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ABSTRACT 

NEUROBEHAVIORAL AND GENE EXPRESSION EFFECTS OF EARLY 
EMBRYONIC METHYLMERCURY EXPOSSURE IN YELLOW PERCH (Perca 

flavescens) AND ZEBRAFISH (Danio rerio) LARVAE 

by 

Francisco X. Mora 

 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Michael J. Carvan III 

 

Methylmercury (MeHg) is a pervasive and persistent neurotoxic 

environmental pollutant known to affect the behavior of fish, birds and mammals. 

The present study addresses the neurobehavioral and gene expression effects of 

MeHg in yellow perch (Perca flavescens) and zebrafish (Danio rerio) embryos. 

The rationale for this study originated from an interest to understand the 

behavioral and molecular phenotypes of environmental MeHg exposure in the 

yellow perch, an ecologically and economically relevant species of the North 

American Great Lakes region. Both MeHg and the yellow perch coexist in a 

common ecosystem: the North American Great Lakes. However, the effects of 

this organism-contaminant interaction are poorly understood. The zebrafish was 

utilized here as a surrogate model for yellow perch, due to its ease of rearing, 

whole sequenced genome and its status as an NIH endorsed model organism. 

The objectives of this study were to understand the effects of MeHg on behaviors 

that are critical for survival both in yellow perch and zebrafish. Among the 

behavioral paradigms tested, this study addressed fundamental behaviors for the 

survival of young larval fish, namely swimming and prey capture. Furthermore, 
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this study screened for gene expression alterations in the same cohorts of fish for 

which behavioral analysis was performed; this was done to gain insight into the 

gene pathways involved in MeHg-induced neurotoxicity, as well as to expand the 

knowledge about biomarkers of MeHg exposure in the yellow perch. Here, we 

have uncovered important differences and similarities between the effects of 

MeHg exposure in yellow perch and zebrafish larvae, both in terms of behavioral 

and molecular responses to MeHg. The findings of this study suggest that 

environmentally relevant MeHg exposure can adversely affect the behavior of 

yellow perch larvae and impair fundamental survival skills. Furthermore, this 

study determined that although it would be challenging to relate behavioral 

endpoints between yellow perch and zebrafish, molecular responses between 

these two species could be more conserved. 

 

Key words: yellow perch, zebrafish, methylmercury, behavior, molecular 

biomarkers. 
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CHAPTER 1: INTRODUCTION TO THE DISSERTATION 

 

Rationale and relevance of the study 

Mercury (Hg) is a widespread and pervasive heavy metal found in a 

variety of forms in freshwater and marine ecosystems around the world (Devlin, 

2006). Naturally occurring processes such as volcanic eruption can release 

inorganic mercury into the atmosphere, but it was the onset of the industrial 

revolution that introduced new sources of anthropogenic-derived mercury 

emissions such as fuel combustion, waste incinerators, mining, and 

manufacturing. Among all of the sources of mercury, the most numerous and 

largest emitters are coal-fired power plants (Monson, 2009a).  

Mercury enters the aquatic ecosystems primarily through atmospheric 

deposition (Risch et al., 2012a), after which anaerobic bacteria convert the 

elemental form of mercury into organic molecules (Alvarez et al., 2006a). MeHg 

is reported to be the most abundant form of environmental mercury and accounts 

for up to 99% of the total mercury fraction in analyzed tissues (Klaper et al., 

2006). Fish begin experiencing adverse effects from MeHg exposure at a tissue 

concentration of 0.2ppm in wet weight (ww) (Wiener et al., 2012). Reported 

neurological effects of methylmercury in fish include abnormal startle response, 

and diminished visual perception (Smith et al., 2010), reduction of serotonin 

levels in the brain, inhibition of normal development of the hypothalamic 

serotonergic system, effects on locomotor activity and impairment of prey capture 

abilities (Alvarez et al., 2006a). Moreover, levels of ≥0.3ppm ww in fish muscle 
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tissue result in consumption advisories; these advisories, in turn, have been 

reported in almost every body of water in the North American Great Lakes basin 

(Wiener et al., 2012). 

The yellow perch was selected as a study organism not only due to its 

autochthony in an ecosystem historically affected by MeHg, but also due to its 

economical relevance. The yellow perch is valued for its meat and it is popular 

among anglers (Provencher and Bishop, 1997), however this has been 

antagonized by a drastic population decline of this species observed over the last 

25 years (Figure 1.1; Wilberg et al., 2005). Before 1997 this species represented 

85% of the recreational catch by number; more recently it has been estimated 

that the stock of adult yellow perch suffered a decline of 92% in the state of 

Wisconsin (Wilberg et al., 2005). 

There are many acknowledged causes for the population decline of the 

yellow perch, namely overfishing (Marsden and Robillard, 2004), introduction of 

invasive species (Shroyer and McComish, 2000), and to alterations in the trophic 

chain leading to a scarcity of plankton for the young yellow perch larvae to feed 

upon (Dr. John Janssen, University of Wisconsin – Milwaukee, personal 

communication). Nevertheless, the role of environmental pollutants in the 

population dynamics of the yellow is seldom addressed or understood. 

Exposure concentrations of MeHg that are substantially lower than those 

that cause mortality can cause observable effects in behavior (Scheuhammer et 

al., 2007a). These subtle sub-lethal behavioral effects can have enormous 

implications for the survival of whole populations (Alvarez et al., 2006a). It is not 
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unlikely that the presence of neurotoxic environmental contaminants such as 

MeHg could be exacerbating the problem of poor yellow perch recruitment1 by 

subtlety affecting the survival skills of the young larvae (e.g. capturing prey and 

avoiding predators). Moreover, by coupling behavior analysis with gene 

expression quantification it is possible to elucidate phenotypically-anchored 

molecular biomarkers of MeHg exposure, which can give insights into the 

putative molecular mechanisms of MeHg-induced behavior alteration. 

The zebrafish was integrated into this study to perform behavioral and 

gene expression analysis in parallel with the yellow perch. Despite the enormous 

ecological and economical relevance of the yellow perch, exclusively utilizing this 

organism to carry out behavioral and gene expression analysis poses important 

methodological challenges. Yellow perch only spawn seasonally, it takes roughly 

2-3 years for this species to reach sexual maturity, the rearing of larvae in 

controlled conditions can be extremely complicated and the species lacks a fully 

sequenced genome. In light of these challenges, the zebrafish was chosen as a 

surrogate model for yellow perch; this NIH endorsed model organism is easy to 

rear in a laboratory setting, it reaches sexual maturity in as little as three months 

and it has a sequenced genome (Hill et al., 2005; Spitsbergen and Kent, 2003). 

These assets of the zebrafish model facilitated the development of techniques 

                                                           

 

 

1 Recruitment: The number of fish surviving to enter the fishery or to some life history stage (e.g. 
larval fish becoming juveniles, or juveniles becoming adults) 
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and a knowledge base of MeHg-induced behavioral and gene expression 

alteration, which could be then be used to carry out assays in yellow perch. 

Understanding how MeHg affects gene expression and in turn how this 

differential gene expression affects behavior is a fundamental question that the 

present study poses to address. The knowledge produced by this study has 

immediate applicability, as it is crucial for the creation of mathematical models of 

wild perch population dynamics for environmental risk assessment of mercury 

emissions (Alvarez et al., 2006a). Additionally, the methodological framework of 

this study can be modified and expanded to assess the effects of various other 

contaminants in other species of interest. 

Overview of the dissertation 

The present document is organized into six chapters; all together they 

progressively explain key findings of this study, building up towards a final 

summary chapter. The content of each chapter is summarized below. 

Chapter 1: Introduction to fundamental concepts; this chapter explains the 

rationale and relevance of the study and it concludes with the present overview 

of the dissertation. 

Chapter 2: Preliminary experiments on the effects of sublethal MeHg 

exposure in the locomotor activity of zebrafish embryos and eleutheroembryos 

and discussion of putative anatomical mechanisms of MeHg-induced behavior 

alteration. This chapter also showcases an adaptation of a technique for early 

behavioral screening of zebrafish embryos [the Nicotine-evoked Locomotor 
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Response (NLR)] (Petzold et al., 2009; Thomas et al., 2009) and it introduces 

many of the methodological approaches for the quantification of behavior in fish 

embryos, which are revisited in further chapters. 

Chapter 3: Analysis of MeHg-induced behavioral alteration in zebrafish 

eleutheroembryos, utilizing notions that were acquired from the experiments 

described in chapter 2. This chapter expands the repertoire of behavioral 

endpoints to include more complex paradigms such as the visual-motor response 

and prey capture. The study described in this chapter takes full advantage of the 

short generation times2 in zebrafish and carries out an environmentally realistic 

whole-life-cycle dietary MeHg exposure. 

Chapter 4: Elucidation of the effects of MeHg in yellow perch embryos, 

employing the methodological framework established in chapters 2 and 3.  

Chapter 5: Analysis of the effects of MeHg in the gene expression of the 

siblings of the zebrafish and yellow perch utilized for behavioral analysis in the 

studies described in chapters 3 and 4. This chapter describes the high-

throughput analysis of MeHg-induced gene expression alteration in zebrafish 

embryos, and then continues by describing the quantification of the expression of 

genes in yellow perch that were found to be dysregulated in the zebrafish model. 

Conclusive remarks are made about common gene pathways affected my MeHg 

exposure in both species of fish. 

                                                           

 

 

2 Generation time: The average time between two consecutive generations in the lineages of a 
population. In zebrafish, generation times can be as short as 3 months. 
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Chapter 6: Summary of the dissertation. Here, the data described in each 

individual study is compiled into final conclusive remarks. 
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Figures 

 

 

Figure 1.1: Decline of the yellow perch populations (Wilberg et al., 2005) 

  

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

1
9
8

6

1
9
8

7

1
9
8

8

1
9
8

9

1
9
9

0

1
9
9

1

1
9
9

2

1
9
9

3

1
9
9

4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

N
u

m
b

e
r 

o
f 

y
e
ll

o
w

 p
e
rc

h

Year



8 

 

 

Figure 1.1: Decline of the yellow perch populations (Wilberg et al., 2005) 

 

The populations of yellow perch have declined since the early 1990’s. Wilberg 

and collaborators (2005) have estimated a decline of 92% of the catch of yellow 

perch in the state of Wisconsin. 
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CHAPTER 2: THE NICOTINE-EVOKED LOCOMOTOR RESPONSE: A 
PARADIGM FOR BEHAVIORAL NEUROTOXICITY SCREENING IN 
ZEBRAFISH (Danio rerio) EMBRYOS AND ELEUTHEROEMBRYOS 

Abstract 

The objective of this study was to develop a cost-effective and time-

efficient approach for the assessment of the effects of sublethal doses of 

environmental neurotoxicants on the locomotor output of zebrafish embryos and 

eleutheroembryos. As a proof-of-concept, this study focused on the analysis of 

the behavioral effects of methylmercury (MeHg), due to the well-known 

neurotoxic effects of this environmental contaminant. Zebrafish embryos do not 

exhibit spontaneous swimming activity until roughly 5 days of age, however here 

we have tested and validated an assay to induce and quantify locomotor activity 

in 36 and 48 hours post-fertilization (hpf) zebrafish embryos by means of acute 

exposure to nicotine (30, 60, 120 and 240µM). To quantify behavioral endpoints, 

we utilized a webcam-based video acquisition system, paired with a free and 

open-source machine vision algorithm. The potential value of this Nicotine-

evoked Locomotor Response (NLR) assay for the early detection of behavioral 

phenotypes was tested in 36, 48 and 72 hpf mutant zebrafish embryos of the 

non-touch-responsive “macho” (mao) strain. The NLR assay was successful at 

discriminating mutant embryos from their non-mutant siblings. Furthermore we 

concluded that the optimal experimental conditions for the NLR assay are to 

trigger the response in 48 hpf embryos utilizing 120µM of nicotine. To identify 

critical MeHg exposure concentrations that would induce subtle changes in 

spontaneous swimming behavior, we analyzed the locomotion of free-swimming 

6 day post-fertilization (dpf) eleutheroembryos exposed to waterborne 
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methylmercury (MeHg; 0, 0.01, 0.03 and 0.1µM). Embryos exposed to 0.01 and 

0.03µM of MeHg exhibited a significant increase in locomotor activity. Next, the 

NLR assay was tested in 48 hpf embryos that had been pre-exposed to the 

aforementioned concentrations of MeHg. As observed in 6 dpf 

eleutheroembryos, an exposure to 0.01 and 0.03µM of MeHg increased the 

locomotor output of 48 hpf embryos during the Nicotine-evoked Locomotor 

Response (NLR). In addition to the observed MeHg-induced hyperactivity in 

zebrafish embryos and eleutheroembryos, our results showcase the potential of 

the NLR assay as a valuable approach for neurotoxicity screening in early stages 

of the zebrafish development. 
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Introduction 

Spontaneous swimming is arguably the most fundamental behavioral 

paradigm among the behavioral repertoire of zebrafish eleutheroembryos (Budick 

and O'Malley, 2000). It represents the interface by which organisms interact with 

their environment, as they are required to modulate locomotor output for most 

every complex survival task such as capturing prey and avoiding predators. 

Moreover, environmental contaminants play a role in the feedback loop between 

an organisms and its environment, as they can affect the way organisms behave 

and react to their surroundings (Kane et al., 2005). One such environmental 

contaminant is MeHg, which has been documented to cause locomotor 

abnormalities and abnormal startle response in zebrafish at concentrations 

significantly below lethal toxicity (Smith et al., 2010). 

Although the most environmentally-realistic route of exposure to MeHg is 

through the diet (Depew et al., 2012), here we have made use of the many 

advantages of waterborne exposures. This approach is substantially quicker than 

a dietary exposure assay, it is much more cost-effective, it produces considerably 

less toxic waste and when performed early enough during the development of 

the embryos (≤2 hpf) it can effectively mimic the maternal transfer of MeHg 

(Weber et al., 2008), which would occur from the maternal ovary to the yolk of 

the embryos (Scheuhammer et al., 2007a). These qualities make, waterborne 

exposure an ideal approach to conduct preliminary screening assays, especially 

when critical behavior-altering doses of MeHg are not known for the aquatic 

organism of interest. 
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Historically, the use of behavioral screening in invertebrates and later in 

zebrafish was utilized to detect variable genetic phenotypes that affected normal 

behavior (Grunwald and Eisen, 2002).  However, toxicologists have adopted 

these methods for toxicity screening due to the broadness and robustness of the 

results that can be obtained. For instance, quantification of the spontaneous 

swimming behavior of fish can be such a sensitive indicator of sublethal toxicity 

that alterations in swimming behavior caused by a neurotoxicant can be identified 

at concentrations as low as 0.7% of its LC503 (Little and Finger, 1990). 

The present study is not an exception to the aforementioned historical 

tendency to adapt screening assays from genetics to toxicology; the Nicotine-

Evoked Locomotor Response (NLR) was first published as a behavioral 

screening method to study nicotine response genetics in zebrafish mutants 

(Petzold et al., 2009; Thomas et al., 2009), however here we have taken 

advantage of the locomotion-inducing effects of nicotine to test the potential 

value of the NLR assay as a screening tool for MeHg toxicology in 36 to 72 hpf 

zebrafish embryos – long before embryos  develop a mature locomotor pattern 

(Figure 2.1). Apart from the obvious benefit of saving time, an advantage of 

carrying out behavioral experiments in zebrafish embryos as early as 36-48 hpf is 

that since the central nervous system (CNS) is not yet fully formed, the observed 

effects in locomotion more likely to be attributable to “more primitive” anatomical 

                                                           

 

 

3 LC50: LC stands for “lethal concentration”. LC50 is a standard measure of the toxicity 
equivalent to the exposure concentration of a toxicant required to kill half of the sample 
population of a specific test animal. 
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structures such as the spinal cord, the muscles, and the developing hindbrain 

(Saint-Amant and Drapeau, 2000). 

To quantify the NLR we utilized a cost-effective approach comprised of a 

webcam-based video acquisition system paired with a free and open-source 

machine vision algorithm. Webcams are an affordable yet robust alternative to 

CCD cameras, capable of delivering excellent video quality and a sufficient frame 

rate to study spontaneous swimming in fish. Our machine vision algorithm of 

choice was the python-based “ctrax” (Branson et al., 2009); this software is 

available to be downloaded and used free-of-charge. Ctrax was originally 

designed as a tool for high-throughput analysis of locomotor activity of multiple 

fruit flies in the same arena; however the software performs remarkably well 

while tracking the NLR of multiple zebrafish embryos, as well as the free 

swimming of zebrafish eleutheroembryos. 

Together, spontaneous swimming assay and the NLR, coupled with low-

cost equipment and free and open-source software comprise a promising 

approach to carry out a simple diagnostic toxicity screening, which can later be 

supplemented with additional assays addressing more complex behaviors, if 

desired. 
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Materials and methods 

Fish husbandry 

Wild type zebrafish breeding stocks were obtained from EkkWill Waterlife 

Resources (EK strain; Ruskin, Florida, USA) and maintained in the laboratory for 

more than 15 generations. The “macho” (mao) mutant zebrafish strain was 

acquired from Dr. Angeles Ribera from the Anschutz Medical Campus of the 

University of Colorado, Denver. Both strains were maintained at 28ºC on a 

14h:10h light:dark cycle at the Children’s Environmental Health Sciences Core 

Center, located in the School of Freshwater Sciences of the University of 

Wisconsin – Milwaukee. All of the animal protocols were approved by the 

Institutional Animal Care and Use Committee (IACUC) of the University of 

Wisconsin – Milwaukee. 

EK embryos were obtained by breeding adult zebrafish in a ratio of two 

females to one male (10 females and 5 males in each breeding tank). Macho 

strain zebrafish were bred in a ratio of one female to one male (1 female and 1 

male in each breeding tank). The breeding tanks were constructed by removing 

the bottom of a 2L polycarbonate container (Cambro manufacturing company, 

Huntington Beach, CA) and replacing it with a plastic mesh, this container was in 

turn nested on top of a second 3L container. The mesh in the breeding tank 

allowed the spawned eggs to sink into the bottom container but restricted the 

adult fish from entering the bottom to eat the eggs. Adult fish would remain in 

their breeding tank over night at 28°C; the next morning, prior to the onset of 
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artificial dawn (8:00am), the breeding population was transferred into a 2L 

“spawning tank” containing fresh water to receive the newly spawned embryos. 

The adult fish would begin spawning at the onset of artificial dawn (9:00am), 

when the laboratory lights were automatically turned on. All embryos in this study 

were raised for up to 6 days post-fertilization in Petri dishes (100mmx15mm) 

containing E2 embryo medium (15mM NaCl, 0.5mM KCl, 1mM MgSO4, 150µM 

KH2PO4, 50µM Na2HPO4, 1mM CaCl2, 0.7mM NaHCO3; pH 7.2) at a density of 

200 embryos per dish; the embryo medium was exchanged daily. 

Nicotine-evoked Locomotor Response (NLR) dose curve 

Four doses of nicotine (30, 60, 120 and 240µM; Sigma, St. Louis, MO) 

were used to assess the NLR in zebrafish embryos in two different stages of 

early development (36 and 48 hpf). At each developmental stage, the embryos 

were manually dechorionated and then transferred into a recording vessel 

(89mm x 89mm x 25mm white semitransparent rubberized polystyrene weighing 

boat; Cole-Parmer, Vernon Hills IL, USA) containing 10ml of a nicotine solution. 

The embryos (n=12 embryos per vessel) were transferred with a fine-tip Pasteur 

pipette, ensuring that the clean medium necessary to carry the embryos over 

was kept consistent and to a minimum (~1ml) to avoid altering the concentration 

ratios of the nicotine solutions. The embryos were video recorded as soon as the 

tip of the glass pipette touched the nicotine medium.  
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Recording apparatus 

The video recording apparatus consisted of a manifold holding four 

Logitech C920 (Logitech, Lausanne, Switzerland) web cameras pointing 

downwards into a Plexiglas tray that holds four weigh boats. Underneath the 

apparatus, a flat 22” Acer P221W computer monitor was used as a light source, 

which provided 58 lux of constant illumination; a sheet of velum paper was used 

as a diffusing filter. In order to block extraneous light and visual stimuli, the whole 

apparatus was surrounded by a custom made black polyethylene enclosure 

(Figure 2.2). All video recordings were streamed to a remote computer (Lenovo 

T410; Intel Core i5 CPU @ 2.53GHz, 4.00 GB RAM) at a resolution of 960x720 

pixels and at a frame rate of 30 frames per second using the MATLAB (The 

MathWorks, Inc., Natick, MA) image acquisition toolbox. 

The NLR of the embryos was tracked using the free and open-source 

machine vision algorithm “python-ctrax” (Branson et al., 2009) and tracking errors 

were manually corrected using the “fixerrors” MATLAB toolbox provided by the 

ctrax developers. The raw trajectory data was imported to a custom Microsoft 

Excel macro (Microsoft, Redmond, WA, USA) to calculate the maximum speed 

(mm s-1) and the “latency of response” (time required to reach maximum speed; 

s) of each individual embryo. Twelve embryos were analyzed for each condition 

tested. 
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Modulation of the NLR by chronic low-dose exposure to nicotine in 48 hpf 

embryos 

It has been observed that the tail beat frequency of zebrafish embryos 

during the NLR can be modulated if the embryos are reared in a low dose of 

nicotine (~1µM) for 24 hours prior to the NLR assay (Dr. Matthew Wolter, 

University of Wisconsin – Milwaukee; personal communication). Here we 

investigated if this observation translated into differences in maximum speed and 

latency of response. 

Zebrafish embryos were grown in clean embryo medium for 24 hours and 

then transferred into media containing 0, 0.5 or 1µM of nicotine for an additional 

24 hours. At 48 hpf, the embryos were submitted to the NLR assay using 120µM 

of nicotine to trigger the response. Twelve embryos were analyzed for each of 

the 24 hour low-dose nicotine pre-treatment regimes. 

Analysis of the NLR in macho zebrafish mutants 

Macho zebrafish mutants do not exhibit a touch response due to impaired 

sodium channel action potentials (Ribera and Nüsslein-Volhard, 1998). The 

known locomotor impairment in this mutant strain was utilized as a premise to 

investigate the potential of the NLR assay to discriminate between the maximum 

speed of embryos with and without locomotor abnormalities. 

Embryos of the macho strain were raised to three different developmental 

stages (36, 48 and 72 hpf) in clean embryo medium and then manually 

dechorionated. Before carrying out the NLR assay, a quick phenotypic screening 
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on the embryos was done by performing a touch response test under a 

stereoscopic microscope (Olympus SZ61; Olympus Life Science Solutions, PA). 

After separating mutant embryos from their siblings without a phenotype, the two 

groups of embryos were tested with the NLR assay using a 120µM nicotine 

solution to trigger the response. Three replicates of this experiment were 

performed for each of the aforementioned conditions (12 embryos per replicate). 

Methylmercury exposure regimes 

To assess the effects of mercury exposure on both free-swimming and 

nicotine-induced locomotion, embryos were treated with methylmercury chloride 

(MeHg; Sigma-Aldrich Co., St. Louis MO, USA) from ≤2-24 hpf using ethanol 

(0.01%) as vehicle at nominal concentrations of 0, 0.01, 0.03 and 0.1µM in E2. 

After MeHg treatment, embryos were rinsed three times in clean E2 and raised in 

E2 until needed for assessment. 

Free swimming of methylmercury exposed 6 dpf zebrafish 

eleutheroembryos 

Newly spawned embryos were exposed to MeHg as described above, 

then raised to 6 dpf to assess the rate of travel (distance traveled in 5 minutes; 

mm 5min-1) and activity (% of time active) of the free-swimming 

eleutheroembryos. A total of 120 fish per dose (10 fish per recording vessel; 12 

vessels per dose) were video recorded and analyzed. 
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NLR of methylmercury exposed 48 hpf zebrafish embryos 

The NLR assay was performed in MeHg-exposed 48 hpf embryos. 10 

embryos per analyzed per recording vessel; 120µM of nicotine was used to 

trigger the NLR. The maximum speed, latency of response and distance traveled 

(in 2 minutes) was calculated for 50 embryos for each dose tested. 

Statistical analyses 

Statistical analyses were conducted with SigmaPlot software version 11.0 

(Systat Software, San Jose, CA). All data was tested for normality using the 

Shapiro–Wilks test. If the data was found to be normally distributed, a one-way 

ANOVA was performed, subsequently a post hoc multiple pair-wise comparison 

between exposure groups was carried out with the Holm-Sidak method. Non-

normal data was analyzed with ANOVA on ranks using the Klustal-Wallis method 

and multiple pair-wise comparisons between exposure groups were performed 

with Tukey’s method. 
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Results 

Nicotine-evoked locomotor response (NLR) dose curve 

An NLR dose response curve was performed in two different stages of 

development of zebrafish embryos (36 and 48 hpf) to investigate the effect of 

varying doses of nicotine on the locomotor output of the embryos. Every one of 

the 96 embryos tested with this assay exhibited locomotor output in response to 

nicotine exposure, which highlights the efficacy of the NLR assay. Furthermore, 

embryonic developmental stage had an effect on the NLR. 36 hpf embryos 

achieved overall lower maximum speeds than 48 hpf embryos in all nicotine 

concentrations tested (P<0.001). The NLR was affected by nicotine dose; 240µM 

of nicotine triggered a significantly higher maximum velocity in both 36 hpf 

(H=13.4, P=0.004) and 48 hpf embryos (H=38.1, P<0.001), relative to embryos 

exposed to 30, 60 and 120µM of nicotine, both at 36 and 48 hpf. High nicotine 

doses also reduced the latency of the embryos to reach their maximum velocity; 

36 hpf embryos exposed to 240µM of nicotine reached their maximum velocities 

quicker than embryos exposed to 30, 60 and 120µM (H=29.9, P<0.001). 

Likewise, 120 and 240µM of nicotine decreased the latency to reach maximum 

velocity in 48 hpf embryos, compared to embryos exposed to 30 and 60µM 

(H=38.1, P<0.001) (Figure 2.3, Table 2.1; one-way ANOVA on ranks, Klustal-

Wallis test). From a practical standpoint, 36 hpf embryos were more difficult to 

track with the ctrax algorithm due to their lack of pigmentation and significantly 

slower NLR; both of these factors can complicate the differentiation between 

moving embryos and the background. Furthermore, higher doses of nicotine 
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facilitated the analysis of the NLR, given that this reduces the time that the 

embryos remain immotile and aggregated during the first few seconds of the 

response, hence reducing mismatches and ambiguities in tracking. In 48 hpf 

embryos, a dose of120µM of nicotine delivered a satisfactory NLR that was not 

significantly different to the NLR evoked by 240µM, for this reason we concluded 

that the optimal experimental conditions for the NLR assay as a screening tool 

would be to trigger the response with 120µM of nicotine utilizing 48 hpf embryos. 

NLR in chronic low-dose nicotine-exposed embryos and “macho” mutants 

Zebrafish embryos exposed to chronic low-doses of nicotine were utilized 

here to illustrate fundaments nicotine pharmacology. Rearing zebrafish embryos 

in 1µM of nicotine for 12 hours prior to the NLR test resulted in significantly lower 

maximum velocities (H=17.41, P<0.001), coupled with a higher latency to reach 

maximum speed (H=23.56, P<0.001), relative to embryos reared in 0 and 0.5µM 

of nicotine. Embryos reared in 0.5µM of nicotine did not exhibit significant 

changes in maximum speed or distance traveled throughout 90 seconds of 

observation; however, they reached maximum velocities significantly quicker 

than the embryos from the 0 and 1µM nicotine exposure groups (H=23.56, 

P<0.001) (Table 2.2). Furthermore, the known locomotor abnormality of macho 

mutants was utilized here to test the capacity of the NLR assay to discriminate 

between organisms with and without locomotor impairments. The NLR was 

successful at discriminating mutant embryos from their non-mutant siblings. All 

zebrafish mutants of the macho strain tested with the NLR paradigm had 

significantly lower maximum speeds (P<0.001) (Figure 2.4). This proof-of-
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concept experiment demonstrates the potential of the NLR assay to detect gross 

locomotor abnormalities in zebrafish embryos and it establishes a methodological 

framework to test for more subtle behavioral effects, such as the ones expected 

from environmental neurotoxicant exposure.  

Free swimming and NLR of MeHg exposed eleutheroembryos and embryos 

Prior to carrying out any NLR experiments in MeHg-exposed zebrafish 

embryos, an MeHg dose response assay was carried out by exposing embryos 

to 0, 0.01, 0.03, 0.1µM MeHg in order to identify critical doses of exposure that 

would cause significant behavioral alteration in free swimming 6 dpf zebrafish 

(Figure 2.5, Table 2.3). Eleutheroembryos exposed to 0.01 and 0.03µM of 

methylmercury exhibited a significantly increased rate of travel during the five 

minutes of activity tracking (H=26.49, P<0.001). Additionally, eleutheroembryos 

exposed to 0.01µM of methylmercury were more active than the rest of the 

exposure groups (H=26.71, P<0.001). Once these dose-dependent MeHg 

behavioral effects were established in free swimming 6 dpf embryos, the same 

doses of MeHg were utilized to assess the effect of MeHg in the NLR of 48 hpf 

embryos. The results obtained from this assay were similar to the observed in 6 

dpf eleutheroembryos; 48 hpf zebrafish embryos exposed to 0.01 and 0.03µM of 

methylmercury had an increased rate of travel (F=12.82, P<0.001) and maximum 

speeds (F=11.9S, P<0.001) compared to the 0 and 0.1µM exposure groups. 
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Discussion 

As observed in the present study, exposure to MeHg has previously been 

reported to cause locomotor abnormalities in mummichogs, depending on the 

developmental stage at which the exposure occurred (Weis and Weis, 1995b). 

Mummichog larvae exposed to MeHg as embryos were found to swim more than 

controls (hyperactivity), while those that were only exposed as larvae swam less 

than the controls (hypoactivity) (Weis and Weis, 1995b). Hyperactivity after 

embryonic MeHg insult has also been observed in rainbow trout (Oncorhynchus 

mykiss), largemouth bass (Micropterus salmoides) (Sandheinrich and Miller, 

2006) and in rodents (Giménez-Llort et al., 2001). More recently, a link has been 

suggested between prenatal MeHg exposure and the onset of attention deficit 

hyperactivity disorder (ADHD) in humans (Boucher et al., 2012). 

Some characteristics of the onset of the NLR bear a noteworthy 

resemblance to the well-known touch-evoked response in zebrafish embryos, 

such as the swimming speed and tail beat frequency of these responses (Dr. 

Matthew Wolter, University of Wisconsin – Milwaukee, personal communication). 

Furthermore, both responses can be elicited early enough in development 

(roughly 36 hpf) that presumably both responses utilize the same rudimentary 

anatomical structures of the developing embryo to elicit locomotor output. 

The hyperlocomotor response observed in both free-swimming 6 dpf 

zebrafish eleutheroembryos and 48 hpf embryos suggests that there is a 

common mechanism of MeHg-induced hyperactivity in both developmental 
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stages; furthermore, the effects observed at 6 dpf are likely the sequel of 

neurotoxic effects that occur at least as early in development as 48 hpf.  

The mechanisms by which MeHg causes the observed hyperactivity are 

unclear; in fact, even the more fundamental question of how exactly MeHg acts 

as a neurotoxicant remains unanswered (Ho et al., 2013). However, our NLR 

assays in 48 hpf MeHg-exposed zebrafish embryos suggest that MeHg-induced 

hyperactivity is not associated with input from higher centers of the brain, but 

more likely to alterations in the spinal cord and the developing hindbrain.  

The aforementioned notion is supported by seminal experiments 

conducted by Saint-Amant and Drapeau (1998), where different lesions would be 

inflicted along the body axis of 19-34 hpf zebrafish embryos to determine which 

anatomical structures were essential to produce locomotor output. Lesions that 

were rostral to the hindbrain had no effect on spontaneous contractions, touch-

evoked response or swimming, demonstrating that the entire behavioral 

repertoire of embryonic zebrafish can solely be effectuated by the spinal cord 

and the hindbrain in the absence of the midbrain and forebrain. 

To the author’s knowledge, no previous studies have addressed the 

putative link between MeHg-mediated effects in the spinal cord and locomotor 

abnormalities. However, a link between oxidative stress in the cerebellum and 

hyperactivity has been observed in rodents (Stringari et al., 2006).  



25 

 

 

Regardless of the cellular and anatomical mechanisms of MeHg-induced 

behavioral alteration, the spontaneous-swimming and the NLR assay show 

promise as useful tools in behavioral toxicology screening. 
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Figures 

 

 

Figure 2.1: Characteristic kinematics of the nicotine-evoked locomotor response 
in zebrafish embryos 
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Figure 2.1: Characteristic kinematics of the nicotine-evoked locomotor 

response in zebrafish embryos 

 

The NLR is a characteristic locomotor response triggered by an exposure to an 

acute concentration of nicotine (e.g., 30 to 240µM). This behavioral response is 

characterized by four phases: A) zebrafish embryos younger than 5 days post-

fertilization do not exhibit free swimming, thus when exposed to an acute nicotine 

concentration the embryos first remain immotile for approximately 30 seconds; B) 

once the nicotine is absorbed, the embryos abruptly initiate a vigorous and 

continuous locomotor burst that lasts several seconds, many times advancing in 

a clock-wise spiraling trajectory; C) the locomotor response attenuates and many 

fish begin to erratically twitch without any forward propulsion; D) all embryos 

come to a complete halt. 

  



28 

 

 

 

 

Figure 2.2: Custom-made behavior observation chamber 
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Figure 2.2: Custom-made behavior observation chamber 

 

 (A) The behavior observation chamber consists of a manifold of Logitech c920 

webcams that point downwards onto a tray with weigh boats that serve as arenas 

for the swimming larvae. The webcams are connected to a remote computer and 

the video footage is streamed using the MATLAB image acquisition toolbox. (B) 

The ctrax tracking algorithm can quantify the locomotor activity of multiple fish 

embryos in the same arena simultaneously. 
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Figure 2.3: Nicotine-evoked locomotion dose response curves in 36 and 48 hpf 
zebrafish embryos 
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Figure 2.3: Nicotine-evoked locomotion dose response curves in 36 and 48 

hpf zebrafish embryos 

 

Nicotine dose response curves in 36 hpf (A and B) and 48 hpf (C and D) 

zebrafish embryos during the NLR. (C) The NLR of 36 hpf embryos triggered by 

240µM of nicotine was characterized by a significantly higher maximum speed 

than the observed in the rest of the doses tested. (D) Similarly, 240µM of nicotine 

triggered a significantly higher maximum velocity in 48 hpf embryos (one-way 

ANOVA.  
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Figure 2.4: Validation of the nicotine-evoked locomotor response assay by 
testing it in the non-touch-responsive “macho” mutant zebrafish strain 
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Figure 2.4: validation of the nicotine-evoked locomotor response assay by 

testing it in the non-touch-responsive “macho” mutant zebrafish strain 

 

The NLR assay was successful at discriminating mutant embryos from their non-

mutant siblings. (A) The locomotor activity of 36 hpf embryos triggered by 120µM 

of nicotine was significantly different between mutants and non-mutant embryos 

as demonstrated by the comparison of the average maximum speed of mutant 

and non-mutant embryos (B). The difference between mutants and non-mutants 

became progressively more apparent in 48 hpf (C and D) and 72 hpf (E and F) 

embryos. 
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Figure 2.5: Spontaneous swimming of 6 dpf MeHg-exposed zebrafish 
eleutheroembryos and the NLR of MeHg-exposed 48 hpf embryos 
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Figure 2.5: spontaneous swimming of 6 dpf MeHg-exposed zebrafish 

eleutheroembryos and the NLR of MeHg-exposed 48 hpf embryos 

 

 (A) The spontaneous-swimming assay elucidated subtle yet significant 

(P<0.001) increases in the total distance travelled (mm in 5 minutes) of free 

swimming 6 dpf zebrafish exposed to 0.01 and 0.03µM of MeHg (B) 

Eleutheroembryos exposed to 0.01µM MeHg as embryos also had an increased 

activity (% of time active) relative to all other doses. The NLR assay was 

conducted in 48 hpf embryos exposed to 0µM (control), 0.01µM, 0.03µM and 

0.1µM; the activity curves of all MeHg-exposed embryos were compared to the 

control (C through E). (F) As observed in 6 dpf eleutheroembryos, 48 hpf 

zebrafish embryos exposed to 0.01 and 0.03µM of MeHg exhibited an increase in 

distance traveled during the analysis period. 
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Tables 

Table 2.1: NLR dose response in 36 and 48 hpf zebrafish embryos 

 
36 hpf zebrafish embryos  48 hpf zebrafish embryos 

Nicotine 
dose (µM) 

Maximum 
speed (mm s-1) 

Latency of 
response(s) 

 
Maximum 

speed (mm s-1) 
Latency of 

response (s) 

30 5.29±0.37a 43.08±13.62a  12.55±1.24a 83.50±4.76a 

60 5.25±0.28a 48.92±11.72a  11.42±1.99a 69.58±2.54a 

120 6.21±0.24ab 38.17±7.33a  18.43±1.27ab 29.50±4.13b 

240 6.64±0.26b 6.92±4.50b  21.72±1.08b 17.92±1.95b 

   
 

  
ANOVA on ranks (Klustal-Wallis test) 

H 13.4 29.9  22.5 38.1 

P 0.004 <0.001  <0.001 <0.001 

Note: Values are given as the mean ± SE 
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Table 2.2: Modulation of the NLR in 48 hpf zebrafish embryos by chronic, low-
dose exposure to nicotine during development 

Embryonic 
nicotine exposure  

dose (µM) 

Maximum speed 
(mm s-1) 

Latency of 
response (s) 

Distance traveled 
(mm 90s-1) 

0.0 21.72±1.08a 17.92±1.95a 299.63±16.08a 

0.5 25.69±1.53a 6.17±0.89b 257.31±18.30a 

1.0 16.58±1.10b 37.25±6.18a 310.66±26.19a 

    
ANOVA on ranks (Klustal-Wallis test) 

H 17.41 23.56 3.36 

P <0.001 <0.001 0.187 

Note: Values are given as the mean ± SE 
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Table 2.3: Effect of methylmercury on the NLR of 48 hpf zebrafish embryos 

Embryonic 
methylmercury 

exposure dose (µM) 

Maximum 
speed (mm s-1) 

Latency of 
response (s) 

Distance traveled 
(mm 2min-1) 

0.00 33.06±1.47a 19.26±1.70 439.01±16.77a 

0.01 41.06±1.48b 18.92±1.65 569.29±25.84b 

0.03 43.27±1.90b 17.94±1.74 526.67±24.57b 

0.10 31.64±1.80a 14.50±1.45 394.46±20.90a 

        

ANOVA       

F 11.92 1.76 12.82 

P <0.001 0.156 <0.001 

Note: Values are given as the mean ± SE 
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CHAPTER 3: PARENTAL WHOLE-LIFE-CYCLE EXPOSURE TO DIETARY 
METHYLMERCURY IN ZEBRAFISH (Danio rerio) AFFECTS THE 

VISUALMOTOR RESPONSE, LOCOMOTION AND FORAGING OF 
OFFSPRING 

 

Abstract 

MeHg has been widely recognized as a neurotoxin in all vertebrates at 

concentrations considerably below lethal toxicity. However, compared with 

humans, other mammals and even birds, relatively little is known about the 

effects of chronic, environmentally realistic MeHg exposures in fish. Here we 

have evaluated the behavioral effects of prenatal MeHg by exposing a parental 

generation of zebrafish with environmentally relevant MeHg diets (0, 1, 3 and 

10ppm) throughout its whole life cycle and running the offspring through a battery 

of behavioral tests, including the visual-motor response assay, evaluation of 

spontaneous swimming and prey capture. All MeHg treatments resulted in 

increased locomotor activity and prey capture efficiency. 
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Introduction 

Mercury is a neurotoxic heavy metal that is released into the atmosphere 

by anthropogenic and natural sources, coal combustion being the primary 

anthropogenic source of this contaminant (Monson, 2009b). Atmospheric 

deposition causes the elemental Hg to be incorporated into aquatic ecosystems 

around the world (Risch et al., 2012b), after which bacteria transform this 

mercury into methylmercury (MeHg) (Bloom, 1992), a pervasive and persistent 

organic form of mercury. 

The neurotoxicity of MeHg became notorious in the early 1970's when 

reports originating from Iraq and Japan linked this contaminant with cases of 

acute poisoning. Individuals exposed to high levels of MeHg in contaminated 

bread and seafood suffered parathesia, ataxia and constriction of the visual field 

(Grandjean et al., 2010). Presently, despite the efforts to circumvent another 

large scale acute MeHg poisoning, chronic low-dose exposure to MeHg has 

recently been implicated in neurobehavioral effects such as impaired motor 

function (Montgomery et al., 2008), learning disabilities (Smith et al., 2010) and 

attention deficit hyperactivity disorder (ADHD; Boucher et al., 2012). 

Since the early reports on the acute poisoning tragedies, MeHg has been 

widely recognized as a neurotoxin in all vertebrates at concentrations 

considerably below those that cause lethal toxicity (Louis, 1977). However, 

compared with humans, other mammals and even birds, relatively little is known 
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about the effects of chronic, environmentally realistic MeHg exposures in fish 

(Scheuhammer et al., 2007b). 

MeHg uptake by fish occurs primarily through dietary exposure (Depew et 

al., 2012) which subsequently leads to bioaccumulation and biomagnification 

(Alvarez et al., 2006b). More than 90% of total Hg (THg) in fish muscle tissue is 

in the form of MeHg (Drevnick and Sandheinrich, 2003; Scheuhammer et al., 

2007a) and maternal burdens of this pollutant can be transferred to the eggs 

during oogenesis (Hammerschmidt and Sandheinrich, 2005). Maternal transfer of 

MeHg is particularly threatening to the offspring, due to the high susceptibility 

developing embryos to environmental contaminants (Mohammed, 2013). 

Fish are especially relevant models for behavioral toxicology of aquatic 

pollutants, due to their direct relationship with the aquatic ecosystem in which the 

exposure occurs, as well as a long history of use of fish models in behavioral 

toxicology (Kane et al., 2005).  

In particular, zebrafish larvae are particularly well suited for large-scale 

behavioral toxicology due to their small size, fast development and the capacity 

to obtain 200-300 eggs from a single adult zebrafish breeding pair (Hill et al., 

2005). In addition to the advantages of the zebrafish as a model for 

ecotoxicology, it is also an increasingly recognized aquatic animal model for 

human disease (Lieschke and Currie, 2007). 

In order to interact with its environment and survive, zebrafish larvae 

exhibit an ample behavioral repertoire. Spontaneous swimming is the most 
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fundamental behavioral paradigm in zebrafish larvae, however, they also exhibit 

more complex behaviors like a variety of startle responses and prey tracking 

(Budick and O'Malley, 2000; Burgess and Granato, 2007) all of which can be 

potentially compromised by exposure to a neurotoxicant. 

A number of methods have been proposed to assess neurotoxicity in 

zebrafish, and they include, among others, the analysis of the response to abrupt 

light changes referred to as the visualmotor response (VMR) (Emran et al., 2008; 

MacPhail et al., 2009), as well as the analysis of free swimming with computer 

vision algorithms (Kane et al., 2005). Prey capture, on the other hand, is a lesser 

studied behavioral endpoint and assays in zebrafish larvae have mainly focused 

on larvae preying on paramecia (Bianco et al., 2011a; Budick and O'Malley, 

2000; Gahtan et al., 2005). To the author’s knowledge, no efforts have been 

made to analyze the effects of neurotoxicants on the prey capture ontology of 

zebrafish larvae. 

Here, we have mimicked a whole life cycle exposure to an environmentally 

relevant dose of MeHg [1ppm (low dose)] (Hammerschmidt et al., 2002), as well 

as two higher doses [3ppm (medium dose) and 10ppm (high dose)] in zebrafish 

to elucidate their effects on fundamental behavioral paradigms of the offspring, 

namely the VMR and the early ontology of spontaneous swimming and prey 

capture ability.  
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Materials and methods 

Fish husbandry 

All of the animal protocols described hereafter were approved by the 

Institutional Animal Care and Use Committee (IACUC) of the University of 

Wisconsin - Milwaukee. Widtype zebrafish (Danio rerio) larvae used in this study 

were from the EK strain [originally obtained from EkkWill Waterlife Resources 

(Ruskin, Florida, USA) and maintained in laboratory for well over 15 generations] 

and were raised in the NIEHS Children’s Environmental Health Core Center 

(Milwaukee WI, USA).   

All zebrafish embryos were raised at 28°C on a 14h:10h light:dark cycle. 

For the first 7 days post-fertilization (dpf) the embryos were reared in 86mm 

diameter Petri dishes in E2 embryo medium (15mM NaCl, 0.5mM KCl, 1mM 

MgSO4, 150µM KH2PO4, 50µM Na2HPO4, 1mM CaCl2, 0.7mM NaHCO3) at a 

density of 200 embryos per dish; the E2 embryo medium was exchanged daily. 

After 7 dpf the larvae were transferred to 2L static tanks, at a density of 60 larvae 

per tank. After 21 dpf, the fish were transferred to 2L flow-through systems.  

Once the fish developed sexual maturity (3- 4 months post fertilization), 

they were sorted by sex. Fish were kept in 2L (males) and 3L (females) 

polycarbonate flow-through tanks (Cambro manufacturing Co., Huntington Beach 

CA, USA) at a density of no higher than 4 fish per liter. 
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MeHg food preparation 

An initial 3mM stock solution (in ethanol) of MeHg chloride (Sigma-Aldrich 

Co., St. Louis MO, USA) was used to make all of the required dilutions to obtain 

the desired final mercury concentrations in the diets. Adult zebrafish flake diets 

were treated with MeHg in batches of 500g of food; after weighing the food, the 

calculated amount of MeHg stock solution was mixed into 950mL of ethanol, 

subsequently this solution was mixed into the food; adult vehicle control diets 

(which we weill hereon refer to as “0ppm” diets) were prepared by mixing 950mL 

of ethanol into 500g of food. The preparations were stirred three times daily 

under a hood for 4 days until all the ethanol had evaporated completely.  

Simmilarly, larval micropellet diets were prepared in batches of 50g; 

250mL of ethanol were used to mix in the MeHg into the food; larval vehicle 

control diets were prepared by mixing 250mL of ethanol into 50g of food. As with 

the adult flakes, the larval food was stirred three times daily under a hood until 

the ethanol evaporated completely. 

Dietary MeHg exposure regimes 

In order to mimic whole-life-cycle exposure in the wild, a parental 

generation (G1) of fish was exposed to dietary MeHg througout its whole life span 

(i.e. G1 was born with a maternally transferred MeHg burden and it was raised 

with a MeHg diet until adulthood), so as to investigate the effects of of this life-

long MeHg exposure on its offspring (G2) (Figure 3.1). 
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G1 embryos were collected from 8 month old females [average weight 

0.577g, (0.139 SD)] previously fed for 9 weeks with a prepared diet (Biodiet 

starter, Bio-Oregon, 4% body weight per day) containing nominal MeHg 

concentrations of 0, 0.5, 5 and 50ppm (Table 3.1). At the moment of collection, 

the G1 embryos MeHg had reached burdens MeHg burdens of 0.005, 0.02, 0.2 

and 1ppm (wet weight), respectively. 

The G1 embryos were raised to 7 dpf and transferred to 2L tanks, at a 

density of 60 larvae per tank (one tank per exposure group, in triplicate). Upon 

this moment, the G1 larvae were fed ad libitum with an MeHg micropellet diet 

(Brine Shrimp Direct, Golden Pearls, Ogden, UT, USA) with nominal 

concentrations of 0, 1, 3, and10ppm (Table 3.2). The size of the food pellets was 

adjusted throughout the development of the fish from 50-100µm sized pellets (7-

14 dpf), to a mixture of 50-100µm and 100-200µm sized pellets (15-30 dpf); to 

exclusively 100-200µm sized pellets (31-120 dpf).  

From 4 months of age onwards, the fish were fed with a crushed flake diet 

(Pentair Aquatic Eco-Systems Aquatox food, Apopka FL, USA), also containing 

0, 1, 3, and 10ppm of MeHg. Platinum grade “Argentemia” brine shrimp nauplii 

(ARGENT laboratories, Redmond WA, USA) were introduced to the diet once the 

juveniles reached 40 dpf. 

Upon the development of sexual characteristics, the fish were sorted by 

sex. Female zebrafish were housed in 3L polycarbonate flowthrough tanks 

(Cambro manufacturing Co., Huntington Beach, CA) at a density of 12 fish per 

tank (one tank per exposure group, in triplicate). Male fish were housed in 2L 
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polycarbonate flowthrough tanks at a density of 6 males per tank (one tank per 

exposure group, in triplicate). The fish were bred at 8 months of age in a ratio of 

12 females to 6 males.  

A total of 3 clutches of embryos were obtained from each exposure group 

of G1 parents. All zebrafish breeding tanks were allowed to spawn for 3 hours, 

from 9:00am to 12:00am. Since this study was concerned with the effects of 

whole life cycle parental MeHg burdens, the newly spawned offspring (G2) were 

no longer raised on MeHg diets. 

Assessment of embryo mortality and early life stage (ELS) toxicity 

In order to evaluate embryo mortality due to MeHg exposure, all eggs 

were collected and counted for each of all three replicates and exposure groups; 

after 24 hpf, all dead and unviable eggs were counted and discarded.  

Additionally, ELS toxicity scoring (Heiden et al., 2005) was carried out to 

assess observable teratogenic effects of MeHg. Zebrafish embryos from each 

exposure group were transferred to 12-well plates (10 embryos per well), and the 

larvae were observed at 24, 72 and 144 hpf using an Olympus SZX12 

stereomicroscope. The embryos were monitored in triplicate for each of the 

exposure groups and time points. Each individual was given an ELS toxicity 

score ranging from 0 to 4 based on the severity of defects and the presence of 

specific endpoints of MeHg toxicity (0 = normal; 1 = slight, generally one 

morphologic anomaly; 2 = moderate, generally two morphologic anomalies, 3 = 

severe, generally more than two morphologic anomalies, and 4 = dead).  
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Analysis of Hg contents in diets and tissues 

THg content in tissues and MeHg diets were directly analyzed using a 

Direct Mercury Analyzer 80 (DMA-80, Milestone Inc, Shelton CT) as described by 

Basu and collaborators (2009). Both G1 and G2 maternal transferred embryonic 

Hg burdens were analyzed from pools of two hundred 4 hpf embryos for each 

exposure group, in triplicate. The morning after the spawning, the ovaries were 

excised from three G2 females per dose, in triplicate, to assess THg in the ovary. 

G1 and G2 MeHg diets were also analyzed for THg content, in triplicate. 

VMR assay 

The VMR assay has been suggested as a screening paradigm to be used 

as an integral part of a behavioral test battery (MacPhail et al., 2009). The 

experiment consists of quantifying the response of multiple zebrafish larvae 

reacting to sudden changes in light intensity. Immediately at the onset of an 

abrupt change in light intensity zebrafish larvae exhibit a startle response (Colwill 

and Creton, 2011) which is followed by above-basal locomotion ("bursting") if 

lights were turned off, or below-basal locomotion ("freezing") if the lights were 

turned on. In both cases, zebrafish larvae gradually return to basal locomotion in 

the course of several minutes.  

Here we carried out a modified version of this assay, originally published 

by Emran and collaborators (2008). After 10 minutes of acclimation in the dark, 

the larvae underwent two cycles of alternating 10 minute light and dark periods 

(for a total of 50 min). 
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The locomotor activity of the fish was monitored with a DanioVision 

system (Noldus Information Technology, Leesburg, VA), which consists of an 

enclosed chamber designed to hold a multiple-well plate in which fish larvae are 

imaged. The multiple-well plate is illuminated from underneath with a light box 

capable of emitting infrared (800–950 nm with a peak at 860 nm) and visible 

(430–700 nm) light. The light intensity in all light periods of the VMR assay were 

measured as 221.75 lux (Fisher Scientific Traceable Dual-Range Light Meter, 

Pittsburgh PA, USA). All VMR experiments were carried out from 12:00pm to 

6:00pm to limit the effects of circadian rhythms. 

The total distance traveled of each fish was analyzed using Ethovision 

software version 8.0; individual 6 dpf fish were observed in 24-well plates and 

tracked at a frame rate of 25 frames per second. A total of 126 larvae per 

exposure group were analyzed. 

Analysis of 7 dpf larval zebrafish swimming behavior 

A custom-made behavior observation chamber was designed for the 

purpose of this experiment. The apparatus consisted of a manifold holding four 

Logitech C920 web cameras pointing downwards into a Plexiglas tray that holds 

four 100mL 89mm x 89mm x 25mm white semitransparent rubberized 

polystyrene weigh boats (Cole-Parmer, Vernon Hills IL, USA). Underneath the 

apparatus, a flat 22” Acer P221W computer monitor is used as a light source, 

which provides 58 lux of constant illumination; a sheet of velum paper is used as 

a diffusing filter. In order to block extraneous light and visual stimuli, the whole 
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apparatus is surrounded by a custom made black polyethylene enclosure. All 

video recordings were streamed to a remote computer at a resolution of 960x720 

and a frame rate of 30 fps using the MATLAB image acquisition toolbox. The 

weigh boats were filled with 25mL of 28°C E2 embryo medium; ten 7 dpf 

zebrafish larvae were placed in each boat and allowed to acclimate in the 

recording chamber for 5 minutes. After acclimation, the groups of free swimming 

larvae were recorded for 5 minutes. The locomotor activity of the larvae was 

analyzed using a free and open-source machine vision algorithm [python-ctrax 

(Branson et al., 2009), (www.ctrax.sourceforge.net)]; tracking errors were 

corrected using the “fixerrors” MATLAB toolbox provided by the ctrax developers. 

All raw trajectory data was imported to a custom Microsoft Excel macro 

(Microsoft, Redmond, WA, USA) to calculate rate of travel (mm5min-1), swimming 

speed (mm s-1), activity (% of time active), minimum speed (mm s-1) net-to-gross 

displacement ratio (NGDR)4, maximum speed (mm s-1), and scoot frequency 

(Hz). A total of 180 fish tracks were analyzed for each of the four exposure 

groups. 

Routine swimming and prey capture at 8, 12 and 16 dpf 

The swimming performance of the larval zebrafish was further monitored 

at 8, 12 and 16 dpf; immediately after each assay, the foraging efficiency of the 

                                                           

 

 

4 Net-to-gross displacement ratio (NGDR) is a measure of the linearity of the trajectory of an organism. 

Ratios closer to 1 indicate straighter trajectories; lower ratios suggest that an organism could be 

swimming in circles or meandering. 
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larvae was also monitored. At 9:00am, on the day of the analysis, 25 larvae were 

transferred to 10cm diameter glass Petri dishes containing 50mL of 28°C E2 

embryo medium. The dish was then transferred to the recording chamber and the 

fish were allowed to acclimate for 5 minutes, after which they were recorded for 

10 minutes. All recordings were carried out from 12:00pm to 6:00pm. A 30 

second fragment was randomly selected from the 10 minute clips to analyze the 

spontaneous swimming of the larvae. The behavioral parameters analyzed 

included activity (% of time active) and NGDR. 

Immediately after the recording of routine swimming, foraging efficiency 

was measured by introducing 6 Artemia nauplii per fish (i.e. 25 fish per dish 

foraging on 150 nauplii) into the Petri dish. The larvae were allowed to feed for 

10 minutes, after which the remaining nauplii were counted. At the end of each 

experiment, the fish were returned to 2L tanks to be housed until the next 

experimental time point; the same fish were observed at 8, 12 and 16 dpf. A total 

of 150 fish tracks were analyzed per exposure group. 

Data processing and statistical analysis 

All behavioral data obtained from ctrax was processed with a custom 

Microsoft Excel macro to calculate rate of travel (mm 5min-1), swimming speed 

(mm s-1), % activity (% of time active), minimum speed (mm s-1), NGDR, 

maximum speed (mm s-1), and scoot frequency (Hz). 

Statistical analyses were conducted with SigmaPlot software version 11.0 

[Systat Software, San Jose CA, USA, (www.sigmaplot.com)]. All data was tested 
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for normality; multiple pair-wise comparisons were carried out with the Holm-

Sidak method whenever the data passed the normality test, if not, the data was 

ranked and pair-wise comparisons were done with Dunn’s method. 

Measured concentrations of THg in the embryos were log transformed 

prior to statistical analysis with one-way ANOVA due to the 3 to 12 fold 

differences between exposure groups. 

VMR, routine swimming and prey capture data were analyzed with 

repeated measures two-way ANOVA. Mortality, ELS toxicity scores and 7 dpf 

larval swimming behavior were analyzed with one-way ANOVA. Gaussian curves 

and regression analyses were fitted using the dynamic fitting function in 

SigmaPlot. 
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Results 

Embryo mortality and early life stage (ELS) toxicity scoring 

None of the MeHg exposures in this study caused any overt effects on 

fecundity of the adult females, embryo mortality or development at any of the 

developmental stages monitored (n=36 embryos; P=0.116). All fish used in 

subsequent behavioral experiments appeared healthy and had no morphological 

abnormalities (Appendices 2 and 3). 

Mercury analyses 

All THg burdens in embryos (both G1 and G2) were statistically different 

from each other (n=3 samples; P<0.001); the accuracy of the measured THg in 

diets versus its nominal concentration were between 90% and 122% (Tables 3.1 

and 3.2). 

THg burdens in embryos had a strong correlation with that of the maternal 

ovaries [Embryo THg = 0.0150 + (0.0797 x Ovary THg), R2=0.954] (Figure 3.2); 

8.76% ± 0.38 (SE) of the THg in the ovaries was present in the embryos. 

VMR assay 

Zebrafish embryos monitored in this assay exhibited a characteristic 

pattern of high and low locomotor output in response to sudden transitions from 

dark to light. The locomotor activity of control 6 dpf zebrafish remained 

unchanged throughout the full duration of the first 20 minute dark period of this 

assay (Figure 3.3). In contrast, all MeHg exposed fish tested had a significantly 
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lower locomotor activity from the beginning of the initial 20 minute dark period to 

its conclusion (n=126 embryos; P<0.001). Furthermore, larvae from the 3ppm 

and 10ppm exposure groups had significantly lower locomotor activity towards 

the second half of both dark periods (n=126 embryos; P<0.001) (Figure 3.3, A). 

Similarly, the startle response was not affected in the first two sudden light 

transitions (dark to light and light to dark) but in the third light transition (dark to 

light) fish from the 3 and 10ppm exposure groups exhibited a significantly lower 

startle response (Figure 3.3, B). 

Analysis of 7 dpf larval zebrafish swimming behavior 

The behavior of 7 dpf zebrafish was characterized by an increase in 

distance travelled, percentage of time active and minimum speed (n=180 

embryos; P<0.001) (Figure 3.4, A C and D), as well as a decreased NGDR 

(n=180 embryos; P<0.001). Maximum speed was significantly decreased in the 3 

and 10ppm exposure groups (P<0.001) (Figure 3.4, F; note the dramatic 

decrease in 95th percentile of maximum speed of 3 and 10ppm exposure 

groups). Active swimming speed was only increased in the 1ppm MeHg treated 

group (n=180 embryos; P<0.001) (Figure 3.4, B).  

Further analysis of the swimming kinematics of the larvae revealed that 

the observed increase in minimum speed was attributable to an increase of up to 

26% in the frequency of slow swimming scoots (Figure 3.5). 
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Routine swimming and prey capture at 8, 12 and 16 dpf 

As observed in 7 dpf fish, the behavior of 8, 12 and 16 dpf zebrafish was 

characterized by increases in % activity (Figure 3.6, A), coupled with decreases 

in NGDR (150 embryos; P<0.001) (Figure 3.6, B). The occurrence of increases in 

activity was particularly noticeable in 16 dpf fish; subtle non-significant decreases 

in NGDR were observed in 8 dpf, however this decrease became much more 

prominent in 12 and 16 dpf fish.  

No brine shrimp nauplii were consumed by 8 dpf zebrafish of any 

exposure group. Some foraging could be observed in 12 dpf fish, though no 

statistical differences between exposure groups were observed in this time point 

(n=6 dishes; P=0.503). Foraging was significantly increased in all MeHg treated 

16 dpf Zebrafish (relative to 12 dpf) but not in the control fish. Not surprisingly, 

prey capture in all MeHg exposed 16 dpf zebrafish was significantly higher than 

the control group (n=6 dishes; P<0.001) (Figure 3.7). 
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Discussion 

MeHg accumulation in tissue 

All of the dietary exposure regimes for G1 fish were within what other 

authors have established to be environmentally relevant (Cambier et al., 2009; 

Hammerschmidt et al., 2002). A dietary exposure of 1ppm of MeHg represents 

what a fish would be exposed to by foraging on benthic invertebrates in low 

alkalinity lakes (Hammerschmidt et al., 2002), while concentrations of 3 and 

10ppm are more relevant to heavily polluted sites, such as those impacted by 

clandestine gold mining in the Amazon basin(Durrieu et al., 2005).It has been 

estimated to be maternal transfer of MeHg to the eggs accounts for 2 to 11% of 

the concentration in the muscle (Latif et al., 2001). Here, we observed a similar 

range of 5 to 10% of THg transfer from the ovaries to the embryos; although our 

study did not quantify THg in muscle tissue, studies in yellow perch (Perca 

flavescens) have demonstrated that THg levels in the muscle are nearly identical 

to those found in the ovary of MeHg exposed females (DeBofsky, unpublished 

work). It is estimated that MeHg causes adverse effects in the behavior of adult 

fish at a toxicological threshold of 0.20ppm (measured in whole body tissue) 

(Wiener et al., 2012). 

VMR assay 

Our experiments showed effects on the intensity of the of the medium and 

high exposure groups (3 and 10ppm MeHg) of 6 dpf zebrafish larvae. These fish 
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manifested lower rates of travel after the second half of both dark periods, as well 

as a lower startle response towards the end of the assay. 

Our results are consistent with a previous experiment that analyzed the C-

start response of developmentally MeHg exposed zebrafish larvae reacting to 

single and multiple mechanical stimuli (Weber, 2006). In this experiment, fish 

exposed to a low concentration of waterborne MeHg (25µg/mg) did not exhibit 

significantly different velocities in response to a single mechanical stimulus or 

several consecutive stimuli (1, 2 or 4 hits per second). However, fish exposed to 

higher doses of MeHg (50 and 75µg/mg) and subjected to repeated stimulation 

had dramatic decreases in maximum velocities by the second or third stimulus. 

It is estimated that MeHg causes adverse effects in the behavior of adult 

fish at a toxicological threshold of 0.20ppm (measured in whole body tissue) 

(Wiener et al., 2012). In our study, the mercury burdens in exposed embryos 

were high enough that the behavioral abnormalities observed could be partly due 

to post-hatch residual MeHg interfering with neuronal ion channels, 

neurotransmitter dynamics or neuronal function, as noted by Weber (2006). 

However, teratogenic effects of prenatal MeHg on the development and function 

of the brain and muscle, are additional putative mechanisms of behavior 

alteration (Ekino et al., 2007). 

Although there is evidence of non-associative learning (habituation) in 

zebrafish larvae (Best et al., 2008; Weber, 2006), it would be an unlikely 

explanation for the gradual reduction in locomotor activity and startle response 

observed in the VMR assay. In such case, our results would suggest that MeHg 
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improves learning, which has been refuted in several studies (Baraldi et al., 

2002; Smith et al., 2010). Furthermore, our spontaneous swimming experiments 

carried out in 7 dpf zebrafish also demonstrated reductions in maximum velocity 

in the 3 and 10ppm MeHg exposure groups in the absence of any sudden visual 

cues (apart from other larvae swimming in the same dish), suggesting that the 

alterations in both assays are most likely attributable to neuromuscular 

anomalies, rather than cognitive. 

The relevance and purpose of the VMR as a survival behavior remains 

debatable, as it has been interpreted as a reaction intended to avoid a looming 

predator (Easter Jr and Nicola, 1996) or, more possibly, a response that reorients 

a larva that has strayed into a shaded environment back into a well lit location 

(Burgess and Granato, 2007). Nevertheless, this assay delivers consistent and 

reproducible results. In addition, similar results were observed in free swimming 

larvae later in development, evidencing the value of the VMR assay as a 

preliminary predictor of how MeHg affects high velocity swimming episodes in 

zebrafish larvae. 

Routine swimming behavior and prey capture (separate swimming from 

prey capture and narrate developmentally) 

Further experiments in 7 dpf zebrafish showed increased rates of travel, 

as well as increases in activity. MeHg exposed larvae exhibited an increased 

frequency of slow scoots and decreased NGDR, both of which are indicative of 

increased activity and turning frequency, respectively. MeHg has been reported 
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to cause both hyperactivity or hypoactivity, depending on dosage as well as the 

developmental stage of exposure, history of previous exposure or synergy with 

other contaminants (Sandheinrich and Miller, 2006; Vitalone et al., 2008). 

Hyperactivity has been reported in mummichogs exposed to MeHg as embryos 

(Weis et al., 1999). Similarly, other studies report that prenatally MeHg exposed 

rat pups showed increased locomotor activity (Daré et al., 2003; Gimenez-Llort et 

al., 2001). 

In contrast, MeHg decreased maximum velocities in free swimming 7 dpf 

zebrafish in the medium and high exposure groups (3 and 10ppm). During 

spontaneous swimming, high speeds are characteristic of a darting motion, which 

larvae typically exhibit as a response to other unexpectedly approaching larvae, 

as zebrafish larvae are known to avoid each other (Pelkowski et al., 2011). As 

with the VMR assay, the observed decreases in high velocities were consistent 

with studies that assessed the startle response of zebrafish and Atlantic croaker 

exposed to MeHg (Alvarez et al., 2006b; Weber, 2006). 

Monitoring of the routine swimming and prey capture of the larvae also 

evidenced continued increases in activity and decreases in NGDR throughout 

early development, from 8 to 16 dpf. Prey capture was also significantly 

increased in MeHg exposed 16 dpf zebrafish larvae. These results are consistent 

with reports that mummichog larvae from polluted sites are initially more active 

and better at prey capture than larvae from clean sites (Weis et al., 1999). 

Remarkably few studies have assessed the effect of specific contaminants 

on the prey capture ability of fish, but the vast majority of these studies have 
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focused on the effects of MeHg in mummichog (Fundulus heteroclitus) (Weis et 

al., 2001; Weis and Weis, 1995a). 

In zebrafish, several researchers have assessed the prey capture 

efficiency of zebrafish eleutheroembryos feeding on paramecia (Bianco et al., 

2011b; Budick and O'Malley, 2000). However, while this approach has 

established the possibility of using prey capture as a relevant endpoint, no 

significant efforts have been made to adopt this experimental paradigm in the 

field of environmental toxicology using the zebrafish as a model. 

Relevance of observed behavioral endpoints in predator-prey dynamics 

The notion of a positive relationship between locomotor output, prey 

capture and predator avoidance has been a common assumption when creating 

simulation models of predator-prey interaction (Alvarez et al., 2006b). This notion 

holds true for our observations of increased frequency of low velocity scoots 

coupled with increased prey capture in zebrafish larvae. Likewise, this increase 

in slow scoot frequency and a reduction in maximum velocities could increase 

the likeliness of attracting predator's attention and reduce the chances of the 

larva to perform a high velocity escape, respectively. It is also important to 

acknowledge that while increased locomotion was implicated in higher prey 

capture in our laboratory setup, this scenario would likely change in the wild, 

where prey is often times more scarce and more challenging to capture. 
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Figures 

 

 

Figure 3.1: Whole life cycle MeHg exposure experimental design 
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Figure 3.1: Whole life cycle MeHg exposure experimental design 

 

Adult zebrafish were fed with MeHg diets (vehicle control, low, medium and high) 

and the MeHg burdens of their offspring (G1) were monitored for 9 weeks. Once 

the treated G1 embryo MeHg burdens spanned levels between 0.01 and 1ppm 

and all pair wise comparisons of MeHg burdens were significantly different (One 

way ANOVA; n=3 samples; P<0.001) the embryos were raised with MeHg diets 

(0, 1, 3 and 10ppm MeHg). Once the fish reached adulthood, they were allowed 

to spawn, after which the MeHg burdens of the G2 embryos were measured. All 

pair wise comparisons of MeHg burdens in the G2 embryos were found to be 

significantly different to each other (One way ANOVA; n=3 samples; P<0.001). 

Since this study was concerned with the behavioral effects of parentally 

transmitted MeHg, the G2 embryos were raised with regular diets (with no added 

MeHg) and monitored for behavioral abnormalities. 
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Figure 3.2: Regression analysis of THg in embryos as a function of THg in 
ovaries 
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Figure 3.2: Regression analysis of THg in embryos as a function of THg in 

ovaries 

THg burdens in embryos had a strong correlation with that of the maternal 

ovaries [Embryo THg = 0.0150 + (0.0797 x Ovary THg), R2=0.954]. 
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Figure 3.3: Parentally transmitted MeHg burdens affect the VMR of 6 dpf 
zebrafish offspring 
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Figure 3.3: Parentally transmitted MeHg burdens affect the VMR of 6 dpf 

zebrafish offspring 

 

(A) Alternating dark and light cycles elicit a characteristic behavioral response in 

zebrafish embryos. There was a significant effect of light and dark conditions on 

the behavior of all exposures tested (Repeated measurements ANOVA; 

P<0.001). The rate of travel (mm/5 minutes) was not affected in the 1ppm MeHg 

exposure group in any of the 5 minute time bins (n=126 fish, P=0.67). However, 

significant decreases in rate of travel could be observed in the second half of 

both dark periods of the VMR of the 3 and 10ppm MeHg exposure groups. (B) 

The startle response was not affected in the first two sudden light transitions 

(dark to light and light to dark) but in the third light transition (dark to light) fish 

from the 3 and 10ppm exposure groups exhibited a significantly lower startle 

response. Black and white bars along the X axis represent dark and light periods, 

respectively. Error bars represent the standard error of the mean (significance 

represented as *p≤0.05; **p≤0.01; ***p≤0.001). 
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Figure 3.4: Effects of parental dietary MeHg on the spontaneous swimming of 7 
dpf zebrafish offspring 
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Figure 3.4: Effects of parental dietary MeHg on the spontaneous swimming 

of 7 dpf zebrafish offspring 

 

Multiple groups of ten 7 dpf zebrafish were recorded and their swimming activity 

was analyzed with a machine vision algorithm. The behavior of MeHg exposed 7 

dpf zebrafish was characterized by increases in overall locomotor output 

reflected by higher rates of travel (A), swimming speed (B), % activity (C) and 

minimum speeds (D). Exposed fish also had less linear swimming trajectories 

exhibited by slight decreases in NGDR (E). Additionally, fish from the two higher 

dose groups had significantly lower maximum velocities (F) (*p≤0.05). 
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Figure 3.5: Maternal dietary MeHg burdens increase the swimming scoot 
frequency of the offspring 
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Figure 3.5: Paternal dietary MeHg burdens increase the swimming scoot 

frequency of the offspring 

 

Zebrafish larvae swim in a series of low velocity “scoots” followed by a glide.  

Parental MeHg caused a significant increase in the scoot frequency of all MeHg 

exposed 7 dpf zebrafish (One way ANOVA; n=180 fish; P<0.001). Solid normal 

curves represent the sample frequency distribution of control fish; dotted curves 

represent MeHg exposed fish. 
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Figure 3.6: Monitoring of routine swimming of 8, 12 and 16 dpf and foraging 
efficiency assay 
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Figure 3.6: Monitoring of routine swimming of 8, 12 and 16 dpf and foraging 

efficiency assay 

 

Zebrafish larvae were monitored throughout three time points to ascertain if 

increased locomotor output and reduced NGDR observed in 7 dpf fish would 

continue from 8 to 16 dpf. All experiments were done 5 minutes prior to a 

foraging efficiency assay. Increases in % activity were observed at 8 and 16 dpf 

(A); NGDR was also reduced at 12 and 16 dpf (B). Moreover, % activity at 16 dpf 

was significantly higher than measured at 8 and 12 dpf (Repeated 

measurements ANOVA, n=150 fish; P<0.001). 
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Figure 3.7: Prey capture is increased by MeHg exposure 
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Figure 3.7: Prey capture is increased by MeHg exposure 

 

Foraging efficiency of larvae was assessed immediately after routine swimming 

monitoring. No foraging was observed in 8 dpf zebrafish (thus, the data is not 

represented in the graph); the first evidence of foraging was seen in 12 dpf fish. 

Foraging significantly increased in all MeHg treated 16 dpf Zebrafish (relative to 

12 dpf) but not in the control fish. Correspondingly, prey capture in all MeHg 

exposed 16 dpf zebrafish was significantly higher than the control group. Error 

bars represent the standard error of the mean (n=6 dishes; P<0.001). 
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Tables 

Table 3.1: G1 diet Hg concentrations and embryo burdens 

Nominal Hg concentration in diet 
(ppm) 

Measured Hg 
concentration in diet 

(ppm) 

Embryo THg burden 
(ppm, wet weight) 

0.0  0.12 ± 0.004 0.005 ± 0.001 
0.5  0.61 ± 0.117 0.024 ± 0.002 
5.0 4.48 ± 0.306 0.212 ± 0.031 
50.0 47.35± 0.618 1.067 ± 0.052 

 
Note: Values are given as the mean ± SE 
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Table 3.2: G2 diet Hg concentrations and embryo burdens 

Nominal diet Hg concentration in diet 
(ppm) 

Measured Hg 
concentration in 

diet (ppm) 

Embryo THg 
burden (ppm, wet 

weight) 

0  0.05 ± 0.014 0.006 ± 0.001 
1  1.11 ± 0.015 0.073 ± 0.001 
3  3.62 ± 0.074 0.187 ± 0.004 

10  11.16 ± 0.365 0.623 ± 0.039 
 
Note: Values are given as the mean ± SE 
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CHAPTER 4: EFFECTS OF EARLY EMBRYONIC MeHg EXPOSURE IN THE 
LOCOMOTION, VISUALMOTOR RESPONSE AND FORAGING OF YELLOW 

PERCH (Perca flavescens) LARVAE 

Abstract 

Yellow perch (Perca flavescens) is a fish species of economical and 

ecological importance in the Great Lakes region. In Lake Michigan, this species 

has faced difficulties with successful recruitment. Low recruitment has been 

widely attributed to overfishing, however very few studies have linked the effect 

of neurotoxic contaminants, such as methylmercury (MeHg), on larval yellow 

perch. Methylmercury is environmentally present in the Great Lakes and its 

neurotoxicity has been shown to affect foraging behavior in exposed fish, as well 

as birds and mammals. Here, we investigated the effect of varying doses of 

MeHg (0, 0.03, 0.1 and 0.3µM) on the light/dark swimming activity, spontaneous 

locomotion and foraging of larval yellow perch. These experiments establish a 

knowledge-base of the effects of MeHg on the larval yellow perch’s basal 

swimming behavior and its response to a fundamental environmental cue: light. 

Furthermore, since food limitation is thought to be one of the main causes of 

larval fish mortality, we also investigated the effects of MeHg on feeding 

behavior. In this study, we observed decreases in locomotor activity in all MeHg 

doses tested, coupled with a significant decrease in prey capture in one of the 

MeHg doses tested (0.1µM). These results suggest a link between MeHg 

exposure, locomotor activity and prey capture success, which in turn could have 

adverse implications for yellow perch population recruitment.  
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Introduction 

Mercury is a widespread and pervasive neurotoxicant found in a variety of 

forms in freshwater and marine ecosystems around the world (Devlin, 2006). 

Among these ecosystems the Great Lakes Basin has been afflicted by a 

widespread mercury contamination that adversely affects the aquatic resources 

of the region (Monson, 2009a). Naturally occurring processes such as volcanic 

eruption can release inorganic mercury into the atmosphere, but it was the onset 

of the industrial revolution that introduced new sources of anthropogenic-derived 

mercury emissions such as fuel combustion, waste incinerators, mining, and 

manufacturing. Among all of the sources of mercury the most numerous and 

largest emitters are coal-fired power plants (Monson 2009). This contaminant 

enters the aquatic ecosystems primarily through atmospheric deposition (Risch 

et al., 2012a), after which microorganisms convert the elemental form of mercury 

into organic molecules. MeHg is reported to be the most abundant organic form 

of mercury and accounts for up to 99% of the total mercury fraction in analyzed 

tissues. Furthermore, the neurotoxicity of this contaminant has been shown to 

affect foraging behavior in exposed fish, as well as birds and mammals. Fish 

begin experiencing adverse effects from MeHg exposure at a tissue 

concentration of 0.2ppm in wet weight (ww) (Wiener, Sandheinrich et al. 2012); 

these effects include impaired swimming, abnormal startle response and 

reproductive effects. 

The Wisconsin Department of Natural Resources (WIDNR) has monitored 

Hg in fish since the early 1970s, and although there are reports of a slow 
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reduction in MeHg in fish tissue, the prevalence of MeHg consumption advisories 

in almost every body of water in the Great Lakes region lingers on (Wiener, 

Sandheinrich et al. 2012). 

Yellow perch (Perca flavescens) play an important role in the near-shore 

ecology of Lake Michigan (Clapp and Dettmers, 2004) and are extremely popular 

with commercial and recreational fishers around the lake (Summit, 2014). 

However, the populations of this important natural resource in Lake Michigan 

have experienced a considerable decrease since 1997. Wilber et al. (2005) 

estimates a decline of 92% of the stock of adult yellow perch in the state of 

Wisconsin, a species that before 1997 represented 85% of the recreational catch 

by number.  

The decline of the yellow perch has been attributed mostly to overfishing, 

(Marsden and Robillard, 2004), introduction of invasive species (Shroyer and 

McComish, 2000) and only partly to poor recruitment, nonetheless little is known 

about the role of environmental neurotoxicants in the yellow perch population 

dynamics, or how contaminants can affect other species of the Great Lakes. A 

deeper understanding on this subject is required to allow fisheries and policy 

makers to consider the putative broader implications of environmental pollutants 

on the Great Lakes ecosystem. 

Concentrations of mercury in yellow perch in the Great Lakes vary 

substantially, with the highest concentrations reported in fish from inland lakes 

(Harris and Bodaly, 1998; Wiener et al., 2012). A recent report by Wiener and 

collaborators (2012), compiled the analyzed MeHg concentrations from different 
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yellow perch tissues, obtained from 691 bodies of water scattered throughout the 

Great Lakes region. Mean whole-body concentrations of mercury in fish from 45 

(6.5%) of these 691 waters equaled or exceeded 0.20 mg/g wet weight, the 

estimated threshold concentration for deleterious effects in fish. Furthermore, 

maximum whole-body concentrations in fish from 151 (22%) of these water 

bodies equaled or exceeded 0.2ppm, reaching up to 2.60ppm wet weight in 

muscle. 

In light of the persistent deleterious concentrations of MeHg in yellow 

perch tissues, this study investigated the effects of MeHg exposure on the 

behavior of yellow perch larvae. Larval yellow perch – as opposed to adults – 

were selected as subject of this study due to the higher sensitivity of developing 

organisms to environmental insults, such as MeHg exposure (Samson and 

Shenker, 2000). Here, we have selected a suite of behavioral endpoints that 

encompass some of the most fundamental behaviors for the survival of fish 

larvae: swimming and capturing prey. Since food limitation in thought to be one 

of the main causes of larval fish mortality in nature (von Herbing and Gallager, 

2000), this study has focused on elucidating a link between MeHg exposure, 

locomotor activity and ultimately prey capture success.   
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Materials and methods 

Yellow perch broodstock and egg husbandry 

All protocols for the care and handling of yellow perch were approved by 

the Institutional Animal Care and Use Committee (IACUC) of the University of 

Wisconsin – Milwaukee. Egg masses were obtained from sexually mature yellow 

perch kept as broodstock in the aquaculture facility of the School of Freshwater 

Sciences (University of Wisconsin-Milwaukee, USA). The eggs were collected 

from fifteen sexually mature yellow perch females (one egg mass per female) 

and then fertilized with the milt of one randomly selected male. The eggs were 

kept in a cooler at a temperature of approximately 10ºC at all times. The fifteen 

fertilized egg masses were then divided into three biological replicates, each one 

pooling eggs from five different progenitor pairs (Figure 4.1); all experiments 

described hereafter were carried out with these three replicate sets of eggs. 

When spawning, yellow perch females extrude up to 40,000 eggs into a 

long and continuous "accordion-folded" strand that is about 4-5cm thick and 

approximately a meter long (Mansueti, 1964). In order to plate these eggs in Petri 

dishes for incubation, the egg masses were cut into small ribbons containing 

roughly ten fertilized eggs each. A total of five ribbons (one from each spawning 

pair) were plated into each Petri dish containing 50mL of E2 embryo medium 

(Figure 4.1) (15mM NaCl, 0.5mM KCl, 1mM MgSO4, 150µM KH2PO4, 50µM 

Na2HPO4, 1mM CaCl2, 0.7mM NaHCO3). The incubation of the eggs was 

initiated at 10ºC and was progressively increased by 1ºC every second day until 
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a final temperature of 20ºC was reached. The E2 embryo medium was changed 

daily throughout the development of the yellow perch larvae. 

Static waterborne MeHg exposure regimes 

In order to mimic maternal MeHg transfer from the ovary to the egg, we 

carried out static waterborne MeHg exposures on newly spawned yellow perch 

eggs (Figure 4.1). Immediately after transferring the egg ribbons to Petri dishes, 

the developing embryos had reached the 128-cell stage (~12 dpf). At this point, 

all of the clean medium was suctioned out of the Petri dishes and quickly 

replaced with 50mL of one of five waterborne MeHg solutions: 0, 0.03, 0.1, 0.3 

and 1µM MeHg (in 0.033% ethanol). Five dishes (each one containing roughly 50 

eggs) were exposed to each solution. The embryos remained in the exposure 

solutions incubated at 10ºC for 20 hours, after which all dishes were rinsed three 

times with fresh 10ºC E2 medium. Once the eggs were thoroughly rinsed, they 

were kept in fresh E2 medium and returned to the incubator; E2 embryo medium 

was exchanged daily. At 14 dpf, the embryos were assisted to hatch by 

vigorously pipetting the eggs in and out of a 25mL pipette, thereafter, chorion 

debris and dead embryos were removed from the dishes and live embryos were 

immediately counted. Once yellow perch embryos initiated spontaneous 

swimming (17 dpf), pools of 10 randomly selected individuals per dose were flash 

frozen in liquid nitrogen (in triplicate) and stored for later analysis of total mercury 

(THg). THg contents in whole embryo tissues were directly analyzed using a 

Direct Mercury Analyzer 80 (DMA-80, Milestone Inc, Shelton CT) as described by 

Basu and collaborators (2009).  
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Analysis of 17 dpf larval yellow perch swimming behavior 

Yellow perch larvae initiate swimming at approximately 17 dpf; at this point 

we initiated behavioral analyses. Commonly, the analysis of locomotor activity is 

carried out both in a dark and lit conditions to account for any possible effects of 

illumination on the behavioral responses of the experimental subjects (Ulhaq, 

Örn et al. 2013). Here, we analyzed the spontaneous swimming activity of 17 dpf 

yellow perch larvae in the dark and in the light for 15 minutes, after a 10 minute 

acclimation period.  

The locomotor activity of the larvae was monitored with a DanioVision 

system (Noldus Information Technology, Leesburg, VA, USA), which consists of 

an enclosed chamber designed to hold a multiple-well plate in which fish larvae 

are imaged. The multiple-well plate is illuminated from underneath with a light 

box capable of emitting infrared (800–950 nm with a peak at860 nm) and visible 

light (430–700 nm).  

The total distance traveled of each fish was analyzed using Ethovision 

software version 8.0 (Noldus Information Technology, Leesburg, VA); individual 

fish were observed in 24-well plates and tracked at a frame rate of 25 frames per 

second (fps). A total of 36 larvae per exposure group were analyzed. 

Visual-motor response assay 

The visual-motor response (VMR) assay has been extensively described 

in the zebrafish as a complex behavioral paradigm that integrates both the visual 

perception and the locomotion of the fish (see chapter 3). The experiment 
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consists of tracking the activity of fish larvae while abruptly changing the light 

intensity in an enclosed observation chamber every 10 to 20 minutes. Zebrafish 

exhibit a robust increase in locomotion when the lights are suddenly turned off 

and, conversely, their locomotor activity decreases when the lights are turned on. 

Here we tested the VMR behavioral paradigm in the yellow perch to determine if 

this approach could prove useful in identifying behavioral alteration in this 

particular fish species.  

For this assay, the yellow perch larvae were acclimated 10 minutes in the 

dark, after which they underwent two cycles of alternating 10 minute light and 

dark periods (for a total of 50 min). The monitoring of the activity of the yellow 

perch larvae was performed with a DanioVision system and the locomotor data 

was analyzed with Ethovision software version 8.0 (Noldus Information 

Technology, Leesburg, VA), as described previously. 

Routine swimming and prey capture at 25 dpf larvae 

The swimming performance of the larval yellow perch was once again 

monitored at 25 dpf prior to prey capture assessment. In order to do this, a 

custom-made behavior observation chamber was built. The apparatus consisted 

of a manifold holding two Logitech C920 web cameras pointing downwards into a 

Plexiglas tray, over which two Petri dishes could be placed. Underneath the 

apparatus, a flat 22” Acer P221W computer monitor was used as a light source, 

which provided 58 lux of constant illumination; a sheet of velum paper was used 

as a diffusing filter. In order to block extraneous light and visual stimuli, the whole 
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apparatus was surrounded by a custom made black polyethylene enclosure. All 

video recordings were streamed to a remote computer at a resolution of 960x720 

and a frame rate of 30 fps using the MATLAB image acquisition toolbox. 

At 9:00am, on the day of the analysis, 30 larvae were transferred to 10cm 

diameter glass Petri dishes containing 50mL of 20°C E2 embryo medium. Yellow 

perch larvae are extremely fragile and can be easily damaged even when 

handled with care; while 30 individuals were transferred to dishes, approximately 

5 larvae were expected to die within the following 3 hours. At 12:00pm any dead 

larvae were removed and replaced. The dish was then transferred to the 

recording chamber and the fish were allowed to acclimate for 5 minutes, after 

which they were recorded for 10 minutes. All recordings were carried out from 

12:00pm to 7:00pm.  

A 30 second fragment was randomly selected from the 10 minute clips to 

analyze the spontaneous swimming of the larvae. The video clips were converted 

from 30 fps to 6 fps to facilitate manual frame-by-frame analysis of the footage. 

The analysis of locomotor of the larvae activity was performed with the Manual 

Tracking ImageJ plugin (Figure 4.2) (Fabrice Cordelières, Institut Curie, Orsay, 

France). 

Immediately after the recording of routine swimming, foraging efficiency 

was measured by introducing 5 Artemia nauplii per fish (i.e. 30 fish per dish, 

foraging on 150 nauplii) into the Petri dish. The larvae were allowed to feed for 

10 minutes, after which the remaining nauplii were counted. 
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Data processing and statistical analysis 

Statistical analyses were conducted with SigmaPlot software version 11.0 

[Systat Software, San Jose CA, USA, (www.sigmaplot.com)]. All data was tested 

for normality; multiple pair-wise comparisons were carried out with the Holm-

Sidak method whenever the data passed the normality test, if not, the data was 

ranked and pair-wise comparisons were done with Dunn’s method. Measured 

concentrations of THg in the embryos were log transformed prior to statistical 

analysis with one-way ANOVA due to the 3 to 12 fold differences between 

exposure groups. 
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Results 

THg burdens in yellow perch embryos significantly increased as a function 

of MeHg exposure (0, 0.03, 0.10, 0.30 and 1.00µM). All THg burdens were 

statistically different from each other (n=3 samples; P<0.001). From all the 

exposure regimes tested, only 1µM of acute waterborne MeHg exposure caused 

a significant decrease in post-hatch survival (n=15 dishes; P<0.001). Since this 

study was concerned with sublethal effects of MeHg exposure, the surviving 

embryos from the 1µM MeHg exposure group was not utilized in further 

behavioral analyses (Table 4.1). 

Yellow perch of all exposure groups tested in the light exhibited a strong 

increase in locomotor activity compared to the groups tested in the dark (n=92 

fish, P<0.001). All MeHg exposed larvae exhibited lower locomotor activity 

relative to control in the light (n=92 fish, P<0.001), however no statistical 

differences were tested between exposure groups recorded in the dark (Figure 

4.3). 

Contrary to the behavioral responses observed in zebrafish 

eleutheroembryos subjected to the VMR assay (See chapter 3), yellow perch 

larvae respond to this assay with increased locomotion when the lights are 

turned on and decreased locomotion when the lights are turned off. Throughout 

the experiment, a slight increase in locomotor activity was observed in the 

0.03µM MeHg exposure group relative to the controls; however, this trend was 

not significant. Similarly, there was also a non-significant decrease in locomotor 
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activity in the 0.10µM MeHg exposed larvae. During the last light period of the 

VMR assay the 0.03µM MeHg larvae swam statistically more than the 0.10µM 

MeHg group (Figure 4.4). When accounting for the total locomotor output 

throughout the whole experiment, the 0.03µM MeHg larvae were statistically 

more active than the 0.10µM MeHg group, but no MeHg exposure group was 

significantly different to the control (data not shown). 

As observed in 17 dpf larvae, yellow perch larvae exposed to all MeHg 

concentrations tested continued having decreased locomotor activity (n=120 fish, 

P<0.05); the lowest locomotor activity was observed in the 0.10µM MeHg 

exposure group, along with a higher NGDR (Figure 4.5). Similarly, the average 

prey capture was decreased in all exposure groups but only significantly in the 

0.10µM MeHg exposure group (n=4 dishes, P<0.05) (Figure 4.6).  
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Discussion 

It is estimated that MeHg causes adverse effects in the behavior of adult 

fish at a toxicological threshold of 0.20ppm (measured in whole body tissue) 

(Wiener, Sandheinrich et al. 2012). In our study,  the lowest dose of acute 

waterborne MeHg (0.03µM) resulted in an embryo body burden equal to this 

threshold, all other doses were well above this threshold, however they were 

comparable to other reported THg burdens in whole zebrafish embryos spawned 

by parents fed with a diet containing environmentally relevant concentrations of 

MeHg (Table 3.2).  

To date, most behavioral work has been carried out in widely-utilized fish 

models such as the zebrafish, medaka, or goldfish, to name a few (Kalueff et al., 

2013; Oshima et al., 2003; Saglio and Trijasse, 1998). However the application of 

novel methods to analyze behavior has allowed us to analyze behavior in the 

yellow perch, a non-model species.  

When analyzing the VMR paradigm, the yellow perch exhibit a very 

different reaction to light intensity to that observed in zebrafish (MacPhail et al., 

2009). Zebrafish are reported to exhibit lower locomotor activity in the light than 

in the dark; in the case of the yellow perch, their locomotion reaches a maximum 

in well-lit conditions. This response is presumably due to the strong phototactic 

behavior of this species early in development (Dr. Fred Binkowski, University of 

Wisconsin – Milwaukee, personal communication).  

Yellow perch exhibited a characteristic increase/decrease of locomotion in 

response to abrupt light changes in the VMR assay; however the variation 
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between individuals was so great that it is difficult to draw conclusions about 

neurotoxic effects from this particular behavioral paradigm. Although this issue 

could be addressed by increasing the number of individuals per trial, the VMR 

assay requires roughly one hour to evaluate 24 individuals (one larva per well in 

a 24-well plate) which reduces the throughput of the experiment. This is 

particularly unpractical when dealing with a fish species that only spawns a once 

per year. Despite these drawbacks, a preliminary notion of lower locomotor 

activity in the 0.10µM MeHg exposure group could be inferred. This notion was 

confirmed later in 25 dpf fish in further locomotion and prey capture assays. 

The swimming and prey capture experiments in 25 dpf larvae were done 

consecutively to assess if there was a relationship between locomotor output and 

prey capture, as it has observed previously in zebrafish (see chapter 3). All 

MeHg dosed individuals tested in the spontaneous swimming experiment 

exhibited lower locomotor output, as it had been observed at 17 dpf. 

Furthermore, prey capture was also significantly reduced in the 0.10µM MeHg 

exposed larvae; interestingly this same cohort performed poorly in the VSR 

assay, suggesting that this assay could have had good predictive value if the 

number of individuals tested would have been higher. Moreover, the notion of a 

positive relationship between locomotor output and prey capture is a common 

assumption when creating simulation models of predator-prey interaction 

(Alvarez, Murphy et al. 2006). This notion held true for our observations of 

hypoactivity coupled with decreased prey capture in yellow perch larvae. 
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Remarkably few studies have assessed the effect of specific contaminants 

on the prey capture ability of fish, all of these stemming from a single research 

group that has focused on the effects of MeHg in mummichog (Fundulus 

heteroclitus; Weis and Weis 1995; Weis, Smith et al. 2001). Our study 

contributes to the understanding of how MeHg affects fundamental survival skills 

in wild fish population. Overall, the observed concentrations of Hg in the tissue of 

yellow perch in this study were relatively high. It has been estimated that yellow 

perch eggs have mercury concentrations that are equivalent to roughly 2% of the 

mercury burdens in the maternal carcass (Hammerschmidt et al., 1999). This 

being said, if we consider a realistic concentration of 1-2ppm in yellow perch 

carcasses; one would expect concentrations of 0.02-0.04ppm in the eggs, which 

is one order of magnitude below our observed THg concentrations in the lowest 

MeHg dose of our assay (0.2ppm). In this context, the value of our study lies in 

the fact that it is the first to expose yellow perch eggs to MeHg in laboratory 

controlled conditions and measure Hg burdens in tissues of larvae as a function 

of MeHg exposure concentrations, thus establishing precedence for further 

studies to be carried out. This is not to discredit the observed behavioral effects 

in yellow perch; this study elucidated effects even at the lowest MeHg doses 

tested, therefore it is likely that effects would still be observed if the exposure 

concentrations are lowered.  
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Figures 

 

Figure 4.1: Yellow perch MeHg exposure assay 
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Figure 4.1: Yellow perch MeHg exposure assay 

Five yellow perch spawning pairs were spawned; this rendered five egg masses 

which were then cut into ribbons, each ribbon containing roughly 10 eggs. The 

ribbons were then pooled and plated into Petri dishes, each dish containing 50 

eggs (10 from each egg mass). Once inside of the Petri dishes, the eggs were 

exposed to five concentrations of waterborne MeHg (0, 0.03, 0.1, 0.3 and 1µM). 

This whole procedure was carried out in triplicate. 
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Figure 4.2: Individual trajectory traces from a group of free swimming 25 dpf 
yellow perch larvae 
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Figure 4.2: Individual trajectory traces from a group of free swimming 25 

dpf yellow perch larvae 

(A) Composite image of 30 seconds of yellow perch locomotion rendered with the 

ImageJ Z project, (B) individual traces from yellow perch embryos obtained with 

manual tracking. Notice the accuracy of the manual tracking as compared to the 

composite image. 
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Figure 4.3: Comparison of locomotor activity in 17 dpf yellow perch exposed to 
MeHg and tested in two different lighting conditions 
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Figure 4.3: Comparison of locomotor activity in 17 dpf yellow perch 

exposed to MeHg and tested in two different lighting conditions 

 

Yellow perch of all exposure groups tested in the light exhibited a strong increase 

in locomotor activity compared to the groups tested in the dark (n=92 fish, 

P<0.001). All MeHg exposed larvae exhibited lower locomotor activity relative to 

control in the light (n=92 fish, P<0.001), however no statistical differences were 

tested between exposure groups recorded in the dark. 
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Figure 4.4: Locomotor output of 21 dpf yellow perch throughout the VMR assay 
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Figure 4.4: Locomotor output of 21 dpf yellow perch throughout the VMR 

assay 

 

Throughout the experiment, a slight non-significant increase in locomotor activity 

was observed in the 0.03µM MeHg exposure group relative to the controls, but it 

was not significant. Similarly, there was also a non-significant decrease in 

locomotor activity in the 0.10µM MeHg exposed larvae. During the last light 

period of the VMR assay the 0.03µM MeHg larvae swam statistically more than 

the 0.10µM MeHg group. 
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Figure 4.5: Locomotor output of 25 dpf yellow perch prior to prey capture assay 
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Figure 4.5: Locomotor output of 25 dpf yellow perch prior to prey capture 

assay 

 

Multiple groups of 25 dpf yellow perch were recorded and their swimming activity 

was analyzed with a machine vision algorithm. The behavior of MeHg exposed 

25 dpf yellow perch was characterized by decreases in overall locomotor output 

reflected by lower rates of travel (A). Swimming speed (B) was not significantly 

affected; however % activity (C) mirrored the rate of travel results. Exposed fish 

also had more linear swimming trajectories exhibited by increases in NGDR in 

0.1µM MeHg exposed fish (D). Maximum speed (E) was not significantly 

affected. 
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Figure 4.6: Locomotor activity and prey capture efficiency of 25 dpf yellow perch 
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Figure 4.6: Locomotor activity and prey capture efficiency of 25 dpf yellow 

perch 

 

(A) Yellow perch larvae exposed to all MeHg exhibited decreased locomotor 

activity (n=120 fish, P<0.05); the lowest locomotor activity was observed in the 

0.10µM MeHg exposure group. (B) Similarly, the average prey capture was 

decreased in all exposure groups but only significantly in the 0.10µM MeHg 

exposure group (n=4 dishes, P<0.05). 
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Tables 

Table 4.1: THg concentrations and post-hatch mortality of 14 dpf yellow perch 
embryos 

 
MeHg exposure 

concentration (µM) 
THg in whole embryo tissue 

(ppm) 
Post-hatch survival 

0.00 0.02 ± 0.01a 57.33 ± 3.48a 

0.03 0.21 ± 0.11b 53.27 ± 1.94a 

0.10 0.95 ± 0.12c 50.53 ± 2.94a 

0.30 3.14 ± 0.67d 50.00 ± 3.32a 

1.00 14.93 ± 2.68e 25.33 ± 3.36b 
   ANOVA   

F 55.717 16.996 

P <0.001 <0.001 

 

Note: Values are given as the mean ± SE 
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CHAPTER 5: GENE EXPRESSION ALTERATION ASSOCIATED WITH EARLY 
EMBRYONIC MeHg EXPOSURE IN YELLOW PERCH (Perca flavescens) AND 

ZEBRAFISH (Danio rerio) LARVAE 

Abstract 

Methylmercury (MeHg) is an environmental neurotoxicant known to cause 

adverse effects in fish such as locomotor abnormalities, visual deficits or 

teratogenesis. Although there have been studies assessing the effects of MeHg 

in the gene expression of various fish species, little known about the molecular 

and physiological responses to MeHg in the yellow perch (Perca flavescens), a 

species of ecological and economical relevance to the North American Great 

Lakes that has faced population declines over the last 25 years.  

The objective of this study was to carry out comparative gene expression 

analysis in yellow perch and zebrafish embryos to identify common biomarkers of 

MeHg exposure between the two species. In order to do this, we recreated 

environmentally realistic MeHg exposure assays in developing yellow perch and 

zebrafish embryos and then we quantified changes in gene expression. The 

power of the zebrafish model enabled us carry out high-throughput 

toxicogenomics to simultaneously identify multiple putative biomarkers of MeHg 

exposure that were later individually quantified in yellow perch by means of 

quantitative polymerase chain reaction (qPCR). 

The high throughput analysis of gene expression in zebrafish revealed 

significant effects in pathways associated with neurodevelopment and behavior, 

such as circadian rhythm, response to light stimuli, photoperiodism, visual 

phototransduction, p53 signaling pathway, glutamate receptor activity, axon 
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guidance, brain development, transmission of nerve impulse, glutamate receptor 

activity, ataxia, autism and seizures. 

Few MeHg exposure biomarker genes for yellow perch were evaluated 

here; however, two genes were significantly down regulated in both species, one 

involved in circadian rhythm (per3), the other in astrocytic glutamate uptake 

(slc1a2a). The parallelism of these results in two evolutionarily divergent species 

of fish suggests a robust effect of MeHg in the aforementioned pathways. 
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Introduction 

Mercury is a neurotoxic heavy metal; it is incorporated into aquatic 

environments mainly by means of atmospheric deposition (Risch et al., 2012a) 

after which anaerobic bacteria metabolize mercury into methylmercury (MeHg; 

Bloom, 1992). This MeHg can undergo trophic transfer and it is progressively 

concentrated by each level of the food chain through the processes of 

bioaccumulation and biomagnification (Mason et al., 1995). Because of this, 

organisms that are high in the food chain (e.g. piscivorous fish, mammals and 

humans) are more susceptible to accumulate critical MeHg concentrations that 

can cause harmful effects such as locomotor abnormalities (Alvarez et al., 

2006a), visual deficits (Weber et al., 2008) or teratogenesis (Samson and 

Shenker, 2000). The pervasiveness and persistence of this contaminant has 

resulted in being cataloged as one of the major contaminants causing 

consumption advisories in most of the freshwater systems in North America 

(Bhavsar et al., 2010), including the North American Great Lakes (Sandheinrich 

et al., 2011). 

Although there is a precedence of studies that have assessed the effects 

of MeHg in the gene expression of zebrafish (Gonzalez et al., 2005; Ho et al., 

2013), fathead minnow (Klaper et al., 2008); and rainbow trout (Liu et al., 2013), 

there is little known about the molecular responses to MeHg in the yellow perch 

(Pierron et al., 2009), a species of ecological and economical relevance to the 

North American Great Lakes that has faced population declines over the last 25 

years (Marsden and Robillard, 2004). 
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Very few studies have addressed the issue of MeHg accumulation and 

adverse effects in yellow perch. However, there is a known linear relationship 

between maternal MeHg burdens and MeHg concentrations in the eggs of yellow 

perch (Hammerschmidt et al., 1999). Although small, this maternal MeHg transfer 

can adversely affect the offspring, due to the inherent sensitivity of developing 

embryos to environmental insults (Samson and Shenker, 2000). 

The objective of this study was to carry out comparative gene expression 

analysis in yellow perch and zebrafish embryos to identify common biomarkers of 

MeHg exposure. The zebrafish was chosen as a surrogate model for yellow 

perch due to its ease of rearing, fully sequenced genome, and its status as an 

NIH supported model organism (Kalueff et al., 2014). The power of the zebrafish 

model enables us carry out high-throughput toxicogenomics to simultaneously 

identify multiple biomarkers of MeHg exposure that can later be individually 

quantified in yellow perch by means of quantitative polymerase chain reaction 

(qPCR). 

Here, we mimicked environmental MeHg exposure to developing fish 

embryos in the laboratory. Yellow perch embryos were exposed to aqueous 

solutions of MeHg at roughly the 128-cell stage (~12 hpf), mimicking the early 

MeHg transfer from the maternal ovary to the eggs; zebrafish, on the other hand, 

were exposed to a full life-cycle MeHg dietary regime and then spawned, so as to 

quantify gene expression in their offspring. 
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The aforementioned approach does not only ensure environmentally 

realistic exposure regimes, but also ensures comparable exposure regimes and 

developmental stages while working with two very different fish species. 
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Materials and methods 

Experimental organisms and tissue collection 

All zebrafish and yellow perch were reared and experiments performed in 

the School of Freshwater Sciences in compliance with the Institutional Animal 

Care and Use Committee (IACUC) of the University of Wisconsin – Milwaukee. 

Embryos form each of the fish species were collected at the onset of 

spontaneous locomotor activity (5 dpf in zebrafish, 17 dpf in yellow perch). Since 

the husbandry and handling of the two fish species were performed as two 

independent experiments, the procedures for each will be discussed separately 

below. 

Zebrafish: 5 dpf embryos were collected from four populations of parents 

that were subjected to a whole life-cycle exposure to dietary MeHg at nominal 

concentrations of 0, 1, 3 or 10ppm (see materials and methods section in chapter 

3). For each of these MeHg-exposed parental populations, 5 embryos were 

pooled into 1.7-ml microcentrifuge tubes (MidSci, St. Louis, MO), each containing 

200µl of RNA later (Qiagen, Hilden, Germany), flash frozen in liquid nitrogen and 

stored at −80ºC until samples were needed. This was performed in triplicate for 

each of the MeHg doses tested. 

Yellow perch: newly spawned eggs (128-cell stage; ~12 hpf) were reared 

for 24 hours in solutions prepared at nominal concentrations of 0, 0.03, 0.1 and 

0.3µM of MeHg (all solutions prepared with E2 embryo medium; 0.033% ethanol 

as vehicle), after which the embryos were rinsed three times with E2 embryo 
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medium (see materials and methods section in chapter 4). Once the embryos 

reached 17 dpf, 8 embryos from each exposure group were individually 

transferred into 0.2ml PCR strip tubes, each containing 100µl of RNA later, flash 

frozen in liquid nitrogen and stored at −80ºC, as described above. This procedure 

was performed in triplicate. 

RNA Isolation and quality assurance 

RNA was isolated from zebrafish embryo pools and from individual yellow 

perch whole-embryo tissue using the Direct-zol RNA MiniPrep kit (Zymo 

Research, Irving, CA), according to manufacturer’s instructions. Tissues were 

homogenized on ice in 200µl of Direct-zol reagent (Zymo Research) in 1.7-ml 

microcentrifuge tubes, using a sterile micropestle (MidSci) and running the 

homogenate through a 27-gauge needle (BD Biosciences, Franklin Lakes, NJ). 

RNA quantity and quality were assessed using a NanoDrop ND1000 

spectrophotometer (Thermo Fisher Scientific, Wilmington, DE), and a 2100 

Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA) (Appendices 12 and 

13).  

Illumina TruSeq RNA Library Preparation and Sequencing of zebrafish RNA 

Construction and sequencing of RNA libraries was completed by the 

University of Wisconsin-Madison Biotechnology Center; all zebrafish RNA 

samples submitted yielded an average of 2.04 ± 0.19µg (average ± standard 

error) of total RNA per pool of 5 embryos, with a RIN value of 9.19 ± 0.24. Each 

RNA library was generated using a paired-end approach following the Illumina 
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“TruSeq RNA Sample Preparation Guide” and the Illumina TruSeq RNA Sample 

Preparation Kit (Illumina Inc., San Diego, CA).. Quality and quantity of finished 

libraries were assessed using an Agilent DNA1000 series chip assay and 

Invitrogen Qubit HS Kit (Invitrogen, Carlsbad, CA), respectively. Each library was 

standardized to 2μM. Cluster generation was performed using a TruSeq Single 

Read Cluster Kit (v3) and the Illumina cBot, with libraries multiplexed for paired 

end 100bp sequencing using the TruSeq 100bp SBS kit (v3) and HCS1.6 

software, on an Illumina HiSeq2000.  

RNA-Seq data analysis 

All bioinformatics procedures and analyses were performed by the 

University of Wisconsin-Milwaukee Laboratory for Public Health Informatics and 

Genomics (LPHIG). Adapters and low quality bases were removed from the initial 

2x101bp Illumina TruSeq and trimmed using Cutadapt (Martin, 2011). Illumina 

TruSeq Adapters were removed as prescribed by the Cutadapt manual, using an 

error rate of 10% and a minimum overlap between the read and the adapter of 

five nucleotide bases. To alleviate sequencing-related GC biases at the 5’ end of 

each read, the first seven bases were removed from all forward and reverse 

strand reads. FastQC (Andrews, 2010) was used to ensure that cleaned reads 

were of higher quality than initial raw reads supplied by the sequencer; per-base 

GC% and over-represented sequence statistics also confirmed adapter 

contamination was minimized.  
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The cleaned reads for each sample were independently aligned to the 

reference zebrafish genome (Zv9, UCSC) using TopHat (v. 2.0.11) (Kim et al., 

2013; Trapnell et al., 2009). The alignment output from TopHat was converted 

into a transcriptome using Cufflinks (v. 2.2.1), with the Zv9 Gene Transfer Format 

(GTF) as a guide; a mate-pair-distance of 0 and a maximum of 2 mismatches 

bases per alignment was used. Alignment data was confirmed using RNAseQC 

(DeLuca et al., 2012) against the Zv9 reference transcriptome. Using these 

alignments, an embryo-specific transcriptome was assembled using Cufflinks 

(Trapnell et al., 2012), with the Zv9 transcriptome as a reference to correct 

fragment biases by better identifying the start/end point of each exon (Roberts et 

al., 2011). The transcriptome from each sample was then merged together into a 

single embryo transcriptome using Cuffmerge. Differential expression was 

conducted with Cuffdiff using pooled dispersion, geometric normalization, and the 

merged embryo transcriptome; TopHat alignments were grouped using MeHg 

exposure levels. A summary of the steps employed to analyze the RNA-seq data 

are reviewed in Figure 5.1. 

Gene ontology (GO) and KEGG enrichment analysis was performed using 

WEB-based GEne SeT AnaLysis Toolkit (WebGESTALT; (Zhang et al., 2005). In 

order to visualize differentially expressed genes, a heat map was generated 

using GenePattern (Reich et al., 2006), with hierarchical clustering of genes 

based on Pearson Correlations. 

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was 

then performed to identify enrichment in gene sets specifically associated with 
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neuronal development, cognitive function, behavior and abnormal neurological 

phenotypes as described by Thomas and collaborators (2012). All dysregulated 

genes for each MeHg treatment were arranged into individual RNK files in 

descending order, according to their log2(fold change) as indicated by the official 

GSEA web page (www.broadinstitute.org). These RNK files were run against two 

custom gene set collections containing gene sets associated with neurological 

processes and phenotypes. The first collection was based the version 5.0 of the 

“c2: curated gene sets” and the “c5: gene ontology (GO) gene sets”, available for 

download in the GSEA official web page; the second collection was based on 

gene sets downloaded from the Human Phenotype Ontology web page 

(www.human-phenotype-ontology.org). Gene set enrichment analysis was 

performed with the GSEApreranked algorithm included in the GenePattern suite. 

Selection of biomarkers of MeHg exposure for yellow perch 

Biomarkers of MeHg exposure for yellow perch were selected from the 

information gathered by differential gene expression analysis in zebrafish. A list 

of potential MeHg biomarkers of exposure was populated by selecting genes that 

gathered the following criteria: 1) the gene must have been differentially 

expressed (q value ≤ 0.05), preferably in at least two of the three MeHg exposure 

concentrations tested in zebrafish (1, 3 and 10ppm MeHg), 2) the differentially 

expressed genes must have a known involvement in biological pathways that is 

congruent with MeHg neurotoxicity (e.g. neurological processes and 

phenotypes), 3) the genes selected must preferably have an ortholog in yellow 

perch that has been sequenced and published, if not, the gene must have a 



114 

 

 

sufficient wealth of published ortholog sequences in other teleost fishes to allow 

for primer design from mRNA or protein alignment of conserved regions of the 

gene. Based on these criteria, the following genes were selected as potential 

biomarkers of MeHg exposure in our paradigm: cry1a, per3, slc1a2a, prkacbb, 

and opn1lw. 

cry1a and per3 are both involved in circadian rhythm, cry1a is also 

involved in the oxidative stress response (KEGG) and DNA repair; slc1a2a is 

associated with astrocytic glutamate uptake; prkacbb is required in the calcium 

and insulin signaling pathway and in the hedgehog signaling pathway (KEGG); 

opn1lw is associated with visual phototransduction. Additionally, three genes 

were selected as internal reference genes for quantitative reverse transcription 

PCR (RT-qPCR): elongation factor 1a (ef1a), elongation factor 2 (ef2), and 

ribosomal protein L13a (l31a). These reference genes have been utilized 

successfully in RT-qPCR assays in yellow perch (Pierce et al., 2013), 

furthermore they were confirmed to not be significantly affected by MeHg 

exposure in our zebrafish assay. 

RT-qPCR primer design for yellow perch 

All primers described hereafter were synthesized by Integrated DNA 

Technologies, Inc., (IDT; Coralville, IA) and purified by standard desalting.  

Primers for cry1a were designed from a yellow perch mRNA sequence 

retrieved from the NCBI database (accession number: HQ206616.1) using the 
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NCBI web-based PrimerBlast software (Integrated DNA Technologies Inc., 

Coralville, IA, USA).  

Primers for prkacbb were designed from sequence alignments of mRNA 

from Atlantic salmon (Salmo salar; BT059675.1), rainbow trout (Oncorhynchus 

mykiss; NM_001124589.1) and zebrafish (NM_001034976.1); mRNA sequences 

were aligned with the CLC Sequence Viewer v7 software (Qiagen, Hilden, 

Germany), then the alignment file was then used as input for the PriFi primer 

design tool (Fredslund et al., 2005). 

For per3, slc1a2a and opn1lw, degenerate primers were first designed by 

creating protein alignments from common carp (Cyprinus carpio), goldfish 

(Carassius auratus), guppy (Poecilia reticulata), medaka, (Oryzias latipes), 

Mexican tetra (Astyanax mexicanus), Senegalese sole (Solea senegalensis), 

three-spined stickleback (Gasterosteus aculeatus), torafugu (Takifugu rubripes) 

and zebrafish (Appendix 15). Conserved amino acid “blocks” in the protein 

alignment were identified with the Bookmaker software (www.blocks.fhcrc.org) 

and then utilized for degenerate primer design using the “COnsensus-

DEgenerate Hybrid Oligonucleotide Primers” (CODEHOP) program (Rose et al., 

2003). Standard PCR was then carried out with the degenerate primers 

(Appendix 16) along with control larval yellow perch cDNA, the amplicons were 

then sequenced at the Great Lakes Genomics Center (University of Wisconsin – 

Milwaukee) following standard Sanger sequencing in a 3730 Analyzer (Thermo 

Fisher Scientific, Waltham, MA). These amplicon sequences were then “blasted” 

with the NCBI nucleotide-BLAST algorithm to verify their identity. Upon 
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confirming that the sequences of the PCR amplicons were congruent with the 

sequences of the expected genes, nested RT-qPCR primers were designed from 

the newly obtained yellow perch sequences utilizing PrimerBlast. 

Primer optimization for RT-qPCR 

For each primer pair, a PCR reaction was performed at eight different 

annealing temperatures (53.0ºC, 53.5ºC, 54.3ºC, 55.7ºC, 57.3ºC, 58.6ºC, 59.5ºC 

and 60ºC), and products were run on a 1.5% agarose gel in order to confirm PCR 

product size and visualize any potential off-target results; this also allowed for 

confirmation of an optimal annealing temperature across all primer pairs. 

The PCR efficiency for all selected primer pairs was evaluated using a 

standard dilution series. RNA extracted from 5 control samples (5 unexposed 

yellow perch larvae; 17 dpf) was pooled. Then, 1µg of RNA was converted to 

cDNA using the RTTM Master Mix (Lamda Biotech, St. Louis, MO, USA) per the 

manufacturer’s protocol, to create a standard dilution series ranging from 0.12 to 

30ng/µl. Thereafter, two-step RT-qPCR was completed using EvaGreen qPCR 

Master Mix (MidSci, St. Louis, MO, USA), according to the manufacturer’s 

instructions (8ng cDNA per reaction; 12µl reaction volumes) and a StepOne Plus 

real-time qPCR instrument (950C [10 minutes]; 95oC [30 seconds], 57.3oC [40 

seconds], 72oC [40 seconds] for 40 cycles; 95oC [15 seconds], 60oC [60 

seconds], and 95oC [15 seconds]). An efficiency of 90-110% was considered 

satisfactory. All RT-qPCR reactions were carried out in triplicate. Melting-curve 

analysis was employed to confirm the amplification of a single product. 
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Yellow perch RT-qPCR 

Each yellow perch whole-embryo tissue sample rendered 1.78 ± 0.05µg of 

total RNA, with a RIN value of 9.0 ± 0.06 (Appendix 12). RNA samples (250-

500ng) were treated with RQ1 RNAse-Free DNAse (Promega Corporation, 

Madison, WI) to eliminate possible contaminating DNA prior to downstream 

applications, and then converted to cDNA using the RTTM Master Mix. 

Relative quantification of gene expression was measured in 8 yellow 

perch larvae per MeHg exposure group, with each sample run in triplicate and 

each plate containing all three normalizer genes (elongation factor 1a [ef1a], 

elongation factor 2 [ef2], and ribosomal protein L13a [l31a].  

RT-qPCR was performed using the StepOne Plus real-time qPCR 

instrument (Life Technologies Corp., Carlsbad, CA; cycle conditions: 950C [10 

minutes]; 95oC [30 seconds], 57.3oC [40 seconds], 72oC [40 seconds] for 40 

cycles; 95oC [15 seconds], 60oC [60 seconds], and 95oC [15 seconds]), using 

EvaGreen qPCR Master Mix and gene-specific primers (8ng RNA per reaction; 

12µl reaction volumes).  

RT-qPCR data was analyzed using the qBase algorithm via 

StepOnePlus software (version 2.3). Each resultant normalized relative 

quantity (NRQ) was then calibrated to the individual sample with the lowest 

normalized quantity mean (i.e., lowest level of target gene expression; NRQ =1) 

for each target gene. RT-qPCR fold changes were calculated as the ratio of 

average NRQ values among treatment and control groups [2].  Calibrated NRQ 
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values were analyzed via individual one-way analysis of variance (ANOVA) tests 

to evaluate the differences in target gene expression in treated versus control 

groups.  Tukey’s multiple-comparison tests were used if statistical significance 

was observed. All statistical analyses were conducted using SigmaPlot 11 

(Systat Software, Inc., Chicago, IL, USA) with P<0.05 considered to be 

statistically significant.  
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Results 

Zebrafish whole-embryo RNA-Seq 

Transcriptomic analysis by RNA-seq in the offspring of zebrafish exposed 

to dietary MeHg throughout their whole-life revealed a total of 345 unique genes 

that were significantly dysregulated in treated zebrafish embryos (q ≤ 0.05), out 

of which, 65 genes were dysregulated in the 1ppm exposure group, 227 genes in 

the 3ppm exposure group, and 208 genes in the 10ppm exposure group (Figure 

5.2, Appendices 4-9). 

Among the top 15 significantly enriched (p≤0.05) gene ontology (GO) 

terms for biological processes (Table 5.1), several were associated with 

pathways that affect behavior and interaction with the environment such as 

response to abiotic stimulus, response to radiation, photoperiodism, circadian 

rhythm and rhythmic process; additionally, there was significant enrichment in 

pathways associated with response to oxidative stress (p = 0.007) and response 

to stress (p = 0.0416) (Appendix 10). KEGG enrichment analysis confirmed 

significant effects (p≤0.05) in pathways associated with circadian rhythm, as well 

as with ABC transporters, p53 signaling pathway and cell cycle (Table 5.2). 

Phenotype enrichment analysis elucidated significant effects in pathways 

involved in visual and behavioral phenotypes, such as photophobia, night 

blindness, and intermittent cerebellar ataxia (p≤0.05) (Table 5.3). 

Further analysis performed with GSEA confirmed significant enrichment in 

pathways relevant to neurodevelopment and behavior, such as axon guidance, 
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brain development, transmission of nerve impulse, glutamate receptor activity, 

ataxia, autism and seizures (Tables 5.4 – 5.7, Appendix 11). 

Yellow Perch RT-qPCR 

RT-qPCR was used to compare effects of MeHg exposure on transcript 

abundance in yellow perch embryos. Target genes were selected as putative 

biomarkers of MeHg exposure, based on information gathered from RNA-seq 

performed in MeHg exposed zebrafish embryos. Five genes were analyzed 

(cry1a, per3, slc1a2a, prkacbb and opn1lw), targeting key pathways observed to 

have been dysregulated in the zebrafish, namely circadian rhythm, oxidative 

stress, astrocytic glutamate uptake and visual phototransduction (Appendix 14). 

Out of these target genes, per3 and slc1a2a were significantly dysregulated (p = 

003 and p = 002, respectively). Moreover, cry1a and prkacbb had a noteworthy 

yet not-significant (p = 0.058 and p = 0.051) reduction in relative expression, 

which was especially noticeable in the 0.1µM MeHg exposure group; the 

expression of opn1lw remained unaltered across all MeHg exposure 

concentrations (P=0.63) (Figure 5.3). 
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Discussion 

Following whole-life-cycle MeHg dietary exposure of a parental generation 

of zebrafish, their offspring exhibited significant alteration in genes associated 

with pathways that mediate neuronal development and behavior. Interestingly, 

some of the most affected pathways were those involved with circadian rhythm 

and rhythmic processes. The disruption of pathways that regulate circadian 

rhythm would certainly explain the alteration in behavior that has been previously 

reported in MeHg-exposed zebrafish embryos (see chapter 3), however, only a 

few seminal studies have linked prenatal MeHg exposure with circadian rhythm 

alteration in rodents (Arito et al., 1984), therefore more studies are imperative to 

clarify the role of MeHg in the modulation of behavior via circadian rhythm 

alteration.  

Another putative link between MeHg toxicity and circadian rhythm is the 

recently reported role of certain circadian rhythm genes in the molecular 

responses to oxidative stress and DNA damage response (Uchida et al., 2010), 

the latter being pathways that are commonly affected by MeHg exposure 

(Gonzalez et al., 2005). Among the genes that were observed to be dysregulated 

in our study, cry1a is reported to have a role in both circadian rhythm and 

response to oxidative stress and DNA repair. Moreover the knockout of this gene 

was reported to result in accelerated periodicity of locomotor activity in zebrafish 

embryos (Uchida et al., 2010). This phenotype is consistent with the one 

observed in the siblings of the embryos that we analyzed here for gene 

expression alteration (See chapter 3). 
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The main environmental stimulus that modulates circadian rhythm is light 

(Cahill, 1996); not surprisingly, a large number of pathways significantly affected 

by MeHg were involved in visual phototransduction and response to light stimuli. 

These findings are consistent with a wealth of literature that has associated 

MeHg with visual impairment (Burbacher et al., 2005; Ho et al., 2013; Weber et 

al., 2008), by affecting the visual cortex and various regions of the retina (Goto et 

al., 2001). More specifically, methylmercury has been found to affect 

photoreceptors in the retina of zebrafish embryos, especially in the ones located 

in the inner and outer nuclear layers (Korbas et al., 2010; Korbas et al., 2013). 

These results mirror the observations of Weber (2008), where zebrafish exposed 

to MeHg as embryos (≤4 hpf) developed adult onset of visual deficits; these 

findings have since been confirmed by Kalluvila and collaborators. (University of 

Wisconsin – Milwaukee; unpublished data).  

MeHg is known to accumulate preferentially in astrocytes and inhibit 

glutamate uptake, leading to MeHg-induced excitotoxicity5 (Aschner et al., 2000). 

Our zebrafish RNA-seq results revealed that genes associated with the 

glutamate receptor activity pathway were significantly affected by MeHg, in 

particular, the expression levels of the solute carrier family 1 (slc1a2a; glial high 

affinity glutamate transporter) exhibited a MeHg dose-dependent decrease that 

reached a 3.2 fold down-regulation in the highest MeHg exposure group 

                                                           

 

 

5 Excitotoxicity refers to the process by which neurotransmitters such as glutamate cause 
excessive stimulation of nerve cells, leading to damage or death of the cell 
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(10ppm). These findings suggest that MeHg-induced neurotoxicity may partly be 

occurring through the aforementioned mechanism of excitotoxicity. 

Other pathways found to be affected by MeHg exposure in our assay 

included the p53 signaling pathway and cell cycle (Table 5.2). MeHg has been 

previously implicated in p53-mediated cell cycle arrest leading to cell proliferation 

disruption (Gribble et al., 2005). Disruption of neuronal migration, a process 

intimately linked to cell proliferation, has also been reported to be affected by 

MeHg exposure (Burke et al., 2006; Kakita et al., 2000). Congruent with these 

observations, our analysis elucidated effects on axon guidance, axonogenesis 

and neuron projection. 

Prospective biomarkers of MeHg exposure were selected from our 

zebrafish assay to be evaluated in yellow perch by means of RT-qPCR analysis 

(Table 5.8). This approach has been previously reported by Liu and collaborators 

(2013) who carried out parallel gene expression analysis in zebrafish and 

rainbow trout. Here we evaluated zebrafish and yellow perch, two species that 

last shared a common ancestor approximately 231.5 million years ago 

(www.timetree.org) (Hedges et al., 2006). In contrast with the approach of Liu 

and collaborators, the present study ensured that gene expression quantification 

of the two species of fish was carried out at comparable developmental stages to 

reduce biological variability; to achieve this, the onset of locomotor activity in both 

species was utilized as a common milestone at which to analyze gene 

expression (5 dpf in zebrafish 17 dpf in yellow perch).  
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 Out of the five target genes that were selected as biomarkers of MeHg 

exposure for yellow perch, per3 and slc1a2a were significantly down regulated; 

these genes associated with circadian rhythm and astrocytic glutamate uptake 

were similarly down regulated in the zebrafish. This parallelism between the 

results observed in two evolutionarily divergent species of fish suggests a robust 

role of the aforementioned pathways in MeHg-induced neurotoxicity. 

 Although cry1a – another circadian rhythm gene – was not significantly 

dysregulated, it did exhibit a notable reduction (p = 0.058) in expression, 

especially in yellow perch embryos exposed to 0.1µM MeHg. A similar 

observation was made with prkacbb (p = 0.051), a gene involved in the calcium 

and insulin signaling pathways, as well as the hedgehog signaling pathway. Out 

of the genes that exhibited no significant dysregulation, only the visual 

phototransduction opsin 1 gene (opn1lw) exhibited a “flat line” trend across all 

MeHg exposures, contrasting strongly with our observations in zebrafish and 

other similar studies gene expression quantification studies in zebrafish (Ho, et 

al, 2013). 

Few MeHg exposure biomarker genes for yellow perch were evaluated 

here due to the difficulties of carrying out gene expression quantification in non-

model organisms. However, our results do suggest common MeHg-induced 

molecular alterations in zebrafish and yellow perch, affecting genes associated 

with circadian rhythm and glutamate uptake pathways. 
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Figures 

 

 

Figure 5.1: Schematic representation of the software packages used to create an 
RNA-seq analysis pipeline 
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Figure 5.2: Transcriptomic analysis of dysregulated genes in MeHg-exposed 5 
dpf zebrafish embryos 
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Figure 5.2: Transcriptomic analysis of dysregulated genes in MeHg-
exposed 5 dpf zebrafish embryos 

 

Zebrafish embryo transcriptomic analysis by RNA-seq; each exposure group was 

comprised of three samples of RNA from five pooled individual 5 dpf embryos. 

(A) The number of genes significantly dysregulted as a function of MeHg 

exposure (FDR < 0.05). (B) Overlap of significantly dysregulated genes among 

treatment groups is shown in the Venn diagram. (C) Hierarchical clustering 

analysis of Fragments Per Kilobase of exon per Million (FPKM) fragments. Green 

indicates the exposure group with the lowest FPKM value, and red signifies the 

exposure group with the highest FPKM value for each given gene. 
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Figure 5.3: Expression analysis of selected genes in yellow perch 
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Figure 5.3: Expression analysis of selected genes in yellow perch 

 

RT-qPCR was used to compare effects of MeHg exposure on transcript 

abundance in yellow perch embryos. Five genes were analyzed (cry1a, per3, 

slc1a2a, prkacbb and opn1lw), targeting key pathways observed to have been 

dysregulated in the zebrafish, namely circadian rhythm, oxidative stress, 

astrocytic glutamate uptake and visual phototransduction. Out of these target 

genes, per3 and slc1a2a were significantly dysregulated (p = 003 and p = 002, 

respectively). Moreover, cry1a and prkacbb had a noteworthy yet not-significant 

(p = 0.058 and p = 0.051) reduction in relative expression, which was especially 

noticeable in the 0.1µM MeHg exposure group; the expression of opn1lw 

remained unaltered across all MeHg exposure concentrations (P=0.63) 
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Tables 

Table 5.1: Gene ontology (GO) enrichment analysis of the top 20 biological 
functions affected by MeHg exposure in zebrafish embryos 

Biological function Source 
Number of 

genes 
Adjusted P 

response to light stimulus GO:0009416 17 5.87E-15 

response to radiation GO:0009314 18 1.44E-14 

Photoperiodism GO:0009648 9 7.09E-13 

response to abiotic stimulus GO:0009628 18 2.16E-09 

circadian rhythm GO:0007623 7 3.14E-07 

rhythmic process GO:0048511 7 1.07E-05 

nucleic acid metabolic process GO:0090304 57 7.53E-05 

cellular biosynthetic process GO:0044249 62 0.0002 

cellular nitrogen compound metabolic process GO:0034641 67 0.0002 
nucleobase-containing compound metabolic 
process 

GO:0006139 64 0.0003 

biosynthetic process GO:0009058 64 0.0003 

cellular nitrogen compound biosynthetic process GO:0044271 48 0.0004 

heterocycle metabolic process GO:0046483 65 0.0005 

cellular aromatic compound metabolic process GO:0006725 65 0.0005 

organic cyclic compound metabolic process GO:1901360 66 0.0005 

nitrogen compound metabolic process GO:0006807 68 0.0009 

organic substance biosynthetic process GO:1901576 61 0.001 

organic cyclic compound biosynthetic process GO:1901362 47 0.001 

aromatic compound biosynthetic process GO:0019438 46 0.0011 

nucleobase-containing compound biosynthetic 
process 

GO:0034654 45 0.0012 
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Table 5.2: KEGG enrichment analysis of genes affected by MeHg exposure in 
zebrafish embryos 

KEGG pathway description Source Number of genes Adjusted P 

Circadian rhythm - mammal 4710 11 2.94E-14 

ABC transporters 2010 4 0.0046 

Metabolic pathways 1100 22 0.0092 

p53 signaling pathway 4115 5 0.0092 

DNA replication 3030 5 0.0138 

Ribosome biogenesis in eukaryotes 3008 4 0.023 

Cell cycle 4110 6 0.0368 
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Table 5.3: Phenotype enrichment analysis of dysregulated genes in MeHg 
exposed zebrafish 

Description Source Number of genes Adjusted P 

Fundus atrophy HP:0001099 2 0.0469 

Night blindness HP:0000662 9 0.0469 

Intermittent cerebellar ataxia HP:0006862 2 0.0469 

Arthralgia of the hip HP:0003365 2 0.0469 

Photophobia HP:0000613 10 0.0469 

Eye poking HP:0001483 2 0.0469 
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Table 5.4: Gene set enrichment analysis (GSEA) results for each MeHg 
exposure concentration tested in zebrafish embryos (Curated gene collection) 

C2: Curated gene set collection 
 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Axon guidance KEGG 
 

NES=1.642 
P=0.033      
q=0.305 

NES=2.812 
P=0.000      
q=0.000 

Axon guidance REACTOME 
 

NES=1.472 
P=0.065      
q=0.159 

 

Neuroactive ligand receptor 
interaction 

KEGG 
 

NES=-1.685 
P=0.035      
q=0.043 

NES=1.560 
P=0.035      
q=0.292 

Neurotransmitter receptor 
binding and downstream 
transmission in the postsynaptic 
cell 

REACTOME 
 

NES=-2.676 
P=0.000      
q=0.003 

 

Neurotransmitter release cycle REACTOME 
NES=-1.633 

P=0.044      
q=0.296 

NES=-1.874 
P=0.008      
q=0.024 

 
 
 

Parkinson’s disease KEGG  

NES=-3.047 
P=0.000      
q=0.000 

NES=-2.867 
P=0.000      
q=0.000 

Parkinson’s disease KEGG  

NES=-3.047 
P=0.000      
q=0.000 

NES=-2.867 
P=0.000      
q=0.000 

 

Note: All gene sets described in tables 5.4 to 5.8 were significantly enriched. Each gene set 
includes the NES (Normalized Enrichment Score) p value and q value for each MeHg exposure 
concentration. Values in bold if q≤0.25.  
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Table 5.5: Gene set enrichment analysis (GSEA) results for each MeHg 
exposure concentration tested in zebrafish embryos (Biological process 
collection) 

C5: GO Biological process collection 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Axon guidance GO:0007411 
 

NES=-1.648 
P=0.038      
q=0.048 

 

Axonogenesis GO:0007409 
 

NES=-1.848 
P=0.008      
q=0.026 

 

Brain development GO:0007420 
 

NES=-1.323 
P=0.154      
q=0.186 

 

Central nervous system 
development 

GO:0007417 
 

NES=-1.295 
P=0.171      
q=0.198 

 

Generation of neurons GO:0048699 
 

NES=-2.138 
P=0.006      
q=0.007 

 

Nervous system development GO:0007399 
 

NES=-1.786 
P=0.018      
q=0.031 

 

Regulation of neurotransmitter 
levels 

GO:0001505 
NES=-1.736 

P=0.026      
q=0.035 

Transmission of nerve impulse GO:0019226 
NES=-2.532 

P=0.000      
q=0.002 
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Table 5.6: Gene set enrichment analysis (GSEA) results for each MeHg 
exposure concentration tested in zebrafish embryos (Cellular component and 
molecular function collections) 

C5: GO Cellular component 
collection 

        

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Neuron projection GO:0043005 
 

NES=-1.966 
P=0.006      
q=0.015 

 

 

C5: GO Molecular function collection 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Glutamate receptor activity GO:0008066 
 

NES=-1.780 
P=0.020      
q=0.029  
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Table 5.7: Gene set enrichment analysis (GSEA) results for each MeHg 
exposure concentration tested in zebrafish embryos (Human phenotype ontology 
collection) 

HPO: Human phenotype ontology collection       

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Abnormal neuron morphology HP:0012757 
 

NES=-1.760 
P=0.017      
q=0.077  

Abnormality of vision HP:0000504 
  

NES=-1.680 
P=0.029      
q=0.182 

Ataxia HP:0001251  

NES=-2.079 
P=0.000      
q=0.020 

 

Attention deficit hyperactivity 
disorder 

HP:0007018 
NES=1.838 

P=0.011      
q=0.167 

  

Autism 
Wall, et al. 

(2008) 
 

NES=-2.094 
P=0.000      
q=0.040 

NES=1.535 
P=0.065      
q=0.242 

Epileptic encephalopathy HP:0200134 
 

NES=-1.802 
P=0.024      
q=0.083 

 

Epileptiform EEG discharges HP:0011182 
 

NES=-1.451 
P=0.097      
q=0.209 

 

Motor neuron atrophy HP:0007373 
 

NES=-1.650 

P=0.030      

q=0.102 
 

Neurodevelopmental delay HP:0012758 
  

NES=-2.246 

P=0.000      

q=0.012 

Peripheral axonal degeneration HP:0000764 
NES=-1.576 

P=0.039      
q=0.443 

  

Seizures HP:0001250 
  

NES=-2.500 
P=0.000      
q=0.003 
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Table 5.8: Dysregulated genes in zebrafish and yellow perch 

Gene 
symbol 

Organism 

Gene expression alteration (Fold change) 

Low MeHg dose Medium MeHg dose High MeHg dose 

cry1a 

Zebrafish - 1.1 - 1.5 - 1.4 

Yellow perch - 1.1 - 1.5 - 1.4 

per3 

Zebrafish -1.2 - 4.4 - 6.4 

Yellow perch - 2.0 - 2.7 - 2.1 

slc1a2a 

Zebrafish - 1.4 - 2.2 - 3.2 

Yellow perch - 1.3 - 1.6 - 1.4 

prkacbb 

Zebrafish - 1.6 - 4.1 - 2.6 

Yellow perch - 1.3 - 1.4 - 1.1 

opn1lw1 

Zebrafish 1.4 3.4 4.4 

Yellow perch -1.1 1.0 -1.1 

 

Note: Numbers in bold are significantly different to control (P<0.05) 
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CHAPTER 6: SUMMARY OF THE DISSERTATION 

 

The objectives of this dissertation were to identify MeHg-induced 

alterations in the behavior of yellow perch and zebrafish, and to uncover common 

molecular biomarkers of MeHg exposure in both species. Behavioral and gene 

expression phenotypes in both yellow perch and zebrafish were successfully 

elucidated, however each chapter of this document addresses a discrete portion 

of a larger research question – How does MeHg affect the behavior and gene 

expression of yellow perch and zebrafish?  

In this final chapter, significant conclusive remarks integrating the entire 

dissertation will be discussed. 

 

Significance 1: Comparative behavioral effects of waterborne or whole life 

cycle dietary MeHg exposure in zebrafish embryos 

We tested two different methods of delivering MeHg to developing 

zebrafish embryos. The first method was to expose newly spawned embryos (≤2 

hpf) to an aqueous MeHg solution, mimicking maternal MeHg transfer from the 

ovary to the egg. The second method was a whole-life-cycle dietary exposure 

which was carried out in zebrafish from their embryonic stages until the onset of 

sexual maturity, so as to collect newly spawned embryos from parents that had 

been exposed to MeHg throughout their whole life. 

Administration of MeHg to fish embryos via waterborne exposure is a 

quick, simple, and reasonably realistic approach for toxicity screening (Weber et 
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al., 2008). However, this study posed the question of whether a more 

environmentally realistic exposure route would deliver a more accurate 

representation of the effects of MeHg in nature. A whole-life-cycle dietary MeHg 

exposure assay was chosen because it integrated not only the most realistic 

route of MeHg exposure, – the diet – but it also the notion that organisms that 

inhabit contaminated ecosystems are in constant contact with the contaminants 

throughout their whole life. 

To the author’s knowledge, this study is the first to carry out a dietary 

MeHg exposure assay throughout the whole life cycle of zebrafish in laboratory 

controlled conditions. Although notable mentions of similar studies include the 

reported partial life cycle dietary exposures of zebrafish and rainbow trout to 

MeHg (Liu, et al, 2013). 

Similar effects of MeHg were observed in zebrafish embryos raised from a 

waterborne exposure assay and from parents exposed to dietary MeHg 

throughout their whole life. In both cases, we observed a significant increase in 

locomotor activity that followed an inverted “U” shaped dose-response curve. In 

other words, low and medium concentrations of MeHg would elicit hyperactivity 

but, at a higher dose, fish did not behave any different than the controls. The fact 

that both assays rendered hyperactivity following a hormetic trend would suggest 

that similar mechanisms of MeHg-induced neurotoxicity are involved in both. 

Our results suggest that MeHg waterborne exposures are an effective and 

simple alternative to dietary exposures. This is not to say that both approaches 

should be used interchangeably, but it highlights the fact that waterborne MeHg 
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exposures are an excellent approach to carry out preliminary MeHg toxicity 

studies quickly, which can then be recreated through the more realistic dietary 

exposures. 

 

Significance 2: Zebrafish and yellow perch exhibit distinct behaviors and 

different behavioral responses to MeHg exposure 

This study elucidated important differences between the behaviors of 

zebrafish and yellow perch free-swimming embryos. Perhaps the most 

staggering difference between the behaviors of these two species is the one 

illustrated by the visual-motor assay. In this assay, fish larvae inside of an 

enclosed chamber were subjected to a series of alternating and abrupt changes 

in the lighting conditions every 10 minutes. In this well-documented behavioral 

paradigm zebrafish embryos react with reduced locomotor activity during the light 

periods and an increased locomotor activity during the dark periods. In contrast 

to the responses in zebrafish, yellow perch larvae exhibit a higher locomotor 

activity in light periods and a reduced locomotor activity during dark periods. 

These observations are likely to be rooted in the ecological and evolutionary 

context of these two species. Burgess and Granato (2007) interpret the response 

of the zebrafish as a response that reorients a larva that has strayed into a 

shaded environment back into a well-lit location; conversely, the response of the 

yellow perch is likely related to the strong phototaxis that this species exhibits 

during its early development. 
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More subtle differences between the basal locomotor behaviors of the 

zebrafish and yellow perch arise from observing their spontaneous swimming 

kinematics. In this study, we observed that zebrafish free-swimming embryos 

exhibit a constant scoot-and-glide locomotion, while the yellow perch exhibit a 

continuous glide that lasts for a few seconds, followed by long resting periods, 

this characteristic locomotion pattern has been referred to as “saltatory behavior” 

(O’brien et al., 1990). The baseline swimming behaviors of both fish are rooted in 

their prey searching strategies; zebrafish larvae continuously scoot-and-glide 

until they encounter a nearby prey item, which they capture by a powerful suction 

(Budick and O'Malley, 2000); on the other hand, yellow perch larvae exhibit the 

aforementioned saltatory behavior, and once they have encountered prey, they 

capture it by energetically ramming towards it. 

The behavioral responses to MeHg in zebrafish and yellow perch were 

also dissimilar. At comparable MeHg exposure regimes, zebrafish exhibited 

hyperactivity and yellow perch exhibited hypoactivity. This trend was also 

observed in prey capture assays; the hyperactive MeHg-exposed zebrafish 

caught more prey items than the control organisms, while the hypoactive MeHg-

exposed yellow perch caught less prey items.  

One might argue that the differences in the behavioral responses to MeHg 

between the two species could be attributed to the differences in MeHg exposure 

regimes. MeHg exposure in zebrafish occurred in the maternal ovary, making for 

an immediate MeHg delivery to the egg. In the case of yellow perch embryos, 

MeHg exposure occurred outside of the ovary via waterborne exposure, with a 
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lag of approximately 12 hours after being spawned. However, this notion is 

unlikely to be the cause of differential behavioral responses between species, 

given the fact that zebrafish embryos still exhibited hyperactivity when exposed 

to the same concentrations of waterborne MeHg that elicited hypoactivity in 

yellow perch. Furthermore, the THg body burdens in hyperactive zebrafish 

embryos form medium and high dietary exposure regimes (0.19±0.004ppm and 

0.62±0.039ppm) were comparable with to those of hypoactive yellow perch 

raised from low and medium waterborne exposure regimes (0.21±0.11ppm and 

0.95±0.12ppm). This notion discards the possibility of overtly dissimilar THg 

burdens as a factor contributing to the observed differences in behavioral 

responses. 

It is plausible that the observed species-dependent discrepancy between 

MeHg-induced behavior alterations is attributable to the rate at which these 

species metabolize MeHg. Slower metabolism and excretion would mean that 

MeHg remains in the tissues on fish larvae for a longer time, and vice versa. 

Since the yolk is the primary focal source of MeHg in developing fish embryos, 

perhaps the zebrafish with its complete yolk sac depletion in 6-7 days post-

fertilization is subject to a shorter MeHg exposure window than the slower 

developing yellow perch, which does not deplete its yolk sac until it reaches 18-

20 dpf (Mansueti, 1964). Furthermore, the slow development and considerably 

lower rearing temperatures of the yellow perch could both be contributing factors 

to a slower MeHg metabolism (Harris and Bodaly, 1998) and thus a presumably 

more prolonged MeHg exposure. This, in turn, could produce unique behavioral 
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effects, as illustrated by the fact that MeHg exposure at different stages of 

development can result in hyperactivity or hypoactivity in fish, depending on the 

developmental window of exposure (Weis and Weis, 1995b). Moreover, an even 

simpler yet-valid reasoning is that the difference between MeHg-induced 

behavioral alterations in these species is due to the sheer inherent differences 

between the baseline-swimming behaviors of zebrafish and yellow perch. In 

other words, MeHg may have affected behavior differently because both fish 

species are genetically predisposed to exhibit distinct locomotor patterns. 

One aspect of MeHg-induced behavioral alteration that was common 

between the two species was a clear hormetic MeHg dose response; while 

zebrafish exhibited hyperactivity in low and medium concentrations of MeHg, but 

not high concentrations, the yellow perch exhibited a stronger hypoactivity in a 

medium MeHg dose. Also, only yellow perch exposed to a medium MeHg 

concentration exhibited significant difficulty while capturing prey; low and high 

concentrations of MeHg did not affect yellow perch prey capture significantly.  

Quantitatively, the behaviors in zebrafish and yellow were very contrasting 

(i.e. if the species are to be compared in function of how much they swam or how 

many prey items they captured). However, one could argue that qualitatively the 

responses are both equally abnormal. This raises the question of whether the 

seemingly dissimilar behavioral outputs of MeHg exposure in both species could 

have similar molecular mechanisms in common. This notion will be discussed 

next. 
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Significance 3: Significantly dysregulated genes in both zebrafish and 

yellow perch were congruent with their observed behavioral alterations 

 

As it has been extensively discussed in previous chapters, MeHg is known 

to cause a large gamut of behavioral alterations; similarly, MeHg also affects a 

large gamut of physiological and molecular processes. However, it can be 

challenging to link observed behavioral phenotypes to physiological and 

molecular processes (Guo, 2004). Our approach was to utilize the zebrafish 

model to elucidate MeHg-induced behavioral alterations. After behavioral 

alterations were confirmed, we proceeded to carry out high-throughput gene 

expression analysis in the siblings of the fish that were screened in the behavior 

assays.  

In this study, MeHg exposure in zebrafish embryos was linked to 

significant enrichment in gene sets associated with human neurological 

phenotypes such as impaired vision, motor neuron atrophy, intermittent 

cerebellar ataxia, seizures, autism and attention-deficit/hyperactivity-disorder 

(ADHD). Remarkably, all of these phenotypes have been reported to be 

associated with MeHg exposure in humans and they are consistent with the 

behavioral phenotypes observed in our zebrafish assays and in other studies in 

fish and wildlife. 

The most notably dysregulated pathways in MeHg exposed zebrafish 

were those involved with circadian rhythm and visual phototransduction. 

Circadian rhythm genes have a central role in synchronizing the behavior of an 
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organism with the rhythms of its environment (Cahill, 1996), Moreover, these 

genes have also been implicated in the response to oxidative stress and DNA 

repair (Uchida et al., 2010), and even in the occurrence of ADHD (Whalley, 

2015), all of which are reportedly congruent with MeHg exposure. In particular, 

the circadian rhythm genes cry1a and per1b have been implicated in 

hyperactivity in zebrafish. The knock-out of cry1a has been shown to accelerate 

the periodicity of locomotor activity in zebrafish larvae (Uchida et al., 2010), while 

the knock-out of per1b is reported to cause a three-fold increase in locomotor 

activity, along with a number of ADHD-like phenotypes, such as learning 

impairment and impulsivity (Whalley, 2015). Both of the aforementioned genes 

were significantly down regulated in our zebrafish assay, which would explain the 

observed hyperactivity of the MeHg treated eleutheroembryos. Moreover, only a 

handful of studies have investigated the effects of MeHg in circadian rhythm and 

all of these have been performed in rodents (Arito et al., 1983; Arito et al., 1982). 

Nonetheless, these studies have observed MeHg-induced effects in the circadian 

rhythm of rats. This study did not contemplate a full circadian rhythm experiment, 

however the data compiled from gene expression analysis strongly suggests that 

MeHg exposed zebrafish may exhibit disrupted circadian rhythms. This being 

said, further experiments are required to assess the effects of MeHg in the 

circadian rhythm of zebrafish. 

Due to the wealth of literature associating MeHg with visual impairment, 

this study attempted to quantify visual acuity, although without success (see 

chapter 6, significance 4). Nevertheless, the gene expression data revealed 
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strong effects of MeHg in pathways associated with visual phototransduction in 

the zebrafish. Moreover, phenotype enrichment analysis elucidated enrichment in 

genes associated with visual impairment, such as fundus atrophy and night 

blindness. These results are consistent with vision tests performed by Weber 

(2008) and Kalluvila (unpublished data). 

 The search for biomarkers of MeHg exposure in yellow perch rendered 

few candidates, due to the limited number of transcript sequences reported in 

this species, along with the challenges of developing efficient primer sets from 

mRNA and protein alignments from other teleost fish species. However, the 

analysis of gene expression gave some indication that circadian rhythm could be 

affected by MeHg in yellow perch, as suggested by the significant down 

regulation of the per3 gene. In addition, the effects of MeHg in the locomotor 

output and prey capture of yellow perch mirrored each other (Figures 4.3 and 

4.4); intriguingly, the trends in the expression levels of cry1a, per3 and slc1a2a 

are remarkably similar to the aforementioned data (Figure 5.3; A-C). The 

implications of this observation are highly relevant, as it suggests a link between 

three very distinct levels of MeHg-induced effects: molecular (gene expression), 

organismal (behavior) and ecological (prey capture). 

To evaluate pathways associated with vision in the yellow perch, the 

opn1lw gene was quantified, however no significant effects on the expression of 

this gene was observed. Contrary to the data obtained from our zebrafish study 

and other reports (Ho et al., 2013), opsin gene opn1lw was not a robust indicator 

of MeHg exposure. Since this gene is exclusively expressed in the retina, a 
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failure to observe significant effects of MeHg in the expression of this gene could 

be due to the fact that our gene expression analysis was not tissue-specific. 

Significance 4: MeHg affects genes associated with vision; however assays 

to quantify visual acuity in non-model fish need to be further developed 

Quantification of visual acuity is an inherently challenging task in animal 

models and even more so in fish larvae due to the sheer technical difficulties of 

determining whether a larva is seeing a visual stimulus or not. Despite this 

notion, two well-acknowledged methods have been previously utilized to 

objectively analyze vision in zebrafish embryos; these are the optokinetic 

response (OKR) and the optomotor response (OMR) (Neuhauss, 2003). Both of 

these assays employ similar principles to elicit a measureable reaction in 

zebrafish embryos in response to a visual stimulus; for the OKR, a rotating 

grading of high-contrast bars (usually black and white) is utilized to elicit saccadic 

movements in the eyes of immobilized embryos; for the OMR a similar grading is 

used to elicit a locomotor response in embryos swimming within individual 

raceways. Here, we attempted to replicate these methods in the zebrafish, only 

to later observe that yellow perch embryos are too fragile to be safely 

manipulated and immobilized to carry out an OKR assay. Moreover, when 

attempting to elicit the OMR in yellow perch larvae, they surprisingly did not 

respond to the grading motion to which the zebrafish did. These observations 

underline the strong differences between species, not only behavioral, but also in 

terms of the technical aspects of the handling of these species to successfully 

perform experiments. 
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The aforementioned observations ascertain the need to develop assays 

for visual acuity that can easily be transferred from one fish species to another. 

More importantly, it is critical that such an assay delivers information that can be 

translated to environmentally relevant endpoints such as prey capture and 

predator avoidance. 
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APPENDICES 

Appendix 1: Maternal MeHg transfer from ovaries to zebrafish embryos 

Exposure group 
and replicate 

Ovary THg 
(ppm, wet 

weight) 

Embryo THg 
(ppm, wet 

weight) 

Proportion of ovary [Hg] 
present in embryos (%) 

0ppm - 1 0.1381 0.0081 5.85% 

 0ppm - 2 0.0745 0.0074 9.90% 

0ppm - 3 0.0462 0.0047 10.09% 

1ppm - 1 0.8372 0.0733 8.75% 

1ppm - 2 0.8500 0.0753 8.86% 

1ppm - 3 0.7992 0.0717 8.97% 

3ppm - 1 2.0001 0.1903 9.51% 

3ppm - 2 2.1071 0.1901 9.02% 

3ppm - 3 2.2983 0.1817 7.91% 

10ppm - 1 5.6685 0.5774 10.19% 

10ppm - 2 7.0758 0.6465 9.14% 

10ppm - 3 9.3564 0.6442 6.89% 
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Appendix 2: Fecundity of MeHg exposed zebrafish females and mortality of their 

offspring 

MeHg exposure 
group 

Fecundity Total mortality at 24 hpf 
%Mortality at 

24 hpf 

0ppm 2051.00±724.83 350.33±78.15 19.09% ±2.98 
1ppm 2829.00±491.66 429.33±60.46 15.98% ±2.83 
3ppm 2482.67±843.79 409.33±139.71 16.91% ±2.27 
10ppm 2668.33±713.22 770.66±480.37 24.44% ±9.68 

ANOVA 
   

F 0.223 0.555 0.501 

P 0.878 0.659 0.690 

 
Note: Values are given as the mean ± SE 
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Appendix 3: ELS tox scores of embryonic zebrafish from MeHg exposed parents 

MeHg exposure 
group 

ELS tox score at 
24 hpf 

ELS tox score at 
72 hpf 

ELS tox score at 
144 hpf 

0ppm 0.04±0.01 0.06±0.02 0.24±0.08 
1ppm 0.11±0.05 0.12±0.03 0.28±0.01 
3ppm 0.09±0.01 0.14±0.05 0.15±0.06 

10ppm 0.05±0.03 0.12±0.03 0.19±0.01 

ANOVA 
  

    

F 1.21 1.02 1.27 

P 0.36 0.43 0.35 

 
Note: Values are given as the mean ± SE 
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Appendix 4: Significantly up-regulated genes in 1ppm MeHg treated zebrafish 

embryos. 

ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

1ppm 

FPKM 

log2(fold 

change) 
q value 

vwa2 ENSDARG00000075441 4.37 18.80 2.1 0.006 

tubb4b ENSDARG00000091444 1.26 4.08 1.7 0.011 

gck ENSDARG00000068006 0.79 2.39 1.6 0.016 

pmaip1 ENSDARG00000089307 9.11 26.40 1.5 0.027 

slc38a9 ENSDARG00000032769 2.14 4.92 1.2 0.006 

si:ch211-

13o20.3 
ENSDARG00000091871 18.91 42.46 1.2 0.016 

zgc:113232 ENSDARG00000040118 6.36 13.43 1.1 0.006 

duox ENSDARG00000062632 0.73 1.48 1.0 0.024 

zgc:92590 ENSDARG00000040282 35.95 70.28 1.0 0.006 

si:dkey-

14d8.6 
ENSDARG00000045835 337.06 622.79 0.9 0.006 

matn3a ENSDARG00000069245 16.32 29.66 0.9 0.006 

nupr1 ENSDARG00000094557 111.50 195.52 0.8 0.006 

col9a1 ENSDARG00000031483 15.25 25.80 0.8 0.030 

itga10 ENSDARG00000002507 8.03 13.45 0.7 0.027 

serpinh1b ENSDARG00000019949 15.15 24.30 0.7 0.016 

pdia2 ENSDARG00000018263 47.89 76.61 0.7 0.011 

si:dkey-

14d8.7 
ENSDARG00000045834 69.32 110.23 0.7 0.024 

zgc:153968 ENSDARG00000061858 40.01 60.95 0.6 0.034 
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Appendix 5: Significantly down-regulated genes in 1ppm MeHg treated zebrafish 
embryos. 

ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

1ppm 

FPKM 

log2(fold 

change) 
q value 

cux2b ENSDARG00000086345 2.55 0.30 -3.1 0.011 

sema7a ENSDARG00000078707 18.78 2.38 -3.0 0.006 

fkbp5 ENSDARG00000028396 29.82 4.99 -2.6 0.006 

gpr112b ENSDARG00000094386 2.36 0.52 -2.2 0.006 

klf9 ENSDARG00000068194 31.90 7.72 -2.0 0.006 

zgc:153932 ENSDARG00000052779 4.35 1.19 -1.9 0.006 

zgc:162509 ENSDARG00000070604 2.86 0.90 -1.7 0.006 

per1a ENSDARG00000056885 3.86 1.31 -1.6 0.006 

cnga3b ENSDARG00000012297 1.50 0.53 -1.5 0.039 

hamp2 ENSDARG00000053227 27.67 9.85 -1.5 0.006 

nr1d1 ENSDARG00000033160 42.38 15.34 -1.5 0.006 

si:dkey-

206d17.5 
ENSDARG00000089204 20.35 7.64 -1.4 0.006 

papd4 ENSDARG00000055385 2.38 0.92 -1.4 0.034 

bahcc1 ENSDARG00000080009 12.36 4.91 -1.3 0.006 

ucp3 ENSDARG00000091209 34.56 14.72 -1.2 0.006 

nr1d2a ENSDARG00000003820 39.03 16.76 -1.2 0.006 

si:ch211-

121a2.2 
ENSDARG00000039682 71.84 32.94 -1.1 0.006 

cyp24a1 ENSDARG00000070420 16.32 7.93 -1.0 0.006 

mgat4a ENSDARG00000063330 16.83 8.61 -1.0 0.006 

pfkfb4l ENSDARG00000029075 24.73 12.73 -1.0 0.006 

rn7sk ENSDARG00000081270 83.26 43.88 -0.9 0.020 

zgc:172246 ENSDARG00000090722 51.43 27.96 -0.9 0.011 

f5 ENSDARG00000055705 4.52 2.50 -0.9 0.006 

guca1c ENSDARG00000030758 19.25 10.64 -0.9 0.036 

nfil3-6 ENSDARG00000087188 15.09 8.40 -0.8 0.006 

nr4a1 ENSDARG00000000796 7.56 4.23 -0.8 0.011 

rel ENSDARG00000055276 7.12 4.01 -0.8 0.016 

lpin1 ENSDARG00000020239 57.37 32.48 -0.8 0.006 

zgc:171497 ENSDARG00000090578 2.27 1.29 -0.8 0.030 

bfb ENSDARG00000005616 7.90 4.51 -0.8 0.042 

si:ch211-

132b12.7 
ENSDARG00000068374 17.04 9.73 -0.8 0.034 
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Appendix 5 (Continued)                                                                                                                  

ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

1ppm 

FPKM 

log2(fold 

change) 
q value 

si:dkey-

52d15.1 
ENSDARG00000077872 8.60 4.99 -0.8 0.047 

birc7 ENSDARG00000058082 4.30 2.54 -0.8 0.011 

zgc:110354 ENSDARG00000043093 5.67 3.34 -0.8 0.030 

cish ENSDARG00000060316 34.15 20.32 -0.7 0.011 

mych ENSDARG00000077473 38.24 23.11 -0.7 0.006 

plcd3a ENSDARG00000052957 8.84 5.36 -0.7 0.006 

zgc:112265 ENSDARG00000024928 103.93 63.52 -0.7 0.024 

si:dkey-

162h11.2 
ENSDARG00000091715 3.33 2.05 -0.7 0.020 

klf3 ENSDARG00000015495 15.66 9.67 -0.7 0.006 

a2ml ENSDARG00000056314 15.11 9.37 -0.7 0.006 

slc3a2b ENSDARG00000037012 93.93 58.52 -0.7 0.011 

zgc:110843 ENSDARG00000073845 9.21 5.76 -0.7 0.034 

prkacbb ENSDARG00000059125 4.11 2.57 -0.7 0.024 

abcb11b ENSDARG00000070078 5.41 3.43 -0.7 0.011 

ces3 ENSDARG00000041595 37.01 23.65 -0.6 0.030 

bfsp2 ENSDARG00000011998 58.98 38.53 -0.6 0.042 
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Appendix 6: Significantly up-regulated genes in 3ppm MeHg treated zebrafish 
embryos. 

ZFIN gene 
ID 

ENSEMBL gene ID 
0ppm 
FPKM 

3ppm 
FPKM 

log2(fold 
change) 

q value 

vwa2 ENSDARG00000075441 4.37 63.52 3.9 0.006 

spsb3b ENSDARG00000077487 3.12 15.59 2.3 0.006 

opn1lw1 ENSDARG00000044862 6.24 20.94 1.7 0.006 

ccdc64 ENSDARG00000074761 0.39 1.26 1.7 0.020 

cdkn1d ENSDARG00000088020 34.84 103.82 1.6 0.011 

nfil3-2 ENSDARG00000043237 13.39 38.61 1.5 0.006 

nfil3-5 ENSDARG00000094965 26.85 77.00 1.5 0.006 

klf2a ENSDARG00000042667 14.71 39.66 1.4 0.006 

prdm1b ENSDARG00000053592 5.52 14.78 1.4 0.006 

tfcp2l1 ENSDARG00000029497 1.59 4.14 1.4 0.006 

rorcb ENSDARG00000017780 9.14 23.23 1.3 0.006 

slc1a7a ENSDARG00000034940 1.31 3.29 1.3 0.006 

xkr8.2 ENSDARG00000076820 1.12 2.81 1.3 0.027 

slc38a9 ENSDARG00000032769 2.14 5.20 1.3 0.006 

guca1e ENSDARG00000078384 2.25 5.28 1.2 0.006 

aanat2 ENSDARG00000079802 2.68 6.27 1.2 0.006 

asb15a ENSDARG00000045633 1.60 3.67 1.2 0.006 

nr1d4b ENSDARG00000059370 1.43 3.28 1.2 0.006 

arntl2 ENSDARG00000041381 1.85 4.23 1.2 0.011 

si:dkey-
283b15.2 

ENSDARG00000041382 7.00 15.94 1.2 0.006 

ampd3b ENSDARG00000032469 21.49 48.52 1.2 0.006 

ndrg1b ENSDARG00000010420 34.41 77.26 1.2 0.006 

slc34a2b ENSDARG00000036864 4.50 10.07 1.2 0.006 

inhbb ENSDARG00000040777 4.92 10.79 1.1 0.006 

kera ENSDARG00000056938 16.28 35.10 1.1 0.006 

asb10 ENSDARG00000071419 3.69 7.94 1.1 0.006 

dok7 ENSDARG00000060236 1.92 3.97 1.0 0.006 

arntl1b ENSDARG00000035732 6.50 13.41 1.0 0.006 

klhl30 ENSDARG00000076094 1.47 3.03 1.0 0.006 

gpr124 ENSDARG00000076994 2.42 4.89 1.0 0.006 

fbxo32 ENSDARG00000040277 33.53 66.97 1.0 0.006 

hlfb ENSDARG00000061011 5.37 10.62 1.0 0.006 

ankrd33ba ENSDARG00000058357 4.23 8.35 1.0 0.011 
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Appendix 6 (Continued) 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 
FPKM 

3ppm 
FPKM 

log2(fold 
change) 

q value 

si:dkey-
72l14.3 

ENSDARG00000061044 1.71 3.37 1.0 0.036 

plbd1 ENSDARG00000063313 3.03 5.74 0.9 0.006 

si:dkey-
89f23.3 

ENSDARG00000088774 1.63 3.07 0.9 0.024 

itga7 ENSDARG00000089083 22.61 42.45 0.9 0.006 

usp28 ENSDARG00000008880 13.59 25.44 0.9 0.006 

rd3 ENSDARG00000031600 8.16 15.04 0.9 0.024 

slc6a19a ENSDARG00000018621 2.12 3.88 0.9 0.006 

lrp6 ENSDARG00000076053 6.23 11.31 0.9 0.030 

mxd3 ENSDARG00000057432 11.67 21.14 0.9 0.006 

cdh15 ENSDARG00000068191 3.99 7.22 0.9 0.006 

alp3 ENSDARG00000039048 5.98 10.79 0.9 0.016 

slc16a12b ENSDARG00000089885 10.31 18.56 0.8 0.006 

si:dkey-
14d8.6 

ENSDARG00000045835 337.06 598.48 0.8 0.006 

zmiz1b ENSDARG00000076477 1.35 2.39 0.8 0.045 

cacna1sb ENSDARG00000042552 7.62 13.32 0.8 0.006 

sema6d ENSDARG00000002748 7.18 12.50 0.8 0.006 

cyp24a1 ENSDARG00000070420 16.32 28.37 0.8 0.020 

cyp2k18 ENSDARG00000038366 5.74 9.95 0.8 0.011 

npas2 ENSDARG00000016536 3.56 6.16 0.8 0.006 

kbtbd12 ENSDARG00000001882 13.03 22.55 0.8 0.006 

vapa ENSDARG00000004312 93.46 161.67 0.8 0.006 

mtp ENSDARG00000008637 4.27 7.38 0.8 0.039 

pygl ENSDARG00000002197 23.48 40.59 0.8 0.006 

c3b ENSDARG00000087359 3.51 6.05 0.8 0.011 

mmp15a ENSDARG00000051962 4.19 7.11 0.8 0.006 

npc1l1 ENSDARG00000077891 4.42 7.51 0.8 0.011 

cry4 ENSDARG00000011890 10.51 17.84 0.8 0.006 

inppl1b ENSDARG00000001442 2.67 4.50 0.8 0.036 

sb:cb472 ENSDARG00000060238 15.82 26.61 0.8 0.006 

qsox1 ENSDARG00000039459 8.53 14.33 0.7 0.011 

gadd45ba ENSDARG00000027744 37.84 63.42 0.7 0.006 

abcd1 ENSDARG00000074876 1.32 2.20 0.7 0.006 

ppp1r27 ENSDARG00000052591 16.35 27.27 0.7 0.027 

nr5a5 ENSDARG00000039116 9.37 15.54 0.7 0.006 
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Appendix 6 (Continued) 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 
FPKM 

3ppm 
FPKM 

log2(fold 
change) 

q value 

agt ENSDARG00000016412 24.81 41.12 0.7 0.006 

trim63 ENSDARG00000028027 83.41 137.74 0.7 0.011 

neurod ENSDARG00000019566 84.09 138.76 0.7 0.006 

ccdc88aa ENSDARG00000078440 3.82 6.28 0.7 0.016 

hbp1 ENSDARG00000028517 15.84 25.88 0.7 0.006 

hmox1a ENSDARG00000027529 17.69 28.88 0.7 0.011 

adh8b ENSDARG00000024278 50.49 82.36 0.7 0.006 

klhl38b ENSDARG00000040278 15.15 24.50 0.7 0.020 

ctsc ENSDARG00000018806 9.47 15.29 0.7 0.006 

prnpa ENSDARG00000026229 27.92 45.04 0.7 0.020 

alas1 ENSDARG00000021059 49.27 79.29 0.7 0.027 

abcc2 ENSDARG00000014031 11.31 18.19 0.7 0.006 

rimkla ENSDARG00000016830 39.30 63.14 0.7 0.016 

ndrg1a ENSDARG00000032849 54.75 87.96 0.7 0.011 

arntl1a ENSDARG00000006791 11.19 17.92 0.7 0.036 

apoea ENSDARG00000086370 161.94 257.68 0.7 0.020 

txlnba ENSDARG00000020594 20.08 31.89 0.7 0.016 

mybpha ENSDARG00000058799 10.21 16.19 0.7 0.020 

srebf1 ENSDARG00000067607 4.85 7.70 0.7 0.011 

slc43a2b ENSDARG00000061120 42.46 66.72 0.7 0.027 

col9a1 ENSDARG00000031483 15.25 23.79 0.6 0.024 

pla2g12b ENSDARG00000015662 26.44 41.17 0.6 0.016 

fgf6a ENSDARG00000009351 11.07 17.21 0.6 0.034 

spsb3a ENSDARG00000077737 8.39 13.05 0.6 0.034 

cenpf ENSDARG00000055133 2.35 3.65 0.6 0.036 

acbd5a ENSDARG00000034883 12.46 19.26 0.6 0.020 

gngt2a ENSDARG00000010680 64.64 99.59 0.6 0.027 

ddit4 ENSDARG00000037618 18.04 27.74 0.6 0.042 

top2a ENSDARG00000024488 11.67 17.88 0.6 0.036 

aoc1 ENSDARG00000061355 21.09 32.32 0.6 0.027 

atp8b5b ENSDARG00000079235 7.39 11.27 0.6 0.034 

fbn2b ENSDARG00000016744 5.00 7.61 0.6 0.011 

helz ENSDARG00000030560 7.46 11.33 0.6 0.036 

epb41l3b ENSDARG00000019917 26.81 40.51 0.6 0.036 

ddb1 ENSDARG00000089106 19.62 29.64 0.6 0.036 

zbtb4 ENSDARG00000061827 4.93 7.42 0.6 0.045 
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Appendix 7: Significantly down-regulated genes in 3ppm MeHg treated zebrafish 
embryos. 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

3ppm 

FPKM 

log2(fold 

change) 
q value 

nr1d1 ENSDARG00000033160 42.38 0.69 -5.9 0.006 

si:dkey-

18a10.3 
ENSDARG00000090814 8.05 0.27 -4.9 0.006 

per1a ENSDARG00000056885 3.86 0.22 -4.1 0.006 

per1b ENSDARG00000012499 10.84 1.31 -3.0 0.006 

rpe65a ENSDARG00000007480 39.09 5.73 -2.8 0.006 

cry5 ENSDARG00000019498 9.29 1.40 -2.7 0.006 

dbpb ENSDARG00000057652 8.96 1.51 -2.6 0.006 

nr1d2b ENSDARG00000009594 59.66 13.00 -2.2 0.006 

tefa ENSDARG00000039117 91.65 20.12 -2.2 0.006 

per3 ENSDARG00000010519 10.02 2.30 -2.1 0.006 

dbpa ENSDARG00000063014 11.51 2.67 -2.1 0.006 

prkacbb ENSDARG00000059125 4.11 1.00 -2.0 0.006 

ankrd33ab ENSDARG00000002508 1.82 0.47 -2.0 0.020 

guca1c ENSDARG00000030758 19.25 5.17 -1.9 0.006 

cry-dash ENSDARG00000002396 23.68 6.57 -1.8 0.006 

rn7sk ENSDARG00000081270 83.26 23.91 -1.8 0.006 

guca1g ENSDARG00000045737 16.36 4.80 -1.8 0.006 

hsp90aa1.1 ENSDARG00000010478 31.72 9.36 -1.8 0.006 

hsf2 ENSDARG00000053097 25.87 7.65 -1.8 0.006 

bhlhe41 ENSDARG00000041691 14.89 4.43 -1.7 0.006 

gabrr1 ENSDARG00000043902 5.74 1.80 -1.7 0.006 

samsn1b ENSDARG00000078647 6.56 2.12 -1.6 0.006 

ggact.1 ENSDARG00000070581 3.18 1.07 -1.6 0.006 

cabp5b ENSDARG00000028485 21.20 7.21 -1.6 0.006 

ankrd33aa ENSDARG00000055638 5.44 1.96 -1.5 0.006 

mgat4a ENSDARG00000063330 16.83 6.06 -1.5 0.006 

arr3a ENSDARG00000056511 377.02 139.19 -1.4 0.006 

gstp2 ENSDARG00000057338 31.84 11.85 -1.4 0.006 

snx8b ENSDARG00000077708 3.53 1.37 -1.4 0.006 

cdkn1a ENSDARG00000076554 6.95 2.72 -1.4 0.006 

znf395b ENSDARG00000024195 31.51 12.38 -1.3 0.006 

si:dkey-

104n9.1 
ENSDARG00000093042 16.30 6.43 -1.3 0.006 

hig1 ENSDARG00000022303 23.30 9.24 -1.3 0.006 
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Appendix 7 (Continued) 

ZFIN gene ID ENSEMBL gene ID 
0ppm 

FPKM 

3ppm 

FPKM 

log2(fold 

change) 
q value 

si:dkey-

33i22.3 
ENSDARG00000088377 1.97 0.79 -1.3 0.006 

slc1a8b ENSDARG00000032465 8.04 3.24 -1.3 0.006 

ddb2 ENSDARG00000041140 29.72 12.08 -1.3 0.006 

pde6h ENSDARG00000070439 2186.10 890.13 -1.3 0.006 

naf1 ENSDARG00000057929 3.88 1.60 -1.3 0.011 

grk7a ENSDARG00000020602 54.98 22.83 -1.3 0.006 

rbp4l ENSDARG00000044684 274.73 115.51 -1.3 0.006 

ppm1na ENSDARG00000010231 5.67 2.45 -1.2 0.006 

nmrk2 ENSDARG00000067848 83.62 36.26 -1.2 0.006 

ncaldb ENSDARG00000011334 16.78 7.52 -1.2 0.006 

slc1a2a ENSDARG00000052138 9.75 4.37 -1.2 0.006 

rhcgl1 ENSDARG00000007080 25.29 11.58 -1.1 0.006 

atp8b2 ENSDARG00000079259 1.26 0.58 -1.1 0.006 

rhcga ENSDARG00000003203 53.63 24.68 -1.1 0.006 

caspb ENSDARG00000052039 22.98 10.59 -1.1 0.006 

oaz2b ENSDARG00000059815 10.52 4.97 -1.1 0.006 

urb2 ENSDARG00000003217 3.10 1.47 -1.1 0.034 

bhlhe40 ENSDARG00000004060 80.68 39.03 -1.0 0.006 

mylipb ENSDARG00000055118 11.43 5.71 -1.0 0.006 

hsp90aa1.2 ENSDARG00000024746 25.19 12.64 -1.0 0.006 

si:dkey-

21a6.6 
ENSDARG00000053544 14.38 7.24 -1.0 0.006 

rdh5 ENSDARG00000008306 8.66 4.43 -1.0 0.016 

ipo4 ENSDARG00000041493 4.58 2.35 -1.0 0.027 

pprc1 ENSDARG00000090337 3.71 1.91 -1.0 0.036 

muc5b ENSDARG00000058556 2.88 1.50 -0.9 0.006 

sybu ENSDARG00000060112 17.92 9.36 -0.9 0.006 

mob1bb ENSDARG00000012953 14.43 7.58 -0.9 0.006 

rgra ENSDARG00000054890 20.20 10.65 -0.9 0.011 

tcap ENSDARG00000007344 11.44 6.06 -0.9 0.011 

unc45b ENSDARG00000008433 6.68 3.54 -0.9 0.006 

si:dkey-

23o4.6 
ENSDARG00000034577 7.05 3.75 -0.9 0.047 

cdca7a ENSDARG00000077620 13.45 7.17 -0.9 0.006 

lactbl1a ENSDARG00000089063 7.66 4.10 -0.9 0.011 

ttc19 ENSDARG00000074435 9.64 5.18 -0.9 0.036 
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Appendix 7 (Continued) 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

3ppm 

FPKM 

log2(fold 

change) 
q value 

ptgr1 ENSDARG00000024877 8.38 4.51 -0.9 0.042 

nfil3-6 ENSDARG00000087188 15.09 8.22 -0.9 0.006 

homer1b ENSDARG00000007517 5.47 2.98 -0.9 0.020 

pyya ENSDARG00000053449 19.66 10.78 -0.9 0.042 

prlra ENSDARG00000016570 6.15 3.40 -0.9 0.006 

tfr1b ENSDARG00000012552 3.46 1.92 -0.9 0.027 

nr1d2a ENSDARG00000003820 39.03 21.76 -0.8 0.006 

cdk5r2b ENSDARG00000078671 12.61 7.08 -0.8 0.006 

tefb ENSDARG00000038401 31.87 18.00 -0.8 0.006 

mid1ip1l ENSDARG00000018145 33.61 19.04 -0.8 0.006 

sst3 ENSDARG00000031649 27.98 15.86 -0.8 0.011 

ankrd1b ENSDARG00000076192 45.99 26.11 -0.8 0.006 

aldocb ENSDARG00000019702 217.02 123.67 -0.8 0.006 

lrit1a ENSDARG00000019179 4.84 2.78 -0.8 0.016 

cox17 ENSDARG00000069920 92.48 53.06 -0.8 0.006 

mylk4a ENSDARG00000091260 10.99 6.33 -0.8 0.006 

xpc ENSDARG00000039754 6.51 3.76 -0.8 0.024 

nop2 ENSDARG00000043304 12.15 7.06 -0.8 0.006 

adkb ENSDARG00000018258 15.64 9.10 -0.8 0.011 

eif1axa ENSDARG00000029003 23.37 13.66 -0.8 0.016 

hspe1 ENSDARG00000056167 113.24 66.36 -0.8 0.006 

per2 ENSDARG00000034503 17.94 10.55 -0.8 0.006 

impg1b ENSDARG00000074839 6.93 4.11 -0.8 0.006 

dct ENSDARG00000006008 16.30 9.72 -0.7 0.039 

slmo2 ENSDARG00000009505 41.50 24.75 -0.7 0.006 

ppm1nb ENSDARG00000057032 14.79 8.84 -0.7 0.006 

agr2 ENSDARG00000070480 27.38 16.40 -0.7 0.016 

slc25a28 ENSDARG00000074297 5.29 3.17 -0.7 0.047 

sh3gl2 ENSDARG00000023600 45.22 27.17 -0.7 0.006 

stxbp5l ENSDARG00000006383 14.98 9.02 -0.7 0.030 

mcm2 ENSDARG00000015911 13.28 8.02 -0.7 0.006 

cx32.3 ENSDARG00000041787 13.23 8.01 -0.7 0.047 

nhp2l1b ENSDARG00000023299 42.61 25.87 -0.7 0.042 

larp4ab ENSDARG00000074979 7.58 4.62 -0.7 0.006 

tyrp1b ENSDARG00000056151 31.71 19.39 -0.7 0.020 

dusp4 ENSDARG00000044688 8.85 5.46 -0.7 0.039 
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Appendix 7 (Continued) 

ZFIN gene ID ENSEMBL gene ID 
0ppm 

FPKM 

3ppm 

FPKM 

log2(fold 

change) 
q value 

mt,mt2 ENSDARG00000041623 119.50 73.91 -0.7 0.011 

pdcd11 ENSDARG00000052480 8.15 5.06 -0.7 0.016 

timm13 ENSDARG00000058297 26.88 16.75 -0.7 0.034 

cycsb ENSDARG00000044562 186.81 117.45 -0.7 0.006 

fbl ENSDARG00000053912 54.36 34.31 -0.7 0.006 

mcm4 ENSDARG00000040041 11.60 7.33 -0.7 0.024 

dkc1 ENSDARG00000016484 21.83 13.79 -0.7 0.024 

mcm5 ENSDARG00000019507 13.23 8.39 -0.7 0.036 

slc32a1 ENSDARG00000059775 19.06 12.09 -0.7 0.006 

si:dkey-

162h11.2 
ENSDARG00000091715 3.33 2.12 -0.7 0.036 

cry1b ENSDARG00000011583 12.17 7.86 -0.6 0.036 

hspd1 ENSDARG00000056160 27.25 17.63 -0.6 0.042 

desi1a ENSDARG00000033140 17.91 11.68 -0.6 0.047 

glula ENSDARG00000069054 176.68 116.22 -0.6 0.039 

pcsk1 ENSDARG00000002600 10.27 6.81 -0.6 0.039 

slc24a3 ENSDARG00000006760 8.98 5.98 -0.6 0.024 

cry1a ENSDARG00000045768 38.26 25.93 -0.6 0.047 
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Appendix 8. Significantly up-regulated genes in 10ppm MeHg treated zebrafish 
embryos.  
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

10ppm 

FPKM 

log2(fold 

change) 
q value 

vwa2 ENSDARG00000075441 4.37 52.81 3.6 0.006 

haus6 ENSDARG00000068210 2.53 16.35 2.7 0.006 

opn1lw1 ENSDARG00000044862 6.24 27.32 2.1 0.006 

spsb3b ENSDARG00000077487 3.12 12.30 2.0 0.006 

nfil3-2 ENSDARG00000043237 13.39 51.12 1.9 0.006 

nfil3-5 ENSDARG00000094965 26.85 97.57 1.9 0.006 

nr1d4b ENSDARG00000059370 1.43 4.99 1.8 0.006 

xkr8.2 ENSDARG00000076820 1.12 3.91 1.8 0.006 

cdkn1d ENSDARG00000088020 34.84 119.41 1.8 0.006 

prdm1b ENSDARG00000053592 5.52 18.46 1.7 0.006 

tfcp2l1 ENSDARG00000029497 1.59 5.28 1.7 0.006 

rn7sk ENSDARG00000081270 83.26 248.90 1.6 0.006 

slc1a7a ENSDARG00000034940 1.31 3.79 1.5 0.006 

agrn ENSDARG00000096339 2.00 5.78 1.5 0.036 

aanat2 ENSDARG00000079802 2.68 7.24 1.4 0.006 

fkbp5 ENSDARG00000028396 29.82 79.39 1.4 0.006 

arntl2 ENSDARG00000041381 1.85 4.92 1.4 0.006 

rorcb ENSDARG00000017780 9.14 24.08 1.4 0.006 

ndrg1b ENSDARG00000010420 34.41 86.12 1.3 0.006 

inhbb ENSDARG00000040777 4.92 11.90 1.3 0.006 

hlfb ENSDARG00000061011 5.37 12.83 1.3 0.006 

ampd3b ENSDARG00000032469 21.49 48.54 1.2 0.006 

cyp11c1 ENSDARG00000042014 0.94 2.12 1.2 0.034 

mxd3 ENSDARG00000057432 11.67 26.18 1.2 0.006 

kera ENSDARG00000056938 16.28 36.14 1.2 0.011 

slc34a2b ENSDARG00000036864 4.50 9.91 1.1 0.006 

guca1e ENSDARG00000078384 2.25 4.85 1.1 0.006 

mxra5b ENSDARG00000076309 0.59 1.21 1.0 0.006 

rab14 ENSDARG00000074246 4.19 8.51 1.0 0.006 

klf2a ENSDARG00000042667 14.71 28.14 0.9 0.006 

arntl1b ENSDARG00000035732 6.50 12.24 0.9 0.006 

mep1b ENSDARG00000037533 5.67 10.65 0.9 0.006 

slc25a25a ENSDARG00000010572 5.55 10.43 0.9 0.006 

cyp2k18 ENSDARG00000038366 5.74 10.70 0.9 0.006 
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Appendix 8 (Continued) 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

10ppm 

FPKM 

log2(fold 

change) 
q value 

pik3r3a ENSDARG00000071219 9.21 17.10 0.9 0.006 

jam2b ENSDARG00000079071 5.29 9.62 0.9 0.030 

fbxo32 ENSDARG00000040277 33.53 60.18 0.8 0.006 

b4galt1 ENSDARG00000002634 8.55 15.30 0.8 0.006 

slc6a19a ENSDARG00000018621 2.12 3.73 0.8 0.036 

npas2 ENSDARG00000016536 3.56 6.21 0.8 0.006 

tsc22d2 ENSDARG00000041839 13.76 23.94 0.8 0.006 

agt ENSDARG00000016412 24.81 42.91 0.8 0.006 

slc16a12b ENSDARG00000089885 10.31 17.76 0.8 0.006 

arntl1a ENSDARG00000006791 11.19 19.12 0.8 0.016 

ccdc88aa ENSDARG00000078440 3.82 6.52 0.8 0.011 

rimkla ENSDARG00000016830 39.30 66.47 0.8 0.006 

inppl1b ENSDARG00000001442 2.67 4.52 0.8 0.036 

klf3 ENSDARG00000015495 15.66 26.25 0.7 0.006 

cry4 ENSDARG00000011890 10.51 17.58 0.7 0.006 

pfkfb4l ENSDARG00000029075 24.73 41.32 0.7 0.020 

trim63 ENSDARG00000028027 83.41 138.93 0.7 0.006 

csrnp1a ENSDARG00000031426 6.49 10.78 0.7 0.036 

c3b ENSDARG00000087359 3.51 5.78 0.7 0.016 

txlnba ENSDARG00000020594 20.08 32.97 0.7 0.006 

hsd11b2 ENSDARG00000001975 11.11 18.05 0.7 0.011 

kbtbd12 ENSDARG00000001882 13.03 20.94 0.7 0.006 

r3hdm4 ENSDARG00000063254 9.50 15.24 0.7 0.020 

cd99 ENSDARG00000051975 21.46 34.40 0.7 0.042 

klhl38b ENSDARG00000040278 15.15 24.24 0.7 0.030 

slc34a2a ENSDARG00000012903 10.04 16.05 0.7 0.027 

gngt2a ENSDARG00000010680 64.64 102.11 0.7 0.011 

zyg11 ENSDARG00000007737 12.48 19.36 0.6 0.030 

col9a1 ENSDARG00000031483 15.25 23.41 0.6 0.039 

adh8b ENSDARG00000024278 50.49 76.96 0.6 0.011 

zbtb4 ENSDARG00000061827 4.93 7.52 0.6 0.016 

tcf12 ENSDARG00000004714 19.38 29.01 0.6 0.047 
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Appendix 9. Significantly down-regulated genes in 10ppm MeHg treated 
zebrafish embryos.  
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

10ppm 

FPKM 

log2(fold 

change) 
q value 

nr1d1 ENSDARG00000033160 42.38 1.54 -4.8 0.006 

per1b ENSDARG00000012499 10.84 1.04 -3.4 0.006 

sema7a ENSDARG00000078707 18.78 1.93 -3.3 0.006 

cry5 ENSDARG00000019498 9.29 1.18 -3.0 0.006 

rpe65a ENSDARG00000007480 39.09 5.01 -3.0 0.006 

per3 ENSDARG00000010519 10.02 1.58 -2.7 0.006 

gabrr1 ENSDARG00000043902 5.74 1.09 -2.4 0.006 

ankrd33a

b 
ENSDARG00000002508 1.82 0.37 -2.3 0.006 

nr1d2b ENSDARG00000009594 59.66 12.49 -2.3 0.006 

dbpb ENSDARG00000057652 8.96 1.92 -2.2 0.006 

cry-dash ENSDARG00000002396 23.68 5.77 -2.0 0.006 

tefa ENSDARG00000039117 91.65 22.51 -2.0 0.006 

hsf2 ENSDARG00000053097 25.87 6.68 -2.0 0.006 

lama1 ENSDARG00000056043 4.44 1.24 -1.8 0.011 

samsn1b ENSDARG00000078647 6.56 1.89 -1.8 0.006 

arr3a ENSDARG00000056511 377.02 110.27 -1.8 0.006 

dbpa ENSDARG00000063014 11.51 3.44 -1.7 0.006 

prkg2 ENSDARG00000054741 1.28 0.39 -1.7 0.006 

hsp90aa1.

1 
ENSDARG00000010478 31.72 9.60 -1.7 0.006 

ankrd33aa ENSDARG00000055638 5.44 1.67 -1.7 0.006 

slc1a2a ENSDARG00000052138 9.75 3.02 -1.7 0.006 

gstp2 ENSDARG00000057338 31.84 10.15 -1.6 0.006 

bhlhe41 ENSDARG00000041691 14.89 4.77 -1.6 0.006 

grk7a ENSDARG00000020602 54.98 17.89 -1.6 0.006 

cabp5b ENSDARG00000028485 21.20 6.91 -1.6 0.006 

pde6h ENSDARG00000070439 2186.10 724.46 -1.6 0.006 

cdca7a ENSDARG00000077620 13.45 4.74 -1.5 0.006 

guca1c ENSDARG00000030758 19.25 6.83 -1.5 0.006 

bhlhe40 ENSDARG00000004060 80.68 29.27 -1.5 0.006 

znf395b ENSDARG00000024195 31.51 11.72 -1.4 0.006 

sdr42e1 ENSDARG00000003397 1.92 0.72 -1.4 0.039 

prkacbb ENSDARG00000059125 4.11 1.56 -1.4 0.006 

ncaldb ENSDARG00000011334 16.78 6.46 -1.4 0.006 
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Appendix 9 (Continued) 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

10ppm 

FPKM 

log2(fold 

change) 
q value 

foxq1a ENSDARG00000030896 15.35 5.95 -1.4 0.006 

ddb2 ENSDARG00000041140 29.72 12.04 -1.3 0.006 

sqlea ENSDARG00000079946 2.48 1.01 -1.3 0.011 

naf1 ENSDARG00000057929 3.88 1.63 -1.3 0.011 

tyrp1a ENSDARG00000029204 5.70 2.40 -1.2 0.006 

pcyt1bb ENSDARG00000044456 5.61 2.40 -1.2 0.006 

impg1b ENSDARG00000074839 6.93 2.99 -1.2 0.006 

hig1 ENSDARG00000022303 23.30 10.07 -1.2 0.006 

guca1g ENSDARG00000045737 16.36 7.13 -1.2 0.034 

neto2b ENSDARG00000063293 1.40 0.62 -1.2 0.030 

gbp ENSDARG00000040059 19.85 8.83 -1.2 0.006 

urb2 ENSDARG00000003217 3.10 1.39 -1.2 0.020 

mcm2 ENSDARG00000015911 13.28 5.93 -1.2 0.006 

snx8b ENSDARG00000077708 3.53 1.59 -1.2 0.006 

lactbl1a ENSDARG00000089063 7.66 3.45 -1.1 0.006 

mcm5 ENSDARG00000019507 13.23 6.00 -1.1 0.006 

slc2a1a ENSDARG00000001437 11.16 5.14 -1.1 0.006 

rbp4l ENSDARG00000044684 274.73 127.19 -1.1 0.006 

odam ENSDARG00000074476 14.73 6.89 -1.1 0.020 

bahcc1 ENSDARG00000080009 12.36 5.81 -1.1 0.006 

gabrr2a ENSDARG00000052982 2.83 1.35 -1.1 0.042 

atp8b2 ENSDARG00000079259 1.26 0.60 -1.1 0.006 

rdh5 ENSDARG00000008306 8.66 4.13 -1.1 0.006 

ppm1na ENSDARG00000010231 5.67 2.75 -1.0 0.006 

nle1 ENSDARG00000057105 4.43 2.15 -1.0 0.006 

rx1 ENSDARG00000071684 15.62 7.64 -1.0 0.006 

cdk5r2b ENSDARG00000078671 12.61 6.22 -1.0 0.006 

dct ENSDARG00000006008 16.30 8.09 -1.0 0.006 

mgat4a ENSDARG00000063330 16.83 8.36 -1.0 0.006 

mcm4 ENSDARG00000040041 11.60 5.83 -1.0 0.006 

anxa11b ENSDARG00000002632 93.75 47.18 -1.0 0.006 

ptgs2b ENSDARG00000010276 3.47 1.75 -1.0 0.020 

npas4a ENSDARG00000055752 3.87 1.96 -1.0 0.006 

slc1a8b ENSDARG00000032465 8.04 4.10 -1.0 0.020 

mcm6 ENSDARG00000057683 9.55 4.92 -1.0 0.006 

gale ENSDARG00000002401 6.90 3.57 -1.0 0.034 
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Appendix 9 (Continued) 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

10ppm 

FPKM 

log2(fold 

change) 
q value 

tyrp1b ENSDARG00000056151 31.71 16.67 -0.9 0.006 

acap3a ENSDARG00000075990 55.78 29.62 -0.9 0.006 

per2 ENSDARG00000034503 17.94 9.54 -0.9 0.006 

hells ENSDARG00000057738 4.45 2.37 -0.9 0.006 

crcp ENSDARG00000069373 17.84 9.53 -0.9 0.011 

pdcd11 ENSDARG00000052480 8.15 4.40 -0.9 0.006 

scpp5 ENSDARG00000078622 15.54 8.44 -0.9 0.047 

homer1b ENSDARG00000007517 5.47 2.97 -0.9 0.006 

muc5b ENSDARG00000058556 2.88 1.60 -0.8 0.034 

agr2 ENSDARG00000070480 27.38 15.24 -0.8 0.006 

mthfr ENSDARG00000053087 5.05 2.82 -0.8 0.020 

polr1c ENSDARG00000039400 11.20 6.26 -0.8 0.036 

mt,mt2 ENSDARG00000041623 119.50 66.90 -0.8 0.006 

hspd1 ENSDARG00000056160 27.25 15.36 -0.8 0.006 

xpc ENSDARG00000039754 6.51 3.71 -0.8 0.011 

rab14 ENSDARG00000045261 12.09 6.89 -0.8 0.006 

mylipb ENSDARG00000055118 11.43 6.54 -0.8 0.011 

aldocb ENSDARG00000019702 217.02 124.40 -0.8 0.006 

ttc19 ENSDARG00000074435 9.64 5.54 -0.8 0.034 

bbox1 ENSDARG00000036135 12.52 7.21 -0.8 0.006 

nfil3-6 ENSDARG00000087188 15.09 8.83 -0.8 0.006 

nhp2l1b ENSDARG00000023299 42.61 24.96 -0.8 0.016 

mob1bb ENSDARG00000012953 14.43 8.47 -0.8 0.006 

nol6 ENSDARG00000059711 5.02 2.95 -0.8 0.027 

acaca ENSDARG00000078512 8.88 5.32 -0.7 0.020 

slc25a28 ENSDARG00000074297 5.29 3.17 -0.7 0.042 

pdcb ENSDARG00000017634 53.34 32.02 -0.7 0.006 

egr1 ENSDARG00000037421 26.63 16.05 -0.7 0.006 

txnipb ENSDARG00000070000 34.89 21.23 -0.7 0.011 

gatm ENSDARG00000036239 103.99 63.39 -0.7 0.034 

adkb ENSDARG00000018258 15.64 9.55 -0.7 0.024 

pdca ENSDARG00000011886 6.81 4.17 -0.7 0.024 

dkc1 ENSDARG00000016484 21.83 13.43 -0.7 0.011 

prlra ENSDARG00000016570 6.15 3.79 -0.7 0.034 

atp1a2a ENSDARG00000010472 15.47 9.55 -0.7 0.011 

ftsj ENSDARG00000076761 8.35 5.17 -0.7 0.047 
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Appendix 9 (Continued) 
ZFIN gene 

ID 
ENSEMBL gene ID 

0ppm 

FPKM 

10ppm 

FPKM 

log2(fold 

change) 
q value 

ankrd1b ENSDARG00000076192 45.99 28.57 -0.7 0.039 

oat ENSDARG00000078425 14.95 9.30 -0.7 0.024 

cry1b ENSDARG00000011583 12.17 7.58 -0.7 0.020 

gc3 ENSDARG00000026820 10.66 6.67 -0.7 0.020 

aqp8a.1 ENSDARG00000045141 60.20 37.76 -0.7 0.016 

nat10 ENSDARG00000054259 8.96 5.62 -0.7 0.011 

sagb ENSDARG00000038378 143.52 91.17 -0.7 0.020 

abcc4 ENSDARG00000058953 7.97 5.07 -0.7 0.020 

hspe1 ENSDARG00000056167 113.24 72.46 -0.6 0.045 

sybu ENSDARG00000060112 17.92 11.47 -0.6 0.030 

larp4ab ENSDARG00000074979 7.58 4.87 -0.6 0.027 

hmgcra ENSDARG00000052734 10.31 6.66 -0.6 0.036 

mybbp1a ENSDARG00000028323 15.61 10.12 -0.6 0.016 
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Appendix 10: Gene ontology (GO) enrichment analysis of biological functions 
affected by MeHg exposure in zebrafish embryos. 

Biological function Source 
Number of 

genes 
Adjusted P 

response to light stimulus GO:0009416 17 5.87E-15 

response to radiation GO:0009314 18 1.44E-14 

Photoperiodism GO:0009648 9 7.09E-13 

response to abiotic stimulus GO:0009628 18 2.16E-09 

circadian rhythm GO:0007623 7 3.14E-07 

rhythmic process GO:0048511 7 1.07E-05 

nucleic acid metabolic process GO:0090304 57 7.53E-05 

cellular biosynthetic process GO:0044249 62 0.0002 
cellular nitrogen compound metabolic 
process 

GO:0034641 67 0.0002 

nucleobase-containing compound metabolic 
process 

GO:0006139 64 0.0003 

biosynthetic process GO:0009058 64 0.0003 
cellular nitrogen compound biosynthetic 
process 

GO:0044271 48 0.0004 

heterocycle metabolic process GO:0046483 65 0.0005 
cellular aromatic compound metabolic 
process 

GO:0006725 65 0.0005 

organic cyclic compound metabolic process GO:1901360 66 0.0005 

nitrogen compound metabolic process GO:0006807 68 0.0009 

organic substance biosynthetic process GO:1901576 61 0.001 
organic cyclic compound biosynthetic 
process 

GO:1901362 47 0.001 

aromatic compound biosynthetic process GO:0019438 46 0.0011 
nucleobase-containing compound 
biosynthetic process 

GO:0034654 45 0.0012 

transcription, DNA-dependent GO:0006351 41 0.0014 

RNA metabolic process GO:0016070 48 0.0014 

heterocycle biosynthetic process GO:0018130 46 0.0015 

RNA biosynthetic process GO:0032774 41 0.0015 

regulation of transcription, DNA-dependent GO:0006355 39 0.0027 

regulation of RNA biosynthetic process GO:2001141 39 0.0028 

regulation of RNA metabolic process GO:0051252 39 0.0037 

regulation of cellular biosynthetic process GO:0031326 40 0.0053 

regulation of biosynthetic process GO:0009889 40 0.0056 

single-organism metabolic process GO:0044710 114 0.0056 
regulation of nitrogen compound metabolic 
process 

GO:0051171 41 0.0064 

metabolic process GO:0008152 122 0.0064 
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Appendix 10 (Continued) 

Biological function Source 
Number of 

genes 
Adjusted P 

response to oxidative stress GO:0006979 5 0.0073 

DNA-dependent DNA replication GO:0006261 5 0.0073 
regulation of cellular macromolecule 
biosynthetic process 

GO:2000112 39 0.0087 

regulation of macromolecule biosynthetic 
process 

GO:0010556 39 0.0092 

cellular process GO:0009987 149 0.0093 
regulation of nucleobase-containing 
compound metabolic process 

GO:0019219 40 0.0136 

primary metabolic process GO:0044238 101 0.0192 
cellular macromolecule biosynthetic 
process 

GO:0034645 48 0.0208 

regulation of gene expression GO:0010468 40 0.0208 

cellular metabolic process GO:0044237 96 0.0416 

regulation of primary metabolic process GO:0080090 42 0.0416 
regulation of macromolecule metabolic 
process 

GO:0060255 42 0.0416 

anion transport GO:0006820 8 0.0416 

response to stress GO:0006950 20 0.0416 

macromolecule biosynthetic process GO:0009059 48 0.0416 

regulation of cellular metabolic process GO:0031323 42 0.0416 

response to chemical stimulus GO:0042221 17 0.0416 

regulation of metabolic process GO:0019222 45 0.0416 
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Appendix 11: Gene set enrichment analysis (GSEA) results for each MeHg 
exposure concentration tested in zebrafish embryos. 
 

C2: Curated gene set collection 
 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Acetylcholine neurotransmitter 
release cycle 

REACTOME    

Axon guidance KEGG 
 

NES=1.642 
P=0.033      
q=0.305 

NES=2.812 
P=0.000      
q=0.000 

Axon guidance REACTOME 
 

NES=1.472 
P=0.065      
q=0.159 

 

Dopamine neurotransmitter release 
cycle 

REACTOME    

Glutamate neurotransmitter release 
cycle 

REACTOME    

Glutathione conjugation REACTOME    

Glutathione metabolism KEGG    

NaCl dependent neurotransmitter 
transporters 

REACTOME    

Neuroactive ligand receptor 
interaction 

KEGG 
 

NES=-1.685 
P=0.035      
q=0.043 

NES=1.560 
P=0.035      
q=0.292 

Neurotransmitter receptor 
binding and downstream 
transmission in the postsynaptic 
cell 

REACTOME 
 

NES=-2.676 
P=0.000      
q=0.003 

 

Neurotransmitter release cycle REACTOME 
NES=-1.633 

P=0.044      
q=0.296 

NES=-1.874 
P=0.008      
q=0.024 

 
 
 

Norepinephrine neurotransmitter 
release cycle 

REACTOME    
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Appendix 11 (Continued) 
 

C2: Curated gene set collection 
    

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Parkinson’s disease KEGG 
 

NES=-3.047 
P=0.000      
q=0.000 

NES=-2.867 
P=0.000      
q=0.000 

SEMA3A pak dependent axon 
repulsion 

REACTOME    

Parkinson’s disease KEGG  

NES=-3.047 
P=0.000      
q=0.000 

NES=-2.867 
P=0.000      
q=0.000 

SEMA3A pak dependent axon 
repulsion 

REACTOME    

 

C5: GO Biological process collection 

        

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Axon guidance GO:0007411 
 

NES=-1.648 
P=0.038      
q=0.048 

 

Axonogenesis GO:0007409 
 

NES=-1.848 
P=0.008      
q=0.026 

 

Brain development GO:0007420  

NES=-1.323 
P=0.154      
q=0.186 

 

Central nervous system 
development 

GO:0007417 
 

NES=-1.295 
P=0.171      
q=0.198 

 

Generation of neurons GO:0048699 
 

NES=-2.138 
P=0.006      
q=0.007 

 

Nervous system development GO:0007399  

NES=-1.786 
P=0.018      
q=0.031 
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Appendix 11 (Continued) 
 

C5: GO Biological process collection 
 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Peripheral nervous system 
development 

GO:0007422    

Phototransduction GO:0007602    

Regulation of axonogenesis GO:0050770    

Regulation of neurogenesis GO:0050767    

Regulation of neuron apoptosis GO:0043523    

Regulation of neurotransmitter 
levels 

GO:0001505 
NES=-1.736 

P=0.026      
q=0.035 

Synapse organization and biogenesis GO:0050808 

Transmission of nerve impulse GO:0019226 
NES=-2.532 

P=0.000      
q=0.002 

 

C5: GO Cellular component collection         

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Focal adhesion GO:0005925    

Neuron projection GO:0043005 
 

NES=-1.966 
P=0.006      
q=0.015 
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Appendix 11 (Continued) 
C5: GO Molecular function collection 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Acetylcholine binding GO:0042166 
   

Glutamate receptor activity GO:0008066 
 

NES=-1.780 
P=0.020      
q=0.029  

Glutathione transferase activity GO:0004364 
   

Neuropeptide binding GO:0042923 
   

Neuropeptide hormone activity GO:0005184 
   

Neuropeptide receptor activity GO:0008188 
   

Neurotransmitter binding GO:0042165 
   

Neurotransmitter receptor activity GO:0030594 
   

Serotonin receptor activity GO:0004993 
   

 

HPO: Human phenotype ontology collection       

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Abnormal lower motor neuron 
morphology 

HP:0002366 
   

Abnormal neuron morphology HP:0012757 
 

NES=-1.760 
P=0.017      
q=0.077  

Abnormal upper motor neuron 
morphology 

HP:0002127 
   

Abnormality of neural tube closure HP:0045005 
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Appendix 11 (Continued) 
 

HPO: Human phenotype ontology collection       

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Abnormality of neuronal migration HP:0002269    

Abnormality of vision HP:0000504 
  

NES=-1.680 
P=0.029      
q=0.182 

Abnormality of vision evoked 
potentials 

HP:0000649    

Ataxia HP:0001251 
 

NES=-2.079 
P=0.000      
q=0.020 

 

Attention deficit hyperactivity 
disorder 

HP:0007018 
NES=1.838 

P=0.011      
q=0.167 

  

Autism 
Wall, et al. 

(2008) 
 

NES=-2.094 
P=0.000      
q=0.040 

NES=1.535 
P=0.065      
q=0.242 

Autistic behavior HP:0000729    

Bilateral convulsive seizures HP:0007334    

Decreased motor nerve conduction 
velocity 

HP:0003431    

Epileptic encephalopathy HP:0200134 
 

NES=-1.802 
P=0.024      
q=0.083 

 

Epileptic spasms HP:0011097    

Epileptiform EEG discharges HP:0011182 
 

NES=-1.451 
P=0.097      
q=0.209 
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Appendix 11 (Continued) 
HPO: Human phenotype ontology collection 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Episodic ataxia HP:0002131 
   

Focal motor seizures HP:0011153 
   

Functional motor problems HP:0004302 
   

Gait ataxia HP:0002066 
   

Generalized seizures HP:0002197 
   

Limb ataxia HP:0002070 
   

Motor neuron atrophy HP:0007373 
 

NES=-1.650 

P=0.030      

q=0.102 
 

Motor tics HP:0100034 
   

Neurodegeneration HP:0002180 
   

Neurodevelopmental delay HP:0012758 
  

NES=-2.246 

P=0.000      

q=0.012 

Neuronal loss in central 
nervous system 

HP:0002529 
   

Oculomotor apraxia HP:0000657 
   

Optic neuropathy HP:0001138 
   

Paresthesia HP:0003401 
   

Parkinsonism HP:0001300 
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Appendix 11 (Continued) 
 
HPO: Human phenotype ontology collection 

Gene set description Source 
1ppm 
MeHg 

3ppm 
MeHg 

10ppm 
MeHg 

Peripheral axonal 
degeneration 

HP:0000764 
NES=-1.576 

P=0.039      
q=0.443 

  

Peripheral axonal neuropathy HP:0003477    

Peripheral neuropathy HP:0009830    

Poor fine motor coordination HP:0007010    

Progressive cerebellar ataxia HP:0002073    

Progressive gait ataxia HP:0007240    

Progressive neurologic 
deterioration 

HP:0002344    

Progressive visual loss HP:0000529    

Seizures HP:0001250 
  

NES=-2.500 
P=0.000      
q=0.003 

Sensorimotor neuropathy HP:0007141    

Sensory impairment HP:0003474    

Sensory neuropathy HP:0000763    
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Appendix 12: RNA yields and RIN values of zebrafish whole-embryo RNA 
extractions 

 

Sample ID ng/µl  Total RNA (ug) 260/280  260/230  RIN 

CTRL1 161.47 3.23 1.99 2.24 7.3 

CTRL2 68.25 1.37 2 2.13 8.9 

CTRL3 69.17 1.38 2.03 2.11 9.5 

1PPMHg1 82.97 1.66 2.09 2.14 9.5 

1PPMHg2 120.75 2.42 2.01 2.17 7.7 

1PPMHg3 102.87 2.06 2.08 2.2 9.6 

3PPMHg1 116.09 2.32 2.09 1.97 9.5 

3PPMHg2 81.26 1.63 2.07 2.15 9.9 

3PPMHg3 91.15 1.82 2.09 2.18 9.7 

10PPMHg1 160.82 3.22 2.01 2.26 9.5 

10PPMHg2 78.57 1.57 2.07 2.13 9.7 

10PPMHg3 91.96 1.84 2.03 2.12 9.5 
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Appendix 13: RNA yields and RIN values of yellow perch whole-embryo RNA 
extractions 

Sample ID Total RNA (µg) 260/280  260/230  RIN 

Ctrl 17 dpf Perch #1 - Replicate 1 0.66 2.04 2.08 9.3 

Ctrl 17 dpf Perch #2 - Replicate 1 1.80 2.12 2.19 9.8 

Ctrl 17 dpf Perch #3 - Replicate 1 1.62 2.1 2.04 9.2 

Ctrl 17 dpf Perch #4 - Replicate 1 0.64 1.76 1.88 10 

Ctrl 17 dpf Perch #5 - Replicate 1 1.96 2.09 2.16 9.5 

Ctrl 17 dpf Perch #6 - Replicate 1 1.30 2.32 2.26 8.5 

Ctrl 17 dpf Perch #7 - Replicate 1 2.27 2.03 2.18 9 

Ctrl 17 dpf Perch #8 - Replicate 1 0.85 1.95 2.15 9.2 

Ctrl 17 dpf Perch #1 - Replicate 2 1.51 2.1 2.17 9 

Ctrl 17 dpf Perch #2 - Replicate 2 1.87 2.05 2.12 8.8 

Ctrl 17 dpf Perch #3 - Replicate 2 1.52 2.1 2.09 9.2 

Ctrl 17 dpf Perch #4 - Replicate 2 1.81 2.11 2.19 8.9 

Ctrl 17 dpf Perch #5 - Replicate 2 2.25 2.06 2.18 8.6 

Ctrl 17 dpf Perch #6 - Replicate 2 1.92 2 2.07 8 

Ctrl 17 dpf Perch #7 - Replicate 2 1.67 1.91 2.07 7.8 

Ctrl 17 dpf Perch #8 - Replicate 2 1.77 1.93 2.06 7.6 

Ctrl 17 dpf Perch #1 - Replicate 3 1.91 2.03 2.15 7.8 

Ctrl 17 dpf Perch #2 - Replicate 3 2.19 2.02 2.07 8.6 

Ctrl 17 dpf Perch #3 - Replicate 3 1.58 1.88 2.03 8.8 

Ctrl 17 dpf Perch #4 - Replicate 3 2.03 1.95 2.16 8 

Ctrl 17 dpf Perch #5 - Replicate 3 1.75 2.07 2.07 8.4 

Ctrl 17 dpf Perch #6 - Replicate 3 1.12 1.9 1.92 7.2 

Ctrl 17 dpf Perch #7 - Replicate 3 1.71 1.99 1.89 7.9 

Ctrl 17 dpf Perch #8 - Replicate 3 2.03 2.03 2.1 7.9 

0.03µM MeHg 17 dpf Perch #1 - Replicate 1 2.25 2.05 2.18 8.8 

0.03µM MeHg 17 dpf Perch #2 - Replicate 1 1.81 2.03 2.06 8.7 

0.03µM MeHg 17 dpf Perch #3 - Replicate 1 2.72 2.08 2.24 9.1 

0.03µM MeHg 17 dpf Perch #4 - Replicate 1 1.97 2.01 2.01 8.7 

0.03µM MeHg 17 dpf Perch #5 - Replicate 1 2.73 2.06 2.23 8.8 

0.03µM MeHg 17 dpf Perch #6 - Replicate 1 2.18 2.03 2.16 8.3 

0.03µM MeHg 17 dpf Perch #7 - Replicate 1 2.03 2.01 2.13 7.4 

0.03µM MeHg 17 dpf Perch #8 - Replicate 1 0.94 2.05 2.22 9.1 

0.03µM MeHg 17 dpf Perch #1 - Replicate 2 2.16 2.03 2.22 8.9 

0.03µM MeHg 17 dpf Perch #2 - Replicate 2 2.77 2.06 2.24 8.5 

0.03µM MeHg 17 dpf Perch #3 - Replicate 2 2.89 2.08 2.22 8.7 

0.03µM MeHg 17 dpf Perch #5 - Replicate 2 2.24 2.12 2.19 8 

0.03µM MeHg 17 dpf Perch #6 - Replicate 2 1.58 2.12 2.08 9.1 

0.03µM MeHg 17 dpf Perch #7 - Replicate 2 0.96 2.08 2.02 9.4 
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0.03µM MeHg 17 dpf Perch #8 - Replicate 2 1.90 2.1 2.2 8.7 

0.03µM MeHg 17 dpf Perch #1 - Replicate 3 1.33 2.14 2.22 9.1 

0.03µM MeHg 17 dpf Perch #2 - Replicate 3 1.50 2.15 2.19 9.2 

0.03µM MeHg 17 dpf Perch #3 - Replicate 3 1.47 2.09 2.17 9.4 

0.03µM MeHg 17 dpf Perch #4 - Replicate 3 1.30 2.08 2.08 9.1 

0.03µM MeHg 17 dpf Perch #5 - Replicate 3 1.76 2.08 2.26 8.8 

0.03µM MeHg 17 dpf Perch #6 - Replicate 3 1.96 2.08 2.24 9 

0.03µM MeHg 17 dpf Perch #7 - Replicate 3 1.14 1.99 2.14 8.5 

0.03µM MeHg 17 dpf Perch #8 - Replicate 3 1.30 2.05 2.15 9 

0.03µM MeHg 17 dpf Perch #4 - Replicate 2 2.00 2.07 2.21 7.8 

0.1µM MeHg 17 dpf Perch #1 - Replicate 1 1.20 2.05 2.19 10 

0.1µM MeHg 17 dpf Perch #2 - Replicate 1 1.93 2.04 2.1 9.4 

0.1µM MeHg 17 dpf Perch #3 - Replicate 1 1.83 2.09 2.16 9.3 

0.1µM MeHg 17 dpf Perch #4 - Replicate 1 1.85 2.03 2.22 9.3 

0.1µM MeHg 17 dpf Perch #5 - Replicate 1 1.64 2.06 2.19 9.1 

0.1µM MeHg 17 dpf Perch #6 - Replicate 1 1.92 2.06 2.18 9.1 

0.1µM MeHg 17 dpf Perch #7 - Replicate 1 1.87 2.08 2.22 9 

0.1µM MeHg 17 dpf Perch #8 - Replicate 1 0.60 1.93 2.07 9.6 

0.1µM MeHg 17 dpf Perch #1 - Replicate 2 1.91 2.08 2.19 9.3 

0.1µM MeHg 17 dpf Perch #2 - Replicate 2 2.27 2.07 2.17 9.4 

0.1µM MeHg 17 dpf Perch #3 - Replicate 2 1.77 2.04 2.21 9.7 

0.1µM MeHg 17 dpf Perch #4 - Replicate 2 1.75 2.11 2.17 9.5 

0.1µM MeHg 17 dpf Perch #5 - Replicate 2 1.97 2.08 2.11 9.7 

0.1µM MeHg 17 dpf Perch #6 - Replicate 2 2.33 2.07 2.15 9.6 

0.1µM MeHg 17 dpf Perch #7 - Replicate 2 1.79 2.07 2.18 10 

0.1µM MeHg 17 dpf Perch #8 - Replicate 2 0.83 2.01 2.12 9.8 

0.1µM MeHg 17 dpf Perch #1 - Replicate 3 1.41 1.95 2.08 9.2 

0.1µM MeHg 17 dpf Perch #2 - Replicate 3 1.77 2 2.1 8.9 

0.1µM MeHg 17 dpf Perch #3 - Replicate 3 1.49 2.04 2.18 9.1 

0.1µM MeHg 17 dpf Perch #4 - Replicate 3 1.32 2 2.11 9.2 

0.1µM MeHg 17 dpf Perch #5 - Replicate 3 1.47 2.02 2.18 9.2 

0.1µM MeHg 17 dpf Perch #6 - Replicate 3 1.76 1.98 2.13 9.3 

0.1µM MeHg 17 dpf Perch #7 - Replicate 3 1.54 2.04 2.06 9 

0.1µM MeHg 17 dpf Perch #8 - Replicate 3 1.64 2.07 2.19 9.4 

0.3µM MeHg 17 dpf Perch #1 - Replicate 1 2.58 2.03 2.23 8.7 

0.3µM MeHg 17 dpf Perch #2 - Replicate 1 1.90 2.11 2.15 9.5 

0.3µM MeHg 17 dpf Perch #3 - Replicate 1 1.63 2.08 2.15 9.6 

0.3µM MeHg 17 dpf Perch #4 - Replicate 1 1.78 2.06 2.12 9.9 

0.3µM MeHg 17 dpf Perch #5 - Replicate 1 2.07 2.14 2.2 9.6 

0.3µM MeHg 17 dpf Perch #6 - Replicate 1 1.86 2.06 2.13 9.8 

0.3µM MeHg 17 dpf Perch #7 - Replicate 1 2.02 2.07 2.2 9.3 
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0.3µM MeHg 17 dpf Perch #8 - Replicate 1 0.72 1.97 2.07 9.2 

0.3µM MeHg 17 dpf Perch #1 - Replicate 2 2.32 2.01 2.2 8.7 

0.3µM MeHg 17 dpf Perch #2 - Replicate 2 2.83 2.07 2.22 8.9 

0.3µM MeHg 17 dpf Perch #3 - Replicate 2 3.06 2.06 2.23 8.9 

0.3µM MeHg 17 dpf Perch #4 - Replicate 2 1.95 2.01 2.19 8.9 

0.3µM MeHg 17 dpf Perch #5 - Replicate 2 2.61 2.09 2.23 9 

0.3µM MeHg 17 dpf Perch #6 - Replicate 2 2.47 2.1 2.24 9.2 

0.3µM MeHg 17 dpf Perch #7 - Replicate 2 2.45 2.05 2.21 9.1 

0.3µM MeHg 17 dpf Perch #8 - Replicate 2 2.55 2.03 2.25 8.9 

0.3µM MeHg 17 dpf Perch #1 - Replicate 3 1.80 2.05 2.23 8.6 

0.3µM MeHg 17 dpf Perch #2 - Replicate 3 1.86 1.95 2.21 8.2 

0.3µM MeHg 17 dpf Perch #3 - Replicate 3 1.27 2.03 2.05 8.6 

0.3µM MeHg 17 dpf Perch #4 - Replicate 3 1.43 2.05 2.19 9 

0.3µM MeHg 17 dpf Perch #5 - Replicate 3 1.63 2.02 2.21 8.9 

0.3µM MeHg 17 dpf Perch #6 - Replicate 3 1.68 1.97 2.2 8.7 

0.3µM MeHg 17 dpf Perch #7 - Replicate 3 0.81 2.1 2.19 9.5 

0.3µM MeHg 17 dpf Perch #8 - Replicate 3 0.80 2.15 2.23 9.4 
 

  



192 

 

 

Appendix 14: RT-qPCR primers utilized for the analysis of gene expression in 
yellow perch embryos 

Gene 

symbol 
Primer ID Primer Sequence (5′–3′) 

Efficiency 

(%) 
Concentration 

l13a 

l13a_FW CTGAAGCCAACTCGCAAGTTC 

97.21 1 μM 

l13a_RV GGTCAGCTTGATCAGTGTCTTTTTC 

ef1a 

ef1a_FW CGACAAGATGAGCTGGTTCAAG 

97.51 0.75 μM 

ef1a_RV ACAGTTCCGATACCGCCAATC 

ef2 

ef2_FW GATGAGGCTGCCATGGGTATC 

98.06 2 μM 

ef2_RV CCTTCTTTCCAGGGACATAGTTTG 

cry1a 

cry1a_FW ATGGGATTGTCTGTCGAGGC 

96.72 1 μM 

cry1a_RV GAGTGGTGCAGTGGAGTTCA 

per3 

per3_FW CTGTGCACCGGAAAGTGTTG 

95.20 2 μM 

per3_RV TCAGTGGACTCGTCCTGACT 

slc1a2a 

slc1a2a_FW TCACTCGTTTTGTGCTCCCA 

92.62 1 μM 

slc1a2a_RV GGGTCAAGTACGATGCCGTT 

prkacbb 

prkacbb_FW CCCGAGATCATCCTCAGCAAGG 

95.61 1 μM 

prkacbb_RV CCTCAGCAGATCCTTCAG 

opn1lw1 

opnlw1_FW ACACTGTCGCATGTTGTGGT 

92.67 1 μM 

opnlw1_RV AGTCCATGAGGCCAGTACCT 
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Appendix 15: Accession numbers of proteins used to perform alignments in order 
to create degenerate primer pairs for yellow perch 

Target gene Organism Accession number 

opn1lw 

Danio rerio NP_571250.1 

Carassius auratus ACZ97946.1 

Cyprinus carpio BAB32496.1 

Gasterosteus aculeatus AGL76517.1 

Poecilia reticulata BAM74441.1 

   

per3 

Danio rerio NP_571659.1 

Solea senegalensis CAQ68365.1 

Oryzias latipes (PREDICTED) XP_004069203.1 

Poecilia reticulata (PREDICTED) XP_008407502.1 

   

slc1a2a 

Danio rerio NP_001177234.1 

Astyanax mexicanus (PREDICTED) XP_007228216.1 

Takifugu rubripes (PREDICTED) XP_011616643 
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Appendix 16: Degenerate primers for yellow perch obtained from protein 
alignment. 

Gene symbol Primer _ID Primer Sequence (5′–3′) 

opn1lw 

opn1lw_FW GGTGGCCACCGCCAARTTYAARAA 

opn1lw_RV CGGAACTGCCGGTTCATRAANAC 

per3 

per3_FW CCTCGGATCCCCATGGAYAARMG 

per3_RV AGGTACCTGATGATGTTGTCCACRCARTTDAT 

slc1a2a 

slc1a2a_FW GCACCCGGGCCATGRTNTAYTA 

slc1a2a_RV CGGAACCGGTCCAGCARCCARTCNAC 
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