University of Wisconsin Milwaukee UWM Digital Commons

Theses and Dissertations

December 2015

Assessing the Effects of Riverbank Inducement on a Shallow Aquifer in Southeastern Wisconsin

Laura Rachel Fields-Sommers University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd Part of the <u>Geochemistry Commons</u>, and the <u>Hydrology Commons</u>

Recommended Citation

Fields-Sommers, Laura Rachel, "Assessing the Effects of Riverbank Inducement on a Shallow Aquifer in Southeastern Wisconsin" (2015). *Theses and Dissertations*. 1049. https://dc.uwm.edu/etd/1049

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

ASSESSING THE EFFECTS OF RIVERBANK INDUCEMENT ON A

SHALLOW AQUIFER IN SOUTHEASTERN WISCONSIN

by

Laura Fields-Sommers

A Thesis Submitted in

Partial Fulfillment of the

Requirement for the Degree of

Master of Science

in Freshwater Sciences and Technology

at

The University of Wisconsin-Milwaukee

December 2015

ABSTRACT

ASSESSING THE EFFECTS OF RIVERBANK INDUCEMENT ON GROUNDWATER QUALITY IN A SHALLOW AQUIFER IN SOUTHEASTERN WISCONSIN

by Laura Fields-Sommers

The University of Wisconsin-Milwaukee, 2015 Under the Supervision of Professor Timothy Grundl

The state of Wisconsin is heavily reliant upon groundwater resources. In order to induce river water, implementation of shallow wells with close proximity to river systems is being used as a method to augment groundwater supplies in portions of southeastern Wisconsin. However, river bank wells (RBI) are vulnerable to contamination due to their close interaction with the surface water. The vulnerability increases when induced surface waters contain municipally treated waste water. The objective of this study was to determine the current and potential influences of riverbank inducement, recharge mechanisms of the well field, and to discriminate the sources of sodium and chloride entering the well field. This was accomplished through the use of tracers and groundwater modeling. The tracer suite included major ions, hydrogen and oxygen stable isotopes, bacteria, and personal care products and pharmaceuticals (PPCPs). Inducement of river water into the RBI wells was calculated to be 44-52%. The flow mechanisms were too complex to be explained by dispersivity alone, so the assumption of plug flow was abandoned. Recharge was found to occur in the spring. Sucralose and acesulfame were found to be the most suitable tracers for this system and proved that waste water effluent enters both RBI wells. Waste water effluent was found to be the major source of salt entering the well field with small contribution from road salt runoff. No pathogenic bacteria were entering the well field.

© Copyright by Laura Fields-Sommers, 2015 All Rights Reserved То

Julie Ann Fields,

My eclectic family,

&

All of my teachers

TABLE OF CONTENTS

I.	Introduction	1
	History of the City of Waukesha Water Use	3
II.	Background on Novel Tracers	6
	Hydrogen and Oxygen Stable Isotope Tracers	6
	Bacterial Analysis	7
	16s rRNA Sequencing	7
	Fecal Bacteria Tracers	8
	Aquifer versus River Bacterial Communities	9
	Artificial Sweeteners as Tracers	9
III.	Setting	11
	Study Area	11
	Topography of Fox River Basin	11
	Site Location	12
IV.	Previous Fox River Studies	15
	Contribution of WWTP Effluent to River Flow	15
	MODFLOW Numerical Modeling	15
	Chemical Analysis & PHREEQC Modeling	17
	River Major Ions	17
	Well Major Ions	19
	PHREEQC Modeling	20
V.	Relevance and Research Objective	22
VI.	Methods	23
	Monitoring Network	23
	Field Methods and Equipment	23
	Winter Melt Hand Samples	25
	Teledyne-Isco Automatic Sampler	25
	Laboratory Analysis	26
	Major Ion Analysis	26
	Load Calculations	26
	Stable Isotope Analysis	28
	PHREEQC Modeling	29
	Inverse Modeling	29
	Transport Modeling	30
	Bacterial Analysis	32
	Human Fecal Tracers	32
	16s rRNA Sequencing	33
	Pharmaceuticals and Personal Care Product Tracers	33

VII. Results & Discussion	34
Major Ion Analysis & PHREEQC Modeling	34
Well Field Major Ions	34
Molar Mismatch	36
PHREEQC Modeling	38
Fox River Major Ions	39
Load Calculations	40
Isotopes	42
Riverbank Inducement Wells	46
Bacterial Analysis	48
Human Fecal Tracers	48
16s rRNA Sequencing	49
Pharmaceuticals and Personal Care Product Tracers	50
VIII. Conclusions	54
References	57
Appendix A: Sample Collection Information	
Coordinates of Sampling Sited in Decimal Degrees	62
Contacts for Sampling Sites	63
Well Construction Reports	64
Appendix B: Field and Analytical Results	66
Well Suite Field Analysis	67
Atomic Absorption Spectroscopy with Calibration Curves	69
Ion Chromatography with Calibration Curves	119
Major Ion Averages and Standard Deviations	146
Stable Isotope Results	164
Stable Isotopes Calibration	183
Appendix C: PHREEQC Modeling data	188
Inverse Modeling Input Files	189
Appendix D: 16s rRNA sequencing	192
Explanation and Potential Tracer Table	193
Pie Chart of Taxa Orders Present by Percentage	194

LIST OF FIGURES

Figure 1:	Depiction of River Bank Inducement Cycling in Waukesha	1
Figure 2:	Study Area Location with the Great Lakes Basin Boundary	3
Figure 3:	Current Proposed Diversion and Return from Lake Michigan	4
Figure 4:	Map of all Sampling Sites	12
Figure 5:	Map of Waukesha Sampling Sites	13
Figure 6:	Interpolated Stratigraphy from MODFLOW	16
Figure 7:	Analysis of Source Water (Fine Model)	17
Figure 8:	Analysis of Source Water (Coarse Model)	18
Figure 9:	Piper Diagram of Fox River Major Ions	19
Figure 10:	Major Ions in RBI Wells Over Time	20
Figure 11:	Conceptual of PHREEQC Modeling	31
Figure 12:	Major Ion Chemistry in WK947	34
Figure 13:	Major Ion Chemistry in RL255	35
Figure 14:	Major Ion Chemistry in RL256	36
Figure 15:	Na:Cl Ratios in RBI Wells	37
Figure 16:	Graph of Na & Cl Fox River Isco Site	40
Figure 17:	δD vs $\delta^{18}O$ in Waukesha Well Suite	42
Figure 18:	δD vs $\delta^{18}O$ in Waukesha Well Suite (Winter)	43
Figure 19:	δD vs $\delta^{18}O$ Fox River Isco Site (Seasonal)	44
Figure 20:	δD vs $\delta^{18}O$ Upstream of WWTPs	45
Figure 21:	δD vs $\delta^{18}O$ Downstream of WWTPs	46
Figure 22:	δ^{18} O in Fox River & RBI wells	47

LIST OF TABLES

Table 1:	Synopsis of Sampling Methods	23
Table 2:	Fox River Load at Isco Site	41
Table 2:	qPCR Fecal Bacteria Counts	48
Table 3:	Chemical Characteristics of PPCPs	51
Table 4:	PPCP Analysis	52

LIST OF EQUATIONS

Equation 1: Defining Load	26
Equation 2: Spring Melt Load	27
Equation 3: Chloride from Road Salt	27
Equation 4: Sodium from Road Salt	27
Equation 5: Calibration of δ^{18} O	28
Equation 6: Calibration of δD	28
Equation 7: LWML for Madison, WI	28
Equation 8: Sodium Lost to Cation Exchange	29
Equation 9: Percent of Sodium Lost to Cation Exchange	30
Equation 10: Linear Regression of Upstream Isotopic Signatures	44
Equation 11: Linear Regression of Downstream Isotopic Signatures	46

LIST OF SYMBOLS AND ACRONYMS

 δD : ratio of deuterium to hydrogen isotopes in parts per thousand

 δ O: ratio of oxgen-18 to oxygen-16 in parts per thousand

mMol/L: mili-mole per liter

AS: artificial Sweeteners; A synthetic sugar substitute

DO: dissolved oxygen

FIB: fecal indicator bacterial; sewage fecal tracers

GMWL: Global Meteoric Water Line; used in hydrogen and oxygen stable isotope analysis

LWML: Local Meteoric Water Line; used in hydrogen and oxygen stable isotope analysis

LEL: Local Evaporation Line; used in hydrogen and oxygen stable isotope analysis

PPCPs: personal care products and pharmaceuticals; soap, lotion, sunscreen, dental care

products, fragrances, antibacterial products, food additives

RBI: riverbank inducement; draw of river water into an aquifer when a well creates drawdown in that aquifer

VAMPS: The Visualization and Analysis of Microbial Populations Structures; a collection of online tools for research; https://vamps.mbl.edu/index.php

WWTP: waste water treatment plant; aquatic sewage processing plant

ACKNOWLEDGEMENTS

This thesis has been completed with the help of many in the Wisconsin and University of

Wisconsin- Milwaukee (UWM) community.

I would like to thank:

My advisor- Tim Grundl

My commity members- Jim Waples and Weon Shik Han

UWM's School of Freshwater Science (SFS) Alaytical Chemistry boss- Pat Anderson

SFS McLellan Lab & UW-Stevens Point Water & Environmental Analysis Lab

Water Utilities & Treatment Plants in the cities of Waukesha, Brookfield & Sussex

City of Waukesha Department of Parks, Recreation and Forestry

The plethora of volunteers & supporters: students in UWM SFS & Geosciences departments

Especially: Timothy Schierenbeck, Ryan Bartleme, Steven Binter,

Kurt Quamme, Joe Valencia, and Victoria Lubner

The University of Wisconsin Milwaukee & the School of Freshwater Sciences

My Grant Funder: State of Wisconsin Groundwater Research and Monitoring Program through the Wisconsin Water Resources Institute

xi

Chapter 1

Introduction

Historically, groundwater use has been prevalent in Wisconsin to the point where drawdown has become a concern in many parts of southeastern Wisconsin. In addition to excessive drawdown, the city of Waukesha has high radium concentrations in the deep aquifer it uses for municipal drinking water. To mitigate these issues shallow wells have been placed close to rivers with the intention of inducing water to flow from the river to the aquifer (Figure 1). Such wells are termed riverbank inducement (RBI) wells. By augmenting the aquifer's recharge and lessening the extent of drawdown, the technique can create a more sustainable water supply than can be achieved with normal wells. In addition, when the RBI wells are placed downstream of waste water treatment plant (WWTP) outputs, which are treating the water pumped from the same RBI wells, water is recycled locally and further increases sustainability.

Figure 1: Depiction of River Bank Inducement Cycling in Waukesha (Two RBI wells are present in Waukesha).

However the close interaction with surface water bodies poses potential risks of contamination, especially when the outfall from WWTPs enter those surface water bodies directly upstream of the RBI well fields. Recent studies have found micropollutants including pharmaceuticals, personal care products and other emerging contaminants to be commonly present in treated WWTP effluent (Luo et al., 2014; Mompelat et al., 2009; Heberer, 2002;). Additionally, micropollutants were found to be pervasive in surface water and groundwater systems worldwide (Balakrishnan et al. 2008; de Garcia et al. 2013; Farina et al. 2013; Bernot et al. 2013; Lin et al. 2011). This raises the possibility of future contamination in the shallow groundwater systems of the RBI wells.

An existing monitoring network including an RBI well field is located near the city of Waukesha (Figure 4). The RBI wells in the existing monitoring network are located adjacent to an urbanized section of the Fox River. In this section of the river a significant portion of the river consists of treated WWTP effluent from three upstream plants, creating an ideal field site. The monitoring network is well studied and much is known about its hydrology and stratigraphy. The complexity of the glacial till composing a majority of the shallow aquifer matrix in southeastern Wisconsin complicates the flow paths of induced water and makes tracking the induced water difficult. Having a set of reliable tools to trace the flow and identify the presence of WWTP effluent is needed.

The city of Waukesha is currently in the midst of a controversial application for a Lake Michigan diversion under the Great Lakes-St. Lawrence River Basin Water Resources Compact. The diversion would allow the city to discontinue its use of deep aquifer wells, some of which are exceeding EPA radium concentration limits. An alternative to this diversion would be adding more RBI wells. Therefore further study of this particular field site could prove useful to

regulators, to the City, and to the public when considering the diversion request.

History of the City of Waukesha Water Use

Over the last one-hundred years, a regional drawdown of 500ft has developed within the deep aquifer of southeastern Wisconsin (Thorp, 2013). By 2006 the deepest cone of depression in the region lay under Waukesha (Cape and Grundl, 2006). The influence of this drawdown has reversed the natural flows of groundwater systems lying to the east of Waukesha. The groundwater divide between the Great Lakes Basin and the Mississippi groundwater system was previously to the west of the City and water from there naturally flowed towards Lake Michigan (CH2M HILL, 2013; WDNR, 2015; Figure 2).

Laurentian Great Lakes Boundary in Wisconsin

Figure 2. Study Area Location. The divide between the Great Lakes Basin and the Mississippi River Basin indicated by the dotted line. The Waukesha county straddles the divide whereas the city of Waukesha lies in the Mississippi River Basin.

Additionally, the deep aquifer contains dissolved radium and levels in the aquifer have reached up to three times the concentration limits set by the U.S. EPA (CH2M HILL, 2013). World Health Organization limits for ²²⁶Ra and ²²⁸Ra are 27 and 2.7 pCi/L respectively and the U.S. EPA limit is 5 pCi/L of ²²⁶Ra and ²²⁸Ra combined (Cape and Grundl, 2006). These limits were created due to the increased risk of cancer. Waukesha Water Utility currently meets the required limits through removal by hydrous manganese oxide treatment and blending with shallow aquifer well water (Waukesha Water Utility, 2014).

Figure 3.Current proposed diversion and return from Lake Michigan: Waukesha Wisconsin Diversion Application (WDNR 2015)

As of 2013 the City has been treating the water for radium, implementing water conservation, and blending the deep aquifer water with shallow well water, but the City claims these precautions will not be sustainable with predicted growth (CH2M HILL, 2013; WDNR, 2015). Therefore Waukesha has requested a diversion from Lake Michigan to replace the deep groundwater aquifer wells on which the city currently relies. The City is permitted to submit such a request under the Great Lakes-St. Lawrence River Basin Water Resources Compact due to its location within a county which straddles the Great Lakes surface water divide (CH2M HILL, 2013). If this request is granted the City would be allowed to divert Lake Michigan water to the City. The City is legally bound to return it to the lake with the same or improved quality, which will be accomplished through discharge to the Root River in the Great Lakes Basin (Figure 3). As the first diversion request under the Compact it would set a precedent for other straddling counties and test the strength of the Compact.

Chapter 2

Background on Novel Tracers

Hydrogen and Oxygen Stable Isotope Tracers

Hydrogen and oxygen isotopes are ideal water flow tracers, as they are constituents of water molecules and not simply dissolved tracers. These isotopes behave conservatively and can differentiate small variability present in systems such as the Fox River in Waukesha (Gat, 1996). They have been commonly used as tracers in surface and groundwater bodies at both local and regional scales (eg. Chen et al., 2012; Athanasopoulos et al., 2011).

The major fractionation processes in the Fox River system, causing enrichment or depletion in isotopic signatures, are seasonal variations in temperature, evaporation and precipitation. In the spring there is higher discharge due to snowmelt and rain in the Wisconsin region. Low temperatures present during snow precipitation lead to low δ^{18} O values, and these low values are retained until the snow melts. Fractionation can also occur during partial melting of snow due to lighter isotope's preferential melting. In the summer the higher temperatures and evaporation lead to enrichment in δ^{18} O values in rain and river water (Gibson and Reid, 2010; Smith and Willey, 1977; Kendall, 2004; Bowser et al., 1994; Gat, 1996).

Precipitation falls along a gradient due to fractionation processes. The pattern of precipitation from ocean water has been termed the global meteoric water line (GMWL). The GMWL occurs as a direct result of the consistent fractionation processes occurring with marine evaporation and precipitation. However, local patterns and variations range widely based on the properties of the region resulting in local meteoric water lines (LMWL). A LMWL was defined by Swanson et al., 2006 for Madison, Wisconsin. Another useful tool that can be coupled with an LMWL is a local evaporation line (LEL) which is a function of the environment of a particular

surface of water and typically has a slope of 5 (Gat, 1994; Gibson and Reid, 2010; Athanasopoulos et al., 2011).

Stable isotope analysis is convenient at this location due to the fact that water being drawn from deep aquifer for municipal use has a significantly lighter isotopic signature than the shallow wells or the Fox River. The deep aquifer contains old water from the Pleistocene era which was much colder and therefore precipitation and infiltrating water in that time was isotopically much lighter (Klum et al., 2008). The cities of Brookfield, Waukesha, and Sussex use primarily deep aquifer water causing the effluent from their WWTPs to have light isotopic ratios. The shallow aquifer contains modern water, recharged at higher temperatures and therefore has significantly heavier isotopic ratios than the deep aquifer, in accordance with the LMWL.

Bacterial Analysis

16s rRNA sequencing

RNA based bacterial analysis utilizes sections of nucleic acid sequences that are specific to the taxa being analyzed as indicators of that taxa's presence in a sample. Sequencing allows the use multiple RNA indicators through a single technique without needing a known genetic marker for each taxon. Sequencing of the specific 16 strand of RNA is a commonly used method for analysis of taxonomic frequency and distributions because this strand is naturally hypervariable in microbial populations (Logue et al., 2008; Mclellan & Eren, 2014). The Visualization and Analysis of Microbial Population Structure (VAMPS) Project was used for a cloud based storage and visualization of 16s rRNA sequencing data. This method is a broad tool for understanding the scope of the community but more specific methods must be used for reliable quantification of a chosen taxon.

Fecal Bacteria Tracers

Once specific taxa are chosen for quantification indicator sequences may be developed for their quantification by quantitative polymerase chain reaction (qPCR). Polymerase chain reaction (PCR) employs the use of purposefully chosen oligonucleotide primers to copy and amplify source regions of DNA and/or RNA for the chosen indicator sequence. PCR is limited to presence absence analysis. qPCR is a real time reaction that goes a step further and permits quantification of a specific sequence using fluorescent reporter DNA probes (Logue et al., 2008). qPCR is a standard method for quantifying specific bacterial indicators, which are proxy to the quantity of the bacteria itself (such as the sewage tracers mentioned below). The presence of the indicator sequence simply indicates the presence of DNA and/or RNA of the bacteria and does not distinguish between living and dead bacteria.

Fecal indicator bacteria (FIB) are the standard sewage fecal tracers used globally for environmental regulations. The most common FIB are E. coli, enterococcus, and fecal coliforms. Recent research is reaching a consensus that FIB are not source specific and cannot trace human fecal matter specifically (Field & Samadpour, 2007). E. coli and enterococcus are commonly found in many mammals and birds. They also have been found to have poor correlation with human pathogens such as viruses. There is growing evidence that E. coli and entercococci can survive, grow, and establish populations in natural environments such as lakes, streams, algal mats, beach sand, and plant cavities. The 16s rRNA genes in some of these free growing FIB suggest the evolution of unique environmental strains (Mclellan & Eren, 2014).

Lachnospiraceae and Bacteroidales have been singled out as more human specific tracers. Lachnospiraceae has been found to be highly abundant in human sewage in U.S. cities and rich in human related indicators. Bacteroidales have also been found to have a high degree of host

specificity rich in human related markers. Specific regions of 16S rRNA strands have been singled out to be used in qPCR (Field & Samadpour, 2007; Mclellan & Eren, 2014). Aquifer versus River Bacterial Communities

Research suggests that bacteria thriving in WWTP effluent would encounter many obstacles in traveling from a WWTP outfall, through a river, and a two year flow path through aquifer sediment substrate to the wells (Thorp, 2013). WWTP effluent has the most variable aquatic microbial community and is highly dependent on the nature of the sewage and the treatment processing to which it is subjected. The environmental parameters of surface water are vastly different than that of groundwater in regards to sunlight, nutrient availability and concentrations of dissolved oxygen; groundwater being depleted in all three. The soil matrix through which groundwater passes is much more complex than a river system. Soil is known to contain the highest microbial diversity on earth (Barton et al., 2011; Da Rocha et al., 2013). This diversity present in soils will provide competition with which most of the sewage specific bacteria would not be able to compete. Many experiments have shown new organisms experience difficulty when introduced to soil unless that soil is sterilized, likely due to the antimicrobial chemicals released by soil microbes (Gottlieb, 1977).

Artificial Sweeteners as Tracers

Artificial sweeteners (AS) are synthetic compounds used as a replacement for sugar in food, beverages, pharmaceuticals, dental products, and animal feed. They are a portion of a larger grouping of chemicals called pharmaceuticals and personal care products (PPCPs), which represent a wide range of anthropogenic products including: soap, detergent, disinfectants, dental products, insect replants, screen agents and medications (Kahle et al., 2009). PPCPs are high production volume chemicals and are consumed in large quantities across the globe. AS are

anthropogenic and xenobiotic, meaning that AS are typically released into aquatic environments through municipal waste waters or industrial agricultural waste. The specific chemicals are highly dependent on local consumption which changes by geographical and cultural location. AS are very persistent in the environment due to stability against environmental degradation. The metabolic stability of AS allows sweeteners to be consumed and excreted unchanged. A handful of AS have been found in treated drinking water. Though some AS such as saccharin are degraded up to 90% in WWTP treatment processes, acesulfame and sucralose pass through the process mainly unchanged. Acesulfame and sucralose are among the most stable AS compounds. Sucralose has been found to be resistant even to ozone (Wolf et al., 2012; Ens et al., 2014). Acesulfame was found to be a dependable sewage tracer in groundwater (Engelhardt, 2013).

Chapter 3

Setting

Study Area

The head waters of the Fox River watershed are located in Lisbon in southeastern Wisconsin. The entire river basin spans 6,884 square kilometers, delivering water into the Illinois River in northeastern Illinois, which in turn enters the middle Mississippi. The river has a low slope with an average of 0.76 meters per kilometer.

The Upper Fox River basin in Wisconsin spans 2,429 square kilometers. The scope of this study includes the 326 square kilometer section from just below the head waters in Sussex, WI, through Waukesha, and down to Big Bend, WI. The landuse is mostly urban, with some farmland and minor forestland. Approximately a fourth of nutrient loading in this watershed comes from sewage point sources (SPARROW, 2002). The Fox River has two tributaries at this point: Popular Creek at Brookfield and the Pewaukee River at Pewaukee, which drains Pewaukee Lake.

Topography of Fox River Basin

The Fox River basin topography has been shaped by the Wisconsin Glaciation, the most recent major advance of the North American ice sheet complex which included the Laurentide ice sheet. The glaciers retreated around 11,000 years ago, leaving moraines, drumlins, kames, outwash planes and lake basin deposits across southeastern Wisconsin. The Fox River developed on glacial till and outwash, characterized by gently rolling hills, and moderate land slopes. The glacial till in the Fox River region in Waukesha consists of a heterogeneous mixture of clays, silts, sands, and gravels (Thorp, 2013).

Site Location

An existing monitoring network from previous research was maintained. The network consists of eighteen sampling sites: seven high capacity wells, seven river locations, one artesian spring and three Waste Water Treatment Plants (WWTPs). The sites are located in the Root, Menomonee, and Upper Fox River watersheds of Waukesha and Milwaukee Counties, Wisconsin (Figures 4 & 5). Coordinates can be found in Appendix A.

Figure 4. Map of all sampling sites, with light blue indicating the watersheds of the sampling sites.

The main sites used in this study are the WWTPs, Fox River sites, and Waukesha well sites. The WWTPs included the Waukesha, Brookfield and Sussex treatment plants. All four Fox River sites are in the upper Fox River watershed (Fox 0-3). Fox 0 is upstream of all WWTP outfalls, Fox 1 is below two of the outfalls, the Fox 2 is below all three outfalls, and the Fox 3 is much further downstream where groundwater and tributary inputs have diluted the effluent.

Waukesha Sampling Sites

Figure 5. Map of the Waukesha sampling sites, with light blue indicating urban landuse.

The wells maintained by the Waukesha Water Utility are all screened in a gravel layer in the shallow aquifer. The upper portion of the shallow aquifer consists of glacial and alluvial materials laid down during the Pleistocene. The New Berlin Member of southeastern Wisconsin is complex with vertically and horizontally heterogeneous units which have highly variable thickness. It has two distinguishable facies, the upper being a till unit and the lower being a sand and gravel unit. Both units have significant amounts of clay for cation exchange (upper- 17% and lower 13%; Thorp 2013). The lower portion of the shallow aquifer consists of Silurian dolomite and is separated from the deep aquifer by impermeable Maquoketa shale. The RBI wells are RL255 screened from 90 to 125ft, 225 ft from the river and RL256 screened from 62 to

143 ft, 83 ft from the river. WK947 is screened in the same aquifer but with no hydraulic connection to the Fox River, is located 1,500 ft from the riverbank. It is screened from 83 to 105ft just above the Silurian dolomite. Additionally, the Teledyne-Isco Automatic sampler was positioned next to RL255 on the Fox River downstream of Fox 2. Well construction reports can be found in Appendix A.

Background sites include an artesian well, three river sites, and a mixture of four dolomite and standing gravel aquifer wells (Figure 4). They are not used directly in this study, but have been collected for comparison and potential future use. Located in the Fox River Watershed are Big Bend Spring, an artesian well located near Fox 3, and Sussex Creek, located just below the outfall of Sussex WWTP. In the Root River Watershed is the Root River site, hydrologically comparable to Fox 2. In the Menomonee Watershed is Underwood Creek, which has been hydro-modified with cement bedding and channelization. The wells maintained by Brookfield Water Utility are wells: IZ385, IZ386, and EM285; screened in Silurian dolomite. In the city of Franklin is well SV631 which supplies water to a private school and is screened in a shallow sand and gravel aquifer.

Chapter 4

Previous Fox River Studies

Contribution of WWTP Effluent to River Flow

Holzbauer (2010) determined the contributions of WWTP effluent to the Fox River annually at low flow conditions. The four sites analyzed by Holzbauer were also used in the current study. They are defined in the Setting: Site Location section. The Fox River discharge was determined using USGS gage #05543830 for annual flow conditions (Figures 4&5). Collected samples were extrapolated to annual low flow conditions. Fox 0 effluent contributed 0% of the annual flow because it is upstream of all WWTPS. Effluent contribution increased 28% at Fox 1, downstream of Brookfield WWTP and Sussex WWTP. The maximum effluent contribution of 40% was found further downstream past the outlet for Waukesha WWTP at Fox 2. Fox 3, located far downstream in Big Bend was found to have a decreased contribution of 23% due to dilution (Holzbauer, 2010; Thorp, 2013).

MODFLOW Numerical Modeling

Feinstein et al., 2012 used MODFLOW to quantify heterogeneity of subsurface sediments, interactions between groundwater and surface water, and stresses on the aquifer system in order to estimate the percentage of induced river water in the RBI wells. The model domain was broken into three-dimensional, finite-difference cells with layering based on the amount of consolidated deposits. Recharge inputs were approximated from the surface bodies of water expected to act at sinks and water withdrawals were approximated from pumpage out of high capacity wells and discharge to dolomite quarries. Figure 6 shows the hydraulic zonation of the sediments in a model transect containing the RBI wells. The surface sediments between the Fox River and the RBI wells are primarily silts and clays. The sediments were found to be highly

heterogeneous with irregular flow paths which were most sensitive to the continuity of coarse grained deposits.

Figure 6. Interpolated stratigraphy from MODFLOW identifying the fine facies material along a crossection containing the wells, perpendicular to the Fox River which crosses the transect was labeled. Transect location is mapped on Figure 5. Modified from Feinstein et al., 2012.

Two models were developed to account for the uncertainty of hydraulic conductivity zones which vary over short distances in this region. One emphasized the connectedness of the fine grain deposits (clay, silt, silty clay, hardpan) and estimated that 31% of the water in the wells came from the River at steady state. The other model emphasized the connectedness of coarse grained deposits (sand, gravel, mix of sand and gravel) and estimated that 41% of the water in the RBI wells came from the River at steady state. No direct hydraulic connection was found between the River and WK947.

A particle tracking routine for water originating in the river was performed to determine the flow paths between the river bed and the RBI wells. The flow paths were found to originate downstream of the RBI wells. The water does not follow a direct path from the river to the wells. Distances up to 1,000ft for RL255 and 2,000 ft for RL256 were estimated for the flow-paths, along with estimated flow times 0.7-0.9 years for RL255, 1.0-2.5 years RL256. The simulated sources of water entering the RBI well field over time was modeled (Figures 7 & 8). There was a rise in induced stream flow predicted until WK947 came on line four years after pumping began. This was followed by a drop in contribution and another slow rise to a steady state between approximately 10 and 12 years after pumping began (Feinstein et al., 2010).

Figure 8. Analysis of source water to Waukesha RBI well field for 2005-2010 pumping rates. Coarse-favored model (Feinstein, 2012). Direct contribution of river water to the RBI wells is shown in purple.

Chemical Analysis & PHREEQC Modeling

River Major Ions

Thorp (2013) used chemical analysis of major ions and PHREEQC modeling to investigate the occurrence of RBI. Sodium and chloride concentrations were used as tracers of effluent and the results in the Fox River mirrored the contribution estimated in the Holzbauer in 2010 study (Figure 9). Fox 0 had the lowest concentrations of sodium and chloride. Fox 3 had concentrations slightly higher than Fox 0. Fox 2 had the highest concentrations and Fox 1 had concentrations just below those of Fox 2. The concentration in the WWTP effluent samples had the highest concentrations. Thorp therefore concluded that sodium and chloride increases indicated influence from treatment plant pollution sources and that sodium and chloride would be an adequate tracer of RBI in this system.

Figure 8. Piper diagram of major ion concentrations in Fox River Sampling Sites, number of samples used and there relative standard deviations are indicated in the legend. (Modified from Thorp, 2013).

Well Major Ions

The well WK947, known to be hydrologically outside of the influence of the river, showed no significant change in either element. Initial monitoring of the two RBI wells (RL255 and RL256) was above the background concentrations of WK947, indicating a connection with the River existed prior to pumping. Records from past show a clear increase in sodium and chloride levels since pumping began, as seen in Figure 10 (Thorp, 2013). The concentrations of sodium and chloride were immediately between the values for WK947 and Fox 2, supporting the occurrence of RBI in RL255 and RL256. The trend of sodium and chloride breakthrough curves indicated the time in which the more saline Fox River water started to enter the well field. The concentrations of sodium and chloride along the Fox River suggested that salt inputs into the river (road salt and WWTP effluent) contributed the majority of sodium and chloride to the RBI wells.

Figure 9. Major ion concentrations in RBI wells RL255 over time. An average of Fox River water sodium and chloride concentrations are depicted to scale in the upper right hand corner (2007-2012; n=12). Thick solid lines represent transport modeling using PHREEQC (Thorp, 2013).

Figure 10. Major ion concentrations in RBI wells RL256 over time. An average of Fox River water sodium and chloride concentrations are depicted to scale in the upper right hand corner (2007-2012; n=12). Thick solid lines represent transport modeling using PHREEQC (Thorp, 2013).

PHREEQC Modeling

Thorp used inverse modeling to determine the geochemical processes occurring during RBI in both wells. The inverse model determined that 40% of the water in RL255 came from the River and 35% of the water in RL256 came from the river, consistent with the Feinstein et al., 2012 result of 31% and 41% induced water in RL255 and RL256 respectively. Further explanation for methods can be found in the inverse modeling methods section on page 27.

Further modeling of the RBI flow-path used chemical changes deduced from inverse modeling. The solid lines in Figure 10 represent the best-fit results of a transport modeling system using PHREEQC code. The transport routine in PHREEQC uses a one-dimensional plug flow representation of the flow regime that can include advection-dispersion, cation exchange, and mixing of induced water with original groundwater (Parkhurst, 1995; Thorp, 2013). The modeling and observed data were considered to be similar enough to provide conclusive evidence of inducement in the two wells. The advective front calculated from the breakthrough curve occurred in July 2008, approximately two years after pumping began. The breakthrough curves indicated travel time from the Fox River to the wells to be about two years, matching the Feinstein et al., 2012 results of 0.7-0.9 years for RL255, 1.0-2.5 years RL256.

Chapter 5

Relevance and Research Objective

Through the use of RBI wells in southeastern Wisconsin, river water containing WWTP effluent is entering the shallow aquifer that is being pumped for municipal uses. There is a need to develop a set of tracers able to conclusively identify the presence of effluent. The purpose of this proposed research is to determine the current and potential influences of riverbank inducement (RBI) on the shallow aquifer. An existing network of monitoring wells, including two RBI wells in Waukesha County, provides an ideal field site. Six years of background data have already been collected on this site and a plethora of information has been gathered on the local hydrology and geochemistry. The wells also induce water from the Fox River, which contains a significant flow of treated municipal waste water. The specific objectives of this study are twofold:

- To define recharge mechanisms of the RBI well field using hydrogen and oxygen stable isotope tracking. Further sampling on a time scale pertinent to river flow would allow clearer definition of recharge mechanics.
- 2. To discriminate the source(s) of salt entering the well field using geochemical tracers. It is important to find a reliable tracer which can conclusively identify the presence of waste water effluent in shallow aquifers.

Chapter 6

Methods

Monitoring Network

A synopsis of the timing and locations of all of the sampling methods and analysis may be seen in Table 1. The monitoring network was sampled in the spring, summer and fall. This is the same as previous research and is designed to capture information pertinent to groundwater. Sampling was conducted during spring groundwater recharge, late summer baseflow conditions, and late fall groundwater recharge while the river was at baseflow conditions: when the aquifer has the most influence over surface water. Each site type required specific collection techniques and field measurements for selected physical and chemical properties.

Sample	Monitoring	Spring	Automatic	Major Ions	Stable	Bacteria	PPCPs
Туре	Network	Melt	Sampler		Isotopes	Analysis	
Years	2005-2015	2014 &	2014-2015	2005-2015	2009-2015	2014	2015
Collected		2015					
Frequency	Once per	Collected	Daily	All	All	Fall	Spring
	collection	on all	Samples:	Monitoring	Monitoring	Samples:	Samples:
	period:	known	April-	Network	Network	WWTPs	Sussex &
	Spring,	thaw	October,	samples;	samples;	(3), Fox 0,	Waukesha
	Summer, &	dates:	December	Auto-	Auto-	Fox 2,	WWTPs,
	Fall	Spring		sampler:	sampler:	RL255,	Fox 0, Fox 2,
				1per week	1per week	RL256,	RL255,
				_	_	WK947	RL256,
							WK947

Table 1. Synopsis of timing and location of sites sampled for each method of sampling and analysis used.

Field Methods and Equipment

For stream sites collection was conducted during base flow conditions as determined by USGS gage station 05543830 Fox River at Waukesha, approximately 0.7 miles downstream from Fox 1 and 5 miles upstream from the Teledyne-Isco automatic sampler (Figures 4 & 5). A Teflon bailer was used to collect water at 5-10 equidistant intervals across the river and composited to ensure a representative sample. At each well house water was collected using YSI 3550 flow-through chamber with tubing connecting raw water tap with the chamber input and outflow hose emptying into a 1L Nalgene bottle. Well pumps ran for 10 minutes prior to collection to ensure that the sample was a representative groundwater sample. At each WWTP a 24 hour composite sample was taken by staff and refrigerated in a 1L Nalgene bottle with as little air as possible to reduce exposure to oxygen. The samples were picked up the next morning.

Once water samples were collected they were kept cool until filtered, within 24hrs using sterile 0.2µm regenerated cellulose filters. Up until July 2014 filtering was conducted in the field using plastic syringes. Following July 2014, a vacuum pump manifold with the vacuum set at -20 kpa was used. Two 125 mL Nalgene bottles of filtrate were kept for major ion analysis. The cations bottle received 1 mL of 4N trace metal grade nitric acid for preservation. One 15 mL polypropylene conical tube of filtrate was kept for isotopic composition. All bottles were capped, sealed with Parafilm and stored at 4°C until analysis.

Dissolved oxygen, electrical conductivity and temperature were measured for all sites excluding WWTPs. Dissolved oxygen was taken using YSI Model 52 oxygen meter, calibrated to barometric pressure from a standard handheld barometer. CHEMetrics colormetric ampoule kits K-7512 (for high oxygen) and K-7501 (for low oxygen) were used as replicate measurements of dissolved oxygen. Electrical conductivity was measured using a YSI 3500 water quality meter through 2013, then a YSI Pro30 Conductivity Meter was used. River locations were measured with the meters on the bank and the probe as far into the river as possible to ensure the most representative measurement. In the well locations the probes were situated in the collection bottle at the end of the outflow hose. Finally in the artesian spring, the probes were positioned directly in the outflow waters.
Chemical parameters that are subject to rapid change were tested at river and well sitespH, alkalinity, ferrous iron (often dropped due to its ubiquitous absence), and sulfide. pH was measured using an Accumet 1002 pH meter by Fisher Scientific, calibrated to pH of 4.0 and 7.0. Alkalinity was tested by filtering a 50mL sample and titrating it to 4.50 pH using 0.02N hydrochloric acid. The total acid added was determined by the mass difference between original 50mL sample and mass of sample post titration, using an Ohaus SP402 portable scale. Alkalinity for samples that could not be titrated in the field, i.e. WWTP effluent, were estimated by charge balance. Ferrous was measured with CHEMetrics K-6210 kits and sulfide with CHEMetrics K-9510 kits.

Spring Melt Samples

In addition to the monitoring network samples, hand collected samples were taken on the first warm days of the spring, above 0° C, when thawing of snow and ice cover was anticipated. The samples were collected with the same methods as river samples in the monitoring network. The sites included were Fox 0 through Fox 3, though sites where ice cover was too thick to break through with a pick-axe were not sampled.

Teledyne-Isco Automatic Sampler

Teledyne-Isco Automatic Sampler, Model 6712, with 720 submerged flow probe module was implemented to collect daily samples from spring 2014-spring 2015. The 720 submerged flow probe module used a differential pressure transducer to measure the level of the flow stream every 30 minutes. The sampler was placed in the field on April 1, 2014 and ran through September 23, 2014, collecting daily samples and storm event triggered samples. Event triggering proved to be problematic and the sampler consistently missed storm events. After September 23rd the sampler was set with a simple daily schedule and no event trigger. However, due to timing no storm event was actually measured. A full listing of the samples can be found in Appendix B. Samples remained in the sampler for a maximum of 24 days and were processed as the WWTP samples were. Weekly samples, chosen on a basis of estimated average discharge for the week, and rainfall event samples were chemically analyzed.

Laboratory Analysis

Major Ion Analysis

Anion analytes, Cl⁻, SO₄²⁻, NO₃⁻, and PO₄³⁻, were analyzed using ion chromatography on a DIONEX ICS-1000 IC System with Chromeleon version 6.80 SR7 workstation software. Cation analytes, Ca²⁺, Mg²⁺, Na⁺, K⁺, were analyzed using atomic absorption spectroscopy on a SOLAAR with version 11.02 workstation software. Anion and cation standards were prepared from commercial 100 mg/L stock solutions. Calibrations were performed at the beginning and end of every analytical run to account for drift. Ion concentrations were calculated independently of the prefore mentioned software, using calibration curves constructed from the averages of the beginning and ending standards. Averages of three to four runs were used for RL255, RL256, and WK947. The standard deviations used to create error bars.

Load Calculations

Ion loads were calculated for all of the measured major ions mentioned in the previous section for the Isco Automatic Sampling Site between the months of March and October 2014. Load estimation techniques from U.S. EPA national management measures were used (U.S. EPA, 2003). The defining equation is:

Equation 1.

Load
$$\left(\frac{mg}{s}\right) = \int_{t}^{1} (c_t q_t) dt$$

Where k is a constant for unit conversions, c_t is concentration (mg/L) at time t, and q_t is discharge (L/s) at time t. Discharged was calculated by USGS from gage #05543830, which was found to be in direct concert with pressure gages at the Isco automatic sampling site. Loads were calculated for each month in milligrams per second. In 2014 the spring melt was determined to occur between March 7th and March 22nd. The percentage of the spring melt's load contribution during the sampling period was calculated using Equation 2 and is considered to be the load delivered by the spring melt.

Equation 2.

% Yearly Load due to Spring Melt =
$$\frac{\sum Spring Melt Load \left(\frac{mg}{s}\right)}{Extrapolated \sum Loads_{Apr-Oct}} * 100$$

The road salt load during the spring melt was calculated using equations 3 and 4 for sodium and chloride loads respectively. Cl_{spring melt} and Na_{spring melt} represent the average of loads calculated for the samples taken during the spring melt as determined for 2014. These spring melt samples were expected to be the high loads for the year. An average of samples taken during non-spring melt (2014) was assumed to reasonably account for the loads over a whole year, excluding the spring melt. Therefore, the average values in the equations were extrapolated from average of all of the loads calculated for the samples actually taken to estimate the average sum load of a month in 2014. The extrapolated average was considered to be the ambient load. Equation 3.

$$Cl_{road \ salt} = Cl_{spring \ melt} - Cl_{Extrapolated \ Average}$$

Equation 4.

$$Na_{road \ salt} = Na_{March} - Na_{Extrapolated \ Average}$$

Stable Isotope Analysis

A ring-down spectrometer, Picarro AN017 auto analyzer, was used to analyze δ^{18} O and δ D stable isotopes. Three calibration standards were chosen within the appropriate span of isotope values. They included KONA water taken from the deep ocean off of Kona, HI, water from well GB bf190 in Green Bay, WI, and water from well DNR BH423 in Pewaukee, WI. The true values of the calibration standards were analyzed against the National Institute of Standards and Technology (NIST) standards. The known calibration standard values were plotted against measured values on separate plots, one for δ^{18} O and one for δ D. Linear regressions of standards were calculated for each sample run, following the format of the equations 5 and 6. These were used to calibrate the values of each run, see Appendix B. These methods correct for any long-term instrumental drift. There was no significant change in working standards over time. Equation 5.

$$\delta^{18}O_{calibrated} = m\delta^{18}O_{measured} + b_{\delta^{18}O}$$

Equation 6.

$$\delta D_{calibrated} = m \delta D_{measured} + b_{\delta D}$$

Isotopic signatures were graphed against an LWML defined for Madison, WI (Swanson et al., 2006), as defined below.

Equation 7.

$$\delta D = 7.79\delta^{18}O + 13.1\%$$

LEL were determined as linear regressions of river samples where appropriate. Samples available for isotopic analysis ranged from November 2009 to July 2015.

PHREEQC modeling

In order to determine mixing ratios and model groundwater flow, aqueous geochemical calculations were performed using PHREEQC version 3.1.7.9213 (Parkhurst and Appelo, Jan. 27, 2015) with the *wateqf.dat* database derived from WATEQ4F (Ball and Nordstrom, 1991).

Inverse Modeling

Final compositions of the RBI wells were a mix of two end member compositions, the Fox River and pristine groundwater (WK947). Inverse modeling was used to determine extent of mixing and geochemical reactions between the end-members in each RBI well to account for the chemical properties of the water at the end of the measuring period. It was accomplished by quantifying end-member mixing, mineral and gas phase precipitation/ dissolution, and cation exchange reactions responsible for observed changes in chemistry of RL255 and RL256 between initial measurements in 2005 and final measurements in 2015.

The pH value used was an average of Fox 2 samples in 2014. The pristine groundwater used was an average of WK947 between April, 2010 and July 2015 (n=14) . Infilling water was an average of the automatic sampler site taken between April and December of 2014 (n=42). As the automatic samplers were not retrieved immediately, pH measurements were not taken on these samples. The final solution was an average of RL255 samples (n=5) between May 2014 and July 2015 and RL256 samples (n=6)between October 2013 and July 2015. PHREEQC modeling input files may be found in Appendix C.

Cation exchange was calibrated to calculations of sodium loss seen in the wells over time. The amount of sodium lost was calculated using equation 8: Equation 8.

$$Na_{Lost}(moles) = \left\{ \left(Cl\left(\frac{mole}{L}\right) \times Na: Cl \right) - Na\left(\frac{mole}{L}\right) \right\} \times pumping \ rate\left(\frac{L}{yr}\right) \times yrs \ pumped$$

Where, Cl and Na were the lowest concentrations of chloride and sodium before the sodium to chloride ratios reached a steady state (2005-2012). Na:Cl represents an average of the final sodium to chloride ratio in each well. The sodium lost was calculated in two sections, the first during the rise in (2005-2010) and during the period of consistent sodium to chloride ratios (2010-2012; see Figure 13&14). The totals of the two periods were then summed. The percentage of sodium lost was then calculated using equation 9: Equation 9.

$$\%Na_{lost} = \left(\frac{Na_{lost}(moles)}{Final Na \times pumping rate\left(\frac{L}{yr}\right) \times 7 yrs}\right) \times 100$$

The bottom part of the bracket represents the total sodium that would have come through if there were no cation exchange. Seven years was used for the time pumped because sodium loss occurred between 2005 and 2012. The cation exchange in the inverse modeling was calibrated to the percent of sodium lost from the final solutions of each of the RBI wells.

The program was set to determine the fluxes in the designated solid and gas phases of calcite, dolomite and CO₂, and amount of mole transfers of major ions. Parameter selection was based on knowledge of the hydrologic setting. PHREEQC modeled infilling water interacting with initial water, allowing for the fluxes and mixing ratios necessary to conclude with ion concentrations observed in final solution. Uncertainty limits were used to limit the number of possible outcomes: the defined solutions were set a 10% uncertainty (maximum error accepted in major ion analysis data). A few ions were set separately to achieve better calibration with the observed data: chloride, potassium, sulfate and sodium. The specific assignments may be seen in the input modeling input under balance, with each value pertaining to one of the solutions in the order they are defined in the input file (Appendix C).

30

Transport Modeling

The transport model concept is depicted in Figure 11. Interactions in the aquifer as they relate to the model are represented by section (A) and PHREEQC model simulation in a 1-D flow tube is represented by section (B). Initially the entire column was filled with groundwater from the area around the well. At (B1) inducement of the Fox River begins, allowing Fox River water to begin its flow to the wells as pumping is initiated. The point at which geochemical reactions are defined for the flow from the river to the well is (B2). Along the column between (B2) and (B4), advective/dispersive transport and chemical reactions occurring, simulating the (A2) flow path. The constant mixing ratio between pure aquifer water (A1) and induced river water (A2) is denoted as (A3) and is simulated by (B3). The resulting water drawn from the RBI wells is represented by (B4).

Figure 11. Conceptual explanation of PHREEQC transport modeling, Thorp, 2013

The main reactions occurring in the model were mixing of end members and equilibrium phase calibrations. The mixing ratios of Fox River water and pure aquifer water were taken from the results of the inverse modeling. The dissolution values of calcite, dolomite and carbon dioxide indicated by the saturation indexes in the inverse modeling were used to calibrate their equilibrium phases in (B1). Length of flowpath was incorporated into the model using number and length of cells. The model was calibrated by matching the pore volume of the half way point of modeled transport chloride concentration rise with the advection front of the chloride breakthrough curve and stretching the pore volumes to match the time frame. Plug flow without leaking was assumed.

Bacterial Analysis

During the fall monitoring suite sampling of 2014 an extra 1L sample was taken from the three WWTPs, Fox 0, Fox 2, RL 255, RL 256 and WK 947 sites. The samples were collected in sterile 1L Nalgene bottles with as little air as possible, kept on ice and filtered within 6 hours of collection. Glassware and associated utensils were prepared using UV sterilization for 15 min. The samples were filtered with 0.22 sterile 47mm EMD Millipore Microbiological Analysis Membrane Filters a vacuum manifold set at 20 kpa. The filter papers were kept, rolled, and placed in tephlon tubes and frozen -80°C until analysis.

Human Fecal Tracers

Analysis was completed by the Mclellan lab at the School of Freshwater Science using Ultra Clean Mega Prep soil DNA kit (MoBio Laboratories Inc., Solana Beach, CA) to extract DNA for quantitative polymerase chain reaction (qPCR). Specific sequences present for ruminant, ecoli, enterococcus, lachnospireacie, and bacterioides, were quantified to counts per 100 mL.

16s rRNA Sequencing

The hypervariable 16s RNA region was sequenced and referenced to the Global Alignment for sequence taxonomy, which assigns taxonomy based on 2/3 majority vote of taxonomy of the nearest full length relatives (threshold greater than 80% sequence similarity).

32

Results were read and analyzed via the Visualization and Analysis of Microbial Population Structures (VAMPS) project (Halliday et al., 2014).

Pharmaceutical and Personal Care Product Tracers

An additional liter of sample was collected from the Sussex and Brookfield WWTPs, Fox 0, Fox 2, RL255, RL256 and WK947 sites during the spring 2015 sampling period for PPCP analysis. The samples were collected in sterile 1L Nalgene bottle, with as little air as possible, kept on ice for a maximum of 4 hours after collection. The samples were then filtered with 0.2µm sterile regenerated cellulose filter via a vacuum pump set at 20 kpa. Filtered water was poured into amber glass bottles, with Teflon caps, and kept at 4°C until packed on ice and shipped same day delivery to University of Wisconsin- Steven's Point Water and Environmental Analysis Lab. The lab tested for pharmaceuticals and personal care products (PPCPs), including artificial sweeteners: Acefulfame, Sucralose, Saccharin, Acetaminophen, Cotinine, Caffeine, Paraxanthine, Benzoylecgonine, Carbamazepine, Trimethoprim, Sulfamethazine, Sulfamethoxazole, Venlafaxine, and Triclosan.

Chapter 7

Results & Discussion

Major Ion Analysis & PHREEQC Modeling

Well Field Major Ions

The major ion chemistry of the pristine aquifer in Figure 12 remained constant, with chloride concentrations at 2.1-2.5 mMol/L (74.9-88.3 mg/L) and sodium concentrations at 1.5-1.7 mMol/L (34.7-39.44 mg/L)..

Figure 12. Major Ion Chemistry in WK947 from 2008 through 2015. Pumping in this well began April 2009.

Major ion analysis showed that the groundwater chemistry in the two RBI wells did not level off after an initial breakthrough curve as Thorp (2013) predicted. There was a continuing rise of sodium and chloride levels in both wells; with a stepwise increase especially visible in RL255 (Figures 12 and 13). The sodium and chloride concentrations leveled off in a second plateau early in 2014. The first rise occurred in concert with the first rise in induced stream flow into the well field as predicted by Feinstein (2010). The first plateau occurred in concert with the drop in induced stream flow, approximately four years after pumping began, and second rise occurred as induced stream flow was increasing again, approximately six to ten years after pumping began. After 2015, concentrations level off and the induced stream flow is predicted to level off as well (ten to fourteen years after pumping began), leading to the conclusion of continued stable concentrations (Feinstein et al., 2010).

Figure 13. Major Ion Chemistry in RL255 from 2005 through 2015. Pumping in this well began November 2006

Figure 14. Major Ion Chemistry in RL256 from 2005 through 2015. Pumping in this well began November 2006.

Molar Mismatch

Since sampling begun in 2005, results have shown a large molar mismatch between sodium and chloride molar concentrations starting at a 0.4 sodium to chloride ratio and increasing over time to 0.7. This large mismatch exceeds the mismatch of the Fox River water, providing evidence of sodium for calcium cation exchange during transit from river to well (Figure 15). As pumping began the ratio increased to around 0.7 and leveled off in the first plateau at the end of the breakthrough curve (2010-2012), then increased again to around 0.8 for the remainder of the study. The ratio in both wells leveled off within the standard error range of the ratio of sodium to chloride that has been measured in the Fox River at the Isco site. The ratios in RL256 are closer to those seen in WK947.

Figure 15. Ratios of sodium to chloride over time in the RBI wells compared to the ratio of WK947 and the average ratio in the Fox River at the Isco Site in 2014.

The first rise in the sodium to chloride ratio occurred as Fox River water, high in sodium and chloride concentrations, was moving into the well field and cation exchange sites responded by exchanging sodium ions for calcium ions causing the large molar mismatch between sodium and chloride. When WK947 came online four years after pumping began in the two RBI wells, there was no new input from the Fox River. Cation exchange capacity was able to reach an equilibrium seen in the first plateau. When the second rise in induced stream flow occurred, additional Fox River water entered the RBI wells, necessitating a new equilibrium with cation exchange sites. Once the induced stream flow reached steady state the cation exchange sites reached the new equilibrium. This equilibrium is essentially the same as pristine groundwater (WK947) and Fox River water. Therefore further changes in the sodium to chloride ratio is not expected even if the pumping regime changes.

PHREEQC Modeling

Inverse modeling of RL255 determined end member mixing of 59% average Fox River water and 41% pristine groundwater. Sodium loss, due to cation exchange capacity, was found to be 30% of the total sodium entering the well field. Carbonate minerals were under-saturated with saturation indexes of -0.15 for calcite, -0.47 for dolomite, and carbon dioxide was over-saturated with respect to atmospheric levels with a P_{CO2} of $10^{-1.45}$ atm. This model is consistent with the 60% river water contribution of the coarse-grain deposit favored model defined by Feinstein.

Inverse modeling of RL256 quantified mixing at 34% river water and 66% pristine groundwater. Sodium loss due to cation exchange reactions was found to be 20%. Carbonate minerals were also under-saturated with saturation indexes of -0.27 for calcite, -0.71 for dolomite, and carbon dioxide were over-saturated with respect to atmospheric levels with a P_{CO2} of $10^{-1.39}$.

The mixing ratios indicate that RL255 is receiving more river water than RL256, explaining why the breakthrough curve for RL255 is more defined than RL256. It also explains why the final ratios of sodium to chloride in RL255 are closer to the Fox River than RL256. RL256's sodium and chloride ratios closely resemble the pure aquifer water in WK947 due to greater contribution of pure aquifer water.

The PHREEQC transport model was unable to account for double plateau of the breakthrough curve. Fitting the model to the first plateau does not account for the entire rise in sodium and chloride concentrations. If the model were made to fit the second plateau, the

38

dispersivity would be larger than any value measured in the field. In this system the advective front is more complicated than simple plug flow. Simple plug flow cannot be assumed because of changes in the contribution of induced river water over time due to changes in pumping rates. Other possible complications include leakage from the overlying silty layer, and complex flow patterns. The river source is predicted to continue increasing for up to 10 years, meaning that the mixing ratio would increase with time and not be a consistent plug flow (Feinstein et al., 2010). A change in pumping rates would further exacerbate inconsistencies of inducement from the river. Finally it is probable that the flow paths are too complex due to the heterogeneous nature of the glacial till to be considered plug flow.

Fox River Major Ions

The spring melt in Waukesha was determined to occur between March 7th and 22nd in 2014 and March 8th and 20th in 2015. The USGS gage was iced over until March 18th, 2014 and March 9, 2015. Sodium and chloride concentrations in the Fox River, at the Isco site, were the highest in March 2014 during the spring melt; maximum concentration measured at 13.09 mMol/L (301 mg/L) sodium and 11.82 mMol/L(419 mg/L) chloride (Figure 16). The spring melt samples collected in March 2015 had a slightly lower maximum with 9.64 mMol/L (222 mg/L) sodium and 11.39 (404 mg/L) chloride concentration. The concentrations remained fairly constant from April through October with average concentrations of 5.37 ± 1.12 mMol/L (123 ± 26 mg/L) sodium and 6.59 ± 1.08 mMol/L (234 ± 38) mg/L chloride, representing the ambient load. Dips in concentration were directly preceded by increases in discharge due to major precipitation events, representing surface flow, indicating that sodium and chloride concentrations were not due to runoff from the landscape during the majority of the year but rather WWTP effluent input (Figure 15).

39

Concentrations in December were slightly higher on average at 7.84 ± 0.24 mMol/L (180 \pm 6 mg/L) sodium and 9.19 ± 0.42 mMol/L (326 ± 15 mg/L) chloride. In December 2014 the temperature was hovering around freezing with varying mixtures of snow and rain, salting most likely occurred with melting leading to increased sodium and chloride concentrations in the Fox River.

Figure 16. Graph of sodium and chloride concentration in the Fox River at the Isco automatic sampler site in 2014 compared to discharge at USGS gage #05543830.

Load Calculations

The average load in March is fairly similar to the average load during the remainder of the year, except for sodium and chloride concentrations, which are 10,000 mg/s higher in March (Table 1). Load calculations indicate spring melt runoff and WWTP effluent in March accounted

for 11-13% of sodium chloride inputs into the river over a year, extrapolated from the 8 month period from March- October and December 2014 when samples were taken. If all of the months were equal then each month would account for only 8% of the load.

Table 1. Fox River Load March-October 2014 at thIsco automatic- sampling site. The estimated March percent values were calculated by comparing March to the extrapolated average of the full year.

Spring Melt Load 2014								
Ion		Na	Mg	K	HCO3	Cl	SO4	NO3
Avg. March (mg/s)		24980	4923	110	36520	41010	8162	1877
Avg. Month [excluding March] (mg/s)	10740	15690	4482	500	33350	30630	7683	1749
Estimate March % of Full Year {from load $\sum s$ }	8	13	9	2	9	11	9	9

Only a portion of the March load consisted of road salt. The load occurring from constant sources of WWTP sodium and chloride was accounted for using equations 3 and 4. The portion of the sodium and chloride loads of in March contributed by road salt were calculated by subtracting the average year load from the average March load, dividing by the average March load and multiplying by 100. The load of road salt entering the Fox River during the spring melt is 3% sodium and 5% chloride of the sodium and chloride yearly load. The road salt coming into the system is minimal compared to the 95-97% originating from the WWTPs flowing through the remainder of the year. This indicates that road salt does not create as much of an impact on this system as sodium and chloride entering the river from the WWTPs. As shown in previous studies, the WWTP effluent accounts for up to 40% of the Fox River flow during annual low flow (Holzbauer, 2010).

Isotopes

The variance of WWTP effluent contribution to the Fox River was controlled for by applying a weighted average based on the outflows of each WWTP of the course of the sampling period. No significant trends occurred in the RBI well isotopic signatures. Neither of the RBI wells showed signatures significantly different from WK947. The diversity of signatures for all three wells was so small compared to the diversities seen in the river samples that an average of RL255, RL256 and WK497 was plotted (Figure 17). The LEL was parallel to the LWML and did not directly cross the LWML between the shallow well signature and the WWTP signature.

Figure 17. Graph of hydrogen and oxygen stable isotopic signatures of samples collected between 2009 and 2015. Fox River samples in sites 0,1,2, Isco Auto-Sampler, and 3. Waukesha wells RL255, RL256, and WK947 are represented as an average (n=37) with standard error bars. WWTP isotopic signature are represented as a weighted average (n=29) based on percentage of effluent contribution to the Fox River, with standard error bars.

Isotopic signatures in the winter were much lighter than the remainder of the year (Figure 18). In the Fox River, the lightest isotopic signatures occurred during the later portions of the spring melt, below even the signature of the WWTP effluent. The cold conditions of winter form more precipitation as air masses move across the continent from the ocean to Wisconsin than in

the summer due to the fact that the maximum amount of moisture the air is capable of holding decreases with temperature. Heavy isotopes condense faster than light isotopes, causing the humid air mass to lose water molecules containing heavy isotopes thereby depleting the humid air mass's isotopic ratio. This results in isotopically lighter winter precipitation than summer months (Gat, 1996). In addition, during partial melting of ice the lighter isotopes are preferentially melted, creating even lighter isotopic signatures during the initial spring melt. Spring melt is even lighter than WWTP effluent because WWTP effluent is a mixture of light deep aquifer water and heavier shallow aquifer water. On the opposite end of the spectrum, the heaviest isotopic signatures occurred in May, June, and July (Figure 19). The drier conditions between August and December means that the contribution of WWTP effluent was higher and the lighter isotopic signature of the WWTP effluent influenced the isotopic signature of the river more during these months.

Figure 18. Graph of hydrogen and oxygen stable isotopic signatures of samples collected between 2009 and 2015 between December and March. Fox River samples in sites 0, 1, 2, Isco Auto-Sampler, and 3.

Figure 19. Graph of hydrogen and oxygen stable isotopic signatures of the Fox River at the Isco Automatic Sample Site by month between April 2014 and April 2015.

Upstream of WWTP outputs, Fox 0 signatures (excluding spring melt samples) had an LEL as defined below.

Equation 10.

$$\delta D = 5.35\delta^{18}O + 11.77\%$$

Spring melt signatures were excluded from the LEL calculations because snow melt is

isotopically different from meteoric precipitation. The slope of Fox 0 without the influence of spring melt signatures had a slope very close to the slope of 5, which is generally accepted for naturally fed rivers in this time and climate (Gat, 1994; Gibson and Reid, 2010). The LEL, if

extended down, crosses the average signature of the shallow wells in Waukesha implying mixing with groundwater as is expected in this region (Figure 20).

Figure 20. Graph of hydrogen and oxygen stable isotopic signatures of Fox 0, upstream of all WWTP effluent contribution (excluding spring melt samples).

Downstream of WWTP output(s), Fox 1, 2, the Isco Automatic sampler, and Fox 3

(excluding spring melt samples) had a linear regression as defined below.

Equation 11.

$$\delta D = 7.09\delta^{18}O + 1.56\%$$

The slope is greater than that of a naturally fed river in this time and climate. The linear regression downstream of the WWTP outputs crosses the effluent signature and indicates the influence of mixing (Figure 21).

Figure 21. Graph of hydrogen and oxygen stable isotopic signatures of the Fox 1,2, Isco Automatic Sampler, and Fox 3 sites downstream of WWTP effluent contribution (excluding spring melt samples).

Riverbank Inducement Wells

The lack of trends observed in isotopic signatures in the RBI wells stems from two potential causes: a lack of appropriate data and complex groundwater flow patterns. Seasonal fluctuations were apparent in the Fox River, so there was reason to suspect the signatures in the well would fluctuate with the water entering at any given time. If samples were taken at a high enough temporal resolution in the wells and the River there may have been a trend with a delay in isotopic signature directly caused by the travel time between the river and the wells. This has been observed in systems with short (<70m), clearly defined flow paths (Hunt, 2005). This system is not suitable for such a study due its lack of short, clear flow paths. With the complex flow of this system the trend would likely have been so muted that only extreme high water

conditions would be observable. The pattern would have been further muted due to the mixing with pristine groundwater which occurs in the RBI wells and is confounded by inconsistent pumping. The amount of stream flow inducement was has not yet reached steady state (Figure 8) which further masks any potential change in the isotopic signatures of the RBI wells.

Figure 22. δ^{18} O in RBI wells and Fox River (2009-2014). Fox 2 samples used from 2009-2014, then Fox Isco Automatic Sampler used for 2014.

Though a pattern mirroring the River was not visible, the average δ^{18} O of approximately -9 in the two RBI wells over time closely resembled the δ^{18} O in the Fox River during March and April (Figure 22). This is consistent with the fact that recharging occurs preferentially in the spring.

Bacterial Analysis

Fecal Bacteria Tracers

No fecal tracer bacteria were found in any of the well sites. Ruminant tracers were not found in any of the samples. The general fecal tracers, enterococcus and E. coli were highest in Brookfield and Sussex WWTPs, followed by Fox 0, Fox 2, and then Waukesha WWTP (Table 2). This shows that there is some kind of fecal material in all of these samples though not necessarily human fecal matter. There is a pet lodge directly next to the Fox 0 site, which may be causing the high counts seen in these results.

	bachum cn/100ml	lachno cn/100ml	entero cn/100ml	ecoli cn/100ml	ruminant cn/100ml
Brookfield WWTP	431657	746381	226545	20560	0
Waukesha WWTP	8124	3623	7459	566	0
Sussex WWTP	25272	27762	99718	1975	0
Fox 0	0	0	9809	275	0
Fox 2	2833	2398	9697	579	0
RL 255	0	0	0	0	0
RL 256	0	0	0	0	0
WK 947	0	0	0	0	0

Table 3. qPCR fecal bacteria counts.

The human-specific fecal tracers, Lachnospiraceae and Bacteroidales, found the highest counts in the WWTPs. The highest count was found in Brookfield WWTP, 431657 cn/100mL Bacteroidales and 746381 cn/100mL Lachnospiraceae, which were between the ranges of values measured by the McLellan Lab for Milwaukee WWTPs. Jones Island WWTP had 155118 cn/100mL Bacteroidales and no counts for Lachnospiraceie. South Shore WWTP had 5092651 cn/100mL Bacteroidales and 4533106 cn/100mL Lachnospiraceie. The counts decreased by an order of magnitude from Brookfield to Sussex and down to Waukesha. No counts were found in

Fox 0, upstream of the treatment plant outlets. Downstream of the WWTP outfalls Fox 2 the counts are almost two-thirds lower than the Waukesha WWTP. These results indicate that human fecal matter is getting into the Fox River downstream of the WWTP outfalls and fecal tracers are not entering into the RBI wells.

16s rRNA Sequencing

The results were inconclusive in regards to tracing bacteria from the WWTPS into the RBI wells (Appendix D). There were bacteria present in the wells which were also present in the WWTP effluent samples, however the similar taxa were bacteria common to aqueous environments and their origin could not be determined. These bacteria could have originated in the wells and then entered the WWTPs, vice versa, or the populations could be unconnected.

Only one of the wells samples had enough RNA for amplification, Brookfield WWTP counts were an order of magnitude lower than the other two WWTPs, and Fox 2 had strangely undiverse populations which mostly consisted of common aqueous bacteria populations indicating that larger samples should be analyzed in the future (recommend 5L). There were thirteen taxa which were present in all of the samples and this may be interesting to look at with PCR analysis in future studies (Appendix D).

With high precision analysis technology and as knowledge continues to improve, identification to lower taxonomic groups may identify better tracers. If an appropriate tracer is chosen high precision identification and quantification may be achieved through qPCR on a higher volume of samples. It is possible that such methods may show a traceable pattern of effluent through the river and into the wells. However, this may not be the best tracing method for it is quite possible that the differences in environment between WWTPs, the river, and the wells are too drastic to be assured of the same community surviving the flow. The diversity of the soil microbial community alone (Vaz-Moreira et al., 2011; Williams and Vickers, 1986), likely negates the survival of river bacteria on the flow path to the wells.

Pharmaceuticals and Personal Care Product Tracers

The majority of PPCPs were not detected in most of the samples at a level above the detection limit (Table 4). Acetaminophen, sulfamethazine and triclosan were not detected in any of the samples. Saccharin, benzoylecgonine, paraxanthine, caffeine, and cotinine were only found in a handful of samples. Carbamazepine, trimethoprim, sulfamethoxazole, and Venlafaxine were detected only in the WWTPs and in Fox 2. Acesulfame and sucralose had the highest concentrations recovered in all of the samples.

Chemical	Log K _{ow}	Water Solubility (mg/L at 25°C)	Henry's Law Constant (atm-m ³ /mole)		
Acesulfame	-1.33	91020	9.63e ⁻⁹		
Sucralose	-1.00	2275	3.99e ⁻¹⁹		
Caffeine	-0.07	2632	3.58e ⁻¹¹		
Benzoylecgonine	-1.32	1605	$1.03e^{-13}$		
Carbamazepine	2.45	17.66	$1.08e^{-10}$		
Trimethoprim	0.91	2334	2.39e ⁻¹⁴		
Sulfamethoxazole	0.89	3942	9.56e ⁻¹³		
Venlafaxine	3.28	266.7	2.04e ⁻¹¹		
Saccharin	0.91	789.2	1.23e ⁻⁹		
Cotinine	0.07	99860	3.33e ⁻¹²		
Paraxanthine	-0.22	4149	$1.75e^{-12}$		
Acetaminophen	0.24	3035	$6.42e^{-13}$		
Sulfamethazine	0.76	1127	$1.93e^{-10}$		
Triclosan	4.66	4.621	4.99e ⁻⁹		

Table 4. Chemical characteristics of PPCPs influencing their transport or fate in groundwater (EPI Suite v4.11, 2012).

There are many reasons the majority of PPCPs were absent in the majority or all of the samples. One reason is that the particular PPCP might not be used enough in the area to have measurable concentrations. The other major reason is the transport behavior of individual PPCP compounds. Table 3 lists the primary environmental constants that govern sorption (K_{ow}), solubility and volatility (Henry's Law Constant). Of the PPCPs present in the WWTP effluent,

only the ones with environmental constants suitable for transport through porous media are found in the RBI wells. All of the PPCPs are non-volatile, with Henry's Law constants smaller than $1e^{-7}$. Accesulfame and sucralose have among the highest water solubility and the lowest Log K_{ow} values indicating a low propensity to sorb to natural sediments. Benzoylecgonine and paraxanthine have low Log K_{ow}s, but they also have low water solubility. Caffeine also has a low Log K_{ow}, but it, along with Cotinine, have been found to degrade with 98% efficiency in WWTPs (Khale et al., 2009). Microbial consumption or co-metabolism, particularly of cyclamate and saccharin, is a large cause of PPCP degradation in aquatic systems (Khale et al., 2009).

Acesulfame was found in amounts above the detection limit in all of the samples. The highest value was Fox 2, followed by the RBI wells, which indicates mixing of river water in the wells. The lowest value was in Fox 0 followed by WK947. The WWTP samples were lower than those of Fox 2 and the RBI wells. This phenomenon is thought to be caused by difficulty recovering acesulfame from WWTP waters due to extraction procedures. Acesulfame is better recovered when the sample is acidified prior to extraction; however recovery of the other analytes is compromised by acidification. As this was the initial study of AS in this system, the aim was to assess the presence of all the analytes (Nikta, 2014).

Sucralose was found above the detection limit in every site except for WK947 with the next lowest concentration found in Fox 0. The highest concentrations are in the WWTP samples. The concentrations decrease by an order of magnitude down to the concentration in Fox 2, and by another order of magnitude down to the concentrations in the RBI wells. Sucralose is a reliable tracer in this context and indicates that WWTP effluent in flowing through the river and into the RBI wells. The mixing ratios indicated by the values of sucralose are 12% and 23% Fox River water in RL255 and RL256 respectively.

51

Table 4. University of Wisconsin-White Water Environmental Lab 2015.

PHARMACEUTICALS AND PERSONAL CARE PRODUCTS All sample concentrations and limits of detection (LOD) are reported in parts per trillion (ng/L)								
All sample concentrations and timits of detection (LOD) are reported in parts per tritton (ng/L). Adapted from table completed by UWM-White Water Environmental Lab 2015								
COMPOUND	Lowest limit of detection	Fox River 0	Waukesha WWTP	Sussex WWTP	Fox River 2	Well RL 255	Well RL 256	Well WK 947
Acesulfame (artificial sweetener)	5.0	9.3	36.2	47.3	238.6	171.1	83.3	16.0
Sucralose (artificial sweetener)	25	175.4	31983	23316	3342	416.4	774.8	<lod< td=""></lod<>
Caffeine (stimulant)	12.0	13.1	<lod< td=""><td>19.5</td><td>87.2</td><td><lod< td=""><td>14.6</td><td><lod< td=""></lod<></td></lod<></td></lod<>	19.5	87.2	<lod< td=""><td>14.6</td><td><lod< td=""></lod<></td></lod<>	14.6	<lod< td=""></lod<>
Benzoylecgonine (cocaine metabolite)	5 ^E	<lod< td=""><td><lod< td=""><td>31.2</td><td>5.7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>31.2</td><td>5.7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	31.2	5.7	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Carbamazepine (anti-epileptic)	2.0	<lod< td=""><td>98.6</td><td>452.6</td><td>57.1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	98.6	452.6	57.1	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Trimethoprim (human antibiotic)	5 ^E	<lod< td=""><td>50.2</td><td>583.0</td><td>37.4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	50.2	583.0	37.4	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Sulfamethoxazole (human antibiotic)	5 ^E	<lod< td=""><td>483.9</td><td>816.2</td><td>338.4</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	483.9	816.2	338.4	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Venlafaxine (antidepressant)	5 ^E	<lod< td=""><td>154.1^A</td><td>500.6</td><td>125.6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	154.1 ^A	500.6	125.6	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Saccharin (artificial sweetener)	25 ^E	<lod< td=""><td><lod< td=""><td><lod< td=""><td>31.5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>31.5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>31.5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	31.5	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Cotinine (nicotine metabolite)	3.0	<lod< td=""><td><lod< td=""><td>22.1</td><td>18.8</td><td>5.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>22.1</td><td>18.8</td><td>5.1</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	22.1	18.8	5.1	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Paraxanthine (caffeine metabolite)	5.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16.9</td><td><lod< td=""><td>10.2</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16.9</td><td><lod< td=""><td>10.2</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16.9</td><td><lod< td=""><td>10.2</td><td><lod< td=""></lod<></td></lod<></td></lod<>	16.9	<lod< td=""><td>10.2</td><td><lod< td=""></lod<></td></lod<>	10.2	<lod< td=""></lod<>
Acetaminophen (analgesic)	35 ^E	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Sulfamethazine (bovine antibiotic)	1.0	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Triclosan (antimicrobial)	75	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
DATA FLAGS: < LOD = This compound was not detected at a level above limit of detection E = Estimated A = Sample concentration greater than calibrated range								

These ratios are similar, but lower than mixing ratios obtained from PHREEQC modeling. These findings may differ from those indicated by PHREEQC modeling due to retardation of sucralose in groundwater and/or inefficiency of recovery in laboratory analysis. Analysis optimized for quantification of acesulfame and sucralose separately may yield better results.

Chapter 8

Conclusions

Unequivocal Evidence of RBI

The artificial sweetener tracers, acesulfame and sucralose, have proved the occurrence of RBI in both RL255 and RL256. A nuanced picture of recharge mechanisms in the RBI well field is observed. The well RL255 is receiving a higher percentage of Fox River water than RL256 (52% vs. 44%) and more closely mirrors the chemical characteristics of the River; whereas RL256 is more chemically similar to pure aquifer water (WK947).

Groundwater flow is more nuanced: Not a simple plug flow

The movement of groundwater is more complicated than simple plug-flow in this system, therefore PHREEQC transport modeling no longer accounts for the sodium and chloride breakthrough curves for the RBI wells. Inducement is instead affected by changes in contribution of induced river water, change in pumping rates, leakage, and complex flow patterns. These more complex flow patterns show signs of having reached a steady state, assuming that pumping rates remain constant.

Cation Exchange Capacity is at a steady state

Cation exchange was occurring in the RBI wells during initial inducement, before a steady state level of river inducement was reached. The rises and plateaus of sodium to chloride ratios matched the contribution of river water to the RBI wells as predicted by Feinstein. The cation exchange sites have reached an equilibrium which is essentially the same as both pristine groundwater and Fox River water, therefore this equilibrium is predicted to last even with potential changes in the pumping regime.

At the current pumping levels the concentrations of sodium and chloride appear to have reached a stable level and are predicted to remain so. The U.S. EPA has a drinking water standard for chloride, set at 7 mMol/L. As the chloride concentrations leveled off around 5.5 mMol/L in RL255 and 4.6 mMol/L in RL256, the concentrations are currently not of concern.

Chloride load in Fox River is effluent dominated

Maximum pulses of sodium and chloride occurred in March during the spring melt (222 mg/L and 404 mg/L respectively). Their concentrations were consistent the remainder of the year for sodium and chloride (123±26 mg/L and 234±38 mg/L respectively). Rain events caused dips in concentrations, indicating that the sodium and chloride concentrations originated from WWTP effluent contribution. Additionally, the road salt contributed only 3-5% of the annual salt load. As a result waste water effluent was determined the major source of salt entering the well field.

Isotopic variability in the River is a function of weather and effluent

The Fox River's isotopic signatures varied by season in accordance with predictable seasonal fractionation processes. The heaviest isotope signatures occurred in the early summer months and winter isotope signatures were comparably lighter. The spring melt isotope signatures were by far the lightest due to the lightness of winter precipitation and fractionation during preferential melting.

The major ion chemistry was also influenced by weather with pulses of high sodium and chloride concentrations during the spring melt from road salt runoff. There were also pulses of low concentrations of sodium and chloride following rain events. The majority of the year the concentrations were consistent and appeared to be maintained by WWTP effluent contribution. The heavy influence of the input of waste water effluent is apparent in the Fox River's isotopic signatures as well. The LELs of the Fox River were pulled down from the LEL upstream with a

54

slope of 5.35, near the generally accepted slope for naturally occurring rivers in this climate, to a slope of 7.09.

No pathogenic or fecal bacteria are in the RBI wells

The presence of sucralose and acesulfame provide unambiguous evidence tracing the inflow of WWTP effluent amongst induced Fox River water. However no pathogenic or fecal bacteria were found in either of the RBI wells, when fecal bacteria was found in the River and both were found in WWTP effluent.

References

- Athanasopoulos, P., M. Hendry, and L. Wassenaar. 2011. Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. Journal of Hydrology 411(37-48).
- Balakrishnan, V., E. Dussault, P. Sibley, K. Solomon, and E. Sverko, 2008. Toxicology of human pharmaceuticals and personal care products to benthic invertebrates. Environmental Toxicology and Chemistry. 27.2: 425-432.
- Ball, J., and D. Nordstrom.1991. User's ,annual for WATEQ4F, with revised thermodynamic data base and text cases for calculating speciation of major, trace, and redox elements in natural waters. Open-File Report 91-183.
- Baierlipp, M.S., 2012. Hydrostratigraphic Images for the Lower Fox Valley, Waukesha, Wisconsin. University of Wisconsin-Milwaukee Master's Thesis.
- Barton, L., and D. Northrup. 2011. Microbial Ecology: 4.3 Aquatic Habitats and 4.4 Soil Habitats. Willey-Blackwell, pp. 105-116.
- Bernot, M., J. Frey, and L. Smith, 2013. Human and veterinary pharmaceutical abundance and transport in a rural central Indiana stream influenced by confined animal feeding operations (CAFOs). Science of the Total Environment. 445-446:219-230.
- Bowser, C., Gat, J., and Kendall C. 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: estimate based on stable isotope data. Geophysical Research Letters, 21(7): 557-560.
- Buerge, I., M. Keller, H. Buser, M. Muller, and T. Poiger. 2011. Saccharin and other artifical sweeteners in soils: eastimated inputs from agriculture and hoseholds, degredation and leaching to groundwater. Envrionmental Science and Technology 45:615-621.
- Buerge I., and Poiger T. 2011. Acesulfame: from sugar substitute to wastewater marker. CHIMIA. 65, (3): 176-177.
- Cape, M. and T. Grundl. 2006. Geochemical Factors Controlling Radium Activity in a Sandstone Aquifer. Ground Water 44(4):518-527.
- CH2M HILL. 2013. Application summary, city of Waukesha application for a Lake Michigan Diversion with return flow. WBG070113084017MKE.
- Chen, K., C. Huang, T. Liu, W. Lu, T. Peng, and C. Wang. 2012. Using oxygen, hydrogen, and tritium isotopes to assess pond water's contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. Journal of Hydrology 450-441:105-116.
- Da Rocha, U., C. Plugge, I., George, J. Van Elsas, and L., Van Overbeek. 2013. The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia. PLoS One 8:16-20.

- Da Rocha, U., J. van Elsas, and L. van Overbeek. 2010. Real-time PCR detection of Holophagae (Acidobacteria) and Verrucomicrobia subdivision 1 groups in bulk and leek (Allium porrum) rhizosphere soils. Journal of Microbiological Methods 83L 141-148.
- de Garcia, S., R. Mata, P. Garcia-Encina, and G. Pinto, 2013. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: An application to the Spanish case. Journal of Environmental Management. 129:384-397.
- Engelhardt, I., H. Prommer, C. Moore, M. Schulz, C. Schuth, and T. Ternes. 2013. Suitability of temperature, hydraulic heads, and acesulfame to quantify wastewater- related fluxes in the hyporheic and riparian zone. Water Resources Research 49: 426-440.
- Ens, W., F. Senner, B. Gygax, and G. Schlotterbeck. 2014. Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water. Analytical and Bioanalytical Chemistry 406:2789-2798.
- Farina, A., M. Grassi, and L. Rizzo, 2013. Endocrine disruptors compounds, pharmaceuticals and personal care products in urban wastewater: implications for agricultural reuse and their removal by adsorption process. Environ. Sci. Pullut. Res. 20:3616-3628.
- Feinstein, D., D. Cherkauer, and T. Grundl. 2010. Examining the viability of riverbank inducement (RBI) as another source of water in Wisconsin. USGS & UWM: Community Presentation.
- Feinstein, D., M. Fienen, Kennedy, C. Buchwald, and M. Greenwood.2012. U.S. Department of the Interior and U.S. Geological Survey (USGS) Scientific Investigations Report 2012-5108: Development and Application of Groundwater/Surface-Water Flow Model using MODFLOW-NWT for the Upper Fox River Basin, Southeastern Wisconsin. 124pp.
- Field, K., M. Samadpour. 2007. Fecal source tracking, the indicator paradigm, and managing water quality. Water Resources 41:3517-3538.
- Gat, J. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth Planet Science, 24: 225-262.
- Greenberg, S., Hackley, K., Hwang, H., Krapac, I., Landsberger, S., O'Kelly, D., and Panno, S. 2005. Database for the Characterization and Identification of the sources of sodium and chloride in natural waters of Illinois.
- Gibson, J., and Reid, R. 2010. Stable isotope fingerprint of open-water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed. Journal of Hydrology 381: 142-150.
- Gottlieb, D. 1976. Production and role of antibiotics in soil. The Journal of Antibiotics. 9(4):987-1000.

- Halliday, E., S. McLellan, L. Amaral-Zettler, M. Sogin, and R. Gast. 2014. Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations. PLoS One 9(3):e90815.
- Howard, K., and J. Haynes, and. 1993. Urban geology 3. Groundwater contamination due to road de-icing chemicals and salt balance implications. Geoscience Canada 20(1):1-8.
- Heberer, T.2002.Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology 255(3-4):175-189.
- Heinz, S., N. Eric, A. Sander, and O. Mohseni. 2008. Study of environmental effect of de-icing salt on water quality in the Twin Cities metropolitan area, Minnesota, Minnesota Department of Transportation and Research Services 2008-42:72.
- Holzbauer, M.2010.Tracking shallow groundwater: anthropogenic effects in southeastern Wisconsin. University of Wisconsin-Milwaukee Master's Thesis.
- Hunt, R., T. Coplen, N. Haas, D. Saad, M. Borchardt. 2005. Investigating surface water-well interaction using stable isotope ratios of water. Journal of Hydrology 302(1-4):154-172.
- Kahle, M., I. Buerge, M. Muller, and T. Poiger.2009. Pharmaceuticals and personal care products in the environment: hydrophilic anthropogenic markers for quantification of wastewater contamination in ground and surface waters. Environmental toxicology & chemistry 28: 2528-2536.
- Kendall, C. 2004. Stable isotope applications in hydrologic studies. Treatise on Geochemistry 5: 319-364.
- Keren, R. 1996. Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. Journal of Contaminant Hydrology 23: 347-360.
- Klump, S., T. Grundl, R. Purtschert, and R. Kipfer. 2008. Groundwater and climate dynamics derived from noble gas, 14C and stable isotope data. Geology 36(5): 395-398.
- Lin, A., C. Lin, Y. Tsai, X. Wang, and T. Yu, 2011. Occurrence and fate of pharmaceuticals and personal care products in Taiwan's aquatic environment. Desalination and Water Treatment. 32:57-64.
- Logue, J., H. Burgmann, and C. Robinson. 2008. Progress in the ecological genetics and biodiversity of freshwater bacteria. Bioscience 58:103.
- Luo, Y., W. Guo, H. Ngo, L. Nghiem, F. Hai, J. Zhang, S. Liang, X. Wang.2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment 473-474: 619-641.
- Mclellan, S., A., Eren. 2014. Discovering new indicators of fecal pollution. Trends in Microbilogy 22:697-706.

- Momeplat, S., B. Le Bot, and O. Thomas.2009. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environmental International 35:803-814.
- Mullaney, J., D. Lorenz, and A. Arnston. 2009. Chloride in groundwater and surface water in areas underlain by the glacial aquifer system, Northern Untied States. USGS Scientific Investigations Report 2009-5086:54.
- National Oceanic and Atmospheric Administration (NOAA). National Centers for Environmental Information. 2015.
- Nikta, A. 2014. Developing and testing a method for the analysis of chemical human waste markers in groundwater and indentifying sources of nitrate contamination. Masters of Science: University of Wisconsin Steven's Point, 88pp.
- Parkhurst, D. 1995. Users' guide to PHREEQC- a computer program for speciation, reaction path, advective transport and inverse geochemical calculations. USGS Water Resources Investigations Report 95-4227.
- Parkhurst, D., and C. Appelo.2005. User's Guide to PHREEQC (Version 2)- A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. United States Geological Survey (USGS).
- Schauer, R., N. Risgaard-Peterson, K. Kjeldsen, J. Bjerg, B. Jorgensen, A. Schramm, and L. Nielsen.2014. Succession of cable bacteria and electric currents in marine sediment. The International Society for Microbial Ecology (ISME) Journal 8:1314-1322.
- Swanson, S., J. Bahr, K. Potter. 2006. A local Metoric Water Line for Madison, Wisconsin. Wisconsin Geological and Natural History Survey. Open-File Report 2006-01.
- Thorp, A. 2013. Applying geochemistry to investigate the occurrence of riverbank inducement into a shallow aquifer in southeastern Wisconsin. Master of Science Thesis: University of Wisconsin-Milwaukee, 134pp.
- Tison, D., I. Pope. W. Cherry, and C. Fliermans. 1980. Growth of Legionella pneumophila in association with blue-green algae (cyanobacteria). _____ 39:456-459.
- United States Environmental Protection Agency (EPA). National management measures to control nonpoint source pollution from agriculture: load estimation techniques. EPA 841-B-03-004: ch. 7.

United States Environmental Protection Agency (EPA). EPI Suite v4.11. 2012.

United States Geological Survey (USGS) and United States Department of the Interior. SPAtially-Referenced Regression On Watershed attributes (SPARROW): Mississippi River Basin Nutrient Model 2002.
Vaz-Moreira, I., O. Nunes, and C. Manaia. 2011. Diversity and antibiotic resistance patterns of sphingomonadaceae isolates from drinking water. Applied and Environmental Microbiology 77(16):5697-5706.

Waukesha Water Utility. 2014. Public Radium Notice. Public Notice.

- Williams, S. and J. Vickers. 1986. The ecology of antibiotic production. Microbial Ecology: Biotechnology 12(1):43-52.
- Wisconsin Department of Natural Resources (WDNR). 2015. Waukesha, Wisconsin Diversion Application.
- Wolf, L., C. Zwiener, and M. Zemann. 2012. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. Science of the Total Environment 430: 8-19.

Appendix A:

Sample Collection Information

Sampling Site	Latitude	Longitude
RL 255	42.959938	-88.279256
RL 256	42.961012	-88.279063
WK 947	42.961236	-88.289167
Fox 0	43.120068	-88.164715
Fox 1	43.011395	-88.234244
Fox 2	42.977690	-88.264797
Fox 3	42.876283	-88.210559
Auto Sampler	42.960951	-88.278707
Brookfield WWTP	433.052745	-88.177110
Sussex WWTP	43.126171	-88.216985
Waukesha WWTP	42.998190	-88.249151
Hygeia Spring	42.879817	-88.205125
Sussex Creek	43.102008	-88.210367
Root River	42.858027	-87.997586
Underwood Creek	43.042935	-88.056498
EM275	43.099327	-88.103161
IZ 385	43.063351	-88.183740
IZ 386	43.051841	-88.176827
SV 631	42.901237	-88.059776

1.	Coordinates	of Samp	ling Sites	in Decimal	Degrees
			0		0

2. Contacts for sampling sites

Municipality	Contact Person	Contact Number			
Waukesha Water Utility-	Jeff Detro	Personal-262.490.4430 General-262.521.5272	RL255,#11	RL256,#12	WK947,#13
Wells		JDetro@waukesha-water.com	3103 Saylesvi	lie Rd, waukes	na, wi
Bookfield Wells	Mark Simon	262.796.6717	IZ385, #7	IZ386,#19	EM275,#28
	Mike Terry		Camelot 2	Industrial	Pilgrim Rd
			19700 Rivervi	ew Drive, Broo	kfield, WI
St. Martins of	Tom Breedom	414.333.4700	Available M-T	Th 5am-1pm	
Tours			7963 S. 116 th S	St, Franklin, W	[
Waukesha	Randy Thater	Office: 262.524.3631	600 Sentry Dr	ive	
WWTP		Cell: 414.507.1139	Waukesha, W	[
Brookfield	Rick Wenzel	262.787.3809	21225 Enterpr	ise Ave.	
WWTP		For Gate: 262.782.0199	Brookfield, W	I	
Sussex WWTP	Jon Baumann	262.246.5184	N59 W23551	Clover Drive	
			Sussex, WI		
City of	Ron Grall	262.524.3734	1900 Aviation	Drive	
Waukesha		www.ci.waukesha.wi.us/parks	Waukesha, W	[53188	
Director of		RGrall@ci.waukesha.wi.us			
Department of					
Parks, Recreation					
and Forestry	D	262 549 7907	We look Co		(. (D 1 1
Waukesha Park	Duane Grimm	262.348.7807	Waukesha Col	inty Departmen	it of Parks and
System Manager		dgrimm@waukesnacounty.gov	Land Use	and Div Doom	10220
			Waukesha W	and DIV. KOOM	AC250
Waukasha watar	Katie Jelacic		waukesha, w	55100	
engineer	P.E.				
engineer					
	Project Engineer				
	262-524-3587				
	Cell 262-349-				
	6511				
Waukesha water	Main # 262-				
utility	521-5272				

3. Well Construction Reports

WISCO	ONSIN UNIQU	E WELL NUMBE	R				State of Wi-Private W	ater System	5-DG/2	Form 3	800-77A
SOUR	CE: WELL O	CONSTRUCT	ON		RL2	55	Department Of Natura Madison WI 53707	l Resources	, Box 7921	(Rev 12	/00)
Property	WAUKESHA	WATER UTILIT	Y Tele	phone 262	521	5242	Well Location	1	0	Depth 127	FT
Mailing Address	115 DELAFIE	LD ST	Num	10er			C T=Tc of WAUKE	wn C=Cit SHA	y V=Village	Fire#	
City	WAUKESHA	State	WI	Zip Cod	e 531	88	treet Address or Ro RIVER RD	ad Name a	nd Number		
County of	of Well Location	2 Co Well	Permit No	Well Co	mpletion l	Date	Subdivision Name		Lot#	Block #	
68	WAUKE	SHA W		Jan	uary 31,	2005	Court I of		1/4 -5	CIM 1/4 or	-
Well Co WAT	OBSTRUCTOR FER WELL	' Li (cense # F 6685	Facility ID (2680238	Public) O		Section 20 T	6 N	R 19 E	500 1/40	
Address N87	w36051 MA	PLETON ST	1	Public Well 2003779	Plan Appi	oval#	Latitude Deg. Longitude Deg	1	Min. Min.		
City	NoMowo	State Zij	Code	Date Of Ap	proval		2. Well Type	1	1=New	Lat/Long	Method
Hicap W	/ell#	Common Wel	1#	12/03/200	13		2=Replacement 3=Reconstruction	(See	e item 12 below		009
67951	1	11		6		gpm/ft	of previous unique wel Reason for replaced	l# or reconst	constructed ructed Well?	in	
3. Well Se	erves # of hon (er	es and or CITY	h school in	dustry etc.)	High Caj	pacity:					
M Mark	=Munic O=OTM N= =NonPot A=Anode I	NonCom P=Private Z=O =Loop H=Drillhole	ther		Well? Property	Υ ?Υ	1 1=Drilled 2=D	riven Point	3=Jetted 4=Other	r	
4. Is the v	well located upslope	e or sideslope and not d	iownslope fre	om any conta	mination so	urces, inclu	iding those on neighbori	ng properti	es? Y		
Well loc Distance	cated in floodplair e in feet from wel	1? N Lto nearest: (includin	g proposed)	9. 1	Downspout	Yard Hyd	rant	17. 1	Wastewater Sumj	,	
21311200	1. Landfill	to activest. (activation	5 proposed)	10.	Privy			18. 1	Paved Animal Ba	m Pen balaas	
	2. Building Ov	erhang		11.	Foundation	Drain to C	learwater	19. 1	Animal Yard or S Silo	neiter	
	3. 1=Septic	2= Holding Tank		12.	Foundation	Drain to S	ewer	20. 3	Ram Gutter		
	4. Sewage Abs	orption Unit		13.	Building D	rain on or Diacti	c 2=Other	22.1	Manure Dine	1=Gravity 0-	D
	5. Nonconform	ing Pit		14.	Building Se	ewer l	=Gravity 2=Pressure		l=Cast in	n or Diactic 2=	Dther
	6. Buried Hom	e Heating Oil Tank			1=Ca	st Iron or I	Plastic 2=Other	23. (Other manure Sto	rage	Juici
	7. Buried Petro	leum Tank		15.	Collector 5	ewer:	units in . ciam.	24. 1	Ditch Other NR 812 W:	ste Source	
	8. 1=Shore	line 2= Swimming I	Pool	16.	Clearwater	Sump				inte oblace	
5. Drillho	From To U	nd Construction M oper Enlarged Drillhol	ethod e	Lower Oper	Bedrock	Geology	8. Type Caving/None	Geology	r Hardness etc	From (ft)	To (ft)
Dia.(in.)	(ft) (ft)	- 1. Rotary - Mud C	Circulation			I	TOPSOIL		, 110 vale 33, etc	0	4
28.0	surface 70	2. Rotary - Air	d Easter			YC	SAND, GRAVEL, C	LAY		4	10
	Surface 70	4. Drill-Through	Casing Ham	mer		CG	CLAY W/GRAVEL	STONE		10	87
24.0	70 127	5. Reverse Rotar	y ₂₈ in di			_Y_	SAND & GRAVEL			87	105
		C 7. Temp. Outer C	asing 24	in. dia70	depth ft.	_S_	SAND			105	127
		Removed ? / Other	•								
6. Casing]	Liner Screen Mar	arial Waight Spacific	ation	From	To						
 Casing I Dia. (in.) 	Liner Screen Mat Manufa	erial, Weight, Specifica acturer & Method of A	ation ssembly	From (ft.)	To (ft.)						
 Casing I Dia. (in.) 16.0 	Liner Screen Mat Manufa 16 INCH X	erial, Weight, Specific acturer & Method of A 375 INCH WALL ER	ation ssembly W	From (ft.) surface	To (ft.)						
6. Casing l Dia. (in.) 16.0	Liner Screen Mat Manufa 16 INCH X . A53B LONE	erial, Weight, Specific acturer & Method of A 375 INCH WALL ER STAR WELDED 62.0	ation ssembly W 84	From (ft.) surface	To (ft.) 90						
6. Casing l <u>Dia. (in.)</u> 16.0	Liner Screen Mat Manufa 16 INCH X J A53B LONE	erial, Weight, Specific: acturer & Method of A 375 INCH WALL ER STAR WELDED 62.0	ation ssembly W 84	From (ft.) surface	To (ft.) 90						
6. Casing l <u>Dia. (in.)</u> 16.0	Liner Screen Mat Manufa 16 INCH X A53B LONE	erial, Weight, Specific acturer & Method of A 375 INCH WALL ER STAR WELDED 62.0	ation ssembly 84	From (ft.) surface	To (ft.) 90	0 644	Water Lord				
6. Casing I <u>Dia. (in.)</u> 16.0	Liner Screen Mat Manufi 16 INCH X A53B LONE	erial, Weight, Specific: acturer & Method of A 375 INCH WALL ER STAR WELDED 62.	ation ssembly W 84	From (ft.) surface	To (ft.) 90	9. State	Water Level	und surface	11. Well Is:	A Gi	ade
6. Casing l <u>Dia. (in.)</u> 16.0	Liner Screen Mat Manufi 16 INCH X A53B LONE	erial, Weight, Specific: ccturer & Method of A 375 INCH WALL ER STAR WELDED 62.1	ation ssembly W 84	From (ft.) surface	To (ft.) 90	9. State 1.0	Water Level	und surface • B=Below	11. Well Is: 60	A Gr in A=Above	ade B=Below
6. Casing J <u>Dia. (in.)</u> 16.0	Liner Screen Mat Manufi 16 INCH X . A53B LONE	erial, Weight, Specific ccturer & Method of A 375 INCH WALL ER STAR WELDED 62.1	ation ssembly W 84	From (ft.) surface	To (ft.) 90	9. State 1.0	Water Level feet B gro Abov	und surface • B=Below	11. Well Is: 60 Developed?	A Gr in A=Above Y	ade B=Below
6. Casing I <u>Dia. (in.)</u> 16.0 <u>Dia. (in.)</u> 16.0	Liner Screen Mat Manufi 16 INCH X J A53B LONE	erial, Weight, Specific ccturer & Method of A 375 INCH WALL ER STAR WELDED 62.1 pe, material & slot size Pe, material & slot size	ation ssembly W 84	From (ft.) surface From 90	To (ft.) 90 To 125	9. Staho 1.0 10. Pumpi Pumpi	Water Level feet B gro 	und surface	11. Well Is: 60 Developed? Camed?	A Gr in A=Above Y Y	ade B=Below
6. Casing J Dia. (in.) 16.0 Dia.(in.) 16.0	Liner Screen Mat Manufi 16 INCH X . A53B LONE Screen ty 16 INCH F	erial, Weight, Specific ccturer & Method of A 375 INCH WALL ER STAR WELDED 62.1 pe, material & slot size 25 X .070 INCH SI 304 SS	ation ssembly W 84	From (ft.) surface From 90	To (ff.) 90 To 125	9. State 1.0 10. Pumpi Pumpi Pumpi	Water Level feet B gro 	und surface b=Below w surface i.OOHrs	11. Well Is: 60 Developed? Disinfected? Capped?	A Gr in A=Above Y Y Y	ade B=Below
6. Casing I <u>Dia. (in.)</u> 16.0 Dia.(in.) 18.0 7. Grout	Liner Screen Mat Manufi 16 INCH X J A53B LONE Screen ty 16 INCH F or Other Sealing M	erial, Weight, Specific ccturer & Method of A 375 INCH WALL ER STAR WELDED 62.1 pe, material & slot size 25 X .070 INCH SI 304 SS faterial WINDED	ation ssembly W 84 .OT F	From (ft.) surface From 90	To (ff.) 90 To 125 #	9. State 1.0 10. Pumpi Pumpi 12. Did y unused w	Test Ing level 83.0 ft belo ng at 490.0GPM 5 rou notify the owner of t ells on this propert?	und surface • B=Below w surface 5.00Hrs he need to p	11. Well Is: 60 Developed? Disinfected? Capped? permanently abar	A Gr in A=Above Y Y Y don and fill all	ade B=Below
6. Casing I <u>Dia (in.)</u> 16.0 Dia.(in.) 16.0 7. Grout o Metho	Liner Screen Mat Manufi 16 INCH X J A53B LONE Screen ty 16 INCH F or Other Sealing M od TREMIE F Kind of Se	erial, Weight, Specific ccturer & Method of A 375 INCH WALL ER STAR WELDED 62.1 pe, material & slot size 25 X .070 INCH SI 304 SS faterial 20MPED aling Material	ation ssembly W b4 b4 LOT	From (ft) surface From 90 rom To ft) (ft.)	To (ft.) 90 To 125 # Sacks Cement	9. Statu 1.0 Junpi Pumpi Pumpi 12. Did y unused w If no, ex	Twater Level feet B gro Test ng level 83.0 ft belo ng at 490.0GPM 5 rou notify the owner of t ells on this property? Y	und surface • B=Bølow w surface •.00Hrs he need to p	11. Well Is: 60 Developed? Disinfected? Capped? permanently aban	A Gr in A=Above Y Y Y don and fill all	ade B=Below

]
WISCO	NSIN UNIQUE WELL N	IUMBER				State of Wi-Private Wat	ter Systems	-DG/2	Form 33	00-77A
SOURC	E: WELL CONSTR	UCTION		RL2	56	Department Of Natural Madison WL 53707	Resources,	Box 7921	(Rev 12/	00)
Property V Owner	WAUKESHA WATER U	VIILIIY Tel Nu	ephone mber 262	= 521	5242	1. Well Location		D	epth 148	FT
Mailing Address 1	115 DELAFIELD ST	-				of WAUKES	HA	V=Village	Fire#	
City V	WAUKESHA	State	Zip Cod	^{le} 531	88	RIVER RD	i Name an	d Number		
68	Well Location 2 WAUKESHA	Co Well Permit No W	Well Co M	ompletion I lay 24, 20	Date 005	Subdivision Name		Lot#	Block #	_
Well Cor WATE	nstructor ER WELL	License # 6685	Facility ID (2680238	Public) O		Gov't Lot Section 20 T	or SI	1/4 of 9 R 19 E	SW 1/4 of	
Address N87 V	V36051 MAPLETO	NST	Public Well 2003799	Plan Appr	roval#	Latitude Deg. Longitude Deg	M	lin. fin.		
City		Zip Code 53066	Date Of Ap 12/03/20	proval 03		2. Well Type 2=Replacement	1 (See	1=New	Lat/Long M GPS	vlethod 009
Hicap We 67952	ell# Comm 12	ion Well #	8		gom/ft	3=Reconstruction of previous unique well	(Jee #	constructed in	·	
3. Well Ser	ves # of homes and or C	ITY		High Caj	pacity:	Reason for replaced o	r reconstri	ucted Well?		
M M=1 X=2	eg. oarn, restaur Munic O=OTM N=NonCom P=Pri NonPot A=Anode L=Loop H=Drill	un, church, school, 1 vate Z=Other hole	nausuy, etc.)	Well? Property	Y ? Y	1 1=Drilled 2=Driv	ven Point 3	=Jetted 4=Other	_	_
4. Is the w	rell located upslope or sideslope	and not downslope f	rom any conta	mination so	urces, inclu	iding those on neighborin	g properties	? Y		
Well loca Distance i	in feet from well to nearest:	(including proposed)	9. 1	Downspout	/ Yard Hyd	rant	17. W	astewater Sump	-	
	1. Landfill		· 10.	Privy	Desinen	1	18. Pt	ived Animal Ban nimal Vard or Sh	n Pen	
	Building Overhang		11.	Foundation	Drain to C	iearwater	20. Si	lonia ratu or si lo	ienei	
	 1=Septic 2= Holding 	Tank	12.	Puilding D	Dialii to 5	ewei	21. B	am Gutter		
	Sewage Absorption Unit		15.	1=Cast Ire	on or Plasti	c 2=Other	22. M	lamure Pipe	1=Gravity 2=1	Pressure
	Nonconforming Pit		14.	Building Se	ewer 1	=Gravity 2=Pressure		1=Cast iron	n or Plastic 2=0)ther
	Buried Home Heating Oi	l Tank	15	1=Ca Collector S	ist Iron or F lewer: 1	Plastic 2=Other units in diam	23. O	ther manure Stor itch	age	
	7. Buried Petroleum Tank		16	C1		_	25. O	ther NR 812 Was	ste Source	
_	 1=Shoreline 2= Swin 	nming Pool	10.	Clearwater	Sump					
5. Drillholo	e Dimensions and Construct From To Upper Enlarged	t ion Method l Drillhole	Lower Oper	n Bedrock	Geology	8. Type, Caving/Nonca	Geology ving, Color	Hardness, etc	(ft)	To (ft)
Dia.(in.)	(ft) (ft) 1. Rotary	- Mud Circulation			I	TOPSOIL			0	3
30.0	- 2. Rotary	- Air			CM	CLAY W/SILT			3	23
50.0 5	- 4 Drill	7 - Air and Foam Through Casing Hay	mmor	-	0 T S	BROWN SAND			23	27
24.0	63 144 - 5. Reve	rse Rotary ₂₄							23	24
	X 6. Cable	e-tool Bit in .c	lia						2/	20
	X 7. Temp Remo	. Outer Casing	in. diap3	_ depth ft.		GRAVEL W/SILT			34	50
	Other				GC	GRAVEL W/CLAY			39	04
6. Casing L	iner Screen Material Weight	Specification	From	To	G_C_	CLAY-GRAY			54	63
Dia. (in.)	Manufacturer & Met	hod of Assembly	(ft.)	(ft.)	_AG_	GRAVEL COARSE			63	90
16.0	16 INCH O.D. X .375 INC	CH WALL	surface	82	_AS_	COARSE SAND			90	125
	ERW ASS DI ONESTADI ON			02	_MS_	MEDIUM SAND			125	130
16.0	WELDED 62.64 1 LBS 1	FT	89	102	_AS_ MS	COARSE SAND MEDIUM SAND W/S	SILT		130	144
				'	9. Statu	Water Level		11 Well In		
					2.9	feet A grou	nd surface B=Below	36 i	A Gra n A=Above H	iae B=Below
			-		10. Pump	Test		Developed?	Y	
Dia.(in.)	Screen type, material &	SLOT SLZE	From	То	Pumpi	ng level 58.8 ft. below	surface	Disinfected?	Y	
16.0	304 S.S. DOUBLE	SCREEN	62	143	Pumpi	ngat 494.0GPM 24	OHrs	Capped?	Y	
7. Grout or	r Other Sealing Material		D	#	12. Did y	ou notify the owner of th	e need to pe	ermanently aband	ion and fill all	
Method	d TREMIE PUMPED Kind of Sealing Material	1	(ft.) (ft.)	Sacks Cement	unused w If no, exp	ells on this property? Y plain				

Appendix B:

Field and Analytical Results

1. Well Suite Field Analysis

Well Suite Field Analysis Parameters							
Name	Date	pH	Specific Conductivity (mmhos/cm)	Temperature (°C)	Dissolved Oxygen by meter (mg/L)	calculated HCO3	
Big Bend Spring	10/24/2013	7.15	х	12.15	6.51	302.96	
Big Bend Spring	4/24/2014	7.19	0.85	9.77	х	287.46	
Big Bend Spring	8/5/2014	7.13	0.88	11.60	6.06	303.24	
Big Bend Spring	10/10/2014	7.49	0.87	12.20	9.36	319.87	
Big Bend Spring	4/7/2015	х	0.86	9.90	6.95	х	
Big Bend Spring	7/20/2015	х	0.87	11.40	6.68	х	
EM 275	10/23/2013	7.16	n/a	10.03	0.23	303.72	
EM 275	4/18/2014	7.1	0.84	10.1	0.5	316.37	
EM 275	8/6/2014	7.09	0.77	10.3	0.41	301.66	
EM 275	10/6/2014	6.91	0.75	15	0.31	357.53	
EM 275	4/28/2015	х	0.73	10.1	0.34	х	
EM 275	7/4/2015	5.85	0.55	10.5	0.95	х	
IZ 385	10/23/2013	7.15	х	11.57	1.18	397.22	
IZ 385	8/6/2014	6.72	1.38	11.4	0.56	390.16	
IZ 385	10/2/2014	6.65	1.35	11.4	3.25	403.98	
IZ 385	4/28/2015	х	1.47	11.2	0.295	х	
IZ 385	7/14/2015	6.99	1.17	11.67	0.40	937.92	
IZ 386	10/23/2013	7.12	n/a	11.07	0.015	403.40	
IZ 386	4/18/2014	7.12	1.38	11	0.26	437.21	
IZ 386	8/6/2014	6.45	1.37	12.23	0.34	n/a	
IZ 386	10/2/2014	6.64	1.34	11.93	1.87	421.04	
IZ 386	4/28/2015	Х	1.32	11.20	0.13	х	
IZ 386	7/14/2015	6.69	1.00	11.6	0.06	676.83	
RL 255	10/30/2013	6.39	х	10.43	0.06	423.09	
RL255	5/15/2014	7.17	1.21	10.34	0	443.97	
RL255	8/4/2014	7.22	1.19	10.77	0.22	451.61	
Rl 255	10/7/2014	6.74	1.16	10.30	0.33	426.03	
RL 255	4/2/2015	6.72	1.20	10.30	0.02	454.55	
RL 255	7/23/2015	6.93	1.16	10.80	0.02	375.17	
RL256	10/30/2013	7.04	x	10.6	0.04	396.63	

RL 256	5/15/2014	7.22	1.07	10.80	0.03	394.57
RL 256	8/4/2014	7.29	1.11	10.90	0.48	318.42
RL 256	10/7/2014	7.5	1.13	10.70	0.27	423.09
RL 256	4/2/2015	6.76	1.13	10.80	0.03	426.03
RL 256	7/23/2015	6.7	4.50	10.60	1.22	400.46
WK 947	10/30/2013	7.27	х	10.4	0.03	373.99
WK 947	5/15/2014	7.23	0.94	10.4	0.22	395.16
WK 947	8/4/2014	7.28	0.90	10.5	0.29	402.22
WK 947	10/7/2014	6.82	0.90	10.40	0.07	381.05
WK 947	4/2/2015	6.82	0.93	10.40	0.1	399.87
WK 947	7/23/2015	7.05	0.97	10.50	0.025	354.59
SV 631	10/24/2013	7.53	n/a	11.4	0.02	339.89
		Well Suite Field Analy	vsis Parameters (Contin	ued 1)		
Name	Date	pH	Specific Conductivity (mmhos/cm)	Temperature (°C)	Dissolved Oxygen by meter (mg/L)	calculated HCO3
SV 631	4/18/2014	7.5	0.7095	12.125	0.31	358.12
SV 631	8/5/2014	7.27	0.69	11.53	0.33	339.59
SV 631	10/2/2014	6.67	0.76	10.30	0.00	293.43
SV 631	4/7/2015	6.56	0.78	10.50	0.04	х
SV 631	7/20/2015	х	0.28	18.10	0.08	х
Fox 0	10/26/2013	7.63	х	7.27	10.15	390.68
Fox 0	3/7/2014	7.41	0.471	1.7	х	381.34
Fox 0	3/9/2014	7.84	1.052	2.67	10.50	382.81
Fox 0	3/12/2014	7.47	0.85	2.67	8.44	280.50
Fox 0	3/15/2014	7.55	0.81	1.13	8.97	251.39
Fox 0	3/22/2014	7.52	0.83	1.77	х	256.97
Fox 0	8/6/2014	7.47	0.84	15.4	6.43	280.20
Fox 0	10/9/2014	7.02	0.98	8.43	8.42	326.66
Fox 0	4/8/2015	х	0.94	6.75	9.07	х
Fox 1	10/26/2013	8.12	X	6.67	10.90	296.37
Fox 1	3/7/2014	7.77	1.9	0.53	8.13	335.48
Fox 1	3/9/2014	8.03	2.03	0.93	13.29	336.65
Fox 1	3/12/2014	7.77	2.28	1.70	10.48	236.10
Fox 1	3/15/2014	7.94	1.761	1.53	15.02	267.26
Fox 1	3/22/2014	7.63	1.3	2.1	х	281.97

Fox1	4/24/2014	7.79	1.2	10.47	Х	298.14
Fox 1	8/9/2014	7.87	1.4	23.80	6.75	328.42
Fox 1	10/9/2014	7.51	1.5	11.60	9.39	361.94
Fox 1	4/8/2015	Х	1.5	8.13	10.51	х
Fox 2	10/26/2013	8.08	Х	8.57	9.3	237.57
Fox 2	3/7/2014	7.71	19.43	2.43	11.13	341.95
Fox 2	3/9/2014	7.91	1.82	4.53	9.77	325.19
Fox 2	3/12/2014	7.82	2.10	3.93	10.12	n/a
Fox 2	3/15/2014	7.82	1.67	2.60	13.20	279.91
Fox 2	3/22/2014	7.62	1.38	3.10	Х	281.67
Fox 2	4/24/2014	7.75	1.24	10.80	Х	305.19
Fox 2	8/9/2014	7.82	1.36	23.10	10.01	349.59
Fox 2	10/9/2014	7.4	1.52	11.90	14.13	354.88
Fox 2	4/8/2015	Х	1.56	8.97	10.98	х
Fox 2	7/23/2015	7.4	1.39	20.67	3.66	294.90
Fox Isco	3/7/2014	7.77	1891/100		1	311.37
Fox Isco	3/9/2014	7.73	1.81	2.20	9.32	328.71
Fox Isco	3/12/2014	7.85	1.89	3.50	10.13	240.80
Fox Isco	3/15/2014	7.77	1.48	2.47	15.35	274.32
Fox Isco	3/22/2014	7.53	1.32	2.93	Х	295.49
Fox Isco Sampler	4/9/2015	7.57	0.80	6.83	10.75666667	150.24
Fox 3	7/14/2013	7.67	х	8.1	10.6	336.65
Fox 3	10/24/2013	8.13	х	6.73	8.14	331.65
Fox 3	3/15/2014	7.56	1.68	0.23	6.99	278.44
Fox 3	3/22/2014	7.72	0.986	2.33	10.95	275.20
		Well Suite Field Analy	sis Parameters (Contin	ued 2)		
Name	Date	pH	Specific Conductivity (mmhos/cm)	Temperature (°C)	Dissolved Oxygen by meter (mg/L)	calculated HCO3
Fox3	4/24/2014	7.75	0.97	12.27	Х	300.49
Fox 3	8/5/2014	7.59	1.00	24.1	6.25	243.15
Fox 3	10/10/2014	7.6	1.09	7.04	7.27	342.24
Fox 3	4/7/2015	Х	1.05	9.63	8.83	Х
Fox 3	7/20/2015	7.65	0.91	24.83	3.54	243.15
Root River	10/24/2013	8.15	n/a	х	Х	343.42
Root River	4/22/2014	7.71	1.13	11.07	Х	313.13
		•	•		•	

Root River	8/5/2014	7.47	0.87	20.40	16.21	234.63
Root River	10/6/2014	7.23	0.97	10.80	7.93	223.16
Root River	4/7/2015	х	1.39	7.90	9.20	х
Root River	7/20/2015	6.42	0.66	21.97	2.51	140.54
Sussex Creek	10/26/2013	8.26	х	7.47	10.53	265.11
Sussex Creek	8/6/2014	8.22	0.83	20.57	9.15	n/a
Sussex Creek	10/9/2014	7.63	1.18	10.57	9.05	274.17
Sussex Creek	4/8/2015	х	1.06	7.50	13.69	х
Underwood Creek	10/26/2013	8.4	х	х	х	368.11
Underwood Creek	8/9/2013	Construction	х	х	х	х
Underwood Creek	4/8/2015	x	1.592	6.83	6.83	х
Underwood Creek	7/23/2015	7.6	4.5	18.27	7.24	356.94

2. Atomic Absorption Spectroscopy with Calibration Curves

Fall 2013

Fall 20	13 Well Suite	Run Nov	Ca	
Standard	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.50	0.04	0.05	0.04
Standard 2	1.00	0.08	0.09	0.08
Standard 3	3.00	0.22	0.24	0.23
Standard 4	5.00	0.36	0.38	0.37
Standard 5	10.00	0.66	0.68	0.67

71

Fall 2013 Well S	Suite	Run Nov. 2013				
Ca		Calculated	Dilution	Corrected		
SAMPLE ID	SIGNAL (Absorption)	Conc. (mg/L)	Factor	Conc. (mg/L)		
EM275 10_27_13	0.29	3.79	25.00	94.82		
SV631 10_24_13	0.21	2.70	25.00	67.53		
IZ 385 10_21_13	0.34	4.65	25.00	116.22		
IZ 386 10_21_13	0.37	5.15	25.00	128.84		
WK 947 10_30_13	0.31	4.13	25.00	103.23		
RL 255 10_30_13	0.33	4.45	25.00	111.19		
RL 256 10_30_13	0.34	4.65	25.00	116.37		
BB Spring 10_24_13	0.25	3.32	25.00	82.94		
RL 255 7_10_13	0.34	4.63	25.00	115.87		
RL 256 7_10_13	0.33	4.58	25.00	114.57		
Fox 0 126_13	0.27	3.62	25.00	90.46		
Fox 1 10_26_13	0.23	3.00	25.00	74.95		
Fox 2 10_25_13	0.25	3.26	25.00	81.56		
Fox 3 10_24_13	0.25	3.29	25.00	82.17		
Und Crk 10_26_13	0.36	4.97	25.00	124.25		
Sussex Crk 10_26_13	0.25	3.18	25.00	79.38		
Roort River 10_24_1	0.15	1.90	25.00	47.53		
Waukesha WWTP	0.01	-0.02	25.00	-0.52		
Brookfield WWTP	0.29	3.93	25.00	98.26		
Sussex WWTP	0.26	3.46	25.00	86.49		

Fall 2013 W	ell Suite	Run No	Mg	
Standard	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.10	0.11	0.11	0.11
Standard 2	0.25	0.27	0.27	0.27
Standard 3	0.50	0.52	0.52	0.52
Standard 4	1.00	0.90	0.91	0.90
Standard 5	2.00	1.38	1.38	1.38

Fall 2013 Well Suite		Run Nov. 2013		
Mg		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Conc. (mg/L)	Factor	Conc. (mg/L)
EM275 10_27_13	0.88	1.07	50.00	53.27
SV631 10_24_13	1.03	1.33	50.00	66.67
IZ 385 10_21_13	0.98	1.25	50.00	62.47
IZ 386 10_21_13	1.01	1.30	50.00	64.89
WK 947 10_30_13	1.11	1.48	50.00	74.01
RL 255 10_30_13	1.07	1.40	50.00	69.93
RL 256 10_30_13	1.00	1.27	50.00	63.65
BB Spring 10_24_13	0.86	1.02	50.00	51.19
RL 255 7_10_13	0.98	1.25	50.00	62.31
RL 256 7_10_13	1.08	1.42	50.00	71.22
Fox 0 126_13	0.96	1.22	50.00	60.78
Fox 1 10_26_13	0.76	0.85	50.00	42.73
Fox 2 10_25_13	0.88	1.06	50.00	52.94
Fox 3 10_24_13	0.84	0.99	50.00	49.40
Und Crk 10_26_13	1.00	1.28	50.00	64.14
Suss Crk 10_26_13	0.88	1.07	50.00	53.51
Root R 10_24_1	0.85	1.01	50.00	50.51
Waukesha WWTP	0.76	0.86	50.00	42.83
Brookfield WWTP	0.84	0.99	50.00	49.68
Sussex WWTP	0.73	0.796	50.00	39.80

Fall 2013 Well Suite		Run Nov. 2013		Na
Standard	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.10	0.06	0.06	0.06
Standard 2	0.25	0.13	0.15	0.14
Standard 3	0.50	0.28	0.28	0.28
Standard 4	1.00	0.53	0.52	0.53

Fall 2013 Well S	Fall 2013 Well Suite		Run Nov. 2013	
Na		Dilution	Calculated	Corrected
SAMPLE ID	SIGNAL (Absorption)	Factor	Conc. (mg/L)	Conc. (mg/L)
EM275 10_27_13	0.22	50.00	0.40	19.94
SV631 10_24_13	0.18	50.00	0.33	16.38
IZ 385 10_21_13	0.31	100.00	0.57	56.86
IZ 386 10_21_13	0.30	100.00	0.55	54.87
WK 947 10_30_13	0.14	100.00	0.24	24.45
standard1ppm	0.53	100.00	1.00	
RL 255 10_30_13	0.35	100.00	0.65	64.98
RL 256 10_30_13	0.28	100.00	0.52	51.57
BB Spring 10_24_13	0.27	100.00	0.49	49.45
RL 255 7_10_13	0.47	100.00	0.88	87.66
RL 256 7_10_13	0.36	100.00	0.67	67.21
Fox 0 126_13	0.27	100.00	0.49	49.04
standard 1ppm	0.53			
Fox 1 10_26_13	0.30	100.00	0.56	56.15
Fox 2 10_25_13	0.10	100.00	0.17	16.55
Fox 3 10_24_13	0.29	100.00	0.54	53.61
Und Crk 10_26_13	0.20	100.00	0.35	35.28
Sussex Crk 10_26_13	0.36	100.00	0.68	67.64
Roort River 10_24_1	0.14	100.00	0.25	24.81
standard 1ppm	0.53			
Waukesha WWTP	0.17	500.00	0.30	149.03
Brookfield WWTP	0.17	500.00	0.31	156.02
Sussex WWTP	0.19	500.00	0.33	167.46

Fall 2013 Well Suite		Run Nov. 2013		K
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.25	0.15	0.12	0.14
Standard 2	0.5	0.25	0.22	0.23
Standard 3	1	0.44	0.42	0.43
Standard 4	2	0.75	0.73	0.74

Fall 2013 Well Suite		Run Nov. 2013		
К		Dilution	Calculated	Corrected
SAMPLE ID	SIGNAL (Absorption)	Factor	Conc. (mg/L)	Conc. (mg/L)
EM275 10_27_13	0.57	2.00	1.46	2.92
SV631 10_24_13	0.36	2.00	0.88	1.75
IZ 385 10_21_13	0.64	2.00	1.69	3.37
IZ 386 10_21_13	0.57	2.00	1.46	2.92
WK 947 10_30_13	0.54	2.00	1.39	2.78
RL 255 10_30_13	0.62	2.00	1.63	3.25
RL 256 10_30_13	0.50	2.00	1.27	2.53
BB Spring 10_24_13	0.59	2.00	1.54	3.08
RL 255 7_10_13	0.54	2.00	1.39	2.78
RL 256 7_10_13	0.58	2.00	1.50	2.99
Fox 0 126_13	0.33	4.00	0.79	3.16
Fox 1 10_26_13	0.55	4.00	1.40	5.60
Fox 2 10_25_13	0.66	4.00	1.72	6.88
Fox 3 10_24_13	0.54	4.00	1.39	5.57
Und Crk 10_26_13	0.54	4.00	1.40	5.59
Sussex Crk 10_26_13	0.45	4.00	1.12	4.47
Roort River 10_24_1	0.45	4.00	1.13	4.53
Waukesha WWTP	0.62	10.00	1.61	16.07
Brookfield WWTP	0.51	10.00	1.30	13.02
Sussex WWTP	0.49	10.00	1.23	12.26

<u>Spring 2014</u>

Spring 2014 Well Suite		Run May	Ca	
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.5	0.04	0.12	0.14
Standard 2	1	0.08	0.22	0.23
Standard 3	3	0.22	0.42	0.43
Standard 4	5	0.36	0.73	0.74
Standard 5	10	0.64	0.64	0.64

Spring 2014 Well Suite		Run May 16, 2014		
Ca		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_4_18_14	0.28	3.98	25.00	99.49
SV631_4_22_14	0.19	2.62	25.00	65.38
IZ386_4_22_14	0.36	5.28	25.00	131.99
WK947_5_15_14	0.30	4.21	25.00	105.23
RL255_5_15_14	0.31	4.46	25.00	111.60
RL256_15_14	0.31	4.42	25.00	110.50
B.B.Spring_4_24_14	0.23	3.00	25.00	74.94
RL255_10_30_13	0.33	4.70	25.00	117.50
RL256_10_30_13	0.31	4.35	25.00	108.86
Fox1_4_24_14	0.24	3.20	25.00	80.05
Fox2_4_24_14	0.25	3.33	25.00	83.30
Fox3_4_24_14	0.22	2.92	25.00	72.94
RootR.4_22_14	0.25	3.46	25.00	86.39
W.WWTP_4_24_14	0.29	4.07	25.00	101.77
B.WWTP_4_18_14	0.31	4.48	25.00	112.11
S.WWTP_4_16_14	0.27	3.76	25.00	94.11

Spring 2014 Well Suite		Run May 6, 2014		Mg
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.1	0.11	0.11	0.11
Standard 2	0.25	0.26	0.26	0.26
Standard 3	0.5	0.49	0.49	0.49
Standard 4	1	0.88	0.88	0.88
Standard 5	2	1.33	1.33	1.33

Spring 2014 Well Suite		Run May 6, 2014		
Mg		Calculated	Dilution	Corrected
SAMPLE ID	Signal (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_4_18_14	0.75	0.90	50.00	45.06
SV631_4_22_14	0.84	1.06	50.00	52.79
IZ386_4_22_14	1.04	1.43	50.00	71.62
WK947_5_15_14	1.07	1.47	50.00	73.60
RL255_5_15_14	0.91	1.19	50.00	59.61
RL256_15_14	0.96	1.28	50.00	64.14
B.B.Spring_4_24_14	0.69	0.79	50.00	39.51
RL255_10_30_13	0.91	1.18	50.00	58.97
RL256_10_30_13	0.88	1.14	50.00	56.99
Fox1_4_24_14	0.59	0.61	50.00	30.34
Fox2_4_24_14	0.75	0.89	50.00	44.55
Fox3_4_24_14	0.67	0.75	50.00	37.48
RootR.4_22_14	0.76	0.91	50.00	45.68
W.WWTP_4_24_14	0.78	0.94	50.00	47.19
B.WWTP_4_18_14	0.84	1.05	50.00	52.53
S.WWTP_4_16_14	0.52	0.47	50.00	23.57

Spring 2014 Well Suite		Run May 6, 2014		K
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.25	0.16	0.13	0.14
Standard 2	0.5	0.27	0.24	0.25
Standard 3	1	0.47	Х	0.47
Standard 4	2	0.78	0.76	0.77

Spring 2014 Well Suite		Run May 6, 2014		
К		Calculated	Dilution	Corrected
SAMPLE ID	Signal (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_4_18_14	0.55	1.350677	2	2.70
SV631_4_22_14	0.34	0.730668	2	1.46
IZ386_4_22_14	0.65	1.619442	2	3.24
WK947_5_15_14	0.51	1.217053	2	2.43
RL255_5_15_14	0.66	1.650402	2	3.30
RL256_15_14	0.59	1.439293	2	2.88
B.B.Spring_4_24_14	0.53	1.284038	2	2.57
RL255_10_30_13	0.54	1.31787	2	2.64
RL256_10_30_13	0.50	1.198567	2	2.40
Fox1_4_24_14	0.35	0.784948	4	3.14
Fox2_4_24_14	0.40	0.906583	4	3.63
Fox3_4_24_14	0.32	0.681752	4	2.73
RootR.4_22_14	0.27	0.554685	4	2.22
W.WWTP_4_24_14	0.48	1.129539	10	11.30
B.WWTP_4_18_14	0.36	0.788187	10	7.88
S.WWTP_4_16_14	0.35	0.764014	10	7.64

Spring 2014 Well Suite		Run May 6, 2014		Na
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.10	0.07	0.07	0.07
Standard 2	0.25	0.15	0.15	0.15
Standard 3	0.50	0.32	0.33	0.33
Standard 4	1.00	0.54	0.54	0.54
Standard 5	2.00	0.94	0.95	0.94

Spring 2014 Well Suite	Run May 6, 2014			
Na	Calculated	Dilution	Corrected	
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_4_18_14	0.42	0.71	50.00	35.74
SV631_4_22_14	0.01	0.02	50.00	0.87
IZ386_4_22_14	0.54	1.00	100.00	100.06
WK947_5_15_14	0.22	0.35	100.00	34.74
RL255_5_15_14	0.51	0.93	100.00	93.02
RL256_15_14	0.42	0.72	100.00	71.66
B.B.Spring_4_24_14	0.35	0.55	100.00	54.52
RL255_10_30_13	0.37	0.59	100.00	59.14
RL256_10_30_13	0.23	0.36	100.00	36.47
Fox1_4_24_14	0.66	1.30	100.00	130.49
Fox2_4_24_14	0.70	1.40	100.00	140.18
Fox3_4_24_14	0.49	0.88	100.00	87.82
RootR.4_22_14	0.80	1.65	100.00	165.46
W.WWTP_4_24_14	0.78	1.60	500.00	799.48
B.WWTP_4_18_14	0.77	1.56	500.00	781.63
S.WWTP_4_16_14	0.70	1.40	500.00	698.37

Summer 2014

Summer 2014 Well Suite		Run Octol	Ca	
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.5	0.035	0.041	0.038
Standard 2	1	0.068	0.075	0.071488
Standard 3	3	0.19	0.20	0.20
Standard 4	5	0.31	0.32	0.32
Standard 5	10	0.56497	0.579338	0.572154

Summer 2014 Well Suite		Run October 3, 2014		
Ca		Calculated	Dilution	Corrected
Sample ID	Signal (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_8_6_14	0.283155	4.50387	25	112.60
SV631_8_5_14	0.176747	2.655425	25	66.39
IZ385_8_6_14	0.324765	5.290462	25	132.26
IZ386_8_6_14	0.30042	4.830251	25	120.76
B.B.Spring_8_5_14	0.223871	3.383186	25	84.58
RL255_8_4_14	0.313053	5.069046	25	126.73
RL256_8_4_14	0.275986	4.368362	25	109.21
WK947_8_4_14	0.291564	4.662843	25	116.57
Fox0_8_6_14	0.209957	3.120168	25	78.00
Fox1_8_9_14	0.218738	3.286164	25	82.15
Fox3_8_5_14	0.176011	2.655425	25	66.39
SussexCreek_8_6_14	0.156898	2.655425	25	66.39
RootR8_5_14	0.158737	2.655425	25	66.39
W.WWTP_8_4_14	0.268319	4.223412	25	105.59
B.WWTP_8_6_14	0.266952	4.197586	25	104.94
S.WWTP_8_6_14	0.239262	3.674135	25	91.85

Summer 2014 Well Suite		Run October 3, 2014		Mg
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.1	0.101576	0.101576	0.101576
Standard 2	0.25	0.235499	0.235499	0.235499
Standard 3	0.5	0.45171	0.45171	0.45171
Standard 4	1	0.817808	0.817808	0.817808
Standard 5	2	1.28057	1.28057	1.28057

Summer Well Suite 2014		Run October 3, 2014			
Mg		Calculated	Dilution	Corrected	
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)	
EM275_8_6_14	0.745587	0.973294	50	48.66	
SV631_8_5_14	0.91138	1.280489	50	64.02	
IZ385_8_6_14	0.8604	1.18603	50	59.30	
IZ386_8_6_14	0.9632	1.376506	50	68.83	
B.B>Spring_8_5_14	0.720118	0.926103	50	46.31	
RL255_8_4_14	1.044504	1.527152	50	76.36	
RL256_8_4_14	0.87636	1.215602	50	60.78	
WK947_8_4_14	0.918331	1.293369	50	64.67	
Fox0_8_6_14	0.776777	1.031085	50	51.55	
Fox1_8_9_14	0.686198	0.863254	50	43.16	
Fox3_8_5_14	0.567932	0.64412	50	32.21	
SussexCreek_8_6_14	0.585948	0.677502	50	33.88	
RootR8_5_14	0.54339	0.598648	50	29.93	
W.WWTP_8_4_14	0.66507	0.824107	50	41.21	
B.WWTP_8_6_14	0.716101	0.91866	50	45.93	
S.WWTP_8_6_14	0.680583	0.85285	50	42.64	

Summer 2014 Well Suite		Run October 3, 2014		Na
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.1	0.064144	0.061007	0.062576
Standard 2	0.25	0.142603	0.1414	0.142002
Standard 3	0.5	0.31108	0.310779	0.31093
Standard 4	1	0.524677	0.516215	0.520446
Standard 5	2	0.908324	0.898489	0.903407

Summer 2014 Well Suite		Run October 3, 2014		
Na		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L0
EM275_8_6_14	0.297445	0.465675	50	23.28
SV631_8_5_14	0.27699	0.400685	50	20.03
IZ385_8_6_14	0.574866	1.158063	100	115.81
IZ386_8_6_14	0.514858	1.005487	100	100.55
B.B.Spring_8_5_14	0.387063	0.680557	100	68.06
RL255_8_4_14	0.570998	1.148229	100	114.82
RL256_8_4_14	0.40434	0.724486	100	72.45
WK947_8_4_14	0.234373	0.365002	100	36.50
Fox0_8_6_14	0.358003	0.606669	100	60.67
Fox1_8_9_14	0.764611	1.640506	100	164.05
Fox3_8_5_14	0.53432	1.05497	100	105.50
SussexCreek_8_6_14	0.404945	0.726023	100	72.60
RootR8_5_14	0.450243	0.841198	100	84.12
W.WWTP_8_4_14	0.730095	1.552747	500	776.37
B.WWTP_8_6_14	0.706965	1.493935	500	746.97
S.WWTP_8_6_14	0.694661	1.462652	500	731.33

Summer 2014 Well Suite		Run October 3, 2014		K
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.25	0.143697	0.138036	0.140867
Standard 2	0.5	0.253078	0.244319	0.248699
Standard 3	1	0.416073	0.408868	0.412471
Standard 4	2	0.70579	0.708189	0.706989

Summer 2014 Well Suite		Run October 3, 2014		
К		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_8_6_14	0.297445	0.465675	50	23.28
SV631_8_5_14	0.27699	0.400685	50	20.03
IZ385_8_6_14	0.574866	1.158063	100	115.81
IZ386_8_6_14	0.514858	1.005487	100	100.55
B.B.Spring_8_5_14	0.387063	0.680557	100	68.06
RL255_8_4_14	0.570998	1.148229	100	114.82
RL256_8_4_14	0.40434	0.724486	100	72.45
WK947_8_4_14	0.234373	0.365002	100	36.50
Fox0_8_6_14	0.358003	0.606669	100	60.67
Fox1_8_9_14	0.764611	1.640506	100	164.05
Fox3_8_5_14	0.53432	1.05497	100	105.50
SussexCreek_8_6_14	0.404945	0.726023	100	72.60
RootR8_5_14	0.450243	0.841198	100	84.12
W.WWTP_8_4_14	0.730095	1.552747	500	776.37
B.WWTP_8_6_14	0.706965	1.493935	500	746.97
S.WWTP_8_6_14	0.694661	1.462652	500	731.33

Fall 2014

Fall 2014 Well Suite	Run October 29,2014	Ca		
Standards	Concentration (mg/L)	Absorption Start		
Standard 1	0.5	0.002828		
Standard 2	1	0.033778		
Standard 3	3	0.065139		
Standard 4	5	0.186911		
Standard 5	10	0.300879		
Fall 2014 Well Suite		Run October 29, 2014		
----------------------	------------------------	----------------------	----------	-------------------------
Ca		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_10_6_14	0.180936	2.902382	25	72.55954
SV631_10_2_14	0.249842	4.122231	25	103.0558
B.B.Spring_10_10_14	0.23131	3.770581	25	94.26452
IZ385_10_2_14	0.290604	4.895717	25	122.3929
IZ386_10_2_14	0.361912	6.248801	25	156.22
RL255_10_7_14	0.266543	4.439154	25	110.9789
RL256_10_7_14	0.278305	4.662332	25	116.5583
WK947_10_7_14	0.262387	4.360277	25	109.0069
Fox0_10_9_14	0.229101	3.728673	25	93.21682
Fox1_10_9_14	0.245105	4.032355	25	100.8089
Fox2_10_9_14	0.223801	3.628102	25	90.70255
Fox3_10_9_14	0.18285	2.851044	25	71.27609
SussexCreek_10_9_14	0.254054	4.202155	25	105.0539
RootR10_6_14	0.148412	2.197576	25	54.93941
W.WWTP_10_7_14	0.231542	3.77499	25	94.37475
S.WWTP_10_9_14	0.212205	3.408057	25	85.20142
B.WWTP_10_2_14	0.253148	4.184978	25	104.6244
EM275_10_6_14	0.180936	2.902382	25	72.55954

Fall 2014 Well Suite		Run October 29, 2014		Mg
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.25	0.143697	0.138036	0.140867
Standard 2	0.5	0.253078	0.244319	0.248699
Standard 3	1	0.416073	0.408868	0.412471
Standard 4	2	0.70579	0.708189	0.706989

Fall 2014 Well Suite		Run October 29, 2014		
Mg		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_10_6_14	0.78707	1.000673	50	50.03363
SV631_10_2_14	0.607989	0.675426	50	33.77128
B.B.Spring_10_10_14	0.662448	0.774334	50	38.71669
IZ385_10_2_14	0.782402	0.992194	50	49.60972
IZ386_10_2_14	0.83373	1.085415	50	54.27076
RL255_10_7_14	0.77097	0.971432	50	48.57158
RL256_10_7_14	0.763067	0.957077	50	47.85385
WK947_10_7_14	0.800817	1.02564	50	51.28198
Fox0_10_9_14	0.675902	0.798769	50	39.93847
Fox1_10_9_14	0.705459	0.85245	50	42.62252
Fox2_10_9_14	0.685836	0.816811	50	40.84057
Fox3_10_9_14	0.642254	0.737658	50	36.88289
SussexCreek_10_9_14	0.718799	0.876678	50	43.83388
RootR10_6_14	0.469638	0.494962	50	24.74808
W.WWTP_10_7_14	0.588023	0.639162	50	31.9581
S.WWTP_10_9_14	0.620377	0.697924	50	34.89618

Fall 2014 Well Suite		Run October 29, 2014		K
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.25	0.139158	0.127912	0.133535
Standard 2	0.5	0.249235	0.245147	0.247191
Standard 3	1	0.423143	0.415533	0.419338
Standard 4	2	0.743188	0.734027	0.738607

Fall 2014 Well Suite		Run October 29, 2014		
К		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_10_6_14	0.290159	0.659391	2	1.318782
SV631_10_2_14	0.439012	1.097066	2	2.194132
B.B.Spring_10_10_14	0.41571	1.028551	2	2.057103
IZ385_10_2_14	0.549744	1.422651	2	2.845303
IZ386_10_2_14	0.540948	1.396789	2	2.793577
RL255_10_7_14	0.503232	1.285891	2	2.571782
RL256_10_7_14	0.46652	1.177948	2	2.355897
WK947_10_7_14	0.412648	1.019547	2	2.039093
Fox0_10_9_14	0.251532	0.545816	4	2.183264
Fox1_10_9_14	0.51115	1.309174	4	5.236697
Fox2_10_9_14	0.562424	1.459935	4	5.83974
Fox3_10_9_14	0.39516	0.968128	4	3.872514
SussexCreek_10_9_14	0.436831	1.090654	4	4.362615
RootR10_6_14	0.395774	0.969933	4	3.87973
W.WWTP_10_7_14	0.496223	1.265283	10	12.65283
S.WWTP_10_9_14	0.472067	1.194257	10	11.94257

Fall 2014 W	Fall 2014 Well Suite Run Oc		r 29, 2014	Na
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.1	0.064185	0.061838	0.063012
Standard 2	0.25	0.1470438	0.143613	0.145329
Standard 3	0.5	0.3217251	0.314356	0.318041
Standard 4	1	0.5252082	0.516268	0.520738
Standard 5	2	0.9167099	0.906997	0.911853

Fall 2014 Well Suite		Run October 29, 2014		
Na		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_10_6_14	0.252293348	0.381949219	50	19.09746
SV631_10_2_14	0.253169805	0.383312294	50	19.16561
B.B.Spring_10_10_14	0.344592154	0.561974074	100	56.19741
IZ385_10_2_14	0.557531118	1.100787242	100	110.0787
IZ386_10_2_14	0.464708149	0.865911308	100	86.59113
RL255_10_7_14	0.455964744	0.843787308	100	84.37873
RL256_10_7_14	0.358979583	0.598379512	100	59.83795
WK947_10_7_14	0.184460789	0.156783373	100	15.67834
Standard 1ppm	0.521913171	1.010660858	100	101.0661
Fox0_10_9_14	0.384211987	0.662226688	100	66.22267
Fox1_10_9_14	0.813259244	1.747872581	100	174.7873
Fox2_10_9_14	0.78508687	1.67658621	100	167.6586
Fox3_10_9_14	0.455928117	0.843694628	100	84.36946
SussexCreek_10_9_14	0.55772841	1.101286463	100	110.1286
RootR10_6_14	0.576371372	1.148459949	100	114.846
W.WWTP_10_7_14	0.667883992	1.380020223	200	276.004
S.WWTP_10_9_14	0.744831622	1.574725764	200	314.9452
B.WWTP_10_2_14	0.78881973	1.686031705	200	337.2063

<u>Spring 2015</u>

Spring 2015 V	Well Suite	Run April	13, 2015	Ca
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.5	0.064185	0.061838	0.063012
Standard 2	1	0.1470438	0.143613	0.145329
Standard 3	3	0.3217251	0.314356	0.318041
Standard 4	5	0.5252082	0.516268	0.520738
Standard 5	10	0.9167099	0.906997	0.911853

Spring 2015 Well Suite		Run April 13, 2015		
Ca		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
SV631_7April14	0.23467	2.957302	25	73.93
BBSpring_7April15	0.269971	3.530373	25	88.26
WK947_2April15	0.309494	4.171979	25	104.30
RL255_2April15	0.335427	4.592971	25	114.82
Rl256_2April15	0.325068	4.424809	25	110.62
Fox0_8Arpil15	0.248396	3.180134	25	79.50
Fox1_8April15	0.265316	3.454812	25	86.37
Fox2_8April15	0.280088	3.694609	25	92.37
FoxA_9April15	0.137394	1.759235	25	43.98
Fox3_7April15	0.255132	3.289487	25	82.24
RR_7April15	0.256404	3.310137	25	82.75
UC_8April15	0.214971	2.790833	25	69.77
SC_8April15	0.231049	2.898527	25	72.46
WWWTP_2April15	0.297086	3.970547	25	99.26

Spring 2015 V	Spring 2015 Well Suite		Run April 13, 2015	
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.5	0.108054	0.108791	0.108422
Standard 2	1	0.261792	0.26954	0.265666
Standard 3	3	0.5147	0.516621	0.51566
Standard 4	5	0.925232	0.933876	0.929554
Standard 5	10	1.367743	1.368499	1.368121

Spring 2015 Well	Spring 2015 Well Suite		Run Aug. 13, 2015	
Mg		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
SV631_7April14	0.843321	0.994764	50	49.74
BBSpring_7April15	1.009014	1.296133	50	64.81
WK947_2April15	1.001697	1.282825	50	64.14
RL255_2April15	0.974586	1.233515	50	61.68
R1256_2April15	0.944581	1.17894	50	58.95
Fox0_8Arpil15	0.824269	0.960111	50	48.01
standard1ppm	0.932153			
Fox1_8April15	0.841719	0.99185	50	49.59
Fox2_8April15	0.831964	0.974107	50	48.71
FoxA_9April15	0.418976	0.403834	50	20.19
Fox3_7April15	0.824201	0.959987	50	48.00
RR_7April15	0.876022	1.054241	50	52.71
standard 1ppm	0.92362			
UC_8April15	0.562918	0.484754	50	24.24
SC_8April15	0.767296	0.856487	50	42.82
WWWTP_2April15	0.786752	0.891874	50	44.59
SWWTP_8April15	0.824226	0.960033	50	48.00

Spring 2015 Well Suite		Run April 13, 2015		Na
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.5	0.108054	0.108791	0.108422
Standard 2	1	0.261792	0.26954	0.265666
Standard 3	3	0.5147	0.516621	0.51566
Standard 4	5	0.925232	0.933876	0.929554
Standard 5	10	1.367743	1.368499	1.368121

Spring 2015 Well Suite		Run April 13, 2015		
Na		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
SV631_7April14	0.255504	0.444081	50	22.20
BBSpring_7April15	0.367207	0.634244	100	63.42
WK947_2April15	0.221304	0.384218	100	38.42
RL255_2April15	0.515697	0.983302	100	98.33
R1256_2April15	0.420299	0.759048	100	75.90
Fox0_8Arpil15	0.408954	0.732379	100	73.24
Fox1_8April15	0.878969	1.837258	100	183.73
Fox2_8April15	0.871997	1.820867	100	182.09
FoxA_9April15	0.526101	1.00776	100	100.78
Fox3_7April15	0.554578	1.074701	100	107.47
RR_7April15	0.83353	1.730441	100	173.04
UC_8April15	0.982493	2.080614	100	208.06
SC_8April15	0.577003	1.127416	100	112.74
WWWTP_2April15	0.807631	1.669562	500	834.78
SWWTP_8April15	0.840795	1.747521	500	873.76

Spring 2015 Well Suite		Run April 13, 2014		K
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.25	0.14845	0.140496	0.144473
Standard 2	0.5	0.253776	0.252246	0.253011
Standard 3	1	0.47708	0.465862	0.471471
Standard 4	2	0.796863	0.798533	0.797698

Spring 2015 Well Suite		Run April 13, 2015		
К		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
SV631_7April14	0.360483	0.786054	2	1.57
BBSpring_7April15	0.463549	1.063709	2	2.13
WK947_2April15	0.510079	1.18906	2	2.38
RL255_2April15	0.605481	1.446069	2	2.89
R1256_2April15	0.578662	1.373819	2	2.75
Fox0_8Arpil15	0.313339	0.65905	4	2.64
Fox1_8April15	0.48883	1.131815	4	4.53
Fox2_8April15	0.552574	1.30354	4	5.21
FoxA_9April15	0.338724	0.727437	4	2.91
Fox3_7April15	0.399264	0.890529	4	3.56
RR_7April15	0.368639	0.808026	4	3.23
UC_8April15	0.388436	0.861357	4	3.45
SC_8April15	0.000721	-0.18313	4	0.00
WWWTP_2April15	0.626677	1.50317	10	15.03
SWWTP_8April15	0.539564	1.268492	10	12.68

Summer 2015

Summer 2015 Well Suite		Run Aug. 5, 2015		Ca
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.5	0.050241	0.050817	0.050529
Standard 2	1	0.089971	0.090431	0.090201
Standard 3	3	0.242782	0.245863	0.244323
Standard 4	5	0.391989	0.395801	0.393895
Standard 5	10	0.700254	0.700343	0.700299

Summer 2015 Well Suite		Run Aug. 5, 2015		
Ca		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_jul15	0.292135	3.61544	25	90.386
SV631_jul15	0.233283	2.855071	25	71.37678
BBSpring_jul15	0.252996	3.109765	25	77.74413
IZ385_jul15	0.352868	4.400097	25	110.0024
IZ386_jul15	0.371862	4.645505	25	116.1376
RL255_Apr15	0.336148	4.184082	25	104.6021
RL255_jul15	0.333812	4.153902	25	103.8475
RL256_Apr15	0.327933	4.077949	25	101.9487
RL256_jul15	0.327794	4.076154	25	101.9038
WK947_apr15	0.313962	3.897442	25	97.43605
WK947_jul15	0.314414	3.903276	25	97.5819
Fox0_jul15	0.227583	2.781431	25	69.53579
Fox1_jul15	0.24372	2.989919	25	74.74798
Fox2_jul15	0.256566	3.155893	25	78.89732
Fox3_jul15	0.18674	1.971123	25	49.27807
RR_jul15	0.121037	0.950891	25	23.77227
SC_jul15	0.253492	3.116175	25	77.90438
UC_jul15	0.396115	4.958855	25	123.9714
BWWTP_jul15	0.323769	4.024147	25	100.6037
SWWTP_jul15	0.286537	3.543112	25	88.57781
WWWTP_jul15	0.309878	3.844676	25	96.1169

Summer 2015 Well Suite		Run Aug. 5, 2015		Mg
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.1	0.119995	0.120848	0.120422
Standard 2	0.25	0.281428	0.28894	0.285184
Standard 3	0.5	0.550872	0.548241	0.549556
Standard 4	1	0.960303	0.982898	0.971601
Standard 5	2	1.401807	1.409466	1.405637

Summer 2015 Well Suite		Run Aug. 5, 2015		
Mg		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_jul15	0.772565	0.798376	50	39.9188
SV631_jul15	0.957352	1.133621	50	56.68107
BBSpring_jul15	0.758534	0.772921	50	38.64606
IZ385_jul15	0.96819	1.153284	50	57.66418
RL255_Apr15	0.961725	1.141555	50	57.07776
RL255_jul15	0.9443	1.109942	50	55.49711
RL256_Apr15	0.925263	1.075405	50	53.77025
RL256_jul15	0.935693	1.094327	50	54.71633
Standard1ppm	0.983601	1.181243	50	59.06216
WK947_apr15	0.985915	1.185441	50	59.27204
WK947_jul15	0.989204	1.191408	50	59.57041
Fox0_jul15	0.797145	0.84297	50	42.14848
Fox1_jul15	0.779637	0.811207	50	40.56034
Fox2_jul15	0.77274	0.798694	50	39.9347
Fox3_jul15	0.635979	0.550578	50	27.5289
RR_jul15	0.365952	0.327687	50	16.38437
standard 1ppm	0.983023	1.180195	50	59.00974
SC_jul15	0.851647	0.941848	50	47.09241
UC_jul15	0.982197	1.178696	50	58.93482
BWWTP_jul15	0.916283	1.059112	50	52.95561
SWWTP_jul15	0.796036	0.840958	50	42.04792
WWWTP_jul15	0.787053	0.824661	50	41.23303

Summer 2015 Well Suite		Run Aug. 5, 2015		Mg
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.1	0.160428	0.135594	0.135594
Standard 2	0.25	0.26615	0.239876	0.239876
Standard 3	0.5	0.464961	0.451265	0.451265
Standard 4	1	0.797024	0.770812	0.770812
Standard 5	2	0.160428	0.135594	0.135594

Summer 2015 Well Suite		Run Aug. 5, 2015		
Mg		Calculated	Dilution	Corrected
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_Jul15	0.483714	0.545244	2	1.090488
SV631_Jul15	0.337148	0.36086	2	0.721721
BBSpring_Jul15	0.423778	0.469843	2	0.939686
IZ385_Jul15	0.636679	0.790141	2	1.580282
IZ386_Jul15	0.561284	0.67217	2	1.34434
WK947_Apr15	0.475812	0.535302	2	1.070605
WK947_Jul15	0.482422	0.543617	2	1.087235
RL255_April15	0.535154	0.631285	2	1.26257
RL255_Jul15	0.535596	0.631977	2	1.263953
Rl256_April15	0.555183	0.662624	2	1.325248
RL256_Jul15	0.54599	0.64824	2	1.29648
Fox0_Jul15	0.273256	0.221492	4	0.885969
Fox1_Jul15	0.53243	0.627023	4	2.508091
Fox2_Jul15	0.562339	0.673822	4	2.695287
Fox3_Jul15	0.365895	0.397025	4	1.588099
RR_Jul15	0.327512	0.348738	4	1.394951
SC_Jul15	0.498573	0.563937	4	2.255747
UC_Jul15	0.462346	0.518362	4	2.07345
BWWTP_Jul15	0.46796	0.525424	10	5.254242
SWWTP_Jul15	0.463709	0.520077	10	5.200767
WWWTP_Jul15	0.598774	0.73083	10	7.308302

Summer 2015 Well Suite		Run Aug. 5, 2015		Mg
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.1	0.070331	0.069989	0.07016
Standard 2	0.25	0.165735	0.159146	0.162441
Standard 3	0.5	0.298833	0.295339	0.297086
Standard 4	1	0.589916	0.565262	0.577589
Standard 5	2	0.973547	0.958895	0.966221

Summer 2015 We	Summer 2015 Well Suite		Run Aug. 5, 2015		
Mg		Calculated	Dilution	Corrected	
SAMPLE ID	SIGNAL (Absorption)	Concentration (mg/L)	Factor	Concentration (mg/L)	
EM275_Jul15	0.253056	0.418774	50	20.93872	
SV631_Jul15	0.352738	0.570765	50	28.53827	
BBSpring_Jul15	0.286493	0.478017	100	47.80166	
IZ385_Jul15	0.61565	1.171158	100	117.1158	
IZ386_Jul15	0.468332	0.834739	100	83.47388	
WK947_Apr15	0.225564	0.370064	100	37.00645	
WK947_Jul15	0.232592	0.382516	100	38.2516	
RL255_April15	0.508273	0.925948	100	92.59478	
RL255_Jul15	0.416353	0.716038	100	71.60377	
Rl256_April15	0.418369	0.720642	100	72.06418	
RL256_Jul15	0.507045	0.923144	100	92.31445	
Fox0_Jul15	0.359083	0.585255	100	58.52547	
Fox1_Jul15	0.841717	1.68741	100	168.741	
Fox2_Jul15	0.82406	1.647087	100	164.7087	
Fox3_Jul15	0.489962	0.884134	100	88.41337	
RR_Jul15	0.437616	0.764594	100	76.45945	
SC_Jul15	0.61065	1.159739	100	115.9739	
UC_Jul15	0.996978	2.041969	100	204.1969	
BWWTP_Jul15	0.842183	1.688475	200	337.6949	
SWWTP_Jul15	0.757202	1.494409	200	298.8818	
WWWTP_Jul15	0.779941	1.546338	200	309.2676	

3. Ion Chromatography with Calibration Curves

Fall 2013

119

Fall 2013 Well Suite	Run Nov. 2013	Cl
Standards	Concentration (mg/L)	Area Start
Standard 1	5	0.13
Standard 2	10	1.40
Standard 3	25	3.80
Standard 4	50	8.39
Standard 5	100	14.50
Standard 6	200	33.79
Standard 7	300	54.65

Fall 2013 Well Suite	Run Nov. 2013		
Cl	Area (µs*m)	Concentration (mg/L)	
EM275	7.77	43.22	
SV 631	8.27	45.76	
IZ 385	45.28	254.66	
IZ 386	36.46	210.74	
WK 947	14.10	74.88	
RL 255	41.01	233.39	
RL 256	31.91	188.07	
BB Spring	20.88	133.08	
R-R RL 255	38.54	221.10	
R-R RL 256	30.57	181.37	
Fox 0	25.59	156.57	
Fox 1	53.12	293.76	
Fox 2	62.83	342.13	
Fox 3	35.86	207.72	
Und. Crk	75.26	404.06	
Sussex Crk	38.36	220.22	
Root River	36.79	212.35	
WK WWTP	105.24	553.41	
BK WWTP	125.59	654.84	
Sussex WWTP	105.73	555.86	

Fall 2013 Well	Run Nov.	SO4
Suite	2013	
Standards	Concentration	Area
	(mg/L)	Start
Standard 1	5	0.09
Standard 2	10	0.95
Standard 3	25	2.48
Standard 4	50	5.28
Standard 5	100	11.74

Fall 2013 Well Suite	Run Nov. 2013		
SO ₄	Area	Concentration	
	(µs*m)	(mg/L)	
EM275	16.48	132.15	
SV 631	6.23	47.46	
IZ 385	8.20	63.74	
IZ 386	10.96	86.56	
WK 947	13.33	106.16	
RL 255	8.19	63.61	
RL 256	9.86	77.43	
BB Spring	3.61	25.83	
R-R RL 255	8.11	63.02	
R-R RL 256	11.83	93.75	
Fox 0	8.31	64.65	
Fox 1	6.86	52.64	
Fox 2	7.78	60.29	
Fox 3	5.27	39.56	
Und. Crk	21.69	175.19	
Sussex Crk	8.84	69.01	
Root River	6.24	47.54	
WK WWTP	12.53	99.48	
BK WWTP	12.33	97.88	
Sussex WWTP	10.48	82.54	

Fall 2013 Well Suite	Run Nov. 2013	NO3
Standards	Concentration (mg/L)	Area Start
Standard 1	5	0.3952
Standard 2	10	0.825
Standard 3	25	2.2575
Standard 4	50	5.0089
Standard 5	100	11.529
Standard 6	200	25.2195
Standard 7	300	40.0028

Fall 2013 Well Suite	Run Nov. 2013		
NO ₃	Area (µs*m)	Concentration (mg/L)	
EM275	0.02	4.23	
SV 631	n.a.	0.00	
IZ 385	0.22	0.65	
IZ 386	n.a.	0.00	
WK 947	0.06	4.70	
RL 255	0.03	4.32	
RL 256	n.a.	0.00	
BB Spring	1.09	16.21	
R-R RL 255	0.04	4.43	
R-R RL 256	n.a.	0.00	
Fox 0	0.27	7.02	
Fox 1	0.63	11.03	
Fox 2	1.51	20.81	
Fox 3	1.02	15.44	
Und. Crk	0.02	4.23	
Sussex Crk	0.88	13.82	
Root River	n.a.	0.00	
WK WWTP	9.75	112.68	
BK WWTP	3.69	45.17	
Sussex WWTP	1.15	16.81	

Spring 2014

Spring 2014 Well Suite	Run May 16, 2014	Cl
Standards	Concentration (mg/L)	Absorption Start
Standard 1	5	0.3719
Standard 2	10	0.7652
Standard 3	25	2.0182
Standard 4	50	4.3866
Standard 5	100	10.0133
Standard 6	200	22.1924
Standard 7	300	34.4487

Spring 2014 Well Suite	Run May 16, 2014		
Cl	Area	Calculated	
Sample Name	µS*min	Concentration (mg/L)	
EM275	9.4837	52.05498	
SV 631	11.5871	61.16061	
IZ 386	57.9948	262.0597	
WK 947	17.6121	87.24286	
RL 255	41.7885	191.9026	
RL 256	35.0633	162.7892	
BB Spring	26.1527	124.2152	
Fox 1	52.9855	240.3745	
Fox 2	56.259	254.5455	
Fox 3	35.5968	165.0987	
Root River	71.8322	321.9619	
WK WWTP	130.2842	575.0009	
BK WWTP	126.7856	559.8554	
Sussex WWTP	105.6286	468.2667	

Spring 2014 V	Well Suite	Run May 16, 2014		SO4
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	0.25	0.07	0.07	0.07
Standard 2	0.5	0.15	0.15	0.15
Standard 3	1	0.32	0.33	0.33
Standard 4	2	0.54	0.54	0.54

Spring 2014 Well Suite	Run May 16, 2014		
SO4	Area	Calculated	
Sample Name	µS*min	Concentration (mg/L)	
EM275	6.7467	28.82209	
SV 631	22.6775	193.2108	
IZ 386	10.5838	53.46628	
WK 947	17.088	95.24021	
RL 255	8.8365	42.24406	
RL 256	10.0388	49.96596	
BB Spring	3.9404	10.79833	
Fox 1	7.2135	31.82017	
Fox 2	7.6688	34.74438	
Fox 3	5.6001	21.45793	
Root River	6.65	28.20103	
WK WWTP	13.2315	70.47142	
BK WWTP	10.7344	54.43353	
Sussex WWTP	8.4872	40.00064	

Summer 2014

Summer 2014 W	er 2014 Well Suite		Run July 29, 2014	
Cl	Area	Calculated	Dilution	Corrected
Sample Name	μS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
8/9/14Fox1_1:5	10.3955	48.33497	5	241.6749
8/14BWWTP1:5	21.441	84.30433	5	421.5217
8/14SWWTP1:5	19.4583	77.64427	5	388.2214

Summer 2014	Well Suite	Run July	y 29, 2014	Cl
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.8629	0.8759	0.8694
Standard 2	10	1.7634	1.7681	1.76575
Standard 3	25	4.9424	5.0115	4.97695
Standard 4	50	10.808	10.9212	10.8646
Standard 5	100	26.4108	26.7255	26.56815
Standard 6	200	84.9719	85.6581	85.315
Standard 7	300	85.1518	85.9718	85.5618

Summer 2014 Well Suite	Run Oct. 3, 2014	Cl
Standards	Concentration (mg/L)	Absorption
Standard 1	5	0.8263
Standard 2	10	1.7214
Standard 3	25	4.8601
Standard 4	50	10.9675
Standard 5	100	24.2636
Standard 6	200	52.5817
Standard 7	300	81.0626

Summer 2014 Well Suite	Run Oct. 3, 2014		
SO4	Area	Calculated	
Sample Name	µS*min	Concentration (mg/L)	
EM275_Jul14	7.3187	34.51014	
SV 631_Jul14	10.7	49.41887	
IZ 385_Jul14	57.1848	215.6959	
IZ 386_Jul14	61.3302	230.4378	
RL255_Jul14	46.3023	176.9957	
RL 256_Jul14	40.0967	154.9275	
WK 947_Jul14	19.1449	80.41892	
Fox 0_Jul14	27.8729	111.4573	
Fox 2_Jul14	73.3251	273.0939	
Fox 3_Jul14	45.2217	173.1529	
Sussex Crk_Jul14	32.4986	127.9072	
Root River_Jul14	34.7801	136.0206	

Summer 2014 Well Suite	Run Oct. 3, 2014	NO3
Standards	Concentration (mg/L)	Absorption
Standard 1	5	0.3952
Standard 2	10	0.825
Standard 3	25	2.2575
Standard 4	50	5.0089
Standard 5	100	11.529
Standard 6	200	25.2195
Standard 7	300	40.0028

Summer 2014 Well Suite	Run Oct. 3, 2014	
NO3	Area	Calculated
Sample Name	µS*min	Concentration (mg/L)
EM275	0	0
SV 631	0	0
IZ 385	0.2082	3.232143
IZ 386	0.0162	1.327381
RL255	0.0644	1.805556
RL 256	0.0149	1.314484
WK 947	0.042	1.583333
Fox 0	0.1567	2.72123
Fox 2	1.3284	14.34524
Fox 3	0.5179	6.304563
Sussex Crk	0.754	8.646825
Root River	0.1734	2.886905
WK WWTP	9.5811	84.92214
BK WWTP	5.4163	54.8998
Sussex WWTP	1.1882	12.95437

Summer 2014 Well Suite	Run Oct. 3, 2014	SO4
Standards	Concentration (mg/L)	Absorption
Standard 1	5	0.5721
Standard 2	10	1.1291
Standard 3	25	3.0099
Standard 4	50	6.5824
Standard 5	100	15.2807
Standard 6	200	33.0108
Standard 7	300	51.661

Summer 2014 Well Suite	Run Oct. 3, 2014	
SO4	Area	Calculated
Sample Name	µS*min	Concentration (mg/L)
EM275	29.3849	177.788
SV 631	7.5725	56.74251
IZ 385	10.1957	71.29967
IZ 386	12.3787	83.41398
RL255	10.0582	70.53663
RL 256	13.3445	88.77358
WK 947	19.4259	122.5216
Fox 0	7.6717	57.29301
Fox 2	7.7551	57.75583
Fox 3	5.1415	39.77645
Sussex Crk	8.2831	60.6859
Root River	7.7049	57.47725
WK WWTP	14.0683	92.79023
BK WWTP	13.4487	89.35183
Sussex WWTP	11.6331	79.27636

Fall 2014

Fall 2014 Well Suite		Run Nov. 13, 2014		Cl	
	Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
	Standard 1	5	0.8389	0.8647	0.8518
	Standard 2	10	1.8184	1.8483	1.83335
	Standard 3	25	4.919	4.997	4.958
	Standard 4	50	10.8858	10.9974	10.9416
	Standard 5	100	26.1872	26.5355	26.36135
	Standard 6	200	54.997	55.7583	55.37765
	Standard 7	300	84.1242	84.9823	84.55325

Fall 2014 Well Suite		Run Nov. 13, 2014		
Cl	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275	12.2633	53.33833	1	53.33833
SV 631	6.0051	28.53935	1	28.53935
B.B.Spring	31.132	117.6269	1	117.6269
IZ 385	58.1351	209.6307	1	209.6307
IZ 386	56.5827	204.3414	1	204.3414
RL255	45.4061	166.261	1	166.261
RL 256	38.5947	143.0535	1	143.0535
WK 947	18.9455	76.10562	1	76.10562
Fox 0	32.8473	123.4712	1	123.4712
Fox 1	76.6447	272.6957	1	272.6957
Fox 2	77.0576	274.1026	1	274.1026
Fox 3	43.6729	160.3557	1	160.3557
Sussex Crk	48.2039	175.7935	1	175.7935
Root River	47.4496	173.2235	1	173.2235
WK WWTP_1:5	19.4812	77.93083	5	389.6542
BK WWTP_1:5	21.477	84.73083	5	423.6542
Sussex WWTP_1:5	23.9704	93.22624	5	466.1312
Summer14B.B.Spring	29.5826	112.3479	1	112.3479

Fall 2014 Well Suite		Run Nov. 13, 2014		SO4
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.581	0.5878	0.5844
Standard 2	10	1.2026	1.224	1.2133
Standard 3	25	3.0517	3.0947	3.0732
Standard 4	50	6.5466	6.5964	6.5715
Standard 5	100	15.0923	15.2735	15.1829
Standard 6	200	32.7362	33.1702	32.9532
Standard 7	300	50.4004	50.8538	50.6271

Fall 2014 Well Suite		Run Nov. 13, 2104		
SO4	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275	8.8024	63.18017	1	63.18017
SV 631	26.9273	165.8708	1	165.8708
B.B.Spring	6.7307	51.44249	1	51.44249
IZ 385	10.3698	72.06062	1	72.06062
IZ386	11.9275	80.88612	1	80.88612
RL255	9.85	69.11558	1	69.11558
RL256	11.3983	77.88782	1	77.88782
WK 947	17.4552	112.2045	1	112.2045
Fox 0	11.9993	81.29292	1	81.29292
Fox 1	9.3919	66.52011	1	66.52011
Fox 2	9.3927	66.52465	1	66.52465
Fox 3	5.9372	45.60932	1	45.60932
Sussex Crk	12.2354	82.63059	1	82.63059
Root River	4.3139	33.41322	1	33.41322
WK WWTP	2.13	17.00526	5	85.0263
BK WWTP	1.917	15.40496	5	77.02479
Sussex WWTP	2.1745	17.33959	5	86.69797

Fall 2014 Well Suite		Run Nov. 13, 2014		NO3
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.43	0.4345	0.43225
Standard 2	10	0.8858	0.8985	0.89215
Standard 3	25	2.3247	2.3667	2.3457
Standard 4	50	5.0576	5.0937	5.07565
Standard 5	100	11.8333	11.7799	11.8066
Standard 6	200	25.6704	25.6398	25.6551
Standard 7	300	39.4674	39.8281	39.64775

Fall 2014 Well Suite		Run Nov. 13, 2014		
NO3	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275	n.a.	0	1	0
SV 631	n.a.	0	1	0
B.B.Spring	0.5772	6.941063	1	6.941063
IZ 385	0.2174	3.464734	1	3.464734
IZ 386	0.0186	1.543961	1	1.543961
RL255	0.0396	1.74686	1	1.74686
RL 256	n.a.	0	1	0
WK 947	0.0251	1.606763	1	1.606763
Fox 0	0.1473	2.78744	1	2.78744
Fox 1	0.9563	10.60386	1	10.60386
Fox 2	1.5245	16.09372	1	16.09372
Fox 3	0.9118	10.17391	1	10.17391
Sussex Crk	0.9852	10.88309	1	10.88309
Root River	0.032	1.67343	1	1.67343
WK WWTP_1:5	1.3125	14.04541	5	70.22705
BK WWTP_1:5	0.3045	4.30628	5	21.5314
Sussex WWTP_1:5	0.8508	9.584541	5	47.92271
Sprig14B.B.Spring	1.0866	11.8628	1	11.8628
Spring14WK WWTP_1:5	0.914	10.19517	5	50.97585
Spring14BK WWTP_1:5	0.5903	7.067633	5	35.33816
Spring14Sussex WWTP_1:5	0.487	6.069565	5	30.34783

<u>Spring 2015</u>

Spring 2015 2014 Well Suite		Run May. 13, 2014		Cl
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.812	0.8156	0.8138
Standard 2	10	1.6925	1.7246	1.70855
Standard 3	25	4.8365	4.8991	4.8678
Standard 4	50	10.7136	10.8079	10.76075
Standard 5	100	23.0486	23.3039	23.17625
Standard 6	200	49.743	50.211	49.977
Standard 7	300	78.0737	78.3863	78.23

Spring 2015 Well Suite		Run May 13, 2014		
Cl	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
SV631_4.7.15	12.5609	59.05251	1	59.05
BBSpring_4.7.15	30.8268	126.6039	1	126.60
WK947_4.2.15	20.4781	88.3321	1	88.33
RL255_4.2.15	47.6911	188.9719	1	188.97
RL256_4.2.15	41.0744	164.5018	1	164.50
Fox0_4.8.15	5.061	24.85701	5	124.29
Fox1_4.8.15	12.6738	59.47004	5	297.35
Fox2_4.8.15	12.229	57.82507	5	289.13
FoxA_4.9.15	6.0962	29.51169	5	147.56
Fox3_4.7.15	6.6258	31.89299	5	159.46
RR_4.7.15	11.9092	56.64238	5	283.21
UC_4.8.15	14.6306	66.70673	5	333.53
SC_4.8.15	6.8378	32.84622	5	164.23
WWWTP_4.8.15	22.8009	96.92234	5	484.61
SWTTP_4.2.15	23.4613	99.36464	5	496.82

Spring 2015 Well Suite		Run May 13, 2014		SO4
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.6117	0.606	0.60885
Standard 2	10	1.2203	1.2407	1.2305
Standard 3	25	3.3169	3.3462	3.33155
Standard 4	50	7.0842	7.1423	7.11325
Standard 5	100	15.0152	15.1638	15.0895
Standard 6	200	32.9017	33.1258	33.01375
Standard 7	300	52.5505	52.6318	52.59115

Spring 2015 Well Suite		Run May 13, 2014		
SO4	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
SV631_4.7.15	9.4204	66.38322	1	66.38
BBSpring_4.7.15	6.8157	48.29408	1	48.29
WK947_4.2.15	18.3443	115.3081	1	115.31
RL255_4.2.15	10.1035	70.12829	1	70.13
RL256_4.2.15	10.7161	73.48684	1	73.49
Fox0_4.8.15	1.1387	9.196281	5	45.98
Fox1_4.8.15	1.4358	11.24242	5	56.21
Fox2_4.8.15	1.511	11.76033	5	58.80
FoxA_4.9.15	0.6822	6.052342	5	30.26
Fox3_4.7.15	1.064	8.681818	5	43.41
RR_4.7.15	1.7378	13.32231	5	66.61
UC_4.8.15	1.3695	10.78581	5	53.93
SC_4.8.15	1.3946	10.95868	5	54.79
WWWTP_4.8.15	2.3007	17.19904	5	86.00
SWTTP_4.2.15	1.9898	15.05785	5	75.29

Spring 2015 Well Suite		Run May 13, 2014		NO3
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.4433	0.4433	0.4433
Standard 2	10	0.8987	0.9126	0.90565
Standard 3	25	2.4681	2.4954	2.48175
Standard 4	50	5.3372	5.391	5.3641
Standard 5	100	11.4189	11.5277	11.4733
Standard 6	200	25.5122	25.9343	25.72325
Standard 7	300	41.0618	40.8505	40.95615

Spring 2015 Well Suite			Run May 13, 2014	
NO3	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
SV631_4.7.15	n.a.			0.00
BBSpring_4.7.15	0.5527	6.615105	1	6.62
WK947_4.2.15	n.a.			0.00
RL255_4.2.15	0.0317	1.874431	1	1.87
RL256_4.2.15	n.a.			0.00
Fox0_4.8.15	n.a.			0.00
Fox1_4.8.15	0.1356	2.819836	5	14.10
Fox2_4.8.15	0.2816	4.148317	5	20.74
FoxA_4.9.15	0.114	2.623294	5	13.12
Fox3_4.7.15	0.1414	2.872611	5	14.36
RR_4.7.15	n.a.			0.00
UC_4.8.15	0.0493	2.034577	5	10.17
SC_4.8.15	0.1236	2.710646	5	13.55
WWWTP_4.8.15	1.652	16.61783	5	83.09
SWTTP_4.2.15	0.21	3.496815	5	17.48

Summer 2015

Summer 2015 Well Suite		Run Jul.	Run Jul. 29, 2014	
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.8067	0.8118	0.80925
Standard 2	10	1.7213	1.7237	1.7225
Standard 3	25	4.7205	4.7464	4.73345
Standard 4	50	10.5661	10.6679	10.617
Standard 5	100	23.1135	23.5422	23.32785
Standard 6	200	48.5769	49.6698	49.12335
Standard 7	300	76.8932	77.702	77.2976

Summer 2015 Well Suite		Run Jul. 29, 2014		
Cl	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_7.14.15	5.5019	27.20786	1	27.20786
SV631_7.20.15	13.0063	60.76305	1	60.76305
BBSpring_7.20.15	23.0612	98.52084	1	98.52084
IZ385_7.14.15	64.3002	253.38	1	253.38
IZ386_7.14.15	52.8497	210.3815	1	210.3815
WK947_7.23.15	19.9312	86.76718	1	86.76718
RL255_7.23.15	40.1857	162.8261	1	162.8261
RL256_7.23.15	45.3837	182.3455	1	182.3455
Fox0_7.16.15	4.2708	21.58383	5	107.9191
Fox1_7.16.15	13.011	60.7807	5	303.9035
Fox2_7.23.15	11.7945	56.21254	5	281.0627
Fox3_7.20.15	5.9234	29.13339	5	145.667
RR_7.20.15	4.7516	23.78026	5	118.9013
UC_7.23.15	18.0589	79.73639	5	398.6819
SC_7.26.15	8.3902	40.40247	5	202.0123
BWWTP_7.14.15	27.2025	114.0721	5	570.3605
WWWTP_7.16.15	24.6872	104.6267	5	523.1337
SWTTP_7.16.15	21.8344	93.91401	5	469.57

Summer 2015 Well Suite		Run Jul.	29, 2014	SO4	
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average	
Standard 1	5	0.565	0.5495	0.55725	
Standard 2	10	1.1721	1.1736	1.17285	
Standard 3	25	3.0915	3.0958	3.09365	
Standard 4	50	6.6901	6.7651	6.7276	
Standard 5	100	14.7637	14.9758	14.86975	
Standard 6	200	32.1719	32.8107	32.4913	
Standard 7	300	51.7483	52.415	52.08165	

Summer 2015 Well Suite		Run Jul. 29, 2014		
SO4	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_7.14.15	23.4503	145.4777	1	145.4777
SV631_7.20.15	9.8008	70.27383	1	70.27383
BBSpring_7.20.15	5.0768	38.43304	1	38.43304
IZ385_7.14.15	10.1142	72.00055	1	72.00055
IZ386_7.14.15	12.7903	86.7449	1	86.7449
WK947_7.23.15	19.1682	121.8848	1	121.8848
RL255_7.23.15	12.2386	83.70523	1	83.70523
RL256_7.23.15	9.4197	68.1741	1	68.1741
Fox0_7.16.15	1.2987	10.93595	5	54.67977
Fox1_7.16.15	1.3329	11.18486	5	55.92431
Fox2_7.23.15	1.2691	10.72052	5	53.60262
Fox3_7.20.15	0.7587	7.005822	5	35.02911
RR_7.20.15	0.3697	4.174672	5	20.87336
UC_7.23.15	3.3094	25.56987	5	127.8493
SC_7.26.15	1.771	14.37336	5	71.86681
BWWTP_7.14.15	2.4601	19.38865	5	96.94323
WWWTP_7.16.15	2.5017	19.69141	5	98.45706

Summer 2015	Well Suite	Run Jul.	29, 2014	NO3
Standards	Concentration (mg/L)	Absorption Start	Absorption Final	Average
Standard 1	5	0.565	0.5495	0.55725
Standard 2	10	1.1721	1.1736	1.17285
Standard 3	25	3.0915	3.0958	3.09365
Standard 4	50	6.6901	6.7651	6.7276
Standard 5	100	14.7637	14.9758	14.86975
Standard 6	200	32.1719	32.8107	32.4913
Standard 7	300	51.7483	52.415	52.08165

Summer 2015 W	ell Suite		Run Jul. 29, 2014	
SO4	Area	Calculated	Dilution	Corrected
Sample Name	µS*min	Concentration (mg/L)	Factor	Concentration (mg/L)
EM275_7.14.15	0.0714	2.411542	1	2.411542
SV631_7.20.15	0.1192	2.863765	1	2.863765
BBSpring_7.20.15	0.8344	9.630085	1	9.630085
IZ385_7.14.15	0.1502	3.157048	1	3.157048
IZ386_7.14.15	0.149	3.145695	1	3.145695
WK947_7.23.15	0.121	2.880795	1	2.880795
RL255_7.23.15	0.1286	2.952696	1	2.952696
RL256_7.23.15	0.156	3.211921	1	3.211921
Fox0_7.16.15	0.0181	1.907285	5	9.536424
Fox1_7.16.15	0.1466	3.12299	5	15.61495
Fox2_7.23.15	0.3716	5.251656	5	26.25828
Fox3_7.20.15	0.1191	2.862819	5	14.3141
RR_7.20.15	0.0334	2.052034	5	10.26017
UC_7.23.15	0.0191	1.916746	5	9.583728
SC_7.26.15	0.1649	3.296121	5	16.48061
BWWTP_7.14.15	0.6402	7.79281	5	38.96405
WWWTP_7.16.15	1.734	18.14096	5	90.70482
SWTTP_7.16.15	0.2031	3.657521	5	18.28761

4. Averages and Standard Deviations for Each Site

RL255

Calcium RL255					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
11/19/2013	115.87	2.89	11/19/2013	113.00	2.82
10/29/2014	115.75	2.89	10/29/2014	109.27	2.72
11/22/2014	109.15	2.72	1/22/2014	109.50	2.73
AVE	113.59	2.83	AVE	110.59	2.76
STD		0.10	STD		0.05
RSD		3.39	RSD		1.93

146

Calcium RL255								
	Spring 2014	4		Summer 20	14		Fall 2014	
test date	ppm	mMol/L	test date	Ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	111.60	2.78	9/25/2014	126.73	3.16	10/29/2014	110.98	2.77
10/29/2014	119.06	2.97	10/29/2014	103.50	2.58	10/29/2014	111.81	2.79
11/22/2014	107.39	2.68	11/22/2014	107.51	2.68	11/22/2014	110.28	2.75
AVE	112.68	2.81	AVE	112.58	2.81	AVE	111.02	2.77
STD		0.15	STD		0.31	STD		0.02
RSD		5.25	RSD		11.03	RSD		0.69

Calcium					
RL255					
	Spring 201	5		Summer 20	015
test date	ppm	mMol/L	test date	ppm	mMol/L
5/13/2015	114.82	2.86	8/5/2015	103.85	2.59
8/5/2015	104.60	2.61	8/12/15	105.47	2.63
8/12/15	107.62	2.68			0.00
AVE	109.02	2.72	AVE		
STD		0.13	STD		
RSD		4.82	RSD		

147

Mo

Magnesium					
RL255					
				Fall	
	Summer 2013			2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
11/19/2013	62.31	2.56	5/16/2014	58.97	2.43
10/29/2014	51.35	2.11	10/29/2014	51.37	2.11
11/22/2014	48.72	2.01	11/22/2014	47.91	1.97
AVE	54.13	2.23	AVE	52.75	2.17
STD		0.30	STD		0.23
RSD		13.31	RSD		10.73

Magnesium RL255								
	Spring 2	014		Summer	· 2014		Fall 2014	
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	59.61	2.45	9/25/2014	76.36	3.14	10/29/2014	48.57	2.00
10/29/2014	50.83	2.09	10/29/2014	50.17	2.06	10/29/2014	50.40	2.07
11/22/2014	47.90	1.97	11/22/2014	48.13	1.98	11/22/2014	47.83	1.97
AVE	52.78	2.17	AVE	58.22	2.39	AVE	48.93	2.01
STD		0.25	STD		0.65	STD		0.05
RSD		11.55	RSD		27.04	RSD		2.70

Magnesium					
RL255					
	Spring 2	2015		Summer	2015
test date	ppm	mMol/L	test date	ppm	mMol/L
5/13/2015	61.68	2.54	8/5/2015	55.50	2.28
8/5/2015	57.08	2.35	8/12/15	54.91	2.26
8/12/15	55.54	2.28			0.00
AVE	58.10	2.39	AVE		
STD		0.13	STD		
RSD		5.49	RSD		

Sodium RL255					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
2/14/2015	100.34	4.36	2/14/2015	110.34	4.80
2/19/2015	99.38	4.32	2/19/2015	111.99	4.87
2/21/2015	102.93	4.48	2/21/2015	110.18	4.79
AVE	100.88	4.39	AVE	110.84	4.82
STD		0.11	STD		0.04
RSD		2.49	RSD		0.90

Sodium RL255								
	Spring 2	2014		Summer	2014		Fall 2014	
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
2/14/2015	105.25	4.58	2/14/2015	103.25	4.49	2/14/2015	102.84	4.47
2/19/2015	102.56	4.46	2/19/2015	101.79	4.43	2/19/2015	102.77	4.47
2/21/2015	102.13	4.44	2/21/2015	104.78	4.56	2/21/2015	105.15	4.57
AVE	103.31	4.49	AVE	103.27	4.49	AVE	103.59	4.50
STD		0.07	STD		0.07	STD		0.06
RSD		1.64	RSD		1.45	RSD		1.31

Sodium					
RL255					
	Spring 2	2015		Summer	2015
			test		
test date	ppm	mMol/L	date	ppm	mMol/L
4/12/15	98.33	4.28	8/12/15	92.31	4.01
8/12/15	92.59	4.03			
AVE			AVE		
STD			STD		
RSD			RSD		

Potassium					
RL255					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
11/19/2013	2.78	0.07	11/19/2013	3.25	0.08
10/29/2014	4.97	0.13	10/29/2014	4.96	0.13
11/22/2014	5.27	0.13	11/22/2014	5.22	0.13
AVE	4.34	0.11	AVE	4.48	0.11
STD		0.03	STD		0.03
RSD		31.38	RSD		25.74

Potassium RL255									
Spring 2014				Summer 20	14		Fall 2014		
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L	
5/16/2014	3.30	0.08	9/25/2014	3.24	0.08	10/29/2014	2.57	0.07	
10/29/2014	4.96	0.13	10/29/2014	5.10	0.13	10/29/2014	5.16	0.13	
11/22/2014	5.39	0.14	11/22/2014	5.07	0.13	11/22/2014	5.26	0.13	
AVE	4.55	0.12	AVE	4.47	0.11	AVE	4.33	0.11	
STD		0.03	STD		0.03	STD		0.04	
RSD		24.26	RSD		23.85	RSD		35.17	

Potassium						
RL255						
	Spring 2015	5	Summer 2015			
test date	ppm	mMol/L	test date	ppm	mMol/L	
4/13/15	1.34	0.03	8/12/15	1.09	0.03	
8/12/15	1.26	0.03				
AVE			AVE			
STD			STD			
RSD			RSD			

RL256

Calcium					
RL256					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
11/19/2013	114.57	2.86	5/16/2014	108.86	2.71
10/29/2014	109.69	2.74	10/29/2014	107.30	2.68
11/22/2014	110.98	2.77	11/22/2014	109.17	2.72
AVE	111.75	2.79	AVE	108.44	2.70
STD		0.06	STD		0.02
RSD		2.26	RSD		0.92

152

Calcium RL256								
Spring 2014				Summer 2014 Fall 2014				
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	110.50	2.76	9/25/2014	109.21	2.72	10/29/2014	116.56	2.91
10/29/2014	104.41	2.60	10/29/2014	107.33	2.68	10/29/2014	110.87	2.76
11/22/2014	107.02	2.67	11/22/2014	108.91	2.72	11/22/2014	107.57	2.68
AVE	107.31	2.68	AVE	108.48	2.71	AVE	111.67	2.78
STD		0.08	STD		0.03	STD		0.11
RSD		2.85	RSD		0.93	RSD		4.07

Calcium						
RL256						
	Spring 201	5	Summer 2015			
test date	ppm	mMol/L	test date	ppm	mMol/L	
5/13/2015	110.62	2.76	8/5/2015	101.90	2.54	
8/5/2015	101.95	2.54	8/12/15	105.01	2.62	
8/12/15	102.87	2.57			0.00	
AVE	105.15	2.62	AVE			
STD		0.12	STD			
RSD		4.53	RSD			

Magnesium RL256					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
10/9/2013	59.39	2.45	11/19/2013	63.65	2.22
10/29/2014	51.19	2.11	10/29/2014	49.58	2.04
11/22/2014	48.34	1.99	11/22/2014	45.69558	1.88
AVE	52.98	2.18	AVE	52.97	2.05
STD		0.24	STD		0.17
RSD		10.85	RSD		8.32

Magnesium RL256								
Spring 2014				Summer 2014 Fall 2014				
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	64.14	2.64	9/25/2014	60.78	2.50	10/29/2014	47.85	1.97
10/29/2014	48.35	1.99	10/29/2014	48.71	2.00	10/29/2014	48.60	2.00
11/22/2014	44.38	1.83	11/22/2014	46.21	1.90	11/22/2014	46.23	1.90
AVE	52.29	2.15	AVE	51.90	2.13	AVE	47.56	1.96
STD		0.43	STD		0.32	STD		0.05
RSD		19.99	RSD		15.01	RSD		2.55

Magnesium							
KL230	Spring 201	5	Summer 2015				
test date	ppm	mMol/L	test date	ppm	mMol/L		
5/13/2015	58.95	2.42	8/5/2015	54.72	2.25		
8/5/2015	53.77	2.21	8/12/15	55.14	2.27		
8/12/15	53.97	2.22			0.00		
AVE	55.56	2.29	AVE				
STD		0.12	STD				
RSD		5.28	RSD				

Sodium					
RL256					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
2/14/2015	75.51	3.28	2/14/2015	77.20	3.36
2/19/2015	72.51	3.15	2/19/2015	77.37	3.36
2/21/2015	70.74	3.08	2/21/2015	76.04	3.31
			2/21/2015	79.39	3.45
AVE	72.92	3.17	AVE	77.28	3.34
STD		0.10	STD		0.03
RSD		3.30	RSD		0.94

Sodium										
RL256										
Spring 2014				Summer 20)14		Fall 2014			
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L		
2/14/2015	79.58	3.46	2/14/2015	80.84	3.51	2/14/2015	76.32	3.32		
2/19/2015	77.57	3.37	2/19/2015	79.90	3.47	2/19/2015	74.83	3.25		
2/21/2015	77.72	3.38	2/21/2015	78.43	3.41	2/21/2015	74.92	3.26		
AVE	78.29	3.40	AVE	79.72	3.47	AVE	75.57	3.28		
STD		0.05	STD		0.05	STD		0.04		
RSD		1.44	RSD		1.52	RSD		1.11		

Sodium						
RL256						
	Spring 201	5	Summer 2015			
test date	ppm	mMol/L	test date	ppm	mMol/L	
4/12/15	75.90	3.30	8/12/15	71.60	3.11	
8/12/15	72.06	3.13				
AVE	73.98	3.22	AVE			
STD		0.12	STD			
RSD		3.67	RSD			

Potassium					
RL256					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
11/19/2013	2.99	0.08	10/29/2014	4.83	0.12
10/29/2014	4.90	0.13	11/22/2014	4.75	0.12
11/22/2014	4.73	0.12			
AVE	4.21	0.11	AVE	4.79	0.12
STD		0.03	STD		0.00
RSD		25.05	RSD		1.27

Potassium RL256								
Spring 2014			Summer 2014 Fall 20			Fall 2014		
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	2.88	0.07	9/25/2014	2.98	0.08	10/29/2014	2.36	0.06
10/29/2014	4.83	0.12	10/29/2014	5.12	0.13	10/29/2014	4.92	0.13
11/22/2014	4.70	0.12	11/22/2014	4.79	0.12	11/22/2014	4.88	0.12
AVE	4.13	0.11	AVE	4.30	0.11	AVE	4.05	0.10
STD		0.03	STD		0.03	STD		0.04
RSD		26.36	RSD		26.76	RSD		36.28

Potassium RL256					
	Spring 201	4	Summer 2014		
test date	ppm	mMol/L	test date	ppm	mMol/L
4/13/15	2.75	0.07	8/12/15	1.30	0.03
8/12/15	1.33	0.03			0.00
		0.00			0.00
AVE			AVE		
STD			STD		
RSD			RSD		

WK947

Calcium WK947					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
	108.67	2.71	11/19/2013	103.23	2.57
10/29/2014	98.23	2.45	10/29/2014	92.71	2.31
11/22/2014	100.40	2.50	11/22/2014	94.94	2.37
AVE	102.43	2.55	AVE	96.96	2.42
STD		0.14	STD		0.14
RSD		5.38	RSD		5.72

158

Calcium WK947								
Spring 2014		4		Summer 2014 Fall 2014				
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	105.23	2.62	9/25/2014	116.57	2.91	10/29/2014	109.01	2.72
10/29/2014	97.96	2.44	10/29/2014	96.18	2.40	10/29/2014	92.93	2.32
11/22/2014	101.75	2.54	11/22/2014	100.62	2.51	11/22/2014	100.28	2.50
AVE	101.65	2.53	AVE	104.46	2.60	AVE	100.74	2.51
STD		0.09	STD		0.27	STD		0.20
RSD		3.58	RSD		10.26	RSD		7.99

Calcium WK947					
	Spring 201	5		Summer 20)15
test date	ppm	mMol/L	test date	ppm	mMol/L
5/13/2015	104.30	2.60	8/5/2015	97.58	2.43
8/5/2015	97.44	2.43	8/12/15	97.21	2.42
8/12/15	97.72	2.44			
AVE	99.82	2.49	AVE		
STD		0.10	STD		
RSD		3.89	RSD		

Magnesium WK947					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
	56.83	2.34	11/19/2013	74.01	3.04
10/29/2014	52.53	2.16	10/29/2014	51.38	2.11
11/22/2014	50.03	2.06	11/22/2014	47.95	1.97
AVE	53.13	2.19	AVE	57.78	2.38
STD		0.14	STD		0.58
RSD		6.47	RSD		24.51

Magnesium Wk947								
Spring 2014				Summer 20	2014 Fall 2014			
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	44.55	1.83	9/25/2014	64.67	2.66	10/29/2014	51.28	2.11
10/29/2014	53.69	2.21	10/29/2014	52.94	2.18	10/29/2014	52.61	2.16
11/22/2014	50.68	2.08	11/22/2014	49.67	2.04	11/22/2014	50.28	2.07
AVE	49.64	2.04	AVE	55.76	2.29	AVE	51.39	2.11
STD		0.19	STD		0.32	STD		0.05
RSD		9.38	RSD		14.14	RSD		2.28

Magnesium WK947						
	Spring 201	5	Summer 2015			
test date	ppm	mMol/L	test date	ppm	mMol/L	
5/13/2015	64.14	2.64	8/5/2015	59.57	2.45	
8/5/2015	59.27	2.44	8/12/15	59.75	2.46	
8/12/15	59.71	2.46				
AVE	61.04	2.51	AVE			
STD		0.11	STD			
RSD		4.41	RSD			

Sodium WK947					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
2/14/2015	37.06878	1.61	2/14/2015	36.69145	1.60
2/19/2015	37.28964	1.62	2/19/2015	36.05962	1.57
2/21/2015	37.58996	1.63	2/21/2015	36.2506	1.58
AVE	37.32	1.62	AVE	36.33	1.58
STD		0.01	STD		0.01
RSD		0.70	RSD		0.89

Sodium WK947 Spring 2014 Summer 2014 Fall 2014 ppm mMol/L test date ppm mMol/L ppm mMol/L test date test date 2/14/2015 40.422 1.76 2/14/2015 38.33799 2/14/2015 38.31145 1.67 1.67 2/19/2015 39.19788 1.70 2/19/2015 37.93486 2/19/2015 37.02761 1.61 1.65 2/21/2015 38.71087 2/21/2015 37.71262 36.81062 1.68 1.64 2/21/2015 1.60 AVE 39.44 1.71 AVE 38.00 AVE 37.38 1.65 1.63 STD 0.04 STD 0.01 STD 0.04 RSD 2.24 RSD 0.83 RSD 2.17

Sodium					
WK947					
	Spring 201	5		Summer 20	015
test date	ppm	mMol/L	test date	ppm	mMol/L
4/13/15	38.42	1.67	8/12/15	38.25	1.66
8/12/15	37.01	1.61			
		0.00			
AVE	37.71	1.64	AVE		
STD		0.04	STD		
RSD		2.65	RSD		

Potassium WK947					
	Summer 2013			Fall 2013	
test date	ppm	mMol/L	test date	ppm	mMol/L
	0.75	0.02	11/19/2013	2.78	0.06
10/29/2014	4.15	0.11	10/29/2014	4.01	0.10
11/22/2014	4.33	0.11	11/22/2014	4.08	0.10
AVE	3.08	0.08	AVE	3.62	0.09
STD		0.05	STD		0.03
RSD		65.50	RSD		28.20

Potassium WK947								
Spring 2014			Summer 2014			Fall 2014		
test date	ppm	mMol/L	test date	ppm	mMol/L	test date	ppm	mMol/L
5/16/2014	2.43	0.06	9/25/2014	2.87	0.07	10/29/2014	2.04	0.05
10/29/2014	4.41	0.11	10/29/2014	4.19	0.11	10/29/2014	4.52	0.12
11/22/2014	4.20	0.11	11/22/2014	4.23	0.11	11/22/2014	4.12	0.11
AVE	3.68	0.09	AVE	3.76	0.10	AVE	3.56	0.09
STD		0.03	STD		0.02	STD		0.03
RSD		29.49	RSD		20.51	RSD		37.43

Potassium WK947						
	Spring 201	5	Summer 2015			
test date	ppm	mMol/L	test date	ppm	mMol/L	
4/13/15	1.09	0.03	8/12/15	1.09	0.03	
8/12/15	1.07	0.03				
AVE			AVE			
STD			STD			
RSD			RSD			

5. Stable Isotope Results

Data

Run November 11, 2014 Well Suite					
Sample ID	Date of Sample	d(18_16)	d(18–16) Standard Deviation	d(D_H)	d(D_H)_Standard Deviation
GB bf190-1		-16.905	0.181	-124.477	0.442
GB bf190-2	0. 1.11	-16.954	0.192	-124.644	0.41
GB bf190-3	Standard I	-17.008	0.208	-124.868	0.444
GB bf190-Avg.		-16.9557	-	-124.663	-
DNR BH423-1		-10.904	0.186	-76.286	0.38
DNR BH423-2	G(1 12	-10.886	0.18	-76.294	0.354
DNR BH423-3	Standard 2	-10.873	0.192	-75.967	0.447
DNR BH423-Avg.		-10.8877	-	-76.1823	-
Kona Water-1		0.247	0.197	1.558	0.433
Kona Water-2	0, 1, 1,2	0.252	0.184	1.589	0.454
Kona Water-3	Standard 3	0.261	0.203	1.741	0.409
Kona Water-Avg.		0.253333	-	1.629333	-
EM275-1	Fall 2014	-8.963	0.198	-60.189	0.433
EM275-2		-8.904	0.197	-60.023	0.477
EM275-3		-8.898	0.207	-59.98	0.408
EM275-Avg.		-8.92167	0.200667	-60.064	0.439333
SV631-1	E 11 201 4	-8.891	0.197	-59.171	0.409
SV631-2	Fall 2014	-8.887	0.171	-59.258	0.389
SV631-3		-8.801	0.194	-58.941	0.404
SV631-Avg.		-8.85967	0.187333	-59.1233	0.400667
IZ385-1		-8.704	0.201	-58.544	0.364
IZ385-2	Eall 2014	-8.661	0.191	-58.575	0.34
IZ385-3	Fall 2014	-8.728	0.183	-58.662	0.392
IZ385-Avg.		-8.69767	0.191667	-58.5937	0.365333
IZ386-1		0.195	-8.758	0.371	-58.934
IZ386-2	Eall 2014	0.183	-8.767	0.371	-58.814
IZ386-3	Fall 2014	0.195	-8.782	0.436	-59.035
IZ386-Avg.	1	0.191	-8.769	0.392667	-58.9277
B.B.Spring-1		-7.555	0.195	-52.006	0.424
B.B.Spring-2	Eall 2014	-7.521	0.176	-52.039	0.431
B.B.Spring-3	Fall 2014	-7.41	0.194	-51.939	0.452
B.B.Spring-Avg.	1	-7.49533	0.188333	-51.9947	0.435667
RL255-1	Fall 2014	0.205	-8.882	0.419	-58.994

RL255-2		0.183	-8.929	0.437	-59.324
RL255-3		0.214	-8.831	0.447	-59.25
RL255-Avg.		0.200667	-8.88067	0.434333	-59.1893
RL256-1		-8.645	0.2	-57.669	0.417
RL256-2	T H A A A A	-8.643	0.182	-57.516	0.372
RL256-3	Fall 2014	-8.534	0.203	-57.508	0.435
RL256-Avg.		-8.60733	0.195	-57.5643	0.408
WK947-1		-8.682	0.175	-57.757	0.403
WK947-2	E 11 201 4	-8.751	0.205	-57.979	0.413
WK947-3	Fall 2014	-8.602	0.191	-57.624	0.372
WK947-Avg.		-8.67833	0.190333	-57.7867	0.396
Fox0-1		-8.682	0.218	-57.757	0.456
Fox0-2	E 11 201 4	-8.751	0.207	-57.979	0.369
Fox0-3	Fall 2014	-8.602	0.187	-57.624	0.399
Fox0-Avg.		-8.67833	0.204	-57.7867	0.408
Fox1-1	Fall 2014	-8.2	0.191	-57.984	0.414
Fox1-2		-8.187	0.194	-57.993	0.4
Fox1-3		-8.063	0.211	-57.61	0.465
Fox1-Avg.		-8.15	0.198667	-57.8623	0.426333
Fox2-1		-8.486	0.198	-59.535	0.401
Fox2-2	E 11 201 4	-8.531	0.181	-59.978	0.363
Fox2-3	Fall 2014	-8.565	0.207	-59.983	0.441
Fox2-Avg.		-8.52733	0.195333	-59.832	0.401667
Fox3-1		-7.846	0.188	-55.831	0.364
Fox3-2	E 11 201 4	-7.922	0.217	-56.054	0.469
Fox3-3	Fall 2014	-7.911	0.172	-56.005	0.409
Fox3-Avg.		-7.893	0.192333	-55.9633	0.414
Sus.Crk-1		-7.846	0.188	-55.831	0.364
Sus.Crk-2	Fall 2014	-7.922	0.217	-56.054	0.469
Sus.Crk-3		-7.911	0.172	-56.005	0.409
Sus.Crk-Avg.		-7.893	0.192333	-55.9633	0.414
R.River-1		-8.509	0.194	-61.352	0.419
R.River-2	Fall 2014	-8.575	0.227	-61.426	0.402
R.River-3		-8.62	0.192	-61.545	0.413
R.River-Avg.		-8.568	0.204333	-61.441	0.411333
B.WWTP-1		-9.517	0.211	-64.707	0.379
B.WWTP-2	Fall 2014	-9.557	0.189	-65.025	0.419
B.WWTP-3		-9.489	0.219	-64.811	0.418
B.WWTP-Avg.		-9.521	0.206333	-64.8477	0.405333
S.WWTP-1		-9.572	0.185	-67.074	0.391
S.WWTP-2	Fall 2014	-9.531	0.211	-66.857	0.377
S.WWTP-3]	-9.502	0.192	-66.556	0.39
S.WWTP-Avg.	1	-9.535	0.196	-66.829	0.386
W.WWTP-1		-10.425	0.192	-73.041	0.384
W.WWTP-2	Fall 2014	-10.393	0.183	-73.119	0.419
W.WWTP-3]	-10.41	0.193	-73.142	0.412
W.WWTP-Avg.		-10.4093	0.189333	-73.1007	0.405
EM275-1	Summer 2014	-8.888	0.194	-59.408	0.431

EM275-2		-8.881	0.183	-59.149	0.45
EM275-3		-8.904	0.198	-59.4	0.392
EM275-Avg.		-8.891	0.191667	-59.319	0.424333
SV631-1		-9.022	0.171	-60.244	0.356
SV631-2	Summer 2014	-8.969	0.216	-60.019	0.372
SV631-3		-9.072	0.208	-60.465	0.414
SV631-Avg.		-9.021	0.198333	-60.2427	0.380667
IZ385-1		-8.892	0.199	-58.998	0.428
IZ385-2	Summer 2014	-8.861	0.198	-58.811	0.42
IZ385-3		-8.865	0.196	-58.705	0.446
IZ385-Avg.		-8.87267	0.197667	-58.838	0.431333
IZ386-1		-8.85	0.188	-59.137	0.393
IZ386-2	Summer 2014	-8.894	0.184	-59.317	0.378
IZ386-3		-8.891	0.203	-59.298	0.404
IZ386-Avg.		-8.87833	0.191667	-59.2507	0.391667

December 9, 2014 Well Suite						
Sample ID	Date of Sample	d(18_16)	d(18_16)_Standard Deviation	d(D_H)	d(D_H)_Standard Deviation	
GB bf190-1		-16.943	0.197	-124.41	0.395	
GB bf190-2	Standard 1	-17.022	0.21	-124.609	0.474	
GB bf190-3		-16.948	0.19	-124.259	0.413	
GB bf190-Avg.		-16.971	-	-124.426	-	
DNR BH423-1		-10.864	0.191	-76.203	0.424	
DNR BH423-2	Standard 2	-10.876	0.19	-76.114	0.417	
DNR BH423-3		-10.892	0.185	-76.041	0.386	
DNR BH423-Avg.		-10.8773	-	-76.1193	-	
Kona Water-1		0.235	0.172	1.56	0.451	
Kona Water-2	Standard 3	0.301	0.191	2.056	0.448	
Kona Water-3		0.316	0.191	2.322	0.405	
Kona Water-Avg.		0.284	-	1.979333	-	
RL255-1		-8.758	0.186	-58.831	0.432	
RL255-2	Summer 2014	-8.781	0.194	-58.88	0.443	
RL255-3		-8.705	0.201	-58.704	0.409	
RL255-Avg.		-8.748	0.193667	-58.805	0.428	
RL256-1		-8.572	0.183	-57.399	0.409	
RL256-2	Summer 2014	-8.675	0.181	-57.645	0.41	
RL256-3		-8.692	0.191	-57.802	0.414	
RL256-Avg.		-8.64633	0.185	-57.6153	0.411	
WK947-1		-8.529	0.22	-57.507	0.38	
WK947-2	Summer 2014	-8.63	0.21	-57.76	0.42	
WK947-3]	-8.704	0.191	-57.917	0.386	
WK947-Avg.]	-8.621	0.207	-57.728	0.395333	
Fox0-1	Summer 2014	-7.706	0.232	-54.144	0.413	

Fox0-2		-7.641	0.187	-53.978	0.406
Fox0-3		-7.646	0.204	-53.864	0.406
Fox0-Avg.		-7.66433	0.207667	-53.9953	0.408333
Fox1-1		-8.018	0.177	-56.324	0.386
Fox1-2	Summer 2014	-7.967	0.202	-56.066	0.424
Fox1-3		-8.031	0.209	-56.489	0.457
Fox1-Avg.		-8.00533	0.196	-56.293	0.422333
Fox2-1		-8.393	0.188	-58.683	0.412
Fox2-2	Summer 2014	-8.287	0.189	-58.503	0.377
Fox2-3		-8.302	0.183	-58.299	0.404
Fox2-Avg.		-8.32733	0.186667	-58.495	0.397667
Fox3-1		-8.585	0.201	-62.169	0.414
Fox3-2	Summer 2014	-8.653	0.218	-62.302	0.408
Fox3-3		-8.641	0.184	-62.299	0.418
Fox3-Avg.		-8.62633	0.201	-62.2567	0.413333
Sus.Crk-1	Summar 2014	-7.887	0.192	-54.643	0.424
Sus.Crk-2	Summer 2014	-7.929	0.221	-54.682	0.41
Sus.Crk-3		-7.959	0.201	-55.042	0.407
Sus.Crk-Avg.		-7.925	0.204667	-54.789	0.413667
R.River-1		-7.698	0.181	-56.531	0.418
R.River-2	Summer 2014	-7.574	0.188	-56.25	0.393
R.River-3		-7.779	0.193	-56.618	0.396
R.River-Avg.		-7.68367	0.187333	-56.4663	0.402333
B.WWTP-1		-9.192	0.189	-63.565	0.406
B.WWTP-2	Summer 2014	-9.121	0.189	-63.416	0.406
B.WWTP-3		-9.21	0.198	-63.583	0.413
B.WWTP-Avg.		-9.17433	0.192	-63.5213	0.408333
S.WWTP-1		-9.372	0.192	-64.759	0.409
S.WWTP-2	Summer 2014	-9.281	0.195	-64.341	0.402
S.WWTP-3		-9.295	0.181	-64.395	0.368
S.WWTP-Avg.		-9.316	0.189333	-64.4983	0.393
W.WWTP-1		-10.296	0.225	-71.412	0.39
W.WWTP-2	Summer 2014	-10.37	0.207	-71.918	0.476
W.WWTP-3		-10.313	0.209	-71.716	0.438
W.WWTP-Avg.		-10.3263	0.213667	-71.682	0.434667
EM275-1		-8.794	0.197	-58.702	0.414
EM275-2	Spring 2014	-8.86	0.193	-58.789	0.404
EM275-3		-8.777	0.209	-58.676	0.392
EM275-Avg.		-8.81033	0.199667	-58.7223	0.403333
IZ386-1		-8.757	0.17	-59.392	0.432
IZ386-2	Spring 2014	-8.693	0.19	-59.088	0.515
IZ386-3		-8.682	0.183	-59.086	0.456
IZ386-Avg.		-8.71067	0.181	-59.1887	0.467667
B.B.Spring-1		-7.025	0.191	-50.056	0.452
B.B.Spring-2	Spring 2014	-7.041	0.188	-50.27	0.445
B.B.Spring-3		-7.063	0.188	-50.329	0.462
B.B.Spring-Avg.		-7.043	0.189	-50.2183	0.453
RL255-1		-8.971	0.182	-59.628	0.512
------------	-------------	----------	----------	----------	----------
RL255-2	Spring 2014	-8.573	0.194	-58.326	0.423
RL255-3	1 2	-5.276	0.178	-49.755	0.437
RL255-Avg.		-7.60667	0.184667	-55.903	0.457333
RL256-1		-8.266	0.214	-57.005	0.419
RL256-2	Spring 2014	-8.372	0.184	-57.098	0.4
RL256-3		-8.367	0.201	-57.152	0.451
RL256-Avg.		-8.335	0.199667	-57.085	0.423333
WK947-1		-8.256	0.201	-56.793	0.416
WK947-2	Spring 2014	-8.596	0.195	-57.461	0.416
WK947-3		-8.51	0.211	-57.309	0.434
WK947-Avg.		-8.454	0.202333	-57.1877	0.422
Fox1-1		-7.397	0.194	-53.195	0.363
Fox1-2	Spring 2014	-7.432	0.181	-53.23	0.386
Fox1-3		-7.418	0.207	-53.328	0.397
Fox1-Avg.		-7.41567	0.194	-53.251	0.382
Fox2-1	Spring 2014	-7.804	0.196	-55.302	0.428
Fox2-2		-7.8	0.194	-55.122	0.425
Fox2-3		-7.787	0.193	-55.114	0.496
Fox2-Avg.		-7.797	0.194333	-55.1793	0.449667
Fox3-1		-7.135	0.188	-52.633	0.399
Fox3-2	Spring 2014	-7.624	0.187	-53.878	0.385
Fox3-3		-7.642	0.196	-53.825	0.392
Fox3-Avg.		-7.467	0.190333	-53.4453	0.392

December 11, 2014 Isco Automatic Sampler									
Sample ID	Date Sampled	d(18_16)	d(18_16)_Standard Deviation	d(D_H)	d(D_H)_Standard Deviation				
GB bf190-1		-16.743	0.192	-123.496	0.471				
GB bf190-2	Standard 1	-16.783	0.193	-123.449	0.515				
GB bf190-3		-16.828	0.194	-123.531	0.498				
GB bf190-Avg.		-16.7847	-	-123.492	-				
DNR BH423-1		-10.78	0.197	-75.758	0.398				
DNR BH423-2	Standard 2	-10.764	0.186	-75.756	0.518				
DNR BH423-3		-10.68	0.184	-75.245	0.472				
DNR BH423-Avg.		-10.7413	-	-75.5863	-				
Kona Water-1		0.372	0.216	1.87	0.49				
Kona Water-2	Standard 3	0.362	0.18	2.064	0.458				
Kona Water-3		0.348	0.211	2.176	0.463				
Kona Water-Avg.		0.360667	-	2.036667	-				
I2-1	4/2/14	-9.083	0.183	-62.764	0.406				
I2-2	4/3/14	-9.138	0.185	-63.057	0.468				
I2-3		-9.131	0.187	-63.041	0.473				

I2-Avg.		-9.11733	0.185	-62.954	0.449
I10-1		-8.543	0.183	-59.615	0.493
I10-2	4/3/14	-8.506	0.209	-59.733	0.474
I10-3		-8.541	0.19	-59.609	0.457
I10-Avg.		-8.53	0.194	-59.6523	0.474667
I22-1	4/18/14	-8.392	0.201	-56.727	0.453
I22-2		-8.367	0.205	-56.492	0.486
I22-3	Composite Flow	-8.362	0.2	-56.519	0.442
I22-Avg.		-8.37367	0.202	-56.5793	0.460333
I23-1	4/18/15	-8.268	0.203	-56.417	0.429
I23-2		-8.311	0.196	-56.376	0.44
I23-3	Composite Flow	-8.283	0.184	-56.447	0.448
I23-Avg.		-8.28733	0.194333	-56.4133	0.439
I24-1	4/18/14	-8.346	0.178	-56.51	0.457
I24-2		-8.369	0.178	-56.413	0.452
I24-3	Composite Flow	-8.368	0.183	-56.591	0.406
I24-Avg.		-8.361	0.179667	-56.5047	0.438333
I5-1		-7.797	0.201	-52.8	0.437
I5-2	4/20/14	-7.758	0.206	-52.572	0.427
I5-3	4/30/14	-7.804	0.188	-52.874	0.425
I5-Avg.		-7.78633	0.198333	-52.7487	0.429667
I12-1		-8.484	0.201	-58.161	0.402
I12-2		-8.484	0.189	-58.298	0.454
I12-3	5/7/14	-8.489	0.189	-58.107	0.517
I12-Avg.		-8.48567	0.193	-58.1887	0.457667
I17-1		-7.914	0.169	-54.966	0.438
I17-2	5/12/14	-7.955	0.189	-55.102	0.371
I17-3	Composite Flow	-7.915	0.182	-54.963	0.462
I17-Avg.	-	-7.928	0.18	-55.0103	0.423667
I21-1	5/12/14 Composite Flow	-7.243	0.2	-47.711	0.431
I21-2		-7.243	0.212	-47.68	0.425
I21-3		-7.199	0.186	-47.773	0.387
I21-Avg.		-7.22833	0.199333	-47.7213	0.414333
I21-1		-7.111	0.182	-48.929	0.412
I21-2	5/19/14	-7.191	0.192	-48.958	0.427
I21-3	Composite Flow	-7.164	0.192	-48.955	0.409
I21-Avg.		-7.15533	0.188667	-48.9473	0.416
I22-1		-7.225	0.19	-49.322	0.415
I22-2	5/19/14	-7.206	0.202	-49.516	0.413
I22-3	Composite Flow	-7.23	0.194	-49.357	0.492
I22-Avg.		-7.22033	0.195333	-49.3983	0.44
I2-1		-7.377	0.184	-50.999	0.38
I2-2	5/01/14	-7.381	0.187	-51.086	0.44
I2-3	3/21/14	-7.349	0.191	-50.951	0.461
I2-Avg.		-7.369	0.187333	-51.012	0.427
I8-1	5/27/14	-7.456	0.208	-50.698	0.464
I8-2	3/2//14	-7.464	0.19	-50.858	0.395

				1	
I8-3		-7.496	0.206	-50.73	0.411
I8-Avg.		-7.472	0.201333	-50.762	0.423333
I23-1		-7.483	0.204	-49.412	0.434
I23-2	6/1/14	-7.449	0.188	-49.347	0.421
I23-3	Composite Flow	-7.45	0.162	-49.293	0.436
I23-Avg.		-7.46067	0.184667	-49.3507	0.430333
I24-1		-7.193	0.197	-47.724	0.414
I24-2	6/1/14-6/2/14	-7.206	0.181	-47.5	0.423
I24-3	Composite Flow	-7.217	0.21	-47.532	0.382
I24-Avg.		-7.20533	0.196	-47.5853	0.406333
I15-1		-6.982	0.187	-46.85	0.424
I15-2	6/2/14	-7.052	0.173	-47.125	0.426
I15-3	0/3/14	-7.031	0.174	-47.2	0.439
I15-Avg.		-7.02167	0.178	-47.0583	0.429667
I6-1		-7.908	0.205	-55.13	0.394
I6-2	C/10/14	-7.971	0.19	-55.294	0.371
I6-3	0/10/14	-7.933	0.193	-55.094	0.425
I6-Avg.		-7.93733	0.196	-55.1727	0.396667
I13-1		-8.107	0.195	-56.224	0.411
I13-2	C/17/14	-8.105	0.199	-56.215	0.404
I13-3	0/1//14	-8.141	0.208	-56.386	0.449
I13-Avg.		-8.11767	0.200667	-56.275	0.421333
I21-1		-8.048	0.205	-55.237	0.461
I21-2	6/17/14-6/18/14	-8.011	0.19	-55.06	0.486
I21-3	Composite Flow	-7.98	0.177	-54.92	0.454
I21-Avg.		-8.013	0.190667	-55.0723	0.467
Fox0-1		-10.674	0.188	-75.947	0.406
Fox0-2	3/22/2014	-10.665	0.185	-75.977	0.469
Fox0-3	Hand Collection	-10.723	0.206	-76.176	0.466
Fox0-Avg.		-10.6873	0.193	-76.0333	0.447
Fox1-1		-9.725	0.207	-69.932	0.448
Fox1-2	3/22/2014 Hand Collection	-9.735	0.204	-69.937	0.441
Fox1-3		-9.718	0.165	-69.906	0.415
Fox1-Avg.		-9.726	0.192	-69.925	0.434667
Fox2-1		-9.685	0.178	-69.663	0.381
Fox2-2	3/22/2014	-9.707	0.195	-69.888	0.43
Fox2-3	Hand Collection	-9.702	0.194	-69.941	0.505
Fox2-Avg.	<u> </u>	-9.698	0.189	-69.8307	0.438667

November 12, 2014 Isco Automatic Sampler							
Sample ID	Date Sampled	d(18_16)	d(18_16)_Standard Deviation	d(D_H)	d(D_H)_Standard Deviation		
GB bf190-1		-16.784	0.203	-122.972	0.474		
GB bf190-2	Standard 1	-16.769	0.19	-122.963	0.503		
GB bf190-3		-16.805	0.198	-123.083	0.505		
GB bf190-Avg.		-16.786	-	-123.006	-		
DNR BH423-1		-10.747	0.195	-75.571	0.436		
DNR BH423-2	Standard 2	-10.74	0.188	-75.315	0.422		
DNR BH423-3		-10.775	0.19	-75.354	0.436		
DNR BH423-Avg.		-10.754	-	-75.4133	-		
Kona Water-1		0.355	0.152	1.975	0.496		
Kona Water-2	Standard 3	0.391	0.177	2.385	0.449		
Kona Water-3		0.391	0.179	2.319	0.473		
Kona Water-Avg.		0.379	-	2.226333	-		
I21-1		-6.539	0.189	-45.944	0.416		
I21-2	7/1/14-7/4/14	-6.557	0.173	-46.076	0.453		
I21-3	Composite Flow	-6.531	0.184	-46.112	0.434		
I21-Avg.	-	-6.54233	0.182	-46.044	0.434333		
I22-1	7/4/14	-6.868	0.211	-47.691	0.419		
I22-2		-6.862	0.181	-47.729	0.463		
I22-3	Composite Flow	-6.852	0.196	-47.76	0.474		
I22-Avg.	1	-6.86067	0.196	-47.7267	0.452		
I23-1	7/4/14	-6.854	0.201	-47.61	0.416		
I23-2		-6.887	0.199	-48.033	0.467		
I23-3	Composite Flow	-6.872	0.195	-47.906	0.433		
I23-Avg.	1	-6.871	0.198333	-47.8497	0.438667		
I24-1	7/4/14	-6.917	0.191	-48.251	0.415		
I24-2		-6.909	0.181	-48.457	0.525		
I24-3	Composite Flow	-6.897	0.196	-48.233	0.462		
I24-Avg.		-6.90767	0.189333	-48.3137	0.467333		
I3-1		-6.879	0.199	-47.944	0.398		
I3-2	7/7/14	-6.855	0.191	-47.882	0.406		
I3-3		-6.893	0.188	-47.896	0.432		
I3-Avg.		-6.87567	0.192667	-47.9073	0.412		
I7-1	7/12/14	-7.682	0.196	-53.656	0.414		
I7-2		-7.689	0.17	-53.926	0.514		
I7-3		-7.693	0.189	-53.775	0.515		
I7-Avg.		-7.688	0.185	-53.7857	0.481		
I10-1		-7.744	0.199	-53.441	0.463		
I10-2	7/16/14	-7.714	0.216	-53.318	0.474		
I10-3		-7.785	0.199	-53.645	0.444		
I10-Avg.		-7.74767	0.204667	-53.468	0.460333		
I11-1		-8.465	0.195	-58.741	0.448		
I11-2	7/20/14	-8.423	0.172	-58.634	0.443		
I11-3	1/29/14	-8.425	0.174	-58.689	0.43		
I11-Avg.		-8.43767	0.180333	-58.688	0.440333		

I16-1		-8.968	0.18	-63.441	0.473
I16-2	8/3/14	-9.039	0.197	-63.626	0.47
I16-3		-8.957	0.194	-63.627	0.486
I16-Avg.		-8.988	0.190333	-63.5647	0.476333
I2-1		-7.929	0.189	-54.794	0.495
I2-2	0/5/14	-7.921	0.208	-54.959	0.472
I2-3	9/5/14	-7.926	0.223	-54.995	0.531
I2-Avg.		-7.92533	0.206667	-54.916	0.499333
I5-1		-8.084	0.187	-56.375	0.409
I5-2	9/8/14	-8.053	0.191	-56.255	0.443
I5-3		-8.063	0.185	-56.383	0.405
I5-Avg.		-8.06667	0.187667	-56.3377	0.419
I14-1		-8.134	0.211	-57.168	0.461
I14-2	9/17/14	-8.224	0.206	-57.754	0.419
I14-3		-8.15	0.193	-57.272	0.476
I14-Avg.		-8.16933	0.203333	-57.398	0.452
I19-1		-8.249	0.192	-58.013	0.462
I19-2	9/22/14	-8.17	0.186	-57.617	0.502
I19-3		-8.245	0.187	-57.803	0.454
I19-Avg.		-8.22133	0.188333	-57.811	0.472667
I9-1		-8.293	0.188	-58.589	0.482
I9-2	10/2/14	-8.296	0.21	-58.542	0.477
I9-3	10/2/14	-8.358	0.208	-59.153	0.473
I9-Avg.		-8.31567	0.202	-58.7613	0.477333
I15-1		-8.438	0.192	-58.687	0.471
I15-2	10/8/14	-8.45	0.183	-58.726	0.448
I15-3		-8.436	0.195	-58.659	0.518
I15-Avg.		-8.44133	0.19	-58.6907	0.479
I19-1		-8.83	0.202	-61.385	0.432
I19-2	10/12/14	-8.773	0.196	-61.191	0.433
I19-3		-8.845	0.202	-61.526	0.513
I19-Avg.		-8.816	0.2	-61.3673	0.459333
FoxIsco-1	2/22/2014	-8.704	0.197	-60.57	0.439
FoxIsco-2	3/22/2014 Hand Sampled	-8.732	0.198	-60.84	0.551
FoxIsco-3	Hand Sampled	-8.612	0.171	-60.422	0.588
FoxIsco-Avg.		-8.68267	0.188667	-60.6107	0.526
Fox3-1	2 22 14	-9.742	0.189	-69.416	0.463
Fox3-2	3-22-14	-9.755	0.174	-69.58	0.403
Fox3-3	Hand Sampled	-9.784	0.167	-69.885	0.455
Fox3-Avg.		-9.76033	0.176667	-69.627	0.440333

		December 12	e, 2014 Isco Automatic Sampler		
Sample ID	Date Sampled	d(18_16)	d(18_16)_Standard Deviation	d(D_H)	d(D_H)_Standard Deviation
GB bf190-1		-16.78	0.188	-122.875	0.531
GB bf190-2	Standard 1	-16.828	0.206	-123.063	0.507
GB bf190-3		-16.78	0.175	-122.998	0.565
GB bf190-Avg.		-16.796	_	-122.979	_
DNR BH423-1		-10.798	0.195	-75.699	0.394
DNR BH423-2	Standard 2	-10.829	0.202	-75.607	0.451
DNR BH423-3		-10.803	0.189	-75.416	0.403
DNR BH423-Avg.		-10.81	-	-75.574	-
Kona Water-1		0.381	0.19	1.731	0.519
Kona Water-2	Standard 3	0.352	0.185	1.824	0.505
Kona Water-3		0.346	0.192	1.823	0.455
Kona Water-Avg.		0.359667	-	1.792667	-
RL255-1		-8.849	0.191	-58.61	0.459
RL255-2	10/20/2012	-8.897	0.199	-58.803	0.564
RL255-3	10/30/2013	-8.897	0.18	-59.005	0.525
RL255-Avg.		-8.881	0.19	-58.806	0.516
RL256-1		-8.721	0.201	-58.055	0.465
RL256-2	10/20/2012	-8.74	0.184	-58.064	0.497
RL256-3	10/30/2013	-8.737	0.194	-58.16	0.546
RL256-Avg.		-8.73267	0.193	-58.093	0.502667
WK947-1		-8.696	0.206	-57.684	0.442
WK947-2	10/20/2012	-8.666	0.189	-57.602	0.424
WK947-3	10/30/2013	-8.723	0.205	-57.942	0.391
WK947-Avg.		-8.695	0.2	-57.7427	0.419
Fox0-1		-8.093	0.194	-55.061	0.435
Fox0-2	10/20/2012	-8.08	0.208	-54.7	0.449
Fox0-3	10/20/2013	-8.098	0.198	-54.792	0.391
Fox0-Avg.		-8.09033	0.2	-54.851	0.425
Fox1-1		-6.626	0.18	-47.663	0.373
Fox1-2	10/20/2012	-6.572	0.18	-47.404	0.428
Fox1-3	10/20/2013	-6.619	0.191	-47.44	0.425
Fox1-Avg.		-6.60567	0.183667	-47.5023	0.408667
Fox2-1		-7.22	0.188	-51.521	0.458
Fox2-2	10/20/2012	-7.264	0.189	-51.511	0.468
Fox2-3	10/20/2013	-7.258	0.194	-51.385	0.481
Fox2-Avg.		-7.24733	0.190333	-51.4723	0.469
Fox3-1	10/24/2013	-7.457	0.192	-52.014	0.431
Fox3-2		-7.435	0.192	-52.021	0.478
Fox3-3		-7.419	0.166	-52.174	0.524
Fox3-Avg.		-7.437	0.183333	-52.0697	0.477667
WWWTP-1		-10.102	0.212	-69.989	0.446
WWWTP-2	O-t-h, 2012	-10.117	0.195	-69.959	0.454
WWWTP-3	October 2013	-10.134	0.174	-70.035	0.501
WWWTP-Avg.		-10.1177	0.193667	-69.9943	0.467

SWWTP-1		-9.403	0.189	-64.591	0.436
SWWTP-2	October 2013	-9.405	0.184	-64.589	0.503
SWWTP-3		-9.442	0.191	-64.778	0.437
SWWTP-Avg.		-9.41667	0.188	-64.6527	0.458667
BWWTP-1		-9.246	0.187	-63.376	0.485
BWWTP-2	October2013	-9.285	0.17	-63.609	0.484
BWWTP-3		-9.214	0.195	-63.222	0.43
BWWTP-Avg.		-9.24833	0.184	-63.4023	0.466333
RL255-1		-8.785	0.204	-58.683	0.474
RL255-2	T 1 2012	-8.793	0.205	-58.659	0.491
RL255-3	July 2013	-8.834	0.198	-58.773	0.437
RL255-Avg.		-8.804	0.202333	-58.705	0.467333
RL256-1		-8.745	0.169	-58.085	0.487
RL256-2	July 2013	-8.761	0.185	-57.903	0.471
RL256-3		-8.744	0.198	-57.89	0.416
RL256-Avg.		-8.75	0.184	-57.9593	0.458
WK947-1		-8.815	0.191	-58.505	0.483
WK947-2	July 2013	-8.804	0.196	-58.475	0.524
WK947-3		-8.83	0.215	-58.476	0.478
WK947-Avg.		-8.81633	0.200667	-58.4853	0.495
Fox0-1		-7.562	0.206	-51.819	0.5
Fox0-2	July 2013	-7.501	0.198	-51.668	0.43
Fox0-3		-7.526	0.198	-51.596	0.425
Fox0-Avg.		-7.52967	0.200667	-51.6943	0.451667
Fox1-1		-7.932	0.196	-54.688	0.448
Fox1-2	July 2013	-7.937	0.186	-54.718	0.468
Fox1-3	-	-7.992	0.214	-54.865	0.476
Fox1-Avg.		-7.95367	0.198667	-54.757	0.464
Fox2-1		-6.739	0.203	-46.812	0.433
Fox2-2	July 2013	-6.744	0.192	-46.82	0.495
Fox2-3		-6.679	0.213	-46.49	0.5
Fox2-Avg.		-6.72067	0.202667	-46.7073	0.476
Fox3-1		-6.776	0.182	-46.701	0.481
Fox3-2	July 2013	-6.701	0.171	-46.522	0.497
Fox3-3		-6.649	0.195	-46.449	0.486
Fox3-Avg.		-6.70867	0.182667	-46.5573	0.488
WWWTP-1		-9.696	0.184	-66.318	0.445
WWWTP-2	July 2013	-9.74	0.214	-66.391	0.434
WWWTP-3		-9.711	0.193	-66.476	0.47
WWWTP-Avg.		-9.71567	0.197	-66.395	0.449667
SWWTP-1	July 2013	-8.941	0.192	-60.023	0.448
SWWTP-2		-8.936	0.205	-60.114	0.461
SWWTP-3		-8.96	0.21	-60.067	0.411
SWWTP-Avg.		-8.94567	0.202333	-60.068	0.44
BWWTP-1		-8.106	0.187	-53.696	0.416
BWWTP-2	July 2013	-8.073	0.203	-53.57	0.444
BWWTP-3		-8.077	0.197	-53.525	0.467
BWWTP-Avg.		-8.08533	0.195667	-53.597	0.442333

March 3,2015 Isco Automatic Sampler							
Sample ID	Date Sampled	d(18_16)	d(18_16)_Standard Deviation	d(D_H)	d(D_H)_Standard Deviation		
BF190 water-1		-16.694	0.183	-123.843	0.431		
BF190 water-2	Standard 1	-16.723	0.187	-124.063	0.41		
BF190 water-3		-16.699	0.19	-124.025	0.416		
BF190 water-Avg.		-16.7053	0.186667	-123.977	0.419		
BH423 water-1		-10.953	0.169	-77.157	0.522		
BH423 water-2	Standard 2	-10.902	0.194	-76.816	0.448		
BH423 water-3		-10.893	0.195	-76.762	0.429		
BH423 water-Avg.		-10.916	0.186	-76.9117	0.466333		
KONA water-1		0.321	0.168	1.024	0.456		
KONA water-2	Standard 3	0.277	0.181	1.25	0.434		
KONA water-3		0.327	0.188	1.559	0.486		
KONA water-Avg.		0.308333	0.179	1.277667	0.458667		
I13-1		-8.031	0.177	-56.104	0.42		
I13-2	4/4/14	-8.02	0.194	-56.144	0.487		
I13-3	4/4/14	-8.039	0.176	-56.207	0.401		
I13-Avg.		-8.03	0.182333	-56.1517	0.436		
I1-1		-9.136	0.183	-63.641	0.435		
I1-2	4/0/14	-9.144	0.202	-63.629	0.417		
I1-3	4/2/14	-9.175	0.197	-63.746	0.357		
I1-Avg.		-9.15167	0.194	-63.672	0.403		
I2-1		-9.165	0.195	-63.804	0.441		
I2-2	4/2/14	-9.236	0.199	-63.956	0.428		
I2-3	4/3/14	-9.222	0.16	-63.941	0.418		
I2-Avg.		-9.20767	0.184667	-63.9003	0.429		
I3-1		-8.932	0.206	-62.302	0.424		
I3-2	4/4/14	-8.888	0.194	-62.332	0.467		
I3-3	4/4/14	-8.892	0.177	-62.316	0.429		
I3-Avg.		-8.904	0.192333	-62.3167	0.44		
I5-1		-8.705	0.19	-61.526	0.416		
I5-2	1/6/11	-8.654	0.201	-61.402	0.425		
I5-3	4/0/14	-8.638	0.196	-61.278	0.41		
I5-Avg.		-8.66567	0.195667	-61.402	0.417		
I6-1	4/7/14	-8.381	0.168	-59.845	0.351		
I6-2		-8.386	0.186	-59.826	0.384		
I6-3		-8.362	0.185	-59.777	0.368		
I6-Avg.		-8.37633	0.179667	-59.816	0.367667		
I7-1		-8.544	0.188	-60.19	0.364		
I7-2	1/8/11	-8.551	0.206	-60.222	0.35		
I7-3	4/0/14	-8.654	0.196	-60.789	0.511		
I7-Avg.		-8.583	0.196667	-60.4003	0.408333		

I8-1		-8.735	0.178	-60.925	0.408
I8-2	4/0/14	-8.672	0.203	-60.727	0.421
I8-3	4/9/14	-8.725	0.212	-60.891	0.391
I8-Avg.		-8.71067	0.197667	-60.8477	0.406667
I9-1		-8.517	0.189	-59.93	0.411
I9-2	4/10/14	-8.586	0.19	-60.399	0.368
I9-3	4/10/14	-8.602	0.181	-60.163	0.415
I9-Avg.		-8.56833	0.186667	-60.164	0.398
I11-1		-8.271	0.193	-58.619	0.416
I11-2	4/12/14	-8.416	0.193	-59.303	0.414
I11-3	4/12/14	-8.349	0.213	-58.706	0.342
I11-Avg.		-8.34533	0.199667	-58.876	0.390667
I12-1		-8.197	0.178	-57.685	0.391
I12-2	4/12/14	-8.213	0.191	-57.921	0.469
I12-3	4/15/14	-8.205	0.191	-57.965	0.427
I12-Avg.		-8.205	0.186667	-57.857	0.429
I14-1		-8.24	0.196	-56.575	0.39
I14-2	4/20/14	-8.277	0.18	-56.615	0.433
I14-3	4/20/14	-8.146	0.187	-56.342	0.386
I14-Avg.		-8.221	0.187667	-56.5107	0.403
I15-1		-8.189	0.192	-56.244	0.422
I15-2	4/01/14	-8.084	0.178	-55.897	0.355
I15-3	4/21/14	-8.135	0.192	-56.004	0.389
I15-Avg.	-	-8.136	0.187333	-56.0483	0.388667
I16-1		-8.041	0.199	-55.693	0.432
I16-2	4/22/14	-8.162	0.182	-56.087	0.398
I16-3	4/22/14	-8.18	0.194	-56.135	0.381
I16-Avg.		-8.12767	0.191667	-55.9717	0.403667
I17-1		-8.092	0.19	-56.393	0.578
I17-2	4/22/14	-8.078	0.208	-56.372	0.628
I17-3	4/23/14	-7.934	0.196	-55.337	0.381
I17-Avg.		-8.03467	0.198	-56.034	0.529
I18-1		-7.868	0.171	-55.068	0.411
I18-2	4/24/14	-7.887	0.205	-55.269	0.443
I18-3	4/24/14	-7.891	0.194	-55.359	0.397
I18-Avg.		-7.882	0.19	-55.232	0.417
I19-1		-7.8	0.178	-54.897	0.38
I19-2	4/25/14	-7.76	0.193	-54.636	0.437
I19-3	4/25/14	-7.745	0.188	-54.676	0.464
I19-Avg.	1	-7.76833	0.186333	-54.7363	0.427
FA-1	3/9/15	-9.199	0.19	-66.256	0.418
FA-2		-9.219	0.198	-66.372	0.446
FA-3]	-9.23	0.194	-66.531	0.435
FA-Avg.		-9.216	0.194	-66.3863	0.433
FA-1		-10.13	0.187	-73.469	0.4
FA-2	2/16/15	-10.174	0.195	-73.828	0.359
FA-3	3/10/13	-10.167	0.198	-73.846	0.433
FA-Avg.		-10.157	0.193333	-73.7143	0.397333

I1-1		-8.292	0.202	-59.314	0.359
I1-2	12/5/14	-8.314	0.199	-59.27	0.402
I1-3		-8.262	0.191	-59.102	0.369
I1-Avg.		-8.28933	0.197333	-59.2287	0.376667
I2-1		-8.131	0.175	-58.523	0.302
I2-2	12/6/14	-8.092	0.198	-58.44	0.382
I2-3	12/0/14	-8.132	0.206	-58.438	0.347
I2-Avg.		-8.11833	0.193	-58.467	0.343667
I3-1		-8.124	0.191	-58.187	0.389
I3-2	12/7/14	-8.121	0.202	-58.277	0.397
I3-3	12/ // 14	-8.123	0.179	-58.22	0.341
I3-Avg.		-8.12267	0.190667	-58.228	0.375667
I4-1		-8.211	0.202	-58.16	0.381
I4-2	12/9/14	-8.214	0.226	-58.249	0.37
I4-3	12/0/14	-8.248	0.196	-58.378	0.351
I4-Avg.		-8.22433	0.208	-58.2623	0.367333
I5-1		-8.389	0.193	-59.626	0.359
I5-2	12/0/14	-8.299	0.18	-59.502	0.393
I5-3	12/9/14	-8.39	0.195	-59.708	0.416
I5-Avg.		-8.35933	0.189333	-59.612	0.389333
BF190 water-1		-16.591	0.201	-122.236	0.4
BF190 water-2	Standard 1	-16.649	0.185	-122.621	0.444
BF190 water-3		-16.629	0.19	-122.661	0.519
BF190 water-Avg.		-16.623	0.192	-122.506	0.454333
BH423 water-1		-10.787	0.192	-75.534	0.37
BH423 water-2	Standard 2	-10.846	0.2	-75.729	0.39
BH423 water-3		-10.784	0.182	-75.529	0.374
BH423 water-Avg.		-10.8057	0.191333	-75.5973	0.378
KONA water-1		0.345	0.185	2.198	0.406
KONA water-2	Standard 3	0.469	0.195	3.12	0.376
KONA water-3]	0.397	0.186	2.647	0.424
KONA water-Avg.		0.403667	0.188667	2.655	0.402

April 3, 2015 Isco Automatic Sampler								
		•	-					
Sample ID	Date Sampled	d(18_16)	d(18_16)_Standard Deviation	d(D_H)	d(D_H)_Standard Deviation			
BF190 water-1		-16.559	0.2	-122.702	0.457			
BF190 water-2	Standard 1	-16.585	0.202	-122.884	0.407			
BF190 water-3		-16.554	0.189	-122.727	0.454			
BF190 water-Avg.		-16.566	0.197	-122.771	0.439333			
BH423 water-1		-10.846	0.202	-76.37	0.426			
BH423 water-2	Standard 2	-10.809	0.192	-76.061	0.497			
BH423 water-3		-10.84	0.188	-76.174	0.472			
BH423 water-Avg.		-10.8317	0.194	-76.2017	0.465			

KONA water-1		0.336	0.19	1.636	0.457
KONA water-2	Standard 3	0.371	0.195	1.814	0.448
KONA water-3		0.374	0.179	2.078	0.466
KONA water-Avg.		0.360333	0.188	1.842667	0.457
I6-1		-8.35	0.187	-59.008	0.403
I6-2	10/10/14	-8.326	0.186	-59.038	0.429
I6-3	12/10/14	-8.361	0.206	-59.177	0.407
I6-Avg.		-8.34567	0.193	-59.0743	0.413
I8-1		-8.424	0.213	-59.853	0.413
I8-2	10/10/14	-8.438	0.197	-59.898	0.431
I8-3	12/12/14	-8.421	0.193	-59.891	0.439
I8-Avg.		-8.42767	0.201	-59.8807	0.427667
I9-1		-8.377	0.196	-59.302	0.452
I9-2	10/10/11	-8.408	0.183	-59.408	0.437
I9-3	12/13/14	-8.39	0.186	-59.28	0.41
I9-Avg.		-8.39167	0.188333	-59.33	0.433
I10-1		-8.371	0.2	-58.955	0.419
I10-2		-8.354	0.183	-58.986	0.459
I10-3	12/14/14	-8.339	0.191	-58.922	0.454
I10-Avg.		-8.35467	0.191333	-58,9543	0.444
III -1		-8.341	0.188	-58.671	0.418
III -2		-8.307	0.178	-58.606	0.463
III-3	12/15/14	-8 323	0.186	-58 568	0.409
III-Avg		-8.32367	0.184	-58.615	0.43
I12-1		-8.078	0.18	-57.645	0.414
I12-2		-8.06	0.172	-57.69	0.429
I12-2 I12-3	12/16/14	-8.057	0.197	-57 616	0.427
112-5 112-Avg		-8.065	0.183	-57 6503	0.423333
I12 III.		-8 476	0.194	-58 591	0.419
II3-2		-8 457	0.199	-58 59	0.434
I13-3	12/17/14	-8 466	0.215	-58 616	0.489
113-Avg		-8 46633	0.202667	-58 599	0 447333
F0-1		-8 597	0.191	-58 411	0 379
F0-2	3/7/14	-8.56	0.173	-58.445	0.453
F0-3		-8.596	0.206	-58.367	0.412
F0-Avg.		-8.58433	0.19	-58.4077	0.414667
F1-1		-8,489	0.195	-59.672	0.451
F1-2	3/7/14	-8.464	0.186	-59.671	0.472
F1-3	0///1	-8.449	0.183	-59.679	0.44
F1-Avg.		-8.46733	0.188	-59.674	0.454333
F2-1		-8.552	0.198	-60.396	0.409
F2-2	3/7/14	-8.512	0.185	-60.224	0.41
F2-3	0,,,,2,,	-8.591	0.192	-60.538	0.46
F2-Avg.		-8.55167	0.191667	-60.386	0.426333
FA-1		-8.627	0.192	-60.773	0.445
FA-2	3/7/14	-8.56	0.185	-60.622	0.444
FA-3		-8.656	0.185	-60.879	0.451

TA A		0 (1422	0 107222	(0.750	0.446667
FA-Avg.		-8.61433	0.18/333	-60./58	0.446667
F0-1		-8.338	0.193	-57.832	0.467
F0-2	3/9/14	-8.323	0.204	-57.998	0.422
F0-3	5/5/11	-8.294	0.197	-57.805	0.399
F0-Avg.		-8.31833	0.198	-57.8783	0.429333
F1-1		-8.57	0.192	-61.039	0.447
F1-2	2/0/14	-8.546	0.194	-60.98	0.414
F1-3	3/9/14	-8.564	0.206	-60.78	0.468
F1-Avg		-8.56	0.183	-60,933	0.437
F2-1		-8.744	0.19	-61.665	0.447
F2_2	_	-8 754	0.2	-61.605	0.456
F2 3	3/9/14	8 764	0.101	61 572	0.446667
F2-3	_	-0.704	0.191	-01.572	0.440007
FZ-AVg.		-6.734	0.1072222	-01.014	0.437
FA-1		-8.50	0.19/333	-60.933	0.443
FA-2	3/9/14	-8.6//	0.19	-61.6//	0.461
FA-3		-8.692	0.187	-61.745	0.465
FA-Avg.		-8.666	0.188	-61.624	0.421
F0-1		-11.064	0.212	-79.044	0.473
F0-2	2/12/14	-10.979	0.193	-78.814	0.474
F0-3	5/12/14	-11.015	0.179	-78.793	0.414
F0-Avg.		-11.0193	0.194667	-78.8837	0.453667
F1-1		-10.75	0.17	-79.846	0.434
F1-2		-10.762	0.188	-79.699	0.44
F1-3	3/12/14	-10.736	0.187	-79 788	0.379
F1-Avg		-10 7493	0 181667	-79 7777	0.417667
F2_1		-10/136	0.182	-77 274	0.452
F2 2		10.430	0.102	77.300	0.412
F2-2	3/12/14	-10.447	0.102	-77.309	0.413
F2-3		-10.479	0.192	-77.393	0.437
F2-Avg.		-10.454	0.185333	-77.326	0.434
FA-1		-10.578	0.201	-78.895	0.438
FA-2	3/12/14	-10.611	0.182	-78.903	0.485
FA-3		-10.595	0.19	-78.94	0.431
FA-Avg.		-10.5947	0.191	-78.9127	0.451333
F0-1	3/15/14	-12.133	0.187	-89.596	0.405
F0-2		-12.135	0.196	-89.498	0.446
F0-3		-12.141	0.187	-89.54	0.411
F0-Avg.		-12.1363	0.19	-89.5447	0.420667
F1-1		-10.5	0.176	-77.558	0.458
F1-2		-10.507	0.188	-77.7	0.434
F1-3	3/15/14	-10.456	0.182	-77 553	0.44
F1-Avg		-10/1877	0.102	-77 6037	0.444
F2 1		0 324	0.102	72 211	0.444
F2-1	_	-9.324	0.194	-72.211	0.443
F2-2	3/15/14	-9.296	0.2	-72.123	0.432
F2-3	_	-9.52	0.197	-/2.114	0.452
F2-Avg.		-9.31333	0.197	-72.1493	0.442333
FA-1	3/15/14	-10.435	0.195	-76.692	0.426
FA-2	5/15/17	-10.455	0.2	-76.663	0.421

FA-3		-10.472	0.208	-76.712	0.427
FA-Avg.		-10.454	0.201	-76.689	0.424667
F3-1		-10.756	0.188	-78.046	0.484
F3-2	2/15/14	-10.734	0.202	-78.112	0.49
F3-3	5/15/14	-10.768	0.183	-78.286	0.484
F3-Avg.		-10.7527	0.191	-78.148	0.486
BF190 water-1		-16.538	0.186	-122.186	0.46
BF190 water-2	Standard 1	-16.588	0.166	-122.354	0.439
BF190 water-3		-16.553	0.184	-122.353	0.428
BF190 water-Avg.		-16.5597	0.178667	-122.298	0.442333
BH423 water-1		-10.801	0.19	-75.864	0.424
BH423 water-2	Standard 2	-10.797	0.186	-75.545	0.445
BH423 water-3		-10.851	0.184	-75.874	0.418
BH423 water-Avg.		-10.8163	0.186667	-75.761	0.429
KONA water-1		0.354	0.183	1.928	0.513
KONA water-2	Standard 3	0.391	0.186	2.284	0.433
KONA water-3		0.452	0.196	2.6	0.494
KONA water-Avg.		0.399	0.188333	2.270667	0.48

April 4, 2015 Isco Automatic Sampler					
Sample ID	Date Sampled	d(18_16)	d(18_16)_Standard Deviation	d(D_H)	d(D_H)_Standard Deviation
BF190 water-1		-16.513	0.176	-123.057	0.419
BF190 water-2	Standard 1	-16.497	0.191	-122.868	0.423
BF190 water-3		-16.371	0.204	-122.236	0.374
BF190 water-Avg.		-16.4603	0.190333	-122.72	0.405333
BH423 water-1		-10.706	0.18	-76.193	0.388
BH423 water-2	Standard 2	-10.706	0.21	-76.009	0.411
BH423 water-3		-10.755	0.193	-75.905	0.411
BH423 water-Avg.		-10.7223	0.194333	-76.0357	0.403333
KONA water-1	Standard 3	0.434	0.196	1.758	0.502
KONA water-2		0.401	0.199	1.847	0.442
KONA water-3		0.423	0.206	2.101	0.428
KONA water-Avg.		0.419333	0.200333	1.902	0.457333
SV631-1		-8.889	0.199	-59.986	0.391
SV631-2	4/7/15	-8.966	0.186	-60.125	0.364
SV631-3	4/ // 13	-8.984	0.19	-60.597	0.401
SV631-Avg.		-8.94633	0.191667	-60.236	0.385333
B.B.Spring-1		-7.375	0.18	-51.86	0.399
B.B.Spring-2	4/7/15	-7.366	0.177	-51.791	0.415
B.B.Spring-3	4/ //15	-7.297	0.184	-51.428	0.354
B.B.Spring-Avg.		-7.346	0.180333	-51.693	0.389333
WK947-1	4/2/15	-8.447	0.196	-57.333	0.425

		0.48-	0.101		0.44.7
WK947-2		-8.425	0.191	-57.389	0.415
WK947-3		-8.392	0.205	-57.245	0.41
WK947-Avg.		-8.42133	0.197333	-57.3223	0.416667
RL255-1		-8.801	0.188	-59.109	0.439
RL255-2	4/2/15	-8.734	0.174	-58.819	0.365
RL255-3	4/2/13	-8.792	0.178	-58.984	0.403
RL255-Avg.		-8.77567	0.18	-58.9707	0.402333
RL256-1		-8.676	0.197	-58.025	0.431
RL256-2	4/2/15	-8.64	0.184	-58.109	0.406
RL256-3	4/2/15	-8.645	0.18	-58.021	0.397
RL256-Avg.		-8.65367	0.187	-58.0517	0.411333
Fox0-1		-8.327	0.197	-57.766	0.398
Fox0-2	410.11 -	-8.351	0.189	-57.757	0.445
Fox0-3	4/8/15	-8.325	0.191	-57.869	0.407
Fox0-Avg.		-8.33433	0.192333	-57.7973	0.416667
Fox1-1	4/8/15	-8.153	0.179	-56.529	0.385
Fox1-2		-8.112	0.18	-56.251	0.401
Fox1-3		-8.134	0.175	-56.278	0.414
Fox1-Avg.		-8.133	0.178	-56.3527	0.4
Fox2-1		-8.435	0.199	-58.143	0.401
Fox2-2	1/9/15	-8.381	0.219	-58.03	0.383
Fox2-3	4/8/13	-8.465	0.193	-58.43	0.41
Fox2-Avg.		-8.427	0.203667	-58.201	0.398
FoxA-1		-5.965	0.184	-35.608	0.424
FoxA-2	4/0/15	-5.942	0.188	-35.374	0.449
FoxA-3	4/9/15	-5.967	0.174	-35.649	0.425
FoxA-Avg.		-5.958	0.182	-35.5437	0.432667
Fox3-1		-8.243	0.184	-58.442	0.398
Fox3-2		-8.213	0.168	-58.228	0.414
Fox3-3	4/7/15	-8.244	0.207	-58.367	0.445
Fox3-Avg.		-8.23333	0.186333	-58.3457	0.419
RootR-1	4/7/15	-8.646	0.186	-61.052	0.396
RootR-2		-8.573	0.182	-60.969	0.381
RootR-3		-8.633	0.215	-60.978	0.393
RootR-Avg.		-8.61733	0.194333	-60.9997	0.39
UnderwoodCreek-1		-7.017	0.164	-43.693	0.398
UnderwoodCreek-2	4/8/15	-6.959	0.206	-43.399	0.384
UnderwoodCreek-3		-6.91	0.209	-43.316	0.418
UnderwoodCreek-Avg		-6.962	0.193	-43,4693	0.4
SussexCreek-1		-8.236	0.206	-54.599	0.404
SussexCreek-2	4.00.00	-8.23	0.206	-54,666	0.38
SussexCreek-3	4/8/15	-8.247	0.206	-54.719	0.379
SussexCreek-Avg		-8.23767	0.206	-54.6613	0.387667
Wauk WWTP-1	4/2/15	-10.258	0.182	-72.917	0.402
	., _, 10	10.200	0.102		002

Wauk.WWTP-2		-10.36	0.198	-73.368	0.396
Wauk.WWTP-3		-10.301	0.177	-73.034	0.341
Wauk.WWTP-Avg.		-10.3063	0.185667	-73.1063	0.379667
SussexWWTP-1		-9.569	0.199	-67.734	0.382
SussexWWTP-2	4/9/15	-9.606	0.192	-67.826	0.397
SussexWWTP-3	4/8/13	-9.637	0.2	-67.876	0.4
SussexWWTP-Avg.		-9.604	0.197	-67.812	0.393
BF190 water-1		-16.396	0.203	-121.457	0.427
BF190 water-2	Standard 1	-16.402	0.204	-121.609	0.473
BF190 water-3		-16.45	0.191	-122.017	0.371
BF190 water-Avg.		-16.416	0.199333	-121.694	0.423667
BH423 water-1		-10.647	0.199	-75.33	0.386
BH423 water-2	Standard 2	-10.68	0.167	-75.239	0.446
BH423 water-3		-10.672	0.196	-75.085	0.409
BH423 water-Avg.		-10.6663	0.187333	-75.218	0.413667
KONA water-1		0.455	0.191	2.286	0.431
KONA water-2	Standard 3	0.435	0.209	2.454	0.391
KONA water-3		0.464	0.182	2.471	0.451
KONA water-Avg.		0.451333	0.194	2.403667	0.424333

6. Stable Isotope Calibration

Known Standards Values					
O D					
Green Bay	-17.5	-125			
Pewaukee	-10.9	-75.8			
Kona	-0.1	0			

HIDS2065_IscoWater_20141120_203114

Time					d	(18_16)Mea	1
			(GB			
2014/	/11/20 15	:28:08	b	f190		-16.955	ĵ
2014/	/11/20 16	:31:15	Γ	ONR BH423		-10.887	ľ
2014/	/11/20 17	:34:25	k	Kona Water		0.25333	5
		δΟ				δ	5
н	IDS2065_Is	oWater_20	141120_20	03114	HIDS	2065_IsoWate	ŗ
-20	-15	-10	-5	0	-150	-100	
				1			
			932x + 0.2	2387		y = 1.0	1
		R²	= 0.9991	-19		R ²	
					С	orrection	
HIDS2	065 IsoW	Vater 201	41122 1	63143		0 271	6

Time

2014/11/22 11:28:41 2014/11/22 12:31:53 2014/11/22 13:35:06

Correction					
0.2387	1.3119				
d(18_16)Mean	d(D_H)Mean				
-16.9557	-124.663				
-10.8877	-76.1823				
0.253333	1.629333				
δD S2065_IsoWater_20141120_203114					
-100	-50 0				
y = 1.011 R ² = 0	7x + 1.3119 0.99999 -198	3			
Correction 0.2716	1.6054				
d(18_16)Mean	d(D_H)Mean				

-16.971	-124.426
-10.8773	-76.1193
0.284	1.979333

Appendix C: PHREEQC Modeling data

1. Inverse Modeling RL255	Input Files
SOLUTION 1 Pr	lstine Groundwater(April 16, 2010- July 23,2015)
temp	10
Hq	7.09
pe	8.4
redov	ne
unite	mmol /kgw
donaity	1
Alkalipity	т т. 6. 4 2
Co	2 41
Ca	2.41
	2.34
K	0.07
Mg	
Na	1.61
S	1.10
-water	1 # kg
SOLUTION 2 in:	filling Isco& Fox2(2014 April-Dec., pH from Fox 2 4/07-10/14)
temp	10
рH	7.86
ре	8.4
redox	pe
units	mmol/kgw
density	1
Alkalinit	<i>i</i> 4.59
Ca	2.03
Cl	7.43
K	0.12
Ма	1.58
Na	6.22
S	0.63
-water	1 # kg
SOLUTION 3 Fin	nal RL255 Mav2014-Julv2015
temp	10
рН	6 96
p=	8 4
redov	ne
unite	mmol /kgw
donsity	1
Alkalipity	_ , 7 05
AIKAIIIIIU Co	
Ca	5.24
	0.00
K	0.09
Mg	2.28
Na	4.35
S .	0.73
-water	T # KG
EXCHANGE 1	
X 42	
-equilibra	ate with solution 3
-pitzer_e	change_gammas true
INVERSE_MODEL:	ING 1 Finding Mixing Ratio of Fox River & Aquifer Water
-solution:	s 1 2 3
-uncertain	nty 0.1 0.1 0.1
-phases	
Calcit	ce

Dolomite					
CO2 (g)					
-balances					
Cl	0.03	0.03	0.03		
K	0.2	0.2	0.2		
S	0.1	0.1	0.1		
Na	0.1	0.1	0.1		
-range	100	00			
-tolerance	le-	-10			
-mineral water	trı	Je			
SELECTED OUTPUT 1					
-file		C:\Users\I	LFS\Deskt	op\Worki	ng RBI
Project\PHREEQC\Wor	king F	iles			
(615) \Inverse\ (11.1	3.15)RI	L255RealInv	verseMode	l.xslx.s	sel
-totals		Alkalinity	/ Ca Cl	K Mg	Na
-molalities		CaCO3 CO2	2 MgCO3		
-activities		NaX			
-saturation_ind	lices	Calcite I	Dolomite	CO2 (g)	
-gases		CO2 (g)			
-inverse_modeli	ng	true			

END

RL256

SOLUTION 1 Pristine Groundwater (April 16, 2010- July 23, 2015) temp 10 7.09 рΗ 8.4 ре redox ре units mmol/kgw density 1 Alkalinity 6.42 2.41 Ca Cl 2.34 0.07 Κ 2.27 Mg 1.61 Na 1.10 S 1 # kg -water SOLUTION 2 infilling Isco& Fox2(2014 April-Dec., pH from Fox 2 4/07-10/14) temp 10 7.86 рΗ 8.4 pe redox pe mmol/kgw units density 1 Alkalinity 4.59 2.03 Ca 7.43 Cl 0.12 Κ 1.58 Mg 6.22 Na S 0.63 -water 1 # kg SOLUTION 3 Final RL256 April2010-June2012 temp 10

```
6.88
   рΗ
             8.4
   pe
   redox
             pe
            mmol/kgw
   units
   density 1
   Alkalinity 6.66
   Ca
             2.63
             4.09
   Cl
             0.06
   Κ
   Mq
             2.20
   Na
             2.89
   S
             0.93
   -water
            1 # kg
EXCHANGE 1
   Х
           30
    -equilibrate with solution 3
    -pitzer exchange gammas false
INVERSE MODELING 1 Finding Mixing Ratio of Fox River & Aquifer Water
   -solutions
                 1 2
                                     3
                  0.1
                            0.1
                                     0.1
   -uncertainty
   -phases
       Calcite
       Dolomite
       CO2 (q)
   -balances
       Cl
                   0.03
                            0.03
                                    0.03
       Κ
                   0.2
                            0.2
                                     0.2
                   0.2
                            0.1
                                     0.2
       S
                   0.1
                            0.1
                                     0.1
       Na
                      1000
   -range
   -tolerance
                      1e-10
   -mineral_water
                      true
SELECTED OUTPUT 1
   -file
                         C:\Users\LFS\Desktop\Working RBI
Project\PHREEQC\Working Files (615)\RL256InverseModel(Nov.13.15).sel
                         Alkalinity Ca Cl K Mg Na
CaCO3 CO2 MgCO3
   -totals
   -molalities
   -saturation indices
                         Calcite Dolomite CO2(q)
   -gases
                         CO2 (g)
    -inverse modeling
                         true
END
```

Appendix D:

16s rRNA Squencing

Not enough RNA was present in the RL255 and WK947 samples for amplification. Future sampling for this method at these sites should be run with 5L per filter. The sequence counts for Brookfield WWTP were an order of magnitude lower than all of the other samples, though the community patterns were on par with the other WWTP samples. Fox 2 was had the most different microbial community of the samples taken, with the least amount of community diversity, which may be a fluke in sampling or filtering technique. All three of the WWTPs were not treating with chlorine or UV light at the time of sampling, so it was not due to die off from WWTP treatment, but may be due to the interaction between the river and WWTP microbial communities. There were no patterns indicating flow from the WWTPs into the river and then into the wells.

Folential facers and counts from ros KINA sequencing												
Taxa	RL256		Fox0		Fox2		B-WWTP		S-WWTP		W-WWTP	
	Count	%	Count	%	Count	%	Count	%	Count	%	Count	%
Rhodo-	10	0.01	768	0.76	556	0.68	19	0.3	215	0.23	362	0.44
bacter												
Rickett-	101	0.3	604	0.6	395	0.48	145	2.31	2,	3.07	4,	5.65
siales									880		661	
Sphingom-	109	0.14	1,	1.53	553	0.68	34	0.54	2,	2.4	1,	2.29
onadaceae			549						253		890	
Rhodo-	334	261	7,	0.74	4,	5.04	106	1.69	1,	1.12	780	0.95
ferax			553	8	125				051			
Hydrogen-	19,	25.02	313	0.31	43	0.05	7	0.11	55	0.06	42	0.05
ophilaceae	535											
Neisseri-	33	0.04	674	0.67	344	0.42	179	2.85	3762	4.01	4,	5.19
aceae											280	
Rhodo-	8,	10.75	2,	2.37	443	0.54	261	4.16	4,	5.18	1,	1.24
cyclales	398		394						868		021	
Zooglea	12	0.02	3	0.00	28	0.03	164	2.62	47	0.05	142	0.17
				2								
Bacteri-	105	0.13	3,	0.33	68	0.08	12	0.19	755	0.8	1,	1.37
ovoraceae			370								127	
Legionella	280	0.36	665	0.65	229	0.28	51	0.8	15,	16.3	5,	6.09
									370	4	037	
Acineto-	9	0.01	7,	7.77	52	0.06	269	4.29	917	0.98	816	0.99
bacter			843									
Planct-	171	0.22	158	0.16	56	0.07	22	0.35	682	0.73	1,	1.29
omyces											067	

Potential tracers and counts from 16s RNA sequenci

Fox 0 Percent of Orders Present in Samples from 16s rRNA Sequencing

Brookfield WWTP

Percent of Orders Present in Samples from 16s rRNA Sequencing

Alteromonadales 3% Rickettslales 1% Rhizobiales order_N Sphinaor 5% ~ Legionellales 17% Boellovibrion Alphapro...bacteria Dell. 2 more rope Bacteroidales No Flavobacteriales ·ena 100 er Bac. dia Sp... Flav...eria 2% Sphingobacteriales Bacteroidetes Proteobacte Bacteria Genter 3% ā Firmicutes Clostridia Xanthomonadales 3% 3% Clostridiales root Actin...teria Actinobacteria Thiotrichales 4% 8% Actinomycetales CY.10 Pseudomonadales 2% eles Belaproteobacteria 14950 Plan ODT class. plan. P_ol₀ Neisseriales NA class. S o'der Na 2 more Venucon °% 18 Randon Acetales Photodolais 3% **Alictobia** order NA 8% Burkholderiales 9 rder_NA - 20 more

Sussex WWTP Percent of Orders Present in Samples from 16s rRNA Sequencing

Waukesha WWTP Percent of Orders Present in Samples from 16s rRNA Sequencing

RL256 Percent of Orders Present in Samples from 16s rRNA Sequencing