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ABSTRACT 

ARYLBORONATES AS H2O2 OR PHOTO-INDUCIBLE DNA CROSS-LINKING AGENTS: 

DESIGN, SYNTHESIS, MECHANISM, AND ANTICANCER ACTIVITY 

 

 by   

Yibin Wang 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Xiaohua Peng 

 

Interest in the development of cancer therapies with improved selectivity and reduced host 

toxicity has been growing. In this thesis, we designed and synthesized a series of novel non-toxic 

arylboronic ester and biarylboronic ester derivatives that can be activated by hydrogen peroxide 

(H2O2) to induce DNA interstrand cross-link formation. The mechanism of DNA cross-linking 

induced by these arylboronates involves generation of phenol intermediates 1 followed by 

departure of leaving group (L) leading to quinone methides (QMs) 2, which directly cross-link 

DNA via alkylation. The QM formation is the rate-determining step for DNA cross-linking. The 

activity and selectivity of these compounds towards H2O2 were investigated and the activation 

mechanism was determined by NMR analysis and QM trapping experiments. The oxidative 

activation of these compounds by H2O2 produced an electron rich aromatic ring that facilitated 

QM formation and release of the leaving group.  
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We also evaluated the effects of the benzylic leaving groups (L), the core structures of the 

arylboronates, and the aromatic substituents (R) on H2O2-induced formation of bisquinone 

methides (bisQMs) for DNA interstrand cross-linking. A better leaving group (Br) and stepwise 

bisquinone methide formation increased interstrand cross-linking efficiency. The electron-

donating groups (OMe or OH) on the aromatic ring greatly favored QM formation and improved 

interstrand cross-link (ICL) formation. An in vitro cytotoxicity assay showed that the arylboronic 

esters with OMe or OH at position 4 dramatically inhibited the growth of various cancer cell 

lines. These findings provide essential guidelines for designing novel anticancer prodrugs. 

 

Furthermore, the photochemical reactivity of these arylboronates, including phenyl boronates 

and naphthalene boronates, towards DNA has been investigated. The results indicated that most 

arylboronates induced DNA ICL formation upon 350 nm irradiation. Two mechanisms were 

involved for photo-inducible DNA ICL formation: a) UV-irradiation of the arylboronates 

produced a methyl radical which was oxidized to a methyl cation capable of alkylating DNA; b) 

a methyl cation was directly generated by UV-irradiation of the arylboronates via heterolysis of 

CH2-L (L= Br or NMe3
+
Br

-
) bond. The activation mechanism was determined using the 

orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine. The 

TEMPO reacts with free radicals while methoxyamine acts as a carbocation trap.  
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Chapter 1. Introduction 

1.1. The structure and function of deoxyribonucleic acid (DNA)  

Deoxyribonucleic acid (DNA) is a basic biomolecule that carries genetic information used in the 

development and functioning of all living organisms. The structure of DNA was first identified 

by Watson and Crick in 1953.
1 

DNA usually consists of two polynucleotide strands twisted 

around each other to form a double helix (Figure 1-1). The backbone of each strand is made up 

of alternating deoxyribose and phosphate groups. One of four nucleobases are attached to each 

deoxyribose in the DNA backbones, including the purines, adenine (A) and guanine (G), and the 

pyrimidines, thymine (T) and cytosine (C) (Scheme 1-1). The DNA double strands are bound 

together via Watson-Crick base pairing through hydrogen bonding, where A pairs with T through 

two hydrogen bonds, and G pairs with C via three hydrogen bonds (Figure 1-1). This base 

recognition results in a complementary relationship between the base sequences of the two DNA 

strands. The sequence of nucleobases in the DNA strands forms the genetic code.
1-5

 

 

Scheme 1-1. Structures of nucleobases. 
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Figure 1-1. DNA double helix structures and Watson-Crick base pairing. 

DNA is considered a very important target for biological study. It's replication and transcription 

are essential for cellular processes such as cell division.
6 

DNA replication is the process of 

utilizing two separated single strands as templates to synthesize two daughter strand DNA.
7,8

 

While transcription is the first step of gene expression, in which a particular segment of DNA 

sequence is copied into messenger RNA (mRNA) which carries the genetic code needed for 

protein synthesis. The DNA structure can be chemically modified and the resulting structure 

change may induce gene mutations or even cause cell death. DNA alkylation is one of the widely 

occurred modifications which have been applied as an anticancer strategy. Broadly there are 
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three major types of DNA alkylation: interstrand cross-links, intrastrand cross-links and 

monoalkylation. Among these three kinds of alkylation, the interstrand cross-links (ICLs) are the 

most toxic DNA lesions because they directly and completely prevent the separation of the two 

strands by forming covalent linkages between DNA complementary strands.
9-11 

The mechanisms 

of ICL formation are broadly similar in that bifunctional sites are required, which can be 

activated chemically and bond to specific bases residing on opposing DNA strands to form DNA 

interstrand cross-links. Apart from DNA interstrand cross-links formation, intrastrand cross-links 

are also possible, where the cross-linking agent bonds to adjacent bases in the same strand. 

Additionally, monoadducts could be formed when only one functional site bonds to a DNA 

strands (Figure 1-2).
12

 

Therefore, DNA cross-linking agents have been considered an important class of clinically useful 

drugs that can be used for cancer treatment and other diseases over the years. 

 

Figure 1-2. DNA lesions induced by alkylating agents. 

1.2. DNA interstrand cross-linking agents 
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1.2.1. Commonly used chemotherapeutic agents 

ICLs agents are one of the earliest anticancer drugs and some ICL-inducing agents, such as 

nitrogen mustard, mitomycin C and methoxsalen are still widely used in cancer therapy. There 

are four major classes of DNA cross-linking agents that are either naturally occurring or 

synthetically available, including mitomycins, methoxsalens, nitrogen mustards, and cisplatins. 

Mitomycins belong to a family of aziridine-containing natural products originally derived from 

fungal sources, such as streptomyces caespitosus, or streptomyces lavendulae. Most mitomycins 

directly induce DNA cross-links formation. Some of them can be activated in vivo to cross-link 

DNA, therefore acting as prodrugs. For example, mitomycin C, a widely used chemotherapeutic 

anticancer drug, does not react with DNA by itself, but can be activated by photon-mediated or 

enzymatic reduction of the quinone leading to formation of a quinone methide-like specie 3 that 

cross-links DNA (Figure 1-3). Enzyme-induced two-electron reduction of the quinone ring (→1) 

facilitates the loss of the methoxy group, which yields the unstable vinylogous quinone methide 

intermediate 2. Tautomerization of 2 leads to formation of the QM-like structure 3, which 

alkylates DNA at N2 of deoxyguanosine (dG) to produce the monoadduct 4. The elimination of 

the carbamoyl leaving group produces the highly reactive intermediate 5, which alkylates the 

second guanine in the complimentary strand to form the interstrand cross-link (Figure 1-3).
13-15 

Mitomycin C commonly reacts with guanine residues through the minor groove of DNA. It is 

often used to treat esophageal carcinoma, breast cancers, and bladder cancers. 
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Figure 1-3. Mechanism of ICL formation by mitomycin C. 

Methoxsalen and its parent compound psoralen are naturally occurring furocoumarins that are 

derived from plants. These compounds consist of a coumarin and a fused furan ring. Psoralen 

and its derivatives are well known photo-activated ICL agents that can form monoadducts and 

ICLs with thymines preferentially via [2 + 2] cycloaddition inducing apoptosis when exposed to 

long wavelength (320-410 nm) ultraviolet A (UVA) radiation (Figure 1-4).
16-18 

Because of this 

unique feature, psoralens such as methoxsalen (8-MOP) and 4,5',8-trimethylpsoralen (TMP) 

have been used for the topical treatment of cutaneous T-cell lymphoma.
19,20
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Figure 1-4. Structures of psoralens and ICL formation by methoxsalen. 

The nitrogen mustard derivatives are the major kind of synthetic alkylating agents, which are 

widely used in the clinic for cancer treatment.
12,21,22 

Nitrogen mustards contain a reactive N,N-

bis-(2-chloroethyl)amine functional group that is highly active towards nucleophiles in DNA 

because a highly electrophilic aziridinium intermediate 7 can be formed by intramolecular 

displacement of the chloride by the amine nitrogen (Figure 1-5).
23,24

 The aziridinium group 

greatly facilitates the DNA alkylation and cross-link formation. These compounds most 

commonly react with N7 of guanine residues to produce N7-alkylated derivatives 8 and 9. 

Nitrogen mustard gas was used as a chemical weapon during the Second World War. Exposure 

to nitrogen mustard drastically decreased white blood cell counts. After that, nitrogen mustards 

were used as a chemotherapeutic agent for leukemia and lymphoma. Since then, more nitrogen 

mustard derivatives such as melphalan and chlorambucil have been developed for cancer 

treatment. Melphalan is currently being used to treat multiple myeloma and ovarian cancer
25 

and 

chlorambucil is used to treat chronic lymphocytic leukemia. 
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Figure 1-5. Structures of nitrogen mustard compounds and mechanism of ICL formation. 

Cis-diamminedichloroplatinum II (CDDP or cisplatin) is the first member of the platinum-

containing cross-linking agents. The mechanism of interstrand cross-link formation by cisplatin 

is similar to nitrogen mustard. One of the chloride ligands is slowly displaced by water to form 

the positively charged aquated species 10, which easily binds with DNA and leads to 

replacement of water-ligand by N7 of guanosine to form monoadduct 11 or cross-linked product 

12 (Figure 1-6).
26-29 

Cisplatin was first identified as an inhibitor of bacterial division and is now 

widely used to treat a variety of solid tumors including lung cancer, ovarian cancer, lymphoma, 

and testicular cancer.
30-32
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Figure 1-6. Mechanism of ICL formation by cisplatin. 

In addition to DNA interstrand cross-links, these ICL-inducing agents also cause the formation 

of various DNA lesions due to their high reactivity, which lead to serious side effects. For 

example, a long term usage of mitomycin C can cause bone-marrow damage,
29 

lung fibrosis, and 

renal damage. Methoxsalen usually causes nausea, headaches, and dizziness. Patients with high 

blood pressure or a history of liver problems are at risk for irreparable damage to both liver and 

skin. Nitrogen mustards are nonspecific DNA alkylating agents. The major side effect of 

nitrogen mustards is bone marrow suppression. Cisplatin, the most widely used DNA cross-

linking drug, causes damage that is comprised of 90% intrastrand cross-links (mainly cross-links 

between adjacent purine residues on the same strand of the DNA double helix) and less than 5% 

ICLs.
26,32 

The primary side effect for cisplatin is kidney damage.  

Overall, most of these existing cross-linking agents show poor selectivity towards cancer cells 

and lead to serious side effects. Host toxicity became a major concern of chemotherapeutic 

agents. The development of tumor-specific cross-linking agents is a novel approach to achieve 

therapeutic selectivity.  
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1.2.2. Chemical methods for inducing DNA cross-link formation 

In recent decades, there has been increasing interest in the design of inducible DNA interstrand 

cross-linking agents with improved selectivity. The most common way is to mask the reactivity 

of the electrophiles, which are then activated by heat, photo-irradiation, or a chemical reduction 

or oxidation process. 

1.2.2.1. Photo-activated ICL agents 

The psoralens were the first photo-activated DNA cross-linking agents. UVA irradiation of 

psoralens leads to efficient DNA cross-linking. Recent research on psoralens has focused on 

improvement of drug absorption and solubility.
33-35 

Several psoralen analogs with modified 

structures have been synthesized and studied. Some of them showed good therapeutic properties 

with fewer adverse effects.
36 

For example, 4,4'-dimethylthieno-8-azacoumarin displayed 

antiproliferative activity in HL-60 cells without inducing erythematous reactions, which are the 

common side effects of methoxsalen (8-MOP) in therapy (Figure 1-7).
37

 

 

Figure 1-7. Structure of psoralen analog. 

UV-irradiation is also highly efficient for generating ortho-quinone methide (o-QM) 

intermediates capable of cross-linking DNA.
38-40 

Various aromatic compounds have been 

developed as QM precursors. For example, Zhou's group designed and synthesized a class of 

phenol biquaternary ammonium salts 13 and 14, which can form o-QM by photo-activation in 
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aqueous solution and then cross-link DNA (Figure 1-8).
41

 The biphenol biquaternary ammonium 

14 induced a much higher cross-linking yield with at pH=7.7 a low concentration (10 µM). 

 

Figure 1-8. ICL formation by biquaternary ammonium salts. 

Freccero's group has developed a class of binol quaternary ammonium salts, which act as photo-

activated precursors to binolquinone methides (Figure 1-9).
42 

Compounds 15 and 16 can induce 

effectient ICL formation upon irradiation at λ ≥ 360 nm. 

 

Figure 1-9. ICL formation by binol quaternary ammonium salts. 

1.2.2.2. DNA ICL agents activated by reduction 
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Rather than photo-activation, some ICL agents, such as mitomycin C, can undergo a reduction 

process to produce reactive intermediates that can cross-link DNA. This kind of agent is 

particularly suitable for the hypoxic cells existing in some solid tumors. 

For example, aziridinylbenzoquinones 17 and 18,
43,44 

which constitute two aziridine rings in a 

quinone scaffold, can go through a two electron reduction under hypoxic condition. The lone pair 

of electrons is released from vinylogous amide conjugation with the quinone.
45-47 

The increased 

electron density on the nitrogen atom of 19 facilitated the protonation of the aziridine ring and 

the subsequent ring-opening alkylation reaction of the aziridine (Figure 1-10). Among different 

aziridinylbenzoquinone compounds, diaziridinylquinone (DZQ) 17 and 2,5-bis(1-aziridinyl)-3,6-

bis(carbethoxyamino)-1,4-benzoquinone (AZQ) 18 are the mostly studied therapeutic agents.
46,47

 

 

Figure 1-10. ICL formation by aziridinylbenzoquinones. 

Some nitroaromatic alkylating prodrugs have been developed, which usually undergo a reductive 

conversion of an electron-withdrawing nitro group to an electron-donating amine substitution. 

For example, the nitrobenzyl halides 20 showed hypoxic selectivity in cell culture by generating 

iminoquinone methide intermediate 21 under hypoxic condition (Figure 1-11).
48 

The electron-

withdrawing character of the nitro group greatly decreases the electron density of the mustard 

nitrogen, thereby masking the activity of nitrogen mustards. A number of nitroaniline chloro 

nitrogen mustards such as 22 had been synthesized and examined. The conjugation of the nitro 
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group with the long pair electrons on nitrogen prevent aziridinium formation but can be released 

and alkylate DNA after bioreduction (Figure 1-12).
49,50

 

 

Figure 1-11. Mechanism of activation of o-nitrobenzyl compounds. 

 

Figure 1-12. Reductive activation of nitrophenyl mustard. 

1.2.2.3. DNA ICL agents activated by oxidation 

Several clinically useful anticancer agents are oxidation-induced DNA cross-linking agents that 

are activated by cyctochrome P-450 (CYPs). The P-450 enzymes belong to the superfamily of 

proteins containing a heme cofactor. They are the terminal oxidase enzymes in enzymatic 

reactions by using a variety of small molecules as substrates. The most common reaction of 



 
 

13 

CYPs is monooxygenation, including carbon hydroxylation, heteroatom hydroxylation, 

heteroatom dealkylations (via aldehyde generation), oxidations of 𝜋systems, and conversion of 

aldehydes or alcohols to the corresponding acids.
51,52

 

Cyclophosphamide (CP) 23 was the first metabolically activated ICL agents. It undergoes 

oxidation at the C4 position to yield the corresponding 4-hydroxycyclophosphamide, 24, which 

spontaneously goes through reversible ring opening to afford the biologically active 

aldophosphamide 25.
53,54 

The intermediate 4-hydroxycyclophosphamide can also be oxidized to 

stable amide 26 which is considered to be the deactivation of CP. The activated 

aldophosphamide further undergoes β-elimination of the phosphoryl to produce phosphoramide 

mustard 27. The hydrolysis of the phosphoramide mustard generate the secondary 

mechlorethamine 28 (Figure 1-13).
10,54

 

 

Figure 1-13. Oxidative activation of cyclophosphamide. 

Hexamethylmelamine (HMM or Altretamine) 29 is also an antitumor agent that is activated by 

CYPs. It undergoes hydroxylation followed by dehydration upon oxidation by CYPs.
55 

The 

resulting iminium 30 can alkylate nucleophiles in DNA (Figure 1-14). HMM is effective against 

a number of different human tumor cell lines, such as metastatic breast cancer, lymphoma, 
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cervical cancer, and bladder cancers.
56 

It was approved by the FDA in 1990 and is widely used 

for treatment of ovarian cancer. 

 

Figure 1-14. Oxidative activation of hexamethylmelamine.  

Agents that induce DNA cross-links selectively in cancer cells are very limited. Few of them 

specifically target tumor-specific conditions and are usually limited to a narrow range of tumor 

cells. In order to design and develop more effective and highly selective antitumor agents, we 

explored the microenvironments that are unique to cancer cells to identify chemical methods and 

precursors for inducing DNA cross-link formation selectively in cancer cells. 

1.3. Reactive Oxygen Species 

1.3.1. High levels of reactive oxygen species in cancer cell 

Compared with the normal cells, the major distinguishing property of cancer cells is their 

diminished or unrestrained control of growth. The faster growth of cancer cells leads to increased 

metabolism, which alters the biochemical properties of cancer cells. Most cancer cells exhibit 

various genetic alterations and increased aerobic glycolysis and oxidative stress.
57-59 

Higher 

levels of reactive oxygen species (ROS) have been observed in many kinds of cancer cells, such 

as chronic lymphocytic leukemia or hairy-cell leukemia cells.
60,61 

Increased levels of oxidative 
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DNA damage products were detected in clinical solid tumor specimens and cancer cell lines.
62,63 

The increased generation of ROS is a unique property of cancer cells, which could be exploited 

to develop new strategies for cancer treatment. 

Reactive oxygen species are defined as reactive chemical species containing oxygen. ROS are 

formed as by-products of normal aerobic metabolism.
44 

There are two types of ROS, free radical 

ROS and non-radical ROS. The free radical ROS usually contain one or more unpaired electrons 

in their outer molecular orbitals, such as superoxide anion (O2
-
), nitric oxide (NO), and hydroxyl 

radicals (OH
.
). The non-radical ROS do not have unpaired electrons but can be converted to free 

radical ROS by chemical reaction. In biological systems, hydrogen peroxide (H2O2), ozone (O3), 

peroxynitrate (NO4
-
) and hydroxide (OH

-
) are common non-radical ROS.  

ROS are essential for biological functions. They are linked to various physiological processes 

and essential protective mechanisms in living organisms. ROS regulate many signal transduction 

pathways by directly reacting with proteins, transcription factors, and genes thus modulating 

their functions. ROS are also involved in immune defense, antibacterial action and vascular tone. 

However, high levels of ROS are implicated in several harmful effects to cells, such as the 

oxygen free radicals that are highly reactive towards biological molecules. They can oxidize 

polyunsaturated fatty acids in lipids and amino acids in proteins. They can also oxidize the co-

factors of some specific enzymes. The oxidative modification of these biomolecules can alter or 

impair their functions. A mild ROS level may result in transient cellular alteration, whereas a 

severe increase of ROS level in cells could cause irreversible oxidative damage, leading to cell 

death. 

ROS can be produced from either endogenous or exogenous sources. Some exogenous factors, 

including industrial pollutants, pathogens and ionizing radiation can also induce ROS formation. 
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Inside the cells, mitochondria, peroxisomes, and inflammatory cell activation can generate ROS 

through multiple mechanisms. During oxidative metabolism in mitochondria, the majority of 

oxygen is reduced to water, however some may react with the electrons that leak from the 

mitochondrial respiratory chain to form superoxide anion, which can be converted to other 

ROS.
64 

The superoxide anion can also be generated through enzymatic reaction by NADPH 

oxidase complexes, xanthine oxidase and cylooxgenases.
65 

ROS are also produced as a 

byproduct through β-oxidation reactions of peroxisomal oxdiases in peroxisomes
66

 and 

detoxification reactions by cytochrome P450. 

1.3.2. Hydrogen peroxide and its detection 

Among different kinds of ROS, hydrogen peroxide (H2O2) is particularly important because it is 

relatively stable. Hydrogen peroxide can be generated through dismutation of the superoxide 

anion by superoxide dismutase (SOD).
67 

It can also be converted to hydroxyl free radicals via the 

metal-catalyzed Fenton reaction (Figure 1-15).
68

 Compared to other ROS, H2O2 has a lower 

reduction potential, which means it is more electronegative and less reactive. It also shows 

higher stability with a longer half-life and higher intracellular concentration (Table 1-1).
69 

All 

these properties make H2O2 an ideal signal molecule for evaluation of the cellular ROS level. In 

the past decades, a variety of H2O2-specific probes have been developed for detection and 

quantitation of H2O2 in living cells. 

 

Figure 1-15. Generation of reactive oxygen species. 
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Table 1-1. Chemical properties of different ROS. 

 

For example, Chang's group took the advantage of selective cleavage of boronates by H2O2 to 

design fluorescent probes for H2O2 detection. They first focused on fluorescein analogues due to 

their high fluorescence intensity and synthesized boronate-masked fluorescein peroxyfluor-1 

(PF1) 31 (Figure 1-16).
70

 PF1 is a non-fluorescent compound but the addition of H2O2 leads to 

formation of product 32 with strong green fluorescence. The fluorescence responses of PF1 

platforms are highly H2O2 selective (Figure 1-17). About 10 to 100 fold selectivity was achieved 

towards other ROS, such as superoxide, due to the deboronation and activation of PF1 was 

selective for H2O2. However, this probe can't detect endogenous H2O2 because of its relatively 

low sensitivity to H2O2. In order to address this problem, the fluorophores masked with 

monoboronate were developed as they only need one equivalent of H2O2 to release the highly 

fluorescent products. For example, peroxy green 1 (PG1) 33 and peroxy crimson 1 (PC1) 35 

showed high selectivity and sensitivity for H2O2 and also good membrane permeability. PG1 

features an absorption band at 460 nm with weak emission at 510 nm (Φ = 0.075), while the 

reaction of PG1 with H2O2 leads to a 10-fold increase in fluorescence due to formation of 2-

Methyl-4-O-methyl Tokyo Green 34. As PC1 has an even weaker emission band (584 nm, Φ = 

0.006), the reaction of PC1 with H2O2 leads to a greater increase of red fluorescence (40-fold) 

(Figure 1-18).
71 

In addition, the boronic esters do not have intrinsic toxicity and the final product 
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boric acid is also non-toxic to humans, which made the arylboronates more attractive for H2O2 

detection. 

 

Figure 1-16. Activation of H2O2 probes PF1. 

 

Figure 1-17. Spectroscopic response and selectivity of H2O2 probes PF1. 

 

Figure 1-18. Activation and spectroscopic responses of H2O2 probes PG1 and PC1. 
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The boronate analogue has been used for detection of H2O2 in mitochondria. For example, 

mitochondria peroxy yellow 1 36 (MitoPY1) has been developed for imaging mitochondrial 

H2O2 in living cells by adding a phosphonium head that can deliver antioxidants and 

electrophiles to mitochondria. MitoPY1 shows a weak emission at 540 nm (Φ = 0.019) but can 

be oxidized by H2O2 to form MitoPY1ox 37 resulting in strong fluorescence at 528 nm (Φ = 

0.405) (Figure 1-19).
72

 

 

Figure 1-19. Activation of H2O2 probe MitoPY1. 

Guo's group has developed a fluorescent probe 38 which is not fluorescent but can be activated 

in the presence of both H2O2 and Cu
2+

 or Fe
3+

. The activation mechanism involves H2O2-induced 

oxidative deprotection of the boronate group to produce 39 followed by a metal-coordination-

induced fluorescence enhancement to generate 40 (Figure 1-20).
73

 

 

Figure 1-20. Activation of H2O2 probe 38. 
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Most probes for H2O2 detection contain a boronate group that serves as a H2O2-responsive unit 

because the arylboronic ester selectively reacts with H2O2 under physiological condition to 

produce the corresponding phenol. Conversion of an electron-withdrawing boronate group to a 

donating hydroxyl group alters the conjugation properties of the aromatic ring, which is expected 

to be suitable for developing H2O2-activated DNA cross-linking agents, such as prodrugs of 

nitrogen mustard or quinone methide (QM). My research goal is to design, synthesize, and 

characterize arylboronate analogues that do not cross-link DNA in the absence H2O2, but can be 

selectively activated by H2O2 to release QM that directly bonds to DNA (Figure 1-21). 

 

Figure 1-21. Design arylboronic ester H2O2-selective ICL agent. 

1.4. Quinone Methide 

1.4.1. The characterization and reactivity of quinone methide 

Among the different kinds of ICL agents, quinone methide is an important electrophilic and 

transient intermediate that is widely implicated in alkylation processes. Quinone methides are a 

class of conjugated organic compounds that contain a cyclohexadiene core with a carbonyl and 

an exocyclic methylene unit. The carbonyl and methylene groups are oriented ortho, meta or para 

to each other leading to three types of QMs: o-QM, m-QM and p-QM (Figure 1-22). o-QM and 

p-QM are the most common isomers, due to the direct orbital interaction between the oxygen and 

methylene carbon. Such interaction does not exist in m-QM. 
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Figure 1-22. o-, m- and p-quinone methide and nucleophilic addition. 

o-QM is a highly polarized intermediate in which the exocyclic methylene shows strong positive 

charge density. Thus the exocyclic methylene of o-QM acts as a good electrophilic center which 

readily reacts with nucleophiles. o-QM usually undergoes two kinds of reaction: 1,4-conjugate 

addition with nucleophiles to produce benzylic adducts and Diels-Alder [4+2] cycloadition 

reactions with electron-rich dienophiles to form chromane adducts (Figure 1-22). The highly 

reactive o-QMs have been widely used in organic synthesis and biological system for preparation 

of a variety of important precursors such as 2H-chromene.
74 

It has been demonstrated that QM 

can react with amino acids
39

 and proteins
75

 and inhibit the function of some enzymes. o-QMs 

have also been applied as alkylating functional groups in antitumor drugs or antibiotics. For 

example, QMs can react with the base moieties of 2’-deoxycytidine (dC), 2’-deoxyguanosine 

(dG), and 2’-deoxyadenine (dA) forming alkylated adducts. The cyclic nitrogens, exocyclic 

amino groups, and carbonyl groups in the base moieties act as nucleophiles (Figure 1-23). 

Among these, dG N7, dCN3, and dA N1 are strong nucleophiles that usually generate unstable 

adducts,
76 

while dG N1, dG N2, and dA N6 are relatively weak nucleophiles that form stable 

adducts with QM (Figure 1-24).
77 

The alkylation can take place with single stranded DNA, as 
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well as with duplex DNA. In duplex DNA, guanine is commonly the predominant target due to 

its strong nucleophiles, followed by cytosine and adenine. Thymine is inert to QMs. 

 

Figure 1-23. Nucleophiles in dC, dG and dA. 

 

Figure 1-24. Nucleoside adducts formed by o-QM. 

1.4.2. Chemical methods to produce quinone methides 

The transient intermediate QM can be generated through activation of stable quinone methide 

precursors such as benzyl substituted phenols. During the past decade, several chemical methods 

have been developed for generating QMs, such as heating,
39

 UV-irradiation,
41,42 

oxidation
78,79 

(Figure 1-25) and various biological process.
80-82 

For example, the groups of Zhou
41 

and 

Freccero
39,42

 have developed a series of photo-inducible DNA cross-linking agents that released 

QMs upon UV-irradiation. The QMs can also be generated in water from (2-hydroxybenzyl) 
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trimethylammonium iodide by heating at 80 °C under neutral conditions while the weak basic 

conditions can facilitate the QM generation.
76 

 

Figure 1-25. Photochemical, base catalyzed and fluoride induced QM generation. 

Rokita's lab developed a series of silyl-protected quinone methide precursors 40 and 41, which 

usually contain a bromide or an acetate group as the leaving group (Figure 1-26).
83,84 

These 

compounds can be activated in the presence of fluoride ion to generate QM intermediates 42, 43 

that react with the nucleophilic N7 group of guanine to form a labile adduct or the 2-amino group 

of guanine to form a stable adduct. 

 

Figure 1-26. ICL formation by silyl-protected bis(acetoxymethyl)phenol. 

QMs can also be produced from different biological enzymatic oxidation by oxidative enzymes 

including CYPs,
78,79

 tyrosinase
81

 and laccase.
81,82

 For example, tamoxifen 44, an antagonist of 

the estrogen receptor in breast tissue, is metabolized to the reactive species 4-hydroxytamoxifen 
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quinone methide 45 capable of cross-linking DNA. The metabolic pathway of tamoxifen is a 

two-step oxidation catalyzed by P450 followed by P450-mediated proton abstraction to generate 

45 (Figure 1-27).
78,79

 

 

Figure 1-27. Formation of QM by oxidation of tamoxifen. 

Acolbifene 46 is also a QM prodrug, which belongs to the fourth-generation selective estrogen 

receptor modulator (SERM) class. It is the most potent antiestrogen in terms of inhibition of 

estrogen receptor 1 (ERα) and estrogen receptor 2 (ERβ). Acolbifene can form two kinds of 

quinone methide intermediates through enzymatic oxidation by tyrosinase.
80

 Oxidation of the 

methyl group leads to formation of the classic acolbifene quinone methide 48. Another metabolic 

pathway involves stepwise oxidation of two phenol groups yielding a diquinone methide 47 

(Figure 1-28). 
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Figure 1-28. Formation of diquinone methide and classical acolbifene quinone methide by 

enzymatic oxidation.
80

 

More recently, Greenberg's lab observed that the phenyl selenide derivatives of thymidine and 

2’-deoxycidine can be activated by sodium periodate (NaIO4) to form methide derivatives that 

efficiently alkylate DNA.
85-87 

Encouraged by this work, Zhou and coworkers designed and 

synthesized biphenyl selenide precursor 49, which induced efficient DNA ICL formation via QM 

upon treatment with sodium periodate (NaIO4) (Figure 1-29).
88

 Compound 49 produced 80% of 

DNA cross-linking at 10 𝜇M, which is more efficient than other phenyl selenides.
88 

Similar 

trends in ICL formation were observed when using Rose Bengal as a singlet oxygen sensitizer.
86

 

However, most of the reported fluoride or redox generation protocols require chemical additives 

for the in situ activation of the QM. This feature increases the complexity of the application of 

QMs directly in vivo. The H2O2-induced QM precursors have the advantage that H2O2 

oxidization is bioorthoganol and H2O2 is bio available. These properties make it more attractive 

for in vivo application. 



 
 

26 

 

Figure 1-29. Formation of biquinone methide by oxidation of biphenyl selenide. 
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Chapter 2. Synthesis and Biological Investigation of H2O2-Inducible DNA Cross-Linking 

Agents 

2.1. Introduction 

DNA cross-linking agents lead to covalent binding between two complementary strands, which 

prevents separation of DNA double strands, thus inhibiting DNA transcription and replication.
1
 

Some ICL agents, such as nitrogen mustard derivatives, have been widely used in cancer 

treatment.
2 

However, most existing cross-linking agents showed severe host toxicity due to the 

poor selectivity towards cancer cells. One novel approach to improve the selectivity of ICL 

agents toward cancer cells would be development of chemical agents that can be activated only 

under tumor-specific condition to cross-link DNA. Several chemical methods have been 

developed to generate DNA cross-linking or alkylating functional groups from a series of non-

toxic precursors, such as photo irradiation, fluoride induction, and oxidation induction.
2-9

 

However, few of them can induce DNA cross-links selectively under tumor-specific conditions. 

Our group focuses on exploiting the differences between tumor and normal cells for developing 

inducible DNA cross-linking agents that are only toxic to tumor cells.  

Comparing with normal cells, cancer cells contain higher level of reactive oxygen species (ROS), 

such as hydroxyl radical (OH·), superoxide radical anions (O2·
-
), and hydrogen peroxide, which 

is one of the exclusive features of cancer cells caused by the increased active metabolism.
10-11 

Among different ROS, H2O2 is relatively stable with a longer half-life and higher intracellular 

concentration.
12 

It can serve as an ideal candidate for developing H2O2-inducible ICL agents. 

Such agents should contain a H2O2-responsive trigger that can react selectively with H2O2 to 

release ICL agents. It is well-known that reaction of arylboronic esters with H2O2 generates 
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phenols.
13 

Such a reaction has been used to develop probes for H2O2 detection. Thus, the 

aryboronic ester or acid is an ideal trigger unit for developing H2O2-inducible ICL agents. 

Recently, our group has developed a series of H2O2-inducible nitrogen mustard prodrugs by 

using aryboronates or boronic acids as a trigger unit.
14 

These prodrugs can be activated in the 

presence of H2O2 to release nitrogen mustards which directly cross-link DNA at the N7 of 

guanine (Scheme 2-1). DNA ICL assay indicated that these novel prodrugs showed good activity 

and selectivity toward H2O2 (Figure 2-1 A). Furthermore, they selectively inhibit cancer cell 

growth but normal cells were less affected (Figure 2-1 B). These results demonstrated that the 

arylbronates can effectively mask the cytotoxicity of nitrogen mustards and be activated 

selectively by H2O2.
14

 

 

Scheme 2-1. ICL formation induced by arylboronates upon H2O2 activation. 
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Figure 2-1. A. H2O2 selectivity of ICL formation. B. Cytotoxicity toward different cancer cell 

lines (gray bar: control). 

However, therapeutic utility of H2O2-activated prodrugs would require an efficient trigger that 

can be coupled with multiple potent effectors to maximize the ROS-inducible cytotoxicity. 

Therefore, my first research topic is to design and synthesize arylboronic ester derivatives that 

can be activated selectively and efficiently by H2O2 to release bisquinone methides directly 

cross-linking DNA. 

2.2. Arylboronic esters as H2O2-inducible ICL agents 

2.2.1. Synthesis of 1a,b 

The arylboronic ester 2a,b and 4a,b and the biarylboronic ester 3a,b were synthesized as 

previously described (Scheme 2-2).
15 

Compound 1a was synthesized starting from 2-bromo-m-

xylene (1-s) (Scheme 2-3). Palladium-catalyzed borylation of 1-s form the boronated 

intermediate 1-1, which reacted with N-bromosuccinimide (NBS) through a radical pathway by 

using azobisisobutyronitrile (AIBN) as catalyst to provide the brominated analogue 1a. 1a was 

converted to quaternization product 1b by using trimethylamine in acetonitrile (CH3CN) in 

nearly quantitative yield (Scheme 2-3).  
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Scheme 2-2. The structures of 1-4. 

 

Scheme 2-3. Synthesis of 1a,b. 

2.2.2. The reactivity of 1-4 toward DNA 

Having successfully synthesized compounds 1-4, their DNA cross-linking ability was 

investigated by allowing them to react with 49-mer DNA duplex 5 (Scheme 2-4) in a phosphate 

buffer (pH 8.0) at 37 °C. Duplex 5 is part of a p53 gene which is often mutated in more than 50% 

human cancers such as breast cancer. It was 
32

P-labeled at 5'-end in 5a strand by using Gamma 

32
P ATP ([γ-

32
P] ATP) and T4 Polynucleotide Kinase (T4 PNK). (Figure 2-2) 
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Scheme 2-4. DNA duplex 5.  

 

Figure 2-2. 5'-end oligonucleotide labeling reaction. 

The ICL formation and yields were analyzed via denaturing polyacrylamide gel electrophoresis 

(PAGE). The cross-linking product and single strand DNA can be distinguished by the PAGE in 

which the cross-linked DNA migrates slower due to the higher molecular weight. Using 

phosphorimage analysis (Image Quant 5.2), the 
32

P-labeled single stranded 

oligodeoxyribonucleotides (ODN) and the ICL product show different bands on the image plate. 

When compounds 1a,b and DNA duplex 5 were incubated at 37 
o
C in the presence of H2O2 for 

24 hours, efficient ICL formation was observed with bromide 1a (cross-linking yield 25% with 2 

mM 1a) but not with the corresponding quaternary ammonia salt 1b (0%) (Figure 2-3).  
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Figure 2-3. H2O2-induced DNA ICL formation by 1a. Compound 1a,b was incubated with 

duplex 5 at 37 
o
C for 24 h in the presence of H2O2. 

Having confirmed H2O2-induced ICL formation by 1a, we optimized the ICL reaction conditions 

for further investigation. The cross-linking efficiency of 1a depended on its concentrations, the 

compound/H2O2 ratios, and the pH of the buffer solution. The best compound/H2O2 ratios were 

1:1. The cross-linking yield increased as the concentration of 1a increasing (Figure 2-4). 

However, 1a could not dissolve completely in the reaction mixture if the concentration is higher 

than 2 mM and the resulting ICL yield did not increase obviously. So 2 mM of drug was used for 

further study. In addition, cross-linking yields for 1a were higher under basic conditions than 

acidic conditions (Figure 2-5), because the weak basic condition facilitated the reaction between 

arylboronic ester with hydrogen peroxide.
13,14,16 

Thus, we chose weak basic buffer solution (pH 8) 

for further investigation. 

 

Figure 2-4. Concentration dependence of ICL formation by 1a. Compound 1a was incubated 

with duplex 5 at 37 
o
C for 24 h in the presence of H2O2. 
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Figure 2-5. pH dependence of ICL formation by 1a. Compound 1a was incubated with duplex 5 

at 24 
o
C for 48 h in the presence of H2O2. 

Using the optimized ICL reaction conditions, the cross-linking abilities of 2a,b,3a,b, and 4a,b 

were investigated to further determine the structure and leaving group effect on the ICL 

formation. Similar to 1a which generated 25% cross-linking yield at 2 mM concentration, the 

bromides 2a (cross-linking yield 24%) and 3a (9%) (Figure 2-6, lanes 4 and 5) led to efficient 

DNA ICL formation. However, DNA cross-linking was not observed with the quaternary 

ammonia salts 2b and 3b (Figure 2-6, lanes 8 and 9). These results demonstrated that bromine is 

a better leaving group for DNA cross-linking than the trimethylamine. 

 

Figure 2-6. H2O2-induced DNA ICL formation by compounds 1-4. Lane 1: DNA only (cross-

linking yield 0%); lane 2: DNA with 100 M H2O2 (0%); lane 3: 2 mM 1a (25%); lane 4: 2 mM 

2a (24%); lane 5: 2 mM 3a (9%); lane 6: 2 mM 4a (3.5%); lane 7: 2 mM 1b (0%); lane 8: 2 mM 



 
 

43 

2b (0%); lane 9: 2 mM 3b (0%); lane 10: 2 mM 4b (23%); lane 11: 2 mM 4c (33.7%); lane 12: 

DNA marker; [H2O2] = 2 mM for 1-2 and 4 mM for 3-4. Reaction mixture was incubated at 37 

o
C for 48 h. 

Different from 1-3, the quaternary ammonia salt 4b showed a higher cross-linking yield (23%) 

(Figure 2-6, lanes 10) than the corresponding bromide 4a (3.5%) (Figure 2-5, lanes 6). Two 

factors are involved for this unusual phenomenon: the solubility issue and the presence of two 

boronate functional groups. First, compound 4b is more water soluble than 4a. We observed that 

4a precipitated out from the reaction mixture when being mixed with DNA solution. In order to 

solve the solubility issue, we synthesized compound 4c containing a mixed leaving group: Br 

and NMe3 (Scheme 2-5) and investigated its cross-linking ability. Compound 4c was able to 

dissolve in water or a mixture of H2O/CH3CN. Precipitation was not observed during the cross-

linking reaction. As we expected, compound 4c resulted in a much higher cross-linking yield 

(33.7%; Figure 2-6, lane 11) than the bromide 4a (3.5%) and the quaternary ammonia salt 4b 

(23.0%) under the same incubation conditions. These results suggested that in addition to the 

leaving groups, the water solubility also affected the cross-linking efficiency of 4a-c. Second, 

conversion of two boronate esters to two hydroxyl groups in 4b favors departure of 

trimethylamine (details are discussed in section 3.2.3). 

 

Scheme 2-5. Synthesis of 4c that contains mixed leaving groups. 
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2.2.3. The mechanism of ICL formation 

Having confirmed that compounds 1-4 can induceICL formation in the presence of H2O2, we 

investigated the reaction mechenism of ICL formation. We proposed that the arylboronic esters 

underwent oxidative cleavageby H2O2 to produce phenol intermediates, which spontaneously 

release quinone methide (QM) cross-linking DNA (Scheme 2-6).
15

 To confirm QM formation 

from 1a, we performed a QM-trapping reaction by using a large excess of ethyl vinyl ether (EVE) 

which is widely used as a trapping agent for QM. When 1a and excess EVE were incubated at 

37 °C for 24 h in the presence of H2O2, the QM trapping adduct 1a-t was produced (Scheme 2-7 

A). However, no trapping product was detected without H2O2. In the cace of 1b, the phenol 

product 1b-1 was isolated in quantitative yield (Scheme 2-7 B), which was not converted to QM 

due to the poor leving group. These results supported that QM formation is critical for DNA 

cross-linking induced by 1a. 

 

Scheme 2-6. Proposed mechanism of H2O2-induced ICL formation. 
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Scheme 2-7. QM-trapping reaction of 1a,b. (A) QM-trapping product was generated by reaction 

of 1a, H2O2, and EVE; (B) no QM-EVE adduct was generated from quaternary ammonia salt 1b. 

Similarly, QM trapping products were obtained from the reaction of 2a-4a, 4b and 4c with EVE 

(Scheme 2-8). However, the reaction of 4b and 4c with EVE was not finished in 48 h, which is 

much slower than that of 4a (3 h). This result supported that a better leaving group (e.g. bromine) 

facilitated QM formation. Among all quaternary ammonia salts 1b-4b, only 4b induced QM 

generation. This is due to that the oxidation product biphenol derivative 4b-1 contains two 

hydroxyl groups in the aromatic ring. The additional hydroxyl group is strongly donating, which 

favors QM formation (Scheme 2-9). 

 

Scheme 2-8. QM-trapping product was generated by 2-4. 
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Scheme 2-9. Proposed mechanism of H2O2-induced QM formation by 4b. 

2.2.4. Determination of cross-linking site 

In order to determine the cross-linking site, we evaluated the heating stability of purified cross-

linked products and monoalkylated single-stranded DNA. There were about 55–62% of the ICLs 

formed from 1a-4a that were stable to heating in phosphate buffer. When the isolated single 

stranded ODN and ICL products were treated with 1.0 M piperidine under heating, strong 

cleavage bands were observed with all dGs (Figure 2-7 lane 3 and 5). It is well-known that 

alkaline hydrolysis of N-7-alkylated purines occurs upon heating in piperidine (Scheme 2-

10).
17,18 

Clearly, the cross-linking reactions occurred mainly with dGs. There were around 50% 

of the ICL products that were stable upon the piperidine treatment. We proposed that the 

alkylation may also have occurred at the exocyclic amines of dG or other bases to form heat-

stable ICL adducts. In addition, similar cleavage patterns were observed with single-stranded 

DNA as the ICL products, indicating that monoalkylation or intrastrand cross-linking occurred 

(Figure 2-7 lane 5).  
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Figure 2-7. Determination of the reaction sites of 1a. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of the isolated ICL products and monoalkylated single stranded DNA 

(5a’) upon heating in piperidine or phosphate buffer. The ICL product and 5a’ were produced by 

incubation of duplex 5 with 1 mM 1a and 1 mM H2O2. 5a was radiolabeled at 5’-terminus. lane 

1: isolated monoalkylated single stranded DNA (5a’); lane 2: 5a’ was heated in phosphate buffer 

at 90 C for 30 min; lane 3: 5a’ was heated in 1.0 M piperidine at 90 C for 30 min; lane 4: the 

ICL was heated in phosphate buffer at 90 C for 30 min; lane 5: the ICL product was heated in 

1.0 M piperidine at 90 C for 30 min; lane 6: Fe·EDTA treatment of ICL; lane 7: G+A 

sequencing; lane 8: Fe·EDTA treatment of  5. 
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Scheme 2-10. Cleavage of N-7-alkylated purines upon heating in piperidine. 

To further confirm the cross-linking reaction sites, we designed and synthesized two DNA 

duplexes 6 and 7 with different sequences (Scheme 2-11). Duplex 6 is a self-complementary 

dAT strands, whereas duplex 7 contains only dCs/dTs in one strand and only dGs/dAs in the 

other. When 1a was incubated with duplexes 6 and 7 in the presence of H2O2, no DNA cross-

links were observed with duplex 6 (Figure 2-8 A), which suggests that cross-linking reactions 

did not take place with dT and dA. However, 1a could induce ICL formation when treated with 

duplex 7 (Figure 2-7 B), which means the ICL can only occur between dG and dC in duplex 7.  

 

Scheme 2-11. DNA duplex 6 and 7. 

 

Figure 2-8. ICL formation from duplex 7 induced by 1a upon H2O2 activation. A) 1a with 

duplex 6; B) 1a with duplex 7. Lane 1: DNA with 1a (2 mM) only; lane 2: DNA with H2O2 (100 

M) only; lane 3: DNA with 2 mM and H2O2. Condition: incubation at 37 
o
C for 24 h. 
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In order to acquire more detailed information about the cross-linking sites, enzymatic digestion 

assay of both isolated ICL product and monoalkylated single stranded DNA has been performed 

with snake-venom phosphodiesterase and alkaline phosphatase. The enzyme-digested nucleotide 

mixtures were purified by HPLC (Figure 2-9). A new peak with a retention time of ~7.9 min was 

observed in both single stranded DNA and ICL product. The new peak was characterized by 

liquid chromatography-mass spectrometry (LC-MS), which showed an exact mass of guanine-dC 

adduct 8. ([8+H]
+
 Calcd: 497.2, Measured:497.3) (Figure 2-10). 

 

Figure 2-9. HPLC profiles of the enzymatic analysis. (A) DNA duplex 5 only as control; (B) 1a 

treated single stranded 5a and 5b; (C) ICL products induced by 1a, obtained by digestion with 

snake venom phosphodiesterase followed by alkaline phosphatase (analyzed by reverse-phase 
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HPLC (RP-18, at 260 nm) using gradient: 0-30 min 2-20% MeOH in water, 30-35 min 20-50% 

MeOH in water, 35-42 min 50-100% MeOH in water, 42-50 min 100% MeOH in water, at a 

flow rate 1.0 mL/min). 

 

Figure 2-10. Mass spectrum of enzymatic digestion product corresponded to retention time 

about 7.9 min on HPLC chromtography.  

Compound 8 was most likely resulted from deglycosylation of the corresponding N7 adduct of 

dG (Scheme 2-12), as glyconsylic bond of positively charged N7-alkylated dG is labile to 

alkaline conditions. Several groups reported that deglycosylation occurred with the alkylated dGs 

formed by nitrogen mustards
19,20

 or quinone methides,
21 

which was confirmed by mass spectral 

analysis. Therefore, the cross-linking reactions induced by 1a are likely to occur at dGs and dCs. 

Moreover, compound 8 was obtained from isolated 1a-treated single stranded DNA, which 

indicated that there was also intrastrand cross-links formed between dGs and dCs.  
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Scheme 2-12. Deglycosylation of N7 adduct of dG. 

2.2.5. The kinetics of ICL formation 

Having studied the reactivity of 1-4 with DNA, we further investigated the reaction kinetics. At 

first, we determined the rate constants for ICL formation induced by 1a-3a, 4b, and 4c (Table 2-

1) by time course study. ICL growth followed first-order kinetics (Figure 2-11). The rate 

constants for bromides 1a-3a (kobs= 8.8-14.1 x 10
-5 

s
-1

) were 2-3 times the rate constant for 

quaternary ammonium salt 4b (kobs= 4.9 x 10
-5 

s
-1

) (Table 2-1), which demonstrated that a better 

leaving group (e.g. Br) facilitate ICL formation. 
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Figure 2-11. Kinetic rate of ICL formation from 5 upon treatment with bromides/H2O2. A. 1a at 

time points 0, 1h, 2h, 3h, 4h, 5h, 6h, 8h, 12h, 23h, 30h, 47h. [1a] = 2 mM, and [H2O2] = 1 mM. 

B. 2a at time points 0, 15’, 30’, 1h, 2h, 4h, 6h, 8h, 24h, 48h. [2a] = 2 mM, and [H2O2] = 1 mM. 

C. 3a at time points 0, 30’, 1h, 2h, 4h, 6h, 8h, 24h, 32h, 48h. [3a] = 1 mM, and [H2O2] = 1 mM. 

D. 4b at time points0, 15’, 30’, 1h, 2h, 3h, 4h, 6h, 8h, 24h, 49h, 56h, 69h. [4b] = 2 mM, and 

[H2O2] = 1 mM. E. 4c at time points 0, 1h, 2h, 3h, 5h, 7h, 9h, 20h, 24h, 28h, 49h, 56h, 69h, 79h. 

[4c] = 2 mM, and [H2O2] = 1 mM. Reaction mixtures were incubated in 37 
o
C. 

Table 2-1. Rate of ICL formation from 5 upon treatment with bromide and salts. 

compound kobs, 10
-5 

s
-1

 t 1/2,min ICL yield % 

1a 8.8  1.3 130  13 21  1.4 

2a 14.1  1.5 82  8 20  0.3 

3a 13.8  1.2 84  9 10  0.9 

4b 4.9  0.5 234  9 20  1.1 

4c 3.7  0.3 312  10 28  0.5 
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However, the cross-link yields do not correlate well with the kinetics. For example, the bromides 

1a-3a showed a larger k but a lower ICL yield than the salt 4b or 4c. One possible reason is that 

the better leaving property of –Br leads to nucelophilic substitution of bromides by water. In 

order to get more detailed imformation about the reaction, we used NMR spectroscopy to 

monitor the reaction. Because 1a-3a can not dissolve in water, we chose a mixture of DMSO and 

deuterated phosphate buffer as solvent to better simulate cross-linking reaction condition. 

Different ratio of DMSO and buffer solution were tested without addition of H2O2. We observed 

that both boronate ester and benzylic bromo group were easily hydrolyzed (Figure 2-12 B). 

Bromide hydrolysis increased as the percentage of water increasing. To ensure all compounds 

soluble in a mixture of DMSO and phosphate buffer and minimize usage of water, a mixture of 

10:1 DMSO/buffer was utilized for NMR measurement. Hydrolysis of compounds 1a-3a can be 

seen from appearance of a variety of new peaks in the region between 4.0 and 6.0 ppm. However, 

this was not observed with 4b (Figure 2-13). Meanwhile, recent studies performed by other 

group members showed that the boronate esters were easily hydrolyzed to generate (2-

(hydroxymethyl)phenyl)boronic acid derivatives, which undergo intramolecular esterification to 

form benzo[c][1,2]oxaborol-1(3H)-ol derivatives (Scheme 2-12 A) without addition of H2O2.
22 

In 

addition, bromides could also be oxidized by excess H2O2 to form 1,2-dihydroxybenzene 

derivatives (Scheme 2-12 B). Both hydrolysis and oxidization reaction of bromide analogues 

might lead to a lower yield of ICL formation. 

 

Scheme 2-13. Hydrolysis and oxidization product of bromide analogues. 
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In section 2.2.3, we proposed that mechanism of DNA cross-linking involved formation of the 

phenol intermediates followed by spontaneous release of QM, which directly cross-link DNA 

(Scheme 2-4). However, the phenol intermediates obtained from 1a-4a were too reactive to be 

isolated from the reaction mixtures, while formation of QM trapping products provided evidence 

for generation of QMs from the phenol intermediates under physiological conditions. In order to 

determine whether formation of the phenol intermediates or QM generation is the rate-

determining step for DNA cross-linking, we used NMR spectroscopy to monitor the reaction of 

these compounds with H2O2 in a mixture of DMSO and D2O (Figure 2-12 to 2-17). Considering 

that the boronate esters are easily hydrolyzed to the corresponding boronic acids, which make the 

reaction more complicated for analysis, we allowed complete hydrolysis of 1a-4a to the 

corresponding boronic acids in a DMSO/phosphate buffer (10:1) prior to the addition of H2O2. 

After that, more D2O was added to mimic the DNA cross-linking conditions. However, if the 

ratio of phosphate buffer to DMSO was more than 2:3, the boronic acids precipitated out. Finally, 

we used a mixture of phosphate buffer/DMSO (2:3) for NMR analysis.  

From disappearance of the peaks at about 5.0 ppm (peak d), we were able to figure out the 

relative rate for the phenol intermediate formation. The relative reaction rates of these 

compounds with H2O2 are in the order of 4a  4b  4c  3a > 1a > 2a (Table 2-2). The reactions 

of diboronates 4a-4c were too fast to determine the rate constant by NMR under these conditions 

(Figure 2-15 C-D, 2-16 D-E, and 2-17 D-E). The relative rates of QM formation were estimated 

by formation of the final products (peak f, its hydrolyzed compounds or peak f’, the formed free 

NMe3), which showed the following trend: 4a > 3a > 1a > 2 a  4b  4c (Table 2-2, Figure 2-

15). The kinetic data for DNA ICL formation (2a  3a > 1a > 4b  4c) (Table 2-1) showed a 

similar trend to those for QM formation but different from those for the phenol intermediates 
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formation, which suggested that QM formation is the rate-limiting step for DNA cross-linking. 

For 4c with a mixed leaving group Br and NMe3, departure of NMe3 was the rate-determining 

step which took about 40 hrs while departure of Br occurred within 3 min (Figure 2-17). 

 

Figure 2-12. 
1
H NMR analysis of 1a in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 1a 

(0.003 mmol) in DMSO without addition of D2O and H2O2. (B) 41 h in mixture of DMSO (300 

µL), D2O (20 µL), and pH8 buffer (10 µL); (C) additional 6 h after added additional DMSO (60 

µL) and D2O (210 µL) in B; (D) 3 min after addition of H2O2 (1.5 equiv.) in C; (E) 15 min after 

addition of H2O2; (F) 1.5 h after addition of H2O2. 
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Figure 2-13. 
1
H NMR analysis of 2a in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 2a 

(0.003 mmol) in DMSO without addition of D2O and H2O2. (B) 3 h in mixture of DMSO (300 

µL), D2O (20 µL), and pH8 buffer (10 µL); (C) 17 h in mixture of DMSO (300 µL), D2O (20 

µL), and pH8 buffer (10µL); (D) additional 1 h after added additional DMSO (60 µL) and D2O 

(210 µL) in C; (E) 30 min after addition of H2O2 (1.5 equiv.) in D; (F) 2.5 h after addition of 

H2O2. 
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Figure 2-14. 
1
H NMR analysis of 3a in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 3a 

(0.003 mmol) in DMSO only; (B) 3 h in mixture of DMSO (300 µL), D2O (20 µL), and pH8 

buffer (10 µL); (C) 16 h in mixture of DMSO (300 µL), D2O (20 µL), and pH8 buffer (10 µL); 

(D) additional 30 min after added additional DMSO (60 µL) and D2O (210 µL) in C; (E) 3 min 

after addition of H2O2 (3 equiv.) in D; (F) 10 min after addition of H2O2; (G) 30 min after 

addition of H2O2. 
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Figure 2-15. 
1
H NMR analysis of 4a in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 4a 

(0.003 mmol) in DMSO only; (B) 3 h in mixture of DMSO (300 µL), D2O (20 µL), and pH8 

buffer (10 µL); (C) additional 3 h after added additional DMSO (60 µL) and D2O (210 µL) in B; 

(D) 3 min after addition of H2O2 (3 equiv.) in C; (E) 5 min after addition of H2O2. 
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Figure 2-16. 
1
H NMR analysis of 4b in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 4b 

(0.003 mmol) in DMSO only; (B) 10 min in mixture of DMSO (300 µL), D2O (20 µL), and pH8 

buffer (10 µL); (C) 2.5 h in mixture of DMSO (300 µL), D2O (20 µL), and pH8 buffer (10 µL); 

(D) additional 12 h after added additional DMSO (60 µL) and D2O (210 µL) in C; (E) 3 min 

after addition of H2O2 (3 equiv.) in D; (F) 30 m after addition of H2O2; (G) 4 h after addition of 

H2O2; (H) 16 h after addition of H2O2; (I) 40 h after addition of H2O2; (J) Trimethyl amine 

(NMe3) in ethanol with addition of 1 M HCl (10 µL). 
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Figure 2-17. 
1
H NMR analysis of 4c in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 4c 

(0.003 mmol) in DMSO only; (B) 30 min in mixture of DMSO (300 µL), D2O (20 µL), and pH8 

buffer (10 µL); (C) additional 30 min after added additional DMSO (60 µL) and D2O (210 µL) 

in B; (D) additional 3 h after added additional DMSO (60 µL) and D2O (210 µL) in C; (E) 3 min 

after addition of H2O2 (3 equiv.) in D; (F) 30 min after addition of H2O2; (G) 3 h after addition of 

H2O2; (H) 18 h after addition of H2O2; (I) 50 h after addition of H2O2; (J) Trimethyl amine 

(NMe3) in ethanol with addition of 1 M HCl (10 µL). 
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Figure 2-18. Rate constant for the disappearance of starting material (A-C, G and H) and the 

formation of hydrolyzed product (D-F) in NMR analysis with 360 L DMSO and 240 L pH 8 

buffer: A. 1a (0.003 mmol) with H2O2 (1.5 equiv) at time points 5’, 15’, 20’, 25’, 30’, 40’, 60’. 

B. 2a (0.003 mmol) with H2O2 (1.5 equiv) at time points 5’, 7.5’, 10’, 15’, 20’, 25’, 30’, 40’, 50’, 

60’. C. 3a (0.003 mmol) with H2O2 (3 equiv) at time points 5’, 7.5’, 10’, 15’, 20’, 25’, 30’. D. 1a 

(0.003 mmol) with H2O2 (1.5 equiv) at time points 5’, 15’, 20’, 25’, 30’, 40’, 60’. E. 2a (0.003 

mmol) with H2O2 (1.5 equiv) at time points 10’, 15’, 20’, 25’, 30’, 40’, 50’, 60’. F. 3a (0.003 

mmol) with H2O2 (3 equiv) at time points 5’, 7.5’, 15’, 20’, 25’, 30’. G. 4b (0.003 mmol) with 

H2O2 (1.5 equiv) at time points 0.5h, 1h, 2h, 3h, 4h. H. 4c (0.003 mmol) with H2O2 (3 equiv) at 

time points 0 h, 0.25 h, 0.5 h, 1 h, 2 h, 3 h. 

Table 2-2. Rate of starting material disappearance and QM formation. 

Compounds Disappearance of starting materials QM formation 

 Time of completion 

(min) 

kobs 

(10
-5 

s
-1

) 

Time of completion 

(min) 

kobs 

(10
-5 

s
-1

) 

1a 60 39.0 ± 1.5 60 9.5 ± 0.2 

2a 90 36.7 ± 3.8 90 12.2 ± 1.1 

3a 30 77.0 ± 2.1 30 20.0 ± 4.0 

4a < 3 n.d. < 3 min n.d. 

4b < 3 n.d. ~3000 4.6 ± 0.3 

4c < 3 n.d. ~2400 4.8 ± 0.5 

a
 n.d.: not determined 
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Among four bromide analogues, 1a and 2a showed ICL yields that were 3 times the ICL yield 

from 3a and 9 times that from 4a. Compound 4c with a mixed leaving group -Br and NMe3 

proved to be the most efficient for inducing ICL formation. We propose another two possible 

explanations for the greater cross-linking efficiency of 1a, 2a, and 4c: (1) the better water 

solubility and (2) stepwise generation of bisQMs from the corresponding phenol derivatives. 

Compounds 1a, 2a, and 4c were much more soluble than 3a and 4a under the reaction 

conditions. Furthermore, the two quinone methides were generated from 1a or 2a stepwise. Once 

the first QM reacted with one DNA strand, the stepwise formed second QM would have better 

interaction with the nucleophilic centers in the complementary DNA strand, which resulted in 

more efficient DNA ICL formation. For 4c, fast formation of the first QM plays an important 

role for its higher ICL yield than compound 4b. In contrast, the reaction of 3a likely generated 

two methide groups simultaneously, in which case only molecules that were already well-

positioned between two nucleophilic centers of two DNA strands would generate DNA ICLs, 

and the ICL yield would drop if either of the two methide groups reacted with H2O prior to 

addition of a nucleophile from the DNA duplex.
23

 However, we cannot exclude other 

explanations for the greater cross-linking efficiency of 1a, 2a, and 4c, such as DNA sequence, 

molecular structure, or distance between cross-linking sites. 

2.3. Cytotoxicity towards cancer cells and future work 

Having established that 1a could be activated by H2O2 to release QM cross-linking DNA, the 

ability of these compounds to inhibit cancer cell growth was evaluated against 60 human cancer 

cells lines by National Cancer Institute DTP program. Single dose screening with 10 μM drugs 

showed that 1a induced significant growth inhibition of specific cancer cell lines. For example, 

1a showed about 90% inhibition toward HL-60(TB) cells (Leukemia cells) and 67% inhibition 
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toward COLO 205 (Colon Cancer cells). However, the cytotoxicity of 1a toward other cell lines 

1a is very limited. (Figure 2-19). This result encouraged us to use 1a as a lead compound for 

designing new agents to improve cross-linking efficiency as well as cyctotoxicity towards cancer 

cells. 

 

Figure 2-19. Effect of 1a on cancer cells. 

In conclusion, novel aryboronates (1-4) have been developed as H2O2-inducible DNA ICL 

agents, which provided an effective way to release DNA cross-linking functional group QM 

selectively in the presence of H2O2. The benzylic leaving group and the aromatic core structure 

significantly affected the DNA cross-linking ability of the arylboronates. The mechanism of ICL 

formation induced by these aryboronates involves generation of phenol intermediates that 

directly produce QMs capable of cross-linking DNA. The QM formation is the rate-determining 

step for DNA cross-linking. Bromine, the better of the two leaving groups, facilitates the 

efficient generation of QMs. 

2.4. Experimental Section 

General Methods. All chemicals were commercially purchased and used without further 

purification. Thin layer chromatography (TLC) was carried out on precoated silica gel plates and 
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visualized under UV light. Oligonucleotides were synthesized via standard automated DNA 

synthesis techniques. Deprotection of the synthesized DNA was carried out under mild 

deprotection conditions (28% aq. NH3, room temperature, overnight). Oligonucleotides were 

purified by 20% denaturing polyacrylamide gel electrophoresis. Radiolabeling was carried out 

according to the standard protocols.
24

 Quantification of radiolabeled oligonucleotides was carried 

out using a Molecular Dynamics Phosphorimager equipped with ImageQuant Version 5.1 

software. Enzymatic digestion products were purified with a HPLC, and mass spectra were 

available on an electron spray injection mass Spectrometer (ESI). 
1
H, 

13
C NMR spectra were 

collected on a 300 MHz and 500 MHz FT-NMR spectrometer. High resolution mass 

spectrometry was carried out on an atmospheric-pressure chemical ionization (APCI) TOF mass 

spectrometer. 

2-(2,6-Bismethylphenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxabo-rolane (1-1). 2-Bromo-1,3-

dimethylbenzene (0.74 g, 4 mmol), bis(pinacolato)diboron (1.53 g, 6 mmol), KOAc (1.18 g, 12 

mmol), and PdCl2(dppf) (98 mg, 0.12 mmol) were dissolved in DMF (40 mL) under argon 

atmosphere. The mixture was heated at 85 
o
C for 48 h and cooled to room temperature. Then, 

water (100 mL) was added and the mixture was extracted with CH2Cl2 (3 x 50 mL). The 

combined organic layer was washed with water and brine dried over anhydrous Na2SO4, 

filtrated, and the solvent was evaporated. The crude product was purified through column 

chromatography with 0-50% EtOAc in hexane to provide 1-1 as colorless oil (0.74 g, 80%). 
1
H 

NMR (300 MHz, CDCl3)  7.13 (t, J = 7.0 Hz, 1H), 6.95 (d, J = 7.0 Hz, 2H), 2.42 (s, 6H), 1.41 

(s, 12H). 
13

C NMR(500 MHz, CDCl3) δ 141.6, 129.1, 126.4, 83.4, 24.9, 22.2. The NMR spectra 

were consistent with literature value.
25

 

2-(2,6-Bisbromomethylphenyl)-4,4,5,5-tetramethyl-[1,3,2]d-ioxaborolane (1a). Compound 1-
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1 (0.83 g, 3.6 mmol) was dissolved in CH3CN (55 mL), and NBS (1.6 g, 9 mmol) and AIBN 

(62.9 mg) were added. The mixture was refluxed at 90 
o
C for 3 h. Then the mixture was 

concentrated and dissolved in DCM (100 mL). The organic phase was washed with H2O (3 x 50 

mL) and dried with anhydrous Na2SO4. The solution was evaporated and the residue was 

subjected to column chromatography on silica gel with 0-50% DCM in hexane to give 1a as a 

white solid (0.7 g, 50 %): mp 159-163 
o
C; 

1
H NMR (300 MHz, CDCl3)  7.31 (m, 3H), 4.84 (s, 

4H), 1.49 (s, 12H). 
13

C NMR(500 MHz, CDCl3) δ 144.4, 130.8, 130.0, 84.4, 34.0, 25.2; 

HRMS(EI) m/z Calcd for C14H19BBr2O2 [M]
+
 387.9845, found 387.9829. The NMR spectra were 

consistent with literature value.
25 

1,1’-(2-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-1,3-henylene)bis(N,N,N-

trimethylmethanaminium) bromide (1b). Compound 1a (0.182 g, 0.47 mmol) was suspended 

in CH3CN (10 mL), and 4.2 M trimethylamine (0.34 mL, 1.41 mmol) in ethanol was added 

dropwise with stirring. The reaction mixture was stirred at r.t. for 12 h and concentrated resulting 

in 1b as a white solid (0.22 g, 95%): mp 250-256 
o
C; 

1
H NMR (300 MHz, D2O):  7.73-7.70 (m, 

3H), 4.79 (s, 4H), 3.05 (s, 18H), 1.41 (s, 12H). 
13

C NMR (500 MHz, DMSO): δ 136.3, 135.0, 

131.3, 85.9, 68.1, 52.9, 25.3; HRMS(ESI): m/z Calcd for C20H37BBr2N2O2 [(M-2Br)/2]
+
 

174.1474, found 174.1460. 

1-(4-(bromomethyl)-2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxa-borolan-2-yl)phenyl)-N,N,N-

trimethylmethanaminium bromide (4c). Bromide 4a (50 mg, 0.1 mmol) was dissolved in 

CH3CN (2 mL), and 4.2 M trimethylamine (24 L, 0.1 mmol) in ethanol was added dropwise 

while stirring. The reaction mixture was concentrated after 24 h at room temperature. The 

residue was purified by column chromatography with 0-15% methanol in DCM to afford the 

compound 4c as white solid (7 mg, 12%): mp 216-220 
o
C; 

1
H NMR (300 MHz, CDCl3)  8.02 
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(s, 1H), 7.87 (s, 1H), 4.99 (s, 2H), 4.91 (s, 2H), 3.46 (s, 9H), 1.39 (s, 24H); 
13

C NMR (500 MHz, 

CDCl3) δ 146.3, 140.6, 139.2, 131.8, 85.1, 84.7,68.3, 53.1, 32.3, 25.0, 24.9; HRMS (ESI) m/z 

Calcd for C23H39B2Br2NO4 [M-Br]
+
 494.2243, found 494.2247. 

1,1'-(2-Hydroxy-1,3-phenylene)bis(N,N,N-trimethylmethan -aminium) bromide (1b-1). A 

solution of 1b (50 mg) in a mixture of H2O (3 mL), 1 M potassium phosphate buffer (52 µL, pH 

8), and H2O2 (1.9 equivalent of 1b) was incubated at 37 
o
C for 3 h, then rinsed with ethyl acetate 

(3  5 mL) and DCM (3  5 mL). The aqueous phase was dried under vacuum yielding 10b as 

white solid quantitatively: mp 214-218 
o
C; 

1
H NMR (500 MHz, D2O):  7.32 (d, J = 7.5 Hz, 2H), 

6.56 (t, J = 7.5 Hz, 1H), 4.36 (s, 4H), 2.96 (s, 18H). 
13

C NMR (500 MHz, DMSO): δ 137.3, 

118.2, 112.8, 65.6, 52.2; HRMS(ESI): m/z Calcd for C14H26Br2N2O [(M-2Br)/2]
+
 119.1017, 

found 119.1022. 

QM Trapping Assay. General Procedure. A solution of bromides 1a-4a (50 mg) in a mixture 

of CH3CN (3 mL) and 1 M potassium phosphate buffer (52 µL, pH 8) was incubated at 37 
o
C for 

30 min with excess ethyl vinyl ether (EVE). Then H2O2 (1.9 equivalent of bromides) was added 

to initiate the reaction. The reaction mixture was stirred at 37 
o
C for 24 h, then evaporated. Water 

(2 mL) was added to the residue, and extracted with ethyl acetate (3  5 mL). The organic phase 

was combined, dried over anhydrous Na2SO4, and evaporated. The crude product was purified 

through column chromatography with 0-50% EtOAc in hexane to provide QM-EVE adducts 1a-t 

to 4a-t. 

(2-Ethoxychroman-8-yl)methanol (1a-t). Colorless oil, 16% yield (4.9 mg). 
1
H NMR (300 

MHz, CDCl3):  7.20-6.82 (m, 3H), 5.35 (s, 1H), 4.78-4.58 (m, 2H), 3.98-3.84 (m, 1H), 3.72-

3.58 (m, 1H), 3.05-2.88 (m, 1H), 2.68-2.56 (m, 1H), 2.28 (s, 1H), 2.12-1.92 (m, 2H), 1.21 (t, J = 

7.2 Hz, 3H). 
13

C NMR (500 MHz, CDCl3): δ 150.1, 128.9, 128.5, 126.5, 122.6, 120.4, 97.2, 63.9, 
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62.0, 26.5, 20.5, 15.1; HRMS (APCI): m/z Calcd for C12H16O3 [M-H]
+
 207.1021, found 

207.1025. 

(2-Ethoxychroman-6-yl)methanol (2a-t). Colorless oil, 11% yield (3.4 mg). 
1
H NMR (300 

MHz, CDCl3):  7.16-7.08 (m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 5.27 (s, 1H), 4.61 (s, 2H), 3.98-

3.84 (m, 1H), 3.72-3.58 (m, 1H), 3.08-2.92 (m, 1H), 2.72-2.58 (m, 1H), 2.12-1.92 (m, 2H), 1.61 

(br, 1H), 1.21 (t, J = 7.2 Hz, 3H). 
13

C NMR (500 MHz, CDCl3): δ 151.9, 133.0, 128.5, 126.5, 

122.7, 117.1, 97.0, 65.3, 63.7, 26.5, 20.5, 15.1; HRMS (APCI): m/z Calcd for C12H16O3 [M-H]
+
 

207.1021, found 207.1023. 

2,7-Diethoxy-2,3,4,7,8,9-hexahydropyrano[2,3-g]chromene (3a-t). Colorless oil, 21% yield 

(8.8 mg). 
1
H NMR (300 MHz, CDCl3):  6.54 (s, 2H) 5.21 (s, 2H), 3.96-3.86 (m, 2H), 3.72-3.58 

(m, 2H), 3.04-2.90 (m, 2H), 2.64-2.54 (m, 2H), 2.08-1.90 (m, 4H), 1.21 (t, J = 7.2 Hz, 6H). 
13

C 

NMR (500 MHz, CDCl3): δ 145.8, 121.5, 116.5, 96.8, 63.5, 26.7, 20.5, 15.1; HRMS (APCI): m/z 

Calcd for C16H22O4 [M+NH4]
+
 296.1862, found 296.1861. 

2,2’-Diethoxy-6,6’-bichroman (4a-t). Colorless oil, 26% yield (13.8 mg). 
1
H NMR (300 MHz, 

CDCl3):  7.34-7.24 (m, 4H), 6.87 (d, 2H, J = 8.1 Hz), 5.30 (s, 2H), 3.98-3.88 (m, 2H), 3.72-3.62 

(m, 2H), 3.08-2.96 (m, 2H), 2.74-2.62 (m, 2H), 2.08-1.92 (m, 4H), 1.21 (t, J = 7.2 Hz, 6H). 
13

C 

NMR (500 MHz, CDCl3): δ 151.3, 133.7, 127.6, 125.7, 122.7, 117.2, 97.0, 63.7, 26.6, 20.7, 15.2; 

HRMS (APCI): m/z Calcd for C22H26O4 [M+NH4]
+
 372.2175, found 372.2178. 

Interstrand cross-link formation and kinetics study with duplex DNA. The 
32

P-labelled 

oligonucleotide (0.5 μM) was annealed with 1.5 equiv of the complementary strand by heating to 

65 
o
C for 3 min in a buffer of 10 mM potassium phosphate (pH 7) and 100 mM NaCl, followed 

by slow-cooling to room temperature overnight. The 
32

P-labeled oligonucleotide duplex (0.5 μM, 
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2 μL) was mixed with 1 M NaCl (2 μL), 100 mM potassium phosphate (2 μL, pH 8.0), 10 mM 

H2O2 (2 μL), and compounds 1b-4b (concentration range: 10 M to 7 mM) and appropriate 

amount of autoclaved distilled water to give a final volume of 20 μL. For Bromides 1a-4a, 6 l 

CH3CN was added in reaction mixture to facilitate their dissolution. The reaction was incubated 

at 37 ºC for 24 h and quenched by an equal volume of 90% formamide loading buffer, then 

subjected to 20% denaturing polyacrylamide gel analysis. For kinetics study, aliquots (final 

concentration: 50 nM 
32

P-labeled oligonucleotide duplex, 100 mM NaCl, 10 mM potassium 

phosphate, 1 mM H2O2, 2 mM of 1-4) were taken at the prescribed times and immediately 

quenched by 90% formamide loading buffer, and stored at -20 
o
C until subjecting to 20% 

denaturing PAGE analysis. 

Enzyme digestion of cross-linked oligonucleotides. Interstrand cross-linked oligonucleotide 

(38 nmol) was dissolved in 0.1 M Tris-HCl buffer, pH 8.0 (300 L) and snake-venom 

phosphodiesterase (8.0 L, 0.34 U) in a buffer of 110 mM Tris-HCl, pH 8.9, 110 mM NaCl, 15 

mM MgCl2, and 50% glycerol was added. The mixture was incubated at 37 °C for 1 h. Then, 

alkaline phosphatase (8.0 L, 80 U) in 16 L alkaline phosphatase buffer (100 mM NaCl, 50 

mM Tris-HCl, 10 mM MgCl2 and 1 mM dithiothreitol) was added. The reaction mixture was 

incubated at 37 C for another hour. The digested products were passed through a Microcon 

cellulose filter (10,000 molecular cut off, Amicon Inc.) by centrifugation at 15,000 RPM. The 

filtrate was collected, lyophilized, redissolved in H2O (500 L), and analyzed by reversed-phase 

HPLC (RP-18, at 260 nm) using the following gradient: 0-30 min 2-20% MeOH in water, 30-35 

min 20-50% MeOH in water, 35-42 min 50-0% MeOH in water, 42-50 min 0% MeOH in water, 

at a flow rate 1.0 mL/min. 
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Stability study of ICL product formed with DNA Duplex. After the cross-linking reaction, the 

reaction mixtures (0.35 μM DNA duplex, 20 μL) were co-precipitated with calf thymus DNA 

(2.5 mg/mL, 5 μL) and NaOAc (3 M, 5 μL) in the presence of EtOH (90 μL) at -80
 o
C for 30 

min, followed by centrifuging for 5 min at 15000 rmp. The supernatant was removed, and the 

pellet was washed with cold 75% EtOH and lyophilized for 30 min in a CentrivapConcentrator 

of LABCONCO at 37 °C. The dried DNA fragments were dissolved in H2O (30 μL) and divided 

into three portions. One portion (10 μL) was incubated with piperidine (2 M, 10 μL) at 90 °C for 

30 min, and the second portion (10 μL) was incubated with 0.1 M NaCl and 10 mM potassium 

phosphate buffer (pH 8, 10 μL) under the same conditions, and the third portion was used as 

control sample. The samples were subjected to electrophoresis on a 20% denaturing 

polyacrylamide gel. 

Hydroxyl Radical Reaction (Fe·EDTA Reaction). Fe(II)·EDTA cleavage reactions of 
32

P-

labeled oligonucleotide (0.1 μM) were performed in a buffer containing 50 μM (NH4)2Fe(SO4)2, 

100 μM EDTA, 5 mM sodium ascorbate, 0.5 M NaCl, 50 mM sodiumphosphate (pH 7.2), and 1 

mM H2O2 for 3 min at room temperature (total substrate volume 20 μL) and then quenched with 

100 mM thiourea (10 μL). Samples were lyophilized and incubated with 1 M piperidine (20 μL) 

at 90 °C for 30 min. The mixture was lyophilized again, dissolved in 20 μL H2O: 90% 

formamide loading buffer (1:1), and subjected to 20% denaturing PAGE analysis. 
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2.6. Appendices A: Characterization of Compounds: 

 

Figure 2-6-1. 
1
H NMR spectra of compound 1a. 

 

Figure 2-6-2. 
13

C NMR spectra of compound 1a. 
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Figure 2-6-3. 
1
H NMR spectra of compound 1b. 

 

Figure 2-6-4. 
13

C NMR spectra of compound 1b. 
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Figure 2-6-5. 
1
H NMR spectra of compound 4c. 

 

Figure 2-6-6. 
13

C NMR spectra of compound 4c. 
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Figure 2-6-7. 
1
H NMR spectra of compound 1b-1. 

 

Figure 2-6-8. 
13

C NMR spectra of compound 1b-1. 
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Figure 2-6-9. 
1
H NMR spectra of compound 1a-t. 

 

Figure 2-6-10. 
13

C NMR spectra of compound 1a-t. 
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Chapter 3. Optimization of H2O2-Activated Quinone Methide Prodrugs to Improve DNA 

Cross-Linking Efficiency and Cytotoxicity towards Cancer Cells 

3.1. Introduction  

Previous results showed that the arylboronates selectively reacted with H2O2 and generated the 

phenol intermediate which directly produced QM capable of cross-linking DNA. The benzylic 

leaving group and the aromatic structure significantly affected the DNA cross-linking efficiency 

of the arylboronates. Among the arylboronates that have been developed, compound 1a (Scheme 

3-1 a) effectively inhibited cancer cell growth.
1,2 

In this work, we use 1a as a lead compound for 

further optimization to improve the potency of the H2O2-activated quinone methide prodrugs. 

 

Scheme 3-1. Sturcture of 1a and the factors influence QM formation. 

Rokita's group have shown that formation of QMs from fluoride-cleavable precursors are 

strongly dependent on the leaving groups attached to the benzylic position.
3,4

 They have also 

studied the reversible generation of some substituted o-QMs from conventional precursors and 

their reactivities in conjugate addition reactions. The results indicated that electron-donating 

groups greatly facilitated QM generation and regeneration, whereas electron-withdrawing 

substituents strongly suppress this process.
4 

Recently, Peng’s group has found that several factors 

influenced the reactivity of the arylboronates with H2O2 and subsequent QM formation, such as 

the leaving group L, the aromatic substituent R, and the core structure (Scheme 3-1 b). The 

electron-withdrawing groups at the aromatic ring facilitated formation of phenol products from 
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the aryboronates, whereas electron-donating groups slowed down this process. On the contrary, 

the electron-donating groups favor formation of QMs.
5 

A combination of an electron-

withdrawing aromatic group and a poor leaving group inhibited QM formation, while a good 

leaving group and/or a strong donating group are beneficial for QM generation (Scheme 3-2).  

 

Scheme 3-2. Effect of substituents on QM formation. 

Several leaving groups, such as Br, OAc, NMe3
+
, NMe2, OH and SCH2CH2OH have been 

introduced in different QM precursors. Among these well-studied leaving groups, the acetate 

group was successfully used in fluride-induced or photo-induced QM formation.
 4,6,7

 Inspired by 

these findings, we modify 1a with different leaving groups (e.g. Br, OAc) and different electron-

donating groups (e.g. OMe and OH) at the benzene ring (Scheme 3-3). Thus, we designed and 

synthesized compounds 1c and 9-12 and conducted a more detailed investigation on the effects 

of the electron-donating groups and benzylic leaving groups on the H2O2-induced DNA cross-

linking ability and in vitro cytotoxicity of these arylboronic esters. 
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Scheme 3-3. The structures of 9-12. 

3.2. Modification of 1a to improve DNA cross-linking efficiency 

3.2.1. Design and Synthesis of arylboronic ester 9-12 

The synthesis of compounds 9-12 involved two general steps: borylation and introduction of 

leaving groups. Compound 9a was synthesized starting from commercially available 2-bromo-5-

methoxy-1,3-dimethylbenzene 9s via borylation by using n-butyllithium and isopropoxyboronic 

acid pinacol ester, and followed by bromination by using NBS and AIBN reflux under light. 

Quaternization of 9a with trimethylamine provided 9b in nearly quantitative yield (Scheme 3-4). 

 

Scheme 3-4. Synthesis of 9a,b. 

Compounds 10a and 11a were synthesized from 3-bromo-1,5-dimethoxy-2,4-dimethylbenzene 

10s and 1-bromo-3,4,5-trimethoxy-2,6-dimethylbenzene 11s that were prepared according to the 

synthetic route reported by Connell and co-workers.
7 

The borylation and bromination were 
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carried out in a similar way to that  used for compound 9a (Scheme 3-5 and 3-6). Compound 10a 

is too labile to be used as a precursor for synthesis of the corresponding trimethylamine salt. 

 

Scheme 3-5. Synthesis of 10a. 

 

Scheme 3-6. Synthesis of 11a,b. 

Compound 12a was synthesized starting from 4-bromo-3,5-dimethylphenol 12s. The phenol 

group of 12s was protected with tert-butyldimethylsilane yielding 12-1. Borylation of 12-1 

followed by bromination resulted in 12-2, which was deprotected with tetrabutylammonium 

tribromide (TBATB) to generate 12a. Quaternization of 12a with trimethylamine provided 12b 

in nearly quantitative yield (Scheme 3-7). 
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Scheme 3-7. Synthesis of 12a,b. 

Compounds 1c, 9c, and 12c containing OAc as leaving group were prepared via different 

precursors (Schemes 3-8). Compound 12a was employed as starting material for 12c. Direct 

replacement of Br with OAc using sodium acetate in DMF led to formation of 12c (Scheme 3-8 

A). However, compounds 1c and 9c cannot be directly synthesized from 1a and 9a because the 

arylboronic esters were easily to be hydrolyzed under the reaction conditions. Thus, introduction 

of the acetate group was performed prior to borylation. Compound 1c was prepared from 2-

bromoisophthalaldehyde via reduction using NaBH4 followed by acylation and then palladium-

catalyzed borylation (Scheme3-8 B), while 9c was synthesized from 2-bromo-5-methoxy-1,3-

dimethylbenzene via bromination followed by nucleophilic substitution by using NaOAc at last 

borylation (Scheme3-8 C). 
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Scheme 3-8. Synthesis of 1c, 9c, and 12c. 

3.2.2. DNA cross-linking assay 

The DNA cross-linking abilities of 9-12 were investigated by allowing them to react with 49-mer 

DNA duplex 5 in a phosphate buffer at 37 °C for 24 h. Initially, 2 mM drug with 2 mM H2O2 

were used for comparison of the reactivity. ICL formation and yields were analyzed via 

denaturing polyacrylamide gel electrophoresis (PAGE) with phosphorimage analysis (Image 

Quant 5.2). Apart from 10a, most compounds (9a, 12a, 12b, 1c, 9c and 12c) do not cross-link 

DNA in the absence of H2O2, but can be activated by H2O2 inducing efficient ICL formation. 

DNA cross-linking products were not observed without H2O2 but efficiently formed with H2O2, 

which indicated that these compounds can be selectively and efficiently activated by H2O2 to 

induce DNA crosslinks.  
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Figure 3-1. H2O2-induced DNA ICL formation by compounds 9-12. Lane 1: DNA only (cross-

linking yield 0%); lane 2: DNA with 100 M H2O2 (0%); lane 3: 2 mM 9a (0%); lane 4: 2 mM 

10a (17%); lane 5: 2 mM 11a (0%); lane 6: 2 mM 12a (0%); lane 7: 2 mM 1c (0%); lane 8: 2 

mM 9c (0%); lane 9: 2 mM 12c (0%); lane 10-19 with H2O2: lane 10: 2  mM 9a (34%); lane 11: 

2 mM 10a (20%); lane 12: 2 mM 11a (0%); lane 13: 2 mM 12a (42%);lane 14: 2 mM 9b (0%); 

lane 15: 2 mM 11b (0%); lane 16: 2 mM 12b (5%); lane 17: 2 mM 1c (21%); lane 18: 2 mM 9c 

(26%); lane 19: 2 mM 12c (32%). [H2O2] = 2 mM (Reaction mixture was incubated at 37 
o
C for 

48 h in pH8 buffer). 

3.2.3. The effect of substituents on the DNA cross-link formation 

3.2.3.1. The electron-donating group favors the ICL formation 

In order to conduct a more detailed and systematic investigation about the substituent effects on 

ICL formation, we compared the stability and reactivity of 9a-11a firstly. Comparing with 10a 

(20%) and 11a (0%), 9a induced a much higher ICL yield (34%). 4,6-Dimethoxy compound 10a 

is not stable and easily decomposed even at 0 
o
C, which might be one of the reasons for its low 

efficiency for DNA cross-linking. We did observe decomposition of 10a during 
13

C NMR 
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measurement though it was stable for 1H NMR measurement. In addition, compound 10a did not 

show selectivity, which induced ICL formation even without H2O2 (17%) (Figure 3-2), while the 

presence of H2O2 only slightly increased the ICL yield of 10a (20%). Obviously, the presence of 

two methoxy groups on the para position to methylene greatly enhanced the electrophilicity of 

CH2Br. Although 11a is more stable than 10a, DNA cross-linking was not observed at pH 8 

(Figure 3-3). However, we did observe that the ICL formation induced by 11a strongly depended 

on the pH values. The acidic conditions resulted in higher ICL yields than neutral and basic 

conditions (Figure 3-6). Among these compounds, 9a was the best H2O2-inducible ICL agent 

which is chemically stable. These results indicated that the position-4 that is meta to the QM 

methylene is an ideal site for further modification. 

 

Figure 3-2. Compound/H2O2 ratio dependence of ICL formation by 10a. Phosphorimage 

autoradiogram of 20% denaturing PAGE analysis of 5 under varying concentration ratio of drug 

10a to H2O2. Condition: 37 
o
C incubation for 24 h at pH8. 
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Figure 3-3. pH dependence of ICL formation by 11a. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of 2 mM 11a with 5. Condition: 37 
o
C incubation for 24 h. 

Thus, we designed and synthesized 12a with a hydroxyl group at the position-4 and investigated 

its reactivity toward DNA. As expected, 12a is relatively stable and inert toward DNA, but can 

react with H2O2 to form QMs that directly cross-link DNA (50 ± 5%). This provided another 

evidences that the electron-donating group on the position-4 favors the ICL formation. Further 

study showed that the cross-linking yield of 9a and 12a were affected by their concentrations, the 

compound/H2O2 ratio, and the pH of the buffer solution. The best compound/H2O2 ratio was 1:1 

(Figure 3-4 and 3-7). The cross-linking yield increased as the concentration increasing (Figure 3-

5 and 3-8). The cross-linking was more efficient under basic conditions than acidic conditions 

(Figure 3-6 and 3-9). All these results are consistent with previously study with other 

arylboronates (1-4a in Chapter 2).
1,2
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Figure 3-4. Compound/H2O2 ratio dependence of ICL formation by 9a. Phosphorimage 

autoradiogram of 20% denaturing PAGE analysis of 5 under varying concentration ratio of drug 

9a to H2O2. Condition: 37 
o
C incubation for 24 h at pH8. 

 

Figure 3-5. Concentration dependence of ICL formation by 9a. Phosphorimage autoradiogram 

of 20% denaturing PAGE analysis of 5 with different concentration of 9a. Condition: 37 
o
C 

incubation for 24 h at pH8. 
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Figure 3-6. pH dependence of ICL formation by 9a. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of 2 mM 9a with 5. Condition: 37 
o
C incubation for 24 h. 

 

Figure 3-7. Compound/H2O2 ratio dependence of ICL formation by 12a. Phosphorimage 

autoradiogram of 20% denaturing PAGE analysis of 5 under varying concentration ratio of drug 

12a to H2O2.Condition: 37 
o
C incubation for 24 h at pH8. 
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Figure 3-8. Concentration dependence of ICL formation by 12a. Phosphorimage autoradiogram 

of 20% denaturing PAGE analysis of 5 with different concentration of 12a. Condition: 37 
o
C 

incubation for 24 h at pH8. 

 

Figure 3-9. pH dependence of ICL formation by 12a. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of 2 mM 12a with 5. Condition: 37 
o
C incubation for 24 h. 

3.2.3.2. The kinetics of ICL formation induced by 1a, 9a and 12a 

In order to fully investigate the effect of the aromatic substituents on DNA ICL formation, we 

studied the kinetics of DNA cross-linking and compared the rate constants for ICL formation 

induced by 1a, 9a, and 12a (Table 3-1). The ICL growth induced by 9a and 12a followed first-

order kinetics (Figure 3-10) which is similar to their parent compound 1a. The rate constants for 

9a and 12a with an electron-donating group were 2-3 times the rate constants for 1a. This result 
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indicated that the electron-donating substituent greatly facilitated the ICL formation rate as well 

as enhanced the cross-linking yield. 

 

Figure 3-10. Kinetic rate of ICL formation from 5 upon treatment with bromides/H2O2. A. 9a at 

time points 0, 5’, 10’, 20’, 30’, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 4 h, 5 h, 6 h, 8 h.  [9a] = 2 mM, and 

[H2O2] = 2 mM. B. 12a at time points 0, 5’, 10’, 20’, 30’, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 4 h, 5 h, 6 h, 

8 h. [12a] = 2 mM, and [H2O2] = 2 mM. Reaction mixtures were incubated in 37 
o
C. 

Table 3-1. Rate of ICL formation from 5 upon treatment with bromides. 

compound  kobs, 10
-5 

s
-1

 t 1/2,min  ICL(%)  

1a 8.8  1.3  130  13  20 

9a 18.8  0.4  61  2  40 

12a 25.1  0.5  46  1  50 

 

Previous studies showed that the mechanism of ICL formation induced by these arylboronates 

involved the generation of phenol intermediates followed by spontaneous release of QMs which 

is capable of cross-linking DNA. The QM formation is the rate-determining step for DNA cross-
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linking (Scheme 3-9). A similar mechanism was proposed for compounds 9a and 12a, which was 

supported by QM-trapping reaction by using large excess of EVE. 

 

Scheme 3-9. The mechanism of H2O2-induced ICL formation. 

In order to investigate the effect of electron-donating group on both formation of the phenol 

intermediates and QM generation, we determined the rate constant of these compounds with 

H2O2 by NMR analysis (Figure 3-11 and 3-12). We used a mixture of phosphate buffer (pH8 in 

D2O) and DMSO in a 2:3 ratio for the NMR kinetic study to ensure good solubility of the 

compounds and analogs in the DNA cross-linking reaction condition. 
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Figure 3-11. 
1
H NMR analysis of 9a in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 9a 

(0.003 mmol) in DMSO without addition of D2O and H2O2; (B) After 4 h in a mixture of DMSO 

(300 μL), D2O (20 μL), and pH8 buffer (10 μL); additional DMSO (60 μL) and D2O (210 μL) 

were added into the reaction mixture. (C) 2 min after addition of H2O2 (1.5 equiv.) in the reaction 

mixture from step (B); (D) 5 min after addition of H2O2; (E) 10 min after addition of H2O2; (F) 1 

h after addition of H2O2.  [d represents the benzylic methylene proton of the hydrolysis product 

(the corresponding boronic acid) of the boronate ester 9a; f represents the benzylic methylene 

proton of the final product obtained from the hydrolysis of the QM.] 
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Figure 3-12. 
1
H NMR analysis of 12a in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 

12a (0.003 mmol) in DMSO without addition of D2O and H2O2; (B) After 4 h in a mixture of 

DMSO (300 μL), D2O (20 μL), and pH8 buffer (10 μL); additional DMSO (60 μL) and D2O (210 

μL) were added into the reaction mixture. (C) 2 min after addition of H2O2 (1.5 equiv.) in the 

reaction mixture from step (B); (D) 5 min after addition of H2O2; (E) 10 min after addition of 

H2O2; (F) 1 h after addition of H2O2. 
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Figure 3-13. Rate constant for the disappearance of starting material (A and B) and the 

formation of hydrolyzed product (C and D) in NMR analysis with 360 μL DMSO and 240 μL 

pH 8 buffer: A. 9a (0.003 mmol) with H2O2 (1.5 equiv) at time points 5’, 7.5’, 10’, 15’, 20’, 30’. 

B. 12a (0.003 mmol) with H2O2 (1.5 equiv) at time points 5’, 7.5’, 10’, 15’, 20’, 30’. C. 9a 

(0.003 mmol) with H2O2 (1.5 equiv) at time points 7.5’, 10’, 15’, 20’, 30’. D. 12a (0.003 mmol) 

with H2O2 (1.5 equiv) at time points 5’, 7.5’, 10’, 15’, 20’. 

The relative rate for the phenol intermediate formation was evaluated by the disappearance of the 

peaks at about 5.0 ppm (peak d) corresponding to -CH2- of the precursors. The relative reaction 

rates of these compounds with H2O2 were in the order of 12a ≥ 9a > 1a (Table 3-2). In 

comparison with 1a, there was no obviously increase for the rate of phenol intermediate 

formation for 9a and 12a. The relative rates of QM formation were estimated by the formation of 

the final products (peak f, its hydrolyzed compounds), which showed a similar trend: 12a > 9a > 

1a (Table 3-2). The rate of QM formation for 4a is around 6 times the rate of 1a and 9a is about 
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4 times of 1a. However, the rate of QM formation is generally slower than that of generation of 

the corresponding phenol intermediates. All these results indicated that QM formation is still the 

rate-determining step for DNA cross-linking. The kinetic data for QM formation showed a 

similar trend to that of DNA ICL formation (12a > 9a > 1a) (Table 3-1), which provided further 

evidences for that the electron-donating groups greatly facilitate QM formation as well as DNA 

ICL formation. 

Table 3-2. Rate of starting material disappearance and QM formation. 

Compounds  Disappearance of starting materials  QM formation  

 Time of completion (min)  kobs (10
-5 

s
-1

)  Time of completion (min)  kobs(10
-5 

s
-1

)  

1a 60  39.0  60  9.5  

9a 60  56.7  60  38.3  

12a 60  61.7  60  58.3  

 

3.2.4. The effect of leaving group on the DNA cross-link formation 

Compounds 9b and 12b bearing NMe3 as leaving group were not good ICL agents. 9b can only 

induced a little ICL formation if extend the incubation time to 3 d (Figure 3-14). A low ICL yield 

(5%) was observed for 12b when it was incubated with DNA duplex 5 for 1 d at 37 
o
C in the 

presence of H2O2 (Figure 3-1 lane 16). The NMR analysis of 9b showed that there was tiny 

amount trimethylamine formation after 1d (Figure 3-15 D) which indicated that the phenol 

intermediate could not further convert to QM. For 12b only around 15% of the phenol products 

release trimehtylamine leaving group to generate final product. These results demonstrated that 
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the NMe3 is a poor leaving group for ICL formation even introduced the electron-donating 

substituent in it. 

 

Figure 3-14. ICL formation induced by 9b by extend the incubation time to 3 days. 

 

Figure 3-15. 
1
H NMR analysis of 9b in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 9b 

(0.003 mmol) in DMSO without addition of D2O and H2O2; (B) After 4 h in a mixture of DMSO 

(300 μL), D2O (20 μL), and pH8 buffer (10 μL); additional DMSO (60 μL) and D2O (210 μL) 
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were added into the reaction mixture. (C) 10 min after addition of H2O2 (1.5 equiv.) in the 

reaction mixture from step (B); (D) 1 day after addition of H2O2. 

 

Figure 3-16. 
1
H NMR analysis of 12b in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 

12b (0.003 mmol) in DMSO without addition of D2O and H2O2; (B) After 4 h in a mixture of 

DMSO (300 μL), D2O (20 μL), and pH8 buffer (10 μL); additional DMSO (60 μL) and D2O (210 

μL) were added into the reaction mixture. (C) 2 min after addition of H2O2 (1.5 equiv.) in the 

reaction mixture from step (B); (D) 10 min after addition of H2O2; (E) 1 h after addition of H2O2; 

(F) 1 d after addition of H2O2. 

The acetate group was used as a good leaving group in a number of inducible DNA cross-linking 

agents developed in the research groups of Freccero, Rokita and Greenberg's. We expected that 
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the arylboronic esters with OAc as benzylic leaving group could be an efficient H2O2-inducible 

ICL agent. A series of arylboronic esters 1c, 9c and 12c containing OAc as the leaving groups 

were successfully synthesized and their cross-linking ability was investigated. As expected, these 

compounds can be activated by H2O2 to form DNA ICLs. However, the cross-linking yields of 

1c, 9c, and 12c (25%, 30% and 35%) are less than the corresponding bromides 1a, 9a, and 12a 

(25%, 40%, and 50%). Further study showed that ICL formation induced by 1c, 9c, and 12c did 

not follow the first order kinetics (Figure 3-17) and the cross-linking yield did not correlate well 

with the reaction rates (Table 3-3). One of the possible reasons is the hydrolysis of the acetate 

under the conditions used for DNA cross-linking study. In order to test our hypothesis, the NMR 

analysis was performed with 9c and 12c in a mixture of phosphate buffer (pH8 in D2O) and 

DMSO in a 2:3 ratio. The results showed that the acetate group was hydrolyzed prior to addition 

of H2O2 (Figure 3-18 and 3-19 B), which should be one of the reasons leading to a low ICL yield 

for 9c and 12c. We also observed that the reactivity of 9c and 12c with H2O2 was much slower 

than 9a and 12a. However, due to the complexity of the reactions, the rate constants could not be 

estimated. The reaction of 9a and 12a with H2O2 was complete within 30 min for 9a and 20 min 

for 12a, while only 65% of 9c and 50% of 12c reacted with H2O2 within 1 hour (Figure 3-11 and 

3-12 E, F) (Figure 3-18 and 3-19 E). The possible reason for the slower reaction of 9c and 12c 

towards H2O2 is formation of the hypercoordinated complexes (Scheme 3-10) caused by the 

interaction between the oxygen of OAc and the trigonal boron. All of the above observations 

suggested that the acetate group was not a good leaving group for designing novel arylboronic 

esters as efficient H2O2-inducible cross-linking agents. 
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Figure 3-17. Kinetic rate of ICL formation from 5 upon treatment with bromides/H2O2. A. 1c at 

time points 0, 5’, 10’, 20’, 30’, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, 8 h. [1c] = 2 mM, and [H2O2] = 2 

mM. B. 9c at time points 0, 5’, 10’, 20’, 30’, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, 8 h. [9c] = 2 mM, and 

[H2O2] = 2 mM.  C. 12c at time points 0, 5’, 10’, 20’, 30’, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, 8 h. [12c] 

= 2 mM, and [H2O2] = 2 mM. Reaction mixtures were incubated in 37 
o
C. 

Table 3-3. Kinetics of ICL formation and monomer reaction. 

Compds Kinetics of ICL formation Kinetics of monomer reaction 

 

Rate constant 

kobs(10
-5 

s
-1

) 
t 1/2,min ICL(%) 

Disappearance of 

starting 

materialskobs(10
-5 

s
-1

)   

QM formation       

kobs(10
-5 

s
-1

)   

1c 52.1  1.1 22  1 25  2 19.4 n.d. 

9c 41.1  0.8 28  1 30  3 9.1 n.d. 

12c 26.8  0.7 43  1 35  4 8.3 n.d. 
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Figure 3-18. 
1
H NMR analysis of 9c in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 9c 

(0.003 mmol) in DMSO without addition of D2O and H2O2; (B) After 4 h in a mixture of DMSO 

(300 μL), D2O (20 μL), and pH8 buffer (10 μL); additional DMSO (60 μL) and D2O (210 μL) 

were added into the reaction mixture. (C) 5 min after addition of H2O2 (1.5 equiv.) in the reaction 

mixture from step (B); (D) 10 min after addition of H2O2; (E) 1 h after addition of H2O2; (F) 1 d 

after addition of H2O2. 
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Figure 3-19. 
1
H NMR analysis of 12c in deuterated DMSO, D2O, and H2O2: (A) 

1
H NMR of 12c 

(0.003 mmol) in DMSO without addition of D2O and H2O2; (B) After 4 h in a mixture of DMSO 

(300 μL), D2O (20 μL), and pH8 buffer (10 μL); additional DMSO (60 μL) and D2O (210 μL) 

were added into the reaction mixture. (C) 5 min after addition of H2O2 (1.5 equiv.) in the reaction 

mixture from step (B); (D) 10 min after addition of H2O2; (E) 1 h after addition of H2O2; (F) 1 d 

after addition of H2O2. 
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Scheme 3-10. Hypercoordination of arylboronic derivatives. 

3.3. Cytotoxicity of 9a and 12a towards cancer cell lines 

Having established that 9a and 12a could be effectively activated by H2O2 to induce efficient 

ICL formation, their toxicity towards cancer cells was evaluated in biological systems. Initially, 

the ability of 1a and 9a for inhibiting cancer cell growth was determined with 60 human cancer 

cell lines by National Cancer Institute DTP program. Single dose screening with 10 μM of 9a 

induced significant growth inhibition of most cancer cell lines (Figure 3-21), which showed 9a 

was more toxic than 1a (Figure 3-20). The growth percentage of most cell lines treated with 10 

μM of 9a was less than 50%. Thus, the GI50 of 9a was further evaluated in 60 human cancer cell 

lines panel by five concentration levels. Compound 9a showed a GI50 of 2 μM in most cancer 

cells (Table 3-4). The result showed that 9a is a potent anticancer prodrug that can be used as a 

lead compound for further development. 



 
 

104 

 

Figure 3-20. Cytotoxicity of compound 1a towards 60 human tumor cell lines. Each cell line 

was grown in two plates and treated with drug (10 μM) for 48 h at 37 °C, 5% CO2, 95% air, and 

100% relative humidity. The growth percent was determined by NCI-60 DTP Human Tumor 

Cell Line Screen. 
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Figure 3-21. Cytotoxicity of compound 9a towards 60 human tumor cell lines. Each cell line 

was grown in two plates and treated with drug (10 μM) for 48 h at 37 °C, 5% CO2, 95% air, and 

100% relative humidity. The growth percent was determined by NCI-60 DTP Human Tumor 

Cell Line Screen. 
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Table 3-4. The Cytotoxicity of 9a in 60 cell lines. 

 

Tumor type Cell line  GI50 (μM) 

leukemia CCRF-CEM 2.12 

HL-60(TB) 2.01 

K-562 2.75 

MOLT-4 2.70 

RPMI-8226 2.23 

SR 2.27 

Non-Small Cell Lung 

Cancer 

A549/ATCC 3.10 

HOP-62 2.10 

HOP-92 1.52 

NCI-H226 3.09 

NCI-H23 2.14 

NCI-H322M 5.64 

NCI-H460 3.38 

NCI-H522 1.66 

Colon Cancer COLO 205 2.08 

HCC-2998 6.12 

HCT-116 1.80 

HCT-15 2.37 

HT29 2.13 

KM12 2.15 

SW-620 2.07 

CNS Cancer SF-268 2.31 

SF-295 1.82 

SF-539 1.70 

SNB-19 4.89 

SNB-75 1.64 

U251 2.68 

Melanoma LOX IMVI 1.81 

MALME-3M 1.99 

M14 1.97 

MDA-MB-435 1.89 

SK-MEL-2 2.18 

SK-MEL-28 1.82 

SK-MEL-5 2.29 

UACC-62 2.13 

Ovarian Cancer IGROV1 2.51 
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OVCAR-3 1.96 

OVCAR-4 3.33 

OVCAR-5 2.08 

OVCAR-8 3.33 

NCI/ADR-RES 3.44 

SK-OV-3 4.97 

Renal Cancer 786-0 2.08 

A498 12.0 

ACHN 1.82 

CAKI-1 1.85 

RXF 393 1.79 

SN12C 1.79 

TK-10 1.92 

UO-31 1.68 

Prostate Cancer PC-3 1.85 

DU-145 2.77 

Breast Cancer MCF7 2.45 

MDA-MB-231/ATCC 2.11 

HS 578T 2.85 

BT-549 1.92 

T-47D 2.03 

MDA-MB-468 1.80 

 

Encouraged by the NCI results, we compared the cytotoxicity of these compounds in a few 

cancer cell lines, such as ovarian cancer SKOV3 cell, breast cancer MDA-MB-468 cell, and 

seven renal cancer cell lines. The initial test with SKOV3 cells showed that no cytotoxicity was 

observed with 1c, 9c, and 11a, while compounds 1a, 9a, and 12a led to cancer cell apoptosis 

with an IC50 of 6.3 μM for 1a, 5.2 μM for 9a, 3.8 μM for 12a (Figure 3-22). Therefore, we 

focused on the active compounds 1a, 9a, and 12a and compared their cytotoxicity with two 

clinically used alkylating agents: chlorambucil and melphalan. The breast cancer MDA-MB-468 

cell and seven different renal cancer cell lines, UO-31, A498, SN12C, 786-0, TK-10, CAKI-1 

and ACHN, have been tested. In general, 1a, 9a, and 12a showed a higher cytotoxicity than 
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chlorambucil and melphalan in these cell lines. Additionally, 9a is more toxic than 1a and 12a in 

most cell lines except for CAKI-1 cells which are more sensitive toward 12a than toward 1a and 

9a (Table 3-4). Among the cell lines tested, MDA-MB-468 cells are the most sensitive ones 

towards these H2O2-activated QM prodrugs. Among different renal cancer cell lines, compounds 

1a, 9a, and 12a are more cytotoxic to UO-31, A498, SN12C and 786-0 (IC50 of 7.7 μM - 27.8 

μM) than TK-10, CAKI-1 and ACHN (Figure 3-23 and Table 3-4). All these result demonstrated 

that 9a and 12a are the potent anticancer prodrugs which will be useful for future design. Further 

study to evaluate the in vivo activity and the mechanism of action are under-going. 
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Figure 3-22. Cytotoxicity of 1a, 9a and 12a toward ovarian cell line SKOV3. 
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Figure 3-23. Cytotoxicity of 1a, 9a and 12a toward renal cell lines and breast cell line MDA-

MB-468. 
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Table 3-5. IC50 of 1a, 9a and 12a toward renal and breast cell lines. 

Tumor type Cell line IC50(μM) 

  1a 9a 12a Chlorambucil Melphalan 

renal cancer UO-31 25.3 10.8 19.5 40.7 42.9 

A498 33.3 18.1 21 280 135 

SN12C 27.0 18.6 24.4 135 71 

786-0 20.3 10.8 27.8 55.5 19.2 

TK-10 21.4 16.2 35.4 n.d. 54.5 

ACHN 26.9 20.0 35.7 133 52.1 

CAKI-1 50.3 n.d. 38.3 n.d. n.d. 

breast cancer MBA-MB-468 11.9 9.0 11.0 34.4 48.7 

 

3.4. Identification of biological quinone methide prodrug targets 

To identify the molecular targets of this class of produgs (such as DNA, RNA, or protein), we 

designed and synthesized an acetylene-modified quinone methide prodrug 13. Biomolecules 

reactin with 13 can be modified with azide-modified fluorophores such as Alexa Flour 647 azide 

by a “click” reaction. (Scheme 3-11) 
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Scheme 3-11. Structure of 13 and Alexa Flour 647 azide and a scheme of a pull-down reaction 

using Cu[I]-catalyzed azides-alkynes cycloaddition. 

3.4.1. Synthesis and DNA cross-linking study with alkyne-modified arylboronic ester 13  

Compound 13 was directly synthesized from alkylation of 12a using propargyl bromide (Scheme 

3-12). The DNA cross-linking ability of 13 was investigated by using the 49-mer DNA duplex 5. 

Similar to 12a, compound 13 can be activated by H2O2 to induce efficient ICL formation. The 

cross-linking yield was dependent on the compound/H2O2 ratio, drug concentration, and the pH 

of the buffer solution (Figure 3-24 to 3-26). The ICL growth induced by 13 followed first-order 

kinetics (Figure 3-27) with a rate of kobs = 18.9  0.3 × 10
-5 

s
-1

, and t1/2 = 61  1 min. The ICL 

yield was around 55  5% which was similar to compounds 9a and 12a. These results 

demonstrated that 13 is an efficient H2O2-activated DNA cross-linking agent, which can serve as 

a probe for identifying biological targets for these QM prodrugs. 



 
 

112 

 

Scheme 3-12. Synthesis of 13. 

 

Figure 3-24. Compound/H2O2 ratio dependence of ICL formation by 13. Phosphorimage 

autoradiogram of 20% denaturing PAGE analysis of 5 under varying concentration ratio of drug 

13 to H2O2. Condition: 37 
o
C incubation for 24 h at pH8. 

 

Figure 3-25. Concentration dependence of ICL formation by 13. Phosphorimage autoradiogram 

of 20% denaturing PAGE analysis of 5 with different concentration of 13. Condition: 37 
o
C 

incubation for 24 h at pH8. 
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Figure 3-26. pH dependence of ICL formation by 13. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of 2 mM 13 with 5. Condition: 37 
o
C incubation for 24 h. 

 

Figure 3-27. Kinetic rate of ICL formation from 5 upon treatment with 13/H2O2. 13 at time 

points 0, 5’, 10’, 20’, 30’, 1 h, 1.5 h, 2 h, 2.5 h, 3 h, 4 h, 5 h, 6 h, 8 h. [13] = 2 mM, and [H2O2] = 

2 mM. Reaction mixtures were incubated in 37 
o
C. 

3.4.2. Fluorescence detection of 13-labelled DNA 

Have successfully synthesized 13 containing an alkyne group and proved that it can efficiently 

induce ICL formation in the presence of H2O2, we used an Alexa Flour 647 picoly azide kit for 

fluorescence detection of 13-labelled DNA. Initially, the reaction was performed with a 49-mer 

DNA duplex, which was incubated with 13 in the presence of H2O2 followed by Alexa Flour 647 

picoly azide with an excitation and emission maximum of 650/668 nm (Scheme 3-12). A strong 

band was detected in the bottom of the PAGE gel, which was the excess unreacted picolyl azide 
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(Figure 3-28 A, lane 4). A cross-linking product band was observed if only the top part of the gel 

was scanned (Figure 3-28 B, lane 4), while this was not observed with the DNA not treated with 

13 (lane 3). This result indicated that 13 covalently cross-linked with DNA duplex 5, which 

further reacted with fluorophores-linked azide through Cu-catalyzed “click” reaction. Such a 

method can be used for detection of biological targets of QM prodrugs. 

 

Figure 3-28. Fluorescence detected ICL formation by 13 using a 635 nm laser line. A. The full 

scan of the PAGE gel. B. Top part scan of the PAGE gel. Lane 1: DNA only; lane 2: DNA 

incubated with 13; lane 3: DNA only traded with Fluor 647 azide; lane 4: DNA incubated with 

13 first, then traded with Fluor 647 azide. 

Encouraged by this result, we investigated the labeling of cellular targets by 13. The IC50 of 

compound 13 for SKOV3 cells was 5.6 μM (Figure 3-29). For the labling study, we incubated 

SKOV3 cells with 2 μM of 13 for 24 hours. After that incubation period, the cells were harvested 

and lysed followed by separation of DNA, RNA, and protein using an AllPrep kit (Qiagen). First 

the genomic DNA and total RNA were analyzed by using a 1.5 % agrose gel and stained with 

ethidium bromide (Figure 3-30). Both preparations had a significant amount of polynucleotides. 

Subsequently, these fractions were treated with Alexa Fluor 647 Picolyl Azide in the presence of 

a copper salt to covalently and fluorescently label quinone methide prodrug cross-linked 
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products. After gel separation, no fluorescent bands matching the corresponding polynucleotide 

bands were detected (Figure 3-31 C). The Alexa Fluor 647 Picolyl Azide however, produced two 

fluorescent band sat low molecular weight. One possible reason is that the alkylation sites are 

disperse and the “click” reaction efficiency is low. In order to solve this problem, we will try to 

enrich the target by using a pull-down column. Importantly, the treated and non-treated protein 

fractions were reacted with Alexa Fluor 647 Picoyly Azide and separated by SDS gel 

chromatography. No labeling was observed for the protein fraction. 

   

 

Figure 3-29. Cytotoxicity of 9a, 12a and 13 toward ovarian cancer cell line SKOV3. 

 

Figure 3-30. Purified genomic DNA and total RNA from 13 traded SKOV3 cell. 
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Figure 3-31. Fluorescence detection of genomic DNA and total RNA from 13 traded SKOV3 

cell. A. Agarose gel stained with ethidium bromide. B. The full scan of the agarose gel. C. Top 

part scan of the agarose gel. Lane 1: genomic DNA from SKOV3; lane 2: genomic DNA from 13 

traded SKOV3; lane 3: genomic DNA from SKOV3 traded with Fluor 647 azide; lane 4: 

genomic DNA from 13 traded SKOV3 traded with Fluor 647 azide. Line 5-8: the corresponding 

total RNA from the same cells. 

3.5. Experimental Section 

General Methods. Unless otherwise specified, chemicals were purchased from Aldrich or Fisher 

Scientific and were used as received without further purification. T4 polynucleotide kinase was 

obtained from New England Biolabs. Oligonucleotides were synthesized via standard automated 

DNA synthesis techniques using an Applied Biosystems model 394 instrument in a 1.0 μM scale 

using commercial 1000Å CPG-succinyl-nucleoside supports. Deprotection of the nucleobases 

and phosphate moieties as well as cleavage of the linker were carried out under mild 

deprotection conditions using a mixture of 40% aq. MeNH2 and 28% aq. NH3 (1:1) at room 

temperature for 2 h. Radiolabeling was carried out according to the standard protocols.
8
 [γ-

32P]ATP was purchased from Perkin-Elmer Life Sciences. Quantification of radiolabeled 
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oligonucleotides was carried out using a Molecular Dynamics Phosphorimager equipped with 

ImageQuant Version 5.2 software. 
1
H NMR and 

13
C NMR spectra were taken on either a Bruker 

DRX 300 MHz and 500 MHz spectrophotometer. High resolution mass spectrometry was 

performed at University of California-Riverside and University of Wisconsin-Milwaukee Mass 

Spectrometry Lab. 

Interstrand cross-link formation with duplex DNA 5. The 
32

P-labelledoligonucleotide (0.5 

μM) was annealed with 1.5 equiv of the complementary strand by heating to 65 
o
C for 3 min in 

buffer 10 mM potassium phosphate (pH 7), and 100 mM NaCl, followed by slow-cooling to 

room temperature overnight. The 
32

P-labeled oligonucleotide duplex (2 μL, 0.5 μM) was mixed 

with 1 M NaCl (2 μL), 100 mM potassium phosphate (2 μL, pH 8), 10 mM H2O2 (2 μL), and 

compound 9a or 12a (concentration range: 10 μM to 2 mM in 6 μL CH3CN) and appropriate 

amount of autoclaved distilled water were added to give a final volume of 20 μL. The reaction 

was incubated at room temperature for 24 h and quenched by an equal volume of 90% 

formamide loading buffer, then subjected to 20% denaturing polyacrylamide gel electrophoresis.  

Cell inhibition study of 1a and 9a towards tumor cells. The In vitro cancer cell screen was 

performed at the National Cancer Institute (NCI Developmental Therapeutics Program). The 

procedure details can be found in NCI website: http://dtp.nci.nih.gov/branches/btb/ivclsp.html. 

Methodology of the In Vitro cancer screen. The human tumor cell lines are grown in RPMI 1640 

medium containing 5% fetal bovine serum and 2 mM L-glutamine. Cells are inoculated into 96 

well microtiter plates in 100 μL at plating densities ranging from 5,000 to 40,000 cells/well 

depending on the doubling time of individual cell lines. After cell inoculation, the microtiter 

plates are incubated at 37 ° C, 5 % CO2, 95% air, and 100% relative humidity for 24 h prior to 

addition of drugs. 

http://dtp.nci.nih.gov/branches/btb/ivclsp.html
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After 24 h, two plates of each cell line are fixed in situ with TCA, to represent a measurement of 

the cell population for each cell line at the time of drug addition (Tz). Drugs are solubilized in 

dimethyl sulfoxide at 4 mM concentration and stored frozen prior to use. At the time of drug 

addition, an aliquot of frozen concentrate is thawed and diluted to 20 μM with complete medium 

containing 50 μg/ml gentamicin. Aliquot of 100 μl of the drug dilution is added to the microtiter 

wells already containing 100 μl of medium, resulting in the required final drug concentration (10 

μM). 

Following drug addition, the plates are incubated for an additional 48 h at 37 °C, 5% CO2, 95% 

air, and 100% relative humidity. For adherent cells, the assay is terminated by the addition of 

cold TCA. Cells are fixed in situ by the gentle addition of 50 μl of cold 50% (w/v) TCA (final 

concentration, 10% TCA) and incubated for 60 minutes at 4 °C. The supernatant is discarded, 

and the plates are washed five times with tap water and air dried. Sulforhodamine B (SRB) 

solution (100 μl) at 0.4% (w/v) in 1% acetic acid is added to each well, and plates are incubated 

for 10 minutes at room temperature. After staining, unbound dye is removed by washing five 

times with 1% acetic acid and the plates are air dried. Bound stain is subsequently solubilized 

with 10 mM trizma base, and the absorbance is read on an automated plate reader at a 

wavelength of 515 nm. 

Cell cytotoxicity study of 1a, 9a and 12a toward tumor cells. The human tumor cell lines are 

grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine. Cells 

are inoculated into 384-well microtiter plates in 20 μL at plating densities ranging from 5,000 to 

10,000 cells/well. After cell inculation, the microtiter plates are incubated at 37 °C, 5 % CO2, 

95% air, and 100% relative humidity for 2-3 h prior to addition of drugs. 



 
 

119 

Drugs are solubilized in dimethyl sulfoxide at 20 mM concentration and serially diluted ten times 

each time 50% decrease in DMSO in a 384-well plate. Then 200 nL of the serially diluted drug 

were added to the cell plate (1:100 dilution) by using Freedom EVOware two times 100 nL 

transfer. Following drug addition, the plates are incubated for an additional 48 h at 37 °C, 5% 

CO2, 95% air, and 100% relative humidity. After 48 hours, 20 μL celltiter-Glo Luminescent 

solution were added to the cell plate. The plate was then incubated at room temperature for 10 

mins before the luminescent was measured with Infinite M1000. 

Fluorescence detection of 13-labelled ODN. The complementary oligonucleotides 5a and 5b 

(50 μM) was annealed by heating to 65 
o
C for 3 min in a buffer of 10 mM potassium phosphate 

(pH 7) and 100 mM NaCl, followed by slow-cooling to room temperature overnight. The 

oligonucleotide duplex (50 μM, 20 μL) was mixed with 1 M NaCl (5 μL), 100 mM potassium 

phosphate (5 μL, pH 8.0), and compound 13 (100 μM, 20 μL). The reaction was incubated at 37 

ºC for 24 h. 4.35 μL of 10 X Click-iT reaction buffer (buffer B), 0.5 μL of 500 μM Alexa Fluor 

PCA solution, 1.00 μL CuSO4-copper protectant pre-mix which include 0.55 μL of CuSO4 

(Component C) and 0.45 μL of Copper protectant (Component D), and 5 μL of 1 X Click-iT 

buffer additive were mixed together to make the reaction cocktail for a single reaction volume of 

50 μL. The reaction cocktail was added to 39.65 μL ODN reaction mixture and incubated for 30 

mins at r.t. protected from light. The reaction quenched by an equal volume of 90% formamide 

loading buffer, then subjected to 20% denaturing polyacrylamide gel analysis and detected by 

using a 635 nm laser line. 

Purification of genomic DNA, total RNA, and total protein from same cell. The SKOV3 cell 

line is grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine 

into a 150 cm
2
 cell culture flask. The flask was incubated at 37 °C, 5 % CO2, 95% air, and 100% 
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relative humidity for 2-3 h. After that 10 μL 10 mM 13 (dissolved into DMSO) is added and 

incubated for 24 hours. The cell samples are first lysed in buffer RLT which is a highly 

denaturing guanidine-isothiocyanate-containing buffer and homogenized by directly passed 

through a QIAshredder spin column. The lysate is then passed through an AllPrep DNA spin 

column allows selective and efficient binding of genomic DNA, the AllPrep DNA spin column is 

washed with Buffer AW1 and Buffer AW2 and pure DNA is then eluted with 100 μL Buffer EB 

(preheated to 70 
o
C). Ethanol is added to the flow-through from the AllPrep DNA spin column 

and mix well by pipetting to provide appropriate binding conditions for RNA. Transfer up to 700 

μL of sample (including any precipitate) to an RNeasy spin column, which allow total RNA 

binds to the membrane. The RNeasy spin column then wash with Buffer RW1 and Buffer RPE, 

and total RNA is eluted in 30-50 μL RNase-free water. Buffer APP, a novel aqueous protein 

precipitation solution, is added to the flow-through of the RNeasy spin column, and the 

precipitated proteins are pelleted by centrifugation.  

Fluorescence detection of genomic DNA and total RNA from cell. A 4.35 μL of 10 X Click-

iT reaction buffer (buffer B), 0.5 μL of 500 μM Alexa Fluor PCA solution, 1.00 μL CuSO4-

copper protectant pre-mix which include 0.55 μL of CuSO4 (Component C) and 0.45 μL of 

Copper protectant (Component D), and 5 μL of 1 X Click-iT buffer additive were mixed together 

to make the reaction cocktail for a single reaction volume of 50 μL. The reaction cocktail was 

added to 39.65 μL purified genomic DNA or total RNA and incubated for 30 mins at r.t. 

protected from light. The reaction quenched by 10 μL  6 X DNA loading dye, then subjected to 

1.5 % agrose gel and detected by using a 635 nm laser line or stained with ethidium bromide. 

2-(4-methoxy-2,6-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. To a stirred 

solution of 2-bromo-5-methoxy-1,3-dimethylbenzene (1.50 g, 7.0 mmol) in anhydryed THF (40 
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mL) was added dropwise a 2.5 M solution of n-BuLi (3.36 mL, 8.4 mmol)  at -78 °C via cannula 

over a 2 min period under argon. The cloudy solution was stirred at -78 °C for 30 min 

Isopropoxyboronic acid pinacol ester (1.72 mL, 8.4 mmol) was added at once at -78 °C under 

argon via syringe. The mixture was allowed to stir at-78 °C for 30 min and then warm to room 

temperature slowly and stirred for 6 h. The mixture was quenched with aqueous 1 N HCl 

solution, extracted with 3 x 30 mL EtOAc, the organic layer was washed with water, and brine, 

dried with sodium sulfate, and concentrated under reduced pressure then purified through 

column chromatography (5% EtOAc/Hexane) to give 1.38 g (75%) of pure 2-(4-methoxy-2,6-

dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as white solid.
1
H NMR (300 MHz, 

CDCl3) δ 6.53 (s, 2H), 3.78 (s, 3H), 2.42 (s, 6H), 1.39 (s, 12H). 

2-(2,6-bis(bromomethyl)-4-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (9a). 

To a stirred solution of 2-(4-methoxy-2,6-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (1.31 g, 5 mmol), NBS (1.87 g, 10.5 mmol) and AIBN (82.1 mg, 0.5 mmol) in 

anhydryed CCl4 (30 mL) was stirred to reflux under a light for 2 h. The mixture was allowed to 

cool to room temperature. Evaporated the solvent and added 50 mL CH2Cl2, the organic layer 

was washed with water, and brine, dried with sodium sulfate, and concentrated under reduced 

pressure then purified through column chromatography (30% DCM/Hexane) to give 9a (0.63 g 

30%) as white solid. 
1
H NMR (300 MHz, CDCl3): δ 6.85 (s, 2H), 4.84 (s, 4H), 3.84 (s, 3H), 1.46 

(s, 12H).
 13

C NMR (125 MHz, CDCl3): δ 160.7, 146.4, 115.7, 84.0, 55.3, 34.1, 25.1. HRMS 

(APCI): m/z calcd. for C15H21O3BBr2 [M+H]
+
 419.0026, found 419.0022. 

1,1'-(5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-phenylene)bis(N,N,N-

trimethylmethanaminium) bromide (9b). A mixture of CH3CN (10 mL), 4.2 M 

trimethylamine (0.72 ml, 3 mmol) in ethanol and 9a (419.9 mg, 1 mmol) was stirred at r.t. over 



 
 

122 

night. The reaction mixture was concentrated to give 9b (530 mg, 99%) as white solid. 
1
H NMR 

(300 MHz, DMSO-d6):  8.43 (d, J = 4.2 Hz, 2H), 7.71-7.67 (m, 4H), 7.49 (t, J = 6.9 Hz, 2H), 

7.38 (s, 2H), 4.83 (s, 4H), 3.91 (s, 3H), 3.08 (s, 18H),  1.40 (s, 12H). 
13

C NMR (125 MHz, 

DMSO-d6): δ 160.8, 136.5, 137.5, 122.2, 85.4, 67.8, 52.9, 25.2.  HRMS (ESI): m/z calcd. for 

C21H39N2O3BBr2 [M-2Br]
2+ 

189.1523, found 189.1522. 

1,5-dibromo-2,4-dimethoxybenzene. To a stirred solution of 1,3-dimethoxybenzene (2.76 g, 20 

mmol) in CH2Cl2 (25 mL) was added dropwise a solution of bromine in CH2Cl2 (2.16 mL, 42 

mmol) at 0 °C via cannula over a 2 min period under argon. The reaction was stirred for 2 h at 

room temperature. The product was washed with saturated sodium thiosulfate until the organic 

phase became colorless, dried with sodium sulfate and concentrated under reduced pressure then 

purified through column chromatography (5% EtOAc/Hexane) to give 1,5-dibromo- 2,4-

dimethoxybenzene (5.88 g, 99%) as a white solid. 
1
H NMR (300 MHz, CDCl3): δ 7.68 (s, 1H), 

6.52 (s, 1H), 3.93 (s, 6H). The NMR spectra were consistent with literature values.
9
 

1,5-dimethoxy-2,4-dimethylbenzene. A 2.5 M solution of n-BuLi (18.4 mL, 46 mmol) was 

added to a solution of 1,5-dibromo-2,4-dimethoxybenzene (5.88 g, 20 mmol) in 125 mL of ether 

at -78 °C under argon, and the cloudy solution was stirred at -78 °C for 30 min. Iodomethane 

(5.48 mL, 88 mmol) was added slowly at -78 °C under argon via syringe. The mixture was 

allowed to warm to room temperature and stirred for 1 h. A second addition of n-BuLi (18.4 mL, 

46 mmol) was added at -78 °C under argon and stirred at -78 °C for 30 min. Iodomethane (5.48 

mL, 88 mmol) was added again slowly at -78 °C under argon via syringe. The mixture was 

allowed to warm to room temperature and stirred for 1 h. The mixture was diluted with ether, 

quenched with aqueous NH4Cl, washed with 1 N NaOH, water, and brine, dried with sodium 

sulfate, and concentrated under reduced pressure then purified through column chromatography 
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(2.5% EtOAc/Hexane) to give 1,5-dimethoxy-2,4-dimethylbenzene (1.68 g, 51%) as white solid. 

1
H NMR (300 MHz, CDCl3): δ 6.90 (s, 1H), 6.44 (s, 1H), 3.85 (s, 6H), 2.15 (s, 6H). The NMR 

spectra were consistent with literature values.
9
 

1,4-dibromo-2,6-dimethoxy-3,5-dimethylbenzene. To a stirred solution of 1,5-dimethoxy-2,4-

dimethylbenzene (1.68 g, 10 mmol) in CH2Cl2 (40 mL) was added dropwise a solution of 

bromine (1.29 mL, 25 mmol) in CH2Cl2 (2 mL) at 0 °C via cannula over a 2 min period under 

argon. The reaction was stirred for 16 h at room temperature. The product was washed with 

saturated sodium thiosulfate until the organic phase became colorless, dried with sodium sulfate 

and concentrated under reduced pressure then purified through column chromatography (10% 

CH2Cl2/Hexane) to give 1,4-dibromo-2,6-dimethoxy-3,5-dimethylbenzene (2.7 g, 83%) as white 

solid. 
1
H NMR (300 MHz, CDCl3): δ 3.80 (s, 6H), 2.41 (s, 6H). The NMR spectra were 

consistent with literature values.
9
 

3-bromo-1,5-dimethoxy-2,4-dimethylbenzene. A 2.5 M solution of n-BuLi (3.36 mL, 8.4 

mmol) solution was added to a solution of 1,4-dibromo-2,6-dimethoxy-3,5-dimethylbenzene (2.7 

g, 8.4 mmol) in 100 mL of ether at -78 °C under argon, and the colorless solution was stirred at -

78 °C for 1 h. H2O (300 mg, 16.78 mmol) in 3 mL of THF was added slowly at -78 °C under 

argon. The mixture was allowed to warm to room temperature and stirred for 1 h. The mixture 

was quenched with saturated NH4Cl, washed with NH4OH, water, and brine, dried with sodium 

sulfate, and concentrated under reduced pressure then purified through column chromatography 

(10% CH2Cl2/Hexane) to give 3-bromo-1,5-dimethoxy-2,4-dimethylbenzene (1.88 g, 92%) as 

white solid. 
1
H NMR (300 MHz, CDCl3): δ 6.45 (s, 1H), 3.84 (s, 6H), 2.29 (s, 6H). The NMR 

spectra were consistent with literature values.
9
 

2-(3,5-dimethoxy-2,6-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. To a stirred 
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solution of 3-bromo-1,5-dimethoxy-2,4-dimethylbenzene (1.88 g, 7.7 mmol) in anhydryed THF 

(40 mL) was added dropwise a 2.5 M solution of n-BuLi (3.7 mL, 9.25 mmol)  at -78 °C via 

cannula over a 2 min period under argon. The cloudy solution was stirred at -78 °C for 30 min. 

Isopropoxyboronic acid pinacol ester (1.89 mL, 9.25 mmol) was added at once at -78 °C under 

argon via syringe. The mixture was allowed to stir at -78 °C for 30 min and then warm to room 

temperature slowly and stirred for 6 h. The mixture was quenched with aqueous 1 N HCl 

solution, extracted with 3 x 30 mL EtOAc, the organic layer was washed with water, and brine, 

dried with sodium sulfate, and concentrated under reduced pressure then purified through 

column chromatography (5% EtOAc/Hexane) to give 2-(3,5-dimethoxy-2,6-dimethylphenyl)-

4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3.32 g, 73%) as white solid. 
1
H NMR (300 MHz, 

CDCl3): δ 6.46 (s, 1H), 3.81 (s, 6H), 2.21 (s, 6H), 1.42 (s, 12H).
 13

C NMR (75 MHz, CDCl3): δ 

156.1, 121.2, 97.2, 83.9, 56.0, 25.1,14.7. HRMS (ESI): m/z calcd. for C16H25O4B [M]
+ 

291.1877, 

found 291.1872. 

2-(2,6-bis(bromomethyl)-3,5-dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

(10a). To a stirred solution of 2-(3,5-dimethoxy-2,6-dimethylphenyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (584 mg, 2 mmol), NBS (854 mg, 4.8 mmol) and AIBN (32.8 mg, 0.2 mmol) in 

anhydryed CCl4 (10 mL) was stirred to reflux under a light for 2 h. The mixture was allowed to 

cool to room temperature. Evaporated the solvent and added 20 mL CH2Cl2, the organic layer 

was washed with water, and brine, dried with sodium sulfate, and concentrated under reduced 

pressure to give 10a (300 mg, 28%). 
1
H NMR (300 MHz, CDCl3): δ 6.47 (s, 1H), 4.9 (s, 4H), 

3.92 (s, 6H), 1.49 (s, 12H). 10a is not stable for 
13

C NMR and MS. 

1,5-dibromo-2,3,4-trimethoxybenzene. To a stirred solution of 1,2,3-trimethoxybenzene (4.21 

g, 25 mmol) in CH2Cl2 (40 mL) was added dropwise a solution of bromine in CH2Cl2 (2.83 mL, 
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55 mmol) at 0 °C via cannula over a 2 min period under argon. The reaction was stirred for 2 h at 

room temperature. The product was washed with saturated sodium thiosulfate until the organic 

phase became colorless, dried with sodium sulfate and concentrated under reduced pressure then 

purified through column chromatography (20% CH2Cl2/Hexane) to give 1,5-dibromo-2,3,4-

trimethoxy-benzene (6.72 g, 83%) as a colorless liquid. 
1
H NMR (300 MHz, CDCl3): δ 7.49 (s, 

1H), 3.94 (s, 3H), 3.90 (s, 6H). The NMR spectra were consistent with literature values.
9
 

2,3,4-trimethoxy-1,5-dimethylbenzene. A 2.2 M solution of n-BuLi (11.45 mL, 25.2 mmol) 

was added to a solution of 1,5-dibromo-2,3,4-trimethoxybenzene (6.76 g, 20.9 mmol) in 100 mL 

of ether at -78 °C under argon, and the cloudy solution was stirred at -78 °C for 30 min. 

Iodomethane (3.14 mL, 50.4 mmol) was added slowly at -78 °C under argon via syringe. The 

mixture was allowed to warm to room temperature and stirred for 1 h; the mixture became clear. 

A second addition of n-BuLi (11.45 mL, 25.2 mmol) was added at -78 °C under argon and 

stirred at -78 °C for 30 min. Iodomethane (3.14 mL, 50.4 mmol) was added again slowly at -78 

°C under argon via syringe. The mixture was allowed to warm to room temperature and stirred 

for 1 h. The mixture was diluted with ether, quenched with aqueous NH4Cl, washed with 1 N 

NaOH, water, and brine, dried with sodium sulfate, and concentrated under reduced pressure 

then purified through column chromatography (2.5% EtOAc/Hexane) to give 2,3,4-trimethoxy-

1,5-dimethylbenzene (3.18 g, 78%) as colorless liquid. 
1
H NMR (300 MHz, CDCl3): δ 6.71 (s, 

1H), 3.94 (s, 3H), 3.85 (s, 6H), 2.21 (s, 6H). The NMR spectra were consistent with literature 

values.
9
 

1-bromo-3,4,5-trimethoxy-2,6-dimethylbenzene. To a stirred solution of 2,3,4-trimethoxy-1,5-

dimethylbenzene (3.18 g, 16.2 mmol) in CH2Cl2 (40 mL) was added dropwise a solution of 

bromine (1 mL, 19.4 mmol) in CH2Cl2 (2 mL) at 0 °C via cannula over a 2 min period under 
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argon. The reaction was stirred for 4 h at room temperature. The product was washed with 

saturated sodium thiosulfate until the organic phase became colorless, dried with sodium sulfate 

and concentrated under reduced pressure then purified through column chromatography (20% 

CH2Cl2/Hexane) to give 1-bromo-3,4,5-trimethoxy-2,6-dimethylbenzene (3.88 g, 87%) as 

colorless liquid. 
1
H NMR (300 MHz, CDCl3): δ 3.92 (s, 3H), 3.83 (s, 6H), 2.34 (s, 6H). The 

NMR spectra were consistent with literature values.
9
 

4,4,5,5-tetramethyl-2-(3,4,5-trimethoxy-2,6-dimethylphenyl)-1,3,2-dioxaborolane. To a 

stirred solution of 1-bromo-3,4,5-trimethoxy-2,6-dimethylbenzene (3.88 g, 14.2 mmol) in 

anhydryed THF (40 mL) was added dropwise a 2.2 M solution of n-BuLi (7.7 mL, 17 mmol)  at -

78 °C via cannula over a 2 min period under argon. The cloudy solution was stirred at -78 °C for 

30 min. Isopropoxyboronic acid pinacol ester (3.47 mL, 17 mmol) was added at once at -78 °C 

under argon via syringe. The mixture was allowed to stir at -78 °C for 30 min and then warm to 

room temperature slowly and stirred for 6 h. The mixture was quenched with aqueous 1 N HCl 

solution, extracted with 3 x 30 mL EtOAc, the organic layer was washed with water, and brine, 

dried with sodium sulfate, and concentrated under reduced pressure then purified through 

column chromatography (5% EtOAc/Hexane) to give 4,4,5,5-tetramethyl-2-(3,4,5-trimethoxy-

2,6-dimethylphenyl)-1,3,2-dioxaborolane (3.32 g, 73%) as white solid. 
1
H NMR (300 MHz, 

CDCl3): δ 3.91 (s, 3H), 3.79 (s, 6H), 2.28 (s, 6H), 1.41 (s, 12H).
 13

C NMR (75 MHz, CDCl3): δ 

149.7, 147.2, 130.3, 83.9, 60.7, 60.5, 25.0, 15.1. HRMS (ESI): m/z calcd. for C17H27O5B [M]
+
 

321.1982, found 321.1983. 

2-(2,6-bis(bromomethyl)-3,4,5-trimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

(11a): A solution of 4,4,5,5-tetramethyl-2-(3,4,5-trimethoxy-2,6-dimethylphenyl)-1,3,2-

dioxaborolane (1.28 g, 4 mmol), NBS (1.71 g, 9.6 mmol) and AIBN (65.6 mg, 0.4 mmol) in 
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anhydryed CCl4 (30 mL) was stirred to reflux under a light for 2 h. The mixture was allowed to 

cool to room temperature. Evaporated the solvent and added 20 mL CH2Cl2, the organic layer 

was washed with water, and brine, dried with sodium sulfate, and concentrated under reduced 

pressure then purified through column chromatography (2.5% EtOAc/Hexane) to give 11a (0.53 

g, 28%) as white solid. 
1
H NMR (300 MHz, CDCl3) δ 4.90 (s, 4H), 3.99 (s, 6H), 3.91 (s, 3H), 

1.48 (s, 12H).
 13

C NMR (75 MHz, CDCl3): δ 152.7, 147.4, 132.8, 84.5, 61.2, 60.6, 27.6, 25.1. 

HRMS (ESI): m/z calcd. for C17H25O5BBr [M]
+
 477.0193, found 477.0179. 

1,1'-(4,5,6-trimethoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-phenylene)bis 

(N,N,N-trimethylmethanaminium) bromide (11b). A mixture of CH3CN (10 mL), 4.2 M 

trimethylamine (0.72 ml, 3 mmol) in ethanol and 11a (478.0 mg, 1 mmol) was stirred at r.t. over 

night. The reaction mixture was concentrated to give 11b (536 mg, 90%) as white solid. 
1
H 

NMR (300 MHz, DMSO-d6):  8.43 (d, J = 4.2 Hz, 2H), 4.66 (s, 4H), 3.93 (s, 6H), 3.89 (s, 3H), 

3.05 (s, 18H),  1.41 (s, 12H). 
13

C NMR (75 MHz, DMSO-d6): δ 156.6, 148.2, 123.3, 86.0, 62.9, 

61.9, 61.1, 53.3, 25.2.  HRMS (ESI): m/z calcd. for C21H39N2O3BBr2 [M-2Br]
2+ 

219.1629, found 

219.1631. 

(4-bromo-3,5-dimethylphenoxy)(tert-butyl)dimethylsilane. A solution of 4-bromo-3,5-

dimethylphenol (3.0 g, 15 mmol) and imidazole (2.25 g, 33 mmol) in DMF (20 mL) was cooled 

to 0 °C then TBDMSCl (2.49 g, 16.5 mmol) was added in one portion at 0 °C. The solution was 

warmed up to room temperature slowly and stirred for 30 min. The solution was cooled down to 

0 °C again and the reaction was quenched with water. The aqueous layer was extracted with 

Et2O and the organic layer was washed with water, brine, dried with Na2SO4 and filtered. The 

solvent was removed under reduced pressure and the residue was purified by flash 

chromatography using hexane to give (4-bromo-3,5-dimethylphenoxy)-tert-butyl-dimethylsilane 
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(4.41 g, 92%) as colorless liquid. 
1
H NMR (300 MHz, CDCl3): δ 6.60 (s, 2H), 2.37 (s, 6H), 0.99 

(s, 9H), 0.20 (s, 6H). The NMR spectra were consistent with literature values.
10

 

tert-butyl(3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenoxy)dimethylsilane. To a stirred solution of (4-bromo-3,5-dimethylphenoxy)-tert-butyl-

dimethylsilane (4.41 g, 14.0 mmol) in anhydryed THF (30 mL) was added dropwise a 2.2 M 

solution of n-BuLi (8.43 mL, 21.1 mmol)  at -78 °C via cannula over a 10 min period under 

argon. The cloudy solution was stirred at -78 °C for 30 min. Isopropoxyboronic acid pinacol 

ester (4.30 mL, 21.1 mmol) was added at once at -78 °C under argon via syringe. The mixture 

was allowed to stir at -78 °C for 30 min and then warm to room temperature slowly and stirred 

for 4 h. The mixture was quenched with aqueous 1 N HCl solution, extracted with 3 x 30 mL 

EtOAc, the organic layer was washed with water, and brine, dried with sodium sulfate, and 

concentrated under reduced pressure then purified through column chromatography (20% 

DCM/Hexane) to give tert-butyl [3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenoxy]dimethylsilane (4.1 g, 85%) as white solid. 
1
H NMR (300 MHz, CDCl3): δ 6.47 (s, 

3H), 2.37 (s, 6H), 1.39 (s, 12H), 0.98 (s, 9H), 0.18 (s, 6H).
 13

C NMR (125 MHz, CDCl3): δ 

156.5, 144.1, 118.6, 83.4, 25.7, 25.0, 22.4, 18.2. 

(3,5-bis(bromomethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)(tert-butyl) 

dimethylsilane. A solution of tert-butyl(3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)phenoxy)dimethylsilane (4.1 g, 11.8 mmol), NBS (5.11 g, 28.4 mmol) and AIBN (194 mg, 

0.118 mmol) in anhydryed CCl4 (100 mL) was stirred to reflux under a light for 2 h. The 

mixturewas allowed to cool to room temperature. Evaporated the solvent and added 100 mL 

CH2Cl2, the organic layer was washed with water, and brine, dried with sodium sulfate, and 

concentrated under reduced pressure then purified through column chromatography (20% 
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DCM/Hexane) to give tert-butyl [3,5- bis(bromomethyl)-4-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)phenoxy]dimethylsilane (2.67 g, 44%) as white solid. 
1
H NMR (300 MHz, 

CDCl3): δ 6.79 (s, 2H), 4.80 (s, 4H), 1.47 (s, 12H), 1.00 (s, 9H), 0.23 (s, 6H).
 13

C NMR (125 

MHz, CDCl3): δ 157.1, 146.3, 121.9, 84.0, 34.0, 25.7, 25.1, 18.2. HRMS (APCI): m/z calcd. for 

C20H33O3BSiBr2 [M+H]
+ 

519.0736, found 519.0736. 

3,5-bis(bromomethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol (12a). A 

solution of (3,5-bis(bromomethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)(tert-

butyl) dimethylsilane (2.6 g, 5.0 mmol) and TBATB (0.24 g, 0.5 mmol) in MeOH (50 mL) was 

stirred for one day, and another TBATB (0.24 g, 0.5 mmol) was added to the solution. The 

mixture was allowed to stirred one more day. Evaporated the solvent and purified through 

column chromatography (20% DCM/Hexane) to give 12a (0.72 g, 36%) as white solid. 
1
H NMR 

(300 MHz, CDCl3): δ 6.78 (s, 2H), 4.79 (s, 4H), 1.46 (s, 12H).
 13

C NMR (125 MHz, CDCl3): δ 

156.8, 146.7, 117.1, 84.1, 33.7, 25.1. HRMS (ESI): m/z calcd. for C14H19O3BBr2 [M]
+ 

402.9825, 

found 402.9814. 

1,1'-(5-hydroxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-phenylene)bis(N,N,N-

trimethylmethanaminium) bromide (12b). A mixture of CH3CN (10 mL), 4.2 M 

trimethylamine (0.72 ml, 3 mmol) in ethanol and 12a (406.0 mg, 1 mmol) was stirred at r.t. over 

night. The reaction mixture was concentrated to give 12b (519 mg, 99%) as white solid. 
1
H 

NMR (300 MHz, DMSO-d6):  10.9 (s, 12H), 7.22 (s, 2H), 4.79 (s, 4H), 3.05 (s, 18H), 1.39 (s, 

12H). 
13

C NMR (75 MHz, DMSO-d6): δ 159.8, 137.5, 123.7, 85.2, 67.8, 52.8, 25.2. HRMS 

(ESI): m/z calcd. for C20H37N2O3BBr2 [M-2Br]
2+ 

182.1445, found 182.1446. 

(2-bromo-1,3-phenylene)dimethanol. A solution of 2-bromoisophthalaldehyde (2.12 g, 10 

mmol) and NaBH4 (1.91 g, 24 mmol) in MeOH (25 mL) was stirred for 12 h at room temperature. 
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The reaction mixture was concentrated. Water was added to the residue and the product was 

extracted with EtOAc, organic layer was dried over Na2SO4, and evaporated. The (2-bromo-1,3-

phenylene)dimethanol was obtained as white solid (1.77 g, 82%) and was used without any 

further purification. 
1
H NMR (300 MHz, DMSO-d6): δ 7.45-7.39 (m, 3H), 5.41 (t, J = 5.4 Hz 

2H), 4.53 (d, J = 2.7 Hz 4H). 

(2-bromo-1,3-phenylene)bis(methylene) diacetate. To solution of (2-bromo-1,3-

phenylene)dimethanol (1.08 g, 5 mmol) in CH2Cl2 (25 mL) was added TEA (2.02 g, 20 mmol), 

pyridine (1.58 g, 20 mmol) and acetyl chloride (1.56 g, 20 mmol) at 0 °C. The solution was 

stirred over night. The reaction mixture were washed with water and brine, dried over Na2SO4, 

and concentrated under reduced pressure then purified through column chromatography (2.5% 

EtOAc/Hexane) to give (2-bromo-1,3-phenylene)bis(methylene) diacetate (1.13 g, 75%) as white 

solid. 
1
H NMR (300 MHz, CDCl3) δ 7.43-7.36 (m, 3H), 5.25 (s, 4H), 2.17 (s, 6H).

 13
C NMR (75 

MHz, CDCl3): δ 170.6, 136.1, 129.4, 127.4, 124.3, 66.0, 20.9.  

(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-phenylene)bis(methylene) diacetate 

(1c). A mixture of (2-bromo-1,3-phenylene)bis(methylene) diacetate (301 mg, 1 mmol), 

bis(pinacolato)diboron (508 mg, 2 mmol), KOAc (589 mg, 6 mmol), and PdCl2(dppf) (49 mg, 

0.06 mmol) in 1,4-dioxane (20 mL) was refluxed under argon over night and cooled to room 

temperature. Then water was added, and the mixture was extracted with EtOAc. The combined 

organic layer was washed with water and brine, dried over anhydrous Na2SO4, and concentrated 

under reduced pressure then purified through column chromatography (50% DCM/Hexane) to 

provide c (121.9 mg, 35%) as colorless oil. 
1
H NMR (300 MHz, CDCl3): δ 7.36-7.39 (m, 3H), 

5.28 (s, 4H), 2.08 (s, 6H), 1.39 (s, 12H).
 13

C NMR (75 MHz, CDCl3): δ 170.6, 141.0, 130.0, 
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129.2, 84.1, 66.6, 24.9, 21.1. HRMS (ESI): m/z calcd. for C18H25O6B [M+NH4]
+ 

366.2086, 

found 366.2084. 

2-bromo-1,3-bis(bromomethyl)-5-methoxybenzene. A mixture of 2-bromo-5-methoxy-1,3-

dimethylbenzene (1.15 g, 5.4 mmol), NBS (2.12 g, 11.9 mmol) and AIBN (88.8 mg, 0.54 mmol) 

in CCl4 (50 mL) was refluxed under argon for 4 h. The mixture was allowed to cool to room 

temperature. Evaporated the solvent and added 50 mL CH2Cl2, the organic layer was washed 

with water, brine, and dried over Na2SO4, and concentrated under reduced pressure then purified 

through column chromatography (10% DCM/Hexane) to give 2-bromo-1,3-bis(bromomethyl)-5-

methoxybenzene (0.71 g, 35%) as white solid. 
1
H NMR (300 MHz, CDCl3): δ 7.00 (s, 2H), 4.62 

(s, 4H), 3.84 (s, 3H). 

(2-bromo-5-methoxy-1,3-phenylene)bis(methylene) diacetate.  A mixture of 2-bromo-1,3-

bis(bromomethyl)-5-methoxybenzene (0.71 g, 1.9 mmol) and NaOAc (0.79 g, 9.6 mmol) were 

suspended in DMF (20 mL) and heated for 8 h at 80 °C. The mixture was allowed to cool to 

room temperature and diluted with EtOAc and washed with water, brine, and dried over Na2SO4, 

and concentrated under reduced pressure then purified through column chromatography (10% 

DCM/Hexane) to give (2-bromo-5-methoxy-1,3-phenylene)bis(methylene) diacetate (0.51g, 81%) 

as white solid. 
1
H NMR (300 MHz, CDCl3): δ 6.96 (s, 2H), 5.21 (s, 4H), 3.84 (s, 3H), 2.18 (s, 

6H).
 13

C NMR (75 MHz, CDCl3): δ 170.5, 158.9, 137.0, 114.9, 114.2, 65.9, 55.6, 20.9. 

(5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-phenylene)bis(methylene) 

diacetate (9c). A mixture of (2-bromo-5-methoxy-1,3-phenylene)bis(methylene) diacetate (331 

mg, 1 mmol), bis(pinacolato)diboron (508 mg, 2 mmol), KOAc (589 mg, 6 mmol), and 

PdCl2(dppf) (49 mg, 0.06 mmol) in 1,4-dioxane (20 mL) was refluxed under argon over night 

and cooled to room temperature. Then water was added, and the mixture was extracted with 
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EtOAc. The combined organic layer was washed with water and brine, dried over anhydrous 

Na2SO4, and concentrated under reduced pressure then purified through column chromatography 

(50% DCM/Hexane) to provide 1c (147.5 mg, 39%) as white solid. 
1
H NMR (300 MHz, CDCl3): 

δ 6.91 (s, 2H), 5.29 (s, 4H), 3.85 (s, 4H), 2.10 (s, 6H), 1.37 (s, 12H).
 13

C NMR (75 MHz, 

CDCl3): δ 170.7, 160.9, 143.6, 114.5, 83.8, 66.6, 24.8, 21.1. HRMS (ESI): m/z calcd. for 

C19H27O7B [M+NH4]
+ 

396.2192, found 396.2186. 

(5-hydroxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,3-phenylene)bis(methylene) 

diacetate (12c).  A mixture of 12a (100 mg, 0.248 mmol) and NaOAc (101.5 mg, 1.238 mmol) 

were suspended in DMF (10 mL) and heated for 8 h at 80 °C. The mixture was allowed to cool 

to room temperature and diluted with EtOAc and washed with water, brine, and dried over 

Na2SO4, and concentrated under reduced pressure then purified through column chromatography 

(5% EtOAc/DCM) to give 1 (27 mg, 31%) as white solid.
 1

H NMR (300 MHz, CDCl3): δ 6.86 (s, 

2H), 5.28 (s, 4H), 2.10 (s, 6H), 1.37 (s, 12H).
 13

C NMR (75 MHz, CDCl3): δ 171.9, 157.1, 144.0, 

115.7, 83.8, 66.3, 24.8, 21.1. HRMS (ESI): m/z calcd. for C18H25O7B [M+NH4]
+ 

382.2035, 

found 382.2035. 

2-(2,6-Bis(bromomethyl)-4-(prop-2-ynyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (13). To a stirred solution of 12a (100 mg, 0.25 mmol), and K2CO3 (68.4 mg, 

0.50 mmol) in anhydryed DMF (2 mL) was stirred at room temperature for 30 min.Propargyl 

bromide (0.033 mL, 0.30 mmol) was added at room temperature. The mixture was stirred for 2h 

at room temperature. The mixture was extracted with 3 × 10 mL EtOAc, the organic layer was 

washed with water, and brine, dried with sodium sulfate, and concentrated under reduced 

pressure then purified through column chromatography (50% DCM/Hexane) to give of 2-(2,6-

bis(bromomethyl)-4-(prop-2-ynyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 13 (20 
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mg, 28%) as colorless oil. 
1
H NMR (300 MHz, CDCl3) δ 6.92 (s, 2H), 4.84 (s, 4H), 4.73 (d, J = 

1.5 Hz, 2H), 2.56 (t, J = 2.0 Hz, 1H), 1.46 (s, 12H). 
13

C NMR (300 MHz, CDCl3): 158.6, 146.4, 

116.5, 84.1, 76.1, 55.7, 33.9, 25.1. HRMS (ESI): m/z calcd. for C17H21BO3Br2 [M]
+
 440.9981, 

found 440.9991. 
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3.7. Appendices B: Characterization of Compounds 

 

Figure 3-6-1. 
1
H NMR spectra of 9a. 

 

Figure 3-6-2. 
13

C NMR spectra of 9a. 
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Figure 3-6-3. IT-TOF-MS (APCI) of 9a. 

 

Figure 3-6-4. 
1
H NMR spectra of 9b. 
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Figure 3-6-5. 
13

C NMR spectra of 9b. 

 

Figure 3-6-6. IT-TOF-MS (ESI) of 9b. 
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Figure 3-6-7. 
1
H NMR spectra of 9c. 

 

Figure 3-6-8. 
13

C NMR spectra of 9c. 
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Figure 3-6-9. IT-TOF-MS (ESI) of 9c. 

 

Figure 3-6-10. 
1
H NMR spectra of 10a. 
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Figure 3-6-11. 
1
H NMR spectra of 11a. 

 

Figure 3-6-12. 
13

C NMR spectra of 11a. 
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Figure 3-6-13. IT-TOF-MS (ESI) of 11a. 

 

Figure 3-6-14. 
1
H NMR spectra of 11b. 
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Figure 3-6-15. 
13

C NMR spectra of 11b. 

 

Figure 3-6-16. IT-TOF-MS (ESI) of 11b. 
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Figure 3-6-17. 
1
H NMR spectra of 12a. 

 

Figure 3-6-18. 
13

C NMR spectra of 12a. 
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Figure 3-6-19. IT-TOF-MS (ESI) of 12a. 

 

Figure 3-6-20. 
1
H NMR spectra of 12b. 
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Figure 3-6-21.
 13

C NMR spectra of 12b. 

 

Figure 3-6-22. IT-TOF-MS (ESI) of 12b. 
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Figure 3-6-23. 
1
H NMR spectra of 12c. 

 

Figure 3-6-24. 
13

C NMR spectra of 12c. 
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Figure 3-6-25. IT-TOF-MS (ESI) of 12c. 

 

Figure 3-6-26. 
1
H NMR spectra of 1c. 
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Figure 3-6-27. 
13

C NMR spectra of 1c. 

 

Figure 3-6-28. IT-TOF-MS (ESI) of 1c. 
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Figure 3-6-29. 
1
H NMR spectra of 13. 

 

Figure 3-6-30. 
13

C NMR spectra of 13. 
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Figure 3-6-31. IT-TOF-MS (ESI) of 13. 
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Chapter 4. Photo-Induced Interstrand Cross-Link Formation by Naphthalene Boronates 

and its Mechanism Study 

4.1. Introduction 

Previous study showed that quinone methides (QMs) is an important intermediate in DNA cross-

linking and alkylating process. More recently, several methods have been developed to activate 

bisaryl derivatives to cross-link DNA via bisquinone methides (bisQMs), such as fluoride-

induction,
1,2

 oxidation,
3,4

 photo-irradiation,
5
 and H2O2-induction.

6,7 
Apart from QMs, some other 

active species such as radical and carbocation could also be involved in DNA alkylating process. 

Very recently, Dr. Greenberg and Li's group reported that photo-irradiation of modified 

thymidines yielded both 5-(2’-deoxyuridinyl)methyl cation and radical but only the cation 

produces ICLs in duplex DNA.
8,9

 However, DNA ICL formation via a radical or a carbocation 

generated from a bisaryl derivative is probably least investigated. 

Our previous work showed that the phenylboronate derivatives, such as 1a, 9a and 12a can be 

activated by H2O2 to release QMs cross-linking DNA. Freccero's group reported a class of 

binaphthol derivatives, which can be activated by photo-irradiation to induce ICL formation via 

QMs. These ortho-binaphthalene quinine methide precursors (o-BQMP) have a strong 

absorbance above 310 nm and exhibit excellent solubility under physiological conditions 

(Scheme 4-1).
10,11 

In this work, we designed and synthesized a few novel naphthalene boronate 

esters 14a,b (Scheme 4-2) and studied their reactivity towards DNA upon H2O2-induction or 

photo-irradiation. We discovered that the naphthalene boronate esters were not good H2O2-

inducible DNA cross-linking agents but can be activated by photo-irradiation to induce DNA ICL 

formation. The mechanism involves formation of free radicals which undergo oxidation to a 

methyl cation capable of alkylating DNA.  
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Scheme 4-1. QM generation by binolquinone methide precursors. 

4.2. DNA cross-linking ability of binaphthalene boronate esters 14a and 14b 

4.2.1. Synthesis of 14a and 14b 

 

Scheme 4-2. Synthesis of compounds 14a and 14b. 

 

Compounds 14a and 14b were synthesized starting from commercially available 1-bromo-2-

methylnaphthalene (14-s) (Scheme 4-3). Treatment of 14-s with lead tetraacetate in acetonitrile 

resulted in regiospecific oxidative dehydrodimerization to provide binaphthalene analogue 14-1. 
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Palladium-catalyzed borylation of 14-1 yielded the boronated product 14-2, which was converted 

to the brominated analogue 14a by using NBS and AIBN in acetonitrile. Quaternization of 14a 

with trimethylamine provided 14b in a nearly quantitative yield. 

4.2.2. DNA cross-linking ability of 14a and 14b 

Initially, the activity of 14a and 14b towards DNA was investigated by measuring DNA ICL 

formation with H2O2 or photo induction. The reaction of 14a or 14b with duplex 5 was carried 

out in phosphate buffer (pH = 8.0) at 37 ºC. ICL formation and cross-linking yields were 

analyzed via denaturing polyacrylamide gel electrophoresis (PAGE) with phosphorimager 

analysis (Image Quant 5.2). Without H2O2 or UV irradiation, there was no ICLs formation by 

14a and 14b (Figure 4-1, lanes 2, 5, 10 and 13). However, in the presence of H2O2 or UV-

irradiation (350 nm), both 14a and 14b induced DNA interstrand cross-link formation while 

higher ICL yield was observed with 14a (Figure 4-1, lanes 4 and 12). For the same compound, 

UV-irradiation resulted in more efficient DNA cross-linking than H2O2 induction. For example, 

when 200 µM of drugs were used, UV-irradiation led to 11% ICLs for 14a and 7.1% for 14b 

(Figure 4-1, lanes 4 and 7), while H2O2 induced only 4.1% ICLs for 14a and 2.9% for 14b 

(Figure 4-1, lanes 12 and 15).  
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Figure 4-1. H2O2 and UV induced ICL formation by 14a,b. A. UV-induced DNA cross-link 

formation by compounds 14a and 14b at 37 °C for 4 h. Lane 1: DNA only; lane 2: 200 µM 14a 

without UV; lane 3: 50 µM 14a (cross-linking yield 4.2%); lane 4: 200 µM 14a (10.9%); lane 5: 

200 µM 14b without UV; lane 6: 50 µM 14b (3.2%); lane 7: 200 µM 14b (7.1%).  B. H2O2-

induced DNA cross-link formation by compounds 14a and 14b at 37 °C for 24 h. Lane 8: DNA 

only; lane 9: H2O2 only; lane 10: 200 µM 14a without H2O2; lane 11: 50 µM 14a and 100 µM 

H2O2 (2.1%); lane 12: 200 µM 14a and 400 µM H2O2 (4.1%); lane 13: 200 µM 14b without 

H2O2; lane 14: 50 µM 14b and 100 µM H2O2 (1.1%); lane 15: 200 µM 14b and 400 µM  H2O2 

(2.9%). 

In order to optimize the ICL formation condition for later study, different concentration of drug 

were tested and we found that higher concentration of drugs led to increased ICL yields (Figures 

4-2 to 4-5).However, the DNAs could not enter the gel completely if more than 200 µM of 14b 

was used. That is possibly because of the presence of large amount positive charges when 14b 

monoalkylated DNA strands (Figure 4-4 lane 9-11 and Figure 4-6 lane 8-9). It will lead to 

inaccurate estimation of the ICL yields. Thus, 200 µM of drugs were used for all further study.  

And also, the ICL formation was time-dependent. Extension of UV irradiation time increased the 

ICL yields (Figure 4-7 and 4-8). But longer irradiation time also induced DNA strands break 

(Figure 4-7 lane 9-11). So we chose 4 h UV irradiation for further investigation. 
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Figure 4-2. Concentration dependence of ICL formation by 14a upon H2O2 activation. The ratio 

of 14a/H2O2 is 1:2. Lane 1: with DNA only; lane 2: DNA with H2O2 only; lane 3: DNA with 14a 

only; lane 4: 10 µM 14a (cross-linking yield 1.1%); lane 5: 20 µM 14a (1.3%); lane 6: 50 µM 

14a (2.5%); lane 7: 100 µM 14a (3.1%); lane 8: 200 µM 14a (3.6%); lane 9: 500 µM 14a 

(4.3%); lane 10: 1 mM 14a (4.5%); lane 11: 2 mM 14a (4.1%). Condition: 37 
o
C incubation at 

pH8 for 1 d. 

 

Figure 4-3. Concentration dependence of ICL formation by 14b upon H2O2 activation. The ratio 

of 14b/H2O2 is 1:2. Lane 1: with DNA only; lane 2: DNA with H2O2 only; lane 3: DNA with 14b 

only; lane 4: 10 µM 14b (cross-linking yield 0.9%); lane 5: 20 µM 14b (1.3%); lane 6: 50 µM 

14b (2.3%); lane 7: 100 µM 14b (2.4%); lane 8: 200 µM 14b (2.8%); lane 9: 500 µM 14b 

(2.3%); lane 10: 1 mM 14b (not quantified); lane 11: 2 mM 14b (not quantified). Condition: 37 

o
C incubation at pH8 for 1 d. 
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Figure 4-4. Concentration dependence of ICL formation by 14a upon UV irradiation. Lane 1: 

with DNA only; lane 2: 10 µM 14a (cross-linking yield 1.4%); lane 3: 20 µM 14a (1.9%); lane 

4: 50 µM 14a (3.6%); lane 5: 100 µM 14a (6.8%); lane 6: 200 µM 14a (11.1%); lane 7: 500 µM 

14a (13.8%); lane 8: 1 mM 14a (13.8%); lane 9: 2 mM 14a (13.0%). Condition: UV irradiation 

at pH8 for 4h. 

 

Figure 4-5. Concentration dependence of ICL formation by 14b upon UV irradiation. Lane 1: 

with DNA only; lane 2: 10 µM 14b (cross-linking yield 2.2%); lane 3: 20 µM 14b (2.8%); lane 

4: 50 µM 14b (3.8%); lane 5: 100 µM 14b (4.8%); lane 6: 200 µM 14b (8.7%); lane 7: 500 µM 

14b (8.7%); lane 8: 1 mM 14b (6.1%); lane 9: 2 mM 14b (not quantified). Condition: UV 

irradiation at pH8 for 4h. 
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Figure 4-6. Time dependence of ICL formation by 14a upon UV irradiation. Lane 1: no UV 

irradiation; lane 2: UV for 5 min (cross-linking yield 0.4%); lane 3: 15 min (0.9%); lane 4: 30 

min (1.2%); lane 5: 1 h (2.5%); lane 6: 2 h (4.5%); lane 7: 3 h (8.9%); lane 8: 4 h (13.3%); lane 

9: 6 h (14.1%); lane 10: 8 h (16.6%); lane 11: 12 h (not quantified). Condition: UV irradiation at 

pH8. 

 

Figure 4-7. Time dependence of ICL formation by 14b upon UV irradiation. Lane 1: no UV 

irradiation; lane 2: UV for 5 min (cross-linking yield 0.9%); lane 3: 15 min (1.8%); lane 4: 30 

min (2.2%); lane 5: 1 h (3.8%); lane 6: 2 h (5.8%); lane 7: 3 h (6.7%); lane 8: 4 h (7.9%); lane 9: 

6 h (6.6%). Condition: UV irradiation at pH8. 
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4.2.3. Determination of cross-linking site 

We further investigated the heat-stability of purified cross-linked products and monoalkylated 

single-stranded DNA and determined the cross-linking sites. The ICLs formed from 14a and 14b 

were stable to heating in phosphate buffer while clear DNA cleavage was observed with 

piperidine treatment. Strong cleavage bands were observed mainly at dG sites upon heating in 

1.0 M piperidine which is known to induce cleavage of N-7-alkylated purines according to the 

Maxam and Gilbert reaction mechanism (Figure 4-9 lanes 1 and 3).
12,13 

This indicated that the 

cross-linking reactions mainly occurred with dGs via alkylation. To confirm this, we applied 

self-complementary dAT duplex 6 and duplex 7 having only dCs/dTs in one strand and dGs/dAs 

in the other strand. The DNA ICL formation was observed with duplex 7 but not with 6 when 

they were treated with 14a upon photo-irradiation (Figure 4-10), which indicated that cross-

linking reactions took place with dG and dC not with dA/dT. 

 



 
 

159 

Figure 4-8. Determination of cross-linking site of 14a. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of the isolated ICL products and monoalkylated single stranded DNA 

(5a') upon heating in piperidine. Lane 1: piperidine treatment of ICL product; lane 2: Fe·EDTA 

treatment of ICL product; lane 3: piperidine treatment of 5a'; lane 4: Fe·EDTA treatment of 5a'; 

lane 5: G+A sequencing; lane 6: Fe·EDTA treatment of 5. 

 

 

Figure 4-9. ICL formation from duplex 7 induced by 14a upon UV irradiation. Lane 1: DNA 

only; lane 2: DNA only with UV; lane 3: DNA with 500 µM 14a no UV; lane 4: DNA with 500 

µM 14a and UV irradiation. Condition: UV irradiation for 4 h at pH8. 

4.3. The mechanism of ICL formation induced by 14a,b 

4.3.1. QM formation in the presence of H2O2 

As we described previously,
6,7 

QM trapping experiment using excess ethyl vinyl ether (EVE) 

was applied for determining H2O2-induced QMs formation. As expected, the QM trapping 

product 14-e was isolated when 14a or 14b was incubated with H2O2 in the presence of EVE at 

37 °C for 24 h (Scheme 4-3). To our surprise, 14-e was not detected when compounds 14a and 
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14b were irradiated with 350 nm light in the presence of excess EVE. These results suggested 

that different from H2O2-induced DNA cross-linking by 14a and 14b where QMs were involved, 

photo-irradiation of these compounds might lead to formation of other active species capable of 

cross-linking DNA, such as radicals or cations. 

 

Scheme 4-3. QM Trapping reactions with ethyl vinyl ether. 

4.3.2. Radical formation upon UV irradiation 

 

Scheme 4-4. Synthesis of compounds 15a and 15b. 

In order to fully investigate the photo-reactivity of naphthaleneboronates and simplify the 

trapping reaction, we synthesized two simpler models 15a,b (Scheme 4-4). Then the QM 

trapping reaction was performed. Similar to the results obtained with 14a and 14b, the QM 

trapping product was not obtained after 15a,b were irradiated at 350 nm in the presence of EVE 

(Scheme 4-5 A). However we observed the generation of compound 17 which was considered 

resulting from the dimerization of the radical 16 (Scheme 4-5 A). Thus, to provide evidence for 
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formation of 16, 2-mercaptoethanol (BME) and 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) 

were chosen as radical trapping agents. As expected, the radical trapping products 15-1 and 15-t 

were obtained following photo-irradiation of 15a,b (Scheme 4-5 A). Encouraged by these data, 

we further performed radical trapping reactions with 14a and 14b upon 350 nmirradiation using 

BME and TEMPO, which yielded 14-2 and 14-t, respectively. Clearly, photo-induced DNA ICL 

formation by 14a and14b was through a radical mechanism not via QM formation. However, we 

cannot conclude that the DNA ICLs were directly produced from the radical intermediates since 

the methyl radical could be oxidized or reduced to cation or anion.
9
 

 

Scheme 4-5. Radical trapping reactions with BME or TEMPO. 
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4.3.3. Cation formation from radical through electron transfer  

Subsequently, methoxyamine was chosen as trapping agent for carbocation, as it had been 

successfully employed as a probe for 5-(2’-deoxyuridinyl)methylcation.
8
 Photo-irradiation of 

15a in the presence of methoxyamine produced the expected cation trapping products 18 and 19. 

Meanwhile, 15-1 was also obtained. We considered that compound 19 was generated from 

oxidation of 18. Although the exact mechanism for formation of 15-1 and 19 is not clear yet, it is 

precedent that alkoxyamines can be oxidized to oxime ethers in the presence of radicals.
14 

We 

propose that the reaction might proceed via a H-transfer from either the CH2 or NH to the radical 

16 resulting in 15-1 and the radical intermediate 22 or 23 (Scheme 4-6 C). A second H-transfer 

from 22 or 23 to 16 would yield 19 and 15-1. 

Our further investigation showed that a nucleophilic substitution occurred between 15a and 

methoxyamine under heating without UV-irradiation which yielded only 18 but not 15-1 and 19 

(Scheme 4-7). This provided evidence that formation of 19 is via a radical mechanism. Similar to 

15a, photo-irradiation of 15b with methoxyamine yielded compounds 15-1 and 19. However, 

alkoxyamine 18 was not isolated in sufficient amount with 15b but compound 21 was isolated in 

9% yield instead. Compound 21 could be generated from a hydroxylmethyl intermediate 21a 

which might be produced via oxidation of the radical 16 or hydroxylation of the cation 20. As no 

direct evidence for H abstraction by 16 to form 20, we cannot exclude the possibility that another 

molecule of 16 accepts one electron to generate a methyl anion, which is protonated to form 20. 

However, our anion trapping reaction by using D2O discriminate against formation of the methyl 

anion as 20 was generated from photo-irradiation of 15b in the presence of D2O while the 

deuterated analogue of 20 was not detected (Scheme 4-8). Obviously, 16 is unlikely reduced to 
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the methyl anion. Thus, we proposed that the bromo radical could be the electron acceptor for 

formation of 20. 

 

Scheme 4-6. Cation trapping reactions with methoxyamine. 

 

Scheme 4-7. Nucleophilic substitution occurred between 15a and methoxyamine under heating 

without UV-irradiation. 
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Scheme 4-8. Photo-irradiation of 15b in the presence of TEMPO and D2O. 

To test our hypothesis, a AgNO3 solution was added to a 20 mM 15a solution in CH3CN after 4 

h photo-irradiation. The formation of white precipitate AgBr suggested the presence of Br
-
 

(Scheme 4-10). Collectively, our data confirmed that the naphthelenemethylcation 20 as well as 

the radical 16 were generated from photo-irradiation of 15a,b. 

 

Scheme 4-9. One-electron transfer occurred between the radical 16 and bromo radical. 

There are two possible pathways for formation of 20, either through direct heterolysis of 15a,b 

or via electron transfer from 16. In order to distinguish between these two processes, we 

performed a trapping experiment by using both methoxyamine and TEMPO. We chose 15b but 

not 15a for this study because of the observation that direct nucleophilic substitution of Br with 

methoxyamine occurred with 15a even without UV-irradiation which may lead to non-specific 

reaction (Scheme 4-9), while such a reaction was not observed with 15b possibly due to poorer 

leaving property of trimethylamine than bromo group. Should 20 be directly produced from 
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heterolysis of 15b, the presence of TEMPO would not affect generation of compounds 15-1, 18 

and/or 19. However, if 20 would be produced from the radical 16, the yields of 15-1, 18 and/or 

19 would be greatly reduced due to the competence of TEMPO for 15 prior to its conversion to 

20.  

As trapping the radical 16 by TEMPO is much more efficient than trapping the cation 20 by 

methoxyamine (Figures 4-14 and 4-15), we used a 10:1 ratio of methoxyamine to TEMPO. The 

results showed that photo-irradiation of 20 mM 15b in the presence of 800 mM methoxyamine 

and 80 mM TEMPO yielded the radical trapping products 15-t (18%), and 15-1 (11%) with trace 

amount of 19 (<1%). The greatly reduced yields for the cation trapping products 18 and 19 and 

formation of large amount of the radical trapping products 15-t suggested that the cation 20 was 

more likely formed from 16 via electron transfer. 

4.3.4. The effect of trapping agent on DNA cross-link formation 

At last, we employed the orthogonal traps, methoxyamine and TEMPO to determine the species 

responsible for DNA ICL formation. The two traps were then tested separately as competitors for 

ICL formation upon 350 nm irradiation of 14a and 14b with DNA duplex 5. Should the DNA 

cross-linking products be directly produced from the cation 20 which is derived from 16, both 

methoxyamine and TEMPO would compete with ICL formation. As expected, the cross-linking 

yields are dependent on the concentration of both methoxyamine and TEMPO. The cross-link 

yield decreased from 13.5% to 1.6% from 0 mM to 100 mM methoxyamine (Figures 4-10 and 

Figure 4-12) and from 14.8% to 1.0% from 0 mM to 20 mM TEMPO (Figures 4-11 and Figure 

4-13).  
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Figure 4-10. Effect of methoxyamine on ICL formation by 14a upon UV irradiation. Lane 1: 

with DNA only; lane 2: 500 µM 14a (cross-linking yield 13.5%); lane 3: 500 µM 14a and 5 mM 

methoxyamine (6.6%); lane 4: 500 µM 14a and 10 mM methoxyamine (4.7%); lane 5: 500 µM 

14a and 20 mM methoxyamine (4.0%); lane 6: 500 µM 14a and 30 mM methoxyamine (4.5%); 

lane 7: 500 µM 14a and 40 mM methoxyamine (3.9%); lane 8: 500 µM 14a and 50 mM 

methoxyamine (2.7%); lane 9: 500 µM 14a and 60 mM methoxyamine (2.5%); lane 10: 500 µM 

14a and 80 mM methoxyamine (2.1%); lane 11: 500 µM 14a and 100 mM methoxyamine 

(1.6%). Condition: UV irradiation at pH8 for 4 h. 

 

Figure 4-11. Effect of TEMPO on ICL formation by 14a upon UV irradiation. Lane 1: with 

DNA only; lane 2: 500 µM 14a (cross-linking yield 14.8%); lane 3: 500 µM 14a and 500 µM 

TEMPO (9.8%); lane 4: 500 µM 14a and 1 mM TEMPO (6.2%); lane 5: 500 µM 14a and 2 mM 

TEMPO (4.2%); lane 6: 500 µM 14a and 3 mM TEMPO (3.3%); lane 7: 500 µM 14a and 4 mM 

TEMPO (2.9%); lane 8: 500 µM 14a and 5 mM TEMPO (2.2%); lane 9: 500 µM 14a and 7.5 

mM TEMPO (2.0%); lane 10: 500 µM 14a and 10 mM TEMPO (1.7%); lane 11: 500 µM 14a 
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and 15 mM TEMPO (1.2%); lane 12: 500 µM 14a and 20 mM TEMPO (1.0%). Condition: UV 

irradiation at pH8 for 4 h. 

 

Figure 4-12. Effect of methoxyamine on ICL formation by 14b upon UV irradiation. Lane 1: 

with DNA only; lane 2: 200 µM 14b (cross-linking yield 7.4%); lane 3: 200 µM 14b and 500 

µM methoxyamine (6.8%); lane 4: 200 µM 14b and 1 mM methoxyamine (5.8%); lane 5: 200 

µM 14b and 2 mM methoxyamine (5.4%); lane 6: 200 µM 14b and 3 mM methoxyamine 

(4.8%); lane 7: 200 µM 14b and 4 mM methoxyamine (4.5%); lane 8: 200 µM 14b and 5 mM 

methoxyamine (4.1%); lane 9: 200 µM 14b and 7.5 mM methoxyamine (3.8%); lane 10: 200 µM 

14b and 10 mM methoxyamine (3.5%); lane 11: 200 µM 14b and 15 mM methoxyamine (3.2%); 

lane 12: 200 µM 14b and 20 mM methoxyamine (2.9%); lane 13: 200 µM 14b and 50 mM 

methoxyamine (2.1%); lane 14: 100 µM 14b and 100 mM methoxyamine (1.4%). Condition: UV 

irradiation at pH8 for 4 h. 

 

Figure 4-13. Effect of TEMPO on ICL formation by 14b upon UV irradiation. Lane 1: with 

DNA only; lane 2: 200 µM 14b (cross-linking yield 8.2%); lane 3: 200 µM 14b and 500 µM 
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TEMPO (5.4%); lane 4: 200 µM 14b and 1 mM TEMPO (3.8%); lane 5: 200 µM 14b and 2 mM 

TEMPO (3.0%); lane 6: 200 µM 14b and 3 mM TEMPO (2.8%); lane 7: 200 µM 14b and 4 mM 

TEMPO (2.6%); lane 8: 200 µM 14b and 5 mM TEMPO (2.1%); lane 9: 200 µM 14b and 7.5 

mM TEMPO (2.0%); lane 10: 200 µM 14b and 10 mM TEMPO (1.7%); lane 11: 200 µM 14b 

and 15 mM TEMPO (1.5%); lane 12: 200 µM 14b and 20 mM TEMPO (1.2%); lane 13: 200 µM 

14b and 50 mM TEMPO (1.0%); lane 14: 100 µM 14b and 100 mM TEMPO (0.9%). Condition: 

UV irradiation at pH8 for 4 h. 

 

Figure 4-14. Effect of methoxyamine and TEMPO on ICL formation by 14a. 

 

Figure 4-15. Effect of methoxyamine and TEMPO on ICL formation by 14b. 
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The almost complete quenching of DNA ICL formation by methoxyamine discriminated against 

that 16 would directly cross-link DNA. On the other hand, TEMPO efficiently inhibited the ICL 

formation which suggested that a radical would be the precursor for the cation. Collectively, our 

data suggested that the naphthelenemethylcation not the radicals yields DNA ICLs and the cation 

is derived from the radical not from direct heterolysis of 14a and 14b. 

4.3.5. Proposed mechanism for ICL formation induced by 14a and 14b 

 

Scheme 4-10. Proposed mechanism for ICL formation induced by 14a and 14b. 

Having confirmed formation of the naphthelenemethylcation 20 and the radical 16 from photo-

irradiation of the naphthalene boronates 15a,b, we proposed a mechanism for the ICL formation 

induced by binaphthaleneboronates 14a and 14b (Scheme 4-11). Photo-irradiation of 14a and 

14b produces free radical A which undergoes one-electron transfer to form the cation B directly 
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alkylating DNA. Departure of the second leaving group followed by electron transfer leads to the 

second cation product E that alkylates the complementary strand to form ICL products. 

4.4. Experimental Section 

General Methods. Unless otherwise specified, chemicals were purchased from Aldrich or 

FisherScientific and were used as received without further purification. T4 polynucleotide kinase 

was obtained from New England Biolabs. Oligonucleotides were synthesized via standard 

automated DNA synthesis techniques using an Applied Biosystems model 394 instrument in a 

1.0 μM scale using commercial 1000Å CPG-succinyl-nucleoside supports. Deprotection of the 

nucleobases and phosphate moieties as well as cleavage of the linker were carried out under mild 

deprotection conditions using a mixture of 40% aq. MeNH2 and 28% aq. NH3 (1:1) at room 

temperature for 2 h. Radiolabeling was carried out according to the standard protocols.
15

 [γ-

32
P]ATP was purchased from Perkin-Elmer Life Sciences. Quantification of radiolabeled 

oligonucleotides was carried out using a Molecular Dynamics Phosphorimager equipped with 

ImageQuant Version 5.2 software. 
1
H NMR and 

13
C NMR spectra were taken on a Bruker DRX 

300 MHz and 500 MHz spectrophotometer. High resolution mass spectrometry was performed at 

the University of California-Riverside and Shimadzu Laboratory for Advanced & Applied 

Analytical Chemistry at the University of Wisconsin-Milwaukee. 

Interstrand cross-link formation with duplex DNA 5. The 
32

P-labelled oligonucleotide (0.5 

μM) was annealed with 1.5 equiv of the complementary strand by heating to 65 
o
C for 3 min in a 

buffer containing 10 mM potassium phosphate (pH 7), and 100 mM NaCl, followed by slow-

cooling to room temperature overnight. The 
32

P-labeled oligonucleotide duplex (2 μL, 0.5 μM) 

was mixed with 1 M NaCl (2 μL), 100 mM potassium phosphate (2 μL, pH 8), 10 mM H2O2 (2 

μL), and compound 14a or 14b (concentration range: 10 μM to 2 mM in 6 μL CH3CN) and 
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appropriate amount of autoclaved distilled water were added to give a final volume of 20 μL. 

The reaction was incubated at room temperature for 24 h and quenched by an equal volume of 

90% formamide loading buffer, then subjected to 20% denaturing polyacrylamide gel 

electrophoresis. 

DNA ICL formation upon UV irradiation. The 
32

P-labelled oligonucleotide (0.5 μM) was 

annealed with 1.5 equiv of the complementary strand by heating to 65 
o
C for 3 min in a buffer 

containing 10 mM potassium phosphate (pH 7), and 100 mM NaCl, followed by slow-cooling to 

room temperature overnight.The 
32

P-labeled oligonucleotide duplex (2 μL, 0.5 μM) was mixed 

with 1 M NaCl (2 μL), 100 mM potassium phosphate (2 μL, pH range 5-9) and different 

concentrations of compound 14a or 14b (concentration range: 10 μM to 2 mM in 6 μL CH3CN) 

and the appropriate amount of autoclaved water to give a final volume of 20 μL. The reaction 

was irradiated with 350 nm UV light for 1-5 hours and quenched by an equal volume of 90% 

formamide loading buffer, then subjected to 20% denaturing polyacrylamide gel electrophoresis. 

Trapping assay of oligonucleotides. The 
32

P-labeled oligonucleotide duplex (2 μL, 0.5 μM) was 

mixed with 1 M NaCl (2 μL), 100 mM potassium phosphate (2 μL, pH 8). The stock solution of 

MeONH2·HCl (2 M) was titrated with 5 M NaOH solution to adjust the pH to ~ 7.0. Then, 2 μL 

was added to the reaction mixture as appropriate for the desired concentration. TEMPO was 

dissolved in CH3CN, then 2 μL was added to the reaction mixture as for the desired 

concentration. Different concentrations of compound 14a or 14b (4 μL in CH3CN) and the 

appropriate amount of autoclaved water and CH3CN were added to give a final volume of 20 μL 

(6 μL CH3CN with 14 μL H2O). The reaction was irradiated with 350 nm UV light for 4 hours 

and quenched by an equal volume of 90% formamide loading buffer, then subjected to 20% 

denaturing polyacrylamide gel electrophoresis. 
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Stability study of ICL product formed with 5. After the cross-link reaction, the reaction 

mixtures (0.35 μM DNA duplex, 20 μL) were coprecipitated with calf thymus DNA (2.5 mg/mL, 

5 μL) and NaOAc (3 M, 5 μL) in the presence of EtOH (90 μL) at -80 
o
C for 30 min, followed by 

centrifuging for 5 min at 15000 rmp. The supernatant was removed, and the pellet was washed 

with cold 75% EtOH and lyophilized for 30 min in a Centrivap Concentrator of LABCONCO at 

37 
o
C. The dried DNA fragments were dissolved in H2O (30 μL) and divided into three portions. 

One portion (10 μL) was incubated with piperidine (2 M, 10 μL) at 90 
o
C for 30 min, and the 

second portion (10 μL) was incubated with 0.1 M NaCl and 10 mM potassium phosphate buffer 

(pH 7, 10 μL) under the same condition, and the third portion was used as a control sample. The 

samples were subjected to 20% denaturing polyacrylamide gel electrophoresis. 

Hydroxyl radical reaction (Fe·EDTA reaction). Fe(II)·EDTA cleavage reactions of 
32

P-

labelled oligonucleotide (0.1μM) were performed in a buffer containing 50 μM (NH4)2Fe(SO4)2, 

100 μM EDTA, 5 mM sodium ascorbate, 0.5 M NaCl, 50 mM sodium phosphate (pH 7.2) and 1 

mM H2O2 for 3 min at room temperature (total substrate volume 20 μL), then quenched with 100 

mM thiourea (10 μL). Samples were lyophilized, and incubated with 1 M piperidine (20 μL) at 

90 
o
C for 30 min. The mixture was lyophilized again, dissolved in 20 μL H2O: 90% formamide 

loading buffer (1:1) and subjected to 20% denaturing polyacrylamide gel electrophoresis. 

QM Trapping Assay. General Procedure. A solution of 14a,b (20 mg) in a mixture of CH3CN 

(2 mL), H2O (250 μL), and 1 M potassium phosphate buffer (250 μL, pH 8) was incubated at 37 

°C for 20 min with excess ethyl vinyl ether (EVE) (80 equiv of 14a,b). Then H2O2 (3 equiv of 

14a,b) was added to the reaction mixture. The mixture was stirred at 37 °C for 24 h and then 

evaporated. Water (3 mL) was added to the residue, and the resulting mixture was extracted with 

ethyl acetate (3 × 2 mL). The organic phase was combined, dried over anhydrous Na2SO4, and 
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evaporated. The crude product was purified through column chromatography with 0-10% EtOAc 

in hexane to provide QM-EVE adducts 14-e. 

A solution of 15a,b in a mixture of CH3CN (2 mL), H2O (250 μL),and 1 M potassium phosphate 

buffer (250 μL, pH 8) was irradiated with 350 nm UV light for 6 hours with excess ethyl vinyl 

ether (EVE) (40 equiv of 15a,b). Water (3 mL) was added to the residue, and the resulting 

mixture was extracted with ethyl acetate (3 × 2 mL). The organic phase was combined, dried 

over anhydrous Na2SO4, and evaporated. The crude product was purified through column 

chromatography with 0−10% EtOAc in hexane to provide dimeric adduct 17. 

2,2'-Diethoxy-3,3',4,4'-tetrahydro-2H,2'H-6,6'-bibenzo[h]chromene (14-e). Colorless oil (2.8 

mg, 25%). 
1
H NMR (300 MHz, CDCl3):  8.31 (d, J = 7.2 Hz, 2H), 7.49-7.37 (m, 4H), 7.31-7.19 

(m, 4H), 5.56 (d, J = 1.4 Hz, 2H), 4.17-4.03 (m, 2H), 3.87-3.79 (m, 2H), 3.20-3.09 (m, 2H), 

2.85-2.79 (m, 2H), 2.23-2.15 (m, 4H), 1.34-1.26 (m,6H). 
13

C NMR (75 MHz, CDCl3): δ 146.4, 

132.9, 130.5, 129.7, 126.7, 125.4, 125.2, 125.0, 121.2, 115.8, 97.4, 64.0, 26.7, 21.0, 15.2. HRMS 

(APCI): m/z calcd for C30H30O4 [M+H]
+ 

455.2217, found 455.2220. 

1,2-bis(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-yl)ethane (17). 

Colorless oil (1.8 mg, 14%). 
1
H NMR (300 MHz, CDCl3):  8.22 (d, J = 3.9 Hz, 2H), 7.81 (s, 

2H), 7.78 (s, 2H), 7.52-7.40 (m, 6H), 3.29 (s, 4H), 1.51 (s, 24H). 
13

C NMR (75 MHz, CDCl3): δ 

146.1, 136.8, 131.7, 129.6, 128.1, 127.9, 127.8, 126.0, 124.7, 84.1, 39.9, 25.2. HRMS (ESI): m/z 

calcd for C34H40O4B2 [M+NH4]
+ 

552.3451, found 552.3447. 

Radical Trapping Assay. General Procedure. A solution of 14a,b and 15a,b (20 mg) in a 

mixture of CH3CN (2.5 mL) and excess BME (10 equiv of 14a,b and 5 equiv of 15a,b) or 

TEMPO (8 equiv of 14a,b and 4 equiv of 15a,b) was irradiated with 350 nm UV light for 6 
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hours and then evaporated. Water (3 mL) was added to the residue, and the resulting mixture was 

extracted with ethyl acetate (3 × 2 mL). The organic phase was combined, washed with water, 

and dried over anhydrous Na2SO4, and evaporated. The crude product was purified through 

column chromatography with 0−50% EtOAc in hexane to provide radical trapping adducts 14-1, 

15-t and 14-t. 

2,2,6,6-Tetramethyl-1-((1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-

yl)methoxy)piperidine (15-t). Colorless oil (4.2 mg, 20%). 
1
H NMR (300 MHz, CDCl3):  8.18 

(d, J = 3.9 Hz, 1H), 7.89 (d, J = 4.2 Hz, 1H), 7.83-7.80 (m, 2H), 7.49-7.44 (m, 2H), 5.16 (s, 2H), 

1.53 (s, 24H), 1.28 (s, 12H), 1.10 (s, 12H). 
13

C NMR (75 MHz, CDCl3): δ 142.1, 136.1, 132.4, 

129.6, 128.2, 127.9, 126.0, 125.4, 125.1, 84.2, 78.6, 59.9, 39.9, 33.4, 25.2, 20.3, 17.2. HRMS 

(APCI): m/z calcd for C26H38NO3B [M+H]
+ 

424.3022, found 424.3029. 

1,1'-(((4,4'-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-binaphthalene]-3,3'-

diyl)bis(methylene))bis(oxy))bis(2,2,6,6-tetramethylpiperidine) (14-t). Colorless oil (2.8 mg, 

13%). 
1
H NMR (300 MHz, CDCl3):  8.25-8.23 (m, 2H), 7.81 (d, J = 7.5 Hz, 2H), 7.54-7.38 (m, 

6H), 5.20 (s, 4H), 1.50 (s, 12H), 1.31 (s, 6H), 1.21 (s, 6H). 
13

C NMR (75 MHz, CDCl3): δ 140.3, 

136.2, 128.0, 127.1, 126.1, 125.9, 125.5, 125.2, 84.3, 78.7, 60.0, 39.9, 33.5, 25.3, 20.3, 17.1. 

HRMS (ESI): m/z calcd for C52H74N2O6B2 [M+H]
+ 

845.5822, found 845.5806. 

Cation Trapping Assay. General Procedure. To a solution of MeONH2·HCl (40 equiv of 

15a,b) in DMF (1.25 mL), triethylamine (TEA) (44 equiv of 15a,b) was added. White precipitate 

was formed upon the addition of TEA. The mixture was stirred at 25 °C for 20 min. A solution 

of 15a,b (20 mg) in DMF (1.25 mL) was then added. The mixture was stirred for 20 min and 

irradiated with 350 nm UV light for 6 hours.  Water (3 mL) was added and extracted with ethyl 

acetate (3 × 2 mL). The organic phases were combined, washed with water, and dried over 
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anhydrous Na2SO4, and evaporated. The crude product was purified through column 

chromatography with 0−50% EtOAc in hexane to provide cation trapping adducts 18, 19 and 21. 

O-Methyl-N-((1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-

yl)methyl)hydroxylamine (18). White solid (4.0 mg, 22%). 
1
H NMR (300 MHz, CDCl3):  8.26 

(d, J = 4.1 Hz, 1H), 7.84 (t, J = 8.7 Hz, 2H), 7.50-7.47 (m, 3H), 6.10 (s, 1H), 4.30 (s, 2H), 3.55 

(s, 3H), 1.52 (s, 12H). 
13

C NMR (75 MHz, CDCl3): δ 140.9, 136.5, 132.5, 129.9, 128.2, 128.0, 

126.2, 125.4, 84.2, 61.6, 56.7, 25.2. HRMS (ESI): m/z calcd for C18H24NO3B [M+H]
+ 

314.1925, 

found 314.1922. 

1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthaldehyde O-methyl oxime (19). 

White solid (0.6 mg, 4%). 
1
H NMR (300 MHz, CDCl3):  8.68 (s, 1H), 8.29 (d, J = 4.7 Hz, 1H), 

8.02 (d, J = 4.4 Hz, 1H), 7.86-7.82 (m, 2H), 7.51-7.49 (m, 3H), 4.04 (s, 3H), 1.52 (s, 12H). 
13

C 

NMR (75 MHz, CDCl3): δ 149.8, 136.4, 135.6, 133.5, 130.3, 128.5, 128.3, 126.6, 126.4, 122.7, 

84.6, 62.0, 30.9, 29.7, 25.1. HRMS (APCI): m/z calcd for C18H22NO3B [M+H]
+ 

312.1769, found 

312.1759. 

Naphtho[1,2-c][1,2]oxaborol-1(3H)-ol (21). White solid (0.8 mg, 9%). 
1
H NMR (300 MHz, 

DMSO-d6):  9.24 (s, 1H), 8.32 (d, J = 3.6 Hz, 1H), 8.03 (d, J = 4.1 Hz, 1H), 7.98 (d, J = 3.9 Hz, 

1H), 7.63-7.52 (m, 3H), 5.12 (s, 2H). The NMR spectra were consistent with literature values.
16

 

4,4'-Dibromo-3,3'-dimethyl-1,1'binaphthalene (14-1). Boron trifluoride diethyl etherate (20 

mL) was added to a solution of 1-Bromo-2-methylnaphthalene (17.68 g, 0.08 mol) and lead 

tetraacetate (19.52 g, 0.044 mol) in acetonitrile (100 mL). The reaction mixture was stirred 

overnight, then poured into water (300 mL), and the products were extracted with 

dichloromethane (2 x 300 mL). The organic layer was dried over Na2SO4, then evaporated to 
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provide the crude product, which was passed through a short column of basic alumina using 

hexane as eluant to remove the Pb and highly colored polymeric materials. The crude product 

was purified through column chromatography (2.5% EtOAc/Hexane) to provide 14-1 (3.09 g, 

18%) as white solid.
17 1

H NMR (300 MHz, CDCl3):  8.44 (d, J = 4.4 Hz, 2H), 7.59 (t, J = 4.5 

Hz, 2H), 7.39 (s, 2H), 7.32-7.28 (m, 4H), 2.71 (s, 6H).  

2,2'-(3,3'-Dimethyl-[1,1'-binaphthalene]-4,4'-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (14-2). 14-1 (2.19 g, 5 mmol), bis(pinacolato)diboron (5.08 g, 20 mmol), KOAc 

(5.89 g, 60mmol) and PdCl2(dppf) (366 mg, 0.5 mmol) were dissolved in DMF (100mL) under 

argon atmosphere. The reaction mixture was stirred at 85 
o
C for 48 hours and cooled to room 

temperature. Then, water (200 mL) was added and extracted with dichloromethane (3 × 100 

mL). The organic layer was washed with water, dried over Na2SO4, and evaporated to provide 

the crude product which was purified through column chromatography (2.5% EtOAc/Hexane) to 

provide 14-2 (1.23g, 46%) as white solid. 
1
H NMR (300 MHz, CDCl3):  8.19 (d, J = 4.2 Hz, 

2H), 7.43 (t, J = 6.9 Hz, 2H), 7.28 (s, 4H), 7.17 (t, J = 7.5 Hz, 2H), 2.68 (s, 6H), 1.55 (s, 24H). 

13
C NMR (75 MHz, CDCl3): δ 140.7, 140.1, 136.7, 130.8, 130.1, 128.5, 127.6, 126.9, 125.9, 

124.6, 84.1, 25.2, 22.6. HRMS (APCI): m/z calcd. for C34H40O4B2 [M+H]
+ 

535.3197, found 

535.3184. 

2,2'-(3,3'-Bis(bromomethyl)-[1,1'-binaphthalene]-4,4'-diyl)bis(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (14a). A mixture of CH3CN (100 mL), NBS (1.07 g, 6 mmol), AIBN (32.8 mg, 

0.2 mmol) and 14-2 (1.07 g, 2 mmol) was refluxed at 90 
o
C for 4 hours and cooled to room 

temperature. The mixture was concentrated and purified through column chromatography (5% 

EtOAc/Hexane) to yield 14a (0.68 g, 49%) as white solid. 
1
H NMR (300 MHz, CDCl3):  8.39 

(d, J = 6 Hz, 2H), 7.50 (t, J = 6 Hz, 4H), 7.30-7.27 (m, 4H), 5.02 (s, 4H), 1.58 (s, 24H). 
13

C 
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NMR (75 MHz, CDCl3): δ 141.1, 140.6, 136.7, 132.0, 129.3, 128.7, 126.8, 126.6, 126.4, 84.6, 

34.2, 25.2. HRMS (ESI): m/z calcd. for C34H38O4B2Br2 [M+NH4]
+
 708.1676, found 708.1663. 

1,1'-(4,4'-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-binaphthalene]-3,3'-

diyl)bis(N,N,N-trimethylmethanaminium) bromide (14b). A mixture of CH3CN (10 mL), 4.2 

M trimethylamine (0.72 ml, 3 mmol) in ethanol, and 14a (346mg, 0.5 mmol) was stirred at r.t. 

overnight. The reaction mixture was concentrated to give 14b (400 mg, 99%) as white solid. 
1
H 

NMR (300 MHz, DMSO-d6):  8.43 (d, J = 4.2 Hz, 2H), 7.71-7.67 (m, 4H), 7.49 (t, J = 6.9 Hz, 

2H), 7.40 (d, J = 4.1Hz, 2H), 4.81 (s, 4H), 3.15 (s, 18H), 1.53 (s, 24H). 
13

C NMR (75 MHz, 

DMSO-d6): δ 139.7, 136.5, 132.5, 131.5, 131.1, 129.4, 128.3, 127.8, 126.8, 85.7, 69.1, 53.2, 

25.4.  HRMS (ESI): m/z calcd. for C40H56B2NO4Br2 [M-Br]
+
 729.3604, found 729.3632. 

4,4,5,5-Tetramethyl-2-(2-methylnaphthalen-1-yl)-1,3,2-dioxaborolane (15-1). 14-s (2.21 g, 

10 mmol), bis(pinacolato)diboron (5.08 g, 20 mmol), KOAc (5.89 g, 60 mmol) and PdCl2(dppf) 

(366 mg, 0.5 mmol) were dissolved in DMF (100 mL) under argon atomosphere. The reaction 

mixture were stirred at 85 
o
C for 48 hours and cooled to room temperature. Then, water (200 

mL) was added and extracted with dichloromethane (3 × 100 mL). The organic layer was washed 

with water, dried over Na2SO4, and evaporated to provide the crude product which was purified 

through column chromatography (2.5% EtOAc/Hexane) to provide 15-1 (1.34 g, 50%). 
1
H NMR 

(300 MHz, CDCl3):  8.13 (d, J = 4.1 Hz, 1H), 7.80-7.76 (m, 2H),7.49-7.32 (m, 2H),  7.30 (d, J 

= 4.2 Hz, 1H), 2.65 (s, 3H), 1.51 (s, 12H). The NMR spectra were consistent with literature 

values.
18 

2-(2-(Bromomethyl)naphthalen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (15a). A 

mixture of CH3CN (100 mL), NBS (1.33 g, 7.5 mmol), AIBN (41.1 mg, 0.25 mmol) and 

compound 15-1 (1.34 g, 5 mmol) was refluxed at 90 
o
C for 4 hours and cooled to room 
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temperature. The mixture was concentrated and purified through column chromatography (5% 

EtOAc/Hexane) to give 15a (0.85 g, 49%) as white solid.
  1

H NMR (300 MHz, CDCl3):  8.32 

(d, J = 3.9 Hz, 1H), 7.87 (d, J = 4.2 Hz, 1H), 7.82 (d, J = 3.8 Hz, 1H), 7.55-7.46 (m, 3H), 4.99 (s, 

2H), 1.54 (s, 12H). The NMR spectra were consistent with literature values.
18 

N,N,N-Trimethyl-1-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-2-

yl)methanaminium bromide (15b). A mixture of CH3CN (10mL), 4.2 M trimethylamine (0.72 

ml, 3 mmol) in ethanol and 15a (347 mg, 1mmol) was stirred at r.t. over night. The reaction 

mixture was concentrated to give 15b (400 mg, 99%) as white solid. 
1
H NMR (300 MHz, 

DMSO-d6):  8.30 (d, J = 4.8 Hz, 1H), 8.14 (d, J = 4.8 Hz, 1H), 8.04 (d, J = 4.8 Hz, 1H), 7.69-

7.64 (m, 3H), 4.75 (s, 2H), 3.10 (s, 9H), 1.48 (s, 12H). 
13

C NMR (75 MHz, DMSO-d6): δ 136.2, 

133.3, 131.5, 131.0, 129.9, 128.8, 127.8, 127.6, 85.5, 69.2, 53.2, 25.4. HRMS (ESI): m/z calcd. 

for C20H29NO4B [M]
+
 326.2290, found 326.2288. 
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4.6. Appendices C: Characterization of Compounds: 

 

Figure 4-7-1. 
1
H NMR spectra of 14a. 

 

Figure 4-7-2. 
13

C NMR spectra of 14a. 
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Figure 4-7-3. HRMS (ESI) of 14a. 

 

Figure 4-7-4. 
1
H NMR spectra of 14b. 
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Figure 4-7-5. 
13

C NMR spectra of 14b. 

 

Figure 4-7-6. HRMS (ESI) of 14b. 



 
 

184 

 

Figure 4-7-7. 
1
H NMR spectra of 14-2. 

 

Figure 4-7-8. 
13

C NMR spectra of 14-2. 



 
 

185 

 

Figure 4-7-9. HRMS (APCI) of 14-2. 

 

Figure 4-7-10. 
1
H NMR spectra of 14-e. 
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Figure 4-7-11. 
13

C NMR spectra of 14-e. 

 

Figure 4-7-12. HRMS (APCI) of 14-e. 
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Figure 4-7-13. 
1
H NMR spectra of 15b. 

 

Figure 4-7-14. 
13

C NMR spectra of 15b. 
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Figure 4-7-15. HRMS (ESI) of 15b. 

 

Figure 4-7-16. 
1
H NMR spectra of 17. 
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Figure 4-7-17. 
13

C NMR spectra of 17. 

 

Figure 4-7-18. HRMS (ESI) of 17. 
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Figure 4-7-19. 
1
H NMR spectra of 15-t. 

 

Figure 4-7-20. 
13

C NMR spectra of 15-t. 
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Figure 4-7-21. HRMS (APCI) of 15-t. 

 

Figure 4-7-22. 
1
H NMR spectra of 14-t. 
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Figure 4-7-23. 
13

C NMR spectra of 14-t. 

 

Figure 4-7-24. HRMS (ESI) of 14-t. 
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Figure 4-7-25. 
1
H NMR spectra of 18. 

 

Figure 4-7-26. 
13

C NMR spectra of 18. 
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Figure 4-7-27. HRMS (ESI) of 18. 

 

Figure 4-7-28. 
1
H NMR spectra of 19. 
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Figure 4-7-29. 
13

C NMR spectra of 19. 

 

Figure 4-7-30. HRMS (APCI) of 19. 
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Chapter 5. Photo-Induced Interstrand Cross-Link Formation by Phenylboronates 

5.1. Introduction 

Our detailed investigation on the photo reactivity of binaphthalene boronates 14a and 14b 

reveals that the arylboronates can be activated by UV-irradiation to form free radicals which are 

further oxidized to the corresponding carbocations directly cross-linking DNA. Formation of 

carbocation is through electron transfer but not heterolysis. This is the first example that a bisaryl 

derivative undergoes photo-activation to generate a carbocation capable of efficiently cross-

linking DNA. 

Encouraged by these results, we studied the photo reactivity of all the phenylboronic esters 1-3 

and 12 toward DNA and determined the mechanism of DNA cross-linking induced by these 

phenylboronates upon UV-irradiation. 

 

Scheme 5-1. The structures of arylboronates. 

5.2. DNA cross-linking assay 

5.2.1. DNA cross-linking ability of 1-3a,b upon photo-irradiation 
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The activity of the phenylboronic esters 1-3 upon photo-irradiation was investigated using DNA 

duplex 5 in phosphate buffer (pH = 8.0) at 37 ºC. DNA ICL formation was not observed with 

these compounds (Figure 5-1) without UV irradiation. However, irradiation at 350 nm resulted in 

DNA cross-linking with compounds, 3a and 1b-3b. The highest ICL yield was observed with 3b. 

Higher concentration of drugs and extended irradiation time led to increased ICL yields (Figure 

5-2 to 5-5). This result is different from the H2O2-induced DNA ICL formation, in which only 

bromides 1a-3a but not 1b-3b induced DNA ICL formation in the presence of H2O2. These 

results suggested that the mechanism for UV-induced ICL formation with compounds 1-3 may 

be different from that of H2O2-induced DNA ICL formation, which goes through a QM 

mechanism. We propose that other active species capable of cross-linking DNA may be involved 

in UV-irradiation of these compounds. A QM trapping experiment using excess EVE provided 

evidences that QMs were not formed in the photo reaction of compounds 1-3 as QM trapping 

products were not detected. 

 

 

Figure 5-1. UV-induced DNA cross-link formation by compounds 1a,b-3a,b. Lane 1: DNA only; 

lane 2: 2 mM 1a; lane 3: 2 mM 2a; lane 4: 2 mM 3a (cross-linking yield 6.9%); lane 5: 2 mM 1b 

(2.3%); lane 6: 2 mM 2b (3.5%); lane 7: 2 mM 3b (14.3%). Condition: UV irradiation at pH8 for 

8 h. 
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Figure 5-2. Concentration dependence of ICL formation by 3a upon UV irradiation. Lane 1: 

with DNA only; lane 2: 20 µM 3a (cross-linking yield 1.7%); lane 3: 50 µM 3a (2.6%); lane 4: 

100 µM 3a (3.9%); lane 5: 200 µM 3a (4.7%); lane 6: 500 µM 3a (8.5%); lane 7: 1 mM 3a 

(8.3%); lane 8: 2 mM 3a (7.5%); lane 9: 5 mM 3a (7.3%). Condition: UV irradiation at pH8 for 

8 h. 

 

Figure 5-3. Concentration dependence of ICL formation by 3b upon UV irradiation. Lane 1: 

with DNA only; lane 2: 20 µM 3b (cross-linking yield 2.2%); lane 3: 50 µM 3b (3.1%); lane 4: 

100 µM 3b (3.6%); lane 5: 200 µM 3b (4.0%); lane 6: 500 µM 3b (6.0%); lane 7: 1 mM 3b 

(8.5%); lane 8: 2 mM 3b (14.0%); lane 9: 5 mM 3b (24.1%). Condition: UV irradiation at pH8 

for 8 h. 
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Figure 5-4. Time dependence of ICL formation by 3a upon UV irradiation. Lane 1: no UV 

irradiation; lane 2: UV for 30 min (cross-linking yield 1.3%); lane 3: 1 h (1.9%); lane 4: 2 h 

(2.4%); lane 5: 4 h (3.5%); lane 6: 6 h (5.2%); lane 7: 8 h (7.3%); lane 8: 12 h (11.8%); lane 9: 

24 h (25.0%). Condition: 2 mM 3a upon UV irradiation at pH8. 

 

Figure 5-5. Time dependence of ICL formation by 3b upon UV irradiation. Lane 1: no UV 

irradiation; lane 2: UV for 30 min (cross-linking yield 0.8%); lane 3:1 h (1.8%); lane 4: 2 h 

(3.1%); lane 5: 4 h (6.1%); lane 6: 6 h (10.2%); lane 7: 8 h (14.2%); lane 8: 12 h (24.2%); lane 9: 

24 h (38.6%).Condition: 2 mM 3b upon UV irradiation at pH8. 

5.2.2. Determination of cross-linking site 

The photoreactivities of 3a,b towards DNA were further investigated by determining the heat-

stability of purified cross-linked products. The ICLs formed from 3a and 3b were stable to 
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heating in phosphate buffer while DNA cleavage was observed with piperidine treatment. 

Cleavage bands were observed mainly at dG sites upon heating in 1.0 M piperidine which 

indicated that the cross-linking reactions mainly occurred with dGs via alkylation (Figure 5-6 

and 5-7). In the same condition, DNA interstrand cross-links were observed with duplex 7 but 

not with 6 can further confirm that alkylation took place only with dG and dC (Figure 5-8). 

 

Figure 5-6. Determination of cross-linking site of 3a. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of the isolated ICL products and monoalkylated single stranded DNA 

(5a') upon heating in piperidine. Lane 1: heating treatment of 5a'; lane 2: piperidine treatment of 

5a'; lane 3: Fe·EDTA treatment of 5a'; lane 4: heating treatment of ICL;  lane 5: piperidine 

treatment of ICL; lane 6: Fe·EDTA treatment of ICL; lane 7: Fe·EDTA treatment of 5; lane 6: 

G+A sequencing. 
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Figure 5-7. Determination of cross-linking site of 3b. Phosphorimage autoradiogram of 20% 

denaturing PAGE analysis of the isolated ICL productsand monoalkylated single stranded DNA 

(5a') upon heating in piperidine. Lane 1: heating treatment of 5a'; lane 2: piperidine treatment of 

5a'; lane 3: Fe·EDTA treatment of 5a'; lane 4: heating treatment of ICL;  lane 5: piperidine 

treatment of ICL; lane 6: Fe·EDTA treatment of ICL; lane 7: Fe·EDTA treatment of 5; lane 6: 

G+A sequencing. 
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Figure 5-8. ICL formation from duplex 7 induced by 3b upon UV irradiation. Lane 1: DNA 

only; lane 2: DNA only with UV; lane 3: DNA with 2 mM 3b no UV; lane 4: DNA with 2 mM 

3b and UV irradiation. Condition: UV irradiation for 8 h at pH8. 

5.2.3. The mechanism of ICL formation induced by 3a,b 

Based on our previous investigation of the photo-activity of the naphthalene boronates, we 

propose that the phenylboronic esters 1b-3b and 3a undergo a similar reaction mechanism, 

which involves formation of a free radical followed by conversion to a carbocation directly 

alkylating DNA. 

In order to test our hypothesis, we performed the radical and cation trapping reactions with 3a 

and 3b upon UV irradiation. However, no trapping products could be isolated and the resulting 

products were too complicated to identify. Thus, we investigated the effect of trapping agents on 

DNA ICL formation with DNA duplex 5. First, 2-mercaptoethanol (BME) and 2,2,6,6-

tetramethylpiperidin-1-oxyl (TEMPO) were employed as free radical trapping agents, which act 

as competitors for ICL. As expected, the DNA cross-linking yields induced by 3a were 

dependent on the concentration of both BME and TEMPO (Figure 5-9 and 5-10). To our surprise, 

only BME but not TEMPO inhibited ICL formation induced by 3b upon UV-irradiation (Figure 

5-11 and 5-12). TEMPO did not affect ICL formation, which indicated that free radicals were not 

generated when 3b was irradiated at 350 nm. The inhibiting effect of BME on DNA cross-
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linking might be due to the capability of BME on trapping cation as both SH and OH are good 

nucleophiles. These results suggested that carbocation but not free radical was generated by UV-

irradiation of 3b. 

 

Figure 5-9. Effect of TEMPO on ICL formation by 3a upon UV irradiation. Lane 1: with DNA 

only; lane 2: 2 mM 3a (cross-linking yield 20.8%); lane 3: 2 mM 3a and 1 mM TEMPO 

(18.5%); lane 4: 2 mM 3a and 2 mM TEMPO (11.0%); lane 5: 2 mM 3a and 5 mM TEMPO 

(5.9%); lane 6: 2 mM 3a and 10 mM TEMPO (4.1%); lane 7: 2mM 3a and 20 mM TEMPO 

(3.1%); lane 8: 2 mM 3a and 50 mM TEMPO (2.2%); lane 9: 2 mM 3a and 100 mM TEMPO 

(1.1%). Condition: UV irradiation at pH8 for 24 h. 

 

Figure 5-10. Effect of BME on ICL formation by 3a upon UV irradiation. Lane 1: with DNA 

only; lane 2: 2 mM 3a (cross-linking yield 21.2%); lane 3: 2 mM 3a and 1 mM BME (18.1%); 

lane 4: 2 mM 3a and 2 mM BME (13.5%); lane 5: 2 mM 3a and 5 mM BME (7.1%); lane 6: 2 

mM 3a and 10 mM BME (3.9%); lane 7: 2 mM 3a and 20 mM BME (2.7%); lane 8: 2 mM 3a 
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and 50 mM BME (1.9%); lane 9: 2 mM 3a and 100 mM BME (0.9%). Condition: UV irradiation 

at pH8 for 24 h. 

 

Figure 5-11. Effect of TEMPO on ICL formation by 3b upon UV irradiation. Lane 1: with DNA 

only; lane 2: 2 mM 3b (cross-linking yield 32.3%); lane 3: 2 mM 3b and 1 mM TEMPO 

(30.8%); lane 4: 2 mM 3b and 2 mM TEMPO (31.4%); lane 5: 2 mM 3b and 5 mM TEMPO 

(30.6%); lane 6: 2 mM 3b and 10 mM TEMPO (29.5%); lane 7: 2 mM 3b and 20 mM TEMPO 

(27.1%); lane 8: 2 mM 3b and 50 mM TEMPO (26.2%); lane 9: 2 mM 3b and 100 mM TEMPO 

(22.1%). Condition: UV irradiation at pH8 for 24 h. 

 

Figure 5-12. Effect of BME on ICL formation by 3b upon UV irradiation. Lane 1: with DNA 

only; lane 2: 2 mM 3b (cross-linking yield 34.1%); lane 3: 2 mM 3b and 1 mM BME (31.1%); 

lane 4: 2 mM 3b and 2 mM BME (28.3%); lane 5: 2 mM 3b and 5 mM BME (19.7%); lane 6: 2 

mM 3b and 10 mM BME (7.9%); lane 7: 2 mM 3b and 20 mM BME (4.3%); lane 8: 2 mM 3b 

and 50 mM BME (2.2%); lane 9: 2 mM 3b and 100 mM BME (1.0%). Condition: UV irradiation 

at pH8 for 24 h. 
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In order to provide evidence for formation of carbocation, methoxyamine was chosen as a 

trapping agent for DNA ICL formation. As expected, ICL formation was inhibited by 

methoxyamine when 3a and 3b were irradiated with duplex 5 (Figure 5-13 and 5-14). Increasing 

concentration of methoxyamine gradually decreased the ICL yield. 100 mM methoxyamine 

resulted in complete quenching of interstrand cross-link formation (Figure 5-13 and 5-14 lane 9). 

Clearly, carbocations were produced in the photo reactions of 3a and 3b. 

 

Figure 5-13. Effect of methoxyamine on ICL formation by 3a upon UV irradiation. Lane 1: with 

DNA only; lane 2: 2 mM 3a (cross-linking yield 20.8%); lane 3: 2 mM 3a and 1 mM 

methoxyamine (10.1%); lane 4: 2 mM 3a and 2 mM methoxyamine (7.7%); lane 5: 2 mM 3a and 

5 mM methoxyamine (6.4%); lane 6: 2 mM 3a and 10 mM methoxyamine (4.3%); lane 7: 2 mM 

3a and 20 mM methoxyamine (3.0%); lane 8: 2 mM 3a and 50 mM methoxyamine (2.0%); lane 

9: 2 mM 3a and 100 mM methoxyamine (0.5%). Condition: UV irradiation at pH8 for 24 h. 

 

Figure 5-14. Effect of methoxyamine on ICL formation by 3b upon UV irradiation. Lane 1: with 

DNA only; lane 2: 2 mM 3b (cross-linking yield 32.3%); lane 3: 2 mM 3b and 1 mM 
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methoxyamine (20.1%); lane 4: 2 mM 3b and 2 mM methoxyamine (14.7%); lane 5: 2 mM 3b 

and 5 mM methoxyamine (11.6%); lane 6: 2 mM 3b and 10 mM methoxyamine (7.8%); lane 7: 

2 mM 3b and 20 mM methoxyamine (5.1%); lane 8: 2 mM 3b and 50 mM methoxyamine 

(2.5%); lane 9: 2 mM 3b and 100 mM methoxyamine (1.1%). Condition: UV irradiation at pH8 

for 24 h. 

 

Figure 5-15. Effect of TEMPO and methoxyamine on ICL formation by 3a and 3b. 

We propose that different reactivity of 1b-3b may be related to their UVabsorption. Thus, the 

UV absorption spectra of 1b-3b were measured. Compounds 1b and 2b showed a strong 

absorbance at 225 nm but almost no absorption after 300 nm. However the maximum absorption 

of 3b was shifted to a longer wavelength of 270 nm (Figure 5-16). There results indicated that 3b 

is more sensitive to irradiation at longer wavelength than 1b and 2b, thus leading to a higher 

cross-linking yield with 350 nm irradiation. 

Further study showed that the leaving group affected the reaction mechanism. For example, the 

cross-linking yield of 3a was affected by both methoxyamine and TEMPO, which is similar to 

the naphthalene boronates discussed in Chapter 4. This indicated that formation of free radicals 

followed by conversion to carbocation was possible for 3a having a Br as leaving group. 
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However, ICL formation of 3b with a trimethylamine salt was only affected by methoxyamine 

but not TEMPO, which suggested that a carbocation was directly generated by heterolysis of C-

N bond but not from free radicals. 

 

Figure 5-16. Absorbance of 1b, 2b and 3a,b. 

In summary, 350 nm irradiation of bromide 3a and ammonium salts 1b-3b induced DNA ICL 

formation. A different reaction mechanism was observed for 3a having Br as a leaving group and 

that of 1b-3b with a trimethylamine salt as a leaving group. Photo-irradiation of 3a generates 

free radicals which go through one-electron transfer to produce carbocation alkylating DNA, 

while direct heterolysis occurs with photo-irradiation of 3b at 350 nm to produce carbocations 

cross-linking DNA (Scheme 5-2). 
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Scheme 5-2. Proposed mechanism for ICL formation induced by 3a and 3b. 

5.2.4. DNA cross-linking ability of 9a and 9b 

In order to see the generality of the leaving group effecton DNA cross-linking, we investigated 

the photo-reactivity of compounds 9a and 9b. Both compounds containan electron-donating 

group (OCH3) in the aromatic ring and show a strong absorbance peak at λ= 280 nm (Figure 5-

17), while they have different leaving groups. 
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Figure 5-17. Absorbance of 9b. 

Similar with 3a and 3b, the ICL yield depends on the concentration and the irradiation time. 

Higher cross-linking yield was obtained with higher concentration of drug and extended 

irradiation time (Figure 5-18 to 5-21). However, the ICL yields induced by 9a (23% for 2 mM 9a) 

and 9b (51% for 2 mM 9b) were much higher than 3a (8% for 2 mM 3a) and 3b (14% for 2 mM 

3b).  

 

Figure 5-18. Concentration dependence of ICL formation by 9a upon UV irradiation. Lane 1: 

with DNA only; lane 2: 20 µM 9a (cross-linking yield 1.1%); lane 3: 50 µM 9a (1.9%); lane 4: 

100 µM 9a (3.1%); lane 5: 200 µM 9a (4.7%); lane 6: 500 µM 9a (11.3%); lane 7: 1 mM 9a 

(15.8%); lane 8: 2 mM 9a (23.1%); lane 9: 5 mM 9a (28.1%). Condition: UV irradiation at pH8 

for 8 h. 
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Figure 5-19. Concentration dependence of ICL formation by 9b upon UV irradiation. Lane 1: 

with DNA only; lane 2: 20 µM 9b (cross-linking yield 0.9%); lane 3: 50 µM 9b (1.5%); lane 4: 

100 µM 9b (5.0%); lane 5: 200 µM 9b (9.3%); lane 6: 500 µM 9b (22.3%); lane 7: 1 mM 9b 

(33.4%); lane 8: 2 mM 9b (51.1%); lane 9: 5 mM 9b (65.5%). Condition: UV irradiation at pH8 

for 8 h. 

 

Figure 5-20. Time dependence of ICL formation by 9a upon UV irradiation. Lane 1: no UV 

irradiation; lane 2: UV for 30 min (cross-linking yield 1.4%); lane 3:1 h (3.4%); lane 4: 2 h 

(6.3%); lane 5: 4 h (12.8%); lane 6: 6 h (19.7%); lane 7: 8 h (23.5%); lane 8: 12 h (27.3%); lane 

9: 24 h (31.8%). Condition: 2 mM 9a upon UV irradiation at pH8. 
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Figure 5-21. Time dependence of ICL formation by 9b upon UV irradiation. Lane 1: no UV 

irradiation; lane 2: UV for 30 min (cross-linking yield 4.3%); lane 3: 1 h (9.9%); lane 4: 2 h 

(20.1%); lane 5: 4 h (35.6%); lane 6: 6 h (45.0%); lane 7: 8 h (49.0%); lane 8: 12 h (54.4%); lane 

9: 24 h (60.6%). Condition: 2 mM 9b upon UV irradiation at pH8. 

In order to investigate the reaction mechanism, the radical and carbocation trapping experiments 

were performed by using TEMPO and methoxyamine as trapping agents. As expected, the cross-

linking yields were dependent on the concentration of TEMPO (Figure 5-22) and methoxyamine 

(Figure 5-23) by 9a, which is similar to 3a. However, ICL formation induced by 9b only 

depended on methoxyamine but not TEMPO (Figure 5-24 and 5-25), which is similar to 3b. 

These results provided further evidence on that the leaving groups affected the reaction 

mechanism for ICL formation. Photo irradiation of compounds with Br as leaving group, such as 

3a and 9a, generates free radical which is converted to carbocation via one-electron transfer. 

However, compounds with trimethyl amine salts as leaving groups, such as 3b and 9b, undergo 

direct heterolysis upon photo-irradiation to form carbocation which directly producing DNA 

ICLs. 
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Figure 5-22. Effect of TEMPO on ICL formation by 9a upon UV irradiation. Lane 1: with DNA 

only; lane 2: 2 mM 9a (cross-linking yield 22.9%); lane 3: 2 mM 9a and 1 mM TEMPO 

(18.8%); lane 4: 2 mM 9a and 2 mM TEMPO (15.3%); lane 5: 2 mM 9a and 5 mM TEMPO 

(10.1%); lane 6: 2 mM 9a and 10 mM TEMPO (7.4%); lane 7: 2 mM 9a and 20 mM TEMPO 

(4.8%); lane 8: 2 mM 9a and 50 mM TEMPO (2.9%); lane 9: 2 mM 9a and 100 mM TEMPO 

(1.7%). Condition: UV irradiation at pH8 for 8 h. 

 

Figure 5-23. Effect of methoxyamine on ICL formation by 9a upon UV irradiation. Lane 1: with 

DNA only; lane 2: 2 mM 9a (cross-linking yield 22.9%); lane 3: 2 mM 9a and 1 mM 

methoxyamine (19.0%); lane 4: 2 mM 9a and 2 mM methoxyamine (14.5%); lane 5: 2 mM 9a 

and 5 mM methoxyamine (11.1%); lane 6: 2 mM 9a and 10 mM methoxyamine (4.8%); lane 7: 2 

mM 9a and 20 mM methoxyamine (3.1%); lane 8: 2 mM 9a and 50 mM methoxyamine (1.8%); 

lane 9: 2 mM 9a and 100 mM methoxyamine (0.9%). Condition: UV irradiation at pH8 for 8 h. 
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Figure 5-24. Effect of TEMPO on ICL formation by 9b upon UV irradiation. Lane 1: with DNA 

only; lane 2: 2 mM 9b (cross-linking yield 54.4%); lane 3: 2 mM 9b and 1 mM TEMPO 

(49.1%); lane 4: 2 mM 9b and 2 mM TEMPO (44.6%); lane 5: 2 mM 9b and 5 mM TEMPO 

(38.1%); lane 6: 2 mM 9b and 10 mM TEMPO (36.1%); lane 7: 2 mM 9b and 20 mM TEMPO 

(35.8%); lane 8: 2 mM 9b and 50 mM TEMPO (36.2%); lane 9: 2 mM 9b and 100 mM TEMPO 

(35.8%). Condition: UV irradiation at pH8 for 8 h. 

 

Figure 5-25. Effect of methoxyamine on ICL formation by 9b upon UV irradiation. Lane 1: with 

DNA only; lane 2: 2 mM 9b (cross-linking yield 54.4%); lane 3: 2 mM 9b and 1 mM 

methoxyamine (52.0%); lane 4: 2 mM 9b and 2 mM methoxyamine (45.0%); lane 5: 2 mM 9b 

and 5 mM methoxyamine (39.7%); lane 6: 2 mM 9b and 10 mM methoxyamine (22.4%); lane 7: 

2 mM 9b and 20 mM methoxyamine (5.6%); lane 8: 2 mM 9b and 50 mM methoxyamine 

(2.5%); lane 9: 2 mM 9b and 100 mM methoxyamine (1.1%). Condition: UV irradiation at pH8 

for 8 h. 
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Figure 26. Effect of TEMPO and methoxyamine on ICL formation by 9a and 9b. 

5.3. Experimental Section 

General Methods. Unless otherwise specified, chemicals were purchased from Aldrich or 

FisherScientific and were used as received without further purification. T4 polynucleotide kinase 

was obtained from New England Biolabs. Oligonucleotides were synthesized via standard 

automated DNA synthesis techniques using an Applied Biosystems model 394 instrument in a 

1.0 μM scale using commercial 1000Å CPG-succinyl-nucleoside supports. Deprotection of the 

nucleobases and phosphate moieties as well as cleavage of the linker were carried out under mild 

deprotection conditions using a mixture of 40% aq. MeNH2 and 28% aq. NH3 (1:1) at room 

temperature for 2 h. Radiolabeling was carried out according to the standard protocols.
1
 [γ-

32
P]ATP was purchased from Perkin-Elmer Life Sciences. Quantification of radiolabeled 

oligonucleotides was carried out using a Molecular Dynamics Phosphorimager equipped with 

ImageQuant Version 5.2 software. 
1
H NMR and 

13
C NMR spectra were taken on a Bruker DRX 

300 MHz and 500 MHz spectrophotometer. High resolution mass spectrometry was performed at 

the University of California-Riverside and Shimadzu Laboratory for Advanced & Applied 

Analytical Chemistry at the University of Wisconsin-Milwaukee. 
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Interstrand cross-link formation with duplex DNA 5 upon UV irradiation. The 
32

P-labelled 

oligonucleotide (0.5 μM) was annealed with 1.5 equiv of the complementary strand by heating to 

65 
o
C for 3 min in a buffer containing 10 mM potassium phosphate (pH 7), and 100 mM NaCl, 

followed by slow-cooling to room temperature overnight. The 
32

P-labeled oligonucleotide duplex 

(2 μL, 0.5 μM) was mixed with 1 M NaCl (2 μL), 100 mM potassium phosphate (2 μL, pH range 

5-9) and different concentrations of compound 1-3b or 9a,b (concentration range: 20 μM to 5 

mM in 6 μL CH3CN or H2O) and the appropriate amount of autoclaved water to give a final 

volume of 20 μL. The reaction was irradiated with 350 nm UV light for 1-24 hours and quenched 

by an equal volume of 90% formamide loading buffer, then subjected to 20% denaturing 

polyacrylamide gel electrophoresis. 

Trapping assay of oligonucleotides. The 
32

P-labeled oligonucleotide duplex (2 μL, 0.5 μM) was 

mixed with 1 M NaCl (2 μL), 100 mM potassium phosphate (2 μL, pH 8). The stock solution of 

MeONH2·HCl (2 M) was titrated with 5 M NaOH solution to adjust the pH to ~ 7.0. Then, 2 μL 

was added to the reaction mixture as appropriate for the desired concentration. TEMPO was 

dissolved in CH3CN, then 2 μL was added to the reaction mixture as for the desired 

concentration. Different concentrations of compound 3 or 9 (4 μL in CH3CN) and the appropriate 

amount of autoclaved water and CH3CN were added to give a final volume of 20 μL (6 μL 

CH3CN with 14 μL H2O). The reaction was irradiated with 350 nm UV light for 4 hours and 

quenched by an equal volume of 90% formamide loading buffer, then subjected to 20% 

denaturing polyacrylamide gel electrophoresis. 

Stability study of ICL product formed with 6. After the cross-link reaction, the reaction 

mixtures (0.35 μM DNA duplex, 20 μL) were coprecipitated with calf thymus DNA (2.5 mg/mL, 

5 μL) and NaOAc (3 M, 5μL) in the presence of EtOH (90 μL) at -80 
o
C for 30 min, followed by 
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centrifuging for 5 min at 15000 rmp. The supernatant was removed, and the pellet was washed 

with cold 75% EtOH and lyophilized for 30 min in a Centrivap Concentrator of LABCONCO at 

37 
o
C. The dried DNA fragments were dissolved in H2O (30 μL) and divided into three portions. 

One portion (10 μL) was incubated with piperidine (2 M, 10 μL) at 90 
o
C for 30 min, and the 

second portion (10 μL) was incubated with 0.1 M NaCl and 10 mM potassium phosphate buffer 

(pH 7, 10 μL) under the same condition, and the third portion was used as a control sample. The 

samples were subjected to 20% denaturing polyacrylamide gel electrophoresis. 

Hydroxyl radical reaction (Fe·EDTA reaction). Fe(II)·EDTA cleavage reactions of 
32

P-

labelled oligonucleotide (0.1μM) were performed in a buffer containing 50 μM (NH4)2Fe(SO4)2, 

100 μM EDTA, 5 mM sodium ascorbate, 0.5 M NaCl, 50 mM sodium phosphate (pH 7.2) and 1 

mM H2O2 for 3 min at room temperature (total substrate volume 20 μL), then quenched with 100 

mM thiourea (10 μL). Samples were lyophilized, and incubated with 1 M piperidine (20 μL) at 

90 
o
C for 30 min. The mixture was lyophilized again, dissolved in 20 μL H2O: 90% formamide 

loading buffer (1:1) and subjected to 20% denaturing polyacrylamide gel electrophoresis. 
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