984; Moskowitz, 1987; Carter-Stiglitz et al., 2006]. We will return to this idea
below.

Either of the two candidate mechanisms above (unmixing/rehomogenization and cation ordering/disorder-
ing) involves a redistribution of metal cations within the titanomagnetites; the difference is primarily one of
length scale and therefore also of time scale. A-B site exchange operates on sub-nanometer scales; spinodal
unmixing has characteristic length scales on the order of 10 nm; and nucleation and growth of near-end-
member lamellae requires migration of cations over distances on the order of 100 nm [e.g., Harrison and
Putnis, 1999a]. As with thermal diffusion, chemical diffusion operates on timescales that vary according to
the square of the length scale involved, and thus unmixing is necessarily orders of magnitude slower than
intersite exchange. Previous experimental work [e.g., Price, 1981b] indicates that cation diffusion is much
too slow to cause production and reabsorption of end-member exsolution lamellae in the time-
temperature ranges where we observe significant increases (hours to months at 350�C–400�C) and
decreases (minutes at 450�C–500�C) in TC. Price [1981b] found that the characteristic homogenization time
for sub-100 nm magnetite-ulv€ospinel lamellae was approximately 2500 h at 500�C. Moreover the low-T sus-
ceptibility data (Figure 8) show no evidence for the production of a Ti-rich exsolved phase, as would be
expected if nucleation and growth were proceeding during annealing at moderate temperatures.

Spinodal decomposition is harder to rule out via rate arguments, but it too is inconsistent with the observed
thermomagnetic behavior, specifically the homogeneity of Curie temperature in almost all postannealing
thermomagnetic runs. Sinusoidal variations in composition, initially of small amplitude and growing in time,
would produce a broadening of the dk/dT minima defining TC, as the initial single value for the homogene-
ous phase becomes a distribution of values corresponding to the nonuniform compositional range. As the
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process continues, any inflated TC originating in Fe-enriched volumes would necessarily be paired with an
accompanying deflated TC from the Fe-depleted regions. Our observations show unambiguously that in
most cases, the increase in TC occurs homogeneously throughout the volume of the titanomagnetites in
each specimen during annealing below 425�C: there is no indication of multiple Curie temperatures for the
homogeneous phase on the heating run, and the derivative peaks invariably become sharper as TC

increases (Figure 7a) [see Bowles et al., 2013, Figure 3].

It is also worth pointing out that the crest of the binary magnetite-ulv€ospinel solvus is raised to tempera-
tures hundreds of degrees higher by the presence of significant amounts of substituted Mg and Al [Bowles
et al., 2012]. The strong apparent relationship between changing Curie temperatures and the binary solvus
(Figure 13) may therefore be fortuitous. Moreover the lack of annealing effects on TC in the purer magnet-
ites of the Bishop and Tiva Canyon samples may be attributable to factors other than location above the sol-
vus, including more rapid ferrous-ferric exchange kinetics. Both the chemical unmixing model and the
cation ordering model have problems explaining some of our observations, but on balance we find that
unmixing/rehomogenization is more problematic, and we therefore favor changing cation distributions in
the spinel structure (or possibly within the octahedral sites alone) as the mechanism responsible for the
observed thermomagnetic behavior.

The major unknown is how the cation distribution changes in a way that preserves the low-temperature
spontaneous magnetization while changing the strength of the exchange interactions. One possibility is
that the phenomena are driven by Al-Mg intersite exchange, which easily explains the constancy of MS, and
which may change TC via lattice strain and accompanying changes in exchange coupling (R. Harrison, perso-
nal communication, 2013). Another conceivable mechanism involves short-range ordering of the cation dis-
tribution within the octahedral site, as several authors have speculated [Wechsler et al., 1984; Moskowitz,
1987; Wanamaker and Moskowitz, 1994]. Carter-Stiglitz et al. [2006] invoked low-temperature suppression of
B-site electron hopping in titanomagnetites to explain various aspects of their magnetic behavior and
M€ossbauer spectra. Some form of charge ordering of the octahedral ferrous and ferric ions, or a segregation
of B-site nonmagnetic ions, may conceivably affect the Curie temperature but would not alter the bulk
spontaneous magnetization as long as antiferromagnetic AB interactions remain dominant. Recent atomis-
tic models developed by Harrison et al. [2013] for cation ordering in the magnesioferrite-qandilite solid solu-
tion (an analog of the magnetite-ulv€ospinel system in which the Fe21 is entirely replaced by Mg21) show a
strong tendency toward short-range chemical clustering within the octahedral sublattice, on length scales
of a few unit cells, at temperatures near the solvus. Such short-range order may well explain all of the key
observations that we have made: progressive, homogeneous increases in TC on annealing at subsolvus tem-
peratures; rapid decreases in TC above a critical temperature near the solvus; and room-temperature values
of k and MS that are virtually independent of thermal history (barring oxidation unmixing). Additional
research using techniques such as XMCD [Pattrick et al., 2002; Pearce et al., 2010] is currently underway in an
effort to characterize cation valencies and site occupancies [Lappe et al., 2014].

5.3. Temperature-Dependent Equilibrium Cation Distribution
The continuing increase in TC with protracted heating in the isothermal annealing experiments, and the fail-
ure to reach a plateau even after 1000 h at temperatures between 350 and 425�C (Figure 9) indicate that
the cation distribution has not reached the equilibrium state and that the degree of order is still increasing,
driving TC up to 500�C and beyond. Annealing at higher temperatures does not increase the Curie tempera-
ture in any of our samples, and the multicycle k(T) experiments show that even brief exposure to tempera-
tures above about 500�C is sufficient to cause significant disordering of the cation distribution, with
accompanying reduction of TC to �375�C. Thus we infer that, if cation reordering is the principal mecha-
nism of TC enhancement, there must be a very sharp gradient in the Qeq(T) curve for these titanomagnetites
between about 425�C and 500�C. For T� 425�C the equilibrium distribution is relatively ordered, with
TC� 475�C, whereas for T� 500�C the equilibrium distribution is much more disordered, having TC� 375� .
Continued reordering at temperatures above the ‘‘cation unblocking’’ (or closure) temperature of about
500�C is sufficiently rapid that the distribution reversibly follows the equilibrium curve, and the changes
that occur at higher temperatures are not observable during subsequent cooling (e.g., see the multicycle
k(T) run in Bowles et al. [2013, Figure 2]). Reordering kinetics are slow enough for T� 425�C that we have
been unable to reach equilibrium in any of our experiments at those temperatures. Thus we can say little
about the details of the Qeq(T) function, other than that it evidently varies sharply between about 425�C
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and 500�C to account for the large change (>100�C) in the equilibrium TC over that small temperature inter-
val. For comparison, the equilibrium order parameter for magnesioferrite changes slowly and smoothly
between 400�C and 1000�C, with an accompanying 80� range of Curie temperatures (from 370�C to 290�C)
over that 600�C range of equilibration temperatures [Harrison and Putnis, 1999b, 1999a].

One obvious suggestion is that this sharp change has to do with the interaction of magnetic ordering and
cation ordering [Harrison and Putnis, 1997, 1999a; Harrison et al., 2013]. In these titanomagnetites, both phe-
nomena happen in nearly the same temperature range (Figure 13), unlike magnesioferrite, where significant
ordering and especially disordering occur on lab timescales at temperatures far above TC. It also appears
likely that subsolvus B-site chemical clustering [Harrison et al., 2013] plays a major role, as discussed in sec-
tion 5.2 above. Dissipation of the chemical clustering above the solvus could readily account for the sharp
changes we observe in the 425�C–500�C range (Figure 13).

5.4. Temperature and Composition-Dependent Cation Ordering Kinetics
Although our experimental data contain relatively little information on how the equilibrium cation distribu-
tion changes with temperature, they provide an essential picture of the temperature dependence of reor-
dering timescales, which are accessible in laboratory experiments over a relatively narrow window from
about 300�C–450�C. At lower temperatures, if cation reordering continues to occur, it is on timescales of
months, years or longer. Certainly such timescales are available for slow cation ordering in nature, and it is
possible that high degrees of order and elevated Curie temperatures may result, although we note that 30
years at ambient temperatures have produced no appreciable ordering in the surficial samples at site
MSH12-08.

The process (schematically depicted in Figure 6) involves the essential ideas of a temperature-dependent
equilibrium cation distribution and a temperature-dependent cation mobility which governs the rate of
approach to the equilibrium distribution. These ideas have previously been used to explain similar phenom-
ena in the magnesioferrite system [e.g., Harrison and Putnis, 1999b, 1999a] and in the magnetite-ulv€ospinel
system [Lattard et al., 2006]. According to this model, titanomagnetites in the magma chamber at 950–
1000�C have the strongly disordered cation distributions that represent the equilibrium state for that tem-
perature range. During the rapid initial cooling after eruption, quick rearrangement of cations allows the
distribution to remain in equilibrium, and the degree of order increases accordingly. Eventually as the tem-
perature continues falling, diffusion rates become too slow for the cation distribution to remain in equilib-
rium, and it ‘‘freezes in’’ a degree of order that depends on the cooling history (Figure 6a). Fast continuous
cooling at shallow depths results in relatively disordered distributions and relatively low Curie temperatures,
as in the surficial samples of site MSH12-08 (Figure 5). Deeper in the flow units, the quasi-isothermal post-
emplacement interval and ensuing slower cooling result in more ordered distributions and elevated TC (Fig-
ure 6a). These more ordered states are the ones responsible for the thermomagnetic irreversibility in the
k(T) runs: with increasing temperature, the frozen distribution reaches the equilibrium curve (Figure 6b)
while cation mobility begins to increase. On continued heating, the distribution follows the equilibrium
curve to more disordered states, and after the maximum temperature is attained, subsequent cooling at a
rate much higher than the slow, natural, post-emplacement rate freezes in a relatively disordered distribu-
tion with a diminished TC (Figure 6b). The isothermal annealing experiments drive the system around a
clockwise path in the (T,Q) space, inflating TC (Figure 6b).

A number of pioneering studies [e.g., Bleil, 1976; O’Donovan and O’Reilly, 1980; Wechsler et al., 1984]
explored the possibility of producing variably ordered cation distributions by quenching from different high
temperatures (exceeding 600�C), and the results generally showed little or no relation between quench
temperature and magnetic properties (particularly MS) that are sensitive to cation ordering. As pointed out
by Harrison and Putnis [1999a], because these experiments all involved fast quench rates, they all follow
essentially the same path in the Q-T diagram regardless of starting temperature (Figure 6): they follow the
equilibrium curve down to the closure temperature for those fast cooling rates, and then freeze in the corre-
sponding degree of order.

What is the significance of the evident difference between natural slow cooling (Figure 5; dTC/d(log(tcool))
� 42 for MSH8/MSH12-8) and laboratory isothermal annealing (Figures 9 and 10; dTC/d(log(tsoak)) � 25 for
MSH8 at 350�C) in producing the observed changes in TC? We do not have a definite answer. It’s certainly
true that the experiments do not exactly duplicate the thermal histories and other conditions experienced
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by the samples after emplacement. Annealing in air in the lab produces effects that are generally very similar
to those produced by postemplacement ‘‘annealing,’’ but the (presumably less oxic) conditions in the natural
environment may play some role. We are currently carrying out annealing experiments in controlled atmos-
pheres to investigate this. Natural cooling is also more continuous in time than the lab experiments, which
involve abrupt cooling after extended isothermal annealing. Consequently tcool is less precisely defined than
tsoak and one might imagine that they are not really equivalent—the former is controlled by overburden thick-
ness and its calculated values are model-dependent, whereas the latter is experimentally controlled. However,
it is important to realize that none of the model parameters in equation (2) actually affect the slope: since
tcool(z) 5 cz2 in the conductive cooling model, it follows that dTC/d(log(tcool)) 5 1=2dTC/d(log(z)), and the slope
in Figure 5b is determined directly by the variation of TC with depth in Figure 5a. Changes in parameters such
as diffusivity, emplacement temperature or T(z, tcool) affect only the intercept values of the relation in Figure
5b, through their influence on the value of c. Thus the slope differences for natural slow cooling and labora-
tory annealing cannot be resolved by choosing different parameters in the conductive cooling model, and
this remains as a significant question to be addressed in continuing research.

There is clearly a significant role of titanomagnetite composition in controlling the occurrence and kinetics of
TC evolution, although our data do not allow us to resolve the individual effects of Ti, Al, and Mg concentrations
on the underlying process (Figures 12 and 13). Composition may play a direct role (e.g., slowing of ferrous-ferric
exchange by increasing concentrations of other cations), and it also very likely plays an indirect role through its
effects on TC and on solvus temperature, which in turn may influence bulk cation ordering and short-range
chemical ordering. Our results show that the rate of increase in TC is systematically larger in the more Ti-, Al-,
and Mg-rich titanomagnetites, especially for annealing temperatures of 350�C–375�C (Figure 12a). These
annealing temperatures are close to the magnetic ordering temperature and to published solvus temperatures
for the composition range of our samples (Figure 13), and therefore models involving interaction of magnetic
and cation ordering or octahedral-site chemical clustering in the vicinity of the solvus provide attractive explan-
ations. Additional TC(Tsoak, tsoak) data for higher-x samples will help to clarify the dependence of kinetics on
composition, as well as constraining the crystal-chemical mechanisms responsible. Ongoing work is focusing
on synthetic titanomagnetites of varying controlled compositions, to systematize the individual and combined
effects of the key metal components Ti, Al, and Mg [e.g., Lappe et al., 2013, 2014].

5.5. Implications
As pointed out by Bowles et al [2013], time and temperature-dependent cation distributions and the result-
ant evolving Curie temperatures in volcanic titanomagnetites have a number of important geophysical con-
sequences. Most obviously and directly, there are complications in the use of TC to estimate
titanomagnetite compositions, but perhaps more importantly there are major ramifications in paleomagnet-
ism and potential applications in geospeedometry.

Acquisition, retention, and demagnetization of partial thermoremanence and thermoviscous remanence,
both in nature and in the laboratory, may all be significantly affected by cation reordering and changes in
TC. Quantitative models of the time, temperature, and field-dependent evolution of magnetization are
essentially all based on N�eel theory, and in such models it is a fundamental assumption that TC is a material
constant and that the function MS(T) is single-valued and invariant for any mineral, governing not only mag-
netization intensities but also the scaling of temperature-dependent anisotropies and energy-barrier distri-
butions [e.g., Dunlop and West, 1969; Dodson and McClelland-Brown, 1980; Walton, 1980; Dunlop, 1984;
Winklhofer et al., 1997; Fabian, 2000; Lanci and Kent, 2003; Shcherbakov and Fabian, 2005; Jackson et al.,
2006; Egli, 2009]. When TC is in fact a function of thermal history, and especially when it can be changed by
heating at T< TC, thermomagnetic behavior is correspondingly altered in ways that can be expected to
strongly affect paleointensity estimates and paleomagnetic paleothermometry [McClelland-Brown, 1981;
Middleton and Schmidt, 1982; Dunlop et al., 1997a, 1997b, 2000; McClelland et al., 2004; Yu and Dunlop, 2006;
Paterson et al., 2010]. Such effects may be most important in samples like ours, with titanomagnetites hav-
ing compositions near x05 0.3. With increasing x0, TC decreases and solvus temperatures are thought to
increase (Figure 13), so if the latter do in fact play an important role in the phenomenon, the most signifi-
cant changes may be expected to occur at T> TC for higher x0.

Among the pioneering studies of cation distributions in titanomagnetites, a major concern was the possibil-
ity of self-reversal caused by a shift from B-site dominance (MB>MA) to A-site dominance as a result of slow
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ordering over long time scales [e.g., Verhoogen, 1956; Creer and Stephenson, 1972]. Because we find no sig-
nificant change in saturation magnetization at low or ambient temperatures, the kind of reordering we
have observed seems very unlikely to produce such self-reversal of primary remanence.

A potential geological application of time and temperature-dependent cation ordering in titanomagnetites
is in geospeedometry. Geospeedometers based on cation ordering in silicates have been developed for
orthopyroxene [Ganguly, 1982], alkali feldspars [Kroll and Knitter, 1991], olivine [Redfern et al., 1996], and
amphibole [Seifert and Virgo, 1975]. They all exploit the fact that the degree of cation order is dependent
not only on equilibration temperature, but on the entire thermal history of the sample. Once the
temperature-dependent rate constant and the temperature-independent, structure-specific coefficients are
quantified, a measured degree of order can be modeled in terms of emplacement temperature and cooling
rate [e.g., Harrison and Putnis, 1999a]. The key advantage in using titanomagnetite over silicate systems lies
in the fact that Curie temperature is a fast and easy measurement to make whereas diffraction studies are
time-consuming. Such a cation-ordering based geospeedometer would be distinctly different from, and
complementary to the proposed titanomagnetite geospeedometer of Mollo et al. [2013], which uses chemi-
cal composition (Fe, Ti, Al, and Mg) to quantify cooling rate over the temperature interval 1100–1000�C.
Compositional controls on reordering kinetics (Figure 12) are an important aspect of potential applications
in geospeedometry, and a better understanding of them will be essential.

6. Summary and Conclusions

Titanomagnetite-bearing pyroclastic samples from Mt St Helens and from Novarupta exhibit the following
distinctive traits: (1) thermomagnetic runs for most samples exhibit one or two distinct magnetic phases,
with respective Curie temperatures of 325�C–475�C and 540�C–580�C; (2) reflected-light microscopy shows
that the susceptibility contributions of the low-TC and high-TC phases respectively correspond to the pro-
portions of homogeneous and oxyexsolved titanomagnetites; (3) the higher Curie temperatures are
observed primarily in samples from sites with estimated emplacement temperatures exceeding 600�C; (4)
thermomagnetic cooling curves are very similar for different samples from each flow unit, but heating
curves are more variable and commonly indicate Curie temperatures for the homogeneous titanomagne-
tites that are higher than those seen in the cooling curves, in some cases by more than 100�C; (5) the ther-
momagnetic irreversibility increases systematically as a function of depth in an individual pyroclastic
cooling unit; (6) multicycle thermomagnetic runs show that brief exposure to temperatures exceeding
450�C or 500�C causes the Curie temperatures of the homogenous titanomagnetites to revert to a narrow
range of values near 375�C and reduces or eliminates the irreversibility; (7) isothermal annealing at temper-
atures between 300�C and 425�C for time intervals between 0.3 and 1000 h causes the Curie temperatures
of the homogenous titanomagnetites to increase, in proportion with the logarithm of annealing time; (8)
the rate at which TC increases is generally related to titanomagnetite composition; over the range in our
samples (0.25< x0< 0.35) the increases are most rapid in samples with more substitution, although we can-
not determine the individual roles of the various cation species; and (9) there is little permanent change
caused in the samples by repeated cycles of increasing TC by moderate-temperature annealing and then
decreasing it by exposure to higher temperatures in thermomagnetic runs.

These observations are best explained in terms of time and temperature dependence of the cation distribu-
tion in the homogeneous titanomagnetites [Bowles et al., 2013], perhaps involving short-range ordering
within the B sites. Reordering timescales are experimentally accessible in a relatively narrow temperature
window from about 300�C to 450�C. At higher temperatures the distribution is presumably more random
and the Curie temperature lower than those that we observe, but reordering is so fast during cooling to the
closure temperature of 500�C that no record of the higher-T state is preserved. This closure temperature is
expected to be rate-dependent, but in our k(T) experiments the cooling rate is fixed at 10�–15�/min.

Below 300�C reordering rates are too slow to produce any measurable effects on laboratory timescales up
to 1000 h, but on geological timescales slow rearrangement of the cation distribution may conceivably pro-
duce very large changes in the Curie temperature of titanomagnetites in thick extrusive units or in intrusive
rocks. Because this process may occur at temperatures near or even below the initial Curie temperature of
the titanomagnetites, the mechanisms of remanence acquisition and stabilization can potentially be sub-
stantially influenced by cation reordering.
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