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ABSTRACT 

 

PART I.  THE DEVELOPMENT OF NON-SECOSTEROIDAL VITAMIN D RECEPTOR 

MODULATORS  

by 

Kelly A. Teske 

The University of Wisconsin-Milwaukee, 2015 
Under the Supervision of Professor Alexander (Leggy) Arnold 

 

The vitamin D receptor is a nuclear hormone receptor that regulates cell proliferation, cell 

differentiation, calcium homeostasis and immunomodulation.  The receptor is activated by the 

vitamin D metabolite, 1,25-dihydroxyvitamin D3, which induces a cascade of events including the 

recruitment of coactivators that activate transcription of specific VDR target genes. Thousands 

of VDR agonists have been synthesized based on the secosteroid scaffold of 1,25-

dihydroxyvitamin D3. However, most of these ligands are metabolically unstable, have sub-

optimal drug-like properties, and induce hypercalcemia in vivo. The limited numbers of VDR 

antagonists reported bear the same secosteroid scaffold and thus exhibit similar problems 

encountered by VDR agonists. VDR has been implicated with many diseases including cancer, 

allergies, sarcoidosis and autoimmune diseases like Crohn’s disease.  Therefore, the synthesis 

and biochemical evaluation of novel, non-secosteroidal modulators for VDR were developed and 

reported herein.   

First, VDR inhibitors were rationally designed to directly target the interactions between 

VDR and coactivator SRC2.  A fluorescence polarization-based assay evaluated the binding of 

these molecules.  Next, a high throughput screening campaign with the NIH chemical and 

genomics center (NCGC) identified GW0742 as a novel VDR anatagonist.  Originally developed by 
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GlaxoSmithKline as a selective PPARδ agonist, GW0742 was used as a scaffold for the synthesis 

of VDR inhibitors with decoupled activity towards PPARδ.  Biochemical, cell-based, solubility and 

permeability assays determined drug-like properties of over 100 GW0742 analogs.  Finally, 

secondary bile acids, which are known to bind VDR and modulate transcription without inducing 

hypercalcemia, lead to a study of phase 1 and phase 2 metabolites of lithocholic acid.  In addition 

to biochemical and cell-based assays, a semi-quantitative real time polymerase chain reaction 

was used to confirm the ability of lithocholic acid derivatives to induce the transcription of VDR 

target genes. 
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ABSTRACT 

 

PART II.  THE DEVELOPMENT OF A UNIVERSAL GTPase ASSAY 

by 

Kelly A. Teske 

The University of Wisconsin-Milwaukee, 2015 
Under the Supervision of Professor Alexander (Leggy) Arnold 

 

GTPases act as a molecular switches in which their “on” and “off” functions are triggered 

by the binding and hydrolysis of GTP. Due to their relationship to many diseases, numerous 

GTPase targeting drugs have been developed. One third of all drugs targeting proteins are either 

interacting with kinases (22% of drugs) or GTPases (15% of drugs).  The growing interest in GTPase 

targeting drugs has promoted the development of assays that can efficiently test these 

compounds in a high throughput and inexpensive way.  AviMed Pharmaceuticals, LLC, a local 

company founded by Dr. Daniel Sem, pursued the development of a universal kinase/GTPase 

assay kit that would be affordable and commercially available for industry and research labs to 

test potential drug candidates.  The assay designed was based on previous research conducted 

by the founder and relies on a beta thiol substituted ATP (GTP for GTPases) that would be 

enzymatically hydrolyzed to produce ADP (GDP).  The exposure of the thiol makes it nucleophilic 

and reactive towards thiol-sensitive fluorescent or calorimetric reagents such as Thiofluor 623.  

Herein, we report the synthesis of the assay reagents and the preliminary development of a 

universal, inexpensive, sensitive GTPase assay kit that directly detects the GTPβ-S hydrolysis 

product, GDPβ-Se.     
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CHAPTER 1: INTRODUCTION 

1.1 The History of Vitamin D 

Prior to the twentieth century, vitamins and pre-vitamins were largely unknown although 

evidence existed that certain foods can prevent diseases such as Scurvy and Beri-Beri.12  In 1910, 

Drs. Hopkins and Funk separately demonstrated that diets of purified carbohydrates, proteins, 

fats and salts were unable to support growth in animals thus concluding that “vital amines” or 

vitamins were present in natural foods and therefore providing sustenance for life.13, 14  In 1914, 

McCollum et al. isolated a fat-soluble, non-saponifiable factor from butter fat that was necessary 

for normal growth and prevention of the eye disease xerophthalmia in young rats.  This substance 

became known as “fat soluble factor A” or vitamin A.15  This quickly led to McCollum’s discovery 

of the  water soluble vitamin, vitamin B, that deemed necessary for the prevention of 

polyneuritis.16  During this time, the skeletal disease rickets was becoming an epidemic in 

England.  This was mainly brought on by the sudden urbanization of rural areas during the 

“Industrial Revolution” that caused a large production of pollutants in the atmosphere blocking 

the sun.  Thinking the disease was caused by a deficiency in vitamin A, people were given cod 

liver oil, a substance known to contain vitamin A, for the treatment of rickets. Although this 

treatment worked, McCollum questioned whether vitamin A was responsible. In 1922, he 

conducted a pivotal experiment where he heated and bubbled oxygen through cod liver oil to 

destroy the vitamin A activity and found that this preparation was incapable of treating vitamin 

A deficiencies (i.e. xerophthalmia) but still retained its ability to cure rickets.  This surprising result 
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prompted McCollum to conclude that the factor that cures rickets was a new vitamin which they 

named vitamin D.17, 18  

 Around the same time, the German scientist, Huldschinsky, made the important 

observation that the health of rachitic children as well as their calcium deposition improved by 

being exposed to sunlight or artificial ultraviolet (UV) light.19  This was later confirmed by 

Harriette Chick in 1922 while working with severely malnourished children in Vienna.  She found 

that therapeutic exposure to sunlight provided results that were indistinguishable from those 

patients receiving cod liver oil.20 This treatment triggered investigations into the active form of 

vitamin D. 

Many scientist contributed to the long history of the isolation and identification of vitamin 

D analogs in the 1920’s and 1930’s including early vitamin D pioneers H. Steenbock (Wisconsin), 

A. F. Hess (New York), O. Rosenheim (London) and A. Windaus (Germany).21  Steenbock found 

that by irradiating food with UV light, specifically the non-saponifiable lipid fraction, the vitamin 

D content increased and promoted growth and bone-calcifying properties in rachitic rats.22  He 

concluded that an inactive lipid in the diet and skin could be converted by UV light into an active 

antirachitic substance.23  This led to tremendous advances in public health by adding vitamin D 

to milk and other foods to prevent disease. Hess et al. isolated sitosterol from cottonseed oil and 

found that upon irradiation this inactive non-saponifiable sterol was then active against rickets.  

He also observed this phenomenon with “pure” cholesterol isolated from rat brains thus allowing 

him to hypothesize that the cholesterol in skin can be converted by UV-irradiation and rendered 

an active form of vitamin D.24  However, the sample of cholesterol used by Hess was found to be 

impure, which led him to collaborate with the chemists Windaus and Rosenheim to purify the 
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sample. Because physical methods such as recrystallization and saponification had proven 

incapable of purifying the cholesterol mixtures to begin with, they converted cholesterol into its 

dibromide form, recrystallized it and recovered cholesterol upon treatment with sodium 

amalgam.  The purified cholesterol, after irradiation, no longer possessed antirachitic properties 

making it evident that the impurity was the pro-vitamin they were looking for.   

Askew et al. were the first to successfully isolate and determine the structure of  vitamin 

D or ergocalciferol,  better known as Vitamin D2, from ergosterol (a fungal steroid from ergot).25 

Windaus and Hess also found that the most highly active antirachitic compound upon irradiation 

was ergosterol.26  Furthermore it was  determined that ergosterol (Figure 1, A) was a provitamin 

with its irradiation product being ergocalciferol or vitamin D2 (Figure 1, C) in plants.27 In 1936, 

Windaus et al. isolated 7-dehydrocholesterol (Figure 1, B) from hog skin that provided evidence 

 

Figure 1.  Structure of A) ergosterol, B) 7-
dehydrocholesterol, C) ergocalciferol or Vitamin D2, and 
D) cholecalciferol or Vitamin D3. 
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that it was the provitamin found in humans for the production of vitamin D3 cholecalciferol 

(Figure 1, D).28, 29  

In the 1950’s, Egan Kodicek investigated the metabolism of vitamin D2.  He used 14C-

labeled vitamin D2 to monitor its activity and metabolism in the body.  However, the degree of 

labeling was not sufficient to allow the administration of physiological doses of vitamin D2, which 

increased the storage of the vitamin D rather than its metabolism. After a decade he concluded 

that vitamin D2 was the active biological compound and that no metabolic change was 

required.30, 31 However, we know today that hydroxylation is essential to activate vitamin D, 

which was discovered in Wisconsin led by DeLuca et al. in 1967 using radiolabeled Vitamin D3.   

Upon administration, detection of metabolites were seen within 1-2 hours and when isolated 

and given to vitamin D-deficient animals proved to be more potent and faster acting  than vitamin 

D3 in supporting calcium transport.  This  led to the isolation and identification of the active 

metabolite, 25-hydroxyvitamin D3 (25(OH)D3), in 1968 (Figure 2).32, 33  However, when 

radiolabeled 25(OH)D3 was administered further metabolism occurred. Holick and DeLuca 

identified these metabolites by feeding  1,600 Vitamin D-deficient chickens radiolabeled Vitamin 

 

Figure 2.  The active Vitamin D metabolites, 25(OH)D3 
and 1,25(OH)2D3, determine by Deluca et al. at the 
University of Wisconsin. 
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D3 and isolating Vitamin D metabolites from the intestines. Analysis conducted by mass 

spectrometry and derivatization lead finally to the identification of the most active hormonal 

form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (Figure 2).34, 35  

1.2 A Brief Overview of the Activating Enzymes of Vitamin D3 

Vitamin D3 can either be absorbed from various food sources in the intestine or 

synthesized in the skin by a two-step reaction starting with 7-dehydrocholesterol undergoing a 

UV-induced, electrocyclic ring opening reaction to make pre-vitamin D3 followed by an 

antarafacial sigmatropic [1,7] hydride shift induced by thermal isomerization to make vitamin D3 

(Figure 3).  Once formed, vitamin D3 and its analogs bind specifically to the vitamin D binding 

protein (DBP), which transports these molecules in the blood to cells and organs such as the liver 

and kidney.36, 37 DeLuca found that the liver is the primary site of the first enzymatic activation of 

vitamin D3 where hydroxylation of the C-25 position to  25(OH)D3 occurs.38 The mitochondrial 

enzyme responsible for this process is 25-hydroxylase, a cytochrome P450 mixed-function 

oxidase that in humans is encoded by the CYP2R1 gene.39 25(OH)D3 binds tightly to DBP and 

enables it transport to the kidneys.  Within the kidneys, specifically the renal tubules, 25(OH)D3 

is hydroxylated at C-1 by 1α-hydroxylase, a different cytochrome P450 enzyme encoded by the 

CYP27B1 gene.40  This enzymatic reaction forms the final hormonal form of vitamin D3, 
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1,25(OH)2D3, which is the most potent ligand of the vitamin D receptor (VDR)  and is responsible 

for the physiological actions of vitamin D throughout the body.    

1.3 The Vitamin D Receptor: Structure and Function 

In 1969, Haussler and Norman first identified VDR in chicken intestinal chromatin extracts 

that demonstrated a preferential uptake of 1,25(OH)2D3 through a protein mediated process.  

They also showed that this process was saturable at low concentrations.41  Work done by 

Brumbaugh and Haussler in 1975 provided substantial evidence that the protein must function 

as a nuclear receptor when observing that cytosol-derived VDR could bind to chromatin fractions 

in a hormone-sensitive manner.42, 43 VDR was cloned in the late 1980’s and eventually crystallized 

at the turn of the century, which gave much insight into the structure and function of this 

hormone activated protein.8, 44 

 

Figure 3.  The activation of vitamin D3 obtained either from the diet or the photo-
catalyzed reaction of 7-dehydrocholesterol.  CYP enzymes catalyze reactions in the liver 
and kidneys make the potent VDR hormone, 1,25(OH)2D3, which get distributed to 
different target tissues in the body. 

Diet
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Today we know that VDR is a transcription factor that belongs to a superfamily of nuclear 

receptors (NRs).  As a transcription factor, VDR functions within the nucleus where it regulates 

gene expression through hormone-activation of the receptor.  So far 48 identified proteins 

belong to this superfamily. They share similarities in structural and functional features in spite of 

the wide variation in their ligands.45  All NRs are modular proteins that typically contain six 

domains (A-F) based on regions of similar sequence and function (Figure 4).  The nonconserved 

N-terminal A/B domain that mediates activation by other molecules is followed by the DNA 

binding domain (DBD, domain C). The D domain or hinge region is a highly flexible region that 

links the NR’s DBD to its ligand binding domain (LBD, domain E) making receptor dimerization 

possible.  The highly conserved LBD region mediates the interaction with ligands and other 

proteins, such as co-repressors and co-activators that are important to fine-tune the 

transcriptional activity of VDR.  Finally, the F domain is extensively variable among NRs and 

absent in VDR.46, 47  

 

Figure 4.  The functional domains of typical NRs, which consist of a variable N-terminal 
region (A/B), a conserved DNA binding domain (C), a variable hinge region (D), a conserved 
LBD (E), and a variable C-terminal region (F).  VDR does not contain an F domain.  
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The centrally located VDR DBD consists of a 66 residue core in humans and is made up of two 

modules each containing zinc-coordinated structures. The zinc atoms are individually 

coordinated in a tetrahedral fashion through four cysteine residues that serve to stabilize the 

zinc-finger structure (Figure 5).48, 49  Although the two zinc modules appear structurally similar, 

they are not related topologically due to the difference in chirality of the residues that coordinate 

the zinc in each module.  Thus, each module possesses their own unique function.  The amino-

terminal module directs specific DNA binding in the major grove of the DNA binding site, while 

the carboxy-terminal module serves as a dimerization interface for interaction with other 

proteins.3, 50 An extra string of residues known as the adjacent C-terminal extension (CTE) of the 

DBD provides additional dimerization specificity for VDR (Figure 6, B).  Although VDR can 

occasionally partner with itself, it commonly heterodimerizes with any of the three isoforms of 

the 9-cis retinoic acid receptor (RXR). The VDR-RXR complex binds DNA and activates 

transcription by recognizing vitamin D-responsive elements (VDREs) on specific VDR target genes.  

 

Figure 5.  Crystal structure VDR DBD with Zn2+ 
coordinated with four cysteine residues. (PDB: 
1YNW)1-4  
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Response elements typically consist of two hexameric half-sites with a spacer of neutral base 

pairs (Figure 6, A).  Diversity and specificity of binding is dictated largely by variations  of the half-

sites relative to one another and  the number of neutral base pairs separating the half-element 

repeats.51, 52  For example, half-sites can be arranged as inverted, everted or direct repeats (DR), 

where VDR-RXR requires a direct repeat of typically 5’-AGGTCA-3’ with a three base pair spacer 

(DR3) for DNA binding to occur.  In addition, VDR occupies the downstream 3’ half-site and the 

RXR occupies the upstream 5’ half-site, which influences the target gene selectivity and 

ultimately the rate of RNA polymerase II (RNA Pol II) directed transcription.53 

 

 
Figure 6.  Cryo electron microscopy (cryo-EM) structure of the heterodimeric complex 
of the human RXR and VDR activated by 1,25(OH2)D3 and bound to a consensus DNA 
response element forming a direct repeat (DR3). This was done by fitting known 
crystal structures of LBDs and DNA bound DBDs with cryo EM maps of the nuclear 
receptor complex.  No crystal structure of RXR-VDR-DR3 DNA has been reported yet. 
A) Side view with 5’ DNA end on the left.  The fitted LBD and DBD/DNA heterodimer 
parts are shown in their backbone secondary structure.  The DNA is shown in blue 
with the first half-site of the response element green and the second half-site in red. 
B) Top view of complex as seen along the pseudo two-fold axis through the interface 
of the RXR and VDR LBDs (indicated by black star).  The CTE helix of VDR is protruding 
from the DBD and cross the DNA minor groove indicated by the arrow.  

 

A B
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The E domain or LBD, is a multifunctional region that has complete regulatory control over 

DNA-binding and transcription-modifying properties of VDR.54  Within the LBD is a highly 

structured region known as the ligand-dependent activation function or AF-2 that acts as the 

major interface for dimerization with RXR (Figure 6, B), as well as, the interface for co-activators 

and co-repressors.  AF-2 is only functional through the binding of VDR ligands (Figure 7).  The 

general fold of NR’s LBD involve a three-layered α-helical sandwich containing twelve α-helices 

designated as H1–H12 and three β-sheets.  Upon binding of 1,25(OH)2D3, helix H11 is 

repositioned in line with H10 to allow helix H12 to clamp down and seal the binding pocket. Helix 

H12, also referred to as the activating domain (AD) of the AF-2 function, stabilizes ligand binding 

by contributing to the hydrophobic environment and making, in some cases, additional contacts 

with the ligand.  When folded back onto the LBD, Helix H12 forms a hydrophobic cleft with 

charged surface-exposed residues on each end.  The positively charged K246 (H3) and negatively 

charged E420 (H12) form the “charged clamp” that accommodate the recruitment of 

coregulators (Figure 7, A).55   
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The crystal structure of 1,25(OH)2D3 with hVDR reveals a ligand-binding pocket that  is wider 

at H11 site than many other NRs with 1,25(OH)2D3 occupying 56% of the pocket volume.8  Upon 

binding, the ligand obtains an extended configuration with the A ring in the β chair conformation 

with the 1α-OH in the equatorial position.  The side chain is in proximity of H11, while the A ring 

extends into the β-turn region.  1,25(OH)2D3 is anchored in the pocket by six hydrogen bond 

interactions: the 1α-OH bonds with Ser237 (H3) and Arg274 (H5), the 3β-OH hydrogen bonds 

with Tyr143 (loopH1-H2) and Ser278 (H5) and the 25-OH group forms two hydrogen bonds with 

His305 (loop H6-H7) and His 397 (H11) when using the hVDR numbering (Figure 7, B).55, 56 

  

 

 

 

Figure 7.  A) Side view of three layered sandwich fold of hVDR LBD in complex with 
1,25(OH)2D3 (ribbon model with colors indicating position: front is blue green, middle as 
yellow and rear as green).  The AF-2 surface, where coactivators bind, is shown in 
transparent yellow oval with charge residues, K246 and E420, as red balls.  B) Major 
interactions of ligand, 1,25(OH2)D3 with the LBD pocket residues.  Yellow residues indicate 
hydrophobic interactions while the red dotted lines indicate hydrogen bonds. 

 

B)AF-2 surface

Water channel
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1.4 General Transcription Factors and Coregulators of VDR-mediated 

Gene Expression 

 VDR-mediated transcription is regulated by a series of temporary macromolecular 

interactions, which includes both general transcription factors (GTFs) and coregulatory 

proteins.57  Coregulators interact directly with the VDR-RXR heterodimer LBDs and can affect 

transcription in either a positive or negative fashion.  These positive and negative modulators are 

known as coactivators and corepressors, respectively. VDR-coactivator interactions are mediated 

by 1,25(OH)2D3 binding to VDR-LBD and corepessor binding occurs typically in  the absence of 

ligand.   

The classic and most simplified model of the ligand induced switch between transcription 

“off” and transcription “on” using coregulators begins with unliganded VDR loosely associated 

with RXR and nonspecifically bound to DNA.  At this point, VDR and RXR are in a favorable 

conformation for binding corepessors because helix 12 of the AF2 domain is left in an “open”, 

inactive position.58  The best characterized corepressors for VDR are the nuclear receptor 

corepressor (NCoR1) and the universally expressed silencing mediator for retinoic acid and 

thyroid hormone receptors (SMRT or NCoR2). Both possess a LXXH/IIXXXI/L motif  (where x is any 

amino acid, L is leucine and I is isoleucine)  that interacts with the hydrophobic groove of the 

heterodimer (Figure 8).59 NCoR and SMRT both associate with enzymes known as histone 

deacetylases or HDACs.60  HDACs interfere with gene transcription by removing acetyl groups 

from chromatin and allowing for tight compaction of negatively charge DNA with positively 
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charged histones.  In addition to HDACs and corepressors, the inactive VDR complex may also 

associate with an activating GTF known as transcription factor IIB (TFIIB) (Figure 9).61 The true 

mechanism of TFIIB is not well understood but it might associate with unliganded DNA-bound 

VDR and help sequester TFIIB into the vicinity of specific vitamin D-responsive promoter areas. 

Once  1,25(OH)2D3 binds to VDR, TFIIB might  assemble with preinitiation complex (PIC) to  help 

facilitate VDR-mediated transcription.62 

 

Figure 9. A generalized cartoon of unliganded VDR-RXR loosely associated 
heterodimer including its proposed interactions with corepressor (NCoR or SMRT), 
TFIIB and HDACs. The corepressor is bound to VDR when the AF2 domain is in the 
open configuration and attracts HDACs to repress chromatin.3, 5 

 

Figure 8.  Amino acid sequence of corepressors NCoR-2 and SMRT-2 and SRC 
family of coactivators and DRIP coactivators with each specific NR box motif 
indicated.  The LXXLL NR box motif is labeled red and the LXXH/IIXXXI/L is labeled 
green for coactivators and corepressors, respectively.9 



15 
 

The transcriptional machinery required for the VDR-mediated transcription is a very 

complex and includes sequential recruitment of many different VDR interacting proteins.  This 

process is summarized in Figure 10.  In the first step, transcription is switched “on” with the 

binding of 1,25(OH2)D3 to VDR.  During these first activation steps RXR and VDR associate with a 

higher affinity, specific VDREs are recognized and the AF2 domains in both VDR-LBD and RXR-LBD 

are repositioned (Figure 10, A).3 This conformational change promotes favorable coactivator 

binding and the dissociation of corepressor/HDAC complex.  Several different coactivators can 

be recruited including the p160/steroid receptor coactivator (SRC) family, which consist of SRC-1 

(also known as NCoA1), SRC-2 (also known as NCoA2, GRIP-1, and TIF2) and SRC-3 (also known 

as NCoA3, p/CIP, RAC3, ACTR, AIB-1, and TRAM-1), and the large vitamin D receptor interacting 

protein complex (DRIP or Mediator D complex).63  Important for VDR  binding are multiple highly 

conserved LXXLL-containing NR boxes where L is leucine and X is any amino acid (Figure 10).64  

The coactivator NR box forms an amphipathic α-helix that interacts with VDR’s AF2 domain. The 

preference of certain NR boxes for particular NRs have been reported. For example in the case 

of SRC-3, VDR has preferential interaction with NR box III.9, 65  SRC coactivators also possess 

histone acetyl transferase activity (HAT), that may include the secondary recruitment of CREB-

binding protein (CBP)/p300 cointegrator and p300/CBP-associated factor (p/CAF) (Figure 10, A).66  

HAT activity remodels the chromatin by covalently adding acetyl groups onto the carboxyl-

terminal lysine residues of histones.  This weakens the electrostatic interaction between the DNA 

and histone tail thus priming it for the binding and assembly of PIC, which includes TATA binding 
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accessory factors (TAFs) that target TATA box protein and TFIIB (Figure 10, B).67  Furthermore, 

the mediator D complex (DRIP) acts as a bridge between VDR and GTFs that promote the 

formation and function of PIC with RNA Pol II.57  It is composed of at least ten different proteins 

anchored by DRIP205 that interacts directly with the VDR-RXR heterodimer through their second 

of two LXXLL motifs.68  Although DRIP may recruit RNA Pol II to the promotor, the polymerase is 

 

 

Figure 10. A generalized cartoon for the VDR-RXR-coactivator complex in VDR-
activated transcription.  A) 1,25(OH)2D3 binds to VDR and the AF2 domains of the RXR-
VDR heterodimer seals the LBD pocket.  Primary (SRC) and secondary coactivators 
(pCAF and CBP/p300) provide HAT activity and prime DNA for transcription.  B) SRC 
and secondary coactivators dissociate and mediator D-complex DRIP205 binds and 
stimulates assembly of PIC components such as TAFs and TFIIB and the recruitment 
of RNA Pol II to the repressed chromatin.3-5  
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not tightly bound thus allowing for its release and efficient initiation of transcription (Figure 10, 

B).69   

 1.5 Vitamin D analogs and Their Pharmacological Effects  

 VDR is expressed in many different cells and has been affiliated with calcium and 

phosphate homeostasis as well as differentiation and proliferation of cells.  Novel therapies 

based on vitamin D receptor ligands are currently developed to treat skin and metabolic 

disorders, gastrointestinal diseases, cardiovascular problems, inflammatory diseases, and 

notably cancer.70  The major hurdle for VDR ligand-based treatments is tissue selectivity in order 

to exert pharmacological activity in a particular tissue. For instance inducing anti-proliferation in 

cancer tissue without increasing the calcium concentration in blood or to increase the bone 

mineral density without inducing hypercalciuria. More than 2,000 VDR ligands have been 

synthesized and characterized during the last decades but only a very limited number of 

compounds have been approved for the treatment of human diseases. This section will describe 

the pharmacological effects of two drugs eldecalcitrol (osteoporosis) and EB1089 (cancer) and 

their modulation of vitamin D receptor function. 

1.5.1 Vitamin D and Osteoporosis (Calcium Homeostasis) 

Osteoporosis is the dysfunction of bone resorption and bone formation due to aging. 

Bone is the primary location for the resorption of Ca2+ and PO4
3-; a process that is regulated by 

osteoblasts and osteoclasts.  Osteoblasts control both the formation and breakdown of bone 

necessary for bone remodeling.  Osteoblasts also activate osteoclast differentiation and 

formation, which is responsible for the resorption of bone.71  Osteoblasts respond to 1,25(OH)2D3 
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via the regulation of the receptor activator of NF-ĸB ligand (RANKL) mediated by VDR and 

independently to the parathyroid hormone (PTH) (Figure 11).72, 73   

The RANKL gene is regulated by VDR thus eldecalcitrol (aka ED-71) and other vitamin D 

ligands regulate osteoclastgenesis by inhibiting the maturation of osteoclast progenitor cells or 

reducing the activation of osteoclasts via IL-6.71   However, decelerated osteoclastgenensis can 

reduce Ca2+ levels, which in turn is sensed by the parathyroid glands, which to restore Ca2+ 

balance, rapidly enhances the secretion of PTH.  Elevated PTH levels induce Ca2+ resorption from 

the bone independent from VDR and stimulates the expression and activity of renal CYP27B1 that 

produces 1,25(OH)2D3. This classic negative feedback loop ends by 1,25(OH)2D3 suppressing PTH 

synthesis and renal CYP27B1 activity.74  Therefore, vitamin D ligands developed for osteoporosis 

should selectively regulate the VDR target genes RANKL and PTH. Furthermore, VDR ligands can 

 

Figure 11.  Summarized cartoon of the metabolism and biological action of vitamin D via VDR 
with particular emphasis to calcium and phosphate balance and bone mineralization.3 
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activate the transcription of genes encoding osteocalcin and osteopontin, two proteins involved 

in bone remodeling by osteoblasts. 

Osteoblast differentiation is important for bone 

mineralization and is mediated by 1,25(OH)2D3, which 

initiated the synthesis of Vitamin D3 analogs by organic 

chemist and pharmaceutical companies with aim to separate 

the calcemic action of 1,25(OH)2D3 from its ability to regulate 

cells growth and differentiation.75  ED-71 was among those 

analogs introduced by Chugai Pharmaceuticals for the 

treatment of osteoporosis (Figure 12).   Patients with 

osteoporosis experience low serum levels of 25(OH)D3, which is common in older or 

postmenopausal patients partially due to their low intake of vitamin D, decreased sun exposure, 

and impaired renal function.  In turn this dysfunction decreases intestinal calcium absorption and 

reduces VDR activation.  Therefore, a successful osteoporosis drug would need to be given within 

a small therapeutic window where calcium levels would increase to maintain bone homeostasis 

without causing adverse sides effects such as hypercalciuria, urinary tract stones, and 

hypercalcemia.  Compared to 1,25(OH)2D3, ED-71 has a higher affinity for serum DBP, binds more 

weakly to VDR and shows lower potency in suppression of serum PTH.  The plasma half-life of 

eldecalcitol is also longer than that of 1,25(OH)2D3 probably due to its higher affinity for DBP.76   

Preclinical in vivo studies using ovariectomized rat (ovx-rat) models for osteoporosis showed that 

ED-71 suppresses osteoclastic bone resorption and increases bone mass density to a greater 

extent than alfacalcidiol, a frequently prescribed anti-osteoporosis drug in many countries 

 

Figure 12.  Eldecalcitol, also 
known as ED-71, is approved 
osteoporosis drug. 
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including Japan.77  Furthermore, there is no significant difference in calcium absorption and 

serum PTH suppression between ED-71 and alfacalcidol thus suggesting the effect of increasing 

bone mass density by ED-71 to be independent of calcium metabolism.  Phase III clinical trials 

revealed that patients had a lower incidence of vertebral and wrist fractures while taking ED-71 

compared to alfacalcidol.  Very few adverse effects were observed at this stage which included 

an increase of calcium levels found in serum and urine and a small number of patients (0.4%) 

developing hypercalcemia when given ED-71.78, 79   As of 2013, this drug is prescribed in Japan 

and is awaiting approval in other countries.   

 1.5.2 Vitamin D and Cancer (Cell Proliferation) 
 

The inhibition of cancer cell growth in the presence of 1,25-(OH)2D3 was first shown in 

1979.80, 81 During the last decades many groups have reported similar antiproliferative effects of 

VDR ligands in vitro and in vivo. Human clinical 

studies with 1,25(OH)2D3 and analogs are dose-

limited because of hypercalcemia and 

hypercalciurea, which can cause psychosis, bone pain, 

calcification of soft tissue, coronary artery disease, and, 

in severe cases, coma and cardiac arrest.82, 83 These side 

effects prompted the synthesis of thousands of 1,25(OH)2D3 analogs to develop VDR ligands with 

lower calcemic activity. Two synthetic VDR ligands EB1089 and ILX23-7553 were tested in clinical 

trials.84, 85 Seocalcitol (EB1089, Figure 13) has shown to be 50 times more  potent than 

1,25(OH)2D3 in vitro and when given orally it dose dependently inhibits growth of nitrosomethyl 

 

Figure 13.  EB 1089, a VDR agonist 
that exhibits anti-tumor and anti-
proliferative activity with reduced 
hypercalcemic effects. 
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urea (NMU) induced rat mammary tumors and MCF-7 xenografts without increasing serum 

calcium.86  In addition, anti-proliferation, apoptosis, and anti-metastases effects of EB1089 have 

shown to be enhanced with co-administration with paclitaxel87, retinoic acid88 or radiation89. 

VDR-mediated anti-proliferation is facilitated by its’ ability to modulate the cell cycle (Figure 14).  

Proliferating cells progress through the cell cycle, which comprises of the G0/G1 phase 

(differentiation and protein synthesis), the S phase in which new DNA is synthesized, and the G2 

phase that is followed by mitosis or M phase upon which cells can reenter G0/G1 phase. Breast 

cancer cells treated with VDR ligands have been observed to undergo cell cycle arrest in the G0/G1 

phase within 48 hours.90  This arrest is associated with upregulation of genes that code for the 

cyclin-dependent kinase inhibitors CDKN1A (p21) and CDKN1B (p27) and act as control switches 

for the cell cycle.  Depending on the cell type, G1 arrest is due to inhibition of cyclic-dependent 

kinase (CDK) activity including CDK2-associated histone H1 kinase, cyclin D1/CDK4, and cyclin 

A/CDK2.91, 92  In other situations, VDR interacts with protein phosphatases PP1c and PP1Ac to 

inactivate the p70 S6 kinase which is essential for G1/S phase transition.93   Thus, vitamin D 
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analogs have the potential to inhibit breast cancer cell growth by preventing their entry into the 

S phase thus leading to accumulation of these cells in the G1 phase.  

In addition to anti-proliferative effects, 1,25(OH)2D3 and other vitamin D analogs induce 

cell shrinkage, chromatin condensation, and DNA fragmentation characteristic for apoptosis. 

Studies have shown that 1,25(OH)2D3 mediated apoptosis affects the relative expression and/or 

subcellular localization of the Bcl-2 family and other pro-apoptotic proteins.  When MCF-7 cells 

are treated with 1,25(OH)2D3 or VDR agonist, EB1089, a redistribution of Bax, a member of the 

pro-apoptotic Bcl-2 family, from the cytosol to the mitochondria occurred and induced down-

regulation of Bcl-2.94, 95  Bax translocation triggers reactive oxygen species (ROS) generation, 

dissipation of the mitochondrial membrane potential, and release of cytochrome C into the 

cytosol, which are features of mitochondrial apoptosis.96   

 

Figure 14.  The cell cycle: Gap 0 (G0) where cells can leave the cycle  
and quit dividing, Gap1 (G1) is where the cell increases in size and 
produce RNA, synthesis (S) phase is where DNA replication occurs, in 
Gap 2 (G2) the cell continues to grow and produce protein.  The cell 
growth and production stops at the mitosis (M) phase where the cell 
divides into two similar daughter cells. 
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Metastasis is the process by which tumor cells invade secondary sites which requires 

degradation of the extracellular matrix and is facilitated by angiogenesis or the growth of new 

blood vessels connecting the developing tumor.  When ER-negative breast cancer cells (i.e. 

SUM159PT), which are invasive in vitro and metastatic in vivo, are treated with 1,25(OH)2D3 or 

vitamin D analogs invasion of cancer cells is inhibited.97  This effect may be linked to regulation 

of extracellular protease such as MMP-9, urokinase-type plasminogen activator (uPA), and tissue 

type plasminogen activator (tPA).98  Furthermore, 1,25(OH)2D3-mediated inhibition of 

angiogenesis has been observed in the chick embryo chorioallantoic membrane assay and in 

tumor-cell induced angiogenesis assays in mice.99 

1.6 Inhibition of the VDR-Coactivator Interactions 

  Many VDR ligands, commonly VDR agonists, have been developed to treat vitamin D 

related diseases.  Only a limited number of VDR antagonists have been described with the ability 

to either directly or allosterically inhibit the interaction between VDR and its coactivators.100-102 

The following VDR ligands will be discussed in this section: direct VDR antagonists (allosteric VDR-

coactivator inhibitors) and direct VDR-coactivator inhibitors.  
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1.6.2 Direct VDR Antagonists or Allosteric VDR-Coactivator Inhibitors 

 The synthesis of new synthetic analogs of 1,25(OH)2D3 resulted in the identification of 

new VDR ligands that bind VDR but only weakly promote VDR–coactivator interactions. Usually, 

the biological effects of these antagonists have been determined in the presence of agonists like 

1,25(OH)2D3 giving results similar to the vehicle control. Interestingly, the degree of coactivator 

recruitment by VDR depends on the chemical structure of the VDR antagonist. Thus, the quality 

of a VDR antagonist can be defined by its 

residual agonistic activity. On the molecular 

level, this behavior is believed to be caused 

by the orientation of helix 12 (Figure 15). 

Depending on the structure, VDR 

antagonists may influence the equilibrium of 

VDR bound to coactivators, corepressors, or 

neither. Crystal structures of all three 

possible complexes have been reported for 

nuclear receptors. However, VDR prefers to 

crystallize solely with an agonistic arrangement.  

 

Figure 15. Possible equilibrium structure of VDR in 
the presence of antagonist. 
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One example is ZK159222 that exhibited a sub-nanomolar affinity for the VDR in the presence of 

1,25(OH)2D3 and inhibited VDR-mediated transcription with an IC50 value of 300 nM (Figure 

16).103, 104 SDS-page demonstrated three different conformations of ZK159222 liganded VDR.105 

These conformations may be responsible for the dissociation 

between liganded VDR and coactivators SRC1, SRC2, SRC3, and 

DRIP205.106, 107 The interaction between corepressor NCoR and VDR 

was inhibited as well.103 ZK159222 also inhibited the interaction 

between VDR and corepressor SMRT as demonstrated with a pull-

down assay.108 In human fetal osteoblastic cells, ZK159222 

inhibited the expression of osteocalcin, alkaline phosphatase 

activity, and calcium contents, in the presence of 1,25(OH)2D3.109 In osteoblastic ST2 cells, 

ZK159222 blocked the activation of mRLD5 region of mRANKL in the presence of 1,25(OH)2D3.110 

The calcemic activity of ZK159222 was 0.02% of that of 1,25(OH)2D3 in mice after 5 days of 10 

µg/kg/d.111  

In respect to anti-proliferation, ZK159222 also inhibited the differentiation of HL60 cells 

in the presence of 1,25(OH)2D3 at a concentration of 6 nM.112 The process involves the up-

regulation of kinase suppressor of ras 2 gene (KRS-2), which was demonstrated to be inhibited 

by ZK159222.113 In addition, ZK159222 inhibited the phosphorylation of Raf-1114, 115 and the 

expression of pRb and c/EBPβ, two very important cancer genes, in the presence of 

1,25(OH)2D3.116 ZK159222 inhibited the phosphorylation of phosphoinositide and Akt mediated 

by phosphatidylinositol 3-kinase in the presence of 1,25(OH)2D3.117 Weak induction of calbindin-

D28K, a cytosolic calcium binding protein, and VDR itself was observed in the presence of 

 

Figure 16. Structure 
of ZK159222.  
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ZK159222 in choriocarcinom- derived cells (JEG-3). In the presence of 1,25(OH)2D3, ZK159222 

exhibited strong antagonist effects in these cells.118 

1.6.3 Direct VDR-Coactivator Inhibitors 

The identification of the central coactivator LXXLL motif as being essential to mediate nuclear 

receptor binding prompted investigations into peptide-based VDR–coactivator inhibitors that 

would evaluate the function of this protein-protein interaction. Pioneered by McDonnell et al for 

the estrogen receptor, a phage display library of synthetic LXXLL peptides was generated and 

screened with two hybrid assays against a panel of nuclear receptors including VDR.119-121  

Peptides, C33, D47, EBIP41 and EBIP44, were identified to bind VDR (Figure 17).  Importantly 

when C33, D47, EBIP41 and EBIP44 peptides were expressed as Gal4 DBD fusions in cells, they 

inhibited the VDR-mediated transcription in a reporter assay under control of an osteocalcin (OC) 

promoter.122  In addition, RXR-selective peptide F6 was able to inhibit VDR-mediated 

transcription demonstrating transactivation between RXR and VDR. A more exhaustive phage 

display library identified three more LXXLL peptides (Figure 17, compounds 3,4, and 5) that not 

only bind VDR in a two hybrid assay but also inhibit VDR-mediated transcription when expressed 

in cells.106 These peptides exhibited a consensus sequence of (H/F)P(L/M)LXXLL. Importantly, the 

binding of these peptides to VDR was more pronounced in the presence of VDR agonists than 

                    Target 

C33 H V E M H P L L M G L L M E S Q W G A VDR 

D47 H V Y Q H P L L L S L L S S E H E S G VDR 

EBIP41 R R D D F P L L I S L L K D G A L S Q VDR 

EBIP44 Y G L K M S L L E S L L R E D I S T V VDR 

F6 G H E P L T L L E R L L S G T S V A E RxR 

3 L S E T H P L L W T L L S S E G D S M VDR 

4 M Q E R F P M L W D L L D L P S P T S VDR 

5 L G E S H P L L M Q L L T E N V G T H VDR 

Figure 17. Sequences of coactivator peptides that inhibit the interaction between VDR and 
coactivators.  
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VDR antagonists. However, these peptides possess limitations in their inability to regulate 

endogenous VDR target genes.  

To overcome limitations in cell-based assays such as inactivity when transfected as a fusion 

peptide or limited cell permeability and stability, new peptide-based inhibitors were 

generated.123  Misawa et al. introduced stabilized cyclic heptapeptides that were composed of L-

leucine residues and a stapled side chain as VDR inhibitors (Figure 18).124, 125  These stapled linkers 

consisting of a long hydrocarbon chain have been reported to increase stability and oral 

bioavailability. A dramatic IC50 value change from 220 µM to 3.2 µM was observed by changing 

the nonfunctional linker (Figure 18, DPI-06) to a functionalized linker (Figure 18, DPI-07).  

Rational drug design resulted in the first small molecules that inhibit the VDR–coactivator 

interaction in 2010.126 Using a rational design approach, a benzodiazepine scaffold was 

substituted with branched hydrophobic groups to mimic the i, i+3, and i+4 position of leucine of 

coactivator DRIP205 (Figure 19).127 Docking studies revealed that compound 2 might form 

 

Figure 18.  Structures of cyclic peptide-based VDR–coactivator 
inhibitors. 

 

 

  
Figure 19. Overlay between a crystal structure of VDR and coactivator peptide DRIP205 and 
docked conformation of compound 2 and structures of compound 2 and 35.   
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hydrogen bonds with rat VDR clamp residues Glu416 and Lys242. The inhibition activity of 

compound 2 (IC50= 17 µM) was confirmed in cells with a reporter gene assay. The results 

prompted a more exhaustive structure-activity relationship (SAR) study reported in 2013 by the 

same group.128 Despite the large number of analogs with various substituents in the 7- and 8- 

position, only marginal improvement (IC50= 14 µM) was observed for compound 35 (Figure 19). 

However, the aniline function in the 8-position was confirmed to be important for binding, 

probably interacting with Glu417 of VDR.  

In 2012, Arnold et al., identified the first irreversible VDR–coactivator inhibitors using high 

throughput screening.129 Among 275,000 compounds, 140 inhibitors with cellular activity were 

identified, including a group of 3-indolylmethanamines. A comprehensive SAR study around the 

3-indolylmethanamine scaffold identified compound 31B as the most active VDR–coactivator 

inhibitor in cells (IC50 = 4.2 µM, Figure 20, A). In addition, a linear free energy relationship 

between inhibition rates of 3-indolylmethanamines bearing different electronic substituents 

confirmed irreversibility. Due to the unique mode of binding, a high selectivity of 31B toward VDR 

in respect to other nuclear receptors was observed. In addition, 31B is selective towards the 

interaction between VDR and coregulator peptide SRC2-3 among other LXXLL coregulator 

peptides. Importantly, down-regulation of VDR target gene TRPV6 by 31B was observed in the 

A 

 

B 

 
Figure 20. A) Structure of 31B and PS121912; B) Anti-proliferative effects of 
PS121912 in a HL-60 xenograft model.  
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presence of 1,25(OH)2D3 for DU145 cancer cells leading to anti-proliferation at higher 

concentration. Inhibition of VDR-mediated transcription and anti-proliferation in the presence of 

31B was also observed for ovarian cancer cells OVCAR8 and SKOV3 and endometrial cancer cells 

ECC-1.130 In cis-platinum resistant SKOV3 cells, other markers of anti-proliferation and apoptosis 

were upregulated in the presence of 31B such as activation of caspase 3, phosphorylation of MAP 

kinases p38 and SAPN/JNK, upregulation of P21, and cell-cycle arrest. In a cisplatin-resistant 

SKOV3 xenograft tumor model, 31B treatment, delivered 5 times a week at a dose of 5 mg/kg, 

led to suppressed tumor growth after two weeks. In addition, reduced tumor formation was 

partially caused by a compromised de novo production of fatty acids due to lower expression of 

fatty acid synthase (FASN) in the tumor. Further SAR studies resulted in a discovery of 3-

indolylmethanamine PS121912, a VDR–coactivator inhibitor that inhibited VDR-mediated 

transcription with an IC50 of 590 nM (Figure 20).131 Similar to 31B, PS121912 is selective towards 

VDR and has a preference for the interaction between VDR and coregulator peptide SRC2-3. 

Importantly, ChIP studies revealed that in HL60 leukemia cells PS121912 was able to reduce the 

DNA occupancy of VDR and binding of SRC2. However, PS121912 promoted the recruitment of 

NCoR to the VDR–DNA complex.132 PS121912 reversed the regulation of VDR target genes in the 

presence of 1,25(OH)2D3 at a concentration of 500 nM and modulated the transcription of many 

genes affiliated with cell cycle control. Elevated levels of P21 protein levels were observed for 

the PS121912 in the presence and absence of 1,25(OH)2D3 in HL60 cells as well as increased levels 

of pro-apoptotic serine protease HTRA. In a mouse HL60 xenograft model at 3 mg/kg five times 

a week, a significant change in tumor volume was observed after three weeks of treatment 

(Figure 20, B). The blood calcium levels and animal weight did not differ from the control group.  
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CHAPTER 2: THE RATIONAL DESIGN AND SYNTHESIS OF THIAZOLE-BASED 

VDR-COACTIVATOR MODULATORS 

2.1 Introduction 

 The rational design of drugs can be defined as the discovery of a lead molecule with 

desirable properties determined prior to its actual identification based upon the information 

known about a specific target.133  With advancing computer technology and growing 

combinatorial libraries, this form of lead identification has become more and more streamlined. 

The rational design of a drug is unique from that of other drug discovery processes such a high 

throughput screening.  High throughput screening can easily become a game of luck depending 

on the size and diversity of compound libraries screened and the quality of assay being used.  

However, rational drug discovery isn’t without its own drawbacks.  To be truly a de novo rational 

design, structural and chemical knowledge must be known about the targeted receptor and 

compounds that bind to it.  From this, a pharmacophore model can be developed in which set 

parameters must be met by the compound in order to bind the active site.  Without this, the 

method must employ empirical information to base its claims thus becoming more of a “semi-

rational” approach.  As established in chapter 1, VDR is a well-studied receptor whose crystal 

structure with ligands has been solved.  Furthermore, the interaction between VDR and many of 

its coactivators have been greatly investigated.  Therefore, we were able to use a rational 

approach to design a novel inhibitor of the interactions between VDR and its coactivator, SRC2.  
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In Figure 21, coactivator peptide (stick model), SRC2, makes specific interaction with VDR 

(grey/red) through an LXXLL motif.  We hypothesized that by replacing the peptide backbone 

(shown in green) with a small molecule scaffold while keeping the leucine residues within the 

same space orientation as in SRC2, we could mimic this interaction and successfully inhibit a 

coactivator from binding. In addition to the leucine residues, the pharmacophore model required 

that the small molecule contained an electron donating group, as well as, the ability to H-bond 

with glutamic acid while possessing drug-like properties.  A linker database containing 

approximately 3,000 different scaffolds was virtually screened against this pharmacophore 

developed in the program Molecular Operating Environment (MOE) and yielded a thiazole 

 

Figure 21.  Molecular Operating Environment (MOE) was used for fragment-
based design to replace the peptide backbone with a small molecule scaffold.6 
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scaffold containing two leucine like residues (Figure 22).  Research into the synthesis of this 

molecule revealed a quick three step route utilizing an efficient multi-component.134 

In general, multi-component reactions (MCRs) are defined as any process in which three 

or more reactants combine in one pot to form a product that incorporates  structural features of 

each reagent (Figure 23).135  There are many advantages to 

using MCRs including simplicity, greater efficiency, higher 

yields, and higher atom economy over conventional chemical 

reactions. These convergent reactions involve all atoms 

within the chemical process therefore producing little 

chemical waste.  This makes them a green synthetic method 

for pharmaceutical and drug discovery research. In 1850, the 

Strecker 3-component reaction (S-3CR) was the first official 

 

Figure 23.  Simplistic model of 
how multi-component work.  

 

Figure 22. The thiazole molecule found as a suitable scaffold for peptide 
replacement.6 
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MCR discovered for the synthesis of α-aminonitriles by the reaction of ammonia, hydrocyanic 

acid, and carbonyl compounds.136   Since then, organic chemist have invented numerous MCR 

reactions that are now key players in combinatorial chemistry with their ability to quickly produce 

large and diverse compound libraries.  The reactions have especially grown in popularity in part 

due to the arrival and growth of high throughput screening techniques that enable rapid 

screening of these compounds.   

Reactions involving isocyanides provide additional benefits to the rapidly developing field 

of MCRs.  As a very reactive functional group, isocyanides are unique in their ability to react with 

nucleophiles and electrophiles at the same carbon atom resulting in a stable C-C bond.137  In many 

cases, reactions with isocyanides are chemo-, regio- and stereoselective as well as highly effective 

and versatile.138  The most important and vastly studied isocyanide-based MCR is the Ugi four 

component reaction (U-4CR) developed in 1959 by Ivar Ugi (Figure 24).  Advantages of this 

reaction includes variable products by changing the amine (ammonia, primary and secondary), 

carbonyl compounds (ketone or aldehyde), and isocyanides without sensitivity to steric bulk.139   

 Herein, we report the use of a U-4CR to synthesize novel, non-secosteroidal inhibitors of 

VDR.  These molecules were rationally designed to directly inhibit the interactions between VDR 

and its coactivator SRC2.  Biochemical evaluation was conducted using a fluorescence 

polarization binding assay. 

 

Figure 24.  The original U-4CR was used to produce Xylocaine with dimethylamine, 
formaldehyde, 2,6-xylylisocyanide, and water. 
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2.2 Chemistry 

2.2.1 Synthetic Strategy 

A U-4CR was used to synthesize the thiazole ring (Scheme 1).139  In one pot, (2,4-

dimethoxyphenyl)methanamine (2.1) and isovaleraldehyde (2.2) were initially added together to 

undergo a condensation reaction to form the corresponding imine as seen in the reaction 

mechanism (Figure 25). With the addition of thioacetic acid (2.3) and isocyanoacrylate (2.4), a 

proton exchange occurred with thioacetic acid thus activating the imine for nucleophilic addition 

of the isocyanoacrylate and formation of a nitrilium ion.  Next, a second nucleophilic addition 

took place with the thioacetate anion.   This was followed by a unique rearrangement termed a 

 

Scheme 1.  Synthetic scheme used to develop VDR-SRC2-3 modulators.  i) MeOH, room 

temperature, overnight; ii) TFA, 60oC, 3 hours; iii) a) THF/H2O, LiOH, 0oC, overnight, b) 

DCM, 3-isobutylmorpholine, EDCI, HOBt, DIPEA, 0oC; iv) THF, 30% TBD, morpholine, 80oC, 

4 hours.   

 

Figure 25.  Mechanism for U-4CR reaction.  This reaction produces the final thiazole product 
in addition to one equivalent of dimethylammonium ion that can go back into the reaction as 
an amine source. 
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Mumm rearrangement where the acyl group transfers from the sulfur to the nitrogen followed 

by ring closure and production of an amide thiazole ring product (KAT011311) and a 

dimethylammonium byproduct.  This byproduct was able to participate in the synthesis as a 

starting material and produced the dimethylamine thiazole ring product (KAT052711) as seen in 

Figure 26.  This was not initially evident due to their overlapping spots on the TLC but with the 

addition of 1% acetic acid the two compounds could be easily separated. The acetic acid 

protonated the dimethylamine and transformed it into a salt that retained longer on the column 

than the desired amide product.  Because they were easily purified, KAT052711 was used in the 

subsequent coupling reactions in addition to the KAT011311.  Deprotection of KAT011311 was 

carried out using TFA at elevated temperatures to produce compound KAT030711 (Scheme 1).  

Wang et al. previously published the successful amidation to the methyl ester position using 

morpholine with 30% triazabicyclodecene (TBD), a bicyclic guanidine base, at 80oC for several 

 

Figure 26.  The dimethylammonium byproduct reaction mechanism.  
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hours.134  This method was successful for the coupling of a morpholine to KAT030711 and 

KAT052711 to produce KAT080411 and KAT031312. Unfortunately these conditions were not 

suitable when 3-isobutylmorpholine was used.  Alternatively, the hydrolysis of the ester to a 

carboxylic acid followed by peptide coupling using EDCI, HOBt, and DIPEA yielded the two desired 

3-isobutylmorpholine amides, KAT021712 and KAT021112.  

2.2.2 Characterization 

Commercially available staring materials were used as received. Dry solvents were bought 

in sure-seal bottles and handled under dry conditions using syringe technique.  All glassware was 

dried overnight at 100oC before use.  Thin layer chromatography was performed on pre-coated 

silicia gel 60 F254 plates (Fisher Scientific). Synthesized compounds were purified by normal 

phase flash chromatography (SPI Biotage, silica gel 230-400 mesh) and concentrated under 

vacuum.  All pure compounds were stored as solids at -20°C.  Compound characterization was 

performed using a Shimadzu 2020 LC-MS (single quadrupole) instrument or Surveyor & MSQ LC-

MS (APCI or ESI) with compounds directly injected.  NMR spectra were recorded on a Bruker 

300MHz instrument with samples diluted in either CDCl3 or DMSO- D6. 

General Procedure for 4-CR Ugi Reaction:  Isovaleraldhyde (107.3 μL, 1 mmol), (2,4-

dimethoxyphenyl)methanamine (167 mg, 1 mmol) and dry methanol (2 mL) with 4 Å molecular 

sieves were added together at room temperature and stirred for 1 hour.  Then (z)-methyl-3-

(dimethylamino)-2-isocyanoacrylate (154 mg, 1 mmol) and thioacetic acid (71.4 μL, 1 mmol) were 

added to the reaction mixture and stirred at room temperature for 24 hours.  The mixture was 

concentrated by rotary evaporation. To the crude 1 mL of acetic acid was added and mixed 

thoroughly before being purified by column chromatography using EtOAc-Hexanes (2-80% 
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strong).  Two products were obtained, KAT011311 as a yellow oil and KAT052711 as a cream 

colored solid.   

KAT011311 64 % yield; 1H-NMR (300 MHz) (CDCl3) δ 8.06 (s, 1H), 

6.39-6.90 (d, 1H, J=9 Hz), 6.37-6.35 (m, 2H), 5.71-5.67 (t, 1H, J= 

6Hz)), 4.49 (s, 2H), 3.91 (s, 3H), 3.77 (s, 3H), 3.78 (s, 3H), 2.16 (s, 3H), 

2.06-1.96 (m, 2H), 1.59-1.50 (m, 1H), 0.90-0.86 (m, 6H, J= 13.5Hz, 

7.5Hz); 13C-NMR δ 171.90, 170.96, 161.83, 159.27, 157.58, 145.90, 128.60, 127.50, 117.20, 

103.93, 98.48, 64.78, 55.33, 55.05, 41.59, 25.22, 22.68, 22.46.  MS APCI (+ve) calcd. m/z for 

C21H28N2O5S[(M)] 420, found [(M+H)+] 421.2. 

KAT052711 16% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.32 (s, 1H), 4.89-4.85 

(dd, 1H, J=9Hz, 3Hz), 3.98 (s, 3H), 2.85 (s, 6H), 1.43-1.26 (m, 3H), 0.97-0.90 

(dd, J=15Hz, 6Hz); 13C-NMR δ. 172.78, 162.05, 146.11, 127.89, 64.72, 

52.36, 42.26, 41.60, 25.06, 22.85 (isobutyl CH3), 22.38 (isobutyl CH3).  MS APCI (+ve) calcd. m/z 

for C12H20N2O2S[(M)] 256.1, found [(M+H)+] 257.1. 

General Procedure for Deprotection Reaction:  1 mL of TFA was added to KAT011311 (85 mg, 

0.2 mmol) and the mixture was heated to 60oC for 1 hour.  Reaction was monitored by TLC (4:1 

EtOAc- Hexanes) by taking an aliquot of reaction and working up a fraction with ammonium 

chloride to remove acid.  Upon complete conversion, the solution was concentrated and purified 

by column chromatography using EtOAc and Hexanes with 1% AcOH (2-80% strong).  A yellow 

solid was obtained. 
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KAT030711  66% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.11 (s, 1H), 6.23-

6.22 (d, 1H, J=6Hz), 5.46-5.40 (m, 1H), 3.96 (s, 3H),  2.04 (s, 3H), 1.97-

1.81 (m, 2H), 1.68-1.59 (m, 1H), 1.00-0.96 (dd, 6H, J= 6Hz, 3Hz) ; 13C-

NMR δ 172.72, 169.72, 161.75, 146.70, 127.36, 52.50, 49.34, 44.40, 24.97, 23.16, 22.75, 22.01.  

MS APCI (+ve) calcd. m/z for C12H18N2O3S [(M)] 270.1, found [(M+H)+] 271.1. 

General Procedure for 3-isobutylmorpholine Coupling: 40 mg, 0.148 mmol of either KAT030711 

(amide) or KAT052711 (dimethyl amine) were dissolved in 1 mL of THF, 400 μL of a 0.5M LiOH 

solution (1:1 THF: H2O).  The solution was stirred overnight under 0°C.  Product conversion was 

determined by TLC (4:1 EtOAc-Hexanes, Rf= baseline).  To the solution, 100 µL 4M HCl Dioxane 

was added to neutralize the base and stirred for 20 minutes.  The mixture was concentrated by 

rotary evaporation to yield an oil of the acid.  The prepared acid was diluted with 2 mL of 

dichloromethane and to it of EDCI (28.4 mg, 0.148 mmol), HOBt (20.0 mg, 0.148 mmol), DIPEA 

(95.5 mg, 0.74 mmol, 128.8 μL) and 3-isobutylmorpholine (26.6 mg, 0.148 mmol) were added at 

0°C and warmed to room temperature and stirred overnight.  The reaction was monitored by TLC 

(3:2 MeOH-EtOAc, 1% acetic acid, Rf= 0.75).  Upon conversion, the crude was diluted with 

dichloromethane and washed with water, dried over Na2SO4 and evaporated.  The crude sample 

was purified on silica gel with EtOAc-MeOH (2%-60% strong, with 1% Ac) using normal phase 

flash chromatography system. 
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KAT021712   3% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.91 (s, 1H), 5.33-

5.28 (m, 1H), 4.01-3.56 (m, 7H, morpholine ring), 2.02(s, 3H), 1.98-1.69 

(m, 6H), 1.02-0.97 (dd, 12H, J= 9Hz, 6Hz); MS APCI (+ve) calcd. m/z for 

C19H31N3O3S [(M)] 381.5, found [(M+H)+] 382.3. 

KAT021112   5% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.00 (s, 1H), 4.56 

(m, 1H), 3.99-3.55 (m, 7H, moropholine ring), 2.30 (s, 6H), 1.95-1.50 (m, 

6H, isobutyl CH2 and CH), 0.98-0.92 (dd, 12H, J= 10.5Hz, 7.5Hz); MS APCI 

(+ve) calcd. m/z for C19H33N3O2S [(M)] 367.3, found [(M+H)+] 368.2. 

General Procedure for Morpholine Coupling: 48 mg (0.177 mmol) of either KAT030711 (amide) 

or KAT052711 (dimethyl amine) were diluted with 1 ml of dried THF.  To the solution 30% TBD 

and 0.355 mmol of morpholine were added and stirred at 40°C overnight.  Reaction was 

monitored by TLC (4:1 EtOAc- Hexanes, Rf= 0.75).  After full conversion, the mixture was 

concentrated to dryness and purified on silica gel with EtOAc-MeOH (2%-60% strong, with 1% 

acetic acid) using normal phase flash chromatography system. 

KAT080411   35% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.83 (s, 1H), 6.02-

6.00 (d, 1H, J= 6Hz), 5.44-5.36 (m, 1H), 3.77 (m, 8H, morpholine CH2), 

2.06 (s, 3H), 1.94-1.84 (m, 2H), 1.79-1.71 (m, 1H), 1.00-0.97 (dd, 6H, J= 

3Hz, 6Hz); 13C-NMR δ 171.57, 169.55, 162.62, 149.76, 124.32, 67.00, 49.51, 44.61, 24.99, 23.23, 

22.73, 22.10.  MS APCI (+ve) calcd. m/z for C15H23N3O3S [(M)] 325.3, found [(M+ H)+] 326. 
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KAT031312   30% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.96 (s, 1H), 4.39-

4.37 (d, 1H, J= 6Hz), 3.99-3.76 (m, 8H, morpholine CH2), 2.30 (s, 1H), 

1.79-1.73 (m, 2H), 1.64-1.53 (m, 1H, J= 9Hz, 6Hz); 13C-NMR δ 171.09, 

162.78, 149.48, 125.40, 66.98, 64.53, 41.51, 41.13, 29.66, 25.24, 23.10, 22.04.  MS APCI (+ve) 

calcd. m/z for C15H25N3O2S [(M)] 311.4, found [(M+H)+] 312.2. 

2.3 Modulation of VDR-Coactivator Binding with Rationally Designed 

Thiazole Derivatives 

A fluorescence polarization-based (FP) assay was used to quantify the binding between 

VDR and coactivator in the presence of small molecules. Synthesized compounds displaying 

agonistic binding induce the interactions between VDR and Alexa Fluor 647-labeled coactivator 

peptide through favorable conformational changes of the VDR protein. Therefore, high 

fluorescence polarization is observed upon its binding to VDR-LBD.  In contrast, low polarization 

is observed when the LXXLL mimic molecule competes with the coactivator for binding in the 

presence of 1,25(OH)2D3 (Figure 27).  

 

 

 

Figure 27.  Cartoon of the FP-assay used to determine if newly synthesized 
molecules are competitive inhibitors of the VDR-coactivator interaction. 
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 Potency and efficacy are determined directly from the dose-response curve produced for 

each compound.  Potency is recorded as a median effective concentration (EC50) or a median 

inhibition concentration (IC50) value for agonist and antagonist binding, respectively.  The 

maximal efficacy reflects the limit of the dose-response relation on the response axis.  For 

example, a full agonist occupies the ligand binding pocket (LBP) of VDR more efficiently than 

partial agonists.  This is seen by the lower response produced by the partial agonists compared 

to a full agonists (Figure 28).  It is important to note that the failure of partial agonists to produce 

a maximal response is not due to decrease affinity for VDR. 140 Although partial agonist do not 

elicit a maximal therapeutic response it may be beneficial in limiting the drug’s propensity to 

cause a toxic effect.   

2.3.1 Experimental Procedure  

Reagents and Instrumentation: The assay buffer was prepared with 18MΩ water, 25mM PIPES 

(piperazine-N,N′-bis(2-ethanesulfonic acid)) (Sigma), 50mM NaCl (Fisher), and 0.01% NP-40 

(Thermo Scientific) a detergent used to reduce any non-specific binding.  The pH was adjusted to 

 

Figure 28.  General dose-response showing example 
curves of a partial and full agonist.  
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6.75 and filtered to remove any particulates. LG190178 

(a VDR agonist) was synthesized following a published 

procedure and used as a positive control (Figure 29).141, 

142 CBT1 (a VDR-coactivator inhibitor) was used as 

second positive control and was synthesized using a 

previously published method (Figure 30).143  The expression and purification of VDR-LBD was 

performed as described by previous literature.9 SRC2-3 (CKKKENALLRYLLDKDDTKD) was 

purchased and labeled with cysteine-reactive Alexa Fluor 

647 or Texas Red maleimide.  Labeled peptides were 

purified by reverse phase quantitative HPLC using a C18 

column and stored at -20oC.  All fluorescence readings 

were performed on a Tecan Infinite M1000 plate reader.  

Small volume transfers were performed on the Tecan Freedom EVO liquid handling system with 

a 100 nL pin tool transfer (V&P Scientific).  Serial dilutions were done in 96-well polypropylene 

plates (Corning, #3365) and assays were conducted in 384- well black polystyrene microplates 

(Nunc, #262260). 

Fluorescence Polarization-based Binding Assay Protocol: To 30 mL of buffer, 1 μL of the Alexa 

Fluor 647-labeled SRC2-3 (7.5 nM final concentration) was added.  The optimal concentration of 

VDR-LBD (EC90) was determined by serially diluting VDR protein ranging from 35 to 0.017 μM and 

combined it with the coactivator containing solution in a 384-black well black plate.  To the plate 

a solution of LG190178 was transferred using the pin tool at a final concentration of 2 μM.  The 

calculated EC90 obtained determined was 0.1 μM VDR-LBD.  The optimal LG190178 concentration 

 

Figure 30.  CBT is known to inhibit 
the interactions between VDR and its 
coactivator. 

 

Figure 29. LG190178, a synthetic 
agonist for VDR that binds with an Ki= 
150 nM 
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was determined by combining a serial diluted LG190178 solution ranging from 20μM-0.1nM to a 

solution containing VDR-LBD (0.1μM) and Alexa Fluor 647-labeled SRC2-3 (7.5 nM).  The 

calculated EC90 determined was 0.75 μM. 10 mM stock solutions of synthesized compounds made 

in DMSO were serially diluted (1:3) in 96-well plates.  Four 14 μL aliquots of each compound 

concentration was transferred to opaque 384-well plates for storage. 600 nl of each compound 

concentration was transferred into 20 µl assay solution resulting in a final maximum 

concentration of 300 μM.  Agonistic binding was determined in the absence of LG190178 while 

antagonistic binding was determine in the presence of LG190187.  Fluorescence polarization was 

detected after 30 minutes at an emission/excitation wavelength of 635/685 nm (Alexa Fluor 647).  

LG190178 and DMSO were used as positive and negative controls in the agonistic binding assay, 

respectively.  In the antagonist binding assay CBT1 was the positive control while DMSO was used 

as a negative control. Controls were measured within each plate to determine the z’ factor 

(Equation 1), which assed the quality of the assay and enabled data normalization. Three 

independent experiments were carried out in quadruplicate, and data was analyzed using 

nonlinear regression with a variable slope (GraphPrism, Equation 2). 

 

Equation 1:     𝑍′ = 1 −  (
3 × (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

|𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒|
) 

 

Equation 2:       
𝐵𝑜𝑡𝑡𝑜𝑚+(𝑡𝑜𝑝−𝑏𝑜𝑡𝑡𝑜𝑚)

(1+10(𝑙𝑜𝑔𝐼𝐶50−𝑋)(𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒))
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2.3.2 Results and Discussion 

Table 1 summarizes the binding results for the rationally designed thiazole molecules.  

Although these compounds showed great promise as VDR-coactivator inhibitors in the initial 

molecular modeling they did not exhibit any agonistic or antagonistic effects in the binding 

assay. 

 

2.3.3 Conclusion 

 Although these initial rationally designed molecules did not bind to VDR and inhibit 

coactivator interactions, further computer modeling could aid in the development of active 

molecules.  Also, these molecules may behave differently within cells and potentially exhibit 

transcriptional modifying properties.  Further evaluation would be needed to determine this.   

 

 

 

Table 1.  Modulation of VDR-Coactivator binding in the presence of rationally 

designed thiazole ligands. 

Compound 

Recruitment of SRC-2-3 
to VDR 

EC
50

 (µM) 

Inhibition of SRC2-3 VDR 
Interaction 
IC

50 
(µM) 

KAT011311 Inactive Inactive 
KAT052711 Inactive Inactive 
KAT030711 Inactive Inactive 
KAT021712 Inactive Inactive 
KAT021112 Inactive Inactive 
KAT080411 Inactive Inactive 
KAT031312 Inactive Inactive 

The maximum concentration used for this assay was 300 µM of each compound. 
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CHAPTER 3: GW0742 

Introduction 

 High throughput screening (HTS) has quickly 

evolved over the last decades to become one of the 

main methods for the identification of lead compounds 

in drug discovery.  As seen in Figure 31, it includes many 

different stages of the drug discovery process such as 

assay development, screening, hit compound selection, 

and the measurement of  absorption, distribution, 

metabolism, and excretion (ADME) as well as toxicity.7  

Early drug discovery was simpler and focused more on 

the disease than on specific targets.  Studies were 

carried out in vivo and required large amounts of each 

compound.  Due to the identification of many new 

biological targets that mediate various diseases, more economic processes have been developed 

that include HTS using miniaturization and automation.  The HTS revolution all began in 1951 

with the invention of the microwell plate by Dr. Gyula Takatsky that was quickly commercialized 

as a plastic microplate later that decade.144  With the development of microplate readers by 

Biotek that accepted different microwell plates, the concept really started to increase in 

popularity.  By the 1990s, many companies were producing microplates and readers with many 

different features.  In addition, automation was adopted which led to automated instruments, 

 

Figure 31.  Stages of drug discovery and 
development and the involvement of 
HTS activities.7 
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automated liquid-handling systems, and automated screening systems that integrated more than 

20 different instruments. Furthermore, the increase of publications containing detailed HTS assay 

adaptations helped mature HTS automation and detection systems.  It was not long before 

standardization of microplates was necessary.  The Society for Biomolecular Screening (SBS) was 

founded in 2002, which established a Microplate Standards Working group with the goal of 

introducing HTS standards and distributing knowledge among researchers in this field.  

 Today, HTS is more than assay development, validation and screening.  It is a collective 

term that encompasses a range of multidisciplinary activities, ranging from the creation of 

specialized cell lines and purified enzymes for screening to compound design using 

computational chemistry and novel parallel chemistry approaches and even engineers creating 

suitable robots and instrumentation.  HTS is constantly advancing with the development of new 

technology that increase throughput (i.e. ultraHTS) and decreases costs and waste.144 

Drug target selection is an important starting point for drug discovery.  Understanding the 

biology and pharmacological aspects of a biological target is essential before beginning a HTS 

campaign.  There are many things to consider including the “drug-ability” of a target.  For 

example, is there any evidence to support that a target is amendable to modulation by small 

molecules?  In our case, nuclear receptors are known to be modulated by small molecules called 

hormones. Between 2001-2004, GlaxoSmithKline (GSK) had a 72% success rate of identifying new 

lead compounds for nuclear receptors among diverse libraries of small molecules.145, 146  In 

addition, these compounds had ideal, drug-like chemical structures and exhibited a SAR.  It is 

essential to note that the success of finding a hit compound is dependent upon the diversity of a 

compound library. The “chemical space” is quite large with an estimated 1040-10100 compounds. 
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When considering that HTS is currently carried out with 0.5-1 million compounds, a selection 

process has to occur in order to make this approach successful.147 By taking the structure of 

current drugs into account, Lipinski introduced the rule of five for drug-like molecules: 1. No more 

than five hydrogen-bond donors; 2. no more than ten hydrogen-bond acceptors; 3. a molecular 

mass less than 500 Daltons; 4. an octanol-water partition coefficient logP ≤ 5.148  

In a general sense, HTS assays used for the identification of lead compounds are either 

biochemical or cell-based assays.  The detection of activity can include fluorescence, 

luminescence, radioactive elements, heat of binding, and mass spectrometry.149  Biochemical 

assays can include purified proteins such as receptors, enzymes, transporters and many more.7  

They offer the advantage of clear drug-target interactions leading to SAR during hit-to-lead 

optimization without being convoluted by other processes that can occur in cell-based assays. 

However, by assessing a compound within the environment of a cell, we are able to determine 

the quality and biological relevance of a hit compound in addition to any off-target effects it may 

have.144   

In 2011, we conducted a screening campaign in collaboration with the NIH chemical and 

genomics center (NCGC) to identify a potential VDR inhibitor (AID: 504847, pubchem).150  

Approximately 390,000 compounds were screened using a FP assay where an inhibiting 

compound would disrupt the interaction between VDR and a fluorescently labeled peptide, SRC2-

3.  This primary screen found that 1,938 compounds exhibited IC50 values ≤ 40 μM.  Two 

alternative FP assays, one with a Texas Red-labeled SRC2-3 and the other with a fluorescein-

labeled SRC2-3, were employed to further validate the primary results.  The Texas Red-labeled 

SRC2-3 revealed that out of the 1,938 initial hit compounds 69% of the compounds exhibited an 
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IC50 value of ≤ 40 μM.  83% of the compounds with the fluorescein-labeled SRC2-3 possessed an 

IC50 value of ≤ 40 μM.  A good correlation was observed when Texas Red-labeled SRC2-3 and 

fluorescein-labeled SRC2-3 assay results were combined with those of the Alexa Fluor 647 assay.  

Accordingly, 747 compounds were selected based on diverse scaffold structures and 

functionality.  To discriminate those compounds that might inhibit coactivator binding by 

irreversibly reacting with cysteine residues of the VDR-LBD protein, the VDR-SRC2-3 FP assay was 

conducted in the presence of 2-mercaptoethanol (ME).   The idea was that the electrophilic 

compounds would react with the excess nucleophilic ME rather than the nucleophilic VDR protein 

residues such as cysteine.  A significant decrease in the inhibition of VDR-SRC2-3 interaction was 

observed in the presence of 100 mM ME in comparison to 1 mM ME (Figure 34) thus suggesting 

that a large number of the primary hits may inhibit VDR-coactivator interactions through 

modifications of surface cysteine residues.  However, a small number of compounds were not 

influenced by ME at high concentrations.  Among these was GW0742 shown in Figure 33, A.   

GW0742 was originally developed by GlaxoSmithKline in 2003 as a selective agonist for 

the peroxisome proliferator activated receptor δ (PPARδ) (EC50 = 0.001 μM).151  The biological 

 

Figure 32.  Inhibition of VDR-SRC2-3 Alexa Fluor 647 interaction by small molecules 
(50μM) in the presence of A) 1mM ME and B) 100mM ME. 
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role of PPARδ had remained elusive, in part, due to its broad tissue expression and the lack of 

good chemical tools to distinguish the pharmacology between the PPAR isoforms (α, γ, and δ). 

Thus, with the development of the selective GW0742 agonist, the function of PPARδ was 

investigated in cell-based assays and in vivo to reveal its role in hypertension, diabetes, 

inflammation, obesity, and cancer. 

In our lab, GW0742 was evaluated in a dose responsive manner with a number of 

different assays.  FP assays were used to determine the inhibition of VDR-SRC2-3 interaction with 

three different probes and IC50 values of 14 μM (Alexa Fluor 647), 25.1 μM (Fluorescein), and 

inconclusive (Texas Red) were determined.  A cell-based transcription assay showed GW0742 

inhibited VDR-mediated transcription with an IC50= 26 μM as well as maximal response of 30% in 

the absence of 1,25(OH)2D3.  A cytotoxicity assay using HEK293T cells found that GW0742 

encouraged 18% cell death at a concentration of 45.8 μM.  In addition, a FP-assay using VDR and 

a rhodamine-labeled VDR ligand determined that GW0742 was binding the VDR ligand binding 

pocket and not the coactivator binding site with an IC50= 8.7 ± 1.7 μM (Figure 33, B).   

The selectivity of GW0742 with respect to its ability to inhibit the interaction between 

other NRs and their coactivators was evaluated by using a FP assay with different Alexa Fluor 647 

 

Figure 33.  A) Structure of GW0742; B) FP-assay competing GW0742 
against rhodamine-labeled VDR ligand.  
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labeled coactivator peptides. The NR-coactivator pairs investigated included VDR and SRC2-3, the 

thyroid hormone receptor β (TRβ) and SRC2-2, PPARγ and DRIP2 (derived from coactivator 

DRIP205), and the androgen receptor (AR) and SRC2-3.  GW0742 was able to disrupt NR-

coactivator interactions from strongest to weakest potency as follows: AR-SRC2-3 (6.6 ± 1.5 μM), 

VDR-SRC2-3 (27.2 ± 2.7 μM), TRβ-SRC2-2 (59.9 ± 9.5 μM) and PPARγ-DRIP2 (>86 μM).  Other 

groups have investigated GW0742 with respect to other nuclear receptors in a variety of assay.151  

GlaxoSmithKline used PPARα, PPARγ, and PPARδ cell-based transactivation assays (alkaline 

phosphatase as the reporter enzyme) to determine GW0742 agonistic activity EC50= 2.0 ± 1.3 μM 

(PPARγ), 1.1 ± 0.109 μM (PPARα) and 0.001 ± 0.002 μM (PPARδ).151    

GW0742 was evaluated in an array of nuclear receptor-mediated transcription assays 

using HEK293-T cells to confirm the pan nuclear receptor-coactivator inhibition caused by high 

concentrations of GW0742 in the FP assay.  The nuclear receptors investigated were VDR, PPARα, 

PPARγ, PPARδ, AR, RXRα, TRα, TRβ, and ERα in the presence or absence of their endogenous 

ligands or synthetic agonists with different concentrations of GW0742.  The EC50 and IC50 values 

are summarized in Table 2.  As expected GW0742 was able to activate transcription mediate by 

PPARα, PPARγ, and PPARδ among the nuclear receptors tested with EC50 values in agreement 

with previously reported results.  In contrast, inhibition of transcription was found for all NRs 

with GW0742 showing significantly lower IC50 values for VDR and AR with 12.1 μM and 14.7 μM, 

respectively.  In addition, a cytotoxicity assay found that GW0742 at 37.5 μM was nontoxic (93% 
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of cells were alive). Interestingly, GW0742 exhibited an agonistic effect at lower concentrations 

and an antagonistic effect at higher concentrations. For PPARγ GW0742 exhibited EC50 values 

between 2.6 μM to 2.8 μM, whereas at concentrations higher than 20 μM GW0742 inhibited 

PPARγ-mediated transcriptional. The interaction between PPARγ-LBD and DRIP2 was inhibited at 

concentrations higher than 86 μM. 

Table 2.  Evaluation of GW0742 in different nuclear receptor reporter assays. 

NUCLEAR RECEPTOR AGONIST EC
50 

(µM) ANTAGONIST IC
50 

(µM) 

VDR Inactive 14.7 ± 1.5a 

PPARα 1.3 ± 0.3 37.4 ± 8.2b 

PPARγ 2.8 ± 0.7 20.2 ± 5.4c 

PPARδ 0.0037 ± 0.0014 21.6 ± 4.9d 

AR Inactive 12.1 ± 5.3e 

RXRα Inactive 22.9 ± 3.8f 

TRα Inactive 31.4 ± 4.0g 

TRβ Inactive 25.8 ± 5.2h 

ERα Inactive 21.3 ± 7.2i 

a1,25(OH)2D3 (10nM), bGW7647 (30nM), cRogsiglitazone (300nM), dGW0742 (50nM), eDHT (10nM), 
fBexarotene (200nM), gT3 (10nM), hT3 (10nM), iEstradiol (10nM).  Three independent experiments 

were conducted in quadruplicate and data were analyzed using nonlinear regression with a variable 

slope (Graphpad Prism). 
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Together with the NIH NCGC, our goal was to develop novel, non-secosteroidal VDR 

modulators based on the GW0742 scaffold that 1) did not influence PPARδ signaling and 2) 

inhibited VDR-coactivator interactions.  Reducing GW0742’s ability to bind PPARδ might be 

accomplished by modulating the interaction with key LBP amino acid residues.  Compared to 

VDR, PPARδ has a larger LBP that contains three different regions that can make contact with the 

ligand.  GW0742 occupies this Y-shaped space by making a total of 29 ligand interaction with the 

pocket.10  Region I (Figure 34, yellow residues) is mostly polar with residues that line the C-

terminal activation of helix 12.  Region II (Figure 34, green residues) and region III (Figure 34, 

orange residues) are predominately hydrophobic.  GW0742 hydrophilic carboxylate group 

interacts with region I and its hydrophobic tail group containing the thiazole and the fluorine 

substituted phenyl ring is positioned mostly in region II.  Therefore, it can be assumed that 

molecules lacking the ability to bind in this orientation would make poor PPARδ agonists.    

 

Figure 34.  Stereo view of the binding site of PPARδ-LBD (grey 
cartoon) interacting with GW0742 (pink).  The ligand makies 
interactions with residues belonging to region I (yellow), region 
II (green) and region III (orange).10  



53 
 

Figure 35 depicts the SAR scheme followed to develop such GW0742 analogs reported 

within this chapter.  Part 1 discusses changes made in the carboxylate region (blue) of GW0472.  

Part 2 includes over 100 analogs that have changes in the phenyl (pink), linker (green), methyl 

(light blue), and carboxylate (blue) regions.  Finally, part 3 describes the synthesis and 

biochemical effects associated with a thiazole-oxazole switch. All compounds were investigated 

using nuclear receptor binding assays, transcription and toxicity assays to evaluate the selectivity 

and potency of GW0742 analogs to interact with VDR and PPARδ.  

 

 

Part 1: Evaluation of Coactivator Recruitment by the Vitamin D Receptor or 

the Peroxisome Proliferator-Activated Receptor δ in the Presence of 

GW0742 Analogs 

3.1 Purpose 

As previously discussed, our lab introduced GlaxoSmithKline’s compound, GW0742,151 as 

a novel antagonist for VDR.152 In addition, GW501516, another GSK molecule that possesses a 

 

Figure 35.  SAR scheme for the synthesis of GW0742 analogs. 
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1000-fold selectivity for PPARδ over other PPAR subtypes was found to inhibit VDR mediated 

transcription (IC50= 16.0 ± 3.6 µM).151 The compounds differ in structure by a m-fluorine 

substituent.  Within this chapter, GW0742 and GW501516 analogs containing an ester 

(compound 2) or alcohol moiety (compound 3) in the carboxylate region were investigated for 

agonistic and antagonistic effects towards VDR and PPARδ.  We hypothesized that analogs with 

appropriate substitution in the carboxylate region could diminish PPARδ binding. Therefore, we 

focused on the decrease of hydrogen bond interactions with important residues His413 and 

Tyr437 in region I.  Virtual docking of compound 3 overlaid with GW0742 in the PPARδ LBP in 

Figure 36 visualizes the decrease in hydrogen bonding due to alcohol functionality.  

 

 

 



55 
 

 

3.2 Modulation of VDR-Coactivator Binding by GW0742 Analogs 

The activities of compounds 1-3 with respect to VDR were determined using a FP assay 

employing recombinant VDR-LBD, Alexa Fluor 647 labeled SRC 2-3 peptide, and the synthetic VDR 

ligand LG190178.129 The results are presented in Table 3.  Compounds 1-3 possess no agonistic 

Table 3.  Summary of EC50 and IC50 values of compounds 1-3 for VDR determined 

by fluorescence polarization. 

 

Compound R R1 Agonist  EC50 (µM) Antagonista IC50 (µM) 

1 GW0742 F CH2COOH Inactive 7.73 ± 1.68 

2 H CH2COOCH3 Inactive >30 

3 H CH2CH2OH Inactive 9.03 ± 5.5 

A VDR-LBD concentration used was 0.1µM.  a Inhibition of VDR-SRC2-3 interaction in the presence 
of LG190178 (0.75 µM).  Three independent experiments were conducted in quadruplicate and data 
were analyzed using a nonlinear regression with a variable slope (GraphPad Prism).   

 

 

  

Figure 36. Virtual docking with PPARδ co-crystallized with GW0742 (PBD: 3TKM) were used to 
visualize the affects carboxylate substitution had on binding. A) GW501516 alcohol analog 
(lime green) overlaid GW0742 (pink). Hydrogen bonding is shown in black dashes and hydrogen 
pi bonds are shown in yellow.  B) A 2D depiction of the interactions GW0742 (red) and 
GW501516 alcohol analog (lime green) have with PPARδ LBD. 
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activity thus the inability to initiate the interaction between VDR-LBD and coactivator peptide 

SRC2-3. The antagonistic behavior of all compounds was determined in the presence of VDR 

agonist LG190178.153 Compound 1, GW0742, was the most active inhibitor with an IC50 of 7.73 ± 

1.68 µM in the presence of 100 nM VDR-LBD. We observed that higher concentrations of VDR-

LBD resulted in ligand depletion and therefore higher IC50 values for instance the recently 

reported IC50 of 27.2 ± 2.7 µM for GW0742 in the presence of 600 nM VDR-LBD.152 Interestingly, 

compound 2 bearing a carboxylic ester functionality instead of the carboxylic acid is significantly 

less active. The corresponding alcohol 3 however has a similar inhibitory activity as GW0742 with 

an IC50 of 9.03 ± 5.5 µM.   

3.3 Modulation of VDR and PPARδ-Mediated Transcription by GW0742 

Analogs 

Unlike fluorescence polarization-based binding assays, which provide information on 

favorable compound binding or inhibition, cell-based assays provide information about 

compound cell permeability, biological relevance and overall toxicity of novel compounds. Three 

specific assays were conducted using highly transfectable HEK-293T kidney cells: 1) VDR 

transcription assay; 2) A PPARδ transcription assay; and 3) a cell viability assay.  The VDR 

transcription assay applies two plasmids. VDR is overexpressed under control of a 

cytomegalovirus promoter (CMV) and the reporter plasmid possesses a luciferase reporter gene 

under control of a CYP24A1 promoter (Figure 37).  In the presence of an agonist like 1,25(OH)2D3, 
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VDR is activated and recognizes the VDRE found on the CYP24A1 promoter region and induces 

the transcription of the luciferase reporter gene.  A bioluminescent reaction in the presence of 

its substrates (i.e. luciferin, ATP, Mg2+ and O2) creates light that is directly proportional to the 

amount of expressed enzyme, and thus, the transcriptional activity of VDR (Figure 37, A).  An 

inhibitor induces a conformational change to VDR that is unfavorable for coactivator binding and 

thus transcription of the luciferase gene does not occur (Figure 37, B). 

The PPARδ transcription assay is a 2-hybid assay that includes a vector of PPARδ’s ligand 

binding domain fused to a GAL4 DNA domain. The reporter plasmid includes a luciferase genes 

under control of a UAS.  In the presence of an agonist like GW0742, PPARδ is activated and 

binding of GAL4 to the UAS induces transcription of the luciferase gene, thus the ability to 

produce light.  Because we are trying to diminish PPARδ-activated transcription with the GW0742 

analogs, a decrease in light production would indicate poor agonistic effects and the desired 

discrimination against PPARδ. 

The cytotoxicity assay allows for the direct quantification of the ATP present in viable 

cells, which is an indicator of metabolically active cells.  Because ATP is a necessary substrate for 

 

Figure 37.  Cartoon describing luminescence-based transcription assay. A) Activated VDR 
transcribes the luciferase gene and produces light.  B) In the presence of an inhibitor, VDR 
is unable to transcribe the luciferase gene and produce light. 

CYP24A1 Luciferase gene

VDR
DBD

VDR
LBD

Pol II

Coactivator

Light VDR
DBD

VDR
LBD

CoactivatorN

N
H

No Transcription

Luciferase geneCYP24A1

A B



58 
 

luciferase enzyme, living cells producing it will promote a bioluminescent reaction through this 

enzyme.   

3.3.1 Experimental Procedure 

Reagents and Instrumentation:  Human embryonic kidney (HEK) 293T cells were purchased 

(ATCC) and cultured in 75 cm2 flasks (CellStar) coated in matrigel (BD Bioscience, #354234), a 

gelatinous protein secreted by mouse sarcoma that helps cells adhere to the flask.  Cells are 

grown in DMEM/High Glucose (Hyclone, #SH3024301) media to which  non-essential amino acids 

(Hyclone, #SH30238.01), 10 mM HEPES (Hyclone, #SH302237.01), 5 x 106  units of penicillin and 

streptomycin (Hyclone, #SV30010), and 10% of heat inactivated fetal bovine serum (Gibco, 

#10082147) were added.  Cells are harvested using 0.05% Trypsin (Hyclone, #SH3023601), which 

disrupts the cell monolayer and proteolytically cleaves the bonds between the cells and flask.  

The assay is conducted in DMEM/High Modified buffer without phenol red (Hyclone, 

#SH30284.01) that contains all the above mentioned additives plus 10 mM sodium pyruvate and 

2% percent charcoal treated FBS (Invitrogen, #12676-011) instead of HI FBS.  Cell transfection 

was conducted by lipid-based methods using LipofectamineTM reagent with PLUSTM reagent (Life 

Technologies, #15338020).  VDR and PPARδ-mediated transcription was determined using 

Bright-Glo™ Luciferase Assay Kit (Promega, Madison, WI).  Controls used with VDR were 

1,25(OH)2D3 (10 nM in DMSO, purchased form Endotherm) and DMSO while PPARδ controls were 

GW0742 (30 nM in DMSO, purchased from Tocris).  Bright-Glo™ contains all substrates (luciferin, 

ATP, and Mg2+) necessary for expressed luciferase to produce a light.  The cell viability assay was 

evaluated using Cell Titer-Glo™ Luminescent Cell Viability Assay Kit (Promega, Madison, WI) 



59 
 

which contains luciferase and all its substrate but ATP.  The controls for the cytotoxicity assay 

used were 3-dibutylamino-1-(4-hexyl-phenyl)-propan-1-one (100 μM in DMSO, positive, Figure 

38) and DMSO (negative).  Cell culture was performed in a Baker Company Class II Biological 

Safety Cabinet.  All luminescence readings were 

performed on a Tecan Infinite M1000 plate reader.  

Small volume transfers were performed on the Tecan 

Freedom EVO liquid handling system with a 100 nL pin 

tool transfer (V&P Scientific).  Serial dilutions were done in 96-well polypropylene plates 

(Corning, #3365) and assays were conducted in 384- well white optical bottom plates (Nunc, 

#142762). 

Luminescence-Based VDR-Mediated Transcription Assay Protocol: Cell transfection was carried 

out with 70-80% confluent HEK 293T cells that had been cultured in 75 cm2 flasks.  For VDR 

transfection, 2 mL of untreated DMEM/High Glucose media (without additives) containing 0.7 μg 

of VDR-CMV plasmid, 16 μg of a CYP24A1-luciferase reporter gene, LipofectamineTM LTX (75 μl), 

and PLUSTM reagent (25 μl) was added to the flask.  For PPARδ transfection, 2 mL of untreated 

DMEM/High Glucose media (without additives) containing 1.5 μg of PPARδ GALx4 plasmid, 16 μg 

of a GALx4RE luciferase reporter gene, LipofectamineTM LTX (75 μl), and PLUSTM reagent (25 μl) 

was added to the flask . After 16 hours of incubation at 37oC with 5% CO2, the cells were 

harvested with 3mL of 0.05% Trypsin, added to 10mL of the assay buffer, DMEM/High Modified 

buffer without phenol red, and spun down for 2 minutes at 1000 rpm. The media was removed 

and cells were resuspended in the DMEM assay media.  Prior to adding cells to sterile white, 

optical bottom 384-well plates, plates were treated with 20 μL per well of a 0.25% matrigel 

 

Figure 38. 3-dibutylamino-1-(4-hexyl-
phenyl)-propan-1-one 
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solution.  To each well, 20  μL of cells were added to yield a final concentration of 15,000 cells 

per well.  The plates were then spun down for 2 minutes at 1000 rpm.  After 4 hours, plated cells 

were treated with 100 nL of small molecules and controls which were added using the pin tool.  

In the competitive inhibition assay, 1,25(OH)2D3 (10 nM) was also added to the small molecule 

wells.  After 16 hours of incubation at 37oC with 5% CO2, 20μL of Bright-Glo™ Luciferase Assay Kit 

(transcription assay) or Cell Titer-Glo™ Luminescence Assay Kit (cytotoxicity assay) were added 

and luminescence was read.  Controls were measured within each plate to determine the z’ factor 

(Equation 1) and to enable data normalization.  Three independent experiments were performed 

in quadruplicate and data was analyzed using nonlinear regression with variable slope 

(GraphPrism, Equation 2). 

3.3.2 Results and Discussion 

To further explore the biological role of compounds 1-3, transcription assays mediated by 

VDR and PPARδ were employed using transiently transfected HEK293-T cells.129 The results are 

summarized in Table 4.  

As expected, GW0742 was inactive as a VDR agonist but could inhibit VDR-mediated transcription 

with an IC50 value of 12.7 ± 8.0 µM (Table 4). Furthermore, we confirmed the activation of PPARδ 

Table 4.  Summary of transcriptional activation and deactivation mediated by VDR and 

PPARδ in the presence of GW0742 analogs.  

Cmpd Ra R1
a VDR EC50 

(µM) 

VDR 
IC50 

(µM) 

PPARδ 
EC50 (nM) 

PPARδ 
IC50

 (µM) 
Toxicity 

LD50 (µM) 

1 
GW0742 

F CH2COOH Inactive 
12.7 ± 

8.0 
3.5 ± 0.31 3.9 ± 2.4 >50 

2 H CH2COOCH3 
0.15 ± 0.08 

(11%)b 

0.95 ± 
0.30 

3.9 ± 0.38 
(35%)c 

0.26 ± 
0.12 

5.47 ± 3.3 
(70%)d 

3 H CH2CH2OH 
0.12 ± 0.03 

(38%)b 

0.36 ± 
0.055 

40 ± 19 
(13%)c 

0.63 ± 
0.22 

1.73 ± 
0.14 

aFor structure see Table 1; b percent partial VDR activation in reference to calcitriol; c Percent partial 
PPARδ activation in reference to compound GW0742; d Percent partial toxicity 
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at nanomolar concentrations of GW0742 (EC50 3.5 ± 0.31 nM) and inhibition of PPARδ-mediated 

transcription at higher concentration (IC50 3.9 ± 2.41 μM).152 Interestingly, compounds 2 and 3, 

which were not able to initiate the interaction between VDR-LBD and SRC2-3 peptide (Table 3) 

exhibited partial VDR agonistic effects at concentrations between 110-150 nM (Table 4, entries 

2 and 3). Compound 3 activated the VDR-mediated transcription with a 38% efficacy in respect 

to VDR agonist calcitriol and an affinity of 0.12 ± 0.03 μM (EC50). For the activation of PPARδ-

mediated transcription compound 2 was superior to compound 3 with an EC50 of 3.9 ± 0.38 nM 

and an efficacy of 35% in comparison to GW0742. Importantly, compound 2 and 3 inhibited 

PPARδ- and VDR-mediated transcription at sub-micromolar concentrations. In addition, the 

toxicity of analogs 2 and 3 is more pronounced than that of GW0742. Compound 2 has three-fold 

selectivity towards the inhibition of PPARδ-mediated transcription with an IC50 of 0.26 ± 0.12 μM 

and compound 3 is two-fold more active to inhibit VDR-mediated transcription with an IC50 of 

0.36 ± 0.055 μM.  

3.4 Conclusion 

Overall, we demonstrated agonistic behaviors of GW0742 and its analogs at lower 

concentrations for PPARδ and inhibition of PPARδ-mediated transcription at higher 

concentrations. In addition, GW0742 analogs 2 and 3 exhibited a similar behavior for VDR but at 

significantly higher concentrations for the partial agonist effect. The toxicity of both compounds 

is significant and may play a role in the relatively low inhibition of transcription for the both 

receptors.  
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Part 2: A High Throughput Approach to Identify Novel Nuclear 

Receptor Ligands Based on the GW0742 Scaffold 

3.1 Purpose  

 In this part, molecules with substitutions made in the phenyl, linker, methyl and 

carboxylate regions of GW0742 were synthesized to investigate their effects on PPARδ and VDR 

transcription.  As before, we wanted to deactivate PPARδ-mediated transcription by creating 

unfavorable interactions with its LBD while creating a potent VDR inhibitor.  As seen in figure 39, 

the addition of a heteroaromatic ring system such as an indole in the phenyl position would 

create steric bulk and diminish favorable hydrogen bonding interactions with Tyr437, His413, and 

His287. 

Furthermore, by adding different electron donating and accepting groups on the phenyl 

substituent, itself, may also create the necessary interactions needed for a potent VDR inhibitor.  

 

Figure 39.  Virtual screening docking with PPARδ co-crystallized with GW0742 (PBD: 3TKM) 
were used to visualize the affects phenyl substitution had on binding. A) GW0742 analog, 
NCGC00344919-01, possessing a 1H-indol-4-yl substituent in the phenyl position (lime 
green) overlaid GW0742 (pink). Hydrogen bonding is shown in black dashes and hydrogen 
pi bonds are shown in yellow.  B) A 2D depiction of the interactions GW0742 (red) and 
NCGC00344919-01 (lime green) have with PPARδ LBP. 

A B
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The addition of bioisosteric linkers such as nitrogen, oxygen and carbon provided diversity in 

bond angles and molecule length that might decrease PPARδ activation.  Figure 40 depicts how 

a sulfur/oxygen switch changes the orientation of a GW0742 analog caused by increased polar 

surface and reduced molecule length.  

 

3.2 Chemistry  

3.2.1 Synthetic Strategy 

Synthetic route developed by UWM (Scheme 1): The synthesis of mono-substituted GW0742 

analogs included the reduction of ethyl 2-bromo-5-methylthiazole-4-carboxylate to obtain 

primary alcohol (KAT051412).154 This compound was coupled with methyl 3-(4-

hydroxyphenyl)propionate under Mitsunobu reaction conditions yielding thiazole ester 

KAT091212.155  Originally a two-step reaction was applied transforming KAT051412 into the 

corresponding chloride in the presence of methanesulfonyl chloride followed by the subsequent 

 

Figure 40. Virtual screening docking with PPARδ co-crystallized with GW0742 (PBD: 3TKM) 
were used to visualize the affects linker substitution had on binding. A) GW0742 analog 
containing an oxygen and carbon linkers (lime green) overlaid GW0742 (pink). Hydrogen 
bonding is shown in black dashes and hydrogen pi bonds are shown in yellow.  B) A 2D 
depiction of the interactions GW0742 (red) and GW0742 with oxygen and carbon linkers (lime 
green) have with PPARδ LBP. 
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reaction with methyl 3-(4-hydroxyphenyl)propionate. However, the overall yield was still lower 

than the one step Mitsunobu reaction at 25%.  A microwave assisted Suzuki reaction allowed for 

the introduction of the third aromatic ring.156 Conveniently, carbon-carbon bond formation and 

hydrolysis occurred under microwave conditions to form final carboxylic acids KAT031513 and 

KAT050713 with a para-trifluoromethyl or meta-methylene hydroxy substituent, respectively. 

Synthetic route developed by NIH: Mono, poly, and heteroaromatic-substituted GW0742 

analogs were synthesized according to reaction scheme 3.  Similar to our reaction, methyl 2-

bromo-5-methylthiazole-4-carboxylate was reduced to a primary alcohol. A substitution to 

produce a corresponding chloride (compound 3.1) was accomplished with thionyl chloride 

followed by the coupling with 4-hydroxy-3methylthiophenol in the presence of cesium 

carbonate. Alkylation of the phenol with tert. butyl bromoacetate afforded compound 3.2. A 

Suzuki coupling was applied to enable diversity in this position with different boronic acids 

utilizing a unique solid supported diphenylphosphine palladium (II) heterogeneous catalyst that 

 

Scheme 2. Synthesis of phenyl ring-subsituted ligands containing oxygen and carbon linkers: i) 

NaBH4, EtOH, room temperature, 4 hrs; ii) PPh3, DIAD, DCM, methyl 3-(4-hydroxyphenyl) 

propionate, room temperature, 2hrs; iii) a) 4-(trifluoromethyl)boronic acid (KAT031513) or 3-

(hydroxymethyl)phenyl) boronic acid (KAT050713), PdCl2(PPh3)2, Na2CO3∙H2O, DME/H2O/EtOH, 

160oC, 10minutes, MW, b)  (3-(hydroxymethyl)phenyl)boronic acid, PdCl2(PPh3)2, Na2CO3∙H2O, 

DME/H2O/EtOH, 160oC, 10 min, MW. 
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could be recycled and used again.  The resulting esters were hydrolyzed with trifluoroacetic acid 

in DCM to afford the final carboxylic acid products. 

 Bioisosteric substitution is a common approach in medicinal chemistry to improve 

potency, selectivity or toxicity in a drug while maintaining similar physical (i.e. size, shape, 

polarity) and chemical properties (i.e. pKa).  In our case a tetrazole ring was introduced in place 

of the carboxylate as depicted in scheme 4.  Therefore, cyano-substituted analogs were treated 

with sodium azide to form tetrazoles by a traditional [2+3] cycloaddition.  

 

 

Scheme 3. Synthesis of mono, poly, and heteroaromatic-substituted ligands: i) NaBH4, 

EtOH, room temperature, ii) SOCl2, DCM, rt; iii) a) 4-hydroxy-3methylthiophenol, 

Cs2CO3, acetonitrile, room temperature; b) tert. butyl bromoacetate, Cs2CO3, 

acetonitrile, room temperature; iv) a) boronic acid Na2CO3, SiliaCat® DPP-Pd, DME, 

150°C, MW, 0.5 h; b) TFA, DCM, room temperature, 1h. 
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3.2.2 Characterization 

General Chemistry:  Starting reagents such as ethyl 2-bromo-4-methylthiazole-5-carboxylate, 

methyl 3-(4-hydroxyphenyl)propionate, 4-(trifluoromethyl)boronic acid, and 3-

(hydroxymethyl)phenyl)boronic acid were purchased from Sigma-Aldrich. Anhydrous solvents 

were purchased in sure-seal bottles and handled under dry conditions using syringe technique.  

All glassware was dried overnight at 100oC before use.  Thin layer chromatography was 

performed on pre-coated silica gel 60 F254 plates (Fisher Scientific).  Microwave reactions were 

performed using a CEM Discover SP instrument.  Synthesized compounds were purified by 

normal phase flash chromatography (SPI Biotage, silica gel 230-400 mesh) and concentrated 

under vacuum.  All pure compounds were stored as solids at -20°C.  Compound characterization 

was performed using a Shimadzu 2020 LC-MS (single quadrupole) instrument or Surveyor & MSQ 

LC-MS (APCI or ESI) with compounds directly injected.  NMR spectra were recorded on a Bruker 

300MHz instrument with samples diluted in either CDCl3 or DMSO- D6. 

 

Scheme 4. Synthesis of bioisostere-substituted ligands.  i) Cs2CO3, CAN, 

room temperature, 2 hours; ii) NaN3, NH4Cl, DMF, 100oC, overnight. 
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 KAT051412: 60% yield; To an ice cold solution of ethyl 2-bromo-5-

methylthiazole-4-carboxylate (2.6g, 15.6 mmol) in ethanol (60mL) and 

water (1 mL) a solution of NaBH4 (2.36g, 62.4mmol) and ethanol (50mL) 

was added slowly over 40 minutes.  Once added, the reaction was warmed to room temperature 

and stirred overnight.  The reaction was monitored by TLC using EtOAc-hexanes (4:1, v/v).  Next, 

ethanol was removed using rotary evaporation.  The oily residue was resuspended in EtOAc and 

carefully washed with saturated NH4Cl.  The aqueous layer was then washed with EtOAc three 

times, combined, dried over Na2SO4 and concentrated to dryness.  The crude product was 

purified on silica gel with EtOAc-hexanes (2%-60% strong) using normal phase flash 

chromatography system.  The pure product was a cream colored solid.  1H-NMR (300 MHz) 

(CDCl3) δ 4.78 (s, 2H), 2.39 (s, 3H); 13C-NMR δ 149.05, 135.73, 134.18, 56.43, 50.47, 14.96.  MS 

APCI (+ve) calcd. m/z for C5H6BrNOS [(M)] 207.0, found [(M+H)+] 208 and [(M+H+2)+] 211.1. 

KAT091212: 25% yield; Methyl 3-(4-hydroxyphenyl)propionate 

(87 mg, 0.48 mmol) and triphenylphosphine (164 mg, 0.63 

mmol) were added to a solution of (2-bromo-4-methylthiazol-5-

yl)methanol (100 mg, 0.48 mmol, compound KAT051412) and DCM (5mL) and cooled to 0ºC.  

Diisopropyl azodicarboxylate (123.1 μL, 0.63mmol) was added dropwise and allowed to stir for 

15 minutes before being warmed to room temperature.  The reaction was monitored by TLC 

using EtOAc-hexanes (4:1, v/v).  Upon completion, the solvent was removed and purification was 

conducted with EtOAc-Hexanes (2%-60% strong). Pure fractions were isolated and dried under 

high vacuum to obtain a cream colored solid.  1H-NMR (300 MHz) (CDCl3) δ 7.17-7.14 (d, 2H, J= 

9Hz), 6.90-6.87 (d, 2H, J= 9Hz), 5.07 (s, 2H), 3.69 (s, 3H), 2.95-2.90 (t, 2H, J= 7.5 Hz), 2.65-2.60 (t, 
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2H, J= 7.5Hz), 2.40 (s, 3H); 13C-NMR δ 173.30, 156.32, 150.40, 149.18, 133.89, 129.44, 129.18, 

115.04, 61.95, 51.62, 35.87, 30.08, 15.28.  MS DUIS calcd. m/z for C15H16BrNO3S [(M)] 369.2, 

found [(M+H)+]  370.0 and [(M+H+2)+] 372.0. 

General Procedure for Suzuki Coupling Reaction: In a 10 mL microwave reaction vessel methyl 

3-(4-((2-bromo-4-methylthiazol-5-yl)methoxy)phenyl)propionate (50 mg, 0.14 mmol, compound 

KAT091212), 4-(trifluoromethyl)boronic acid or 3-(hydroxymethyl)phenylboronic acid (0.20 

mmol, 1.5 equiv.), Na2CO3∙H2O (25 mg, 1.5 equiv.), bis(triphenylphosphine)palladium(II) 

dichloride (1 mg, 0.0014 mmol, 0.01 equiv.) were dissolved in a mixture of DME-H2O-EtOH (7:3:2, 

v/v/v).  The reaction mixture was treated with nitrogen to remove traces of oxygen and capped.  

The reaction was heated in a microwave reactor to 160oC for 10 minutes.  TLC using EtOAc-

Hexanes with 1% AcOH (4:1, v/v) was used to confirmed conversion of the starting material 

(KAT091212) and appearance of a new product. The crude reaction was dried, resuspended in 

saturated NH4Cl and extracted with EtOAc (2x) and DCM (2x). The organic layers were combined, 

dried over Na2SO4 and concentrated to dryness.  The crude mixture was purified with silica gel 

using EtOAc-Hexanes with 1% AcOH (2-80% strong). 

KAT031513: 36% yield;  1H-NMR (300 MHz) (DMSO-

D6) δ 8.14-8.11 (d, 2H, J= 9Hz), 7.86-7.83 (d, 2H, J= 

9Hz), 7.19-7.16 (d, 2H, J= 9Hz), 6.98-6.95 (d, 2H, J= 

9Hz), 5.31 (s, 2H), 2.79-2.74 (t, 2H, J= 7.5Hz), 2.51-2.50 (t, 2H), 2.47 (s, 3H); 13C-NMR δ 174.21, 

163.73, 156.36, 152.01, 144.83, 137.00, 134.27, 129.76, 129.63, 127.06, 126.64, 122.78, 115.36, 

62.06, 35.99, 29.92, 15.56; 13CDEPT-135 NMR δ Negative (-), CH2: 62.07, 36.08, 30.02, Positive 
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(+):  129.76, 127.05, 126.64, 115.36, 15.55; ESI-MS (+ve and –ve) calcd. m/z for C21H18F3NO3S 

[(M)] 421, found [(M+H)+]  422.2 and [(M-H)-] 420. 

KAT050713: 33% yield; 1H-NMR (300 MHz) (DMSO-D6) δ 

7.88 (s, 1H), 7.77-7.75(1H, d, J= 6Hz), 7.46-7.38 (m, 2H), 

7.18-7.15 (d, 2H, J=9Hz), 6.97-6.94 (d, 2H, J= 9Hz), 5.28 (s, 

2H), 4.57 (s, 2H), 2.79-2.74 (t, 2H, J= 7.5Hz), 2.51 (m, 2H), 2.44 (s, 3H); 13C-NMR δ 174.29, 165.87, 

156.55, 151.71, 144.19, 134.09, 133.25, 129.74, 127.76, 124.73, 124.13, 115.37, 62.91, 62.07, 

36.02, 30.00, 15.56; 13CDEPT-135 NMR δ Negative (-), CH2: 62.91, 62.07, 36.02, 30.00, Positive 

(+): 129.74, 129.43, 128.62, 124.73, 124.13, 115.38, 15.56; ESI-MS (+ve) calcd. m/z for C21H21NO4S 

[(M)] 383, found [(M+H)] 384. 

 

NIH General Chemistry: Preparative purification was run on a Waters semi-preparative HPLC 

system using a Phenomenex Luna C18 (5 micron, 30 x 75 mm) at a flow rate of 45 mL/min.  A 

gradient of 10% to 50% acetonitrile in water over 8 minutes (each containing 0.1% trifluoroacetic 

acid) was used as a mobile phase during the purification.  Fraction collection was triggered by UV 

detection (220 nm).  Analytical analysis was performed on an Agilent LC/MS (Agilent 

Technologies, Santa Clara, CA).  Method t1:  A 7 minute gradient of 4% to 100% Acetonitrile 

(containing 0.025% trifluoroacetic acid) in water (containing 0.05% trifluoroacetic acid) was used 

with an 8 minute run time at a flow rate of 1 mL/min.  A Phenomenex Luna C18 column (3 micron, 

3 x 75 mm) was used at a temperature of 50° C.  Method t2:  A 3 minute gradient of 4% to 100% 

Acetonitrile (containing 0.025% trifluoroacetic acid) in water (containing 0.05% trifluoroacetic 

acid) was used with a 4.5 minute run time at a flow rate of 1 mL/min.  A Phenomenex Gemini 
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Phenyl column (3 micron, 3 x 100 mm) was used at a temperature of 50° C.  Method t3: Analysis 

was performed on an Agilent 1290 Infinity Series HPLC. UHPLC Long Gradient Equivalent 4% to 

100% acetonitrile (0.05% trifluoroacetic acid) in water over 3.5 minutes run time of 4 minutes 

with a flow rate of 0.8 mL/min. Purity was determined using an Agilent Diode Array Detector for 

both Method t1, Method t2 and Method t3.  Mass determination was performed using an Agilent 

6130 mass spectrometer with electrospray ionization in the positive mode.  1H NMR spectra were 

recorded on Varian 400 MHz spectrometer.  Chemical shifts are reported in ppm with DMSO at 

2.49 ppm as internal standard.  High resolution mass spectrometry was recorded on Agilent 6210 

Time-of-Flight LC/MS system.  Confirmation of molecular formula was accomplished using 

electrospray ionization in the positive mode with the Agilent Masshunter software (version B.02).  

3.3 Evaluation of GW0742-Based Analogs using Biochemical and Cell-based 

Assays 

GW0742 analogs were characterized using a PPARδ-mediated transcription assay and 

toxicity assay.157 The results are summarized in the following tables: mono-substituted analogs 

(Table 5), poly-substituted analogs (Table 6), heteroaromatic-substituted analogs (Table 7), 

tetrazole-substituted analogs (Table 8), and linker-substituted analogs (Table 9).  PPARδ agonists 

with EC50 values greater than 1 µM were summarized into Table 10.   

GW0742 analogs with non-substituted phenyl rings like compound NCGC00319174-01 

exhibited low PPARδ activation (Table 5).  This suggests that the substituents such as p-CF3 and 

m-F of the parent compounds encourage favorable interactions with PPARδ LBP.  Only three 

mono-substituted compounds modulated transcription with high potency.  They were 
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NCGC00241455-04 (p-CF3), NCGC00319058-01 (p-OCF3), and NCGC00319066-01 (p-CO2Et) with 

EC50 values lower than 15 nM.  It was no surprise that compound NCGC00241455-04, also known 

as GW501516, was confirmed as a potent PPARδ agonist.158 The other two compounds have not 

been reported but exhibit similar electron donating properties and significant hydrophobicity.  

Notably, the positioning of substituents around the phenyl ring affected the ligands ability to 

activate transcription.  A para positioned substituent, in most cases, is a more potent PPARδ 

agonist than compounds that bear the same group in the ortho or meta position.  This is observed 

with a methyl, trifluoromethyl, trifluoromethoxy and cyano substituents. 
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Table 5. Evaluation of mono-substituted GW0742 analogs 

Entry R 
PPARδ 

EC50 (μM) a,(b) 

Toxicity LD50 
(µM)c 

NCGC00319174-01 H 0.26 ± 0.35 (90) >100 

NCGC00319046-01 o-CH3 0.60 ± 0.17 (66) >100 

NCGC00319053-01 m-CH3 1.62 ± 0.41 (74) >80 

NCGC00319065-01 p-CH3 0.05 ± 0.02 (100) >80 

NCGC00319061-01 o-Cl 0.58 ± 0.20 (71) >80 

NCGC00319050-01 m-Cl 0.50 ± 0.16 (74) 28.8 ± 5.0 

NCGC00319056-01 p-Cl 0.13 ± 0.04 (66) >100 

NCGC00319063-01 o-F 0.26 ± 0.08 (94) >80 

NCGC00319048-01 m-F 0.43 ± 0.23 (96) >100 

NCGC00319055-01 p- F 0.16 ± 0.04 (93) Non-toxic 

NCGC00319064-01 o-CF3 2.4 ± 0.95 (39) >100 

NCGC00319049-01 m-CF3 1.1 ± 0.6 (79) >50 

NCGC00241455-04 
(GW501516) 

p-CF3 
0.013 ± 0.004 

(100) 
>33 

NCGC00319047-01 o-OCH3 2.3± 0.70 (27) >100 

NCGC00319052-01 m-OCH3 2.36 ± 0.67 (96) >80 

NCGC00319051-01 m-OCF3 0.45 ± 0.15 (100) >50 

NCGC00319058-01 p-OCF3 0.014 ± 0.007 (49) >50 

NCGC00319036-01 m- CN 3.2 ± 1.0 (74) >80 

NCGC00319057-01 p-CN 0.12 ± 0.42 (100) >80 

NCGC00319069-01 p- N(CH3)2 0.16 ± 0.02 (100) >50 

NCGC00319067-01 p-NHCH3 0.57 ± 0.24 (100) Non-toxic 

NCGC00319066-01 p- COOCH2CH3 
0.009 ± 0.002 

(100) 
>80 

NCGC00319054-01 m-methylsulfinyl 6.7 ± 3.2 (59) Non-toxic 

NCGC00319070-01 p-methanesulfonamide >100 Non-toxic 

NCGC00319071-01 p-NHCOCH3 3.9 ± 2.3 (100) >100 

NCGC00319151-01 m-CONH(CH2)3N(CH3)2 2.4 ± 1.3 (70) Non-toxic 

NCGC00319150-01 p-CONH(CH2)2N(CH3)2 2.1 ± 1.4 (65) Non-toxic 

NCGC00319169-01 
p-(4-methylpiperazinyl) 

methanone 
6.9 ± 5.53 (70) Non-toxic 

NCGC00319072-01 p-piperazinyl 16.8 ± 5.7 (37) >80 

NCGC00319068-01 Morpholino-methanone 3.8± 1.5 (37) Non-toxic 
a Two-hybrid assay using a CMV-PPARδ-LBD-GAL4-DBD plasmid and a 6xGal4-luc reporter vector. The 
maximum concentration used for this assay was 100 μM of each compound; bEfficacy in PPARδ assay 
in respect to full activation with GW0742; cCell-TiterGlo (Promega). 
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 However, halide substituents (F and Cl) showed no significant difference between ortho, 

meta, or para positioning around the ring possibly due to their smaller atomic size or change in 

ligand orientation.  Para positioned fluorine and chlorine substituents had similar but relative 

high EC50 values of around 0.14 µM (compounds NCGC00319055-01 and NCGC00319056-01). The 

least active PPARδ agonist was compound NCGC00319070-01 (SO2NH2) introducing high polarity 

with the ability to be both a hydrogen-bond donor and acceptor.  Depending on its position within 

the LBP, the extra hydrogen bonding capability may not be favorable.  Compound 

NCGC00319072-01 (piperazine) was another example where hydrogen bonding as a donor and 

acceptor may deactivate PPARδ with an EC50= 16.8 ± 5.7.   

Interestingly, many compounds possess partial agonistic activity against PPARδ although 

no evident trend was observed.  Finally, most compounds exhibited LD50 values of higher then 80 

μM. An exception was compound NCGC00319050-01 (m-Cl) with an LD50 of 28.8 µM. Poly-

substituted phenyl rings found in Table 6 were also capable of activating PPARδ mediated 

transcription.  
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Table 6. Evaluation of poly-substituted GW0742 analogs. 

Entry R R1 R2 R3 R4 
PPARδ 

EC50 (μM)a, (b) 

Toxicity 
LD50 (µM)d 

NCGC00092344-05 
(GW0742) 

H F CF3 H H 
0.0035 ± 0.00031 

(100) 
>50 

NCGC00319082-01 H CF3 CF3 H H 0.99± 0.42 (46) >50 

NCGC00319145-01 CF3 H CF3 H H 0.20± 0.09 (50) >50 

NCGC00319172-01 Cl H CF3 H H 0.028 ± 0.013 (88) >50 

NCGC00344925-01 H Cl CF3 H H 0.007 ± 0.003 (75) >33 

NCGC00344922-01 H Cl OCF3 H H 0.009 ± 0.004 (69) >50 

NCGC00344921-01 H F OCF3 H H 0.020 ± 0.010 (100) >50 

NCGC00319077-01 H OCH3 OCH3 H H 1.06± 0.47 (44) >100 

NCGC00319159-01 H F OCH3 H H 0.074 ± 0.031 (100) >100 

NCGC00319154-01 H CH3 OCH2CF3 H H 0.050± 0.028 (100) >50 

NCGC00319171-01 H CF3 F H H 0.49± 0.31 (100) >50 

NCGC00319147-01 F F F H H 0.042 ± 0.009 (100) >80 

NCGC00319168-01 H F F F H 0.046± 0.019 (100) >100 

NCGC00344924-01 H Cl F H H 0.18 ± 0.08 (43) >50 

NCGC00319153-01 H CN F H H 1.07± 0.59 (100) >100 

NCGC00319148-01 CF3 H Cl H H 0.18± 0.12 (63) >50 

NCGC00319143-01 H CF3 Cl H H 0.22± 0.09 (100) >50 

NCGC00344923-01 H F Cl H H 0.035 ± 0.011 (92) >50 

NCGC00319075-01 H Cl Cl H H 0.692 ± 0.137 (79) >50 

NCGC00319142-01 Cl H CN H H 0.066 ± 0.04 (100) >100 

NCGC00344926-01 H Cl H F H 0.17 ± 0.05 (62) >50 

NCGC00344927-01 H CF3 H Cl H 0.60 ± 0.28 (23) >33 

NCGC00319146-01 H Cl H Cl H 0.71± 0.27 (78) >50 

NCGC00344928-01 Cl H H H Cl 6.6 ± 4.8 (84) >100 

NCGC00344929-01 Cl Cl H H H 0.028 ± 0.017 (78) >100 

NCGC00344930-01 Cl H H Cl H 1.40 ± 0.74 (75) >80 

NCGC00319170-01 H F 
Benzyl-

morphol
ine 

H H 4.3± 1.9 (50) >100 

a Two-hybrid assay using a CMV-PPARδ-LBD-GAL4-DBD plasmid and a 6xGal4-luc reporter vector. The 
maximum concentration used for this assay was 100 μM of each compound; bEfficacy in PPARδ assay in 
respect to full activation with GW0742; cCell-TiterGlo (Promega). 
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The least active compound in our series was compound NCGC00344928-01 (o,o’Cl2) with an EC50 

of greater than 5 µM, indicating that two groups occupying both ortho positions of the phenyl 

ring is not favorable for PPARδ activation. Interestingly, by moving just one chloride to the R-3 

position, like in compound NCGC00344929-01, greatly increased activity by 230-folds. The 

positioning of groups like CF3, Cl, F and OCF3 on phenyl ring positions gave some insight into 

PPARδ affinity. For example, by switching the p-CF3 and m-F substituents on GW0742 to make 

compound NCGC00319171-01 (m-CF3, p-F) a 500 fold decrease in potency was observed.  When 

both those positions were occupied by CF3 groups like in compound NCGC00319082-01, agonistic 

activity decreased 1000 fold compared to GW0742.  If the CF3 substituent was moved to the 

ortho position (compound NCGC00319145-01 (o-CF3, p-CF3)), an increase in potency was 

observed.  An even more significant increase in activation was observed when the CF3 group was 

changed to a chlorine (NCGC00319172-01 (o-Cl, p-CF3) and even more when the chlorine was 

moved to the meta position (NCGC00344925-01 (m-Cl, p-CF3) with a 7 nM affinity.  With respect 

to all fluorine substituents, it appeared that two fluorine substituents were better than one 

regardless of their positioning, which was observed for all chlorine substituents as well. The 

toxicity of poly-substituted GW0742 analogs was, in general, higher than their mono-substituted 

counterparts, however none of them showed pronounced toxicity below 50 μM.  

Heteroaromatic substituents were also coupled to the C-2 position of the thiazole ring 

and summarized in Table 7.  Six compounds were able to activate PPARδ with an EC50 less than 
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75 nM.  Of these six, all but one had a bicyclic aromatic ring structure.  This result was unexpected 

because of the rigidity and sheer bulkiness of the introduced substituents.  However, it suggests 

that the LBD of PPARδ is spacious enough to accommodate such ligands, possibly through a 

 

Table 7. Evaluation of heteroaromatic-substituted GW0742 analogs 

Entry R 
PPARδ 

EC50 (μM) a,(b) 
Toxicity LD50 

(µM) c 

NCGC00319037-01 3,5-dimethylisoxazol-4-yl 0.29± 0.12 (100) >100 

NCGC00319078-01 1H-indazol-4-yl 0.052± 0.035 (100) >100 

NCGC00319073-01 4-pyridine 9.1± 3.6 (81) >80 

NCGC00319074-01 2-(benzofuran-2-yl) 0.061± 0.028 (97) >80 

NCGC00319040-01 
2,3-dihydrobenz[1,4]dioxin-6-

yl 
0.72± 0.23 (100) >80 

NCGC00319076-01 Naphthalene-1-yl 1.69± 0.34 (36) >50 

NCGC00319038-01 Benzo[1,3]dioxol-5-yl 0.26± 0.12 (52) >50 

NCGC00319039-01 Benzo[1,2,5]oxadiazol-5-yl 0.16± 0.04 (35) >100 

NCGC00319155-01 Furan-2-yl 6.0± 2.7 (96) >100 

NCGC00319173-01 Pyridin-3-yl 8.1± 5.6 (87) >100 

NCGC00319059-01 Benzothiophen-2-yl 0.026± 0.014 (100) >100 

NCGC00319162-01 Piperazin-1-yl 0.57± 0.39 (46) >100 

NCGC00319164-01 Pyrimidin-yl 1.57± 0.62 (51) Non-toxic 

NCGC00319149-01 1H-indazol-6-yl 3.18± 1.80 (100) >100 

NCGC00319160-01 Benzothiazol-6-yl 
0.0738± 0.053 

(100) 
100 

NCGC00319166-01 Isoquinolin-4-yl 0.35± 0.18 (51) Non-toxic 

NCGC00319163-01 6-fluoropyridin-3-yl 0.192± 0.082 (100) Non-toxic 

NCGC00319167-01 1-methyl-1H-indazol-6-yl 0.58± 0.34 (100) >100 

NCGC00319165-01 6-(trifluoromethyl)pyridin-3-yl 0.013 ± 0.006 (91) >100 

NCGC00319144-01 1-methyl-1H-indol-6-yl 0.52± 0.29 (100) >100 

NCGC00319157-01 1H-indol-5-yl 1.31± 0.42 (98) >100 

NCGC00319156-01 1H-pyrazol-4-yl 3.9 ± 1.7 (74) Non-toxic 

NCGC00319152-01 2-fluoropyridin-4-yl 3.3± 1.9 (100) Non-toxic 

NCGC00319158-01 1H-indazol-5-yl 1.44 ± 0.66 (64) Non-toxic 

NCGC00344920-01 Benzothiophen-5-yl 0.14 ± 0.08 (95) >50 

NCGC00344919-01 1H-indol-4-yl >100 Non-toxic 

NCGC00344918-01 1H-indol-2-yl 0.035 ± 0.015 (100) >50 
aTwo-hybrid assay using a CMV-PPARδ-LBD-GAL4-DBD plasmid and a 6xGal4-luc reporter vector. 

The maximum concentration used for this assay was 100 μM of each compound; bEfficacy in PPARδ 

assay in respect to full activation with GW0742; cCell-TiterGlo (Promega) 
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unique orientation unlike GW0742.  From Table 5 we concluded that non-substituted phenyl ring 

structures such as compound NCGC00319174-01 made a poor PPARδ agonist. Similarly, 

substitution of the phenyl ring with a pyridine, as in compound NCGC319173-01, resulted in a 

poor PPARδ ligand. However, when the pyridine ring bears a trifluoromethyl group like 

compound NCGC319165-01, a 1600-fold increase in transcriptional activation was observed.  This 

suggests the importance of the hydrophobic interactions between the trifluoromethyl of 

GW0742 with region II of PPARδ’s LBP.  The positioning of heterocyclic rings seemed to matter 

when comparing compounds NCGC00344918-01 and NCGC00344919-01.  Both have an indole 

ring attached to C-2 of the thiazole but the 1H-indol-4-yl group (NCGC00344919-01) was nearly 

3,000 times less potent than the 1H-indol-2-yl substituent (NCGC00344918-01). It could be 

speculated that the 1H-indol-4-yl ring unfavorably reaches into region III unlike GW0742, which 

interacts with region II of the Y-shaped PPARδ LBP.  Interestingly, when docked in PPARδ LBP with 

respect to GW0742, the carboxylic acid region of NCGC00344919 reached out to region III 

residues (orange) and interacted with solvent molecules.  This allowed for favorable hydrophobic 

interactions between region II residues (green) and 1H-indol-4-yl ring but an unfavorable 

conformation for a potent PPARδ agonist (Figure 41). 
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Bioisoteric substitution of the carboxylate group with a tetrazole ring was used for several 

analogs to determine its effect on PPARδ-mediated transcription (Table 8). In general, increased 

toxicity and decreased potency was observed when compared to their carboxylate counterparts.  

Compound NCGC00264097-01 is most like GW0742 and had a 40 fold decrease in potency and a 

 

Figure 41. Overlay of GW0742 (pink) with compound NCGC00344919 
(blue) in PPARδ LBP (PBD: 3TKM). Hydrogen bonding is shown in black 
dashes and hydrogen pi bonds are shown in yellow.  Region I, II, and III are 
shown in yellow, green and orange, respectively. 

 

Table 8. Evaluation of tetrazole-substituted GW0742 analogs 

Entry R1 R2 R3 R4 
PPARδ 

EC50 (μM) a, (b) 
Toxicity 

LD50 (µM)c 

NCGC00264097-01 H CF3 F H 0.04± 0.018 (29) >33 

NCGC00344870-01 Cl H Cl H 0.594 ± 0.435 (29) >50 

NCGC00344869-01 H Cl H CF3 0.51 ± 0.18 (51) >33 

NCGC00344871-01 H Cl Cl H 0.24 ± 0.11 (26) >33 
aTwo-hybrid assay using a CMV-PPARδ-LBD-GAL4-DBD plasmid and a 6xGal4-luc reporter 
vector. The maximum concentration used for this assay was 100 μM of each compound; 
bEfficacy in PPARδ assay in respect to full activation with GW0742; cCell-TiterGlo (Promega). 
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two fold increase in toxicity.  Although similar in acidity, the rigidity of the ring may decrease its 

ability to be a good hydrogen bond donor/acceptor with PPARδ. The two oxygens on the 

carboxylate group make hydrogen bonds with key residues like His413 (helix 10/11), Try437 (helix 

12), His287 (helix 7) of PPARδ LBP and are implicated with maintaining the locked conformation 

of helix 12.10 Overall, these compounds had the lowest efficacy ranging from 26-51% compared 

to any other series of thiazole compounds making them excellent partial agonist. 

 The replacement of the sulfur and oxygen linkers of GW0742 allowed investigations into 

geometry of successful PPARδ agonists (Table 9).  In addition, the role of the methyl group on the 

linker was investigated in respect to its role in favorable PPARδ binding. Compound 

NCGC00263796-01 was structurally similar to GW0742 except for the removal of the methyl in 

the R position.  Without the methyl group, this compound had an EC50 that was 10 times less 

 

Table 9.  Evaluation of linker-substituted GW0742 analogs. 

Entry R1 R2 Y R X 
PPARδ 

EC50 (μM) a,(b) 
Toxicity 

LD50 (µM)c 

NCGC00264098-01 H CF3 S CH3 CH2 0.039 ± 0.022 (87) >100 

NCGC00264099-01 F CF3 S H -- 0.018 ± 0.010 (70) >100 

NCGC00263796-01 F CF3 S H O 0.026 ± 0.008 (84) >100 

NCGC00264094-01 F CF3 O CH3 O 0.02 ± 0.02 (73) >100 

NCGC00264104-01 F CF3 O H CH2 0.032 ± 0.021 (77) >100 

NCGC00264093-01 F CF3 O H S 0.27 ± 0.023 (75) >100 

KAT-031513 H CF3 O H CH2 0.703 ± 0.108 (100) >100 

NCGC00264101-01 F CF3 N CH3 O 0.18 ± 0.12 (61) >100 

NCGC00264103-01 F CF3 N H O 0.16 ± 0.045 (78) >80 

NCGC00264102-01 F CF3 N H CH2 0.0576± 0.021 (95) >80 

KAT050713 CH2OH H O H CH2 18.2 ± 2.8 (47) Non-toxic 
aTwo-hybrid assay using a CMV-PPARδ-LBD-GAL4-DBD plasmid and a 6xGal4-luc reporter vector. The 
maximum concentration used for this assay was 100 μM of each compound; bEfficacy in PPARδ assay in 
respect to full activation with GW0742; cCell-TiterGlo (Promega). 
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potent than GW0742 and surprisingly behaved as a partial agonist (84% in comparison with 

GW0742). A large decrease in potency was observed for compound KAT-031513 when Y was 

replaced with a smaller oxygen atom and X with a CH2 in the absence of a fluoride and methyl 

group in positions R1 and R, respectively.  KAT-031513 was ~700 times less potent than GW0742.  

When compared to compound NCGC00264104-01 with a fluorine in the R1 position this 

difference was only 22 fold less suggesting the necessity of the hydrophobic interactions between 

PPARδ LBP and the fluoride.  However, if the Y linker was exchanged with a nitrogen, the presence 

of a fluoride on position R1 did not benefit the activity of these compounds.  Overall, the nitrogen 

linker produced compounds that were about 125 times less able to activate PPARδ transcription 

compared to GW0742.  Only when the X linker is exchanged with a CH2 group does the potency 

increase. When comparing NCGC00264101-01 and NCGC00264103-01, the presence or absence 

of an R positioned methyl had little effect on activation of transcription thus producing agonists 

that were 200 times less potent than GW0742.  The least potent compound was KAT-050713 with 

the addition of a meta-CH2OH substituent on the phenyl ring where the linkers were the same as 

that of KAT-031513. It was approximately 18,000 times less potent than GW0742 suggesting that 

hydrogen bond donor and acceptor moieties are not favorable for PPARδ binding. 

The SAR study of GW0742 analogs has given us some inside in the structural requirements 

for successful GW0742 ligands. In addition, structural elements have been identified that 

significantly reduced the ability of ligands to activate PPARδ-mediated transcription. These 

ligands are summarized in Table 10 with EC50 values higher than 1 µM.  
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Table 10.  Compounds that showed an activation of PPARδ greater than 

1μM. 

Entry 
VDR-SRC2-3 interaction 

(IC50) μMa 

VDR transcription 
IC50 (μM)b 

NCGC00319071-05 40.11± 9.26 inactive 

NCGC00319064-01 32.27± 5.28 31.5± 9.1 

NCGC00319047-01 45.18± 5.65 31.4± 8.1 

NCGC00319036-01 >100 25.1± 10.0 

NCGC00319054-01 >100 >100 

NCGC00319151-01 30.28± 4.5 inactive 

NCGC00319150-01 52.03± 12.79 >100 

NCGC00319082-01 9.088± 0.982 15.0± 4.7 

NCGC00319077-01 >10 >50 

NCGC00319153-01 53.53± 15.95 23.7± 4.7 

NCGC00344928-01 40.28± 8.07 33.0 ± 7.2 

NCGC00344930-01 14.47±2.21 >50 

NCGC00319073-01 43.88± 8.54 inactive 

NCGC00319076-01 20.19± 1.89 26.3±0 8.3 

NCGC00319068-01 >100 >100 

NCGC00319170-01 68.79± 13.04 >50 

NCGC00319155-01 >100 >50 

NCGC00319173-01 >100 >100 

NCGC00319164-01 >100 inactive 

NCGC00319149-01 57.78± 8.69 inactive 

NCGC00319157-01 15.07± 11.79 >50 

NCGC00319156-01 >100 inactive 

NCGC00319152-01 >100 >100 

NCGC00319158-01 51.14± 5.55 inactive 

NCGC00344919-01 28.93± 4.69 inactive 

NCGC00319053-01 47.45± 6.61 38.2± 8.6 

NCGC00319049-01 24.5± 2.27 19.0± 6.01 

NCGC00319052-01 48.82± 6.56 26.3± 6.9 

NCGC00319169-01 >100 24.5 ± 6.1 

NCGC00319072-01 >100 inactive 

KAT050713 inactive inactive 
aVDR-LBD concentration used was 0.1µM.  Inhibition of VDR-SRC2-3 interaction in the 
presence of LG190178 (0.75 µM).  The maximum concentration used for this assay was 
300 μM of each compound; bTranscription assay using a CMV-VDR plasmid and a 
luciferase reporter plasmid under control of a 24-hydroxylase promoter with GW0742 
analogs. The maximum concentration used for this assay was 100 μM of each 
compound.  Data were analyzed using a nonlinear regression with a variable slope 
(GraphPad Prism).   
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Subsequently, a fluorescence polarization assay employing VDR and an Alexa Fluor 647 

labeled SRC2-3 peptide was used to determine the ability of these compound to inhibit the 

interaction between VDR and coregulators. Inhibition of VDR-mediated transcription was 

evaluated in HEK293T cells in the presence of VDR ligand 1,25(OH)2D3.  None of the GW0742 

analogs exhibited nanomolar activity in the VDR FP assay or the transcription assay thus 

selectivity towards VDR was not achieved. In addition, we found large differences for some 

compounds in regards to their activity determined in the biochemical and cell-based assay 

indicating the involvement of other mechanism. GW0742 is able inhibit VDR-coregulators 

interactions in the FP-assay at 7.73 µM and in the cell-based assays at 12.7 µM.  NCGC00319082-

01 bearing two trifluormethyl groups at the meta and para position of the phenyl ring exhibited 

similar activity towards VDR although its ability to activate PPARδ is more than 300-fold less than 

GW0742.  Thus is seems that region II of PPARδ  consisting of V305, V312, and V245 is less 

accommodating to larger groups perpendicular to the molecule axis than VDR. Compounds 

NCGC00319049-01 and NCGC00319076-01 are similar in this respect bearing a meta positioned 

trifluormethyl group and naphthalene group, respectively.  As depicted in Figure 42A, the 

naphthalene group of NCGC00319076-01 is accommodated in what would be region I of PPARδ.  

This conformation is stabilized further by pi bond interactions between His397 and His 305 and 

the naphthalene ring.  In Figure 42B, the naphthalene ring is forced into region II of PPARδ pocket 

thus forcing it into a sterically unfavorable conformation with residues like Val305. 
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Figure 42.  Docked in green is compound NCGC00319076.  A) 
VDR LBP co-crystallized with 1,25(OH)2D3 (pink) (PDB: 1DBI)8.  
B) PPARδ LBP co-crystallized with GW0742 (pink) (PDB: 3TKM). 
Region I, II, and III are shown in yellow, green and orange, 
respectively. 

  

A

B
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3.3.3 Conclusion 

 The synthesis of analogs of GW0742 established a good SAR for the activation of PPARδ. 

Substituents such as CF3, OCF3 and CO2CH2CH3 in the para-position of the GW scaffold were 

important for high activity suggesting a balance between hydrophobicity and electron density for 

successful interaction PPARδ. Additional aromatic substituents had a significant impact on the 

activity, with fluorine and chlorine substituents in the meta position being the most favorable. 

An attempt to substitute the phenyl ring with other heterocyclic groups did not yield in better 

ligands, however the results provided an insight of the size and tolerance of region III of PPARδ. 

The screen of the least active PPARδ ligands with VDR did not result in a clear SAR towards VDR 

binding. However a weak correlation between PPARδ and VDR binding was observed as depicted 

in Figure 43, when log of PPARδ EC50 (µM) was plotted against the log of VDR IC50 (µM). It was 

evident that when making a potent VDR inhibitor it often resulted in a potent PPARδ agonist.  

 

Figure 43.  Log PPARδ EC50 (µM) was plotted against Log VDR IC50 (µM) to demonstrate the 
selectivity and potency of GW0742 analogs tested.  GW0742 is highlighted in pink. 
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Unfortunately, most compounds exhibited poor inhibition of VDR, while still activating PPARδ in 

the sub-micromolar range or better as seen in the bottom right quadrant of the plot.  Overall, we 

produced many potent PPARδ agonist that could be evaluated in PPARδ-related diseases such as 

obesity. Future experiments are ongoing in collaboration with Prof. Silvaggi here at UWM by 

attempting to co-crystallize any of the GW0742 analogs with VDR.  With the crystal structure, 

computer based rational design could be used to develop a more potent and selective inhibitor 

of VDR based on the GW0742 scaffold.    

Part 3: Development of Oxazole-Substituted GW0742 Analogs and Their 

Effect on Nuclear Receptor Mediated Transcription  

3.1. Purpose 

 To improve the potency and selectivity of the GW0742-based VDRcoactivator inhibitors, 

we substituted the thiazole moiety with an oxazole, because GlaxoSmithKline reported that 

compound 7f had low activity towards all isoforms of PPAR (Table 11).  In addition, our previous 

study showed that GW0742 analogs with methoxy substitution such as o-OCH3 (VDR IC50= 31.4 ± 

8.11 µM, PPARδ EC50= 2.25± 0.69 µM) and m-OCH3 (VDR IC50= 26.3± 6.93 µM, PPARδ EC50= 2.36± 

 

Table 11.  Binding data reported by GlaxoSmithKline for compound 7f. 
Cmpd PPARα EC50 (µM)a PPARγ EC50 (µM)a PPARδ EC50 (µM)a PPARδ IC50 (µM)b 

7f Inactive Inactive 5.9 ± 5.5 5.5± 0.28 
a Cell-based transactivation assay and bbinding assay against human PPAR receptors. 
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0.67 µM) had relatively good VDR activity and poor PPARδ activity. Docking studies with an 

oxazole analog containing a m-OCH3 substituted phenyl ring revealed that this shorter and more 

ridged molecule was unable to bind His413 and His287 but rather Tyr437 and His287 (Figure 44). 

Furthermore, the molecule did not reach as deeply into the pocket of region III, thus making less 

hydrophobic interactions. Within Part 3, we report the synthesis of the ortho and meta methoxy 

GW0742 oxazole analogs, which were evaluated using both biochemical and cell-based assays to 

determine their affinity and selectivity towards VDR and PPARδ. In addition to the acids, the 

corresponding methyl esters of the acids were studied.  Furthermore, a solubility assay and a 

permeability assay were utilized to characterize both the ester and acid forms of the GW0742 

derived oxazoles.  

 

 

Figure 44.  Virtual docking with PPARδ co-crystallized with GW0742 (PBD: 3TKM) were used 
to visualize the affects an oxazole substitution would have on binding. A) GW0742 analog 
containing an oxazole (lime green) overlaid GW0742 (pink). Hydrogen bonding is shown in 
black dashes and hydrogen pi bonds are shown in yellow.  B) A 2D depiction of the interactions 
GW0742 (red) and GW0742 oxazole analog (lime green) have with PPARδ LBP. 

A B
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3.2 Chemistry 

3.2.1. Synthetic Strategy 

The formation of the oxazole ring was accomplished through a modified Hantzch reaction, 

where either 2- or 3-methoxybenzamide was reacted with ethyl 2-chloroacetoacetate (Scheme 

5, i).159, 160 The mechanism for the modified Hantzch reaction begins with a nucleophilic attack, 

loss of HCl and the formation of an imine.  Cyclization occurs with the nitrogen on the imine 

attacking the acetyl carbonyl (Figure 45).  A loss of water affords the final oxazole product. 

 

Scheme 5. Synthesis of GW0742-based analogs with an oxazole subsitituion.  i) 

Ethyl-2-chloro acetoacetate, neat, 120-125oC, 3 days; i) LiAlH4, THF, 0oC to room 

temperature, 3 hours; iii) a) SOCl2, DCM, 1-2 hours, b) Cs2CO3, DMF, phenol; iv) a) 

THF, 2M NaOH aq., 40-70oC, overnight, b) HCl. 
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LiAlH4 was used to produce the corresponding primary alcohols, which were converted 

into chlorides using thionyl chloride. Subsequent coupling of different phenols afforded the 

corresponding esters, which were hydrolyzed in the presence of NaOH to yield the final carboxylic 

acids.  

3.2.2 Characterization 

 All starting materials were purchased either from Sigma-Aldrich or Fisher Scientific 

without further purification.  Anhydrous solvents were purchased in sure-seal bottles and 

handled under dry conditions using syringe technique.  All glassware was dried overnight at 100oC 

before use.  Thin layer chromatography was performed on pre-coated silica gel 60 F254 plates 

(Fisher Scientific).  Synthesized compounds were purified by normal phase flash chromatography 

(SPI Biotage, silica gel 230-400 mesh) and concentrated under vacuum.  All pure compounds were 

stored at -20oC. Compound characterization was performed using a Shimadzu 2020 LC-MS (single 

quadrupole) instrument with compounds directly injected.  NMR spectra were recorded on a 

Bruker 300MHz instrument with samples diluted in either CDCl3 or DMSO- D6. 

  

Figure 45.  Mechanism for a modified Hantzch reaction. 
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General Procedure for Hantzsch Reaction: To substituted benzamide (29.6 mmols), ethyl-2-

chloro acetoacetate (148 mmols, 5 equiv.) was added.  The solution was stirred neat at 120-125°C 

for 48-72hrs or until the disappearance of the benzamide on TLC using EtOAc-hexanes (4:1, v/v).  

To remove any unreacted ethyl-2-chloro acetoacetate, the resulting orange-yellow solution was 

subjected to vacuum distillation (60°C, 1.8 mbar) followed by purification on silica gel with EtOAc-

hexanes (2-35% strong) using a normal phase flash chromatography system. 

JWB071813  66 % yield; 1H-NMR (300 MHz) (CDCl3) δ 7.76-7.73 (d, 

1H, J=9.0 Hz), 7.65 (s, 1H), 7.43-7.38 (t, 1H, J=8 Hz), 7.06 (d, 1H), 4.47-

4.40 (q, 2H, J=7 Hz)), 3.91 (s, 3H), 2.57 (s, 3H), 1.46-1.42 (t, 3H, J=6 Hz); 13C-NMR δ 162.1, 159.8, 

158.8, 146.9, 137.4, 130.0, 127.6, 120.3, 118.2, 111.5, 61.1, 55.5, 14.4, 13.51.  MS DUIS calcd. 

m/z for C14H15NO4 [(M)] 261.3, found [(M+H)+] 262.4 . 

JWB080513-1  50% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.04-8.01 (d, 

1H, J= 9 Hz), 7.51-7.45 (t, 1H, J= 9 Hz), 7.09-7.03 (t, 2H, J= 9 Hz), 4.45-

4.38 (q, 2H, J=8 Hz), 3.99 (s, 3H), 2.58 (s, 3H), 2.18 (s, 2H), 1.45-1.40 (t, 

3H, J= 8 Hz); 13C-NMR δ 161.0, 159.0, 158.2, 146.7, 137.0, 132.9, 130.9, 120.7, 115.4, 112.0, 61.0, 

56.2, 14.4, 13.5. MS DUIS calcd. m/z for C14H15NO4 [(M)] 261.3, found [(M+H)+] 262.4. 

JWB080513-2 30% yield; 1H-NMR (300 MHz) (CDCl3) δ8.04-8.02 ( d, 1H, 

J=), 7.87-7.84 ( d, 1H, 7.71-7.62,    13C-NMR δ160.0, 158.6, 146.6, 138.6, 

131.8, 131.7, 131.0, 129.6-128.3 (m, fluorine coupling), 127.0-126.90 (m, fluorine coupling), 

125.3, 121.5, 61.2, 14.2, 13.4.  
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KAT090513  40% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.10-8.08 (d, 1H, 

J= 6 Hz), 7.58-7.56 (d, 1H, J= 6 Hz), 7.42-7.32 (m, 2H), 4.46-4.39 (q, 2H, 

J= 7 Hz), 2.73 (s, 3H), 2.58 (s, 3H), 1.46-1.41 (t, 3H, J= 7.5 Hz) ; 13C-NMR δ 162.8, 159.0, 146.68, 

138.3, 131.7, 131.6, 129.6, 127.2, 126.1, 125.6, 61.0, 21.9, 14.4, 13.6; MS DUIS (+ve) calcd. m/z 

for C14H15NO3 [(M)] 245.3, found [(M+H)+] 246.4. 

JWB072413  30% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.96 (s, 1H), 7.95-

7.92 (d, 1H, J=9 Hz), 7.40-7.31 (m, 2H), 4.46-4.39 (q, 2H, J=7 Hz), 2.55 

(s, 3H), 2.43 (s, 3H), 1.43-1.41 (t, 3H, J= ; 13C-NMR δ 162.9, 158.9, 147.0, 138.7, 137.3, 132.1, 

128.8, 127.6, 126.2, 124.8, 61.1, 21.3, 14.7, 13.5. 13C-NMR δ. MS DUIS (+ve) calcd. m/z for 

C14H15NO3 [(M)] 245.3, found [(M+H)+] 246.4. 

General Procedure for Reduction of Ester: LiAlH4 (22.8 mmol, 2.5 eq) was slowly dissolved in dry 

THF (75mL) on ice. The appropriate oxazole ester, 1a or 2a, (9.12 mmol) was dissolved in dry THF 

(75mL) and added dropwise to the LiAlH4. After addition was complete, the reaction was warmed 

to room temperature and stirred for 2.5 hours or until the disappearance of the starting material. 

The reaction was monitored by TLC using Hexanes-EtOAc (4:1, v/v).  3M HCl was added dropwise 

(pH= 1-2) to make a cloudy white solution.  The solution was diluted in EtOAc and washed with 

brine and water, dried over anhydrous MgSO4 and concentrated in vacuo to give a white solid.  

No further purification was needed. 

JWB072213 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.61-7.59 (d, 1H, 

J= 6.0 Hz), 7.54 (s, 1H), 7.37-7.32 (t, 1H, J= 7.0 Hz), 7.01-6.89 (d, 1H, J= 

6.0 Hz), 4.69 (s, 2H), 3.87 (s, 3H), 2.23 (s, 3H);  13C-NMR δ 160.5, 159.9, 

 

 

 

 

 

 



91 
 

145.7, 134.8, 129.9, 128.2, 118.8, 117.2, 110.7, 55.4, 54.2, 11.4; MS DUIS (+ve) calcd. m/z for 

C12H13NO3 [(M)] 219.2, found [(M+H)+] 220.4. 

JWB082113-2 40% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.84-7.82 (d, 1H, 

J= 6 ), 7.36-7.33 (t, 1H, J= 7.5), 6.99-6.94 (m, 2H), 4.60 (s, 2H), 3.88 (s, 3H), 

2.13 (s, 3H);  13C-NMR δ 158.8, 157.4, 145.4, 134.5, 131.6, 130.2, 120.6, 

116.4, 111.8, 55.9, 53.9, 11.25;  MS DUIS (+ve) calcd. m/z for C12H13NO3 [(M)] 219.2, found 

[(M+H)+] 220.4 

JWB080713 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.01-7.98 (d, 1H, J=9 

Hz), 7.83-7.80 (d, 1H, J= 9 Hz), 7.67-7.56 (m, 2H), 4.71 (s, 2H), 2.28 (s, 3H); 

13C-NMR δ 159.1, 147.6, 135.6, 132.6, 132.1, 131.0, 129.3, 128.7, 127.6, 

127.5, 54.6, 11.7;  MS DUIS (+ve) calcd. m/z for C12H8F3NO3 [(M)] 257.2, found [(M+H)+] 258.4 

KAT092613 92% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.98-7.95 (d, 1H, J= 

9), 7.35-7.30 (m, 4H), 4.73 (s, 2H), 2.69 (s, 3H), 2.29 (s, 3H);  13C-NMR δ 

161.1, 145.1, 137.3, 134.6, 131.5, 129.9, 128.9, 126.5 125.9, 54.2, 21.8, 11.4;  MS DUIS (+ve) calcd. 

m/z for C12H11NO3 [(M)] 203.2, found [(M+H)+] 204.4 

JWB082113-1 40% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.84 (s, 1H), 7.81-

7.79 (d, 1H, J=6 Hz), 7.35-7.24 (m, 2H), 4.68 (s, 2H), 2.40 (s, 3H), 2.22 (s, 

3H);  13C-NMR δ 160.7, 145.7, 138.5, 134.5, 131.2, 128.6, 127.0, 126.8, 123.4, 53.8, 21.3, 11.2;  

MS DUIS (+ve) calcd. m/z for C12H11NO3 [(M)] 203.2, found [(M+H)+] 204.4 

General Procedure for Chlorination and Coupling Reaction: The appropriate reduced oxazole 

(0.739 mmol) was mixed with thionyl chloride (3.69 mmol, 5 equiv.) in dry DCM (5mL).  The 
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reaction was stirred at room temperature and monitored by TLC using EtOAc-Hexanes (3:2, v/v) 

for an hour or until completion.  The reaction vessels were dried under vacuum to remove DCM.  

The crude product was used for the next reaction without purification. Phenol (0.738 mmol, 1 

equiv.) and Cs2CO3 (1.48 mmol, 2 equiv.) were mixed in dry DMF (5mL) and stirred at room 

temperature for 30 minutes.  A notable yellow color was observed after 30 minutes. The chloro 

oxazole in dry DMF (5mL) was added and the reaction was stirred at room temperature overnight.  

The reaction was monitored by TLC using EtOAc-hexanes (3:2, v/v).  Once complete, the reaction 

was quenched by the slow addition of a saturated NaHCO3 solution until carbon dioxide 

formation ceased followed by the extraction with EtOAc.  The organic layer was dried over MgSO4 

and concentrated in vacuo to obtain a yellow oil.  The oil was further purified on silica gel with 

hexanes- EtOAc (2-70%, strong) using a normal phase flash chromatography system. 

KAT092013-1 57% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.91-7.89 (d, 

1H, J= 6 Hz), 7.79-7.76 (d, 1H, J= 9Hz), 7.45-7.35 (m, 2H), 7.12-7.09 

(d, 1H, J= 9), 7.04-6.97 (m, 3H), 5.15 (s, 2H), 3.91 (s, 3H), 3.82 (s, 3H), 

2.25 (s, 3H); 13C NMR δ 166.6, 159.4, 157.6, 157.5, 141.5, 137.0, 133.3, 131.9, 131.6, 130.3, 121.9, 

121.6, 120.5, 116.3, 115.9, 111.81, 61.6, 56.0, 52.1, 11.6; MS DUIS (+ve) calcd. m/z for C20H19NO4 

[(M)] 353.2, found [(M+1)+] 354.4. 

KAT092313-2 20% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.04-8.01 

(d, 2H, J= 9Hz), 7.93-7.91 (d, 1H, J=6 Hz), 7.45-7.39 (t, 1H, J= 7.5 

Hz), 7.06-7.00 (t, 4H, J=9 Hz), 5.13 (s, 2H), 3.95 (s, 3H), 3.89 (s, 

3H), 2.32 (s, 3H)  ; 13C NMR δ 170.1, 166.7, 162.0, 159.7, 157.6, 141.1, 137.2, 131.9, 131.6, 130.4, 
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123.2, 120.6, 116.6, 114.5, 111.9, 59.6, 56.0, 51.9, 11.7 ; MS DUIS (+ve) calcd. m/z for C20H19NO4 

[(M)] 353.2, found [(M+1)+] 354.4. 

KAT092413-3 51% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.93-7.90 

(d, 1H, J=9Hz), 7.68 (s, 1H), 7.65 (s, 1H), 7.42-7.31 (m, 2H), 7.19-

7.16 (d, 1H, J= 9Hz), 7.03-6.97 (t, 2H, J= 9Hz), 5.11 (s, 2H), 3.91 

(s, 3H), 3.89 (s, 3H), 2.31 (s, 3H).  13C NMR δ 166.75, 159.6, 158.2, 157.6, 141.31, 137.0, 131.8, 

131.5, 130.3, 129.5, 122.7, 120.6, 120.5, 116.3, 115.1, 111.8, 60.4, 59.7, 56.0, 52.2, 11.65; MS 

DUIS (+ve) calcd. m/z for C20H19NO4 [(M)] 353.2, found [(M+1)+] 354.4. 

KAT092513-4 20% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.94-7.92 

(d, 1H, J= 6Hz), 7.46-7.40 (t, 1H, J= 9Hz), 7.25-7.22 (d, 2H, J= 

9Hz), 7.07-6.97 (m, 4H), 5.08 (s, 2H), 3.95 (s, 3H), 3.70 (s, 3H), 

3.59 (s, 2H), 2.31 (s, 3H); 13C NMR δ 172.3, 159.5, 157.6, 157.5, 141.7, 126.8, 131.8, 131.8, 130.4, 

126.9, 120.6, 116.4, 115.2, 111.9, 59.8, 56.1, 52.0, 40.3, 11.7 ; MS DUIS (+ve) calcd. m/z for 

C21H21NO5 [(M)] 367.4, found [(M+H)+] 368.5. 

KAT092513-5 22% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.14 

(d, 1H), 7.46-7.40 (t, 1H, J= 9Hz), 7.17-7.14 (d, 2H, J= 9Hz), 

7.07-7.02 (t, 2H, J= 7.5Hz), 6.97-6.94 (d, 2H, J= 9Hz), 5.06 

(s, 2H), 3.96 (s, 3H), 3.68 (s, 3H), 2.95-2.90 (t, 2H, J= 7.5Hz), 2.65-2.60 (t, 2H, J= 7.5Hz), 2.31 (s, 

3H); 13C NMR δ 173.6, 159.5, 157.6, 156.8, 141.8, 136.7, 133.5, 131.8, 130.4, 129.3, 120.6, 116.4, 

115.2, 111.9, 59.8, 56.1, 51.6, 35.9, 30.1, 11.6; MS DUIS (+ve) calcd. m/z for C22H23NO5 [(M)] 381.4, 

found [(M+H)+] 382.4. 
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JWB091313-1 42% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.83-7.81 

(d, 1H, J= 6Hz), 7.65-7.63 (d, 1H, J= 6Hz), 7.57 (s, 1H), 7.52-7.47 (t, 

1H, J= 7.5 Hz), 7.40-7.34 (t, 1H, J= 9Hz), 7.14-7.07 (m, 2H), 7.03-

7.00 (d, 2H, J= 9Hz), 5.19 (s, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 2.26 (s, 3H); 13C NMR δ166.6, 160.9, 

159.8, 157.5, 141.9, 137.3, 133.4, 131.7, 129.9, 128.4, 122.1, 121.8, 118.8, 117.1, 116.0, 110.8, 

61.6, 55.4, 52.1, 36.4, 31.4, 11.5; MS DUIS (+ve) calcd. m/z for C20H19NO5 [(M)] 353.4, found 

[(M+H)+] 354.4. 

JWB091313-2 66% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.72 (s, 

1H), 7.70 (s, 1H), 7.66-7.63 (d, 1H, J= 9Hz), 7.57 (s, 1H), 7.42-7.34 

(q, 2H, J= 8Hz), 7.22- 7.19 (d, 1H, J= 9Hz), 7.02-7.00 (d, 1H, J= 

6Hz), 5.14 (s, 2H), 3.94 (s, 3H), 3.88 (s, 3H), 2.32 (s, 3H); 13C NMR δ 166.7, 161.0, 159.8, 158.1, 

144.8, 137.3, 131.5, 129.8, 129.6, 128.3, 122.8, 120.6, 119.7, 119.4, 117.1, 114.8, 110.8, 59.6, 

52.2, 11.6.  MS DUIS (+ve) calcd. m/z for C20H19NO5 [(M)] 353.4, found [(M+H)+] 354.4. 

JWB091313-3 38% yield; 1H-NMR (300 MHz) (CDCl3) δ 8.07- 

8.04 (d, 2H, J= 9Hz), 7,67- 7.64 (d, 1H, J=9Hz), 7.60 (s, 1H), 

7.41-7.35 (t, 1H, J= 9Hz), 7.07-7.04 (d, 1H, J= 9Hz), 7.01 (s, 1H), 

5.14 (s, 2H), 3.92 (s, 3H), 3.90 (s, 3H), 2.33 (s, 3H); 13C NMR δ 166.7, 161.9, 161.2, 159.9, 141.5, 

137.5, 137.5, 131.7, 129.9, 128.3, 123.4, 118.9, 117.3, 114.4, 110.9, 59.5, 55.45, 51.9, 11.64; MS 

DUIS (+ve) calcd. m/z for C20H19NO5 [(M)] 353.4, found [(M+H)+] 354.4. 
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JWB091313-4 57% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.63-

7.61 (d, 1H, J= 6Hz), 7.56 (s, 1H), 7.35-7.30 (t, 1H, J= 7.5Hz), 

7.23- 7.21 (d, 2H, 6Hz), 6.99 (s, 1H), 6.97-6.94 (d, 2H, J= 9Hz), 

5.02 (s, 2H), 3.82 (s, 3H), 3.67 (s, 3H), 3.57 (s, 2H) 2.26 (s, 3H); 

13C NMR δ 172.3, 161.0, 159.9, 157.3, 142.2, 137.0, 130.4, 128.3, 127.1, 119.4, 118.9, 117.2, 

110.8, 59.6, 55.4, 52.0, 40.3, 36.5, 11.5; MS DUIS (+ve) calcd. m/z for C21H21NO5 [(M)] 367.4, found 

[(M+H)+] 468.5. 

JWB091313-5 33% yield; 1H-NMR (300 MHz) (CDCl3)   δ 

7.65-7.63 (d, 1H, J= 6Hz), 7.58 (s, 1H), 7.39-7.34 (t, 1H, J= 

7.5Hz), 7.18-7.15 (d, 2H, J= 9Hz), 7.02-7.00 (d, 1H, J= 6Hz), 

6.96-6.93 (d, 2H, J= 9Hz), 5.05 (s, 2H), 3.88 (s, 3H), 3.68 (s, 

3H), 2.95-2.90 (t, 2H, J= 7.5Hz), 2.65-2.60 (t, 2H, J= 7.5Hz), 2.29 (s, 3H); MS (ESI+) calcd. m/z for 

C22H23NO5 [(M)] 381.4, found [(M+H)+] 382.5. 

General Procedure for Saponifcation: The appropriate thiazole ester (0.06mmol) was dissolved 

in THF (3mL) and adjusted to pH= 9-10 with 2M NaOH.  The reaction was stirred at room 

temperature overnight and monitored by TLC using EtOAc-Hexanes with 1% acetic acid (4:1, v/v).  

Acids that did not convert at room temperature were heated between 40oC-70oC and stirred for 

an additional 12 hours.  Once the reaction was complete, THF was removed under reduced 

pressure and the left over residue was resuspended in water (5mL) and acidified with 2M HCl 

until pH=2.  More water (5 mL) was added and the product was extracted with EtOAc (10 mL x 

3).    The organic layers were combined, dried over MgSO4 and concentrated in vacuo to obtain 

white-cream colored solids.  No further purification steps were taken. 
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 KAT120413-1 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.81-7.79 

(d, 1H, J= 6Hz), 7.65-7.62 (d, 1H, J= 9Hz), 7.56-7.48 (q, 2H, J= 8Hz), 

7.32-7.30 (d, 1H, J= 6Hz), 7.21-7.18 (d, 1H, J=9 Hz), 7.09-7.04 (t, 2H, 

J= 7.5Hz), 5.25 (s, 2H), 3.85 (s, 3H), 2.2 (s, 3H13CDEPT-135 NMR δ Negative (-): CH2: 52.8  Positive 

(+): CH3, CH: 136.2, 131.2, 130.7, 121.0, 119.7, 117.6, 56.3, 11.5 ; MS (ESI+) calcd. m/z for 

C19H17NO5 [(M)] 339.4, found [(M+H)+] 340.0. 

KAT101013-2 82% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.94-

7.91 (d, 2H, J= 9Hz), 7.82-7.80 (d, 1H, J= 6Hz), 7.53- 7.48 (t, 

1H, J= 7.5Hz), 7.21-7.18 (d, 1H, J= 9Hz), 7.17 (s, 1H), 7.14 (s, 

1H), 7.09-7.04 (t, 1H, J= 7.5Hz), 5.28 (s, 2H), 3.85 (s, 3H), 2.24 (s, 3H); 13C NMR δ 167.4, 161.9, 

159.5, 157.7, 143.2, 137.0, 132.7, 131.8, 130.5, 124.0, 121.0, 116.2, 115.2, 113.1, 59.6, 56.3, 11.6; 

13CDEPT-135 δ Negative (-): 132.7, 131.8, 130.5, 121.0, 115.2, 113.1, , 56.3, 11.6, Positive (+): 

59.4;  MS DUIS (+ve) calcd. m/z for C19H17NO5 [(M)] 339.4, found [(M+H)+] 340.0. 

KAT101013-3 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.82-7.79 

(d, 1H, J= 9Hz), 7.60 (s, 2H), 7.53-7.42 (m, 2H), 7.32-7.29 (d, 1H, 

J= 9Hz), 7.21-7.18 (d, 1H, J= 9Hz), 7.08-7.03 (t, 1H, 7.5Hz), 5.26 

(s, 2H), 3.84 (s, 3H), 2.24 (s, 3H).  13C NMR δ 167.5, 159.5, 158.3, 157.7, 142.5, 136.8, 132.7, 132.7, 

130.5, 130.2, 122.6, 121.0, 120.5, 116.3, 115.5, 113.1, 59.5, 56.3, 11.6; 13CDEPT-135 NMR δ 

Negative (-): CH2: 59.6, Positive (+): CH3, CH: 132.7, 130.5, 130.1, 122.6, 121.0, 120.5, 115.5, 113, 

56.3, 11.5; MS DUIS (+ve) calcd. m/z for C19H17NO5 [(M)] 339.4, found [(M-H)-] 338.0. 
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KAT101013-4 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 12.24 (s, 

1H), 7.83-7.79 (d, 1H, J= 9Hz), 7.53-7.48 (t, 1H, J= 7.5Hz), 7.09-

6.99 (m, 3H), 5.15 (s, 2H), 3.85 (s, 3H), 3.51 (s, 2H), 2.51 (m, 2H, 

DMSO residual peak overlaps), 2.22 (s, 3H); 13C NMR δ 173.29, 159.37, 157.64, 157.12, 142.76, 

136.56, 132.60, 130.87, 130.46, 128.13, 120.99, 116.33, 115.23, 113.06, 59.37, 56.28, 11.58; 

13CDEPT-135 NMR δ Negative (-): CH2: 59.25, 40.14, Positive (+): CH3, CH: 132.60, 130.87, 130.15, 

120.85, 115.12, 113.05, 56.11, 11.55; MS DUIS (+ve) calcd. m/z for C20H19NO5 [(M)] 353.4, found 

[(M-H)-] 352.4.  

KAT100313-5 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 

12.09 (s, 1H), 7.82-7.79 (d, 1H, J= 9Hz), 7.53-7.47 (t, 1H, J= 

9Hz), 7.21-7.16 (t, 3H, J= 7.5Hz), 7.09-7.04 (t, 1H, J= 7.5Hz), 

6.98-6.95 (d, 2H, J= 9Hz),  5.13 (s, 2H), 3.85 (s, 3H), 2.79-2.74 (t, 2H, J= 7.5Hz), 2.51 (m, 2H, DMSO 

residual peak overlaps), 2.21 (s, 3H); 13C NMR δ 174.2, 159.3, 157.6, 156.7, 142.8, 136.5, 133.9, 

132.6, 130.5, 129.7, 121.0, 116.4, 115.3, 113.05, 59.3, 56.3, 36.0, 30.0, 11.6; 13CDEPT-135 NMR δ 

Negative (-): CH2: 59.4, 36.3, 30.1, Positive (+): 132.6, 130.5, 129.7, 121.0, 115.3, 113.1, 56.3, 

11.6; MS DUIS (+ve) calcd. m/z for C21H21NO5 [(M)] 367.4, found [(M-H)- 366.4. 

JWB111913-1 79% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.65-7.63 

(d, 1H, J= 6Hz), 7.56-7.42 (m, 4H), 7.33-7.30 (d, 1H, J= 9Hz), 7.12-

7.07 (m, 2H), 5.28 (s, 2H), 3.83 (s, 3H), 2.21 (s, 3H) ; MS DUIS (-ve) 

calcd. m/z for C19H17NO5 [(M)] 339.1, found [(M-H)-] 338.4. 
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JWB111913-2  100% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.63-

7.54 (m, 3H), 7.47-7.41 (m, 3H), 7.29 (d, 1H, J= 6Hz), 7.10-7.01 

(d, 1H, J= 6Hz), 5.29 (s, 2H), 3.83 (s, 3H), 2.25 (s, 3H); MS DUIS 

(-ve) calcd. m/z for C19H17NO5 [(M)] 339.1, found [(M-H)-] 338.4. 

JWB111913-3  100% yield; 1H-NMR (300 MHz) (CDCl3) δ 7.94-

7.91 (d, 2H, J= 9Hz), 7.56-7.54 (d, 1H, J= 6Hz), 7.48-7.42 (t, 2H, 

J= 9Hz), 7.17-7.14 (d, 2H, J= 9Hz), 7.12-7.10 (d, 1H, J= 6Hz), 

5.31 (s, 2H), 3.83 (s, 3H), 2.26 (s, 3H); MS DUIS (+ve) calcd. m/z for C19H17NO5 [(M)] 339.1, found 

[(M+H)+] 340.4. 

JWB111913-4 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 

7.56-7.53 (d, 1H, J= 9Hz), 7.47-7.42 (t, 2H, J= 7.5Hz), 7.22-

7.19 (d, 2H, J= 9Hz), 7.12-7.09 (d, 1H, J= 9Hz), 7.02-6.99 (d, 

2H, J= 9Hz), 5.18 (s, 2H), 3.83 (s, 3H), 2.51 (m, 2H, DMSO residual peak overlaps), 2.23 (s, 3H); δ 

MS DUIS (+ve) calcd. m/z for C20H19NO5 [(M)] 353.1, found [(M+H)+] 354.4. 

JWB111913-5 100% yield; 1H-NMR (300 MHz) (CDCl3) δ 

7.66-7.63 (d, 2H, J= 9Hz), 7.58 (s, 1H) 7.40-7.34 (t, 1H, J= 

9Hz), 7.20-7.17 (d, 1H, 9Hz), 7.03-7.00 (d, 2H, J= 9Hz), 

6.97-6.94 (d, 2H, J= 9Hz), 5.06 (s, 2H), 3.89 (s, 3H), 2.97-

2.86 (m, 2H), 2.70-2.65 (m, 2H), 2.29 (s, 3H); δ MS DUIS (-ve) calcd. m/z for C21H21NO5 [(M)] 367.4, 

found [(M-H)-] 366.4. 
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3.3 Determining the Binding Between VDR and Coactivator in the Presence 

of Oxazole-Substituted GW0742 Analogs 

 The binding data obtained for both the ortho- and meta- methoxy GW0742 oxazole 

analogs (o-OCH3 and m-OCH3) are summarized in Table 12 and 13. This includes methyl esters as 

well as carboxylic acids. Surprisingly, all compounds did not bind to VDR and initiate or inhibit the 

interaction with coregulator peptide SRC2-3. Insufficient solubility was ruled out by the solubility 

Table 13. Modulation of VDR-Coactivator binding in the presence of meta-

methoxy phenyl oxazole-based GW0742 analogs. 

Compound 
Recruitment of SRC2-3 

VDR Interaction EC50 (μM) 
Inhibition of SRC2-3 VDR 

Interaction IC50 (μM) 

JWB091313-1 Inactive Inactive 
JWB091313-2 Inactive Inactive 
JWB091313-3 Inactive Inactive 
JWB091313-4 Inactive Inactive 
JWB091313-5 Inactive Inactive 

JWB111913-1 Inactive Inactive 
JWB111913-2 Inactive Inactive 
JWB111913-3 Inactive Inactive 
JWB111913-4 Inactive Inactive 
JWB111913-5 Inactive Inactive 

The maximum concentration used for this assay was 300 μM of each compound. 

Table 12. Modulation of VDR-Coactivator binding in the presence of ortho-methoxy 

phenyl oxazole-based GW0742 analogs.  

Compound 
Recruitment of SRC2-3 VDR 

Interaction EC50 (μM) 
Inhibition of SRC2-3 VDR 

Interaction IC50 (μM) 

KAT092013-1 Inactive Inactive 
KAT092313-2 Inactive Inactive 
KAT092413-3 Inactive Inactive 
KAT092513-4 Inactive Inactive 
KAT092513-5 Inactive Inactive 

KAT120413-1 Inactive Inactive 
KAT101013-2 Inactive Inactive 
KAT101013-3 Inactive Inactive 
KAT100313-4 Inactive Inactive 
KAT101013-5 Inactive Inactive 

The maximum concentration used for this assay was 300 μM of each compound. 
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assay reported later in this section. Changing the fluorophore attached to SRC2-3 to Texas Red 

did confirm the absence of activity.  An alternative commercially available assay (PolarscreenTM
 

VDR Competitor Assay) employing a fluorescent VDR ligand (FluormoneTM VDR Red) was 

purchased from Invitrogen but unfortunately we were unable to run this assay with our Tecan 

M1000 reader for unknown reasons.  Currently, a coumarin-based probe is being developed in 

our laboratory to enable the identification of direct ligand inhibitors of VDR. Regardless of the FP 

results, the compounds were further tested for their ability to modulate transcription with 

respect to VDR and PPARδ in addition to cytotoxicity in cells. 

3.4 Modulation of VDR and other NR-Mediated Transcription by Oxazole-

Substituted GW0742 Analogs 

Upon ligand binding, nuclear receptors undergo a conformational change that can induce 

recruitment of specific coactivators.  In addition to the traditional two plasmid transcription 

assay, a two-hybrid assay was used to study the ligand-dependent interaction between VDR and 

coactivator SRC1 (Figure 46).  The assay employs three plasmids. A fusion of SRC1 and a GAL4 

DNA binding domain, a fusion between VDR LBD and VP16 plasmid and luciferase reporter 

 

Figure 46. Cartoon describing luminescence-based 2-hybrid transcription assay. A) 
Activated VDR transcribes the luciferase gene and produces light.  B) In the presence of an 
inhibitor, VDR is unable to transcribe the luciferase gene and produce light. 
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plasmid with a 4xUAS repeat. A VDR agonist would induce the binding between VDR LBD and 

SRC1 thus bringing the VP16 activation domain and GAL4 DNA domain together inducing the 

transcription of the luciferase gene.  

 To determine if GW0742 oxazole analogs can inhibit the luciferase enzyme thus producing 

a false response in the transcription assay, a luciferase binding assay was conducted using Cell 

Titer-Glo™.  This reagent, typically used for cell viability assays, contains already the luciferase 

enzyme that produces light through a series of reactions (Scheme 6).  Important for the light 

reaction to occur are substrates luciferin, APT, and Mg2+. Because Cell Titer-Glo is missing ATP, it 

must be added to the reaction in addition to the compounds.  

3.4.1 Experimental Procedure 

Luminescence-Based VDR-Mediated Transcription Assay Protocol:  For complete details see 

Part 1 of this chapter.  In addition to VDR and PPARδ transcription assays, PPARα, PPARγ, retinoid 

X receptor (RXRα), estrogen (ER, α and β isoforms) and thyroid (TR, α and β isoforms) receptor 

were evaluated for inhibitory activity with four different oxazole GW0742 analogs.  For each 

competitive pan NR transcription assays, 2 mL of untreated DMEM containing 1.5 μg of NR 

plasmid, 16 μg luciferase reporter gene, LipofectamineTM LTX (75 μl), and PLUSTM reagent (25 μl) 

was added to a flask of HEK293T cells.  Inhibition was determined in the presence of the following 

 

Scheme 6.  Bioluminescent reaction that occurs when the luciferase enzyme is activated. 
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agonists: GW7647 (30 nM, PPARα), Rosiglitazone (300 nM, PPARγ), Bexarotene (200 nM, RXRα), 

estradiol (10 nM, ERα/β) and Triiodothyronine (100 nM, TRα/β).  For the VDR two-hybrid assay, 

2 mL of untreated DMEM containing 5.0 μg of VP16-VDR-LBD plasmid, 4.0 μg of SRC1-GAL4 

plasmid, 16 μg of a luciferase reporter plasmid, LipofectamineTM LTX (75 μl), and PLUSTM reagent 

(25 μl) were added. Due to cell sensitivity to DMSO concentrations greater than or equal to 1%, 

30 mM rather than 10 mM stock solutions were made allowing for only a 100 nL transfer of 

compound into each well containing 20 µL of solution during the two hybrid assay. 

Inhibition of Luciferase using Cell Titer Glo Assay Protocol: In a 384-well white optical bottom 

plates (Nunc, #142762), 20 μL of Cell Titer-Glo™ (Promega, Madison, WI) was added to each well.  

30 mM stock solutions of synthesized compounds made in DMSO were serially diluted (1:3) in 

96-well plates.  Four 14 μL aliquots of each compound concentration was transferred to opaque 

384-well plates for storage. 100 nl of each compound was transferred to the 384-well white 

optical bottom plate using the Tecan Freedom EVO liquid handling system (V&P Scientific).  The 

plate was incubated for 45 minutes at 37oC.  After incubation, 20 μL of a 1 μM ATP solution diluted 

in water was added to each well.  Controls used were DMSO, DMSO and ATP, and ATP Cell Titer-

Glo™.  Luminescence readings were performed on a Tecan Infinite M1000 plate reader. 
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3.4.2 Results and Discussion 

 The transcriptional activity of oxazole analogs are summarized in Tables 14 and 15.  None 

of the analogs activate VDR-mediated transcription up to a concentration of 150 µM.  

Interestingly, the o-OCH3 based esters were able to inhibit VDR-mediated transcription but not 

activate PPARδ-mediated transcription. On the contrary, PPARδ-mediated transcription was 

activated by most of the o-OCH3 derived acids without inhibiting VDR-mediated transcription. 

The most potent VDR antagonist in this series was KAT092413-3 with an EC50 values of 2.5 µM 

that completely lacked the ability to activated PPARδ-mediated transcription like the parent 

compound GW0742.   

 

 

Table 14. Modulation of VDR and PPARδ transcription in the presence of ortho-

methoxy phenyl oxazole GW0742 analogs. 

Compound 

VDR 

Transcription 

EC
50 

(µM)a 

VDR 
Transcription 

IC
50 

(µM)a 

PPARδ 
Transcription EC50 

(µM)b 

Cytotoxicity 
LD50 (µM)c 

KAT092013-1 Inactive 3.25 ± 1.4 Inactive Non-toxic 
KAT092313-2 Inactive 4.85 ± 2.2 Inactive 66.2 ± 5.4 
KAT092413-3 Inactive 2.50 ± 1.2 Inactive Non-toxic 
KAT092513-4 Inactive 3.82 ± 1.3 Inactive Non-toxic 
KAT092513-5 Inactive 10.1 ± 1.7 Inactive 50.6 ± 5.9  

KAT120413-1 >100 Inactive Inactive Non-toxic 
KAT101013-2 Inactive Inactive 8.7 ± 6.4 (16%) Non-toxic 
KAT101013-3 Inactive Inactive 0.88 ± 0.47 (22%) Non-toxic 
KAT100313-4 Inactive Inactive 11.0 ± 10.2 (48%) Non-toxic 
KAT101013-5 Inactive >80 4.6 ± 3.1 (30%) Non-toxic 

aTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under control of a 24-
hydroxylase promoter with GW0742-based oxazole analogs.  bTranscription assay using a GALx4 PPARδ 
plasmid and a luciferase reporter plasmid under control of GALx4 promoter. Percent partial agonistic 
activity is shown in parenthesis.   bCell- TiterGlo (Promega).  The maximum concentration used was 
100μM. 
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The series of m-OCH3 analogs showed similar trends than the o-OCH3 analogs, however the 

following differences were observed. Most of the m-OCH3 esters showed a certain degrees of 

toxicity, whereas only two of the o-OCH3 were slightly toxic. The m-OCH3 esters and acids were 

able to inhibit VDR transcription, whereas one ester JWB091313-5 and some acids were able to 

activate PPARδ-mediated transcription. The most potent VDR antagonist was JWB091313-4 with 

an IC50 value of 660 nM. The compounds that activated PPARδ-mediated transcription exhibited 

partial agonism as low as 2.2% in respect to agonist GW0742. In general, this partial agonism was 

weaker for the m-OCH3 and for the o-OCH3 analogs.  

Specificity towards a certain VDR-coactivator interaction was introduced with the two-

hybrid assay. The results of the ester and acid analogs for this protein-protein inhibition assay 

are summarized (Table 16).   

Table 15. Modulation of VDR and PPARδ transcription in the presence of meta-

methoxy phenyl oxazole GW0742 analogs. 

Compound 

VDR 

Transcription 

EC
50 

(µM)a 

VDR 
Transcription 

IC
50 

(µM)a 

PPARδ 
Transcription EC50 

(µM)b 

Cytotoxicity 
LD50 (µM)c 

JWB091313-1 Inactive 6.75 ± 2.1 Inactive 48.0 ± 9.3 
JWB091313-2 Inactive 5.56 ± 1.9 Inactive 95.8 ± 14.7 
JWB091313-3 Inactive 5.67 ± 1.4 Inactive >100 
JWB091313-4 Inactive 0.66 ± 0.30 Inactive 90.8 ± 12.0 
JWB091313-5 Inactive 2.88 ± 0.97 1.09 ± 0.58 (7.7%) >33 

JWB111913-1 Inactive 40.4 ± 13.4 Inactive Non-toxic 
JWB111913-2 Inactive 33.2 ± 15.2 Inactive Non-toxic 
JWB111913-3 Inactive >100 2.62 ± 1.8 (2.1%) Non-toxic 
JWB111913-4 Inactive 3.60 ± 1.4 1.80 ± 0.79 (8.5%) Non-toxic 
JWB111913-5 Inactive 3.35 ± 1.5 1.39 ± 0.44 (13.7%) Non-toxic 

aTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under control of a 24-
hydroxylase promoter with GW0742-based oxazole analogs.  bTranscription assay using a GALx4 PPARδ 
plasmid and a luciferase reporter plasmid under control of GALx4 promoter. Percent partial agonistic 
activity is shown in parenthesis.   bCell- TiterGlo (Promega).  The maximum concentration used was 
100μM. 
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The results of the protein-protein interaction assays were similar to the VDR transcription assay 

confirming the interaction between VDR and coactivators as an essential interaction meditating 

VDR transcription. The average activities of both assays differed up to three-folds but higher 

standard deviations in the two hybrid assay resulted in non-significant differences between both 

IC50 values in most cases. 

 The two most promising compounds from each oxazole series were chosen for further 

investigation towards other nuclear receptors. These included PPARs α, γ, and δ, the RXRα, TRα 

and β, and the estrogen receptors α and β (ERα and β).  The results are summarized in Table 17.   

 

Table 16.  Modulation of VDR transcription in the presence of ortho and metha-

methoxy phenyl oxazole GW0742 analogs using a 2-hybrid cell assay. 

Compound 

2-Hybrid VDR 
Transcription 

IC
50 

(µM) 
Compound 

2-Hybrid VDR 
Transcription 

IC
50 

(µM) 

KAT092013-1 20.2 ± 13.5 JWB091313-1 15.4 ± 11.6 
KAT092313-2 17.9 ± 7.92 JWB091313-2 17.1 ± 5.2 
KAT092413-3 7.33 ± 3.84 JWB091313-3 8.89 ± 2.5 
KAT092513-4 11.13 ± 4.9 JWB091313-4 13.9 ± 11.5 
KAT092513-5 13.6 ± 5.2 JWB091313-5 6.7 ± 3.4 

KAT120413-1 >80 JWB111913-1 >33 
KAT101013-2 >80 JWB111913-2 33.14 ± 13.1 
KAT101013-3 >100 JWB111913-3 >80 
KAT100313-4 >80 JWB111913-4 27.7 ± 17.3 
KAT101013-5 >100 JWB111913-5 26.7 ± 15.8 

2-Hybrid transcription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under 
control of a 24-hydroxylase promoter with GW0742-based oxazole analogs. The maximum 
concentration used was 150μM. 
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Interestingly, all four compounds inhibited the transcription mediated by all nuclear receptors 

investigated. Minor selectivity was observed for each compound. For instance KAT092413-3 were 

more effective towards ERα than ERβ, however selectivity between TR and PPAR isoforms was 

marginal. Still, VDR-mediated transcription was inhibited at low concentration with an IC50 of 2.5 

μM. In addition, JWB091313-4 exhibited not only selectivity between ER isoforms but also was 

very selective towards PPARα in respect to PPARγ and PPARδ. Nevertheless the IC50 for VDR (0.6 

μM) was still lower than that of PPARs with 1.9 μM. Triggered by the PAN activity by the four 

compounds chosen, possible inhibition of the luciferase enzyme was investigated by adding ATP 

and compounds to the Cell Titer GloTM assay from Promega. None of the four compounds 

inhibited the formation of light as illustrated for JWB091313-3 and JWB091313-4 in Figure 47. 

Table 17.  Inhibition of transcription with an array of nuclear receptors in the presence 

of KAT092413-3, KAT092513-4, JWB091313-3, and JWB091313-4 to determine 

selectivity. 

Compound 
PPARα 

IC50 
(μM)a 

PPARγ 
IC50 

(μM)b 

PPARδ 
IC50 

(μM)c 

RXRα 
IC50 

(μM)d 

TRα 
IC50 

(μM)e 

TRβ IC50 
(μM)e 

ERα 
IC50 

(μM)f 

Erβ 
IC50 

(μM)f 

KAT092413-3 
6.6 ± 
2.9 

7.6 ± 
3.4 

10.9 ± 
3.9 

11.1 ± 
4.6 

10.1 ± 
3.3 

9.8 ± 
2.9 

5.2 ± 
1.5 

23.6 ± 
17.2 

KAT092513-4 
8.0 ± 
6.6 

6.3 ± 
3.1 

6.6 ± 2.9 
4.4 ± 
3.1 

8.4 ± 
2.7 

7.6 ± 
4.4 

4.1 ± 
1.7 

10.0 ± 
6.4 

JWB091313-3 
3.5 ± 
2.1 

7.6 ± 
3.4 

10.9 ± 
4.1 

4.6 ± 
2.6 

5.4 ± 
2.5 

8.8 ± 
3.0 

4.7 ± 
1.1 

5.9 ± 
2.8 

JWB091313-4 
1.9 ± 
1.3 

6.7 ± 
3.0 

11.3 ± 
6.8 

2.0 ± 
1.7 

4.2 ± 
2.2 

0.97 ± 
0.82 

1.7 ± 
0.96 

7.4 ± 
6.3 

aGW7647 (30nM), bRosiglitazone (300nM), cGW0742 (50nM), dBexarotene (200nM), eT3 (10nM) and 
fEstradiol (10nM). The maximum concentration used was 100μM. 
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3.5 Determining Physiochemical Properties of Oxazole-based GW0742 Analogs 

3.5.1 Solubility Assay  

 Drug solubility is defined as the amount of substance that dissolves in a given volume of 

solvent at a specific temperature.161  In drug discovery, it is a physiochemical characteristic of a 

molecule that influences its success as a lead compound. For instance,  the bioavailability of 

poorly soluble drugs is highly susceptible to food intake, active transport, and efflux.162 In 

addition, compounds with poor solubility carry a higher risk of failure during discovery and 

development since it may compromise the success of biochemical and cell-based assays, induce 

aggregation, and complicate formulation for in vivo studies.148  Experimentally, solubility can be 

measured either thermodynamically or kinetically.  Thermodynamic solubility is defined by the 

addition of excess solid drug directly to an aqueous solution under constant agitation until 

equilibrium is established.  This assay can take several days for completion due to and slow 

equilibration.  Crystallinity plays an important factor for this assay thus variability in production 

of solids will change its solubility. As parallel synthesis and combinatorial chemistry have 
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Figure 47. Dose response curve showing no inhibition of the 
luciferase enzyme by GW0742 oxazole derivatives 
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increasingly become the most dominant methods of compound synthesis in the discovery stage 

of pharmaceuticals, there is an increasing probability that the physical form of the compounds is 

amorphous due to impurities and solvent residues.  The non-crystalline materials will always be 

more soluble than their pure counterpart.163  Therefore, early discovery stages adopted kinetic 

solubility as an alternative. For this process, compounds diluted in an organic solvent (i.e. DMSO) 

are added to an aqueous solution until precipitation is observed or the concentration of the 

dissolved compounds becomes constant.164  The benefits of this method are that it is rapid and 

requires only a small amounts of test compounds thus making it suitable for high throughput. In 

general, there are two main approaches to determine kinetic solubility.  The first one is done by 

removing the precipitate by filtration or centrifugation followed by the determination of 

compound concentrations by UV absorption or mass spectrometry.  The second approach 

detects the formation of precipitate by monitoring the scattering of light by particles using UV 

absorbance or directly by detecting the light scattering by nephelometric turbidity detection.165 

Within this section, we report the use of a miniaturized kinetic-based HTS assay for the 

determination of solubility of GW0742 oxazole derivatives developed by Dr. Megan Pawlak in our 

lab.  Compounds tested included the ester and acid forms of the ortho and meta-methoxy 

GW0742 oxazoles.   

Experimental Procedure 

Reagents and Instrumentation: All materials were used as they were received, with no further 

purification.  Five bioactive small molecules: 4,5-diphenylimidazole (Alfa Aesar), β-estradiol (Alfa 

Aesar), diethylstilbestrol (Spectrum Chemicals), 3-phenylazo-2,6-diaminopyridine (Alfa Aesar) 
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were used as standards.  Each of the standards were made into a 10 mM solution in DMSO (Acros, 

Spectroscopic Grade 99.9+%).  The buffer was prepared in 18 MΩ water with 90 mM 

ethanolamine (Alfa Aesar, ACS grade 99+%), 90 mM KH2PO4 (J.T. Baker), 90 mM potassium 

acetate (Fisher Biotech), and 30 mM NaCl (Fisher) and adjusted to pH 7.4 with HCl (Mallinckrodt).   

HPLC grade acetonitrile (Columbus Chemical Industries) was used to make a 20% by 

volume solution in buffer for the preparation of the calibration plate.  The calibration solutions 

(0-300 µM, 50µL each) were read in a 384-well UV plate (Greiner Bio-One, #781801), which was 

also used for the solubility assay absorbance readings.  The incubation and filtration were 

performed in a 384-well filter plate (Pall, #5071), which was sealed with an aluminum cover 

(Corning, #6570) during incubation and mixing.  The filtration of the plates was performed using 

a Millipore MultiScreenHTS Vacuum Manifold (MSVMHTS00).  All of the absorbance readings were 

performed on an Infinite M1000 plate reader (Tecan). 

Solubility Assay Protocol: Calibration plots were generated to obtain the relationship between 

solute concentration and absorbance.  Molecules were serially diluted in 96-well plates (Table 

18) and then 50 μL was transferred to 384-well UV plate so that one compound was in each row.  

Each concentration was plated in duplicate.  The top of the plate was then covered with an 

aluminum plate cover.  The UV plate was then carefully placed in the bench-top sonicator so that 

it floated on top of the water.  It was sonicated for 1 minute and centrifuged at 1000 rpm for 3 

minutes to ensure that all of the solution remained in the wells.  The plate was then scanned for 

absorbance with the Tecan plate reader from 230-800 nm at 5 nm increments with 10 flashes per 

well. 
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Once the calibration plates were read, a calibration plot for each compound of adjusted 

absorbance vs. solute concentration at the maximum wavelength (λmax) was generated.  This was 

done by subtracting the average absorbance of the 0 µM (background) wells from the absorbance 

of each of the other wells. Each of the calibration plots was labeled with the compound name 

and maximum wavelength.  Finally, a best fit linear trend line through the origin of the plot with 

the equation and r2 value to 4 decimal places was added to the plot. 

After the calibration plots were generated at the wavelength of maximum absorbance for 

each molecule, the solubility assay was performed.  The wells in the 384-well filter plate were 

pre-wetted with 20-40 µL of buffer.  The buffer was left to sit in the wells for about 5 minutes 

and subsequently removed by vacuum.  An aluminum film cover was then adhered underneath 

Table 18. Preparation of 96 well calibration plate for solubility assay. 

Well Number 1 2 3 4 5 6  

Volume Buffer 291 µL 83.3 µL 125 µL 125 µL 125 µL 95 µL 

Volume 10 
mM DMSO 
Stock 

9 µL      

Volume 
DMSO 

     5 µL 

Volumes 
transferred 
from wells 1 
to 2, 2 to 3, 3 
to 4, 4 to 5 

166.7 
µL 

125 µL 125 µL 125 µL   

Final 
Concentration 

300 µM 200 µM 100 µM 50 µM 25 µM 
0 µM 
(blank) 

 

Table 19. Preparation of solution for solubility assay. 

500 µM Blank 

47.5 µL buffer 47.5 µL buffer 

2.5 µL of 10 mM stock DMSO solution 2.5 µL DMSO 
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the filter plate to prevent wicking out or evaporation of the solvents during the incubation period.  

The solubility assay was then mixed in the filter plate according to Table 19 with four wells per 

molecule.  With an adhesive plate cover on top and underneath the filter plate, it was sonicated 

for 1 minute, and shaken on a reciprocating plate shaker overnight. 

The next morning, the solution was filtered into a collection plate (384-well polystyrene 

plate).  From the filtrate, 30 µL from each well from the collection plate was transferred into a 

384-well UV plate using a multichannel pipette.  Next, 20 µL of acetonitrile was added to each 

well by pipette and shaken for 5 minutes on the plate shaker followed by centrifugation at 1000 

rpm for 3 minutes. The absorbance was scanned from 230-800 nm at 5 nm increments with 10 

flashes per well. 

 

Equation 3)  𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑎𝑡 𝜆𝑚𝑎𝑥

𝑆𝑙𝑜𝑝𝑒
(

3

5
) 

 

Finally, the solubility was determined using Equation 3 with the slope from the calibration 

plot for the molecule.  At the maximum wavelength for each compound, the average absorbance 

from the blank wells (no small molecule) was subtracted from the absorbance of the solution 

after filtration (adjusted absorbance at λmax).  The average of the solubility values were calculated 

and the standard deviations were determined.  Five small molecules (4,5-diphenylimidazole, β-

estradiol, diethylstilbestrol, 3-phenylazo-2,6-diaminopyridine) with known solubility values were 

analyzed as standards on each solubility assay plate. 
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3.5.2 Parallel Artificial Membrane Permeability Assay (PAMPA) 

In addition to solubility, permeability is an important property of drug-like molecules and 

is necessary to determine the extent of oral absorption, bio-distribution and consequently the 

target tissue uptake.166  Unlike solubility, permeability cannot be manipulated by formulations 

but rather is an inherent property of the molecule itself that can only be changed by adjustments 

to its structure.  

The absorption of orally administered substances is widely determined by their ability to 

cross the gastrointestinal tract (GI-tract), its penetration of the blood brain barrier, and its 

transport across cell membranes.167  This is governed by several different mechanisms of 

permeation including passive diffusion, active uptake, paracellular transport, and efflux. It is 

generally assumed that sufficiently lipophilic compounds are transported via passive diffusion, 

while small hydrophilic compounds (<200 Da) are transported through the paracellular route if 

not by active transport.168  However, active transport of small molecules is difficult to replicate 

with in vitro assays.  For this reason, the assessment of passive cellular absorption is the preferred 

method.   

Passive diffusion is a physiochemical process that is governed by physiochemical 

properties like lipophilicity, molecular weight, pKa, polar surface area, ionization state and 

hydrogen bond capacity.169  Drug lipophilicity is commonly used as a predictor for membrane 

permeability because membranes are primarily lipophilic in nature.170  Molecular size can also 

play a distinct role in the permeation process because larger molecules diffuse more slowly than 

smaller molecules.  Lipids within a membrane that contain hydrogen-bonding acceptor groups 
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can associate with the hydrogen-bonding solutes.  This hydrogen-bonding prevents the solutes 

from penetrating the membrane and slows down the diffusion process.  Directly related to the 

hydrogen-bonding capacity is the polar surface area.170  Polar surface area is the molecular 

surface area associated with hydrogen bonding acceptor atoms (i.e., oxygen and nitrogen) plus 

the area of the hydrogen atoms.  Finally, membranes are more permeable to non-ionized forms 

of drug than the ionized species because of their greater lipid solubility and the charged nature 

of the membranes.170 

The Caco-2 cells monolayer permeation has long been widely and successfully used to 

screen drug candidates.  However, the Caco-2 method possessed many limitations including 

expensive cell culture that could take weeks to obtain confluency with full cell differentiation, 

low throughput, variable expression of transport and metabolizing proteins, and the 

complication of multiple permeation mechanisms.167  Because of this, the Caco-2 method in 

many cases has been replaced by a parallel artificial membrane permeability assay (PAMPA).  

PAMPA is a high-throughput, inexpensive method that produces reproducible results without 

requiring cell culture.170  Although, PAMPA methods are not completely predictive of in vivo 

permeability, they can identify definitive trends in the ability of a molecule to permeate 

membranes by passive diffusion.163   
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PAMPA is typically performed in a 96-well plate with two parts, the donor plate and the 

acceptor plate (Figure 48).  The donor plate has a permeable membrane or filter along the bottom 

which aligns with the wells in the acceptor plate.  The artificial membrane, which is either 

composed of lecithin, phosphatidylcholine, hexadecane, or porcine brain lipid extract, etc. in 

organic solvents, is impregnated into the filter of the donor plate.  Buffer and compound are 

added to the donor wells while buffer is added to the acceptor wells.  With the impregnated filter 

in contact with both solutions, the assay plates are incubated for a set amount of time, and the 

concentration of compound that has passed through the membrane is determined usually by 

absorbance spectroscopy, HPLC, or LC-MS.  An illustration of the PAMPA method is shown in 

Figure 49. 

 

Figure 48. Illustration of PAMPA plates.  A) 96-well filter plate pre-coated with an 
artificial membrane with a matched 96-well receiver plate.  B) Solutions of the 
compounds in buffer are added to the filter plate on top of the artificial membrane 
(donor plate), while buffer is added to the receiver plate (acceptor plate).11 
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The effective permeability determined by cell-based or PAMPA method is calculated using 

Equation 4.  Here, dCA/dt (mg/s·mL) is the increase of drug concentration in the acceptor well 

over the incubation period.  The term A (cm2) is the surface area of the membrane that is exposed 

to the compound.  VA (mL) is the volume of the solvent in the acceptor well.  Finally, CA and CD 

(mg/mL) are the initial drug concentration in the acceptor and donor wells, respectively.170 

 

Equation 4)    𝑃𝑒𝑓𝑓 =  
𝑉𝑎

𝐴(𝐶𝐷−𝐶𝐴)
(

𝑑𝐶𝐴

𝑑𝑡
)   

 

The PAMPA assay was used to evaluate oxazole-based GW0742 analogs for their ability 

to cross a hydrophobic membrane at biological pH.  By doing so, a correlation could be made 

between their cellular bio-activity and their ability to cross the cell membrane.  High, medium 

and low permeable standards were chosen based on their in vivo permeability values found in 

 
Figure 49. Example of a PAMPA assay performed in a multi-well 
plate. 
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the Biopharmaceutics Classification System (BCS) database. The logP values calculated for each 

molecule was compared to the standard molecules to provide the degree of in vitro permeability.   

Experimental Procedure 

Reagents and Instrumentation:  All materials were used as received with no further purification.  

The following small molecules were used as standards: verapamil hydrochloride (Tocris 

Bioscience), 10,11-dihydrocarbamazepine (Alfa Aesar), and ranitidine hydrochloride (Alfa Aesar).  

Each of the small molecules were dissolved in DMSO to make 10 mM solutions (Acros, 

Spectroscopic Grade 99.9+%).   

The PAMPA assay was performed with the Millipore MultiScreen filter plates 

(MAIPNTR10) and Millipore transport receiver plates (MATRNPS50) using a 5% by volume n-

hexadecane (Acros) in n-hexane (Fisher) solution to create the artificial layer.  The absorbance 

readings were completed with a Corning Costar 96 well UV plate (3635).  1x Phosphate buffered 

saline (PBS) was prepared in 1L batches using 18 MΩ water with 3.23 mM K2HPO4·7H2O (J.T. 

Baker), 7.84 mM KH2PO4 (J.T. Baker), 5 mM KCl (Fisher), 150 mM NaCl (Fisher), and adjusted to 

pH 7.2 with HCl (Mallinckrodt) and NaOH (Fisher).  All of the absorbance readings were 

performed on an Infinite M1000 plate reader (Tecan).   

PAMPA Assay Protocol:  

The artificial membrane was prepared by carefully pipetting 15 µL of the 5% (v/v) 

hexadecane in hexane solution to each of the wells of the donor plate (assay plates as shown in 

Figure 49).  The plate was placed into a fume hood for 1 hour to ensure complete evaporation of 

the hexane.  After the hexane had evaporated, 300 µL of PBS with 5% (v/v) DMSO was added to 
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each of the wells of the acceptor plate.  The hexadecane treated donor plate was then placed on 

top of the acceptor plate taking care that the underside of the membrane is completely in contact 

with the solution in each of the acceptor wells.  Each of the compounds solutions were prepared 

in triplicate in a separate 96-well plate to 300 µM (4.5 µL of 10 mM compound solution in DMSO, 

3 µL DMSO, and 95 µL buffer).  Then, 150 µL of the compound solution was added to the donor 

wells.  For each plate, 10, 11-dihydrocarbamazepine (medium-high permeability), verapamil 

(high permeability), and ranitidine (low permeability) were used as standard molecules for 

reference.   

The lid was placed on the plates and the entire plate sandwich was placed into a closed 

container with a wet paper towel along the bottom to circumvent evaporation during the 

incubation process.  The container was then placed on a reciprocal shaker for agitation at about 

100 rpm.  The time at the beginning of the incubation was recorded, as this is a thermodynamic-

based assay.   The incubation was then allowed to continue for approximately eighteen hours. 

The next day, the plates were removed from the incubation container and the incubation 

end time was noted.  The donor plate was removed and 50 µL of the acceptor solution was 

transferred to the UV plate.  Drug solutions at the theoretical equilibrium concentration (300 µM) 

was also prepared and transferred to the UV plate.  The absorbance of the solutions in the UV 

plate was then scanned from 250-600 nm with 1 nm steps and a 5 nm bandwidth. 

 

Equation 5)  𝑙𝑜𝑔𝑃 = 𝑙𝑜𝑔 {𝐶 × − ln (1 −  
[𝐷𝑟𝑢𝑔]𝐴

[𝐷𝑟𝑢𝑔]𝐸
)} ; 𝑊ℎ𝑒𝑟𝑒 𝐶 =  (

𝑉𝐴 × 𝑉𝐷

(𝑉𝐷+ 𝑉𝐴)𝐴 × 𝑇
)  
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The relative permeability (cm/s) of the small molecules was calculated with Equation 5, 

where VD is the volume of the donor well in cm3 (150 µL), VA is the volume in the acceptor well 

in cm3 (300 µL), A is the active surface area of the membrane in cm2 (0.283 cm2), T is the 

incubation time of the assay in seconds, [Drug]A is the absorbance of the compound in the 

acceptor well after the incubation period, and [Drug]E is the absorbance of the compound at the 

concentration of the theoretical equilibrium (as if the donor and acceptor solutions were simply 

combined).171  The equation is derived from Equation 4, described previously, in which the 

change in concentration of the solute is time dependent. 

3.5.3 Results and Discussion 

 The ester and acid forms of the GW0742 oxazole analogs developed in our lab were 

evaluated for two physiochemical characteristics: aqueous solubility and permeability. The 

solubility results as well as the measured maximum wavelength obtained for these compounds 

are summarized in Table 20.  Overall, the ester oxazole derivatives were less soluble than their 
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acid counterparts.  When compared to the standards, the esters possessed low solubility while 

the acids had medium solubility in water. 

 The relative permeability for GW0742 oxazole analogs are summarized in Table 21.  

When compared to the standards, the ester form had medium permeability while the acids 

were more comparable to Ranitidine with low permeability across a hydrophobic barrier. 

Overall, the esters would be more drug-like.  

Table 20. Solubility assay results. Table includes solubilites (μM) and maximum 

wavelengths (nm) measured for each standard and compound. 

Compound 
Aqueous Solubility

 

(µM) 

Maximum Wavelength 

(nm) 
4,5-diphenylimidazole 18.71 ± 0.028 286 

β-estradiol 47.61 ± 0.014 290 
Diethylstilbestrol 60.6 ± 0.003 290 

3-phenylazo-2,6-diaminopyridine 221.28 ± 0.012 425 
KAT092013-1 67.71 ± 0.011 274 
KAT092313-2 22.52 ± 0.0068 262 
KAT092413-3 15.87 ± 0.0122 274 
KAT092513-4 22.18 ± 0.0006 274 
KAT092513-5 22.54 ± 0.0045 274 
KAT120413-1 146.46 ± 0.0289 272 
KAT101013-2 170.99 ± 0.0578 304 
KAT101013-3 152.30 ± 0.0164 272 
KAT100313-4 161.72 ± 0.058 272 
KAT101013-5 144.18 ± 0.0264 272 
JWB091313-1 20.1 ± 0.011 282 
JWB091313-2 8.67 ± 0.004 282 
JWB091313-3 6.19 ± 0.006 266 
JWB091313-4 16.31 ± 0.0018 280 
JWB091313-5 15.58 ± 0.0203 282 
JWB111913-1 97.88 ± 0.0264 284 
JWB111913-2 186.06 ± 0.0356 280 
JWB111913-3 166.58 ± 0.0293 274 
JWB111913-4 150.30 ± 0.0350 276 
JWB111913-5 84.40 ± 0.0043 274 

Maximum compound concentration was 500 μM. 
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3.6 Conclusion 

 A good SAR could be established with the ortho- and meta-oxazole containing GW0742 

analogs with an ester or acid moiety.   Overall in the cell-based transcription assay, the o-OCH3 

and m-OCH3 esters were more potent VDR inhibitors with reduced activation of PPARδ-mediated 

transcription. m-OCH3 acids able to inhibit VDR transcription possessed partial PPARδ agonism 

making them not selective, while o-OCH3 acids only showed partial agonism for PPARδ and no 

inhibition of VDR.  Although none of these analogs demonstrated VDR inhibition in the FP binding 

Table 21.  PAMPA assay results 

Compound LogP (cm/s) 

Verapamil (high) -2.81 ± 0.003 
10, 11-Dihydrocarbamazepine (medium- high) -3.22 ± 0.002 

Ranitidine (low) -3.92 ± 0.009 
KAT092013-1 -3.33 ± 0.001 
KAT092313-2 -3.35 ± 0.013 
KAT092413-3 -3.42 ± 0.002 
KAT092513-4 -3.56 ± 0.002 
KAT092513-5 -3.34 ± 0.001 
KAT120413-1 -3.63 ± 0.003 
KAT101013-2 -3.67 ± 0.001 
KAT101013-3 -3.58 ± 0.0001 
KAT100313-4 -3.72 ± 0.001 
KAT101013-5 -3.59 ± 0.0005 
JWB091313-1 -3.29 ± 0.002 
JWB091313-2 -3.37 ± 0.002 
JWB091313-3 -3.43 ± 0.0005 
JWB091313-4 3.32 ± 0.001 
JWB091313-5 -3.34 ± 0.002 
JWB111913-1 -3.63 ± 0.001 
JWB111913-2 -3.88 ± 0.0003 
JWB111913-3 -3.77 ± 0.003 
JWB111913-4 -3.88 ± 0.012 
JWB111913-5 -3.92 ± 0.005 

Permeabilities were measured using the parallel artificial membrane 
permeation assay (PAMPA) at neutral pH (pH 7.4). 
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assay, we know that solubility did not play a role and that the VDR inhibitory effect seen in cells 

was not due the molecules binding to the luciferase enzyme.  A coumarin-derived probe is being 

developed in our lab and will give insight into if these molecules bind in the LBP of VDR.  Therefore 

this project is ongoing and just like the thiazole analogs, subject to further rational design.  This 

project would also enormously benefit from a GW0742 analog VDR or PPARδ crystal structure, 

which is currently underway in Prof. Silvaggi’s lab. 
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CHAPTER 4: SYNTHESIS OF NATURAL VDR LIGAND METABOLITES AND 

THEIR INTERACTION WITH THE VITAMIN D RECEPTOR 

4.1 Introduction 

4.1.1 Metabolism of 1,25(OH)2D3  

 The major enzyme responsible for the catabolic breakdown of 1,25(OH)2D3 is the 

mitochondrial inner-membrane cytochrome p450 enzyme, CYP24A1.172, 173  As previously 

mentioned, 25(OH)D3 is formed in the liver and then shuttled to the kidney where the final 

hormonal form of vitamin D3, 1,25(OH)2D3, is made through the actions of CYP27B1.  Once 

formed, 1,25(OH)2D3 targets VDR in many different tissues.  Interestingly, expression of CYP24A1 

in target tissues is regulated by 1,25(OH)2D3 through a classic endocrine negative feedback loop.  

Major catabolism of 1,25(OH)2D3 occurs on the secosteroid’s aliphatic chain either forming C24-

oxidation pathway products or C23-hydroxylation path products (Figure 50).174  The C24 pathway 

is comprised of five enzymatic steps beginning with the 24-hydroxylation of 1,25(OH)2D3 to yield 

1,24,25(OH)3D3.  This metabolite is oxidized to the ketone, 24-oxo-1,25(OH)2D3,  and then 

hydroxylation at C-23 to generate 24-oxo-1,23,25(OH)3D3.175, 176  This compound is metabolized 

by oxidative cleavage of the carbon-carbon bond between C-23 and C-24 to produce 24,25,26,27-

tetranor-1,23(OH)2D3.177  The C23 alcohol is converted to calcitroic acid, a main excretory product 

of 1,25(OH)2D3 in bile.178, 179  The 1,25(OH)2D3-induced C24 pathway has been observed in many 

different cell lines including kidney, bone, intestine, skin and breast thus demonstrating this 
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pathway can occur in many different tissues.180-182  The main role of C24 oxidation pathway is 

most likely to regulate the 1,25(OH)2D3 biological signal inside target cells.  This is supported by 

cell-based experiments where CYP24A1 activity was blocked by ketoconazole, an antifungal 

 

Figure 50.  Enzymatic pathways catalyzed by CYP24A1 with 1,25(OH)2D3 as a substrate.  The 
C24-oxidation pathway products are on the left and the C23-hydroyxlation products are on the 
right. 
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derivative known to inhibit P450 activity.  The result is a build-up of 1,25(OH)2D3 and extended 

hormone action.183  In CYP24A1 deficient mice, hypercalcemia and hypervitaminosis D3 was 

observed due to high serum levels of 1,25(OH)2D3 and their inability of clearance.184  

Furthermore, when VDR-knockout mice were administered 1,25(OH)2D3, it was observed that the 

induction of CYP24A1 expression is dependent on VDR and is required for the production of 

calcitroic acid and 1,25R(OH)2D3-26,23S-lactone (final product of C23 hydroxylation pathway).185, 

186  

 The C23 hydroxylation pathway consists of four enzymatic steps starting with the 

formation of 1,23S,25(OH)3D3 from 1,25(OH)2D3.187  This is further converted to 

1,23S,25,26(OH)4D3, then to 1,25R(OH)2D3-26,23S-lactol and finally 1,25R(OH)2D3-26,23S-

lactone.174  The biological activity of the C23 hydroxylation metabolites is unclear but it has been 

speculated that 1,25R(OH)2D3-26,23S-lactone could act as a VDR antagonist thus suggesting the 

lactone pathway proves a fail-safe mechanism to efficiently and rapidly diminish the vitamin D 

signal.188, 189 

 The binding and transcriptional activity of calcitroic acid with VDR was investigated in our 

lab.  It was hypothesized that the final metabolite of the C24 pathway, a molecule that cannot be 

further oxidized by CYP24A1 enzymes, would be more metabolically stable and may bind and 

inhibit VDR-mediated transcription. 

4.1.2 Lithocholic Acid Metabolism  

Bile acids are the end products of hepatic cholesterol catabolism and acts as an emulsifier 

for ingestion and intestinal absorption of hydrophobic nutrients like cholesterol, fatty acids and 
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lipid-soluble vitamins like vitamin D.  Primary bile acids are synthesized from cholesterol in the 

liver through a series of enzymatic reactions catalyzed by cytochrome p450 enzymes such as 

CYP7A1, CYP7B1 and/or CYP27A1 where CYP7A1 accounts for 50% or more of bile production in 

humans.190  They are then secreted in bile as glycine or taurine conjugates where they assist in 

lipid digestion and absorption.  Most bile acids are reabsorbed in the intestine and recirculate to 

the liver. Others are converted to secondary bile acids in the intestinal microflora, such as 

deoxycholic acid (DCA) and lithocholic acid (LCA).191   

Secondary bile acids, like LCA, are toxic in higher concentrations when absorbed and can 

promote the development of liver disease and colorectal cancer. VDR has be found to act as a 

bile acid sensor and is involved with bile acid metabolism by inducing a LCA detoxification 

mechanism in the liver and intestine.  The activation of VDR by either LCA or 1,25(OH)2D3 induces 

expression of CYP3A4, the cytochrome p450 enzyme responsible for the removal of harmful 

secondary bile acids. The conversion of cholesterol to bile acids is tightly regulated to maintain 

homeostasis. Two receptors in particular, VDR and farnesoid X receptor (FXR), are part of this 

feedback regulation (Figure 51).190 High concentrations of bile acids activate FXR resulting in 

suppressed bile acid biosynthesis.  Activated FXR also stimulates fibroblast growth factor (FGF) 

19 (in humans) and 15 (in mice) transcription which signals through hepatocytes to suppress 

CYP7A1 expression192.  Interestingly, it has been observed that VDR-null mice have increased bile 

acid levels and decreased expression of FGF15. This phenotype has also been observed in FXR-

null mice.  Furthermore, 1,25(OH)2D3 suppressed bile acid synthesis through a mechanism that 

involved regulation of FGF15 by VDR.193, 194  This evidence shows that both FXR and VDR are 
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required for FGF15 (19) expression and that VDR plays an important role in the regulation of bile 

acids which may contribute to further protection against colorectal cancer.  

4.1.3 VDR Ligand Metabolite Binding 

In vivo studies conducted by DeLuca et al demonstrated that vitamin D deficient rats 

administered high concentrations of LCA showed induction of the vitamin D dependent calcium 

binding protein, calbindin-D9k.  However this link between LCA and calcium homeostasis was 

quickly dismissed when rats with normal vitamin D levels showed no effect from LCA.  This could 

be explained by the lower binding affinity LCA has compared to 1,25(OH)2D3.195   In 2014, Rochel 

et al crystallographic studies revealed that two molecules of LCA bind to two distinct sites on the 

VDR LBD of zebra fish (Figure 52).196  The first LCA molecule binds to the VDR ligand binding 

pocket (LBP) with a reversed orientation compared to 1,25(OH)2D3.  The binding requires VDR to 

rearrange near helix 6 (H6) where LCA interacts mainly through hydrophobic interactions and 

weaker H-bonds with residues through water molecules with zSer265, zArg302, zHis333, and 

 

Figure 51. Summary of the role VDR and FXR in bile acid metabolism. 
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zHis423 and direct contacts with zTyr175 and zSer306.  These weaker interactions explain the 

lower affinity of LCA for VDR and its ability to activate VDR-mediated transcription only at high 

micromolar concentrations.  The second LCA molecules is slightly exposed to water and is 

anchored to VDR through its C3 hydroxyl group forming direct H-bonds with zSer263 (H3) and 

zGln267 (H3).  This site is of considerably lower affinity compared to the first site but importantly 

stabilizes the active protein conformation. 

In recent years, LCA has been investigated as an important biological VDR ligand because 

of 1) its selectivity for VDR among other NRs and 2) its inability to induce hypercalcemia.  Table 

22 shows a list of compounds that have been investigated.197, 198 The results show that 

esterification of the LCA side chain carboxyl group with methyl, ethyl, and benzyl moieties 

 

Figure 52. zVDR LBD crystal structure bound to two LCA molecules. A) The overall structure 
of VDR LBD receptor with two ligand binding sites.  B) Comparison of the interactions 
between VDR and LCA (pink) and VDR and 1,25(OH)2D3 (orange) in the first binding site. The 
hydroxyl groups of LCA forming H-bonds are labeled in black. Specific interactions between 
VDR and 1,25(OH)2D3 that are absent in LCA are labeled in orange. Specific interactions 
between VDR and LCA that are absent for 1,25(OH)2D3 are labeled pink.  Red spheres 
represent water molecules. 
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drastically decreases transactivation. However, esterification of the C3 hydroxyl group increases 

VDR activity.  LCA formate and LCA acetate activate VDR three times and thirty times the potency 

of LCA, respectively.  Structure-function analysis and docking models have even shown that LCA 

acetate interacts with H3 and H4/5 residues in VDR LBP differently than 1,25(OH)2D3 suggesting 

differential cofactor recruitment and selective physiological function.  Furthermore, LCA 

propionate is as potent a VDR agonist as LCA acetate, while LCA isobutyrate and LCA 

hemisuccinate showed a decrease in VDR activation compared to LCA. 

Table 22.  Derivatives based on LCA structure  

 

R R1 Compound 

OH H LCA 
OH CH3 LCA methyl ester 
OH C2H5 LCA ethyl ester 

OH CH2C6H5 LCA benzyl ester 
HCOO H LCA formate 

CH3COO H LCA acetate 
C3H7COO H LCA isobutyrate 

COOHC2H4COO H LCA hemisuccinate 
CH3COO CH3 LCA acetate methyl ester 

CH3CH2COO H LCA propionate 
. 
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4.1.4 Proposed VDR Ligand Metabolites  

Although many LCA derivatives have been investigated as VDR agonists, none have been 

studied as VDR-coactivator inhibitors. Herein we report the first look at LCA phase 1 and phase 2 

metabolites evaluated as VDR-coactivator inhibitors.  Phase 1 metabolic reactions include 

oxidation, hydrolysis and reduction reactions, while phase 2 are produced through conjugation 

 

Figure 53.  The phase 1 and phase 2 metabolites evaluated as VDR inhibitors. 
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reaction with glucuronic acid, sulfate and glycine.  Our goal was to identify new natural VDR 

ligands.  Figure 53 shows the phase 1 and phase 2 metabolites evaluated in our lab and their 

biological activity. 

4.2 Chemistry 

4.2.1 Synthetic Strategy 

LCA was the starting material used to synthesize LCA acetate and LCA sulfonate (Scheme 

7). A base catalyzed esterification reaction using 4-dimethylaminopyridine and acetyl chloride 

produced LCA acetate at a 95% yield.199  To obtain LCA sulfonate, sulfuric acid and acetic 

anhydride in pyridine were used as oppose to the more “classical” method using pyridine sulfur 

trioxide to make sulfonate steroids.200, 201  According to the literature, the “classical” method had 

low conversion of the starting alcohol (in this case LCA), produced polymeric byproducts resulting 

in difficulties during purification and low yields.  The final product was converted into an 

ammonium salt using 25% ammonia acetate at 0oC to receive a final yield of 97%.  For the 

synthesis of O-glucuronide I and II (Scheme 8), LCA methyl ester (LCME) was used as starting 

material.  A Koenigs-Knorr condensation reaction of LCME with acetobromo-α-D-glucuronic acid 

methyl ester catalyzed by CdCO3 in dry benzene at reflux was performed to make LCME O-

 

Scheme 7. Synthetic scheme for converting LCA to LCA acetate and LCA sulfonate. i) pyridine, 

acetyl chloride and 4-DMAP at room temperature, 1 hour.  ii) sulfuric acid, acetic anhydride, 

and pyridine, 50-55oC, 30 minutes. iii) 25% ammonia water, 0oC, 15 minutes. 
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glucuronide I.202  The β-glycosidic linkage with LCA methyl ester at the C-3 position was confirmed 

by 1HNMR with the appearance of a doublet at 4.69 ppm and the disappearance of the 

brominated anomeric proton doublet 6.67ppm.  Hydrolysis with sodium hydroxide afforded the 

final product, LCA O-glucuronide I, at an overall yield of 61%.   Figure 54 shows the proposed 

mechanism for the Koenigs-Knorr glycosylation reaction.  The acyl protected sugar molecule is 

first activated through an SN1 removal of the bromine.  The reaction then proceeds through a 

process called neighboring group participation with the acetoxy substituent to form an 

acyloxonium cation intermediate that is stabilized by both acetoxy oxygen atoms.  The sugar is 

now a good acceptor/electrophile for the donor/nucleophile, LCA, to attack at the anomeric 

carbon and form the final LCA O-glucuronide I product.203-205   

 

Scheme 8.  Synthetic scheme for converting LCME to LCA O-glucuronide I and II. i) Dry benzene, 

CdCO3, acetobromo-α-D-glucuronic acid methyl ester, reflux, 5 hours, ii) MeOH, 1M NaOH, 

room temperature, 4 hours followed by 5% HCl. iii) TBDMSCl, DMF, imidazole, room 

temperature,  iv) THF, 2M NaOH, 75oC, 24 hours followed by 2M HCl, v) pyridine, CDI, reflux, 3 

hours, vi) a) NaH, tetrabutylammonium glucuronate, 50oC, 4-5 hours, b) acetic acid, vii)  THF, 

tetrabutylammonium fluoride, 40oC, H2O. 
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LCA O-glucuronide II was synthesized in four steps starting with the protection as t-

butyldimethylsilylether (TBS).   TBS was chosen as a protecting group because it is 104 more stable 

to basic hydrolysis than trimethylsilyl (TMS).206  However, a t-butyldiphenylsilylether would have 

allowed TLC monitoring omitting the use of a stain.  Hydrolysis of LCME-TBS afforded the 

corresponding carboxylic acid, LCA-TBS.  Next, glucuronic acid was converted into a 

tetrabutylammonium salt (Scheme 9), which not only protected the free carboxyl group but also 

rendered it soluble in organic solvents.207  In a one pot reaction, LCA-TBS was activated with 1,1’-

carbonyldi-imidazole followed by the addition of tetrabutylammonium glucoronate.  The 

reaction was quenched with acetic acid to produce LCA-TBS O-glucuronide II.  To avoid accidental 

cleavage of the coupled sugar ring, deprotection of the TBS group was accomplished under 

 

Scheme 9.  Tetrabutylammonium salt formation of glucuronic acid. 

i) MeOH, 40oC, 1 hour. 

 

Figure 54. Mechanism of the Koenigs-Knorr glycosylation reaction to produce LCA O-
glucuronide I.  



133 
 

neutral conditions with tetrabutylammonium fluoride as oppose to acidic conditions.206  The 

fluoride-based deprotection is driven by the formation of a Si-F bond which is about 30kcal/mol 

stronger than a Si-O bond.  This reaction was quenched with water to yield the final product, LCA 

O-glucuronide II.  The final product was purified by silica gel column to remove any unreacted 

LCA and then recrystallized with EtOH to yield about 40 mg of product with an overall yield of 

10%.  Although this multistep synthesis produced little product, it was beneficial to have the 

sugar as the donor and LCA as the acceptor molecule because it omitted unnecessary protection 

and deprotection of the sugar hydroxyl groups.   

4.2.2 Characterization  

  All phase 1 metabolites, lithocholic acid, lithocholic methyl ester and taurolithocholic acid 

were purchase from Sigma-Aldrich and glycolithocholic acid was purchased from Santa Cruz 

Biotechnology. Calcitroic acid was purchased from Toronto Research Chemicals.  Synthesized 

compounds were either purified via recrystallization or normal phase flash chromatography (SPI 

Biotage, silica gel 230-400 mesh).  Compound characterization was performed using a Shimadzu 

2020 LC-MS (single quadrupole) instrument with compounds directly injected.  NMR spectra 

were recorded on a Bruker 300MHz instrument with samples diluted in either CDCl3 or DMSO- 

D6. 

LCA Acetate: 95% yield; Lithocholic acid (0.5 g, 1.3 mmol), was 

dissolved in dry pyridine (10mL) under N2 gas and cooled to 0oC.  

4-dimethylaminopyridine (0.02 g, 0.13 mmol) and acetyl chloride 

(1.1 mL, 16 mmol) were added to the solution.  The reaction was  
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stirred at room temperature and monitored by TLC using EtOAc-Hexanes-MeOH (4:1:1, v/v/v) 

and cerium molybdate as a developing stain.  After 1 hour, water (3 mL) was added and the 

solution was evaporated under reduced pressure.  DCM (15 mL) was used to dissolve the residue, 

which was subsequently washed with saturated aqueous NaCl (20 mL) and water (15 mL).  The 

organic phase was dried over Na2SO4, then filtered and evaporated to dryness.  The crude 

product was co-evaporated with toluene (10 mL x2), ethanol (10 mL x2), acetonitrile (10 mL x 2) 

and DCM (10 mL x 2) in order to remove traces of pyridine and purified by silica gel 

chromatography with CH3OH-CH2Cl2 (0%-5% strong). 1H-NMR (300 MHz) (CDCl3) δ 4.75 (m, 1H, 

H-3), 2.05 (s, 3H, -CH3, Ac), 0.95 (m, 6H, H-18/19, 21), 0.67 (s, 3H, H-18/19); 13C NMR δ 178.57, 

170.72, 74.43, 56.51, 55.99, 42.75, 41.89, 40.42, 40.16, 35.79, 35.35, 35.03, 34.58, 32.25, 31.06, 

29.69, 28.18, 26.32, 23.33, 20.83, 18.55, 18.28, 12.05; MS DUIS (-ve) calcd. m/z for C26H42O4 [(M)] 

418.3, found [(M-1)-] 417.4. 

 

LCA Sulfonate: 97% yield; Sulfuric acid (0.16 mL, 3 mmol) 

and acetic anhydride (0.28 mL, 3 mmol) were mixed with 

dry pyridine (5 mL) and after 5 minutes of stirring at 50-55oC 

a solution of lithocholic acid in 2 mL of pyridine was added.  

The mixture was stirred for 30minutes at the same conditions, cooled to 0oC, and 25% ammonia 

water (0.74 mL) was added.  After 15 minutes of stirring, the precipitate was filtered and the 

filtrate was placed on a rotary evaporator for concentrating. The product isolated was not 

purified further.  1H-NMR (300 MHz) (DMSO-D6) δ 3.96 (m, 1H, H-3), 0.88 (m, 6H, H-18/19, 21), 

0.61 (s, 3H, H-18/19); 13C NMR δ 175.18, 75.98, 56.41, 55.93, 42.66, 35.77, 35.47, 35.24, 24.53, 
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33.77, 31.21, 31.08, 28.16, 27.27, 26.52, 24.31, 23.65, 20.85, 18.59, 12.34; 13CDEPT-135 δ 

Negative (-) CH2: 76.05, 56.42, 55.94, 42.06, 40.33, 35.82, 35.51, 24.31, 18.59, 12.34 Positive (+) 

CH and CH3: 40.09, 35.29, 33.80, 31.21, 31.13, 28.16, 27.27, 26.53, 23.64, 20.85; MS DUIS (-ve) 

calcd. m/z for C24H40O6S [(M)] 456.3, found [(M-1)-] 455.4. 

 LCME O-glucuronide I: 43% yield; To a solution of lithocholic 

methyl ester (400 mg) in anhydrous benzene (16 mL) was 

added cadmium carbonate (400 mg), acetobromo-α-D-

glucuronic acid methyl ester (400 mg) and a quantity of 

molecular sieves (400 mg).  The mixture was stirred at reflux.  After 1 hour and 3 hours, additional 

quantities of acetobromo-α-D-glucuronic acid methyl ester (200 mg) and cadmium carbonate 

(200 mg) were added and the mixture stirred for 7 hours and was monitored by TLC using hexane-

EtOAc-AcOH (50:50:1, v/v/v) and cerium molybdate as the developing stain.  The precipitate was 

removed by filtration and washed with EtOAc.  The filtrate and washings were combine and 

evaporated to dryness under reduced pressure and the oily residue was recrystallized in MeOH 

(5mL) to make white crystals.   1H-NMR (300 MHz) (CDCl3) δ 5.28-5.24 (m,2H), 5.01-4.95 (t, 1H, 

J= 9Hz), 4.69-4.66 (d, 1H, J= 9Hz, anomeric), 4.06-4.03 (d, 1H, J= 9Hz), 3.78 (s, 3H, Ac), 3.69 (s, 3H, 

Ac), 3.62 (m, 1H, H-3), 2.07, 2.04 (s, 9H, COCH3),  0.92 (m, 6H, H-18/19, 21), 0.65 (s, 3H, H-18/19); 

13C NMR δ 174.76, 170.21, 169.35, 169.28, 167.32, 99.57, 80.56, 72.61, 72.20, 71.57, 69.50, 

56.28, 55.89, 52.82, 51.46, 42.70, 42.17, 40.30, 40.09, 35.81, 35.35, 35.09, 34.63, 33.99, 31.05, 

30.99, 28.16, 27.09, 27.01, 26.23, 24.16, 23.35, 20.83, 20.71, 20.63, 20.51, 18.25, 12.01; MS DUIS 

(+ve) calcd. m/z for C38H58O12 [(M)] 706.4, found [(M+ 18 (NH4))+] 724.8. 
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LCA O-glucuronide I: 100% yield; To a solution of LCME O-

glucuronide I (70 mg) in MeOH (8 mL) an aqueous solution 

of 2M NaOH was added dropwise until the mixture was 

basic.  The reaction was stirred at room temperature 

overnight and monitored by TLC using hexanes-EtOAc-AcOH (50:50:1, v/v/v) and cerium 

molybdate as the developing stain.  After most of the solvent was removed by rotary evaporation, 

the reaction product was diluted with water, neutralized with 3M HCl and then evaporated to 

dryness.  The residue was re-suspended in anhydrous EtOH (10 mL) and the insoluble material 

was filtered off and washed with EtOH.  The combined filtrate was evaporated and the residue 

was recrystallized from MeOH resulting in white, flakey solid.  1H-NMR (300 MHz) (DMSO-D6) δ 

4.34-4.31 (d, 1H, J= 9Hz, anomeric), 3.61-3.58 (d, 1H, J= 9Hz), 3.33-3.27 (2H, t, J= 9Hz), 3.20-3.14 

(1H, t, J= 9Hz), 2.93 (m, 1H, H-3),  0.88 (m, 6H, H-18/19, 21), 0.61 (s, 3H, H-18/19); 13C NMR δ 

175.30, 170.86, 101.33, 77.75, 76.55, 76.00, 73.65, 72.01, 56.45, 55.97, 51.65, 42.72, 41.86, 

35.80, 35.29, 34.26, 31.13, 30.83, 28.17, 27.20, 26.85, 26.55, 24.31, 26.55, 24.31, 23.49, 20.86, 

18.59, 12.32 ; MS DUIS (-ve) calcd. m/z for C30H48O9 [(M)] 552, found [(M-1)-] 551. 

LCME-TBS: 84% yield; To a solution of LCME (3 g, 0.0077 mols) 

and imidazole (3.74 g, 0.0231 mol, 3 equiv.) in dry DMF (28 

mL) tert-butyldimethylsilyl chloride (3.48 g, 0.0231 mols, 3 

equiv.) was added dropwise.  The mixture was stirred 

overnight at room temperature and monitored by TLC using EtOAc-DCM- AcOH (5:95:1, v/v/v) 

and cerium molybdate as the developing stain.  Upon completion, the reaction was diluted with 

water and extracted with DCM (25 mL x 3) and then dried using rotary evaporation.  The resulting 
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crude product was purified using silica gel chromatography using EtOAc-Hexanes with 1% AcOH 

(1% -20% strong). A white solid was isolated.  1H-NMR (300 MHz) (CDCl3) δ 3.67 (s, 3H, Ac) 3.59 

(m, 1H, H-3),  0.92 (m, 6H, H-18/19, 21), 0.90 (s, 9H, t-butyl-Si), 0.63 (s, 3H, H-18/19), 0.06 (s, 6H, 

2CH3-Si); 13C NMR δ 174.90, 135.15, 121.89, 72.85, 56.39, 55.93, 51.49, 42.70, 42.27, 40.20, 

40.12, 36.90, 36.49, 35.84, 35.56, 35.36, 34.57, 31.57, 31.06, 31.00, 28.18, 27.28, 26.39, 25.97, 

25.74, 24.20, 23.38, 20.79, 18.33, 18.24, 12.00; MS DUIS (+ve) calcd. m/z for C31H56O3Si [(M)] 504, 

found [(M-TBDMS)]+ 373 and [(M+1+imidazole)+] 574. 

LCA-TBS: 64% yield; LCME-TBS (3.25 g, 6.45 mmol) was 

dissolved in THF (20 mL) and to it 2M NaOH was added until 

it reached pH=10.  The reaction was stirred at 75oC for 24 

hours and monitored by TLC using EtOAc-Hexanes-AcOH 

(3:2:1, v/v/v) and cerium molybdate as the developing stain. Once complete, most of the solvent 

was removed by rotary evaporation. The reaction product was diluted with water and acidified 

with 3M HCl to pH=3.  The solid formed was collected and purified by silica gel chromatography 

using EtOAc-Hexanes with 1% AcOH (1-20% strong).  A white solid with low solubility in MeOH, 

EtOH and CHCl3 was obtained.  1H-NMR (500 MHz) (DMSO-D6) δ 8.45 (s, 1H, COOH), 3.58 (m, 1H, 

H-3),  0.88 (m, 6H, H-18/19, 21), 0.85 (s, 9H, t-butyl-Si), 0.61 (s, 3H, H-18/19), 0.02 (s, 6H, 2CH3-

Si); 13C NMR δ 175.14, 72.56, 56.45, 56.09, 42.80, 42.05, 37.11, 35.90, 35.49, 35.24, 34.62, 31.34, 

31.24, 28.11, 27.26, 26.53, 26.28, 24.28, 23.62, 20.92, 18.65, 18.23, 12.36; MS DUIS (-ve) calcd. 

m/z for C31H54O3Si [(M)] 490.3, found [(M-1)-] 489.4. 
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Tetrabutylammonium Glucuronate:  ~100% yield; Glucuronic acid (2.9 

g) was suspended in methanol (25 mL) to which tetrabutylammonium 

hydroxide 30-hydrate (12 g) was added.  The mixture was stirred at 

room temperature for 1 hour until a clear solution resulted.  The solvent was removed in a rotary 

evaporator at 40oC, thereby yielding a syrup.  Addition of acetone (100 mL) resulted in 

precipitation of the tetrabutylammonium glucoronate.  That salt was separated by filtration and 

washed with acetone.  The filtrate and washings, on further concentration in a rotary evaporator, 

resulted in precipitation of more salt.  A flakey, white solid was obtained.  1H-NMR (500 MHz) 

(DMSO-D6) δ 5.75- 5.72 (d, 1H, J= 9Hz), 4.50-4.58 (d, 1H, J= 6Hz), 3.86-3.58 (m, 4H,OHs), 3.19-

3.14 (m, 8H), 1.57 (m, 8H), 1.37-1.25 (m, 8H), 0.96-0.91 (t, 12H, J= 7.5Hz); MS DUIS (-ve) calcd. 

m/z for C22H45NO7 [(M)] 435.2, found [(M-tetrabutylammonium)-] 193. 

  LCA-TBS-O-glucuronide II:  >100% yield (crude); LCA-TBS 

(1.0 g, 2.04 mmol) and 1,1’-carbonyliimidazole (0.66 g, 

4.08 mmol, 2 equiv.) were dissolved in dry pyridine (40 

mL).  The mixture was stirred at reflux overnight and was 

monitored by both TLC using EtOAc-Hexanes-AcOH (4:1:1, v/v/v) and cerium molybdate as a 

developing stain and mass spectrometry.  The development of a peak at 542 m/z in the positive 

mode indicated the formation of LCA-TBS-imidazole coupled product.  To the same reaction pot, 

tetrabutylammonium glucuronate (2.22 g, 5.1 mmol, 2.5 equiv.), dry pyridine (10 mL), and 

sodium hydride (15 mg, 0.04 mmol, 0.02 equiv.) were added and the reaction was stirred at 50oC 

for 5 hours.  The reaction was monitored by TLC (same conditions as above) and mass 

spectrometry.   The development of a peak at 666 m/z in the negative mode indicated the 

 

 



139 
 

formation of LCA-TBS-O-glucuronide II product.  The reaction was stopped by careful addition of 

water.  After the solution was made just acidic with acetic acid, the product was extracted with 

EtOAc (25mL x 3).  The EtOAc layer was dried over Na2SO4 and then evaporated to dryness with 

a rotary evaporator.  The final yellow oil was not purified and was directly used for the next 

reaction. Crude sample: 1H-NMR (300 MHz) (DMSO-D6) δ 4.69-4.67 (d, 2H, J= 6Hz anomeric), 3.47 

(m, 1H, H-3),  0.89 (m, 6H, H-18/19, 21), 0.83 (s, 9H, t-butyl-Si), 0.63 (s, 3H, H-18/19), 0.07 (s, 6H, 

2CH3-Si); 13C NMR δ 178.36 (glucuronic acid COOH) and 175.73 (LCA COOR) MS DUIS (-ve) calcd. 

m/z for C36H62O9Si [(M)] 667, found [(M-1)-] 666. 

LCA O-glucuronide II:  10% yield; LCA-TBS-O-glucuronide 

II (1.3 g, 2.0 mmol) was dissolved in a 1.0M THF solution 

of tetrabutylammonium fluoride (1.66 mL, 3 equiv.).  The 

reaction was stirred at 40oC for 2 days and was monitored 

by mass spectrometry with the disappearance of the startming material peak at 666 m/z in the 

negative mode.  When complete, the reaction was quenched with addition of water and washed 

with EtOAc (3x).  The EtOAc layer was dried over MgSO4 and dried by rotary evaporation.  The 

crude yellow oil re-suspended in EtOH and the insoluble solid was filtered and washed with EtOH.  

The filtrate was collected and dried.  The residue was then purified using silica gel 

chromatography with MeOH-EtOAc with 1%AcOH (0-60% strong) to remove the LCA impurity.  

Fractions containing the product were dried and then recrystallized with EtOH to produce a 

cream colored solid.  1H-NMR (300 MHz) (DMSO-D6) δ 5.23-3.77 (m, 5H, sugar-ring protons), 3.46 

(m, 1H, H-3),  2.28-2.22 (m, 0.88 (m, 6H, H-18/19, 21), 0.62 (s, 3H, H-18/19); 13DEPT-135 δ 

Negative (-) CH2: 56.48, 40.25, 36.78, 35.64, 31.11, 30.86, 28.14, 27.38, 26.64, 20.89, Positive (+) 
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CH and CH3: 93.07, 89.76, 70.77, 70.34, 56.52, 42.01, 40.81, 40.53, 40.43, 40.25, 39.98, 39.70, 

35.86, 35.21, 23.74, 19.02, 18.62, 12.34.   MS DUIS (-ve) calcd. m/z for C30H48O9 [(M)] 552, found 

[(M-1)-] 551. 

4.3 Modulation of VDR-Coactivator Binding by VDR Ligand Metabolites 

 Table 23 summarizes the binding results for phase 1 metabolites of VDR ligands.  All 

compounds but LCA showed no induction of the VDR-SRC2-3 interaction.  Surprisingly, LCA had 

low agonistic binding at an estimated value greater than 150 μM although activity of LCA has 

been reported in the range of 4-6 µM.208 Interestingly, the VDR-SRC2-3 binding was inhibited with 

an IC50= 13.6 ± 4.6 μM.  Ursodeoxycholic acid, cholic acid, and deoxycholic acid were inactive as 

antagonist, while chenodeoxycholic acid and hyodeoxycholic acid exhibited low inhibition 

affinities at values greater than 150 μM.  The poor inhibition by these compounds could be 

contributed to the additional hydroxyl groups.  VDR-LBD has a very hydrophobic pocket with 

hydrogen bonding occurring at the outer ends of the pocket.  Hydroxyl groups in this region might 

promote unfavorable binding.  Interestingly, calcitroic acid was the most potent inhibitory 

metabolite with an IC50 value two times as potent as LCA.  The comparable potency of these two 

Table 23. Modulation of VDR-Coactivator binding in the presence of phase 1 VDR 

ligand metabolites 

Compound 

Recruitment of SRC-2-3 
to VDR 

EC
50

 (µM) 

Inhibition of SRC2-3 VDR 
Interaction 
IC

50 
(µM) 

Ursodeoxycholic Acid Inactive Inactive 
Lithocholic Acid >150 13.6 ± 4.6 

Cholic Acid Inactive Inactive 
Deoxycholic Acid Inactive Inactive 

Chenodeoxycholic Acid Inactive >150 
Hyodeoxycholic Acid Inactive >150 

Calcitroic Acid Inactive 6.12 ± 2.1  
The maximum concentration used for this assay was 450 μM of each compound. 
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compounds could be contributed to the absence of any hydroxyl groups on the B and C rings and 

their ability to make favorable hydrogen bonds at each end of the molecules (C3 –OH and C25 –

COOH).  As expected, LCA showed agonistic behavior in the same experiments at higher 

concentrations, as seen in Figure 55, A.  It can be speculated that the availability of two VDR 

binding sites for LCA might be responsible for this behavior. However, we also observed a large 

increase in fluorescence polarization and fluorescence intensity using a Texas Red labeled SRC2-

3 (Figure 55, B), which is an indication of aggregation between LCA and the fluorescent probe. 

This affect has been observed with other compounds for example GW0742, where aggregates 

between compound and probe and increases the fluorescence intensity and polarization in the 

absence of VDR.150  LCA phase 2 metabolites were also investigated using the fluorescence 

polarization-based binding assay (Table 24).  None of the compounds were able to induce VDR-

coactivator binding.  However, changes to the C3 hydroxyl group versus modification to the C25 

position still allowed for inhibition of VDR-coactivator interactions.  As previously discussed, LCA 

acetate is a known VDR agonist with potency 30 times greater than LCA but has never been 

evaluated as a VDR antagonist.    Although agonistic binding of LCA acetate was not observed in 

 

Figure 55.  A) LCA effect on the interactions between VDR and Alexa Fluor 647-labeled 
SRC2-3 coactivator.  B) LCA effect on VDR and Texas Red-labeled SRC2-3  
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this 

assay, LCA and LCA acetate have comparable inhibitory effects on the interactions between VDR 

and coactivator.  Tauro-LCA was about three times more potent than glycol-LCA and the 

sulfonate was less inhibitory than acetate.  When comparing the positioning of glucuronic acid 

on LCA, LCA O-glucuronide II was 10 times more potent than LCA O-glucuronide I. 

 

Table 24. Modulation of VDR-Coactivator binding in the presence of phase 2 VDR 

ligand metabolites  

Compound 

Recruitment SRC2-3 

VDR Interaction 

EC
50 

(µM) 

Inhibition of SRC2-3 VDR 

Interaction 

IC
50 

(µM) 

Glyco-LCA Inactive 40.1 ± 8.0 
Tauro-LCA Inactive 14.5 ± 4.3 

LCA Acetate Inactive 11.02 ± 3.2 
LCA O-Glucuronide I Inactive 28.7 ± 8.8 
LCA O-Glucuronide II Inactive 2.90 ± 0.6 

LCA Sulfonate Inactive 23.3 ± 4.3 
The maximum concentration used for this assay was 450 μM of each compound  
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4.4 Modulation of VDR-Mediated Transcription by VDR Ligand Metabolites 

 Table 25 summarizes the VDR transcription data obtained for LCA, its phase 1 metabolites 

and calcitroic acid.  Surprisingly, LCA was unable to activate VDR-mediated transcription in cells 

although the reported activation was observed in the presence of overexpressed RXR. Thus, the 

RXR 

dimer is essential to mediate the agonistic activity of LCA. As expected from the FP-binding data, 

all the other LCA phase 1 metabolites did not activate transcription.  Calcitroic acid showed 

exciting transcription data.  As previously thought, metabolites derived from CYP24A1-mediated 

catabolism like calcitroic acid would be inactive intermediates of vitamin D degradation and thus 

serve no physiological function.  However, our data demonstrates that calcitroic acid possesses 

partial agonistic activity at 16.2%, although at higher concentration and to a lower degree than 

1,25(OH)2D3.  In addition, calcitroic acid was the only compound in this series to inhibit VDR-

mediated transcription at a low micromolar level with little toxic effects, which is consistent with 

the FP-binding data from above. Most interestingly, as calcitrioic acid inhibits the binding of 

Table 25. Modulation of VDR transcription in the presence of phase 1 VDR ligand 

metabolites 

Compound 
VDR Transcription 

EC
50 

(µM)a 

VDR Transcription 
IC

50 
(µM)a 

Cytotoxicity 
LD50 (µM)b 

Ursodeoxycholic Acid Inactive 66.3 ± 39.5 Non-toxic 
Lithocholic Acid Inactive 35.9 ± 4.4 >50 

Cholic Acid Inactive >100 Non-toxic 
Deoxycholic Acid Inactive 40.0 ± 2.24 >150 

Chenodeoxycholic Acid Inactive 61.3 ± 11.0 >150 
Hyodeoxycholic Acid Inactive 62.7 ± 26.9 Non-toxic 

Calcitroic Acid 2.56 ± 1.04 (16.2%) 3.20 ± 2.4 >100 
aTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under control of a 24-
hydroxylase promoter with LCA and its phase 1 metabolites as well as 1,25(OH)2D3 metabolite, calcitroic 
acid. Efficacy, shown in parenthesis, is in respect to full activation with 1,25(OH)2D3. bCell- TiterGlo 
(Promega). Maximum concentration used was 150 μM. 
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1,25(OH)2D3 it also acts a partial agonist at nearly the same concentration (Figure 56). Further 

studies will be conducted to determine the physiological role of calcitroic acid especially in 

respect to calcium homeostasis.  Only LCA had a moderately toxic effect on the cells.   
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Figure 56. Combined dose response curves showing partial 
agonistic activity (pink) and competitive inhibition (in the 
presence of 1,25(OH)2D3) (green) of calcitroic acid with VDR. 
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 In the 2-hybrid assay (Table 26), LCA showed agonistic results that coincides with the 

literature.198  It was able to recruit SRC1 coactivator and activate transcription with an IC50= 2.63 

± 1.75 μM, however the effects was only 35.2% of that of 1,25(OH)2D3 (Figure 57).   

LCA inhibited transcription at a moderate level that was comparable to the results found in the 

transcription assay (Table 25). Again, calcitroic acid was a partial agonist but did not have any 

inhibitory effect on the recruitment of SRC1. All other LCA phase 1 metabolites did not activate 

transcription thus suggesting unfavorable interactions with VDR due to extra hydrogen bond 

donor/acceptors in the ring system. Deoxycholic acid, chenodeoxycholic acid, and 

hyodeoxycholic acid again showed moderate antagonistic effects on transcription. 

Table 26.  Modulation of VDR-SRC1 interaction in cells in the presence of phase 1 VDR 

ligand metabolites 

Compound 

2-Hybrid: VDR 

Transcription 

EC
50 

(µM) 

2-Hybrid: VDR 
Transcription 

IC
50 

(µM) 

Ursodeoxycholic acid Inactive Inactive 
Lithocholic acid 2.63 ± 1.75 (35.2%) 40.0 ± 8.24 

Cholic acid Inactive Inactive 
Deoxycholic acid Inactive 57.36 ± 11.1 

Chenodeoxycholic acid Inactive >60 
Hyodeoxycholic acid Inactive 66.6 ± 32.1 

Calcitroic Acid 0.85 ± 0.33 (47.6%) Inactive 
Two-hydrid assay: HEK293T cells were transfected with a VP16-VDR-LBD, SRC1-GAL4, and luciferase 
reporter plasmid vector with or without 1,25(OH)2D3 and LCA phase 1 metabolites or calcitroic acid. 
Efficacy, shown in parenthesis, is in respect to full activation with 1,25(OH)2D3. Maximum concentration 
used was 150 μM. 
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Figure 57. Dose-response curve showing the partial agonistic 
activity of LCA compared to 1,25(OH)2D3. 
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 Table 27 summarizes the transcription data obtained for LCA phase II metabolites.  All 

compounds were non-toxic at a maximum concentration of 150 μM.  Glyco-LCA, tauro-LCA, and 

LCA sulfonate were unable to activate or inhibit transcription with glyco-LCA possessing very 

moderate inhibitory effects.  LCA acetate agonist activity was confirmed but also inhibited VDR-

mediated transcription at an IC50= 44.3 ± 16.4 μM.  In addition, LCA O-glucuronide I and II 

exhibited a potent partial agonist activity as seen in the dose-response curve in Figure 58.  

 

Table 27. Modulation of VDR transcription in the presence of phase 2 VDR ligand 

metabolites 

Compound 
VDR Transcription 

EC
50 

(µM)a 

VDR Transcription 
IC

50 
(µM) 

Cytotoxicity 

LD50 (µM) 

Glyco-LCA Inactive >50 Non-toxic 
Tauro-LCA Inactive Inactive Non-toxic 

LCA Acetate 17.6 ± 7.60 44.3 ± 16.4 Non-toxic 
LCA O-Glucuronide I 3.73 ± 2.1 (22.1%) >150 Non-toxic 
LCA O-Glucuronide II 6.92 ± 3.9 (21.7%) >150 Non-toxic 

LCA Sulfonate Inactive Inactive Non-toxic 
aTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under control of a 24-
hydroxylase promoter with LCA phase 2 metabolites. Percent partial agonistic activity is shown in 
parenthesis. Efficacy, shown in parenthesis, is in respect to full activation with 1,25(OH)2D3. bCell- 
TiterGlo (Promega). Maximum concentration used was 150 μM. 
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In the 2-hydrid assay (Table 28), LCA acetate was able to recruit SRC1 and activate VDR-

mediated transcription reported.  LCA O-glucuronide II but not LCA O-glucuronide I was also a 

potent agonist with a partial agonistic effect of 30.7% compared to 1,25(OH)2D3.  Other phase 2 

metabolites exhibited no activity.   

Table 28.  Modulation of VDR-SRC1 interaction in cells in the presence of phase 2 VDR 

ligand metabolites. 

COMPOUND 

2-Hybrid: VDR 

Transcription 

EC
50 

(µM) 

2-Hybrid: VDR 
Transcription 

IC
50 

(µM) 

Glyco-LCA Inactive >50 
Tauro-LCA Inactive Inactive 

LCA Acetate 1.79 ± 1.16 >150 
LCA O-Glucuronide I >150 >150 
LCA O-Glucuronide II 8.39 ± 4.60 (30.7%) >150 

LCA Sulfonate Inactive Inactive 
Two-hydrid assay: HEK293T cells were transfected with a VP16-VDR-LBD, SRC1-GAL4, and luciferase 
reporter plasmid vector with or without 1,25(OH)2D3 and LCA phase 2 metabolites. Percent partial 
agonistic activity is shown in parenthesis. Efficacy, shown in parenthesis, is in respect to full activation 
with 1,25(OH)2D3. Maximum concentration used was 150 μM. 

 

-4 -2 0 2 4
0

20

40

60

80

100
LCA O-Gluc I

IC50

LCA Gluc I

3.733

LCA Gluc II

6.920

Activation of VDR Mediated Transcription

LCA O-Gluc II

Negative Control

Positive Control

log [Ligand] (M)

L
u

m
in

e
s
c
e
n

c
e

 

Figure 58.  Dose-response curve showing the partial agonistic 
effect LCA O-glucuronide I and LCA O-glucuronide II have on VDR-
mediated transcription. 
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4.5 Semi-Quantitative Real Time PCR  

 Polymerase chain reaction (PCR) is an important 

tool in molecular biology, medicine and forensics 

sciences because it can amplify DNA from a selected 

region of a genome by a billion-fold thus effectively 

purifying the DNA from the remainder of the genome.209  

The process relies on thermal cycling which consists of 

repeated cycles of heating and cooling of the DNA in the 

presence of reverse and forward primers, 

deoxynucleoside triphosphates (dNTPs) and polymerase 

enzyme.  The DNA is first heated to about 90oC to 

denature it into single stranded DNA.  After strand separation, cooling of the DNA allows for the 

hybridization of the primers to the strand. This occurs usually between 50-60oC for a few seconds, 

where it is typically 3-5oC below the melting temperature (Tm) of the primers being used.  The 

single stranded DNA is then ready for extension.  Starting at the primers, the dNTPs are added to 

the single strand with the help of DNA polymerase.  The number of double stranded (dsDNA) 

produced is exponential and dependent on the number of cycles.  Once the desired amount of 

dsDNA is produce, it can be quantified and identified using gel electrophoresis.  In addition to 

DNA, trace amounts of RNA can be analyzed in the same way by first transcribing them into DNA 

with reverse transcriptase.  The procedure for semi-quantitative real time polymerase chain 

reaction (qRT-PCR) is very similar to classic PCR except for the ability to obtain real time analysis 

through the incorporation of a fluorescent marker into the PCR product with every cycle.  In our 

 

Figure 59. SYBR green binding to 
dsDNA to produce a fluorescent 
signal. 
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case, fluorescence was detected using a SYBRTM Green probe.  It is a DNA binding dye that binds 

to the minor groove of dsDNA and emits light (Figure 59).  When only single stranded DNA is 

present, the dye weakly binds and low fluorescence is observed therefore making the dye a 

selective tool for detecting the PCR product being produced.  

As previously mentioned, 1,25(OH)2D3 upregulates its own catabolic degradation through 

the C24-oxidation and C23-hydroxylation pathways of CYP24A1 rendering it biologically unstable.  

Because many VDR agonist contain the secosteroidal scaffold, they too experience metabolic 

instability requiring them to be given in combined therapies with CYP inhibitors.  Herein we 

report the use of a qRT-PCR to investigate the effect VDR ligands, LCA O-Glucuronide I, LCA O-

Glucuronide II, LCA or calcitroic acid, would  have on CYP24A1 gene regulation. 

4.5.1 Experimental Procedure 

Reagents and Instrumentation: The prostate cancer cell line, DU 145, was purchased (ATCC) and 

in cultured in 75 cm2 flasks (CellStar).  Cells were grown in DMEM/High Glucose (Hyclone, 

#SH3024301) media to which  non-essential amino acids (Hyclone, #SH30238.01), 10 mM HEPES 

(Hyclone, #SH302237.01), 5 x 106  units of penicillin and streptomycin (Hyclone, #SV30010), and 

10% of heat inactivated fetal bovine serum (Gibco, #10082147) were added.  Cells were 

harvested using 0.05% Trypsin (Hyclone, #SH3023601), which disrupts the cell monolayer and 

proteolytically cleaves the bonds between the cells and flask.  Cells were re-plated into 6 well 

plates ( coated in matrigel (BD Bioscience, #354234) using DMEM/High Modified buffer without 

phenol red (Hyclone, #SH30284.01) that contained all the above mentioned additives plus 10mM 

sodium pyruvate and 2% percent charcoal treated FBS (Invitrogen, #12676-011) instead of HI FBS 
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prior to dosing.  Compounds were diluted to either 10 mM or 30 mM solutions with DMSO.  The 

cells were lysed using a QIAshredder (Qiagen) and total RNA was isolated using RNAeasy kit 

(Qiagen).  RNA concentration was determine by UV at 260nm using the Tecan Infinite M1000 

plate reader.   A QuantiFast SYBR Green RT-PCR Kit (Qiagen) was used for the real time PCR 

following manufacturer’s recommendations.  Primers used in these studies are as follows: 

GAPDH FP 5’-ACCACAGTCCATGCCATCAC-3’, GAPDH RP 5’-TCCACCACCCTGTTGCTGTA-3’; 

CYP24A1 FP 5’-CTTTGCTTCCTTTTCCCAGAAT-3’; CYP24A1 RP 5’- CGCCGTAGATGTCACCAGTC-3’; 

Real-time rt-PCR was carried out on a Mastercycler (Eppendorf). 

 Semi-Quantitative RT-PCR Protocol:  80-90% confluent DU145 cells were harvested using 0.05% 

Trypsin and transferred to 6 well plates coated in matrigel.  Cells were cultured in DMEM media 

without phenol red and incubated at 37oC overnight to allow the cells to settle and adhere to the 

plate.  The next day, either DMSO (0.03%), test compound (7.5 μM, LCA O-glucuronide I, LCA O-

glucuronide II, Calcitroic acid, LCA) or 1,25(OH)2D3 (20 nM) were added to the 6-well plate and 

incubated at 37 °C for 18 hours.  Cells were harvested following the RNAeasy Mini Handbook 

“Protocol for the Purification of Total RNA from Animal Cells using Spin Technology”.210 After 18 

hours, cells were first harvested with 0.05% Trypsin and added to media to be counted using a 

hemocytometer.  The cell suspension was then spun down for 2 minutes at 1000 rpm to form a 

pellet.  Media was removed and the cell pellet was resuspended in RTL buffer and vortexed for 5 

seconds each.  RTL buffer and cell mixture was added to a QIAshredder spin column and spun for 

2 minutes at 10,000 rpm.  One volume of 70% ethanol was added to the homogenized lysate and 

mixed well by pipetting.  Afterwards, the solution transferred to an RNAeasy spin column and 

spun for 15s at 10,000 rpm.  At this point, all RNA is attached to the spin column and washed 
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several times with different buffers provided by the RNAeasy Qaigen kit.  All flow throughs were 

discarded.  Once thoroughly washed and dried, the RNA is collected by adding 30-50 μL RNase-

free water to the spin column and collecting it in a 1.5 mL tube by spinning for 1 minute at 10,000 

rpm.  Total RNA concentration was determined by UV at 260nm.  Once isolated, RNA was diluted 

accordingly and a QuantiFast SYBR Green RT-PCR Kit (Qiagen) was used for the real time PCR 

following the “QuantifastTM SYBRTM Green RT-PCR Handbook”.  The cycling conditions used for 

Quantifast SYBR Green was 10 minutes at 50oC (reverse transcriptase), 5 minutes at 95oC (PCR 

initial activation step), 10s at 95 oC (denaturation), and 30s at 60 oC (combined 

annealing/extension) for 50 cycles. The forward and reverse primers used were the house 

keeping gene, GAPDH and the gene of interest, CYP24A1.  We used the ∆∆Ct method to measure 

the fold change in gene expression of target genes. Standard errors of mean were calculated from 

two biological independent experiments performed in triplicates. 
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4.5.2 Results and Discussion 

 The expression levels of VDR target gene, CYP24A1, was determined in DU145 cells 

treated with 7.5μM of LCA O-glucuronide I and II, LCA and calcitroic acid as seen in Figure 60.  As 

expected, a strong induction of CYP24A1 by 1,25(OH)2D3 (20nM) was observed.  Cells treated with 

the two synthetically made LCA phase 2 metabolites, LCA O-Glucuronide I and II did not induce 

the expression of CYP24A1 gene. However, LCA and the 1,25(OH)2D3 catabolic metabolite, 

calcitroic acid, induced the induction of transcription but not to the extent of 1,25(OH)2D3 , 

supporting the agonistic effect seen for both of these compounds in the transcription assay.   

Figure 60. CYP24A1 regulation by LCA phase 2 
metabolites, LCA, and calcitroic acid (7.5μM) in DU145 
compared to 1,25(OH)2D3 and DMSO after 18hrs. 
Standard errors of mean were calculated from two 
biological independent experiments performed in 
triplicate. 
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4.6 Conclusion 

Overall, LCA-based phase 2 metabolites and LCA itself but not phase 1 metabolites were 

able to competitively inhibit the recruitment of Alexa Fluor 647-labeled SRC2-3 to VDR-LBD.  

Importantly, calcitroic acid was identified as partial VDR agonist. Unfortunately, aggregation 

between LCA analogs and Texas Red omitted the application of different coregulator peptides, 

which were only available as Texas-Red conjugates.  All but LCA showed minor activation of 

binding in the absence of LG190187 and LCA O-glucuronide II was the most potent molecule 

among LCA phase 1 and phase 2 metabolites with an IC50 five time more potent than LCA. 

Judging from the results of the 2-hybrid assay, none of the metabolites were novel VDR 

inhibitors.  However, the lower efficacy compared to 1,25(OH)2D3 was observed for LCA O-

glucuronide I and II and calcitroic acid in the transcription assay means that it could be used to 

restrict full activation of VDR-mediated transcription.  Further studies are necessary to evaluate 

these partial agonist in respect to calcium homeostasis and metabolic stability.  

The qRT-PCR study revealed that LCA and calcitroic acid but not LCA O-Glucuronide I and 

II up-regulate CYP24A1 and produce 24-hydroxylase.  Interestingly, because expression was 

conducted in DU145 cells, a prostate cancer cell line, it can be postulated that these molecules 

may promote anti-proliferation and differentiation of cancer cells. This is evidenced in the 

literature by other analogs, such as P450 enzyme inhibitors that deactivate 24-hydroxylase thus 

increasing the concentration of 1,25(OH)2D3 induced anti-proliferation.211, 212 
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CHAPTER 5: IDENTIFICATION OF VDR ANTAGONISTS AMONG 

NUCLEAR RECEPTOR LIGANDS USING VIRTUAL SCREENING 

5.1 Introduction 

NRs are one of the most important drug targets today.213 Over the last decades thousands 

of small molecules have been synthesized to improve the activity of NR ligands identified by HTS 

or rational drug design. Although the activity of NR ligands is very important in terms of dosage 

and suppression of side effects, the selectivity of ligands towards a particular NR is crucial for 

specific pharmacological effects. Usually NR ligands are investigated in respect to their NR 

isoform-selectivity. For instance, ER ligands are evaluated for their selectivity towards ERα and 

ER, which are distributed tissue-selectively in the human body.214 Once a promising ligand has 

been identified, further analysis in respect to other closely related NRs is conducted based on 

phylogenetic distance or NR sequence similarity.215, 216 Schapira et al. introduced an alternative 

concept of NR similarity based on the likelihood that two NRs share a common ligand.217 

Therefore, sixteen NR crystal structures and 78 NR ligands were used in a computational 

approach to determine the cross-reactivity of NR ligands. Herein, we present an alternative 

approach by using a large library of NR ligands and only one receptor, VDR. Among 14330 

compounds, we identified four new VDR antagonists that were originally developed as ligands 

for other nuclear receptor. Thus, virtual screening represents a useful tool to identify those NRs 

that are likely to interact with a new NR ligand.  

5.2 Experimental Procedure 

5.2.1 Virtual Screens 
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 A library of nuclear receptor ligands were assembled using “the Binding Database”. The 

database included 14330 compound structures and their nuclear receptor binding data (EC50, 

IC50, or KD). Weakly active ligands that had estimated binding data (e.g. >5000 μM) or inactive 

compounds (e.g. no binding observed) were assigned a zero activity. Compounds that were not 

tested were assigned an empty field. The database only included compounds that were at least 

tested with one nuclear receptor. For racemic compounds only one stereoisomer was used for 

the screen. All compounds were minimized and the ionization state of functional groups was 

adjusted to pH 7. Molecule conformations were generated from a single 3D conformer by 

applying a collection of preferred torsion angles to the rotatable bond during the virtual screen. 

The crystal structure of VDR bound to 1,25(OH)2D3 (PDB ID 1DB1)218 was prepare for docking 

using the MOE structure preparation function to repair any structural defects in the pdb file. In 

addition, a protonation 3D function was used to optimize the hydrogen bond network and 

hydrogen positions. Finally unbound water molecules were removed. The virtual screen was 

carried out by selecting VDR-bound 1,25(OH)2D3 as binding site and a triangle matcher for the 

placement of compounds. The triangle matcher function generated poses by superposition of 

ligand atom triplets and triplets of receptor site points. The receptor site points are alpha sphere 

centers which represent locations of tight packing. At each iteration, a random triplet of ligand 

atoms and a random triplet of alpha sphere centers were used to determine the pose. The poses 

were scored using affinity London dG scoring that estimated the free energy of binding (ΔG) from 

each given pose given in kJ/mol. Compound conformations that do not satisfy the 

pharmacophore model 1 or 2 depicted in Figure 4 were eliminated.           
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5.2.2 Fluorescence Polarization Assay with VDR-SRC2-3 

Reagents and Instrumentation: LG190178 was synthesized using a published procedure.153 The 

peptide SRC2-3 (CLQEKHRILHKLLQNGNSPA),219 was purchased and labeled with the cysteine-

reactive fluorophore (Alexa Fluor 647 maleimide) in a 50:50 DMF/PBS mixture. After purification 

by high performance liquid chromatography, the corresponding labeled peptide was dissolved in 

DMSO and stored at -20ºC. The VDR-LBDmt DNA was kindly provided by D. Moras218 and cloned 

into the pMAL-c2X vector (New England Biolabs). A detailed expression and purification protocol 

for VDR was reported previously.219   

Fluorescence Polarization Assay Protocol:  Agonistic and antagonistic activity was studied using 

a FP assay.  This assay was conducted in 384-well black polystyrene plates (Corning) using a buffer 

(25 mM PIPES (pH 6.75) 50 mM NaCl, 0.01% NP-40, 2% DMSO), VDR-LBD protein (0.1 μM), 

LG190178 (3 μM), and Alexa Fluor 647-labeled SRC2-3.  Small molecule transfer into a 20 μL assay 

solution was accomplished using a stainless steel pin tool (V&P Scientific), delivering 100 nL of 

the serially diluted compound solution.  Fluorescence polarization was detected after 1 hour at 

excitation and emission wavelengths of 650 nm and 665 nm, respectively.  Three independent 

experiments were conducted in quadruplicate. The data were analyzed using nonlinear 

regression with a variable slope (GraphPadPrism). 



157 
 

5.3 Results  

A library of 14330 NR ligands were compiled using “The Binding Database.org”.220 The 

sets of NR ligands were downloaded individually and merged as a virtual small molecule library 

using MOE (molecular operating environment). The number of ligands downloaded per NR is 

given in Figure 61. The NRs with the largest ligand databases are the peroxisome proliferator-

activated receptor (PPAR)γ, PPARδ, PPARα, the progesterone receptor (PR), the androgen 

receptor (AR), the ERα, the ER, and the glucocorticoid receptor (GR) with more than a thousand 

ligands each. Overall, 30 NRs are represented by their ligands in “The Binding Database” with a 

total of 14330 unique NR ligands. Many of these ligands were investigated in regards to multiple 

NR binding and some of them exhibited a significant potency to more than one NR.    

 

Figure 61. Number of NR ligands deposited with “The 
Binding Database”.   
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The analysis to determine global selectivity of ligand among nuclear receptors is restricted 

by the fact that limited data are available. We were surprised that for the majority of ligands only 

one NR was evaluated. 4006 ligands out of 14330, thus a quarter of the ligands, were investigated 

with only two different NRs as illustrate in Figure 62.  Most of NR ligands tested with two NRs 

were able to bind two NR isoforms with different affinity, such as α and , which applies to the 

liver X receptor (LXR), ER, and TR. Ligands that were developed for NRs having three isoforms 

such as PPAR, estrogen related receptor (ERR), RXR, and retinoic acid receptor (RAR) represent 

almost half of the NR library members (Figure 61). However, only a fraction of these ligands 

(1853) were evaluated with more than two NRs (Figure 62). Some examples of ligands that bind 

multiple NRs, although with different affinity, are depicted in Figure 63. Compound 1 (Figure 63, 

A) was developed by Ligand Pharmaceuticals as RXRα antagonist.221 Although the selectivity in 

respect to RARs is very high, there is a moderate selectivity toward other RXR subtypes. In 

addition, a synergistic activation of transcription was observed when cotransfected with PPARγ 

in the presence of selective PPARγ ligand. Guggulsterone (Figure 63, B) was predominately 

 

Figure 62. Number of NR ligands that bind to 
multiple NRs. 
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evaluated with steroid hormone receptors.222 The compound has a strong affinity for the 

mineralocorticoid receptor (MR) and the pregnane X receptor (PXR).223 Compound 2 (Figure 63, 

C) is a very potent GR antagonist, which still has a significant activity towards PR and AR.224 Finally, 

GW0742 (Figure 63, D) was developed by GlaxoSmithKline as highly a selective agonist for the 

PPARδ.225 The evaluation of GW0742, in respect to NR-mediated inhibition of transcription, 

identified this compound as antagonist for AR and VDR.152  

Nevertheless, the exhaustive characterization of NR ligands is limited by the sheer 

number of different NRs resulting in a cost and time-intensive analysis for research labs and the 

pharmaceutical industry. Therefore, a prediction of NR-selectivity of new ligands using 

computational approaches might enable a selection of a smaller pool of NRs to be considered for 

evaluation. In addition, this approach might also identify groups of NRs that bind similar ligands, 

thus introducing a new relationship between NRs that is different from phylogenetic distance or 

NR sequence similarity. In order to test this hypothesis, we used the library of NR ligands and 

carried out two virtual screens applying the first crystal structure of liganded VDR.218 For each 

 

Figure 63. NR ligands that were evaluated towards multiple nuclear receptors. 
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screen, we applied a different pharmacophore model to filter all molecule conformations. The 

two different pharmacophore models are depicted in Figure 65.   

The virtual screen 1 was carried out with a pharmacophore model that specifies three electron 

donor/acceptor elements depicted as purple spheres (Figure 64, A). These three elements 

represent the spatial configuration of three hydroxyl groups of the most active endogenous VDR 

ligand 1,25-dihydroxy vitamin D3 (1,25(OH)2D3).226 1,25(OH)2D3 is a metabolic product of vitamin 

D3 formed from 25(OH)D3 by 1α-hydroxylase.227 The binding affinity of 1,25(OH)2D3 is 0.1-1 nM, 

whereas 25(OH)D3 binds with a  moderate affinity of 1420 nM towards VDR.228 The virtual screen 

of 14330 compounds using model A (Figure 64) identified 64 compounds. 32 of the 64 

compounds had a significant calculate free energy of VDR binding of more than -6.0 kJ/mol. 

Nordihydroguaiaretic acid (NDGA) was the only non-VDR ligand identified with a calculate ΔG of 

-11.1 kJ/mol (Figure 65, B).  NDGA is a bioactive compound that inhibits lipoxygenases, functions 

as an antioxidant, and has shown promising anti-cancer activities.229 The compound has also 

been reported to weakly interact with the androgen receptor by binding to a new BF3 binding 

site.230  

 

Figure 64. Two different pharmacophore models for VDR ligands. Pharmacophore models 
were established using MOE.  

 

 

A B
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Herein, we confirmed the activity NDGA towards VDR using a fluorescence polarization 

assay. In the presence of 1,25(OH)2D3, NDGA was able to inhibit the interaction between VDR 

and coactivator peptide SRC2-3 with an IC50 values of 15.8 ± 2.1 μM. In the absence of 

1,25(OH)2D3, NDGA was not able to promote the recruitment of coactivator towards VDR (Figure 

65, A). Because of the fact that the interactions between VDR and coactivators are essential for 

VDR-mediated transcription we identified NDGA as novel VDR antagonist.   

Virtual screen 2 was carried out using a less stringent pharmacophore model depicted in Figure 

64, B bearing two acceptor/donor groups representative of VDR ligand 25(OH)D3. Among the 

 

Figure 65. Nordihydroguaiaretic acid is inhibiting the interaction between 
VDR and coactivator peptide SRC2-3. 
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14330 molecules, 397 compounds were identified and 162 compounds exhibited a free energy 

of binding of more than -6.0 kJ/mol (Figure 66). Among the hit compounds of virtual screen 2, 

the majority of molecules were developed as ligands for VDR. Ligands developed for LxRα/, 

TRα/, and ERα/ ligands were among the most frequent ligands that potentially interact with 

VDR. We picked one TRα ligand (3) and one ERα ligand (H6036) in order to confirm the activity in 

regard to VDR (Figure 67).   Fortunately, both compounds (1 and H6036), identified by virtual 

 

Figure 66. Number and affiliation of NR ligands identified by virtual 
screen 2 using the pharmacophore model depicted in Figure 4, B.  

 

 

Figure 67. Interaction between virtual screen hit compounds (♦H6036,  compound 3, 
▲triiodothyronine) and VDR. A) Hit compound inhibition of the interaction between SRC2-3 
and VDR in the presence of VDR agonist LG190178; B) Association of VDR-LBD and SRC2-3 in 
the presence of hit compounds; C) Structure and generation of NR ligands. 
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screen 2, were able to inhibit the interaction between VDR and SRC2-3 with IC50 values of 44.5 ± 

6.1 μM and  20.0 ± 3.4 μM, respectively (Figure 67, A). The original docking score for these 

compounds was -7.9 kJ/mol (3) and -9.1 kJ/mol (H6036). The thyroid receptor ligand 

triiodothyronine did not score during the virtual screen 2 because it did not satisfy the 

pharmacophore model. However, we observed that triiodothyronine did inhibit the interaction 

between VDRSRC2-3, although at higher concentrations. In the absence of VDR ligand LG190178 

no recruitment of SRC2-3 to VDR was observed in the presence of any of these ligands (Figure 

67, B).      

5.4 Discussion 

We showed that databases such as the “Binding database” can function as starting point 

for virtual screening. During the compilation of this focused library we were surprised by the 

small number of developed NR ligands that have been evaluated with other NRs. The main reason 

for this lack of investigation is the size of the NR superfamily in addition to the existing agonism 

and antagonism that would make an exhaustive evaluation with a panel of NRs very time 

intensive and costly. An alternative approach to predict NR selectivity might be realized by virtual 

screening. Using the first published VDR crystal structure and pharmacophore models 

representing the essential features of VDR ligands, we showed that among NR ligands those with 

higher affinities for VDR can be identified by virtual screening. The essential features of VDR 

ligand 1,25(OH)2D3 are three hydroxyl functions that interact with VDR via hydrogen bonding. In 

addition, this ligand induces a large hydrophobic effect due to the non-polar vitamin D3 scaffold. 

Using a pharmacophore model based on 1,25(OH)2D3 that defines the spatial orientation of three 
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OH groups as filter, we were able to identify compounds that interact with VDR with 100% 

accuracy during the first virtual screen using a cutoff of -6 kJ/mol for the calculated free energy 

of binding. 31 out of the 32 hit compounds were VDR ligands such as agonists 2MD231 or 

antagonist 4232. Both compounds have been shown to bind VDR, however 2MD promoted the 

recruitment of coactivators, whereas antagonist 4 inhibited the interaction between VDR and 

coactivator. Thus, our virtual screen 1 was very efficient to identify VDR ligands but did not 

differentiate between VDR agonists and antagonists.  

Our virtual screen 2 applied a less stringent pharmacophore model based on VDR ligand 

25(OH)D3, which is at least 1000-fold less potent than 1,25(OH)D3. As expected, we identified 

more and different NR ligands that are likely to interact with VDR. In total we found 162 

compounds with a calculated free energy of VDR binding of more than -6.0 kJ/mol. 54% of these 

ligand were developed for VDR. The next biggest group included ER ligands (26%) with different 

affinities for the ERα and ER, followed by TR ligands (7%) and LxR ligands (7%). Thus, there is a 

relationship between VDR, TR and ER that is beyond the phylogenetic distance or NR sequence 

similarity. We picked two compounds that were commercially available or in case of 3 easy to 

synthesize. Fortunately, both compounds inhibited the interaction between VDR and coactivator 

peptide SRC2-3 although at different concentrations. We were very pleased that the calculated 

free energy of binding correlated with the IC50 values observed for the new VDR antagonists. 

NDGA exhibited the highest VDR affinity and largest free energy of VDR binding followed by 

H6036 and 3, respectively. Interestingly, triiodothyronine was not among the hit compounds 

because it failed to satisfy the pharmacophore used for virtual screen 2. Nevertheless, we 

confirmed triiodothyronine as a weak VDR antagonist highlighting the fact that other 
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pharmacophore models exist to identify VDR ligands. One approach to develop a new 

pharmacophore for this kind of virtual screening could include the application of a VDR crystal 

structure bound to a VDR ligand with a low calculated free energy of VDR binding for the virtual 

screen 1 but a relative high reported affinity for VDR. Another approach could include the 

optimization of our current pharmacophore model by changing the volume of the 

donor/acceptor elements or by adding additional pharmacophore elements.              

Overall, the development of NR-specific pharmacophore models is important because it 

can assist in the choice of NRs that should be evaluated in order to determine NR-selectivity of 

novel NR ligands. Although this approach can drastically decrease the cost and time to determine 

NR-selectivity of new ligands it is not a full substitute for an exhaustive investigation of a 

comprehensive panel of NRs in respect to agonism and antagonism. In addition, NR-specific 

pharmacophore models can be used to identify new NR ligands. We demonstrate the utility of 

this approach using a library of NR ligands to identify new VDR antagonists. The application of 

larger virtual compound libraries such as the “Zinc Library” might result in the identification of 

even more compounds that interact with VDR. Overall it can be concluded that virtual screening 

can support both the identification of new NR ligands as well as the identification of NRs that are 

likely to interact with new NR ligands in order to accelerate the determination of NR selectivity.  
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PART II.  THE DEVELOPMENT OF A UNIVERSAL GTPase ASSAY 
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CHAPTER 1: INTRODUCTION 

GTPases act as molecular switches in which their “on” and “off” functions are triggered 

by the binding and hydrolysis of GTP.233, 234  Their highly conserved function allows GTPases to 

play an important role in regulation of cellular processes ranging from cell growth and 

differentiation to vesicular and nuclear transport.  As depicted in Figure 68, activation of GTPases 

requires the dissociation of protein bound guanosine diphosphate (GDP) an intrinsically slow 

process that is accelerated with the help of guanine nucleotide-exchange factors (GEFs).  The 

switch-ON process involves the exchange of GDP for guanosine triphosphate (GTP), which in 

theory is a reversible reaction.  The switch-off process involves hydrolysis of GTP to GDP, which 

is an irreversible reaction.  This additional slow process is accelerated by GTPase-activating 

proteins (GAPs).   

 Several proteins belong to the GTPase superfamily including small Ras-related proteins 

with many subfamilies (Rho, Rab, Arf and Ran), heterotrimeric G proteins with α, β and γ subunits, 

 

Figure 68. The basic “on” and “off” switch cycle of GTPases. 
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and large proteins such as dynamin, which is responsible for endocytosis in eukaryotic cells.234  

With growing research in this area, many members of the GTPase family have been linked to 

diseases like cancer, diabetic renal disease, and neurological diseases such as Parkinson’s 

disease.235, 236 Especially Ras GTPases (HRas, KRas, and NRas), which control cell proliferation, 

differentiation, cellular growth and apoptosis, have been  implicated in a large number of cancers 

and hyperproliferative diseases.237, 238  Ras GTPase-mediated regulation is disrupted by specific 

gene mutations coding these proteins, specifically at codon 12, 13, and 61.  The single point 

mutation promotes oncogenesis and promotes GTP binding and activation of Ras.  The presence 

of mutations in cancer does vary between different types of tumors with predominate isoforms 

in particular cancers.  For instance, K-Ras has been shown to be the most frequently mutated 

GTPase in cancers with 90% of pancreatic tumors harboring this mutation.237   

Due to their relationship to many diseases, numerous GTPase targeting drugs have been 

developed. One third of all drugs targeting proteins are either interacting with kinases (22% of 

drugs) or GTPases (15% of drugs).  The growing interest in GTPase targeting drugs has promoted 

the development of assays that can efficiently test these compounds in a high throughput and 

inexpensive way. Although many commercially available kinase/GTPase assays are on the 

market, they do not necessarily directly monitor the conversion of NTP to NDP. Activity-based 

assays are advantageous because of their sensitivity and ability to directly detect changes in the 

biochemical activity of the enzyme.  However, many of these activity-based assays utilize 

antibodies to detect the phosphorylated peptide produced. This makes them specific but not 

universal. Monitoring the formation of GDP is universal because it is the most basic function of 

GTPases irrespectively which substrate is phosphorylated.  The available assays a variety of 
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detections including proximity-based scintillation, fluorescence polarization, UV, and 

fluorescence resonance energy transfer (FRET).   

AviMed Pharmaceuticals, LLC, is a local company founded by Dr. Daniel Sem with interest 

in developing a universal kinase/GTPase assay kit that is affordable and commercially available 

for industry and research labs to test potential drug candidates. Dr. Sem is the inventor of two 

kinase/GTPase assay patents describing the assay to be used in for these kits.239, 240  The assay 

designed relies on the fact that a beta thiol substituted ATP (GTP for GTPases) can be 

enzymatically hydrolyzed and produce ADP (GDP).  The exposure of the thiol makes it nucleophilic 

and reactive towards thiol-sensitive fluorescent or calorimetric reagents such as Ellman’s 

reagent.241  The assay is illustrated in the Figure 69.  Enzymatic reaction rates can be measured 

in the presence or absence of inhibitors as a way to identify and screen potential kinase (GTPase) 

targeting drug candidates.  Herein, we report the synthesis of assay reagents and the preliminary 

development of a universal, inexpensive, sensitive GTPase assay kit that directly detects the 

GTPβ-S hydrolysis product, GDPβ-Se.   

 

Figure 69.  The dithio-coupled reaction using Ellman’s reagent to detect the enzymatic 
activity of kinases or GTPases. 
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CHAPTER 2: THE SYNTHESIS OF GTPase ASSAY REAGENTS: GTPβ-S AND 

GTPβ-Se 

2.1 Chemistry 

2.1.1 Synthetic Strategy 

The overall synthetic scheme used in our lab to make GTPβ-S and GTPβ-Se was adopted 

from the literature and is shown in Scheme 10.242  Essentially, it’s a two-step one pot reaction to 

convert GDP to GTP without the use of enzymes. First, (2-cyanoethyl) phosphate barium salt (2.1) 

was converted into its triethylammonium salt (2.2) using the ion-change resin Dowex and 

triethylamine (TEA).  The reaction with imidazole in the presence of 2,2’-dithiopyridine, 

triphenylphosphine and TEA in DMF generated the phosphorylating agent, 1a.  GTPβ-S or GTPβ-

Se were synthesized by coupling of 1a with GDPβ-S or GDPβ-Se in the presence of MgCl2 followed 

by β-elimination of the cyanoethyl (CE) group using 1,8-diazabicycloundec-7-ene (DBU). Due to a 

possible conjugate addition of acrylonitrile with the nucleotide, dithiothreitol (DTT) was added 

to scavenge formed acrylonitrile during the reaction.  In addition, either an open flask capped 

 

Scheme 10.  General synthetic scheme for GTPβ-X analogs. i) a) H2O, Dowex (50Wx8, 200-

400mesh), rt, 1 hour b) TEA, EtOH; ii) a) imidazole, 2,2’-DTDP, Ph3P, TEA, DMF, rt, 6-8 hours, b) 

LiClO4, dry ACN ; iii) MgCl2, DMF, rt, 24 hours; iv) DBU, DTT, DMF, 50oC, 2-5 hours. 
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with anhydrous calcium chloride to protect the reaction from moisture,  or a weak vacuum 

applied to the sealed reaction can aided in the removal of acrylonitrile. 

The syntheses of GDPβ-S and GDPβ-Se are summarized in Scheme 11 and 12, respectively. 

First, guanosine 5’-monophosphate disodium salt (2.4) was transformed to the TEA salt (GMP-

TEA+) following the same ion-exchange procedure reported previously.  Activation yielded 

guanosine monophosphate phosphorimidazolide (GMP-Im), which was coupled with 

thiophosphate to yield guanosine 5’-O-(2-thiodiphosphate) (GDPβ-S).   

 
Scheme 11.  Synthesis for GDPβ-S. i) a) H2O, Dowex (50Wx8, 200-400mesh), rt, 1 

hour, b) TEA, EtOH; ii) a) imidazole, 2,2’-DTDP, Ph3P, TEA, DMF, rt, 6-8 hours, b) 

NaClO4, dry acetone; iii) a) DMF, ZnCl2, thiosphophate TEA+ salt, rt, 30 minutes, b) 

EDTA, NaHCO3, H2O. 

 

Scheme 12. Synthesis of GDPβ-Se.  i) a) dry pyridine, CH3CN, rt, 30 

minutes, b) TEA, MeOH, rt, 3 hours; ii) DMF, ZnCl2, rt, 20 minutes b) EDTA, 

NaHCO3, H2O, pH= 7.5, room temperature, 3 hours. 
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Elemental selenium and tris(trimethylsilyl)phosphite (2.5) were mixed and transformed 

with TEA to synthesize triethylammonium selenophosphate (2.6).243  Inert and dry conditions 

were essential to suppress the formation of Se-Se bonds.  31P-NMR confirmed the formation of 

triethylammonium selenophosphate, which due to its instability, was immediately coupled with 

GMP-Im in the presence of ZnCl2 to yield the final product, guanosine 5’-O-(2-selenodiphosphate) 

(GDPβ-Se).  All diphosphate and triphosphate nucleotides were purified by ion-exchange 

chromatography on DEAE-Sephadex A-25 (HCO3
-) column.  Briefly, the crude product was loaded 

on the column and washed with excess water to remove metal salt/EDTA complexes. 

Subsequently, the nucleotide was eluted using a linear gradient of triethylammonium 

bicarbonate (TEAB, pH= 8.0). 

2.1.2 Characterization 

 All starting reagents were purchased from either Sigma-Aldrich or Fisher Scientific.  

Synthesized nucleotides were purified using a fast protein liquid chromatography system (FPLC, 

GE Healthcare AktaPurifier UPC 10, #28406268).  5 mL proteus FPLC columns were purchased 

from NuSep (#Nu-FliQ1-25) and loaded manually.  GTPβ-Se reaction was monitored by HPLC 

using a Agilent Tech. Series 1220 Infinity LC with a Supelcosil LC-18-T HPLC column (Sigma, 

#58971, 4.6 x 250mm, flow rate 1mL/min) with a linear gradient 1-25% of methanol in 0.05M 

ammonium acetate buffer (pH=5.9) in 15 minutes, UV-detection at 260 nm.  Compound 

characterization was performed using a Shimadzu 2020 LC-MS (single quadrupole) instrument 

with compounds directly injected.  NMR spectra were recorded on a Bruker 300MHz instrument 

with samples diluted in D2O.   
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General Procedure for Converting to TEA Salt using Dowex: 5 g of starting salt (i.e. Ba2+, Na+) 

was suspended in water (100mL) and mixed with a calculated amount of Dowex 50W x 8 (200-

400mesh) resin in H+ form (see calculation below) in a beaker covered with parafilm.  The mixture 

was agitated on a reciprocal shaker for 1 hour.  The suspension was then filtered and the eluate 

was collected in a round bottom flask containing a solution of trimethylamine (3.2mL) in absolute 

ethanol (100mL).  The solvents were mostly evaporated by rotary evaporation and then further 

dried in vacuum over P4O10 to obtain the final TEA salt. 

Ion Exchange Capacity Calculation with Dowex 50Wx8 200-400 mesh H+ form: 

In general, the capacity of an ion exchange resin can be expressed as the quantity of ions that 

can be taken up by a specific volume of resin.  This can be expressed in quantity/unit volume such 

as milli-equivalents/milliliter (meq/mL).  Equivalents refers to the equivalent weight (EW) of the 

substance expressed in grams (or meq in milligrams), which is the molecular weight (MW) divided 

by valence.244 For example: (2-cyanoethyl) phosphate barium salt dihydrate  

Ba2+ MW= 137.3 g/mol and is divalent 

Dowex 50Wx8 200-400 mesh H+ form total exchange capacity= 1.7 meq/mL245 

137.3𝑔

𝑚𝑜𝑙
 ÷ 2 = 68.65 𝐸𝑊 

1.7 × 68.65 𝐸𝑊 =
116.7 𝑔 𝐵𝑎2+ 𝑠𝑎𝑙𝑡

𝐿 𝑜𝑓 𝑟𝑒𝑠𝑖𝑛
 

Grams of Ba2+ in 5g of (2-cyanoethyl) phosphate barium salt dehydrate: 

15.5𝑚𝑚𝑜𝑙 ×
137.3𝑔

𝑚𝑜𝑙
= 2.1𝑔 
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2.1𝑔

𝑋𝐿
=

116.7𝑔𝐵𝑎2+ 

1𝐿 𝑟𝑒𝑠𝑖𝑛
 

X= 17mL of resin needed to exchange ions with TEA+  

General Purification Procedure with FPLC: Synthesized nucleotides were purified by ion 

exchange chromatography on DEAE-sephadex A-25 (HCO3
- form) column.  Resin was soaked in 

water for 1 day at room temperature before being loaded to a 5 mL proteus FPLC column.  The 

reaction mixture was loaded to the column and washed through with excess water to remove 

metal (II) salt/EDTA complex. Nucleotides were eluted slowly over 7 hours (flow rate of 2.5 

mL/min) using a linear gradient (0-100%) of triethylammonium bicarbonate (TEAB) buffer in 18 

MΩ water (0.7M, pH=8.5).  Afterwards, fractions were collected and buffer was evaporated 

under reduced pressure.  Several 15 mL portions of absolute ethanol were added to decompose 

the TEAB and produce the TEA salts. 

Triethylammonium Bicarbonate Buffer Recipe: To make TEAB at 1M, 120 mL of HPLC grade 

triethylamine was diluted in 740 mL of 18 MΩ water.  Dry ice was placed into a separate vessel 

with a nozzle connected to a hose.  The CO2 from the dry ice was bubbled 

into the triethylamine solution for 2-3 hours and stopped once the 

solution reached a pH=8.5.  The buffer was filtered using HVLP 0.45μM 

filter paper. 

1a:  82% yield; (2-cyanoethyl) phosphate barium salt dihydrate (5g, 15.5mmol) converted to the 

TEA salt using 20 mL of Dowex 50W x 8 (200-400mesh) resin in H+ form (see general procedure 

above).  About 3.91 g (92% yield) of (2-cyanoethyl) phosphate TEA salt was obtained.  Thereafter, 

(2-cyanoethyl) phosphate TEA salt (2.9 g, 11.9 mmols) was mixed with imidazole (10 equiv., 8.07 
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g, 0.119  mols), 2,2’dithiodipyridine (3 equiv., 7.85 g, 35.6 mmol), DMF (25 mL), trimethylamine 

(3 equiv., 3.6 mL, 35.6 mmol), and triphenylphosphine (3 equiv., 9.34 g, 35.6 mmol) and the 

mixture was stirred for 6-8 hours.  The product was precipitated from the reaction mixture with 

a solution of anhydrous LiClO4 (4 equiv., 5.05 g, 47.5 mmol) in dry acetonitrile (187.5 mL).  After 

cooling to 4oC, the precipitate was filtered off, washed repeatedly with cold, dry acetonitrile, and 

dried in vacuum over P4O10.  The resulting product, 1a, was stored at 4oC in a closed vessel for 

several months.  1H-NMR (300 MHz) (D2O) δ 7.84 (s, 1H), 7.22 (s, 1H), 7.03 (s, 1H), 3.95-3.88 (q, 

2H, J= 7Hz), 2.68-2.65 (t, 2H, J= 6Hz), 1.96 (s, 1H); 31P NMR (121 MHz) δ -8.56 (s, 1P); MS DUIS (-

ve) calcd. m/z for C6H7N3O2P- [(M-H+)-] 200.2, found [(M-H+)-] 200.2. 

Guanosine monophosphate phosphorimidazolides (GMP-

Im): 75% yield; Guanosine 5’monophosphate (GMP) 

disodium salt (5 g, 12.3 mmol) was converted to the TEA salt 

using 14.4mL of Dowex 50W x 8 (200-400 mesh) resin in H+ form (see general procedure above).  

About 4.78 g (84% yield) of GMP TEA salt was obtained.  Thereafter, GMP TEA salt (1 equiv., 4.78 

g, 10 mmol), imidazole (10 equiv. 7.0 g, 0.103 mols), and 2,2’dithiodipyridine (3 equiv., 6.82 g, 31 

mmol), were mixed in 30mL of DMF.  Trimethylamine (3 equiv., 4.33 mL, 31.0 mmol) and 

triphenylphosphine (3 equiv., 8.13 g, 31.0 mmol) were added and the mixture was stirred for 6-

8 hours. The reaction was monitored by 31P-NMR to confirm the disappearance of GMP at 3.76 

ppm. The product was precipitated from the reaction mixture with anhydrous NaClO4 (4 equiv., 

4.9 g, 40.0 mmol) solution in dry acetone.  To ensure the acetone was completely dry, it was 

distilled over MgSO4 and stored with 4Å molecular sieves at 4oC.  After cooling the mixture to 

4oC, the precipitate was filtered, washed repeatedly with cold, dry acetone and the solvent was 
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removed under reduced pressure. 1H-NMR (300 MHz) (D2O) δ 7.79 (s, 1H), 7.71 (s, 1H) 7.02 (s, 

1H), 6.82 (s, 1H), 5.74-5.72 (d, 1H, J= 6Hz), ~4.70-4.66 (overlapped with water, m, 1H), 4.32-4.29 

(t, 1H, J= 3Hz), 4.14 (s, 1H), 4.00-3.98 (m, 2H), 2.91 (s, 1H); 31P NMR (121 MHz) δ -7.96 (s, 1P); MS 

DUIS (-ve) calcd. m/z for C13H15N7O7P- [(M-H+)-] 412.2, found [(M-H+)-] 412.2. 

Guanosine 5’-O-(2-thiodiphosphate) (GDPβ-S): 99% yield; 

GMP-Im (1 equiv., 0.435 g, 1.0 mmol), thiophosphate TEA salt 

(converted sodium thiophosphate tribasic hydrate to TEA salt 

using general procedure, 2 equiv., 0.431 g, 2.0 mmol), and anhydrous ZnCl2 (8 equiv., 1.09 g, 8.0 

mmol) were dissolved in DMF (10 mL) and stirred at room temperature.  After 30 minutes, the 

reaction was quenched by the addition of a solution of EDTA (8 equiv., 2.34 g, 8.0 mmol) and 

NaHCO3 (18 equiv., 1.51 g, 18 mmol) in water.  The resulting product was purified on DEAE-

sephadex and isolated as a TEA salt according to the general procedure.  1H-NMR (300 MHz) (D2O) 

δ 8.03 (s, 1H), 5.83-5.81 (d, 1H, J= 6Hz), 3.25-1.13 (TEA residues); 31P NMR (121 MHz) δ 31.1 

(broad s, 1P), -11.7 (d, 1P, J= 31.5Hz) (; MS DUIS (-ve) calcd. m/z for C10H14N5O10P2S - [(M-H+)-] 

458.0, found [(M-H+)-] 458.2. 

Guanosine 5’-O-(2-thiotriphosphate) (GTPβ-S): 10% 

yield; GDPβ-S TEA salt (1 equiv., 167 mg, 0.30 mmol) 

was suspended in 3 mL of DMF.  Then, 1a (3 equiv., 

186 mg, 0.90 mmol) and anhydrous MgCl2 (8 equiv., 228 mg, 2.4 mmol) were added to the 

suspension. The mixture was stirred at room temperature for 24 hours.  Next, the product was 

subjected to cyanoethyl group removal (one-pot reaction) with the addition of more DMF (3 mL), 

1.1 mL of DBU and DTT (3 equiv., 138 mg 0.9 mmol).  The reaction was carried out at 50oC in 
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either an open flask protected from moisture (capped with drying tube packed with anhydrous 

calcium chloride) or a sealed flask with a rubber septum pierced with a needle attached to a weak 

pressure vacuum.  The deprotection reaction went for 5 hours and was stopped by the addition 

of 1% acetic acid to pH=7, diluted with water and washed 3 times with ethyl acetate.  Finally, the 

product was purified on DEAE-Sephadex and isolated as a TEA salt.  31P NMR (121 MHz) δ 28.1 

(broad s, 1P), -6.70 (dd, 1P, J= 6Hz, J= 28Hz), -12.1 (d, 1P, J= 28Hz); MS DUIS (-ve) calcd. m/z for 

C10H15N5O13P3S - [(M-H+)-] 537.9, found [(M-H+)-] 538.0. 

Triethylammonium Selenophosphate: 98% yield; *Note: This procedure should 

be performed under a fume hood, including all evaporations of solvents. Prior to 

the reaction, pyridine was distilled over CaH2 to ensure complete removal of 

water. A suspension of selenium (160 mg, 2 mmol) in dry pyridine (1 mL) was added dropwise 

through a syringe into a septum-sealed and nitrogen-bubbled solution of tris(trimethylsilyl) 

phosphite (600 μL, 1.8 mmol) in dry CH3CN (10 mL).  The resulting solution was held at room 

temperature for 30 minutes, and then was evaporated to dryness.  Next, a solution of 

trimethylamine (250 μL, 1.8 mmol) in dry MeOH (10 mL) was added and the mixture was stirred 

at room temperature for 3 hours.  During this time, the initially colorless solution turned yellow 

with black particulates (elemental Se falling out of solution).  The reaction was then filtered and 

the solvent removed under reduced pressure.  The residue was re-dissolved in MeOH and dried 

under reduced pressure two times.  The product isolated was a semi-solid yellow residue and 

confirmed by 31P NMR.  It was immediately used for the following coupling to make GDPβ-Se. 

31PNMR (121 MHz) δ 26.8 (s, 1P) 

 



178 
 

Guanosine 5’-O-(2-selenodiphosphate) (GDPβ-Se): 98% 

yield; To a suspension of GMP-Im (250 mg, 0.42 mmol) and 

selenophosphate TEA salt (prepared from 600 μL 

tris(triemthylsilyl)phosphite) in 5 mL of dry DMF, anhydrous ZnCl2 (580 mg, 4.20 mmol) was 

added and the mixture was vigorously shaken until all reagents dissolved (2-3 minutes).  The 

resulting solution was stirred for 20 minutes at room temperature (during this time a 

precipitation of small red, slowly turning black, solid, presumably selenium, was observed).  The 

reaction was quenched by diluting a solution of disodium EDTA (1.6 g, 4.20 mmol) and NaHCO3 

(800 mg) in 300 mL of water.  The pH was checked and, if necessary, adjusted with a small portion 

of NaHCO3 to pH=7.5.  The mixture was stirred at room temperature for 1-2 hours and the 

precipitated selenium was filtered off using 0.45 μm PVDF syringe filters.  The product was 

isolated on DEAE Sephadex according to the general procedure. *Note: Sephadex resin is 

irreversibly stained a bright red-orange but still remains useable for other purifications. 31P NMR 

(121 MHz) δ 15.53 (d, 1P, J= 37Hz), -12.37 (d, 1P, J= 37Hz); MS DUIS (-ve) calcd. m/z for 

C10H15N5O13P2Se - [(M-H+)-] 505.9, found [(M-H+)-] 506.0 in addition to selenium isotope peaks. 

Guanosine 5’-O-(2-selenotriphosphate) (GTPβ-Se): 

30% yield; GDPβ-Se TEA salt (1 equiv., 167 mg, 0.30 

mmol) was suspended in 3 mL of DMF.  Then, 1a (3 

equiv., 186 mg, 0.90 mmol) and anhydrous MgCl2 (8 equiv., 228 mg, 2.4 mmol) were added to 

the suspension. The mixture was stirred at room temperature for 24 hours.  The coupling reaction 

was monitored by HPLC with a linear gradient 1-25% of methanol in 0.05M ammonium acetate 

buffer (pH=5.9) over 15minutes and UV-detection at 260 nm. Next, the product was subjected to 
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cyanoethyl group removal (one-pot reaction) with the addition of more DMF (3 mL), 1.1mL of 

DBU and DTT (3 equiv., 138 mg 0.9 mmol).  The reaction was carried out at 50oC in either an open 

flask protected from moisture (capped with drying tube packed with anhydrous calcium chloride) 

or a sealed flask with a rubber septum pierced with a needle attached to a weak pressure 

vacuum.  The deprotection reaction was monitored by HPLC with the same parameters as the 

coupling reaction.  After 2 hours, the reaction was stopped by the addition of 1% acetic acid to 

pH=7, diluted with water and washed 3 times with ethyl acetate.  Finally, the product was purified 

on DEAE-Sephadex and isolated as a TEA salt.  31PNMR (121 MHz) δ 16.7 (broad s, 1P), -8.54 (d, 

1P, J= 31.5Hz), -12.68 (d, 1P, J= 31.5Hz); MS DUIS (-ve) calcd. m/z for C10H15N5O13P3Se - [(M-H+)-] 

585.9, found [(M-H+)-] 586.0. 

2.2 Preliminary GTPase Assay Development  

 For this assay, we wanted a rapid, sensitive and selective fluorescent probe to detect the 

hydrolysis of GTPβ-S or Se independent of the GTPases.  A panel of sulfur-sensitive fluorophores were 

tested but the most promising probe was Thiofluor 623 (Figure 70). In 2008, Bouffard et al at 

Harvard University developed this Thiofluor probe to address the many drawbacks  associated 

with already commercially available thiol-detecting chromophores and fluorophores.246  

Thiofluor 623 is a “turn-on” probe whose structure is based on a classical donor-π-acceptor 

 

Figure 70. The “turn-on” reaction that occurs when Thiorfluor 623 is cleaved with a thiol like 
GDPβ-S. 
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design.  The probe will undergo a nucleophilic substitution with nucleophilic compounds 

liberating the aniline based fluorescence compound (Figure 71).  This increases the push-pull 

character of the dye and results in a higher quantum yield and large bathochromic shifts in the 

absorption and emission spectra.  Arenesulfonamides are stable towards oxygen and nitrogen 

nucleophiles but react with thiols in contrary to arene-sulfonate-based probes.247  Furthermore, 

the long triethyleneglycol methyl ether chain substituted on the nitrogen allows for a wide pH 

range in which this probe can be used and increases its water solubility.  Figure 71 shows that 

Thiofluor 623 has an Exmax of 560 nm and Emmax at 630 nm.   

 Within this section, we report the use of Thiofluor 623 to determine the limit of detection 

with Glutathione (GSH), GDPβ-S and GDPβ-Se over a range of different concentrations and time.  

The optimizations resulted in the detection of GTPβ-Se in the presence of H-Ras.  The activity of 

H-Ras was determined using a calorimetric assay that detects inorganic phosphate liberated 

when H-Ras hydrolyzes GTP to GDP.   

 

Figure 71.  Thiofluor 623 excitation and emission spectra; A) Excitation spectra at 630 nm 
emission B) Emission spectra at 560 nm excitation. 

Thiofluor Emmision (560/20)

550 600 650 700 750
0

20000

40000

60000

80000

nm

F
lu

o
re

s
c
e
n

c
e

Thiofluor Excitation (630/20)

350 400 450 500 550 600 650
0

100000

200000

300000

nm

F
lu

o
re

s
c
e
n

c
e

A B



181 
 

2.2.1 Experimental Methods 

Optimization of Assay Conditions: 

Reagents and Instrumentation: The buffer was prepared from phosphate buffered saline, pH 7.4 

(Hyclone, #SH30256.01) and 0.001% Tween.  Thiofluor 623 was purchased from Cayman 

Chemical Company (#13083).  The reagents tested were L-Glutathione reduced (GSH) (Sigma-

Aldrich #G4251), GDPβ-S and GDPβ-Se (both synthesized in our lab).  All fluorescence readings 

were performed with Tecan Infinite M1000 plate reader.  Small volume transfers were performed 

on the Tecan Freedom EVO liquid handling system with a 100 nL pin tool transfer (V&P Scientific).  

Serial dilutions were done in 96-well polypropylene plates (Corning, #3365) and assays were 

conducted in 384-well black polystyrene microplates (Nunc, #262260). 

Probe Determination Assay Protocol:  Solid Thiofluor 623 was diluted in DMF at 10 mM.  10 mM 

stock solutions of GSH, GDPβ-S and GDPβ-Se in water were serially diluted in the prepared PBS 

buffer (2.5 μM-0.00488 μM). 

Determining H-Ras Functionality using a GTPase Calorimetric Assay248: 

Reagents and Instrumentation: The assay buffer was prepared by adding 50 mM Tris (Acros 

Organics, #201-064-4) , 5 μg/mL BSA (Thermo Scientific, #23209), 0.01% (v/v) Tween 20 (Fisher 

Scientific, #BP337), 5 mM DTT (Gold Biotechnology, #DTT100) to 18 MΩ water.  The final buffer 

was pH to 7.5 and filtered to remove any particulates.  A 12.5 mM MgCl2 (Fisher Scientific, #AB-

0359) solution was prepared in 18MΩ water.  A 30 mM stock solution of guanosine 5’-

triphosphate sodium salt hydrate (Sigma, #G8877) was prepared in 18MΩ water.  The 25 μM 

stock GTPase protein, H-Ras, was a gift from Prof. Evgueni Kovriguine (Marquette University).  

The calorimetric dye, Biomol GreenTM (Enzo Life Sciences, #BML-AK111), reacts with inorganic 
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phosphate to produce a product that absorbs light at 620 nm.  Controls used were buffer 

(negative control) and KH2PO4 (J. T. Baker Chemical Company, #3246, positive control) Serial 

dilutions were done in 96-well polypropylene plates (Corning, #3365) while reactions were 

performed in clear, 384-well UV plates (Greiner Bio-One, #781801).  Each concentration was 

done in triplicate.  All UV readings were performed with a Tecan Infinite M1000 plate reader.   

GTP Hydrolysis Assay Protocol: GTP was serially diluted (1:2) to produce concentrations ranging 

from 30 mM to 0.001524 mM.  H-Ras was diluted to 80 nM in buffer. In a clear, 384 well UV plate 

each well contained 6.75 μL H-Ras (final concentration 40 nM), 6.75μL of GTP (final 

concentrations ranging from 15 mM-0.000762 mM) and 1.5 μL of MgCl2 to equal a total volume 

of 15 μL.  The plate was incubated for 1 hour at 37oC.  After 1 hour, 25 μL of Biomol GreenTM was 

added to each well and the plate was incubated for an additional 30 minutes at 37oC.  Absorbance 

was read at 620 nm to determine if phosphate was in fact hydrolyzed from GTP by the GTPase 

actions of H-Ras. 

H-Ras Hydrolysis of GTPβ-Se Monitored with Fluorescence: 

Reagents and Instrumentation: Buffer was made by adding 50mM Tris (Acros Organics, #201-

064-4), 0.03% (v/v) Tween 20 (Fisher Scientific, #BP337), 80 mM NaCl (Fisher Scientific, #S640), 8 

mM MgCl2 (Fisher Scientific, #AB-0359), 1 mM EDTA (Fisher Scientific, #S80007) to 18MΩ water.  

The buffer was pH to 7.4 with HCl and filtered to remove any particulates.  10 mM stock solutions 

of GDPβ-Se, GTPβ-Se and GSH (Sigma-Aldrich #G4251) were diluted in 18MΩ water.  The probe, 

Thiofluor 623, was diluted in the buffer to 1 μM and GTPase protein, H-Ras, at 40 nM 

concentration. All fluorescence readings were performed on a Tecan Infinite M1000 plate reader 

with excitation read at 570 nm and emission at 630 nm.  The gain was set manually at 100 and 
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10 nm bandwidth was used.  Serial dilutions were done in 96-well polypropylene plates (Corning, 

#3365) and assays were conducted in 384- well black polystyrene microplates (Nunc, #262260). 

H-Ras Activation using Thiofluor 623 Assay Protocol: First, to check if GDPβ-Se and GTPβ-Se had 

different fluorescence intensities without the presence of H-Ras they were serially diluted (1:2) 

in 96 well plates to obtain concentrations ranging from 10 mM-0.000508 mM.  10 μL of each 

concentration of compound was transferred to a 384 well black plate. To each well 10 μL of a 20 

μM Thiofluor 623 solution (diluted in buffer) was added.  Therefore, the resulting plate had the 

final concentrations of compound ranging from 5 mM- 0.000254 mM and 10 μM Thiofluor 623. 

To determine if H-Ras hydrolyzes GTPβ-Se to GDPβ-Se, another experiment was set up where 

GTPβ-Se was serially diluted (1:2) to in 96 well plates and 10 μL was transferred to 384 well black 

plates just like before. To the 20 μM Thiofluor 623 solution, H-Ras protein was added to yield a 

final concentration of 80 nM.  To each well, 10 μL of the probe/protein solution was added.  

Therefore, the final concentrations in each well were: 5 mM- 0.000254 mM GTPβ-Se, 40nM H-

Ras and 10 μM Thiofluor 623.  For both experiments, the plate was incubated at room 

temperature and fluorescence was read at 10, 20, 30, 40, 50, 90 and 120 minutes. 
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2.2.2 Results and Discussion 

 Initial experiments were conducted to determine the best assay conditions to monitor 

the formation of GDPβ-S or GDPβ-Se by fluorescence.  Thiofluor 623 was incubated with GSH 

over a range of concentrations over 60 minutes (Figure 72, A).  After 40 minutes, it was evident 

that the fluorescence intensity reached its maximum before starting to decrease at 60 minutes.  

In addition, the fluorescence signal was high at about 25,000 units.  When GDPβ-S was used, the 

fluorescence intensity was much lower even after 30 minutes (Figure 72, B).  This indicated that 

a large amount of the GDPβ-S would be necessary to obtain a significant window of detection.  

With these results, it was concluded that GDPβ-S may not be a good substrate for the assay being 

developed.  Therefore, GDPβ-Se was investigated as a possible GTPase substrate because of the 

higher nucleophilicity of the larger selenium atom. GDPβ-Se gave higher fluorescence when 

compared to GDPβ-S (Figure 73, A and B).  A concentration of 1mM of GDPβ-Se appeared to be 

necessary to observe a significant window of detection. The initial assay development was 

conducted with the GTPase, H-Ras.  Prior to its use, the functionality was evaluated using a 

calorimetric assay developed at UWM by Sweeney et al.248  GTP was serially diluted and 

 

Figure 72.  Time dependent study determining if Thiofluor 623 could be a possible probe A) 
the fluorescence intensity with GSH. B) Fluorescence intensity with GDPβ-S. 
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Figure 73.  Determining if GDPβ-S or GDPβ-S would be more suitable for assay kit. A) A 
dose response curve with GDPβ-Se and probe, Thiofluor 623 react, over time. B) 
Comparison of fluorescence intensity between GDPβ-S and GDPβ-Se over a range of 
concentrations at 30 minutes. 

Ligand Activity (t30)

-3 -2 -1 0 1
0

500

1000

1500

2000

GDP-S

GDP-Se

Concentration (mM)

F
lu

o
re

s
c
e
n

c
e

GDP-Se Activity

-3 -2 -1 0 1
0

10000

20000

30000

40000
30 min

90 min

150 min

Log[GDP -Se] (mM)

F
lu

o
re

s
c
e
n

c
e

A B



185 
 

incubated with H-Ras.  The production of inorganic phosphate (Pi) was detected by its reaction 

with Biomol GreenTM
, a dye that absorbs UV light at 620nm (Figure 74).  The H-Ras protein was 

capable of hydrolyzing GTP to GDP with a concentration of less than 1.0 mM GTP was necessary 

to create a workable signal. 

GDPβ-Se and GTPβ-Se were first compared without H-Ras present in Figure 76, A. As 

observed before, GDPβ-Se reacted with Thiofluor 623 showing an increased fluorescence with 

increasing concentration over 90 minutes (figure 75, A). However, GTPβ-Se with a “capped” 

selenium atom did not induce fluorescence (Figure 75, A). Thus, thiofluor 623 was capable of 

detecting GDPβ-Se in the presence of GTPβ-Se.   With H-Ras present, GTPβ-Se was not 

 

Figure 75.  A) A comparison of GTPβ-Se and GDPβ-Se and their ability to turn “on” the probe, 
Thiofluor 623.  B) The activation of H-Ras with the binding of GTPβ-Se using Thiofluor 623 to 
detect the production GDPβ-Se. 
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Figure 74. Dose response curve representing the hydrolysis of 
GTP to GDP with H-Ras using the calorimetric assay. 
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enzymatically converted into GDPβ-Se and therefore no fluorescence was observed even in the 

presence of increasing amounts of GTPβ-Se substrate (Figure 75, B).  One hypothesis is that H-

Ras is not able to convert GTPβ-Se to GDPβ-Se. Therefore, the Biomol GreenTM –based 

calorimetric assay was used in the presence of GTPβ-Se and GTPβ-S and H-Ras (Figure 76, A and 

B).  Initially, H-Ras appeared to be capable of hydrolyzing both substrates, however the 

absorbance was higher than the control concentration of phosphate. When the reactions were 

carried out in the absence of H-Ras a similar curve was obtained, thus the substrates GTPβ-Se 

and GTPβ-S reacted with Biomol GreenTM to increase the absorbance at 620 nm. Another 

possibility is that traces of seleno- and thio-phosphate or compound 1a might react with Biomol 

GreenTM. We are currently in the process to purify the final products with HLPC and scan the 

absorbance spectra from 250-800 nm to identify if the GTP analogs change the absorbance 

spectra of the molybdate-malachite green complex.  

2.2.3 Conclusion 

 The synthesis of GDPβ-S/Se and GTPβ-S/Se was successfully executed. In addition, an 

appropriate probe, Thiofluor 623, was identified for the detection of GDPβ-S and GDPβ-Se. 

 

Figure 76. A comparison of GTPβ-S and GTPβ-Se in activating H-Ras using a calorimetric 
assay.  A) GTPβ-S and B) GTPβ-Se. 
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Interestingly, H-Ras was not able to convert the heavy atom analogs of GTP, which prompted us 

to investigate other GTPases with our assay system. In addition, we will continue the search for 

a fluorescence probe that will work for the GDP/GTPβ-S system. The Biomol GreenTM –based 

assay did identify phosphate species in the purified end products or reacted with the GTP analogs 

itself. . Overall, a significant progress has been made to develop a universal GTPase assay, which 

encourages us to continue this work in the future with AviMed Pharmaceuticals, LLC.   
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APPENDIX A: VDR BINDING AND TRANSCRIPTION DATA FOR GW0742 

ANALOGS 
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Table 29. Evaluation of mono-substituted GW0742 analogs 

Entry R 
VDR-SRC2-3 

interaction IC50 
(μM)a 

VDR 
transcription 

IC50 (μM)b 

NCGC00319174-01 H 16.95± 1.64 41.5± 11.9 

NCGC00319046-01 o-CH3 43.88± 8.54 19.2 ± 5.6 

NCGC00319053-01 m-CH3 47.45± 6.61 38.2± 8.6 

NCGC00319065-01 p-CH3 37.52± 6.12 42.0± 11.1 

NCGC00319061-01 o-Cl 32.27± 3.19 28.9± 5.0 

NCGC00319050-01 m-Cl 24.10± 3.39 19.4 ± 8.5 

NCGC00319056-01 p-Cl 29.72± 2.28 17.5± 5.7 

NCGC00319063-01 o-F 35.53± 4.46 40.0± 8.5 

NCGC00319048-01 m-F 42.68± 5.14 28.3± 7.1 

NCGC00319055-01 p- F 45.61± 3.87 16.8± 4.64 

NCGC00319064-01 o-CF3 32.27± 5.28 31.5± 9.1 

NCGC00319049-01 m-CF3 24.5± 2.27 19.0± 6.01 

NCGC00241455-04 
(GW501516) 

p-CF3 22.92± 2.08 16.0 ± 3.6 

NCGC00319047-01 o-OCH3 45.18± 5.65 31.4± 8.1 

NCGC00319052-01 m-OCH3 48.82± 6.56 26.3± 6.9 

NCGC00319051-01 m-OCF3 13.86± 1.0 24.5± 8.6 
NCGC00319058-01 p-OCF3 15.63± 0.94 27.9± 7.4 

NCGC00319036-01 m- CN >100 25.1± 10.0 

NCGC00319057-01 p-CN >100 >50 

NCGC00319069-01 p- N(CH3)2 >100 24.5 ± 6.1 

NCGC00319067-01 p-NHCH3 12.22± 1.93 16.0 ± 7.1 

NCGC00319066-01 p- COOCH2CH3 19.52± 1.20 17.6± 10.9 

NCGC00319054-01 m-methylsulfinyl >100 >100 

NCGC00319070-01 p-methanesulfonamide >100 Inactive 

NCGC00319071-01 p-NHCOCH3 40.11± 9.26 inactive 

NCGC00319151-01 m-CONH(CH2)3N(CH3)2 30.28± 4.5 inactive 

NCGC00319150-01 p-CONH(CH2)2N(CH3)2 52.03± 12.79 >100 

NCGC00319169-01 
p-(4-methylpiperazinyl) 

methanone 
>100 inactive 

NCGC00319072-01 p-piperazinyl >100 inactive 

NCGC00319068-01 Morpholino-methanone >100 >100 
aVDR-LBD concentration used was 0.1µM. Inhibition of VDR-SRC2-3 interaction in the presence of 
LG190178 (0.75 µM).  The maximum concentration used for this assay was 300 μM of each 
compound; bTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under 
control of a 24-hydroxylase promoter with GW0742 analogs. cCell-TiterGlo (Promega) The maximum 
concentration used for transcription and toxcitiy assay was 100 μM of each compound. Data were 
analyzed using a nonlinear regression with a variable slope (GraphPad Prism).  
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Table 30. Evaluation of poly-substituted GW0742 analogs 

Entry R R1 R2 R3 R4 

VDR-SRC2-3 
interaction 

IC50 μMa 

VDR 
transcription 

IC50 (μM)b 

NCGC00092344-05 
(GW0742) 

H F CF3 H H 9.32 ± 1.14 20.7 ± 4.5 

NCGC00319082-01 H CF3 CF3 H H 9.02 ± 0.982 15.0± 4.7 

NCGC00319145-01 CF3 H CF3 H H 16.4 ± 2.78 28.5± 5.2 

NCGC00319172-01 Cl H CF3 H H 9.71 ± 2.24 9.9± 3.2 

NCGC00344925-01 H Cl CF3 H H 15.6 ±2 9.1 22.6 ± 7.1 

NCGC00344922-01 H Cl OCF3 H H 10.3 ± 1.07 22.1 ± 4.3 

NCGC00344921-01 H F OCF3 H H 17.2 ± 3.7 27.3 ± 5.1 

NCGC00319077-01 H OCH3 OCH3 H H >100 >50 

NCGC00319159-01 H F OCH3 H H 68.6 ± 12.24 >50 

NCGC00319154-01 H CH3 OCH2CF3 H H 39.42 ± 4.45 22.3± 6.1 

NCGC00319171-01 H CF3 F H H 17.0  ± 1.64 14.8± 6.3 

NCGC00319147-01 F F F H H 51.55 ± 9.74 36.9± 13.0 

NCGC00319168-01 H F F F H 19.57 ± 3.06 8.7 ± 4.4 

NCGC00344924-01 H Cl F H H 10.2 ± 2.11 >50 

NCGC00319153-01 H CN F H H 53.5 ± 16.0 23.7± 4.7 

NCGC00319148-01 CF3 H Cl H H 34.02± 6.59 35.4± 12.2 

NCGC00319143-01 H CF3 Cl H H 6.9 ± 0.99 21.4± 4.2 

NCGC00344923-01 H F Cl H H 22.90 ± 4.2 >50 

NCGC00319075-01 H Cl Cl H H 5.55 ± 1.17 6.5± 3.1 

NCGC00319142-01 Cl H CN H H 17.4 ± 2.06 39.4± 11.0 

NCGC00344926-01 H Cl H F H 15.6 ± 2.01 28.7 ± 8.2 

NCGC00344927-01 H CF3 H Cl H 11.2 ± 3.24 32.6 ± 16.4 

NCGC00319146-01 H Cl H Cl H 6.29 ± 0.79 22.2± 9.6 

NCGC00344928-01 Cl H H H Cl 40.3 ± 8.07 33.0 ± 7.2 

NCGC00344929-01 Cl Cl H H H 15.6 ± 2.01 14.3 ± 5.7 

NCGC00344930-01 Cl H H Cl H 14.5 ±2.21 >50 

NCGC00319170-01 H F 
Benzyl-

morpholi
ne 

H H 68.8 ± 13.0 >50 

aVDR-LBD concentration used was 0.1µM. Inhibition of VDR-SRC2-3 interaction in the presence of LG190178 
(0.75 µM).  The maximum concentration used for this assay was 300 μM of each compound; bTranscription 
assay using a CMV-VDR plasmid and a luciferase reporter plasmid under control of a 24-hydroxylase 
promoter with GW0742 analogs. cCell-TiterGlo (Promega) The maximum concentration used for transcription 
and toxcitiy assay was 100 μM of each compound. Data were analyzed using a nonlinear regression with a 
variable slope (GraphPad Prism).  
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Table 31. Evaluation of heteroaromatic-substituted GW0742 analogs 

entry R 
VDR-SRC2-3 
interaction 

IC50 μM 

VDR 
transcription 

IC50 (μM) 

NCGC00319037-01 3,5-dimethylisoxazol-4-yl >100 >60 

NCGC00319078-01 1H-indazol-4-yl 50.2 ± 7.49 >20 

NCGC00319073-01 4-pyridine 43.9 ± 8.54 inactive 

NCGC00319074-01 2-(benzofuran-2-yl) 52.8 ± 8.65 >50 

NCGC00319040-01 2,3-dihydrobenz[1,4]dioxin-6-yl 40.9 ± 5.67 >50 

NCGC00319076-01 Naphthalene-1-yl 20.2 ± 1.89 26.3±0 8.3 

NCGC00319038-01 Benzo[1,3]dioxol-5-yl 65.8 ± 15.54 42.5± 19.4 

NCGC00319039-01 Benzo[1,2,5]oxadiazol-5-yl 20.7 ± 1.18 >50 

NCGC00319155-01 Furan-2-yl >100 >50 

NCGC00319173-01 Pyridin-3-yl >100 >100 

NCGC00319059-01 Benzothiophen-2-yl 47.7 ± 8.29 >100 

NCGC00319162-01 Piperazin-1-yl >100 >50 

NCGC00319164-01 Pyrimidin-yl >100 inactive 

NCGC00319149-01 1H-indazol-6-yl 57.9 ± 8.69 inactive 

NCGC00319160-01 Benzothiazol-6-yl 53.0 ± 7.35 32.0± 14.5 

NCGC00319166-01 Isoquinolin-4-yl 53.5 ± 7.45 21.6± 6.05 

NCGC00319163-01 6-fluoropyridin-3-yl >100 >50 

NCGC00319167-01 1-methyl-1H-indazol-6-yl 57.1 ± 11.04 >50 

NCGC00319165-01 6-(trifluoromethyl)pyridin-3-yl >100 >80 

NCGC00319144-01 1-methyl-1H-indol-6-yl 20.9 ± 3.58 >50 

NCGC00319157-01 1H-indol-5-yl 15.1 ± 11.8 >50 

NCGC00319156-01 1H-pyrazol-4-yl >100 inactive 

NCGC00319152-01 2-fluoropyridin-4-yl >100 >100 

NCGC00319158-01 1H-indazol-5-yl 51.1 ± 5.55 inactive 

NCGC00344920-01 Benzothiophen-5-yl 20.4 ± 1.96 >50 

NCGC00344919-01 1H-indol-4-yl 28.9 ± 4.69 Inactive 

NCGC00344918-01 1H-indol-2-yl 22.6 ± 3.83 30.1 ± 10.2 
aVDR-LBD concentration used was 0.1µM. Inhibition of VDR-SRC2-3 interaction in the presence of 
LG190178 (0.75 µM).  The maximum concentration used for this assay was 300 μM of each compound; 
bTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under control of a 24-
hydroxylase promoter with GW0742 analogs. cCell-TiterGlo (Promega) The maximum concentration used 
for transcription and toxcitiy assay was 100 μM of each compound. Data were analyzed using a 
nonlinear regression with a variable slope (GraphPad Prism).  
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Table 32. Evaluation of tetrazole-substituted GW0742 analogs 

Compound ID R1 R2 R3 R4 
VDR-SRC2-3 
Interaction 

IC50 μMa 

VDR 
Transcription 

IC50 (μM)b 

NCGC00264097-01 H CF3 F H 4.25 ± 0.692 7.11± 1.74 

NCGC00344870-01 Cl H Cl H 4.55 ± 0.738 11.8 ± 6.5 

NCGC00344869-01 H Cl H CF3 11.85± 4.54 19.9 ± 1.06 

NCGC00344871-01 H Cl Cl H 2.66± 0.487 9.03 ± 2.3 
aVDR-LBD concentration used was 0.1µM. Inhibition of VDR-SRC2-3 interaction in the presence of 
LG190178 (0.75 µM).  The maximum concentration used for this assay was 300 μM of each 
compound; bTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid under 
control of a 24-hydroxylase promoter with GW0742 analogs. cCell-TiterGlo (Promega) The maximum 
concentration used for transcription and toxcitiy assay was 100 μM of each compound. Data were 
analyzed using a nonlinear regression with a variable slope (GraphPad Prism).  
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Table 33. Evaluation of linker-substituted GW0742 analogs. 

entry R1 R2 Y R X 
VDR-SRC2-3 
interaction 
(IC50) μM 

VDR 
transcription 

IC50 (μM) 

NCGC00264098-01 H CF3 S CH3 CH2 16.0 ± 1.22 3.62 ± 0.99 

NCGC00264099-01 F CF3 S H -- 34.9 ± 3.75 15.9 ± 6.46 

NCGC00263796-01 F CF3 S H O 17.2 ± 1.52 13.33 ± 4.7 

NCGC00264094-01 F CF3 O CH3 O 19.8 ± 1.66 6.33 ± 3.18 

NCGC00264104-01 F CF3 O H CH2 33.3 ± 3.71 6.40 ± 4.91 

NCGC00264093-01 F CF3 O H S 15.0 ± 1.18 5.5 ± 2.0 

KAT-031513 H CF3 O H CH2 >100 >33 

NCGC00264101-01 F CF3 N CH3 O 62.4±8.52 11.78± 6.32 

NCGC00264103-01 F CF3 N H O >100 21.0 ± 7.5 

NCGC00264102-01 F CF3 N H CH2 >100 22.3± 7.1 

KAT-050713 CH2OH H O H CH2 >100 Inactive 
aVDR-LBD concentration used was 0.1µM. Inhibition of VDR-SRC2-3 interaction in the presence 
of LG190178 (0.75 µM).  The maximum concentration used for this assay was 300 μM of each 
compound; bTranscription assay using a CMV-VDR plasmid and a luciferase reporter plasmid 
under control of a 24-hydroxylase promoter with GW0742 analogs. cCell-TiterGlo (Promega) The 
maximum concentration used for transcription and toxcitiy assay was 100 μM of each 
compound. Data were analyzed using a nonlinear regression with a variable slope (GraphPad 
Prism).  
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APPENDIX B: SOLUBILITY ASSAY WITH GW0742 OXAZOLE ANALOGS: 

CALIBRATION CURVES 
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