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ABSTRACT 

MULTI-LEVEL OPTIMAL DESIGN USING GAME THEORY WITH MODEL 

UPDATING BY LOW DISCREPANCY SAMPLING 

 

 by 

Yanchen Xu 

The University of Wisconsin - Milwaukee, 2015 

Under the Supervision of Professor Anoop K. Dhingra 
 

The Design of Experiment (DOE) based response surface methodology (RSM) is a 

commonly used technique for solving optimization problems. The traditional DOE method 

has some shortcomings when used to update the RSM model. This thesis aims to develop 

a new DOE technique to solve the model updating problems in design optimization. 

Toward this end, a new DOE based RSM method is proposed to solve this problem by 

using low-discrepancy sequence method to generate the additional data points needed to 

update the model to replace the traditional factor and level based DOE method.  

Tested on a couple of numerical example problems, the low-discrepancy sequence 

method is seen to be effective not only in solving the model updating problem, but also 

more effective and convenient compared to the traditional DOE method.  

The second part of this thesis deals with using game theory for solving multi-level 

design optimization problems. Based on three basic game modes, the Nash game (which is 

also considered as non-cooperative game), cooperative game, and Stackelberg game (a 

game between leaders and followers), two solution approaches for Stackelberg game with 

multiple leaders and followers are proposed: The Decentralized mode and the Hierarchical 

mode. During the research on these two game systems, solution approaches for a third 

system namely the Decentralized-Hierarchical model is also addressed in this thesis. It is 
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seen that the low discrepancy sampling based approaches proposed in this thesis are quite 

effective in solving multi-level optimization problems.  
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Chapter 1. Introduction 

 
This thesis proposes a new idea to realize model updating while using the response 

surface method (RSM) to solve multi-level design optimization problems. The 

optimization problems are solved using a game theory based approach. 

 

1.1 Literature Review  

Optimal design is defined as one which satisfies all the design requirements and make 

the expenses the smallest. In another word, the optimal design is the best solution to the 

problem that can be achieved given design requirements. 

In practice, to achieve the most effective result frequently requires multiple objectives. 

However, designs that make all the objective functions simultaneously minimum in a 

multi-objective problem rarely occur, because generally there exist conflicts among the 

multiple objectives present in the problem. Often, the decision makers have to choose one 

objective or several objectives that they are most concerned with. The multiple objectives 

are sometimes coordinated at multiple levels. Research about multi-level optimal design 

have been conducted since early 1970s, and many methods have been developed so far. 

 

1.1.1 Global Criterion Method (GCM) 

    Fa ́ısca et al. (2006) proposed a global parametric programming optimization strategy 

for multi-level problems. One year later, Fa ́ısca et al. (2007) developed a global 
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optimization approach for the solution of various classes of bi-level programming problems 

(BLPP). 

Jose et al. (2012) mentioned that the Global Criterion Method was characterized as a 

strategy where the optimal solution is found by minimizing a preselected global criterion, 

F(x), such as the sum of the squares of relative deviations of individual objective functions 

from the feasible ideal solutions.  

Several optimization algorithms can be applied to obtain the optimum solution using 

a GCM formulation. Genetic algorithm is one approach used to solve the global 

optimization problems. Dua and Pistikopoulos (2003) developed different algorithms for 

different objective function models.  

 

1.1.2 Goal Attainment Method 

In the Goal Attainment Method, goals are set as bi for the objective function 𝑓𝐼(𝑋), 𝑖 =

 1, 2 , … , 𝑘.  Also, a weight 𝑤𝐼   is assigned to every objective function to denote the 

importance of the ith objective function relative to other objective functions in meeting the 

goal bi is considered as the overall objective function. Often the goal bi is found by first 

solving the single objective optimization problem [Rao (2009)].  

The Goal attainment method was first presented by Gembicki and Haimes (1975). 

This method overcame some of the limitations and disadvantages of methods available in 

early 1970s. It used vector optimization as a tool for analyzing static control problems with 

performance and parameter sensitivity indices. 
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1.1.3 Bounded Objective Function Method 

In the Bounded Objective function method, the minimum and the maximum 

acceptable achievement levels for each objective function 𝑓𝑖  are specified as 𝐿𝑖   and 𝑈𝐼 , 

respectively, for 𝑖 =  1, 2, …  𝑘. Then the optimum solution 𝑥∗ is found by minimizing the 

most important objective function [Rao (2009)]. 

In this approach, only the most important objective function is minimized and the 

other objective functions are considered as constraints. Lower and upper bounds on 

acceptable values are set for the other objective functions. Haimes et al. (1971) proposed 

the trade-off approach in which the lower bounds are excluded. Goicoechea et al. (1976), 

Cohon (1978) developed this approach to obtain feasible solutions.  

In many cases, the solutions to multi-objective design problems are not a singleton. 

Many other methods such as the Utility Function Method, Inverted Utility Function 

Method, Lexicographic Method, Goal Programming Method have been used to find a 

single solution from a multitude of possible solutions to a multi-objective optimization 

problem.  

The following solution approaches are considered methods in this thesis for solving 

multi-objective, multi-level problems. 

 

1.2 Response Surface Method (RSM) 

Response Surface Methodology is a collection of mathematical and statistical 

techniques for empirical model building. By careful use of design of experiments (DOE), 

the objective is to construct a response function that is influenced by several independent 

variables. The application of RSM for design optimization is aimed at reducing the cost of 
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expensive analysis methods and their associated numerical noise. Generally, the structure 

of the relationship between the response and the independent variables is unknown. The 

first step in the RSM method is to find a suitable approximation to the true relationship.  

The RSM has gained acceptance as a popular optimization methods in recent years. 

Anjum et al. (1997), Baş and Boyacı (2007), Bezerra et al. (2008) and have applied RSM 

as a tool to solve optimization problems in different fields. 

 

Figure 1.1: Response surface sketch  

 

1.3 Low-discrepancy sequence 

In statistics, low-discrepancy sequences can be applied as generating algorithms for 

testing randomly generated points for use with numerical methods (such as Monte Carlo 

simulation). Although these sequences are generated using prescribed relations, these 

sequences can be largely viewed as yielding randomly generated points. Pugazhendhi 

(2011) reported that the low-discrepancy sequences can be very effective for structural 
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reliability estimation, and presented two algorithms generating randomly distributed test 

points. 

 

1.3.1 Halton Sequence 

The Halton sequence is constructed according to a deterministic method. For example, 

a 2D problem uses 2 prime numbers for example a and b corresponding to base points on 

X-axis and Y-axis. Both 2 axes generate points from the interval of (0,1). To generate a 

Halton sequence, let m be a prime number, and then any natural number k has a unique m-

digit representation: 

𝑘 = 𝑏0 + 𝑏1𝑚 + 𝑏2𝑚2 + ⋯ + 𝑏𝑟𝑚𝑟 (1.1) 

  

here 𝑏𝑖  ∈ {0,1, … , 𝑚 − 1}  for 𝑖 = 0,1 … , 𝑟 𝑎𝑛𝑑 𝑚𝑟 < 𝑚𝑟+1 . Define the base-m radical 

inverse function 𝜙𝑚(𝑘) as, 

𝜙𝑚(𝑘) = 𝑏0𝑚−1 + 𝑏1𝑚−2 + ⋯ + 𝑏𝑟𝑚−(𝑟+1) (1.2) 

 

Note that for every k, 𝜙𝑚(𝑘) ∈ (0,1). Let 𝑝𝑖 be s distinct prime numbers 𝑖 = 1, … , 𝑠 and 

then the s-dimensional sequence P is called Halton sequence. 

𝑃 = {𝜙𝑝1
(𝑘), 𝜙𝑝2

(𝑘), … , 𝜙𝑝𝑠
(𝑘)} (1.3) 
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Figure 1.2: 2D Halton sequence of 256 points map 

        It can be seen from Figure 1.2 that the randomly generated points are distributed 

quite uniformly throughout the 2D space. 

 

1.3.2 Hammersely Sequence 

    To generate a Hammersely sequence, let 𝑝𝑖 be s distinct prime numbers 𝑖 = 1, … , 𝑠 and 

then the (s+1)-dimensional sequence P is called Hammersely sequence. 

                 𝑃 = {(
2𝑘−1

2𝑁
) , 𝜙𝑝1

(𝑘), 𝜙𝑝2
(𝑘), … , 𝜙𝑝𝑠

(𝑘)}                (1.4) 
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Figure 1.3: Hammersely sequence of 256 points map 

Once again, Figure 1.3 shows that the Hammersely points are evenly distributed 

throughout the 2D space. 

  

1.4 Traditional DOE Method 

The DOE Method is a tool widely used in industry. By carefully applying DOE 

principles before volume production, the companies can save a lot of money and time. 

Many researchers have used DOE Methods to solve design optimization problems as well. 

Marston (2000) proposed a DOE based method for solving a pressure vessel optimal design 

problem. Ghotbi (2013) discussed this problem and proposed another DOE based method 

for solving a two bar-truss optimal design problem. 

Traditional DOE Methods include full factorial design, OED (orthogonal 

experimental design), CCD (central composite deign), BBD (Box-Benhnken design) etc.  

A full factorial experimental design means a design that takes all possible 

combinations of its levels across all such factors. 
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Figure 1.4: A 3 level full factorial design 

A CCD or fractional factorial design with center points, augmented with a group of 

axial points (star points) let one estimate curvature of the response curve. 

 

Figure 1.5: A 2 level 3 factor Central Composite Design 
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1.5 Game theory approaches in optimal design 

In the game theory approach, a multi-level optimization problem is treated as a game 

where each player corresponds to an objective function being optimized. Many researchers 

(Rao (1987), Lewis and Mistree (1997), Liu (1998), et al.) have demonstrated the idea of 

using objective functions as players in a game. The players control a subset of design 

variables and seek to optimize their individual payoff.  

 

1.5.1 Nash Game 

In non-cooperative game theory, Nash equilibrium is a solution concept of a game 

involving two or more players where each player is assumed to know the equilibrium 

strategies of the other players, and no player has anything to gain by changing only their 

own strategy. If each player has chosen a strategy and no player can benefit by changing 

their strategy while the other players keep their unchanged, then the current set of strategy  

choices and the corresponding payoffs constitutes a Nash equilibrium. Different algorithms 

to solve optimization design problems based on Nash game theory had been developed by 

many authors (Koskie and Gajic (2005), Liu (1998), Rao and Freiheit (1991)). 

 

1.5.2 Stackelberg Game 

In game theory, a Stackelberg game corresponds to a situation when there is a leader 

and a follower in the game. In a Stackelberg game, the leader makes its decisions first, the 

follower then makes its decisions according to the leader’s decision to optimize its 

objective. 

Although much research had been done about optimization design based on a 
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Stackelberg game, most of it has focused on how to model a Stackelberg game, with less 

effort devoted to developing algorithms for obtaining Stackelberg game based optimal 

solutions. Periaux et al. (2001) developed a genetic algorithm based approach to solve the 

Stackelberg game based optimization problems. Ghotbi (2013) developed a sensitivity 

approach for solving Stackelberg game based optimization problems.  

 

1.5.3 Cooperative Game 

In a cooperative game, all players or several groups of players cooperate with each 

other. The players have knowledge of the strategies chosen by other players and collaborate 

with each other to find a Pareto-optima solution. 

   Cooperative game theory has been widely applied to model multi-objective 

optimization design problems. Rao et al. (1988) applied cooperative game theory based 

approach to solve a vibration optimization design problem. Dhingra and Rao (1995) 

proposed a cooperative fuzzy game theoretic approach to multiple objective design 

optimization problems. Khan and Ahmad (2008) discussed an energy consumption 

optimization design problem based on the cooperative game theoretic concepts. 

 

1.6 Motivation 

Although many approaches have been proposed to solve design optimization 

problems, some methods still have limitations. For example, when using the traditional 

DOE Method, when a design problem has non-linear behavior, in this case the linear 

regression of the response surface would not match the true values, so that model updating 

may be needed. However, to get a more accurate regression model, more data points are 
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needed which means more levels of experimental design are required. The number of 

required points increases exponentially as the number of levels is increased. For example, 

a three level three factor full factorial experiment requires 33 = 27 points, while a four 

level experiment requires 34 = 81 points. This increase in number of data points for model 

updating could be very large when the number of levels for a factor increases. This thesis 

proposes a new idea of using low discrepancy sequence to add arbitrary number of points 

to realize the model updating to improve the accuracy of the resulting RSM model. 

The second half of this thesis discusses how to solve two game based scenarios-

hierarchical and decentralized problems in the context of solution to multi-level optimal 

design problems. 

 

1.7 Thesis organization  

This thesis is divided into 3 main chapters. 

Chapter 2 demonstrates how to utilize the low discrepancy sequence as a new DOE 

Method to solve optimal design problems that have been solved by using other approaches 

in the past. Comparisons between results obtained using different solution approaches are 

presented to demonstrate the feasibility and effectiveness of low discrepancy sequences as 

a viable tool for solving multi-level design optimization problems. 

Chapter 3 demonstrates how to utilize low discrepancy sequence for model updating 

and to solve problems that could be computationally expensive and complicated using the 

traditional DOE Methods. 

Chapter 4 discusses decentralized and hierarchical multi-level problems, two types of 

multi-level design optimization problems. In chapter 4, the thesis also presents application 
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of sensitivity based approach, developed by Ghotbi (2013) for solving these two types of 

problems. Three numerical examples are presented in chapter 4 with respect to the two 

problem modes (Decentralized and Hierarchical) and a third mode which combines the two 

previous modes is also presented. 

Chapter 5 summarizes the main achievements of this thesis and proposes future 

extension of the research work that has been done in this thesis. 
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Chapter 2. Application of low discrepancy sequences in 

design optimization 

 
This chapter discusses how to utilize low discrepancy sequences as a way to generate 

data points for setting up the regression model and use the regression model to find a 

solution to optimal design problems.  

 

2.1 Basic idea of multi-level design optimization problems 

        The design of practical systems involves a large number of elements or subsystems 

with multiple-load conditions and large number of design variables and constraints. The 

design optimization problem becomes unmanageably large, and the solution process 

becomes cumbersome and poses numerical difficulties. In such cases, the design 

optimization problem can be broken into a series of smaller problems using different 

strategies. The multi-level optimization is a decomposition technique in which the global 

problem is reformulated as several smaller sub-problems (one for each subsystem) and a 

coordination problem (at system level) to preserve the coupling among the sub-problems 

(subsystems). 

 

 2.2 Traditional DOE-RSM method 

The DOE method has been connected with RSM to find solutions for many 

optimization problems arising in engineering. The basic idea of DOE-RSM method is to 

design an experiment where the leader design variables are parameters and the follower 

design variables are unknowns to generate the response surface to find the solution for the 

follower variables as a function of leader variable values, then substitute this result into the 
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objective functions to solve the design optimization problem for the leader. 

 

 2.3 Low-discrepancy sequence method 

The low-discrepancy sequence method in this thesis is considered to be a new way to 

generate the data points and build the response surface. The advantage of the low-

discrepancy sequence compared to the traditional DOE method is the data points generated 

from the low-discrepancy sequence are evenly distributed throughout the solution space so 

that often less data points generated from low-discrepancy can build a more accurate 

response surface. Besides, the number of data points that traditional DOE-RSM methods 

require are fixed. For example, using a full factorial design to build a RS model for a 3 

level and 3 factor experiment needs 27 data points, even if using a CCD it is reduced to at 

least 15 data points (not including the repeating points at the center). However, there is no 

limitation on the numbers of points need for the low-discrepancy sequence method, any 

number of data points that is proper can be used for the experiments. 

In the process of studying low-discrepancy sequence method, a lot of testing work has 

been done, and it was proved that both the Hammersely and Halton sequence are good low-

discrepancy sequences to generate sample data points. However, an interesting fact was 

found that Halton sequence has a great advantage comparing with the Hammersely 

sequence. See Table 2.1 and 2.2 for the difference between the sample points generated 

from Hammersely and Halton sequence (three columns of each) when 5 and 6 points are 

generated using these sequences. 
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Table 2.1: Three columns of sample points generated from Halton and Hammersely 

sequences of 5 points 

 

 

Table 2.2: Three columns of sample points generated from Halton and Hammersely 

sequences of 6 points 

 

 

 

Halton sequence (5 points) Hamersely sequence (5 points) 

Column 1 Column 2 Column 3 Column 1 Column 2 Column 3 

0.5000 0.3333 0.2000 0.1667 0.5000 0.3333 

0.2500 0.6666 0.4000 0.3333 0.2500 0.6666 

0.7500 0.1111 0.6000 0.5000 0.7500 0.1111 

0.1250 0.4444 0.8000 0.6667 0.1250 0.4444 

0.6250 0.7778 0.0400 0.8333 0.6250 0.7778 

Halton sequence (6 points) Hamersely sequence (6 points) 

Column 1 Column 2 Column 3 Column 1 Column 2 Column 3 

0.5000 0.3333 0.2000 0.1429 0.5000 0.3333 

0.2500 0.6666 0.4000 0.2857 0.2500 0.6666 

0.7500 0.1111 0.6000 0.4286 0.7500 0.1111 

0.1250 0.4444 0.8000 0.5714 0.1250 0.4444 

0.6250 0.7778 0.0400 0.7143 0.6250 0.7778 

0.3750 0.2222 0.2400 0.8571 0.3750 0.2222 
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It is found that when additional points are added, the former data points generated 

from Halton sequence remain the same, whereas the former data points generated from 

Hammersely sequence are changed. This means that the sample points generated from the 

Hammersely sequence are changed from one iteration to the next. Therefore, when solving 

model updating problems (which will be discussed in chapter 3), sample points generated 

by Halton sequence in a previous iteration can be reused, and only the newly generated 

sample points are considered to be added into the previous model. When using a 

Hammersely sequence method to solve model-updating problems, the model needs to be 

re-built because the data points in previous iterations are changed when new points are 

added.  

In this chapter, the linear regression model that is generated from both traditional DOE 

method and the low-discrepancy sequence method is discussed in the contest of solution to 

a pressure vessel problem.  

  

 

2.4 Numerical example 

A numerical example is presented in this chapter to compare the results obtained using 

traditional DOE-RSM method and the low-discrepancy sequence data point generating-

RSM method. 

 

2.4.1 Pressure vessel problem 

    This problem had been used as a test problem in the literature by some researchers (Rao 

et al. 1997, Lewis and Mistree 1998, Marston 2000, Ghotbi 2013). Consider the pressure 
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vessel in Fig 2.1, there are three design variables in this problem, the radius of the pressure 

vessel R, the length L and the wall thickness T. 

 

Figure 2.1: Pressure vessel design problem 

Two objective functions are considered: maximizing the volume (VOL) and 

minimizing the weight (WGT) of the vessel. Player 1 (VOL) wishes to maximize the 

volume by controlling variables R and L whereas player 2 (WGT) wishes to minimize the 

weight with control over variable T. The vessel is under internal pressure P. The problem 

constraints include: (i) the circumferential stress in the wall should not exceed the tensile 

stress, and (ii) some additional geometric constraints due to space limitations. These 

constraints are given in Eqns. (2.1)- (2.4). 

𝜎𝑐𝑖𝑟𝑐 =
𝑃𝑅

𝑇
≤ 𝑆𝑡 

(2.1) 

5𝑇 − 𝑅 ≤ 0 (2.2) 

𝑅 + 𝑇 − 40 ≤ 0 (2.3) 

𝐿 + 2𝑅 + 2𝑇 − 150 ≤ 0 (2.4) 

 

The objective functions of the problems for players VOL and WGT are given in Eqns. 
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(2.5) and (2.8) respectively. 

For Player VOL: 

𝑀𝑖𝑛 𝑓1 = −𝑉(𝑅, 𝐿) = −𝜌 [
4

3
𝜋𝑅3 + 𝜋𝑅2𝐿] 

               by varying R, L 

                       subject to Eqns. (2.1)-(2.4)                   

(2.5) 

                          𝑅𝑙 ≤ 𝑅 ≤ 𝑅𝑢                                                                                      (2.6) 

                          𝐿𝑙 ≤ 𝐿 ≤ 𝐿𝑢                                                                                       (2.7) 

For player WGT: 

𝑀𝑖𝑛 𝑓2 = 𝑊(𝑅, 𝑇, 𝐿) = 𝜌 [
4

3
𝜋(𝑅 + 𝑇)3 + 𝜋(𝑅 + 𝑇)2𝐿 − (

4

3
𝜋𝑅3 +

𝜋𝑅2𝐿)]                 

     by varying T 

     subject to Eqns. (2.1)- (2.4) 

                          𝑇𝑙 ≤ 𝑇 ≤ 𝑇𝑢                              

(2.8) 

 

 

 

(2.9) 

 

 

where 𝜌 is the cylinder material density and 𝑅𝑙 , 𝑅𝑢, 𝐿𝑙, 𝐿𝑢, 𝑇𝑙, 𝑇𝑢 denote the lower and upper 

bounds on radius, length and thickness of the pressure vessel respectively. The problem 

parameters are given in Table 2.3. 

Table 2.3: Parameters of the pressure vessel 

𝑃(𝑙𝑏) 𝑆𝑡(𝑙𝑏) 
𝜌(

𝑙𝑏𝑠

𝑖𝑛3
) 

𝐿𝑙(𝑖𝑛) 𝐿𝑢(𝑖𝑛) 𝑅𝑙(𝑖𝑛) 𝑅𝑢(𝑖𝑛) 𝑇𝑙(𝑖𝑛) 𝑇𝑢(𝑖𝑛) 

3890 35000 0.283 0.1 140 0.1 36 0.5 6 
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The Nash solution for this problem was derived analytically by Rao et al. (1997) and 

is given by Eqns. (2.10)- (2.12).  

𝑆𝑡(150 − 𝐿𝑢)

2(𝑃 + 𝑆𝑡)
≤ 𝑅𝑁 ≤

40𝑆𝑡

𝑃 + 𝑆𝑡
 

(2.10) 

 𝐿𝑁 = 150 − 2𝑅𝑁(
𝑃

𝑆
+ 1) 

(2.11) 

𝑇𝑁 =
𝑃𝑅𝑁

𝑆𝑡
 

(2.12) 

where 𝑅𝑁 , 𝐿𝑁 , 𝑇𝑁  denote the Nash solutions of the radius, length and thickness of this 

problem respectively. 

Ghotbi (2013) mentioned that changing the initial point for the radius resulted in a 

different Nash solution which means that there are multiple Nash solutions for this problem. 

The traditional RSM-DOE based method is unable to provide all Nash solutions to this 

problem. However, in this chapter it is demonstrated how to low-discrepancy sequence 

based RSM is able to generate all possible Nash solutions. 

According to Marston (2000), 3 level 2 factor (leader level design variables R, L) 

CCD for follower player WGT, 9 basic data points with 5 repeating points at center (20.25, 

55) (See 9 CCD points map in Fig 2.2).  

 



 

 

20 

 

 

Figure 2.2. 9 point CCD map 

The application of low-discrepancy sequence method started from 14 randomly generated 

points. Table 2.4 and Table 2.5 shows the 14 data points generated from the Halton 

sequence and Hammersely sequence respectively. 
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Table 2.4: R, L computed according to 2 columns of 14 Halton points 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.5: R, L computed according to 2 columns of 14 Hammersely points 

 
 

 

 

 

 

 

 

 

 

 

Generated points R L T 

0.5 0.333333333 20.25 40 2.250642857 

0.25 0.666666667 12.375 70 1.375392857 

0.75 0.111111111 28.125 20 3.125892857 

0.125 0.444444444 8.4375 50 0.937767857 

0.625 0.777777778 24.1875 80 2.688267857 

0.375 0.222222222 16.3125 30 1.813017857 

0.875 0.555555556 32.0625 60 3.563517857 

0.0625 0.888888889 6.46875 90 0.718955357 

0.5625 0.037037037 22.21875 13.33333333 2.469455357 

0.3125 0.37037037 14.34375 43.33333333 1.594205357 

0.8125 0.703703704 30.09375 73.33333333 3.344705357 

0.1875 0.148148148 10.40625 23.33333333 1.156580357 

0.6875 0.481481481 26.15625 53.33333333 2.907080357 

0.4375 0.814814815 18.28125 83.33333333 2.031830357 

Generated Points R L T 

0.066666667 0.5 6.6 55 0.733542857 

0.133333333 0.25 8.7 32.5 0.966942857 

0.2 0.75 10.8 77.5 1.200342857 

0.266666667 0.125 12.9 21.25 1.433742857 

0.333333333 0.625 15 66.25 1.667142857 

0.4 0.375 17.1 43.75 1.900542857 

0.466666667 0.875 19.2 88.75 2.133942857 

0.533333333 0.0625 21.3 15.625 2.367342857 

0.6 0.5625 23.4 60.625 2.600742857 

0.666666667 0.3125 25.5 38.125 2.834142857 

0.733333333 0.8125 27.6 83.125 3.067542857 

0.8 0.1875 29.7 26.875 3.300942857 

0.866666667 0.6875 31.8 71.875 3.534342857 

0.933333333 0.4375 33.9 49.375 3.767742857 
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To make a comparison between the distribution of points used to generate the response 

surface using CCD and low-discrepancy method, Fig 2.3 and Fig 2.4 show the 14 points 

generated using the Hammersely method and the 14 points generated using the Halton 

method respectively. 

 

 
Figure 2.3: 14 points Hammersely sequence map 
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Figure 2.4: 14 points Halton sequence map 

 
In the lower level (or the follower problem), the radius R and the length L are 

considered as parameters. Thus R and L values in Table 2.4 and 2.5 are computed by Eqns. 

(2.13) and (2.14) as: 

𝑅 = 𝑅𝐿 + (𝑅𝑈 − 𝑅𝐿)𝑥1𝑖 (2.13) 

𝐿 = 𝐿𝐿 + (𝐿𝑈 − 𝐿𝐿)𝑥2𝑖 (2.14) 

 

where 𝐿𝑈 = 100 𝑖𝑛, 𝑅𝑈 = 36 𝑖𝑛, 𝐿𝐿 = 10 𝑖𝑛, 𝑅𝐿 = 4.5 𝑖𝑛  denote the highest and lowest 

value selected for the length and radius in the experiment, 𝑥1𝑖, 𝑥2𝑖 denote the generated 

points in each column. 

The fifth column in both Table 2.4 and Table 2.5 shows the optimum solution for T 



 

 

24 

 

from each combination of (R, L) according to equation (2.12).  

The linear regression for T(R, L) according to 14 point Hammersely sequence is 

obtained as Eqn. (2.15) 

𝑇(𝑅, 𝐿) = 0.111142857142857𝑅 − 0.000000000142855 (2.15) 

Since the discrepancy in coefficients between each set of experiment is very small, 

while computing the response surface equation, the coefficients in Eqn. (2.15) are retained 

in long format. 

Here, T(R, L) approximated the optimum vector of WGT problem for varying values 

of R and L. Repeating the above steps for the VOL problem yields the Rational Reaction 

Set (RRS) for variables R and L as follows: 

𝑅(𝑇) = 8.997429304946937𝑇 + 0.000000002402726 (2.16) 

𝐿(𝑇) = −19.9948586173061𝑇 + 150.0000000136055 (2.17) 

Comparing this result with the one reported by Marston (2000) 𝑇(𝑅, 𝐿) =

−0.00021 + 0.1112𝑅, 𝑅(𝑇) = 9𝑇, 𝐿(𝑇) = 150 − 20𝑇, there are only some very small 

perturbations in the coefficients. However, the Nash solutions: 𝑅 = 24.4496, 𝐿 =

95.6859, 𝑇 = 2.7164, obtained based on the three RRS computed in this chapter is quite 

a bit different compared to 𝑅 = 28.44, 𝐿 = 86.8 𝑇 = 3.16 reported by Marston (2000). 

Since it was already known from Ghotbi (2013) that the Nash solution for this pressure 

vessel problem is not unique, and DOE based RSM at that time was not able to find all 

Nash solutions. To verify if this is one of the possible Nash solutions and if the new DOE 

method can be applied to find all Nash solutions, the study continued.  

By reducing the number of initial experiment data points from 14 to 9, repeating the 

steps above, 6 sets of Nash solutions were obtained by Hammersely sequence method and 
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6 sets of Nash solutions were obtained by Halton sequence method. They are shown in 

Table 2.6 and Table 2.7 respectively. 

 

Table 2.6: 6 sets of Nash solutions obtained by Hammersely sequence method 

 

 
  Table 2.7: 6 sets of Nash solutions obtained by Halton sequence method 

 

The results given in Table 2.6 and Table 2.7 are plotted in 4 charts shown below. 

 

 

 

Number of data points T (in) R (in) L (in) 

14 1.1581 10.4203 126.8430 

13 2.4152 21.7306 101.7083 

12 2.6796 24.1099 96.4210 

11 1.2942 11.6448 124.1219 

10 3.8795 34.9051 72.4308 

9 1.6417 14.7707 117.1753 

Number of data points T (in) R (in) L (in) 

14 2.7164 24.4406 95.6859 

13 1.4540 13.0826 120.9266 

12 2.0281 18.2480 109.4476 

11 4.3221 38.8875 63.5809 

10 2.9451 26.4987 91.1124 

9 3.1781 28.5945 86.4549 



 

 

26 

 

 
Figure 2.5: Thickness versus radius using Hammersely sequence 

 

Figure 2.6: Length versus radius using Hammersely sequence  
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Figure 2.7: Thickness versus radius using Halton sequence 

 

Figure 2.8: Length versus radius using Halton sequence 
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Ghotbi (2013) proposed a sensitivity based approach to solve this problem and 

successfully found all Nash solutions as shown in Fig 2.9 and Fig 2.10.  

 

Figure 2.9: Nash solution found by Ghotbi (thickness versus radius) 

 

Figure 2.10: Nash solution found by Ghotbi (length versus radius) 
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Comparing the 2 sets of figures in this chapter with the 2 figures plotted by Ghotbi 

(2013), a conclusion was drawn that by varying the numbers of data points of the low-

discrepancy sequence, all Nash solutions of the pressure vessel problem can be found.  

 

2.5 Conclusions 

This chapter demonstrated how to apply low-discrepancy sequence method based 

RSM to find Nash solution for a design optimization problems. From the results of the 

numerical example in this chapter, it is obvious that the low-discrepancy sequence method 

has a lot of advantages compared to the traditional DOE method. 

Firstly, less data points are needed to build a relatively accurate response surface 

model by using low-discrepancy sequence method. 

Secondly, the results of the numerical example shows that it is possible to find all 

Nash solutions for the design optimization problems when the Nash solution is not a 

singleton. Similarly, by adding or reducing the repeated points at the center of the CCD 

experiment dose not help to find all Nash solutions for the pressure vessel problem. 

Thirdly, unlike the traditional DOE method where the number of data points is fixed 

by the number of factors and their levels in the experiment, the low-discrepancy sequence 

method offers the convenience that the experiment can be started from any proper number 

of data points. 

Since the Nash solutions for the pressure vessel problem were analytically available, 

there was no need to do model updating. To further illustrate the efficiency of the low-

discrepancy sampling method, the next chapter discusses how to realize model updating 

using this method.  
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Chapter 3. Model updating using low discrepancy 

sampling 

    In the pressure vessel design problem discussed in previous chapter, a linear numerical 

regression model was used to approximate the response surface. In this chapter, another 

numerical example is discussed to demonstrate utilization of low-discrepancy sequence 

method based RSM to realize model updating and solve the design optimization problem. 

 

3.1 Basic concept of model updating 

Generally in the DOE method, the study of numerical regression starts from the first 

order model in the form of Eqn. (3.1). 

𝑦̃ = 𝑎0 + ∑ 𝑎𝑗𝑥𝑗

𝑛

𝑗=1

 
(3.1) 

To make the generated response surface more accurate and closer to the real case, the 

model may need to be updated. The model updated should be as simple as possible while 

giving reasonably accurate results. Two types of second order models, the pure quadratic 

model and the full quadratic model in the form of Eqn. (3.2) and Eqn. (3.3) respectively 

are used frequently. 

𝑦̃ = 𝑎0 + ∑ 𝑎𝑗𝑥𝑗

𝑛

𝑗=1

+ ∑ 𝑎𝑗𝑗𝑥𝑗
2

𝑛

𝑗=1

 
(3.2) 

𝑦̃ = 𝑎0 + ∑ 𝑎𝑗𝑥𝑗

𝑛

𝑗=1

+ ∑ ∑ 𝑎𝑖𝑗

𝑛

𝑖=1

𝑥𝑖𝑥𝑗

𝑛

𝑗=1

 
(3.3) 

Generally, the more accurate the model, the better is the optimal solution obtained, 

however, this requires more data points in the DOE formulation. 

As discussed before, because of the exponential relationship between the number of 
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data points and the number of levels used in the experimental design, sometimes it can be 

very hard to realize model updating using traditional DOE based methods. Even if it is 

possible to conduct a numerical experiment and add more data points to realize model 

updating, it may be difficult to implement in many problems because of an exponential 

increase in number of trials required when a level is added and the additional experiments 

can cost lot of money and take a lot of time.  

 

3.2 Model updating using low-discrepancy sequence method 

In section 2.4, several advantages of the low-discrepancy sequence method were 

reported. This chapter introduces one more advantage of low-discrepancy sequence method 

that when trying to update the regression model, any number of data points can be added 

into the model.  

The basic idea of utilizing low-discrepancy sequence method for model updating is to 

take advantage of its flexibility. If the original model fails to meet the desired accuracy 

expected of the response surface, it is easy to go back to the data point generating step, and 

add one more data point to the experiment, and then check if the new regression model fits 

the actual model better. Repeat these steps until the response surface model fits the actual 

process accurately. Using this model to find the solution for the design optimization 

problem is expected to yield improved solutions. These steps are summarized in the 

flowchart given in Figure 3.1. 
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Figure 3.1: Flow chart of model updating using low-discrepancy sequence method  
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 3.3 Numerical example 

A numerical example is presented in this chapter to demonstrate how to apply low-

discrepancy sampling method to update the RSM model and solve the design optimization 

problem under consideration. 

 

3.3.1 Two-bar truss design problem 

Azarm and Li (1990) discussed the bi-level optimization problem which is shown in 

Fig. 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Two-bar truss design problem 

 

A vertical load of 100 KN is applied at point C. The design variables are the cross-

sectional areas of the bars 𝑥1, 𝑥2, and the y-coordinate of joint C. The problem constraints 

include limitations on the stress in the elements, which should not exceed 100000 𝑘𝑁/𝑚2, 

and the boundary conditions on vertical coordinate (y). The objective function is to 

minimize the total volume of the two members as shown in Eqn. (3.4). 

C  

 
 

  

   

100 kN 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥1, 𝑥2, 𝑦) = 𝑥1(16 + 𝑦2)0.5 + 𝑥2(1 + 𝑦2)0.5 

           subject to: 

20(16 + 𝑦2)0.5 − 100000𝑦𝑥1 ≤ 0 
80(1 + 𝑦2)0.5 − 100000𝑦𝑥2 ≤ 0 

1 ≤ 𝑦 ≤ 3 
𝑥1, 𝑥2 > 0 

 

 

 

   (3.4) 

Azarm and Li (1990) decomposed this problem into two levels. Level 1 is the follower 

problem, with two players, Player 1 and Player 2, who have control over variables 𝑥1 and 

𝑥2 respectively. Level 2 is the leader problem with Player 3 who has control over variable 

𝑦. 

 The follower level problems are given as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥1, 𝑦) = 𝑥1(16 + 𝑦2)0.5 
                                       𝑥1    
                              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
                                                    20(16 + 𝑦2)0.5 − 100000𝑦𝑥1 ≤ 0 
                                                     𝑥1 > 0 

 

 

(3.5) 

 

    

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2(𝑥2, 𝑦) = 𝑥2(1 + 𝑦2)0.5 
                                       𝑥2    
                               𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
                                                     80(1 + 𝑦2)0.5 − 100000𝑦𝑥2 ≤ 0 
                                                     𝑥2 > 0 

 

 

(3.6) 

 

 

    The leader problem is given as: 

     1 2 1 1 2 2, , , ,

subject to:

1 3

minimize f x x y f x y f x y

y

y

 

 

 

 

 

   (3.7) 
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This problem can be modeled as a Stackelberg game with two players in the follower 

level. Using the principles of monotonicity analysis, it can be verified that the constraints 

are active at optimum solution of the follower problems when they are optimized 

individually. The optimum solutions of follower problems are as follows:  

 (3.8) 

     
0.5

* 2

2 80 1 / 100,000x y y y 
 

(3.9) 

where 𝑥1
∗, 𝑥2

∗ are the optimal solutions for the follower problems which are the closed-form 

expressions of RRS for the followers. By substituting these RRS in the leader level, the 

optimum solution of leader problem can be obtained. 

Since there is a single factor y in the leader problem, the design of experiment became 

simple. The traditional DOE based RSM method can just evenly divide the interval of y 

[1,3], and use the same concept to update the model and solve the problem. The results of 

three different types of models (linear, quadratic and cubic model) computed by both 

Halton sequence and Hammersely sequence are shown in Table 3.1. 

 

Table 3.1: Solutions obtained from low-discrepancy sequence method 

 

     
0.5

* 2

1 20 16 / 100,000x y y y 

   Type 

 

  

 

 

Variables 

Linear model Quadratic model Cubic model 

Halton 
Hammers

ely 
Halton 

Hammers

ely 
Halton 

Hammers

ely 

𝑥1 2.5870𝑒−4 2.5870𝑒−4 4.1647𝑒−4 4.1284𝑒−4 4.4979𝑒−4 4.4548𝑒−4 

𝑥2 7.9300𝑒−4 2.5870𝑒−4 8.7582𝑒−4 8.7657𝑒−4 8.9768𝑒−4 8.9840𝑒−4 

𝑦 3 3 2.1500 2.1621 1.9673 1.9973 
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Comparing the solution reported by Azarm and Li (2000) ( 𝑥1 = 4.48𝑒−4, 𝑥2 =

8.96𝑒−4, 𝑦 = 2 ) and the solution reported by Ghotbi (2013) ( 𝑥1 = 4.49𝑒−4, 𝑥2 =

8.95𝑒−4, 𝑦 = 1.9981), with the cubic model solution in this thesis, it is seen that cubic solution 

given in Table 3.1 is the most accurate one among the three pairs of the solutions obtained 

from the low-discrepancy sequence method. This simple example shows that the low-

discrepancy sequence method can be considered as an effective way to update regression 

models. 

 

3.3.2 Enhanced version of the Two- bar truss problem 

Since there was only one leader design variable in problem 3.3.1, only one factor was 

considered while designing the experiment. When updating the model, it can be easily set 

up by using the traditional DOE method which involves dividing y into evenly spaced 

intervals and reducing the interval size to accommodate more data points to the experiment. 

Thus, an additional problem is considered here, by adding two more leader design variables 

𝑦1, 𝑦2 into the problem (See Fig. 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Enhanced two-bar truss problem 

𝑦1 

 

  
 

 

 

 

100 kN 

𝑦2 
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        The new objective function becomes as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦) = 𝑥1[16 + (𝑦 − 𝑦1)2]0.5 + 𝑥2[1 + (𝑦 − 𝑦2)2]0.5 

         subject to: 

20(16 + (𝑦 − 𝑦1)2)0.5 − 100000(𝑦 − 𝑦1)𝑥1 ≤ 0 
80(1 + (𝑦 − 𝑦2)2)0.5 − 100000(𝑦 − 𝑦2)𝑥2 ≤ 0 

1 ≤ 𝑦 ≤ 3 
0 ≤ 𝑦1, 𝑦2 ≤ 0.5 

𝑥1, 𝑥2 > 0 
 

(3.10) 

So the optimum solution for 𝑥1and 𝑥2 change to: 

𝑥1
∗(𝑦1, 𝑦) = 20[16 + (𝑦 − 𝑦1)2]0.5/100,000(𝑦 − 𝑦1)        (3.11) 

𝑥𝑥
∗(𝑦2, 𝑦) = 80[1 + (𝑦 − 𝑦2)2]0.5/100,000(𝑦 − 𝑦2)        

 
(3.12) 

The response surface according to the optimum solution 𝑥1 and 𝑥2 are shown in Fig 

3.4 and Fig 3.5 respectively. 

 

Figure 3.4: Response surface of 𝑥1
∗(𝑦1, 𝑦) 
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Figure 3.5: Response surface of 𝑥2
∗(𝑦2, 𝑦) 

An 8 point Hammersely sequence was generated to solve this problem. The linear 

regression model of the follower level were computed as follow: 

𝑥1 = 1.0408𝑒−3 + 3.5073𝑒−4𝑦1 − 2.9518𝑒−4𝑦        (3.13) 

𝑥2 = 1.2843𝑒−3 + 1.8183𝑒−4𝑦2 − 1.8186𝑒−4𝑦        
 

(3.14) 

Substitute this solution into the leader problem. The solution of the global design 

problem 𝑦 = 3, 𝑦1 = 0, 𝑦2 = 0, 𝑥1 = 1.5527𝑒−4, 𝑥2 = 7.3872𝑒−4 was obtained. 

To verify if the solution is indeed the correct solution to this problem, a sensitivity 

based approach was applied, and 𝑦 = 2.0029, 𝑦1 = 0, 𝑦2 = 0.5, 𝑥1 = 4.4670𝑒−4, 𝑥2 =

9.6092𝑒−4 was obtained as the solution to this problem. 

The solution obtained from the first order model is not the same as the solution 

obtained with the sensitivity based approach, which means the model needs to be updated. 
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Since it is unknown if additional data points are necessary, the Hammersely sequence 

was retained in the form of 8 points for the continued study of model updating. The 

solutions obtained from full quadratic model and full cubic model are shown in Table 3.2. 

 

   Table 3.2: Solutions obtained from 8 point Hammersely sequence 

 

 

As is shown in the Table 3.2, the solution obtained from the cubic model is very close 

to the solution obtained from the sensitivity based approach. If more accurate solutions are 

desired, 2 methods can be applied: 1) increase the model order, 2) add more data points to 

the full cubic model. Considering the number of computations needed in formulating a 4th 

order regression equation, the second method was adopted here. 

When the number of data points was increased to be 11, a set of solution that met the 

tolerance requirement of 𝜀 ≤ 0.001  was obtained, this solution can be viewed as the 

optimum solution for this problem (See Table 3.3) 

 

 

 

 

Model 

Variables 

Quadratic model Cubic model 

𝑦 2.1501 2.1003 

𝑦1 0 0 

𝑦2 0.3291 0.4938 

𝑥1 4.1468𝑒−4 4.4574𝑒−4 

𝑥2 9.1327𝑒−4 9.3734𝑒−4 



 

 

40 

 

Table 3.3: Hammersely and Halton 11 point solution versus sensitivity based approach 

 

According to the result obtained from the 11 point Hammersely and Halton sequence, 

the low-discrepancy sequence method is an effective tool in model updating study, and can 

be considered as an effective method in solving design optimization problems. 

The traditional DOE based RSM was also considered in this problem. A 3 factor 2 

level experiment with 8 points was designed to solve this problem. However, the full cubic 

model result (𝑦 = 2.4378, 𝑦1 = 0, 𝑦2 = 0.1844, 𝑥1 = 7.8850𝑒−4, 𝑥2 = 10.9114𝑒−4) was 

far away from the exact solution. The reason that this result cannot be trusted is that the 8 

points in a 2 level traditional design experiment are way too dispersed compared to the 

low-discrepancy sequence method. Thus, more data points are required in the traditional 

DOE approach. To update the numerical model using the traditional DOE method, 1 more 

level is required which means the data points need to be increased from 8 points to 27 

points. On the other hand, an 11 point low-discrepancy sequence can give a very accurate 

solution. 

 
 
 
 
 

Method 

Variables 

Hammersely 11 

points cubic model 

Halton 11 points 

cubic model 

Sensitivity based 

approach 

𝑦 2.0023 2.0026 2.0029 

𝑦1 0 0 0 

𝑦2 0.4998 0.4999 0.5 

𝑥1 4.4670𝑒−4 4.4670𝑒−4 4.4670𝑒−4 

𝑥2 9.5991𝑒−4 9.6000𝑒−4 9.6092𝑒−4 
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3.4 Conclusions 

In this chapter, the two-bar truss design problem was considered as a test problem to 

demonstrate one factor experiment-model updating. The second numerical example, which 

has three leader design variables, is a modified version of the two-bar truss problem. In this 

case, the traditional DOE method was not able to realize model updating by adding data 

points to the experiment one by one. 

When the factors in the experiment were increased to be 3 or more, the traditional 

DOE method was inapplicable in this case. From the result of the second numerical 

example, it is seen that the low-discrepancy sequence method is a fast and effective way to 

update the regression model when dealing with multiple factors. Since the sample points 

generated using low-discrepancy sequences are uniformly distributed throughout the 

solution space, the underlying response surface is reasonably accurate. 
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Chapter 4. Multi-level optimum design based on 

Decentralized and Hierarchical models 

 

This chapter presents an application of sensitivity based approach to solving multi-

level design optimization problems. Two types of multi-level problems are considered in 

this chapter. The first one is the decentralized case, wherein the multiple objective functions 

are considered as two groups, with one (or more) objectives in the leader group and one 

(or more) objectives in the follower group. Two solution scenarios are considered. In the 

first scenario, the behavior in each group is considered as a cooperative game, and the 

interaction between the leader and follower group is considered as a Stackelberg Game. In 

the second scenario, at the lower level, the interactions between the players are considered 

as a non-cooperative Nash game while at the leader level the interactions between the 

players remains a cooperative game. The interaction between the two levels is still 

considered as a Stackelberg game. 

In the second case, called the hierarchical mode, multiple objective functions are 

considered as multiple levels from the highest to the lowest. This means there is a 

hierarchical order of the leaders and followers in this mode. To find the solution to this 

situation, the interaction between each set of players is considered as a Stackelberg game. 

 

 4.1 Decentralized mode 

Consider a bi-level decentralized game with 4 players in the game for example (See 

Fig 4.1). The 4 players represent their own objective functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 respectively. 

Player 1 and player 2 are considered as leader players in Level 1, player 3 and player 4 are 
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considered as follower players in Level 2. 

 

 

 

 

 

Figure 4.1: Bi-level 4 player decentralized model 

 

The design optimization problem for the players is modeled as: 

Leader level:  

For player 1 

𝑀𝑖𝑛 𝑓1(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                         subject to 𝑔𝑗
1(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

1         

 

(4.1) 

For player 2 

𝑀𝑖𝑛 𝑓2(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                           subject to 𝑔𝑗
2(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

2        

 

(4.2) 

 

Follower level: 

For player 3 

                           𝑀𝑖𝑛 𝑓3(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the follower design variables           

                           subject to 𝑔𝑗
3(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

3       

 

(4.3) 

 

Player 3 𝑓3 Player 4 𝑓4 

Player 1 𝑓1 Player 2 𝑓2 
Cooperative 

Nash/Cooperative 

Stackelberg 

Level 1 

Level 2 
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For player 4 

                           𝑀𝑖𝑛 𝑓4(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the follower design variables           

                           subject to 𝑔𝑗
4(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

4 

 

(4.4) 

There are two possible cases in a decentralized system, so two scenarios are 

considered in this chapter, 1) the interactions between the objectives of both leader level 

and follower level is considered as a cooperative game, the interaction between the leader 

level and the follower level is considered as a Stackelberg game; 2) the interaction at the 

follower level is considered as a Nash (Non-cooperative) game, the interaction at the leader 

level is considered as a cooperative game, and the interaction between the two levels is a 

Stackelberg game. 

                

4.2 Hierarchical mode 

       Considering a three level with 3 players (See Fig 4.2). The 3 players represent their 

own objective functions 𝑓1, 𝑓2, 𝑓3 respectively. The objective function 𝑓1 is considered as 

the only leader player in the first level. The objective function 𝑓2 is considered as the first 

follower player in the second level. The objective function 𝑓3 is considered as the second 

follower player in the third level. 
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Figure 4.2: Tri-level 3 player Hierarchical model 

The design optimization problem for the players is modeled as: 

First level:  

For player 1 

                           𝑀𝑖𝑛 𝑓1(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                           subject to 𝑔𝑗
1(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

1  

 

(4.5) 

Second level: 

For player 2 

                           𝑀𝑖𝑛 𝑓2(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                           subject to 𝑔𝑗
2(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

2 

 

(4.6) 

Third level: 

For player 3 

                           𝑀𝑖𝑛 𝑓3(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the follower design variables           

                           subject to 𝑔𝑗
3(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

3 

 

(4.7) 

Player 1 𝑓1 
 

Player 3 𝑓3 
 

Player 2 𝑓2 
 

Level 1 

Level 2 

Level 3 

Stackelberg 

Stackelberg 
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    Since in a hierarchical mode, all interactions between the neighboring levels are 

considered as Stackelberg games, the first step to solve this kind of problem is to find the 

Stackelberg solution for the lowest level (level 2 and level 3) as a function of higher levels 

design variables, and then substitute this solution progressively, level by level, into higher 

levels until we arrive at leader level for player 1. Finally, the complete solution to the 

problem can be found by combining rational reaction sets of all lower level Stackelberg 

problems. 

 

4.3 Combined Decentralized and Hierarchical mode problem 

In reality, a design problem may be more complicated where more factors in the 

design need to be considered with more objectives conflicting with each other. For example, 

imagine a design optimization problem that has 8 objectives to be optimized. More game 

modes should be considered to find an optimum solution, which cannot be classified simply 

as a decentralized mode or a hierarchical mode. 

This thesis presents a solution for a new game structure which is a combination of the 

decentralized and the hierarchical modes. Consider a design optimization problem with 4 

players where player 1 in the first level is the leader for players 2, 3, 4, player 2 in the 

second level is the leader for players 3, 4, players 3, 4 who stay at the third level are the 

followers. 

    This problem can be modeled as a three-level game in which the interactions in each 

level can be considered as either a Nash game or a cooperative game, the interaction of 

each level to its preceding level is a Stackelberg game (See Fig 4.3). 
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Figure 4.3: Tri-level Decentralized-Hierarchical model 

The design optimization problem can be formulated as: 

First level:  

For player 1 

                           𝑀𝑖𝑛 𝑓1(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                           subject to 𝑔𝑗
1(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

1  

 

(4.8) 

Second level 

For player 2 

                           𝑀𝑖𝑛 𝑓2(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                           subject to 𝑔𝑗
2(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

2 

 

(4.9) 

Third level: 

For player 3 

                           𝑀𝑖𝑛 𝑓3(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                           subject to 𝑔𝑗
3(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

3 

 

(4.10) 

Player 4 𝑓4 
 

Player 1 𝑓1 
 

Player 3 𝑓3 
 

Player 2 𝑓2 
 

Level 1 

Level 2 

Level 3 

Stackelberg 

Stackelberg 
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For player 4 

                           𝑀𝑖𝑛 𝑓4(𝑥1, 𝑥2, … 𝑥𝑖) 𝑥 ∈ 𝑅𝑛 

                           by varying the leader design variables             

                           subject to 𝑔𝑗
4(𝑥1, 𝑥2, … 𝑥𝑖) ≤ 0 𝑗 = 1,2, … 𝑛𝑔

4 

 

(4.11) 

To solve this problem, first step is to find the solution at the third level with the leader 

design variables as parameters, then substitute the rational reaction set of the solutions into 

the second level and finally, repeat above steps until the global solution to the problem can 

be obtained. 

 

4.4 Bargaining equation 

The bargaining equation was applied to capture the cooperative behavior between the 

players in the same level in a decentralized model. The bargaining equation is expressed 

as: 

𝑓𝐵 =
(𝑓𝑤1 − 𝑓1)(𝑓𝑤2 − 𝑓2) … (𝑓𝑤𝑖 − 𝑓𝑖)

(𝑓𝑤1 − 𝑓𝑏1)(𝑓𝑤2 − 𝑓𝑏2) … (𝑓𝑤𝑖 − 𝑓𝑏𝑖)
 

(4.12) 

where 𝑓𝐵 denotes the bargaining function, 𝑓𝑖 are the values of the objective functions, 𝑓𝑤𝑖 

is the worst solution for the 𝑓𝑖 and 𝑓𝑏𝑖 denotes the best solution for 𝑓𝑖. It may be noted that 

the 𝑓𝑏𝑖  is the optimized solution for the objective function 𝑓𝑖  and 𝑓𝑤𝑖  is the negative 

optimized solution for −𝑓𝑖 (Assuming all the objective functions are in the standard form 

that the target is to minimize the function). 

 

4.5 Sensitivity based approach 

The sensitivity based approach is considered as a fast and effective method for finding the 

solutions to multi-level optimization design problems. The basic concept of the sensitivity 
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based approach is to find how does the leader design variable change when varying the 

follower design variable according to the sensitivity 
𝑑𝑥𝑓

∗

𝑑𝑥𝑙
. Use the sensitivity to find the 

expression for the follower level solution: 

𝑥𝑓 = 𝑥𝑓
∗𝑘 +

𝑑𝑥𝑓
∗𝑘

𝑑𝑥𝑙
(𝑥𝑙 − 𝑥𝑙

𝑘) 
(4.13) 

Substitute Eqn. (4.13) into the leader problem solve for 𝑥𝑙
∗ in each iteration until the 

convergence tolerance |
𝑥𝑙

∗−𝑥𝑙
𝑘

𝑥𝑙
𝑘 | meets the requirement yielding the solution to the problem 

𝑥𝑙
∗, 𝑥𝑓

∗. 

Here 𝑥∗ denotes the solution for the design variables, 𝑥𝑙 and 𝑥𝑓 are the leader design 

variables and follower design variables respectively, 𝑘 is the iteration counter. 

Hou et al. (2004) showed the general algorithm for an application of the sensitivity 

based approach. Ghotbi (2013) demonstrated how to use sensitivity based approach to 

obtain Stackelberg and Nash solution for optimization problems. Fig. 4.4 is the flow chart 

of the procedure to obtain Stackelberg solution using sensitivity based approach. 
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Figure 4.4: Flowchart of sensitivity based approach to obtain Stackelberg solution 

Assume initial value for 
𝑥𝑙  

Set 𝑘 = 1, 𝑥𝑙 = 𝑥𝑙
𝑘  

Solve the follower optimization problem to 

obtain optimum values 𝑥𝑓
∗𝑘 corresponding to 𝑥𝑙

𝑘  

Obtain sensitivity information 

of follower problem 
𝑑𝑥𝑓

∗𝑘

𝑑𝑥𝑙
 

 

Substitute 𝑥𝑓 = 𝑥𝑓
∗𝑘 +

𝑑𝑥𝑓
∗𝑘

𝑑𝑥𝑙
(𝑥𝑙 − 𝑥𝑙

𝑘) 

into the leader problem 

If |
𝑥𝑙

∗−𝑥𝑙
𝑘

𝑥𝑙
𝑘 | ≤ 𝜀 

Solve the leader problem to obtain 
optimum vector 𝑥𝑙

∗ 

𝑥𝑙
∗, 𝑥𝑓

∗ are Stackelberg solutions  

End 

Yes 

𝑥𝑙
𝑘 = 𝑥𝑙

∗ 
𝑘 = 𝑘 + 1 

No 
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 4.6 Numerical example 

In this chapter, three numerical examples are presented to solve three types of multi-

level problems. The first one is a decentralized type of optimization problem, the second 

example is a hierarchical type of optimization problem, the third example is a combination 

of decentralized and hierarchical optimization problem. 

 

4.6.1 Decentralized optimization problem 

To demonstrate the application of the sensitivity based approach to solving a 

decentralized bi-level optimization problem, we consider a test problem which has been 

solved by Liu (1998) using genetic algorithm. 

The bi-level programming is formulated as follows: 

For the leader level: 

𝑚𝑖𝑛 𝐹(𝑥, 𝑦1, 𝑦2)

= (𝑦11 + 𝑦21 − 200)(𝑦11 + 𝑦21) + (𝑦12 + 𝑦22

− 160)(𝑦12 + 𝑦22) 

         subject to 

                   𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 40                                  

                   0 ≤ 𝑥1 ≤ 10, 0 ≤ 𝑥2 ≤ 5, 0 ≤ 𝑥3 ≤ 15, 0 ≤ 𝑥4 ≤ 20 

 

 

 

 

 

 

 

(4.14) 
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For the follower level: 

𝑚𝑖𝑛 𝑓3(𝑦1) = (𝑦11 − 4)2 + (𝑦12 − 13)2 

                 subject to 

                                   0.4𝑦11 + 0.7𝑦12 ≤ 𝑥1                   

                                   0.6𝑦11 + 0.3𝑦12 ≤ 𝑥2 

                                   0 ≤ 𝑦11, 𝑦12 ≤ 20 

 

 

 

(4.15) 

𝑚𝑖𝑛 𝑓4(𝑦2) = (𝑦21 − 35)2 + (𝑦22 − 2)2 

                 subject to 

                                    0.4𝑦21 + 0.7𝑦22 ≤ 𝑥3                  

                                    0.6𝑦21 + 0.3𝑦22 ≤ 𝑥4 

                                    0 ≤ 𝑦11, 𝑦12 ≤ 40 

 

 

 

(4.16) 

The leader problem was decomposed into two levels with player 1 𝑓1(𝑥, 𝑦1)  and 

player 2 𝑓2(𝑥, 𝑦2), and the objective functions in the leader level can be formulated as: 

Player 1    

𝑚𝑖𝑛 𝑓1(𝑥, 𝑦1, 𝑦2) = (𝑦11 + 𝑦21 − 200)(𝑦11 + 𝑦21) 

         subject to 

                      𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 40                   

                      0 ≤ 𝑥1 ≤ 10, 0 ≤ 𝑥2 ≤ 5, 0 ≤ 𝑥3 ≤ 15, 0 ≤ 𝑥4 ≤ 20 

 

 

 

(4.17) 
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Player 2      

𝑚𝑖𝑛 𝑓2(𝑥, 𝑦1, 𝑦2) = (𝑦12 + 𝑦22 − 160)(𝑦12 + 𝑦22) 

         subject to  

                      𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 40                   

                      0 ≤ 𝑥1 ≤ 10, 0 ≤ 𝑥2 ≤ 5, 0 ≤ 𝑥3 ≤ 15, 0 ≤ 𝑥4 ≤ 20 

 

 

 

(4.18) 

Therefore, the overall problem was modeled as a decentralized system. 

Consider this problem in the first scenario of a decentralized mode problem with 

player 1 and 2 in the leader level, player 3 and 4 in the follower level. In the first scenario, 

the interaction between the players in a same level is considered as a cooperative game. 

Thus, the bargaining equation are applied (The best and worst values for each objective 

function are shown in Table 4.1): 

For level 1: 

𝑓𝐵1 =
(0 − 𝑓1)(0 − 𝑓2)

(0 − (−2775))(0 − (−4375))
 

(4.19) 

For level 2: 

𝑓𝐵2 =
(185 − 𝑓3)(1229 − 𝑓4)

(185 − 3.7556)(1229 − 5.6889)
 

(4.20) 
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Table 4.1: Best and worst values for the objective function optimized individually 

 

Thus the optimization problem can be re-written as: 

Level 1    min  −𝑓𝐵1 

Level 2    min  −𝑓𝐵2 

              Subject to: 

                              𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 40 

                              0 ≤ 𝑥1 ≤ 10, 0 ≤ 𝑥2 ≤ 5, 0 ≤ 𝑥3 ≤ 15, 0 ≤ 𝑥4 ≤ 20 

                     0.4𝑦11 + 0.7𝑦12 ≤ 𝑥1              

                     0.6𝑦11 + 0.3𝑦12 ≤ 𝑥2 

                     0 ≤ 𝑦11, 𝑦12 ≤ 20                          

                     0.4𝑦21 + 0.7𝑦22 ≤ 𝑥3               

                     0.6𝑦21 + 0.3𝑦22 ≤ 𝑥4 

                     0 ≤ 𝑦11, 𝑦12 ≤ 40 

 

 

 

 

 

 

 

(4.21) 

Then, the interaction between level 1 and level 2 is considered as a Stackelberg game. 

To solve this problem, the DOE-RSM approach was considered first, however, due to the 

Objective function Best value Worst value 

𝑓1 -2775 0 

𝑓2 -4375 0 

𝑓3 3.7556 185 

𝑓4 5.6889 1229 
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constraints in this problem, an analytical solutions for the follower design variable in terms 

of the leader design variables was not possible. Thus, it is impossible to design an 

experiment of the follower level to generate the response surface. Therefore, the sensitivity 

based approach that was introduced in this chapter was applied to solve this problem (See 

results in Table 4.2). 

Table 4.2: Solutions to the Decentralized mode example 

 

    It can be seen from the table that the decentralized mode found a better optimum solution 

for 𝐹 and 𝑓3, but worse solution for 𝑓4. Considering the leader objective function is the 

main target to optimize, the cooperative mode in this problem can be viewed as a better 

strategy than Nash equilibrium mode. 

Now consider this problem in the second scenario such that the interaction at the lower 

Design variables and 

objective functions 

Stackelberg-Cooperative 

system result 

Liu (2000) Nash 

equilibrium result 

𝑥1 9.1114 7.05 

𝑥2 5 3.13 

𝑥3 10.3554 11.93 

𝑥4 15.5331 17.89 

(𝑦11, 𝑦12) (2.5552,11.5562) (0.26,9.92) 

(𝑦21, 𝑦22) (25.8885,0) (29.82,0) 

𝐹 = 𝑓1 + 𝑓2 -6095.1078 -5814.3352 

𝑓3        4.1719        23.474 

𝑓4       87.0185       30.8324 
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level is a Nash game, the interaction at the leader level remains a cooperative game. Thus, 

the first step to solve is to find the Nash solution for player 3 and 4, then substitute this 

solution into the bargaining equation 𝑓𝑏1 in the leader level to find the Stackelberg solution 

for the global problem (Table 4.3 shows the solution of this problem for the second scenario 

in decentralized mode). 

Table 4.3: Solution to the second scenario of the decentralized problem 

Design variable and objective function Stackelberg-Nash-Cooperative result 

𝑥1 10 

𝑥2 5 

𝑥3 10 

𝑥4 15 

(𝑦11, 𝑦12) (1.6667,13.333) 

(𝑦21, 𝑦22) (25,0) 

𝐹 = 𝑓1 + 𝑓2 -6150 

𝑓3 5.5556 

𝑓4 104 

 

Comparing the result from Table 4.3 with the result from Table 4.2, it can be seen 

that the optimum value of the leader objective function obtained from the second 

decentralized scenario is better optimized than the optimum value of the leader objective 

function obtained from both the first decentralized scenario and Nash equilibrium by Liu 

(2000).  
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4.6.2 Hierarchical mode example 

The second numerical example is also a test problem discussed by Liu (2000). This 

problem was modeled with one leader player who has a control over three variables 

(𝑥1, 𝑥2, 𝑥3)  and three followers who have control vectors 𝑦 = (𝑦𝑖1, 𝑦𝑖2), 𝑖 = 1,2,3 . The 

problem was formulated as: 

 

Level 1: 

𝑚𝑖𝑛 𝐹 (𝑥, 𝑦1, 𝑦2) =  −(𝑦11𝑦12𝑠𝑖𝑛𝑥1 + 𝑦21𝑦22𝑠𝑖𝑛𝑥2 + 𝑦31𝑦32𝑠𝑖𝑛𝑥3) 

  subject to                                               

              𝑥1 + 𝑥2 + 𝑥3 ≤ 10, 𝑥1, 𝑥2, 𝑥3 ≥ 0 

 

 

(4.22) 

 

Level 2: 

𝑚𝑖𝑛 𝑓1 = −(𝑦11𝑠𝑖𝑛𝑦12 + 𝑦12𝑠𝑖𝑛𝑦11) 

                    subject to                                     

                                    𝑦11 + 𝑦12 − 𝑥1 ≤ 0, 𝑦11, 𝑦12 ≥ 0 

 

 

(4.23) 

 

Level 3: 

𝑚𝑖𝑛 𝑓2 = −(𝑦21𝑠𝑖𝑛𝑦22 + 𝑦22𝑠𝑖𝑛𝑦21) 

                   subject to                                     

                                   𝑦21 + 𝑦22 − 𝑥2 ≤ 0, 𝑦21, 𝑦22 ≥ 0 

 

 

 

(4.24) 
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Level 4: 

𝑚𝑖𝑛 𝑓3 = −(𝑦31𝑠𝑖𝑛𝑦32 + 𝑦32𝑠𝑖𝑛𝑦31) 

                    subject to                                     

                                   𝑦31 + 𝑦32 − 𝑥3 ≤ 0, 𝑦31, 𝑦32 ≥ 0 

 

(4.25) 

 

In the hierarchical system mode, player 1 is the leader for all the rest players, player 

2 is the leader for player 3 and player 4, and player 3 is the leader for player 4. The 

interaction between each level by each level was considered as a Stackelberg game. The 

problem was solved using sensitivity based approach starting from level 4. 

Liu (2000) considered this problem in a bi-level Nash-Stackerberg game mode that 

the interactions between player 2, player 3, and player 4 were non-cooperative games in 

the follower level, and the interaction between the leader player 1 and follower level was 

considered as a Stackelberg game. Liu (2000) mentioned the Nash solution in this problem 

is not unique. Thus, two of them were selected to make a comparison with the results from 

the one obtained from the hierarchical mode (See Table 4.4). 
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Table 4.4: Solutions to the Hierarchical mode example 

 

From the results shown in the table, it is found that although the Nash-Stackelberg 

mode does not have a unique solution, the leader design variable 𝑥 have a control over the 

leader objective function, the solution to the leader objective function is unique. Also, it is 

found that in this problem, the result obtained from the hierarchical mode is very close to 

the results from Nash-Stackelberg mode, which can be viewed as one set of Nash-

Stackelberg solution. 

 

4.6.3 Decentralized-Hierarchical mode example 

Consider a decentralized-hierarchical mode problem with player 1 𝑓1  with control 

over 𝑥 = (𝑥1, 𝑥2) in level 1, player 2 𝑓2 with control over 𝑦1 = (𝑦11, 𝑦12) in level 2, player 

Variables and 

objectives 

Hierarchical mode 

result 

Nash-Stakelberg 

result from Liu(1) 

Nash-Stackelberg 

result from Liu(2) 

𝑥(𝑥1, 𝑥2,𝑥3) (1.9368,8.0632,0) (1.946,8.054,0) (8.054,1.946,0) 

𝑦1(𝑦11𝑦12) (1.3132,6.7500) (0.973,0.973) (1.315,6.793) 

𝑦2(𝑦21𝑦22) (0.9684,0.9684) (1.315,6.793) (0.973,0.973) 

𝑦3(𝑦31𝑦32) (0,0) (0,0) (0,0) 

𝐹 -9.5649 -9.566 -9.566 

𝑓1 -7.1182 -1.609 -7.099 

𝑓2 -1.5959 -7.099 -1.609 

𝑓3 0 0 0 
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3 𝑓3  and player 4 𝑓4  who have control over 𝑦2 = (𝑦21, 𝑦22)  and 𝑦3 = (𝑦31, 𝑦32) 

respectively in level 3. The problem is formulated as: 

Level 1 (Player 1) 

𝑚𝑖𝑛 𝑓1(𝑥, 𝑦1, 𝑦2, 𝑦3)

=
3(𝑦11 + 𝑦12)2 + 5(𝑦21 + 𝑦22)2 + 3(𝑦31 + 𝑦32)2

2𝑥1
2 + 𝑥2

2 + 3𝑥1𝑥2

 

     subject to   𝑥1 + 2𝑥2 ≤ 10                               

                       𝑥1, 𝑥2 > 0 

 

 

 

(4.26) 

 

Level 2 (Player 2)  

𝑚𝑖𝑛 𝑓2(𝑦1) = 𝑦11
2 + 𝑦12

2  

                                      subject to   𝑦11 + 𝑦21 + 𝑦31 − 𝑥1 ≤ 0         

                                                        𝑦12 + 𝑦22 + 𝑦32 − 𝑥2 ≤ 0 

                                                        𝑦11 ≥ 1, 𝑦12 ≥ 2 

 

 

(4.27) 

 

Level 3(Player 3 and Player 4) 

min 𝑓3(𝑦2) = 𝑦21 + 𝑦22 +
𝑦11

𝑦21
+

𝑦12

𝑦22
 

                            subject to  𝑦21, 𝑦22 > 0              

            

min 𝑓4(𝑦3) =
(𝑦31 − 𝑦21)2

𝑦31
+

(𝑦32 − 𝑦22)2

𝑦32
 

                       subject to  2𝑦31 + 3𝑦32 = 5                        

                                         𝑦31, 𝑦32 > 0 

 

(4.28) 

 

 

 

(4.29) 
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This problem was modeled as a bi-level Stackelberg-Nash game by Liu (1998) and 

solved by genetic algorithm. It was also considered as a 4-level hierarchical mode problem 

by Ghotbi (2013) and solved by sensitivity based approach. 

Now this problem is modeled as a Decentralized-Hierarchical problem. Consider a 

cooperative game in the third level between player 3 and player 4, Stackelberg game 

between level 3, level 2 and level 1. A cooperative game solution for the third level was 

obtained by the bargaining equation first, and then the Stackelberg solutions for level 2 and 

level 1 were obtained by sensitivity based approach. Table 4.5 showed the solution in this 

thesis comparing with the Stackelberg-Nash solution from Liu (1998) and Hierarchical 

solution from Ghotbi (2013). 

 

 Table 4.5: Decentralized-Hierarchical solution versus Decentralized solution and 

Stackelberg-Nash solution 

 

 Decentralized-

Hierarchical solution 

Liu (1998) 

solution 

Ghotbi (2013) 

solution 

𝑓1 1.5019 1.510 1.5831 

𝑓2 5.6882 12.323 5 

𝑓3 5.2436 6.225 5.335 

𝑓4 0.7928 0.835 0.8736 

𝑥 = (𝑥1, 𝑥2) (4.3815,2.8092) (5.768,2.116) (4.3007,2.8497) 

𝑦1 = (𝑦11, 𝑦12) (1.2916,2.0000) (2.885,2.000) (1.000,2.000) 

𝑦1 = (𝑦11, 𝑦12) (1.6159,1.4140) (1.699,1.414) (2.0068,1.4142) 

𝑦1 = (𝑦11, 𝑦12) (1.4740,0.6840) (1.183,0.878) (0.8736,1.0843) 
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From Table 4.5, it is seen that when comparing this solution with the solution reported 

by Liu (1998), all four objective functions are better optimized. When comparing the 

solution obtained in this thesis with the solution reported by Ghotbi (2013), all but 𝑓2 are 

better optimized. Therefore, the new game based model proposed in this thesis here can be 

viewed a better approach solving this multi-level problem. 
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Chapter 5. Conclusions 

The main objectives of this thesis can be classified into three areas: (1) To study 

different methodologies to solve multi-objective design optimization problems including 

the DOE-RSM based approaches as well as game theory based methods, (2) To develop a 

new DOE based response surface method to solve the model updating problem in design 

optimization, which uses low-discrepancy sequence to generate additional data points for 

numerical regression, (3) To study two models for solving multi-level optimization 

problems (Decentralized mode and Hierarchical mode) and solve the multi-level 

optimization problems for these two different cases. 

 

 5.1 Model updating by low-discrepancy sequence method 

Strictly speaking, the low-discrepancy sequence method based RSM is still a type of 

DOE-RSM. The only thing distinguishing it from those traditional DOE method is the way 

it generates the data points to establish the response surface. Using low-discrepancy 

sequence method tactfully avoids the inconvenience of the restrictions on the number of 

data points needed in conventional DOE based methods. Any proper number of data points 

can be applied in a low-discrepancy sequence designed experiment, so if the regression 

model does not fit the response surface, the model can be easily updated by adding any 

number of data points to the existing total.  

The advantages of the low-discrepancy sequence method based RSM compared with 

the traditional DOE-RSM include: 

1). The low-discrepancy sequence method can be used to update regression model by 

adding as little as one data point to the initial model. The traditional DOE methods add 



 

 

64 

 

additional points by adding levels, which means large number of data points may be needed. 

In reality, the difficulty and cost of an experiment would increase significantly as additional 

levels are added. 

2). Although the low-discrepancy sequences are generated using a deterministic 

numerical method, the points in the sequences can largely be viewed as random points. 

Thus, the data points generated from low-discrepancy sequences are more representative 

as samples distributed throughout the solution space, such that less data points generated 

from low-discrepancy sequences would give more accurate solution to the problems 

compared to data points generated from some other DOE method. 

3). The initial number of data points to build a response surface model is generally 

fixed by the number of the levels and factors in a traditionally designed experiment. 

However, if applying a low-discrepancy sequence method to design the experiment it can 

be started from any proper number of data points. 

4). In chapter 2, for the pressure vessel design problem, it is found that sometimes the 

Nash solution to a problem may not be singleton, and it is hard to use traditional DOE 

method to find all Nash solutions. By easily changing the initial number of data points in 

a low-discrepancy sequence based experiment, all Nash solutions can be obtained. 

There may be additional advantages of this new DOE method that have not been found 

yet. But also a deficiency of this method should be mentioned here. Same as all other DOE 

methods so far, in some certain cases, the low-discrepancy sequence method is not able to 

find solutions for the multi-level optimization design problems. The basic idea of applying 

DOE-RSM to solve multi-level optimization design problems is to find the analytic 

solution for the lower level problem, and design the experiment based on this solution to 
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find the global solutions to the problem. If the analytic solutions cannot be obtained from 

the constraints, it would be difficult to design an experiment to find the global solutions. 

Besides, since the highest and lowest value of the factors in an experiment are decided by 

the boundary conditions, it is necessary that the boundary conditions are given in the 

problem. The solutions obtained from DOE-RSM sometimes turn out to violate the 

constraints if the experiment is designed without proper consideration being given to 

boundary conditions. 

 

 5.2 Game theory based multi-level optimization design problems 

Different strategies are decided by different game modes in multi-level optimization 

design problems. Roughly speaking, the game modes decide the weight of all the objective 

functions in a multi-level design optimization problems. Thus, different solutions could be 

obtained based on different strategies applied to a same problem. 

Basically, there are three types of game modes that have been frequently used in the 

literature review: Cooperative game, Non-cooperative (Nash) game and Stackelberg game. 

Different combinations of these three game modes in a multi-level optimization design 

problem make different systems. Two of them were discussed in chapter 4: Decentralized 

mode and Hierarchical mode. One new combination was also proposed in chapter 4. 

From the results of the first two numerical examples in chapter 4, it can be seen that 

the solution to a same problem can be different when applying different game strategies. 

Because different game strategies focus on different levels (or objective functions) in a 

problem, it is difficult to tell which strategy is better when the objectives conflicting each 

other. When applying another game strategy to a same multi-level optimization problem, 
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some of the objective function values are better optimized while the rest may worse off. To 

see if a game strategy is better than another for a same multilevel optimization problem, 

one simple criteria that can be used is to check if the leader objective function value is 

better optimized, meanwhile the follower objective function values should not exceed 

certain percentage range of the solution obtained from the previous game strategy. 

 From the results obtained from the third numerical example, the new proposed 

decentralized-hierarchical game mode is seen to be a better approach mode compared with 

the previous ones used to solve that problem. 

 

 5.3 Scope of future work 

The low-discrepancy sequence method discussed in this thesis has been proved to 

solve optimization problems effeciently and effectively. One aspect of the future work 

could be applying this method to design a real experiment where the objective function is 

unknown and the range of the variables is the only given information. By generating the 

sampling from the low-discrepancy sequence, response surface model can be built to find 

the optimum solution. 

On another aspect, as summarized, the applicability of the low-discrepancy sequence 

method for multi-level optimization design problem greatly depends on the given 

constraints and boundary conditions. Therefore, developing a new approach to use DOE-

RSM in general cases regardless of the boundary conditions and the constraints is important 

before this new method is generalized. 

    The multi-level design optimization problems discussed in this thesis were mostly bi-

level or tri-level, such that the game combinations are very limited. To find more 
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regularities and better strategies for multi-level optimization design problems, more 

numerical examples need to be tested. Although the new game system was proposed in this 

thesis seem to be advanced, more numerical examples are required to test it. Unfortunately, 

the most majority of the numerical examples reported by previous researches are bi-level 

problems. Thus, a third aspect of the future work of this thesis could be doing researches 

on optimization problems with 4 or more levels based on hierarchical, decentralized 

systems, or other systems that are comprised of one or more combinations of game theories.  
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