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ABSTRACT 

INTEGRATED LI-ION ULTRACAPACITOR WITH LEAD ACID BATTERY FOR 

VEHICULAR START-STOP 

 

by 

Emad Manla 

The University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Professor Dr. Adel Nasiri 

 

Advancements in automobile manufacturing aim at improving the driving experience at 

every level possible. One improvement aspect is increasing gas efficiency via 

hybridization, which can be achieved by introducing a feature called start-stop. This 

feature automatically switches the internal combustion engine off when it idles and 

switches it back on when it is time to resume driving. This application has been proven to 

reduce the amount of gas consumption and emission of greenhouse effect gases in the 

atmosphere. However, the repeated cranking of the engine puts a large amount of stress 

on the lead acid battery required to perform the cranking, which effectively reduces its 

life span. This dissertation presents a hybrid energy storage system assembled from a lead 

acid battery and an ultracapacitor module connected in parallel. The Li-ion ultracapacitor 

was tested and modeled to predict its behavior when connected in a system requiring 

pulsed power such as the one proposed. Both test and simulation results show that the 

proposed hybrid design significantly reduces the cranking loading and stress on the 

battery. The ultracapacitor module can take the majority of the cranking current, 

effectively reducing the stress on the battery. The amount of cranking current provided by 

the ultracapacitor can be easily controlled via controlling the resistance of the cable 

connected directly between the ultracapacitor module and the car circuitry. 
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Chapter 1. Introduction and Literature review 

1.1 Problem statement 

 Due to the ever rising worldwide demand for oil and the growing concerns about 

polluting the environment caused by burning fossil fuels to harvest power, new trends 

have surfaced to reduce the reliance on oil derivatives. Renewable energy sources such as 

solar and wind power are among the hottest areas of research nowadays. In fact, the US 

department of Energy (DOE) released a report in 2008 examining some of the impacts, 

challenges, and costs of large-scale national wind power harvesting for the production of 

electricity from wind and anticipating 20% electrical power production by 2030 [1].  

 While renewable energy sources offer a significant portion of power, one should 

not overlook the benefits of marginal gains in power efficiency obtained from 

conventional systems running on fossil fuels. Such systems include internal combustion 

engines found in the majority of vehicles nowadays. One simple way to improve the 

efficiency of combustion engines would be switching it off when idling for a relatively 

long periods of time while waiting for a red traffic light or in severe traffic jams, and then 

switching it back on when it is time to move forward. This idea is not new. It, in fact, saw 

light back in the mid 1970's. A study published in 1974 by Toyota found that one can 

improve fuel economy by 10% in Tokyo traffic [2].  

 The start-stop technology was fully implemented in Fiat Regata cars in the early 

1980's [11]. The start stop version of Regata 70 showed improvement in fuel economy 

compared with the regular Regata 70 version. The start stop version consumes 5.2 

liters/100 km at 90km/hr, 7 liters/100 km at 120 km/hr, 7.4 liters/100 km for the urban 
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cycle and 6.7 liters/100 km for the combined cycle. Fiat's start-stop technology came out 

in its full production on the car of the year award winning Fiat 500 back in 2008 saving 

up to 5 liters of gas per 100km during in-city driving [11].  

 In September 1999, Honda Motors introduced the compact INSIGHT personal 

hybrid car "combining superior driving pleasure with world-leading environment-

friendliness, this new model offers the world's lowest fuel consumption for a gasoline-

powered vehicle attaining gas mileage of 35 km/liter [13]." This model was equipped 

with an automatic idle stop system, that switches the engine off whenever the car come to 

a complete halt reducing gas consumption and exhaust emissions [13]. Figure 1.1 shows 

the Honda hybrid car released in the Japanese Market in 1999. 

 

Figure 1.1. INSIGHT hybrid car in 1999 [13]. 

 Italian car manufacturer Alfa Romeo fitted its Alfa Romeo MiTo car series with 

the start-stop technology starting September 2009 [12]. Around the same time many 

European car manufacturers were integrating their cars with this technology. For 

instance, Volvo introduced it in 2009 on its DRIVe models [14], Citroën introduced it in 

2006, BMW started to include it in many of its cars and MINI line in 2008, and Renault 

introduced it in its European models in 2010.  Asian car manufacturers such as Kia, 
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Hyundai, Mazda, Mahindra & Mahindra, and Tata Motors also integrated their products 

with the start-stop technology starting mid 2000's. 

 While this engine start-stop idea sounds costless and simple enough to apply, it 

has two main problems: first, it has a hard time being applied manually in that drivers 

often find it tedious to keep their fingers on the car switch especially when driving for a 

long time in jammed areas. Also, people tend to forget about the gas savings attained 

from this technique shortly after being convinced of its benefits. Another issue raised 

when frequently switching the engine off and then back on is that it puts an enormous 

amount of pressure on the car battery especially when the switching is done repetitively 

within a short period of time without giving the battery enough time to relax and recharge 

to the nominal value of its terminal voltage. Other problems may arise from this 

technique and will be addressed later in this study. 

 Luckily, the first problem has a reliable solution, drivers do not have to apply the 

start-stop technique manually because a control system can be and has been designed to 

sense engine idling times and switch the engine off. The same control system can sense 

when it is time to move and then switch the engine back on. The early systems designed 

to automatically apply the start-stop technology were not as smooth as one would hope; 

often, disconcerting motion was experienced leading to the manual shutting off of the 

start-stop control system and driving without it. Research and development in control 

systems have led to much reliable and smoother systems designed by many car 

manufacturers.  
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 What seems to be the major problem in start-stop technology is the stress 

experienced by the car battery. The car starter, normally a compound DC motor, draws a 

huge amount of current during the cranking up of the combustion engine. The current 

drawn from the car battery can reach a value of 500 A in smaller cars and a 1000 A in 

larger vehicles like trucks and city buses. Although this value of current is drawn during a 

few milliseconds, the battery voltage plummets to a dangerous value that can lead to 

structural corrosion when done repetitively leading to the shortening of the battery life 

span. Figure 1.2 shows a combustion engine piston cross sectional view along with the 

starter motor [3]. 

 

Figure 1.2. Combustion engine starter motor [3]. 

 Car batteries experience this severe voltage sag mainly due to their modest power 

density compared with some other types of energy storage devices. One way to improve 

the power capabilities of batteries is to oversize them. Reference 7 presents a study done 

in year 2000 in which a super-capacitor is combined with a battery pack to improve 

response to power peaks. It states that this hybrid ESS "increases power peak level by 
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above 40%" overcoming the need for oversized battery pack to be able to handle power 

peak demands [7]. Super-capacitors, also known as ultracapacitors, happen to have a 

much larger power density than lead acid batteries. However, they have a much lower 

energy density. That explains their ability to handle high amounts of electric current but 

not for a long period of time as they will run out of energy. Batteries, on the other hand, 

provide a steady amount of electric current for a longer period of time but won't be able 

to handle spikes of electric current without inflicting physical damage to their 

composition. Therefore, the solution to this start-stop problem would be replacing the car 

battery, which is normally lead acid, by another electrochemical energy storage device 

type that combines high energy density with high power density. Unfortunately, no such 

device exists in the market; and hence, one feasible solution would be combining an 

ultracapacitor with a lead acid battery in a module in order to handle both modes of 

operation, i.e. cranking and steady state.  

 Ultracapacitors differ from conventional capacitors mainly in terms of the value 

of capacitance. The Farad is a huge unit as it is, and it is impossible to make a reasonably 

sized double-plate conventional capacitor having a capacitance of one Farad, or even a 

fraction of a Farad, that can be used in a realistic circuit. This makes conventional 

capacitors inferior to batteries as mass energy storage devices. Ultracapacitors nowadays 

are undergoing continuous manufacturing improvements to increase their capacitance 

leading to Energy storage devices that can compete with batteries in both power density 

and energy density. The structure of an ultracapacitor is similar to a conventional one. 

Namely, it is made up of two metallic or Carbon plates having opposite polarity charges 

and separated by a very thin dielectric material. What makes ultracapacitor large in 
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capacitance is the porosity of the plates holding the electric charges. Figure 1.3 explains 

the structure of ultracapacitors [17].  

 

Figure 1.3. Structure of ultracapacitors [17]. 

 Ultracapacitors come in various types, dimensions, chemical composition, and 

electrical properties. The newest type of ultracapacitors available today is manufactured 

based on lithium-ion technology. In addition to the high power density required for the 

start-stop application in automobiles, this type has proven to have higher energy density 

than conventional super-capacitors, low internal resistance, high energy and Columbic 

efficiencies, and long cycle life. Combining an ultracapacitor of this type with a lead acid 
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battery would be an excellent solution for the start-stop technology. The ultracapacitor 

can have a major contribution to the brief spike in demanded power while cranking, 

whereas the lead acid battery can otherwise provide the steady state power demanded in 

normal mode of operation and recharge the ultracapacitor. 

1.2 Previous work 

  1.2.1 Combining an ultracapacitor with a battery in a hybrid ESS 

 The work found in literature about an ESS combining an ultracapacitor with a 

battery is very interesting. The idea of combining an ultracapacitor with a vehicle battery 

to improve its lifetime goes back to the late 1980's and early 1990's. A paper published in 

1990 states that "load leveling the main storage battery is a promising approach for 

reducing the design power requirements for the battery and increasing battery life. 

Significantly increased vehicle range should also result for batteries, which have been 

optimized for energy density at the lower peak power requirements made possible by 

load leveling. Consideration of the characteristics of ultracapacitors and bipolar lead-acid 

pulse batteries for the pulse power device indicates the device could be used, but the 

efficiency of the system would be greater by about 10% using the ultracapacitors [5]." 

This dissertation shows simulation results with power consumption improvement by 

8.5% due to avoiding high impulse currents through the battery having a large internal 

resistance [5]. 

 The next set of papers discussing the advantages of a hybrid ultracapacitor/battery 

ESS are published in the early 2000's after a break of over a decade. It seems that this 

topic regained some interest by scientists and researchers after the global increase in oil 
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prices resulting in people looking for alternatives to fossil fuels and encouraging 

techniques to increase fuel efficiency. An extensive study done in 2002 shows that adding 

a 23-F ultracapacitor bank in parallel with a typical Li-ion battery of 7.2 V and 1.35 A hr 

capacity can boost the peak power capacity by 5 times and reduce the power loss by 74%, 

while minimally impacting system volume and weight [8]. The authors of this paper 

derive all the necessary equations that back up their findings. They could analytically 

reach the conclusion that a "battery/ultracapacitor hybrid power source can supply a 

pulsed load with higher peak power, smaller internal losses, and greater discharge life of 

the battery than can the battery-powered system alone [8]." 

 Some studies also investigated the idea of incorporating ultracapacitors in EV's 

not only to supply high peak power demands at take-offs, but also to absorb high currents 

obtained from regenerative breaking. A paper published in 2002 discusses that idea and 

shows, using both simulation results and experimental results, that a better more efficient 

design can be achieved when combining batteries with ultracapacitors [9]. However, back 

in the early 2000's, the prices of ultracapacitors were too high for applications like this. 

Nowadays, prices of ultracapacitors have gone down while Energy density and 

capacitance have gone considerably up. 

 A paper published in 2003 discusses the combination of a battery bank with an 

ultracapacitor bank [6]. The combination of these two ESS banks was simulated and also 

built and partially tested. The battery bank is rated 336 V at 150 Ah while the 

ultracapacitor bank is rated 375 V with energy storage capability of 1.2 MJ. The 

combination of these two energy storage banks was done in direct shunt connection and 

through a DC/DC converter. The paper mentions that the DC/DC connection shows much 



9 
 

 
 

better results where the full power capability of the ultracapacitor bank was exploited 

reducing stress on the battery bank and reducing power loss across the battery relatively 

large internal resistance. Figure 1.4 shows both the capacitor and battery energy storage 

modules [6]. 

 

Figure 1.4. (a) Capacitor bank. (b) Battery bank [6]. 

 In the direct shunt connection case, the simulation results show some 

improvement to the battery power profile having an ultracapacitor module that absorbs 

some of the load current. The load current is an exponentially increasing curve that 

saturates at 300 A. When looking at figure 1.5 that shows the current and voltage profiles 

of the hybrid ESS, one sees that the battery takes care of most of the current drawn by the 

load. The ultracapacitor module takes care of a portion of the load current, which does 

not exceed one third of the drawn current on average. This is definitely an improvement, 

but it does not utilize the full capability of the ultracapacitor module. 
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Figure 1.5. Simulation results for the direct shunt connection: (a) Load, battery, and ultracapacitor currents. 

(b) Module voltage [6]. 

 

 When connecting the ultracapacitor module to the battery module through a 

buck/boost converter controlling the amount of current that the ultracapacitor module is 

responsible for, the simulation results shown in figure 1.6 clearly demonstrate a 

significant decrease in battery current and a drastic increase in ultracapacitor current. The 

load profile used here is the same as the one used in the direct shunt connection. 
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Figure 1.6. Simulation results for the connection through a DC/DC converter: (a) Load, battery, and 

ultracapacitor currents. (b) Ultracapacitor and Battery module voltage [6]. 

 

 One can see the reduction in the amount of current drawn from the battery 

compared to the ultracapacitor module. It is also clear that the ultracapacitor module 

experiences much lower terminal voltage compared to the battery. This of course does 

not inflict any damage to the module designed to withstand low voltage values by nature. 

Battery terminal voltage stays considerably high effectively increasing its life span, 

which gets shorter when its terminal voltage plummets. 

 



12 
 

 
 

 1.2.2 Control Systems for a hybrid battery/ultracapacitor ESS 

 Now that the idea of replacing a car battery by a hybrid ESS combining the 

battery with an ultracapacitor has been proven to offer a reliable, efficient solution to 

high peaks in power demand, the next set of papers show research done to investigate the 

possibilities and effectiveness of the control systems that manage the power profile 

shared by the battery and the ultracapacitor.  

 In a paper published in 2003, the extent to which the performance of a 

battery/ultracapacitor hybrid ESS was studied. "Two cells of Sony US18650 lithium-ion 

battery and two cells of Maxwell PC 100 super-capacitors are used" to construct the 

module. A DC/DC converter in series with the battery was simulated and then the module 

was built. Higher mass and power densities were achieved without drawing excessive 

battery current [10]. Simulation results perfectly matched experimental results [10].  

Figure 1.7 shows the block diagram of the design. 

 

Figure 1.7. Block diagram for the hybrid ESS in the experimental setup [10]. 

 As a continuation to a project conducted in the early 2000's and published in 2003 

at the Pennsylvania Transportation Institute at Pennsylvania State University where 
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ultracapacitors were utilized along with batteries to make a hybrid ESS for mass-transit 

vehicles [15], a study was conducted on the controls of this hybrid ESS around the same 

time and it got published in 2004 in the Proceeding of the 2004 American Control 

Conference in Boston, Massachusetts. A system involving a boost converter connected to 

the ultracapacitor is mathematically studied. Also, tests were conducted to investigate the 

benefits of such a hybrid ESS. The control methods under consideration were also studied 

in the frequency domain. This paper also shows the distribution of the number of 

occurrences of current values demanded from the battery in the battery-alone system and 

in the hybrid ESS.  

 

Figure 1.8. Battery current demand. Battery alone (upper). Hybrid ESS (lower) [15]. 
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 Figure 1.8 represents the histograms of the demanded battery currents for a hybrid 

vehicle in EV mode during the urban driving cycle in Manhattan. "The benefit of the 

peaking controller is evident by examining the histograms of the battery current demand 

both with and without the ultracapacitors in use, for the same driving cycle. It is evident 

that the ultracapacitors reduced the extremes in current demand in both acceleration and 

in regenerative braking. In acceleration, the peak current demanded from the battery 

changed from 140 amps without the ultracapacitors to 90 amps with the ultracapacitors. 

In regenerative braking, the activation of the ultracapacitors lowered peak battery 

charging current from 60 amps to 45 amps. More importantly, the volume of current (i.e. 

power transients) moved through the battery is seen to be greatly reduced over nearly all 

current levels. This is primarily due to the ultracapacitors ability to store regenerative 

energy and release it during acceleration. This benefit is most evident in stop-start driving 

such as the Manhattan cycle [16]." 

 A quantitative analysis of the power enhancement obtained from a DC/DC 

converter-based hybrid battery/ultracapacitor ESS is presented in [18] where a "hybrid 

built from two size 18650 lithium-ion cells and two 100-F ultracapacitors achieved a 

peak power of 32Wwhich is a three-times improvement in peak power compared to the 

passive hybrid power source (hybrid without a converter), and a seven times 

improvement as compared to the lithium-ion cells alone [18]." A block diagram showing 

the Hybrid system along with the control system is shown in figure 1.9.  
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Figure 1.9. Block diagram of hybrid ESS with controls [18]. 

 The control system deployed for this prototype was built in Simulink using 

DSpace data acquisition and interface card. The control system built in Simulink is 

shown in figure 1.10. In this diagram "the controller has two input ports (In1 and In2) 

connected to two current sensors monitoring the load current and the power converter 

output current, respectively [18]." The monitored current signals are then fed to the PI 

controller, and the new calculated converter duty ratio from the PI controller is sent back 

to the power converter model through the output port [18]. 

 

Figure 1.10. PI control system for the hybrid ESS [18]. 

 The advantage of this control system comes from the fact that "the operation of an 

active hybrid results in a much lower battery current with very small ripples, and 
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therefore a lower battery temperature, which are preferred by many applications for a 

longer battery lifetime. The discharge cycle time is reduced for the active hybrid due to 

an added converter loss and increased ultracapacitor loss. A compromise should be made 

between the power enhancement and the discharge cycle time in order to achieve 

optimized results depending upon applications. The design can be scaled to larger or 

smaller power capacities for various applications [18]." 

 Later papers discuss ways to improve the efficiency of control systems that 

govern the distribution of peak current demand between battery and ultracapacitor.  

 Recent conference and journal papers discuss the battery/ultracapacitor hybrid 

ESS mainly using simulations of such a system. For instance, a conference paper 

published in 2010 in the International Conference on Optoelectronics and Image 

Processing shows that whether a lead acid battery is connected with an ultracapacitor 

directly in a parallel configuration or through a DC/DC converter, the power in a hybrid 

city bus developed in China can be enhanced by a factor β [4]. This paper shows 

simulation results of both systems. The power-train is comprised of a diesel engine (with 

a rated power of 155 kW, a rated speed of 2500 rpm, and a maximum torque of 800 Nm 

at a speed range between 1200 and 1700 rpm) and an asynchronous AC motor with a 

rated output power of 55 kW and maximum power of 110 kW [4]. The maximum output 

power of the Integrated Starter Generator (ISG) connected with Internal Combustion 

Engine (ICE) is 30 kW with a maximum output torque of 290 Nm [4]. "This bus is 

designed with a maximum speed as 70 km/h, and the bus should accelerate from 0 km/h 

to 50 km/h in 23 s [4]."  Figure 1.11 shows the power-train structure of the entire system. 
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Figure 1.11. Power-train structure of a hybrid city bus [4]. 

 As mentioned earlier, this paper shows simulation results for two 

battery/ultracapacitor systems: one with a direct parallel connection, and one with a 

DC/DC converter, which is in turn connected in series with the ultracapacitor. Figure 

1.12 shows the first system. As can be seen in figure 1.12, the ultracapacitor and battery 

have been represented by their equivalent circuit models, and a simple circuit was chosen 

to represent the ultracapacitor. In this circuit, the ultracapacitor shares the same terminal 

voltage with the battery. The input current will be divided into two portions based on the 

circuit parameters. 

 

Figure  1.12. Battery in direct connection with an ultracapacitor [4]. 
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 Simulation results show that the battery experiences much smaller stress when 

connected with the ultracapacitor in this simple control-free manner. Figure 1.13 shows a 

test current applied to the circuit. The test current is a train of multi-valued rectangular 

waveform with variable widths showing a charging period followed by a discharging 

period in an alternating fashion. The red curve is the current drawn or injected in the 

battery while the dashed green curve is the ultracapacitor current. One notices that the 

battery experiences slightly less than half of the system current. 

 

Figure  1.13. Battery in direct connection with an ultracapacitor [4]. 

 Figure 1.14 shows a zoomed in version of the previous one to make it clear which 

device is responsible for which portion of the total system current in the parallel 

connection ESS. The ultracapacitor clearly takes care of the majority of the current as 

expected and desired.  
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Figure  1.14. Battery in direct connection with an ultracapacitor [4]. 

 In the second circuit, shown in figure 1.15, the ultracapacitor does not share the 

same terminal voltage with the battery. The DC/DC converter is the step separating the 

two energy storage devices, and it is what controls the amount of current the 

ultracapacitor experiences versus the amount of current the battery is responsible for. The 

input current hence will not be divided into the ultracapacitor and the battery solely based 

on the circuit parameters as the control system will govern the current drawn from or 

injected into the ultracapacitor. 

 

 

 

 

 

Figure  1.15. Battery in connection with an ultracapacitor through a DC/DC convertor [4]. 
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 In figure 1.16, a train of an alternating rectangular current waveform similar to the 

one applied in the first circuit has also been applied to the second circuit involving the 

DC/DC converter. Obviously, this circuit shows a larger ultracapacitor current share 

compared with the uncontrolled case. The battery therefore has a responsibility for about 

one third of the drawn or injected current leading a battery lifetime enhancement. The 

dashed red curve is for the battery while the continuous green one shows the 

ultracapacitor current. 

 

Figure  1.16. Battery in direct connection with an ultracapacitor [4]. 

 Figure 1.17 shows a zoomed in version of figure1.16 to make it clear which 

device is responsible for which portion of the total system current in the parallel 

connection ESS with a DC/DC converter. 
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Figure  1.17. Battery in direct connection with an ultracapacitor [4]. 
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Chapter 2. Engine cranking requirements 

 This chapter discusses the electrical requirements imposed on the hybrid system 

under consideration. In order to have a complete understanding of the requirements 

imposed on the system, it is important to understand the chemical reactions that take 

place in a lead acid battery. However, the design of the hybrid ESS only took into 

consideration the requirements from an electrical point of view. These requirements are 

battery terminal voltage, current, capacity, power, and energy. A typical automobile 

circuitry is provided by figure 5.1 in chapter 5. 

 When searching the literature trying to find precise details about the electrical 

requirements for internal combustion engine (ICE) cranking, ambiguous and often 

incomplete information was found. Hence, a number of tests were conducted on a few 

automobiles having different engine sizes and different lead acid battery capacities. In 

each of these tests battery voltage and current waveforms were acquired at a rate of 5000 

samples per second. From these two waveforms, instantaneous power and energy curves 

can be obtained. These four waveforms, i.e. voltage, current, power, and energy, can 

provide us with the necessary design requirements for the hybrid ESS to be utilized for 

ICE start-stop. 

 The instantaneous power curve is produced by obtaining the instantaneous 

product between the voltage and current waveforms. The energy waveform is obtained by 

running a Riemann sum on the power curve, which is the digitized form of integrating the 

power curve over time. The cranking test results for a number of automobiles by various 

car manufacturers are shown in figures 2.1-2.6 
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Toyota Solara 2002: 

Figure 2.1 a. Voltage and current waveforms during cranking for a Toyota Solara 2002. 

 

Figure 2.1 b. Instantaneous power curve during cranking for a Toyota Solara 2002. 
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Figure 2.1 c. Energy waveform during cranking for a Toyota Solara 2002. 
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Buick 1998 

 
Figure 2.2 a. Voltage and current waveforms during cranking for a Buick 1998. 

 

Figure 2.2 b. Instantaneous power curve during cranking for a Buick 1998. 
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Figure 2.2 c. Energy curve during cranking for a Buick 1998. 
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Ford Focus 

 
Figure 2.3 a. Voltage and current waveforms during cranking for a Ford focus. 

 

Figure 2.3 b. Instantaneous power curve during cranking for a Ford focus. 
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Figure 2.3 c. Energy curve during cranking for a Ford focus. 
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Saturn Vue V4 2004 

 
Figure 2.4 a. Voltage and current waveforms during cranking for a Saturn Vue V4 2004. 

 

Figure 2.4 b. Instantaneous power curve during cranking for a Saturn Vue V4 2004. 
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Figure 2.4 c. Energy curve during cranking for a Saturn Vue V4 2004. 
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Honda Civic 2011 

 
Figure 2.5 a. Voltage and current waveforms during cranking for a Honda Civic 2011. 

 
Figure 2.5 b. Instantaneous power curve during cranking for a Honda Civic 2011. 
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Figure 2.5 c. Energy curve during cranking for a Honda Civic 2011. 
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Audi V6 1996 

 
Figure 2.6 a. Voltage and current waveforms during cranking for an Audi V6 1996. 

 
Figure 2.6 b. Instantaneous power curve during cranking for an Audi V6 1996. 
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Figure 2.6 c. Energy curve during cranking for an Audi V6 1996. 

 The test results for the aforementioned cars are shown in three graphs labeled a, b, 
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years. 
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Table 2.1. Comparison of electrical requirements for six car brands. 

Car 

Make 

year Engine 

Size 

Cranking 

Voltage 

Cranking 

Current 

Maximum 

Cranking 

Power 

Cranking 

Energy 

Toyota 

Solara 

2002 3.0 L 8.3 V 457 A 4.2 kW 1.7 kJ 

Buick 1998 3.1 L 8.4 V 462 A 4.54 kW 1.8 kJ 

Ford 

Focus 

2013 2.0 L 9.3 V 452 A 4.74 kW 1.88 kJ 

Saturn 

Vue 

2004 2.24 L 7 V 455 A 3.52 kW 1.27 kJ 

Honda 

Civic 

2011 1.8 L 7.7 V 437 A 3.4 kW 1.08 kJ 

Audi 

V6 

1996 2.8 L 9.84 V 736 A 7.36 kW 1.67 kJ 
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Chapter 3. Li-ion ultracapacitor modeling 

3.1 Ultracapacitor types and structure 

 Ultracapacitors, also known in literature as super capacitors are high capacitance 

elements that can store large amounts of energy. Unlike batteries where energy storing or 

release is accompanied with chemical reactions, no chemical reaction happens during 

normal operation of an ultracapacitor. This allows for a very large number of 

charging/discharging cycles for ultracapacitors as well as larger power density, compared 

with batteries. The dominant ultracapacitor technology is Electrochemical Double Layer 

Capacitor (EDLC). Unlike ordinary capacitors, EDLCs do not contain a dielectric 

between their conductive plates. Instead of a dielectric, electrolytic substance fills the 

space between two electrodes. Electrodes are covered with highly porous activated 

carbon. The high porosity of activated carbon results in a very large equivalent surface 

area of the electrodes. By applying voltage, positive ions are attracted to the negative 

electrode, while negative ions move towards the positive electrode. The ion transfer 

inside the electrolyte is rapid leading to very quick charging and discharging capability 

leading to high power density. This process is known as non-Faradaic where the moving 

ions do not react with the electrodes at which they accumulate [41]. As a result, a double 

layer of particles with opposite-sign charges is formed. Since the electric charges are 

separated by an infinitesimal distance, on the nanometer scale, and due to the large 

surface area of the electrodes, the resulting capacitance is very high, typically on the level 

of several hundreds of farads.  
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 One main disadvantage of EDLC ultracapacitors is their relatively small terminal 

voltage, which is less than 2.7V, and it should not be exceeded in order to prevent 

electrolyte oxidation. One way to increase the amount of energy that can be stored within 

an ultracapacitor is to find a way to increase the maximum terminal voltage. The main 

difference in construction of a lithium-ion ultracapacitor, compared with the EDLC, is 

that only the positive electrode (cathode) is made from activated carbon. The negative 

electrode (anode) is made from lithium-doped structure-controlled carbon, which enables 

lower negative potential of that electrode. This results in a larger net voltage that prevents 

electrolyte oxidation. Figure 3.1 summarizes the structural differences between the three 

technologies of Li-ion batteries, ELDC, and Li-ion ultracapacitors. In Li-ion batteries, 

where a Faradaic process exclusively takes place, the energy is stored within the chemical 

reactants, which when reacting with the electrodes immersed in the electrolyte, release a 

large amount of charge leading to high energy density. However, the kinetics of the 

reactions at the electrodes and the mass transfer of Lithium cations from the negative 

electrode through the electrolyte to the positive electrode slow down the release rate of 

charge leading to lower power capability [41]. In Li-ion ultra-capacitors, which have a 

hybrid structure, both Faradaic and non-Faradaic processes take place. The ion movement 

through the electrolyte, which contains a dissolved lithium salt, in the non-Faradaic 

process is partly responsible for the conduction of electricity when the two electrodes are 

connected through a load. The other portion of conduction happens when the Lithium 

cations react with the negative electrode in the Faradaic reaction.  

 The maximum voltage of a lithium-ion ultracapacitor is 3.8V. Since the energy 

stored in capacitor is proportional to the square of its terminal voltage, this voltage 
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increase results in quadratic increase in the amount of energy that can be stored in the 

lithium-ion ultracapacitor. In addition, the Li-doped electrode creates very large 

capacitance at negative electrode, which practically doubles the total capacitance of the 

cell. However, lithium-ion ultracapacitors cannot be operated under a minimum voltage, 

which prevents a full discharge. This voltage is 2.2V resulting in the allowed operating 

voltage in the range between 2.2V-3.8V. Despite this limitation, lithium-ion 

ultracapacitors offer about four times as much energy density as ELDC.  

 
Figure 3.1. Structural comparison of Li-ion batteries, EDLC capacitors and Li-ion ultracapacitors. 

 In order to use ultracapacitor in renewable energy systems, or electric vehicles, 

appropriate dynamic model is needed. Dynamics models are necessary for modeling and 

simulation of systems that contain ultracapacitors. There are several approaches to the 

ultracapacitor modeling, and they can be divided into the three main groups. The first 

group of models consists of equivalent circuit models [19]-[24], [46]. These models are 

usually built from series and parallel RC circuits, whose combination results in accurate 
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voltage-current behavior on the terminals of an ultracapacitor. Parameters of the model 

are resistances and capacitances, and they are determined based on measurements of 

current and voltages during charging and discharging processes.  

 The Second class of ultracapacitor models is physical-based models [25]-[26]. 

These models are based on electrochemical and physical properties and they can be very 

accurate. Beside voltage and current characteristics, such models accurately describe 

internal behavior of ultracapacitor and they are suitable for studies where electrochemical 

phenomena are of interest. However, it is very hard to develop this type of model. There 

are many parameters unknown and hard to obtain. Also, physical and chemical laws that 

govern ultracapacitor behavior are very complex. A special class of models combines 

equivalent circuit with physical modeling approaches [27]-[28]. 

 Finally, ultracapacitors can also be modeled using neural networks trained by a 

training set that contains voltages, currents, and temperatures obtained during the 

measurement phase on a real ultracapacitor [29]. A fully trained neural network then 

produces accurate output for a given input. The disadvantage of this approach is higher 

computational cost, compared to equivalent circuit models.  

 In this dissertation, a simplified equivalent circuit model of a lithium-ion 

ultracapacitor is proposed. This model consists of only five elements. The simple model 

allows for easier integration into system level modeling. In order to accurately represent 

voltage-current behavior of an ultracapacitor, nonlinear voltage dependent capacitance is 

used. This model is intended for use in complex power electronic systems where a larger, 

more detailed model, would considerably extend simulation time.  
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 Table 3.1 shows a comparison between the energy capacities of a Lithium-ion 

ultracapacitor with some other types of energy storage devices. Table 3.2 below presents 

the electrical properties of a Li-ion ultracapacitor cell. 

Table 3.1. Comparison of Li-ion ultracapacitor properties with other energy storage 

devices. 

ESS Energy Density (Wh/kg) Power Density (W/kg) Cycle Life 

Lithium-

Ion U-cap 
10-20 900-9000 >100000 

EDLC 2-8 500-5000 >100000 

Lead-Acid 

battery 
30-50 100-200 200-300 

NiMH 

battery 
60-120 250-1000 300-500 

ZBB 85-90 300-600 2000 

 

Table 3.2. Properties of an ultracapacitor cell under study. 

Property Nominal limit 

Voltage (V) 3 3.8 

Current (A) 10-70 200 

Low Voltage Cutoff  (V) 2.4 2.2 
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3.2 Ultracapacitor testing 

 Testing the ultracapacitors has been carried out to identify the parameters of the 

potential electrical model capable of estimating its electrical behavior under practical 

charging/discharging conditions. For this purpose, a series of DC and AC tests was 

performed on an 1100 F ultracapacitor. Careful attention was paid to the ultracapacitor 

terminal voltage, and these tests were designed to keep the terminal voltage within the 

range specified earlier. Real time voltage and current were measured at a rate of 100 

samples per second to assure enough precision.  

 It is important to note that the tests have been conducted at various temperatures. 

This is an important detail as cell and ambient temperatures play a major role in energy 

storage system management and design. Therefore, the impact of temperature has been 

taken into account in the electrical equivalent model of the ultracapacitor. The operating 

temperature range is from -20
o 

C to 70
o 

C. The ultracapacitor was tested under 

temperatures from -15
o 

C to 65
o 

C with increments of 10
o 

C. The test data were logged 

using Lab View and NI Compact RIO real-time hardware module taking measurements 

for terminal voltage and Open-Circuit Voltage (OCV) under a sampling frequency of 

100Hz. Figure 3.2 shows the test setup and the dimensions of the ultracapacitor in 

millimeters. A refrigerator was used for reaching lower temperatures.  
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Figure 3.2. A picture of the ultracapacitor dimensions and the test setup. 

A.  DC tests 

 For these tests, the ultracapacitor was charged and discharged by a DC 

rectangular wave with several amplitudes ranging from 10A to 80A in increments of 10A 

under fixed temperature for each set of tests. The charging is done in constant current 

mode until the terminal voltage reaches 3.8V at which it switches to constant voltage 

mode to avoid exceeding the upper voltage limit. During discharging, the same algorithm 

is applied and the mode switches from constant current mode to constant voltage mode 

when the terminal voltage hits 2.2V. Evidently, constant voltage mode is reached faster 
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when the current rate is higher. The control scheme was deployed using Lab View. The 

purpose of this test is discussed under section 3.3 of this chapter. Figure 3.3 shows one 

example of charging and discharging tests conducted on the ultracapacitor. 

 

(a) 

 

(b) 

Figure 3.3. (a) DC charging test with 20A (b) DC Discharging test with 40A. 
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 In Figure 3.3(a), the voltage increases in a nearly linear fashion until the terminal 

voltage reaches 3.7 V. The cell can handle 3.8 V, but it was decided to have 3.7 as the 

upper voltage limit during charging for safety reasons.  

B. AC tests 

 In this test, an AC current was applied to charge the ultracapacitor while 

measuring voltage and current. Due to the limitations imposed by the capabilities of the 

power supply, the AC signal was shifted up by a DC offset. Therefore, the current 

provided by the power source can be decomposed into two frequency components– DC 

and AC. As a result, the voltage across the ultracapacitor was expected to be a sinusoid 

riding over a ramp, which was observed in the tests. Figure 3.4 shows both the AC 

current and terminal voltage of the ultracapacitor in this test. The frequencies used in this 

test were 0.025Hz, 0.05 Hz, and 10 Hz through 70 Hz in increments of 10 Hz. Low 

frequency tests showed a larger phase shift between the applied current signal and the 

ultracapacitor terminal voltage signal. The purpose of this test is also discussed under 

section III.  
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Figure 3.4. AC test results. Upper graph: terminal voltage. Lower graph: charging current. 

 

3.3 Capacitor based modeling 

To create an electrical model capable of describing the ultracapacitor behavior, the test 

data were used first by examining the DC and AC test results. The modeling that utilizes 

data from the DC tests has four main stages as follows: 

A.  Internal capacitance (Co) 

 The DC test was performed so that the ultracapacitor would be charged for a 

certain period of time and given a period of time to rest. This was repeated until the 

ultracapacitor reached the upper limit voltage (3.8V). The fact that the ultracapacitor 

open circuit voltage increases as more energy is stored in it suggests that one component 
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of the ultracapacitor has to be a major energy storage device, i.e. an internal capacitor. 

This capacitor is given the symbol Co and is calculated by dividing the change in charge 

by the change in voltage. To obtain the value of charge, Columbic count was performed 

according to equation 3.1. 

 



t

i

ii ttIsAQ
1

)()(    (3.1) 

 This Columbic count is one step toward finding a direct relationship between the 

ultracapacitor internal capacitance, Co, and its open circuit voltage (OCV). For this 

reason, a direct current was injected into the ultracapacitor during charging tests and a 

direct current was also drawn from it during discharging. These tests were done at 

different current rates to investigate if this capacitance is current independent. The 

current waveform is mainly a train of pulses in the constant current mode and it becomes 

nonlinear in the constant voltage mode. Voltage is recorded throughout the entire test. 

The points on the voltage waveform at which the current is zero are the OCV 

measurements. Capacitance is calculated at each OCV point by dividing the difference in 

charge, the amount of charge that the ultracapacitor received or lost, by the change in 

OCV.  Equation 3.2 explains this operation. 
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 Where Co(OCVi) is the internal capacitance at a point i, Ii(t) is the current rate at 

the point i, and it  is the time interval during which the current rate is I(ti). t in this 

case is consistently equal to 0.01 second. Figure 3.5 below shows how the internal 
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capacitance is calculated. It shows the calculation of Co(OCV) for 10A charging DC test 

in room temperature. The shaded area under the current first pulse is the amount of 

charge the capacitor received during the first period of that test. Capacitance is calculated 

at each OCV point and the capacitance vs. OCV curve for all the DC tests under 25
o
C is 

shown in Figure 3.6. 

 

Figure 3.5. Calculation of electric charge and voltage for determining the main capacitance. 
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Figure 3.6. Internal capacitance for all DC tests under 25o C. 

 In the voltage region between 2.2V and 3V, the capacitance exhibits a somewhat 

constant value of 1100F. This is the region where only the non-Faradaic process takes 

place on the positive electrode (cathode) as can be seen in figure 3.6 reflecting a constant 

purely capacitive behavior. The Faradaic process, on the other hand, takes place in the 

voltage region between 3V and 3.8 V on the negative electrode (anode), an activity 

reflected by the increasing capacitance versus voltage in this voltage region. These 

processes can be explained by examining the reactions that take place between the 

electrolyte and the electrodes as provided by the manufacturer of this type of LIC in [41]. 

"The electrolyte consists of lithium hexafluorophosphate (LiFP6) in Ethylene carbonate 

(EC), propylene carbonate (PC), and diethyl carbonate (DEC) [41]." Lithium 

hexafluorophosphate dissolves in the electrolyte as Li
+
 cations and PF6

-
 anions the 
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activity of which is responsible for the charging and discharging processes of the LIC. 

Li
+
 cations in the electrolyte intercalate into the activated carbon electrode (cathode) 

while charging from 2.2 V until 3 V. If charging continues between 3V and 3.8V, then 

the Faradaic process starts to occur exhibiting PF6
- 
anions moving towards the Li-doped 

activated carbon electrode (anode) adsorbing on it, which is an activity simultaneous with 

further Li
+
 cations moving towards the cathode and intercalating into it. The pre-doped 

Lithium inside the negative electrode does not participate in the charging and discharging 

processes; it only pins the potential of this electrode at a highly negative value enabling 

the LIC to store more energy by increasing the voltage across its electrodes [41]. To find 

a relationship between the capacitance and OCV, a 4
th

 degree polynomial interpolant was 

used to fit the data.  

eOCVdOCVcOCVbOCVaOCVCo  234)(      (3.3)  

where the values of a, b, c, d, and e are the coefficients of the polynomial. Figure 3.7 

shows the internal capacitance of all the 10A tests at different temperatures. The steps 

explained above for finding an interpolating polynomial were applied to each one of 

these sequences of capacitance values to get an expression for their corresponding 

internal capacitance as a function of OCV. 
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Figure 3.7. Internal capacitance for 10A at all temperatures. 

 Figure 3.8 shows the capacitor-based electrical circuit model proposed in this 

dissertation for the ultracapacitor. The self discharging resistance explains why the 

ultracapacitor voltage slowly declines when electrically disconnected. The series branch 

elements model the dynamics of the waveforms during charging and discharging. The 

series resistance, which is the sum of the resistance in the cell plus the junction 

resistance, is a common element for most storage devices. Csa and Rsa describe further 

dynamics as discussed in the following section.  
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Figure 3.8. The proposed capacitor-based electrical model. 

 The interpolation of the internal capacitance versus OCV and temperature is 

provided in Figure 3.9. One notices that all capacitance curves intersect at a value of 

voltage equal to 3 V. This means the ultracapacitor is most stable at that value of voltage, 

and is recommended as the best voltage for shelf storage. 

 

Figure 3.9. All capacitance curves projected on the C-OCV plane. 
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 Figure 3.10 shows polynomial surface interpolation for the internal capacitance 

versus voltage and temperature. Since tests were conducted under discrete values of 

temperature, one needs to interpolate the curves in Figure 3.10 using a surface 

interpolant. A polynomial of the fifth degree for both OCV and temperature was used as 

an interpolating function. The result of this interpolation conducted by the surface fitting 

tool in Matlab is shown in Figure 3.10. 

 

Figure 3.10. interpolation of capacitance curves. 

The polynomial used has the form given in equation 3.4. 
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where  F(x , y) = Capacitance(OCV, Temp) 
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B. Self discharging resistance 

 To find this resistance, the ultracapacitor terminal voltage needs to be monitored 

over a long period of time after charging it to different voltage levels. However, the value 

of this resistance is very large for this type of the ultracapacitor, e.g. the voltage did not 

change when the cell was stored on shelf for several days. According to test data 

conducted by manufacturer, the terminal voltage drops only by 5% after six months. This 

implies that the self discharging resistance can be considered to be infinite for short-term 

operations. For simulation purposes, a value of 1G   was chosen for the self discharging 

resistance. 

C.  Internal resistance (Rs) 

 When the ultracapacitor is being charged or discharged, one can notice a sudden 

decrease/increase in the measured terminal voltage. The internal resistance causes this 

jump in voltage. To calculate the value of the internal resistance, the difference between 

the terminal voltage at two samples when the charging or discharging starts or stops is 

calculated and divided by the current. Table 3.3 shows the internal resistance of the 

ultracapacitor at different temperatures. 
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Table 3.3. Internal resistance at various temperatures.  

Temperature(
o
C) Rs( ) 

-15 35 m 

-10 29.3 m 

0 18.1 m 

5 13.5 m 

25 5.34 m 

35 3.3 m 

45 2.9 m 

55 2.7 m 

65 2.5 m 

 

 

Figure 3.11. Internal resistance as a function of temperature. 
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 This resistance does not vary with current rating or open circuit voltage. However, 

it significantly depends on temperature. Figure 3.11 shows this variation along with an 

exponential interpolant. The exponential interpolant is given by equation 3.5 to describe 

the internal resistance variation with temperature.  

Rint(T) = a e
bT

 + c e
dT 

   (3.5) 

where  

a = 0.0169468527888307 

b = -0.0481885465804298 

c = 0.000150364681152322 

d = 0.0378531440857562 

D. Series Branch Capacitance (Csa) and Resistance (Rsa) 

 During DC tests, one can notice changes in terminal voltage after 

charging/discharging stops. This process lasts for a few seconds before the terminal 

voltage reaches a steady state value equal to the OCV. This behavior suggests the 

existence of an RC component in series with the internal capacitance. This series-branch 

capacitor holds a charge when the ultracapacitor is operational and it loses this charge 

when the ultracapacitor becomes inactive. Figure 3.12 below shows the linear increase in 

terminal voltage during charging, the sudden drop in voltage right after charging current 

stops, and the relatively slow decay in voltage.  
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Figure 3.12. Voltage transients exhibited after charging stops in the 10A DC test under 25o C. 

 The time constant of the decaying voltage section has been observed to be 

approximately 0.6s. To calculate the value of Csa and Rsa, the only parameters with 

unknown values, two equations are needed. The first one is an equation relating the time 

constant of an RC circuit to the values of capacitance and resistance. The idea is to 

charge the ultracapacitor with AC signals and record the voltage across the terminals of 

the ultracapacitor. AC signals are used here to point out the effect of the RC circuit in 

series with the internal capacitance while neglecting the effect of that internal capacitance 

which introduces minimal impedance as it has a huge capacitance compared to the series 

one. Hence, the other equation is obtained from the AC test, which relates the value of 

these two unknowns by the tangent of the phase shift between the current signal and the 

terminal voltage signal. Figure 3.13 shows one of the AC tests with frequency equal to 
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0.05 Hz. The current signal has been shifted down in order to make the phase shift clear 

to see and easy to calculate.  

 
Figure 3.13. Voltage and current waveforms in AC test with f = 0.05 Hz. 

The two equations, therefore, are equations 3.6 and 3.7. 

)( sassa RRC       (3.6) 
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
   (3.7) 

Solving the above two equations simultaneously results in the values of Csa and Rsa. 

These values were found to be: 

Csa = 30.6 F 

Rsa = 79.9 m  

3.4 State of Charge (SOC) based modeling 

 In many applications, the SOC-based model of ultracapacitors makes more sense. 

This type of model is needed where the ultracapacitors are used along with batteries in 

systems such as peak power shaving applications in utility grid [30]-[31], [43]. Other 

systems where ultracapacitors significantly increase system performance and efficiency 
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are automotives systems and pulse power applications [32]-[35], [42], [44], [45]. Generic 

power electronics systems involving multilevel converters [36] could also require an 

SOC-based model. References [37]-[40] discuss an interesting application for 

ultracapacitors where they can be used for power leveling when integrated with batteries 

to form a hybrid energy storage system. Ultracapacitors can absorb high bursts of energy 

in short periods of time due to their superior power density, whereas batteries can provide 

stable energy over longer periods of time due to their high energy density.  

 To create an SOC-based or rather a battery-based electrical model capable of 

describing the ultracapacitor behavior, similar test data were used. For this model, it is 

suggested that the ultracapacitor has an internal SOC-dependent voltage source. This 

voltage source is denoted as OCV(SOC) and is observed at the end of every resting period 

during a charging or discharging test. To obtain the value of charge, Columbic count was 

performed according to equation 3.1 discussed earlier. 

 This Columbic count is one step toward finding a direct relationship between the 

ultracapacitor open circuit voltage, OCV, and its state of charge, SOC. Figure 3.14 shows 

the accumulation of charge in the ultracapacitor versus time, while charging under 45˚C 

at 10A.  
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Figure 3.14. Ultracapacitor SOC versus time when charging at 10A. 

 Figure 3.15 shows the OCV points plotted versus SOC for three different current 

rates under three different temperatures. This was done to prove the linear relationship 

between the OCV and the SOC. It is evident that the OCV exhibits a linear relationship 

with SOC. A linear regression was used to find a relationship relating the two variables. 

Using the curve fitting tool in Matlab, a line was used to interpolate these data points and 

happens to have equation 3.7. 

329.20156.0)(  SOCSOCOCV   (3.7) 

Where the SOC value used here is in percentage. 
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Figure 3.15. OCV vs. SOC at three temperatures and three current ratings. 

 The self discharging resistance, internal resistance (Rs), series branch capacitance 

(Csa), and resistance (Rsa) do not change in value as these are values based on the same 

set of tests. The analysis suggests the electrical equivalent circuit shown in Figure 3.16 as 

SOC-based model for the ultracapacitor. 

 
Figure 3.16. The proposed electrical model of the ultracapacitor. 
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3.5 Model verification and efficiencies 

 The model developed needs to be tested to make sure it truly represents the 

ultracapacitor electrical behavior. The model is simulated in Simulink and compared with 

the actual response of the ultracapacitor for all sets of tests under different temperatures. 

For model verification, a charging test with a train of current pulses is used. The current 

is on for ten seconds, and then the ultracapacitor rests for 20 seconds identical to the 

actual tests. Figure 3.17 shows an example of the actual response versus the simulated 

response for two tests under 25
o
 C. The blue curve is the test result and the red curve is 

the results from the model.  

 The simulated response and the real test response for the 10A test show a nearly 

perfect match. For the other tests, the simulated response and the real one are very similar 

yet not exactly the same. However, the voltage increases when the current is on and 

decreases when the current is off showing the series branch capacitance reacting. There is 

a small mismatch during transients, but the response shows quick convergence to the real 

value and accurate end-point values for voltage, which is the most important parameter 

for control purposes.  
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(a) 

 
(b) 

Figure 3.17. Modeling and test results; (a) 10A DC test under 25oC (b) 40A DC test under 40oC. 
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Coulombic and Energy efficiencies were also studied for this ultracapacitor. Charging 

and discharging tests had already been conducted on the ultracapacitor, and it was of 

interest to investigate the coulombic and energy efficiencies at different current rates and 

temperatures. This was a simple yet computationally extensive task done by dividing 

output over input. For the Coulombic efficiency, a Coulombic count was performed for 

each charging/discharging cycle under all temperatures. The ratio was then taken to 

determine the efficiency. Energy values were obtained by multiplying the instantaneous 

value of voltage and the instantaneous value of current and then integrating those 

products over time. Table 3.4 shows the Coulombic efficiencies, while Table 3.5 shows 

the energy efficiencies for all tests. In both tables, “I” denotes the DC current in Amps, 

while “T” denotes temperature in Celsius. 

Table 3.4. The Coulombic efficiency for ultracapacitor at various current ratings and 

temperature.  

I\T -15
o
 -10

o
 0

o
 5

o
 25

o
 35

o
 45

o
 55

o
 65

o
 

10 99% 99% 99% 98% 99% 98% 98% 99% 99% 

20 99% 99% 99% 99% 98% 99% 99% 98% 99% 

30 98% 99% 99% 99% 99% 99% 99% 99% 99% 

40 99% 99% 99% 99% 98% 99% 99% 99% 99% 

50 99% 99% 99% 99% 99% 98% 99% 99% 99% 

60 99% 99% 99% 99% 99% 99% 99% 99% 99% 
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Table 3.5. The energy efficiency for ultracapacitor at various current ratings and 

temperature. 

I\T -15
o
 -10

o
 0

o
 5

o
 25

o
 35

o
 45

o
 55

o
 65

o
 

10 85% 84% 88% 88% 93% 94% 95% 97% 98% 

20 72% 76% 80% 85% 89% 92% 93% 93% 95% 

30 67% 72% 77% 80% 89% 91% 92% 93% 94% 

40 66% 69% 73% 78% 84% 90% 91% 92% 93% 

50 63% 67% 74% 75% 83% 85% 88% 89% 92% 

60 66% 67% 68% 73% 83% 85% 87% 88% 89% 

 

 One can draw the following fundamental conclusions. Coulombic efficiency, on 

average, is well around 99% as it is expected due to very large value for the self 

discharging resistor. Energy efficiency, however, is calculated by taking the product of 

voltage and current and those values are dramatically affected by temperature and 

current. It is also evident that energy efficiency has an inverse relationship with the value 

of current. The higher the ultracapacitor current is, the lower the efficiency is. Regarding 

temperature, the energy efficiency increases as the temperature increases. Therefore the 

highest energy efficiency is obtained at high temperatures and low values of current, 

while the worst performance of the ultracapacitor is obtained under low temperatures and 

very high currents. 
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Chapter 4. Lead acid battery modeling 

 Historically, lead acid batteries are the type of electrochemical energy storage 

device used in automobiles. In 2013, 99.1% of automobiles utilizing the start-stop 

technology use lead acid batteries [47]. In 2022, it is expected that 13% of automobiles 

preinstalled with this technology to have Li-Ion batteries instead as cost drops and energy 

capacity increases [47]. Lead acid battery modeling can be done in one of three main 

methods: 

1. Modeling based on equations representing the chemical reactions that take place 

when the battery is experiencing change of its stored energy due to charging, discharging, 

or self discharging under ambient conditions such as temperature.  

2. Equivalent electrical circuit that replace the battery with a number of circuit 

elements. 

3. Neural network. 

 The first method is the most accurate one; however, it is the most computationally 

complex and is only used by manufacturers. The third method is the easiest for modeling, 

but it requires a massive amount of testing to create an adequate set of training data [48]. 

The second method has a good balance between complexity and accuracy. 

 Reference 49 discusses battery modeling techniques used for converter-based 

battery charging and discharging. The ideas, equations, text, and steps presented in 

Reference 49 to demonstrate these modeling techniques will be followed closely in this 

chapter with added comments and supporting concepts.  
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 The two main models utilized for battery modeling are mathematical models and 

electric circuit-based models; hence, the main focus of this chapter will be on these two 

techniques. Battery system level behavior, such as battery runtime, efficiency, or capacity 

can be predicted by developing mathematical battery models [50]-[54] based primarily on 

the Shepherd relation [56]. However, mathematical battery models are limited to specific 

applications and are only accurate at a percentage between 80% and 95% [55].  

 Circuit based battery models [55]–[64] are electrical circuit equivalent models 

that utilize a number of voltage sources, resistors, and capacitors to mimic battery 

electrical behavior. They are normally used by electrical engineering researchers for 

simulation purposes in order to simulate the integration of batteries with other electrical 

circuits and power systems [49]. The model used in simulating a lead acid battery in this 

study falls under this category. Circuit-based battery models have also undergone 

constant development from early low accuracy Thevenin-based [56]–[62] and 

impedance-based [63], [64] battery models to the more accurate runtime-based RC 

network battery models developed recently [55], [65].  

 Due to battery model development in the two aforementioned different directions, 

it becomes important to investigate the relations, differences, and computational 

complexities using the two modeling approaches. In the sections that follow, this chapter 

first briefly reviews the electrochemical characteristics that are important for battery 

model. Then, mathematical battery models including a modified battery model based on 

Matlab SimPowerSystems will be presented. Typical circuit-based battery models and 

their relation with the mathematical battery models will be presented next.  
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 A rechargeable battery is comprised of one or more electrochemical cells having 

the ability to convert stored chemical energy into electrical energy during discharging and 

convert electrical energy into chemical energy during charging [49]. 

 An electrochemical cell is a device used for electric energy generation or storage. 

It consists of a positive electrode and a negative electrodes separated by a separator 

material immersed in an electrolyte as shown in figure 4.1. The electrolyte allows the 

conduction of ions between the two electrodes, but is itself an insulator. The positive and 

negative electrodes are also immersed in the electrolyte and the reacting substances are 

stored within the electrodes and the electrolyte. The chemical reactions associated with 

the energy conversion take place at the two electrodes. During discharging, the negative 

electrode contains the substance that is oxidized, while the positive electrode contains the 

oxidizing substance that is reduced. Electrons go through the load connected across the 

cell terminals effectively doing useful work. When the battery is charged, the chemical 

reactions are reversed and an amount of energy from an external power source has to be 

supplied to the cell. The discharging and charging processes in an electrochemical cell 

are shown in figures 4.1a and 4.1b respectively [49]. 
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     (a)            (b) 

Figure 4.1. Electrochemical cell structure. a) Discharging. b) Charging [49]. 

 Reference 49 explains what happens to cell voltage during both cell operating 

conditions as follows. The current in a battery is established as a result of electrons 

transferring from one electrode to the other. When the current flow through a cell is equal 

to zero, the difference between the positive and negative electrode potentials yields the 

cell's Open Circuit Voltage (OCV). While current in a cell is flowing, the reacting 

substances transport is required from one electrode surface to the other. As a result, the 

voltage when current is flowing differs from the OCV. The difference comes from:  

1. An overvoltage at the electrodes caused by electrochemical reactions and concentration 

deviations resulting from the mass transport. 

2. Ohmic voltage drops caused by the electrons and ions flowing in the conducting parts 

such as the electrolyte, electrodes, and active masses. The sum of electronic and ionic 

currents, called polarization, is responsible for a decreased cell voltage (Vdis) during 

discharging and an increased cell voltage (Vch) during charging as shown in equations 4.1 

and 4.2 [49]. 
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where Vop+ and Vop- are the overvoltages at the positive and negative electrodes, 

respectively, and Rpol is the polarization resistance. Due to the polarization effect, the 

battery voltage, when current is flowing, differs from the OCV depending on the state of 

charge of the battery.  

 Reference 49 discusses other important factors affecting battery performance and 

models. These include: battery capacity, state-of-charge (SOC), rate of charge and 

discharge, temperature, and age. The battery capacity relates to the amount of energy that 

can be extracted from the battery under certain conditions such as rate of discharge, and 

is determined by the mass of active material contained in the battery when it is fully 

charged. The SOC is defined as the fraction of full capacity that is available for further 

discharge at any operating point. The OCV of a battery is normally a function of the SOC 

due to the polarization impact. Charging and discharging rates as well as ambient 

temperature are the main factors affecting the rated battery capacity. According to 

Peukert’s equation, if the battery is being discharged at a high rate, the amount of energy 

that can be extracted from the battery is reduced. Consequently, effective modeling using 

Peukert’s relation is particularly important for design and analysis of power converter 

controlled battery charging and discharging. The age and history of a battery also have 

impacts on the capacity of a battery. Even when following manufacturers’ depth of 

discharge (DOD) specifications, the battery capacity only stays at the rated capacity for a 

limited number of charge/discharge cycles. If the battery has been taken below its 

maximum DOD during its usage, battery capacity may be prematurely reduced. As for 
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temperature effect, at higher temperatures, the battery capacity is usually higher than it is 

at lower temperatures. But, intentionally elevating battery temperature is not an effective 

method to increase battery capacity as this also decreases battery lifetime [49]. 

4.1 Mathematical Models: 
 

 A detailed mathematical battery model normally includes several submodels of 

which the most vital submodel from an electrical standpoint is the voltage-current model, 

which describes how the terminal voltage of a battery changes with current rate. The 

most famous known voltage-current model for constant-current discharge is the Shepherd 

model [52], [54]: 

           
 

    
            

where the first term E0 represents the OCV of a battery at full capacity, K is the 

polarization resistance coefficient (Ω), Q is battery capacity (Ahr), i is battery current 

(A), R is internal resistance and it =       (Ahr). In equation 4.3, the second term is 

associated with the polarization ohmic voltage loss, and the last term stands for the 

internal resistance loss. Equation 4.3 can be presented in equation 4.4 using SOC, which 

indicates that the polarization ohmic voltage is inversely proportional to SOC [49]. 

         
 

   
           

 Many recent voltage-current models are more complicated than the Shepherd’s 

relation [50], [53], [54]. Those models typically start with a relation similar to that of 

Shepherd, and then add and modify terms to try to improve the relation fit to both 

measured charge and discharge curves, and  relax the assumptions behind the Shepherd 

model [49]. 
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Figure 4.2. A typical electrochemical cell discharge curve [49]. 

 Equations 4.5 and 4.6 present modified battery models for discharge and charge 

of lead-acid batteries, respectively, based on the Shepherd relation and SimPowerSystems 

battery model 

           

 

    
          

 

    
               

          

 

     
          

 

    
               

where Kdr is the polarization resistance coefficient (Ω) and Kdv is the polarization 

overvoltage coefficient (V/Ah).  As for the polarization ohmic voltage drop, the second 

term in equations 4.5 and 4.6 is different for charge and discharge and is modified by 

using a filtered battery current i* to simulate actual slow voltage dynamic behavior for a 

step current response. The coefficient   in equation 4.6 is to account for the shift of 

polarization resistance during battery charging. The internal resistance in the third term 

has different values for charge and discharge. A fourth term concerning the polarization 

overvoltage is added. This term together with E0 or E0 can better represent the nonlinear 

OCV relation with the SOC. The last term Exp(t) represents an exponential dynamic 

voltage shown in figure 4.2 to reflect a non-linear hysteresis phenomenon between 
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discharge and charge. For lead-acid batteries, Exp(t) is determined by equation 4.7, where 

u(t) = 0 for discharge and u(t) = 1 for charge. Equations 4.5 and 4.6 can be rewritten by 

using SOC. For example, in terms of SOC, equation 4.5 becomes equation 4.8, which 

shows that as SOC decreases, the voltage drop, caused by polarization ohmic and 

overvoltage impacts, increases under battery discharge mode. Also, according to equation 

4.8, the polarization overvoltage impact is insignificant in the vicinity of the full battery 

capacity but becomes a more dominant component as the SOC drops [49]. 

                             

           

 

   
           

 

   
                

Equations 4.5 and 4.6 suffer from the following modeling limitations:  

1. Battery capacity (Q) does not change with current rate 

2. Temperature does not affect model behavior 

3.  Battery aging is not considered 

4. Effect of self discharging is not considered.  

 Those factors can be considered in a more complete mathematical battery model 

as shown in the flowchart in Figure 4.3, in which battery parameters change during the 

lifetime of the battery to provide an aging profile and degradation of battery performance 

affected by many other factors. The change in parameters is calculated at every 

simulation time step. For example, the SOC can be calculated more accurately at each 

time step based on equation 4.9, which includes the impact of gassing current igas and the 

self discharging current isd. If battery capacity falls below the threshold capacity, the end 

of life of the battery is signaled [49]. 
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Figure 4.3. Flowchart of mathematical battery model [49]. 

4.2 Circuit-based battery models 

 Circuit-based battery models utilize a combination of voltage and current sources, 

resistors, and capacitors in an electric circuit to model battery behavior. Most electrical 

models fall under three basic categories: Thevenin-based [56]–[62], impedance-based 

[63], [64], and runtime-based models [55], [65]. Normally, it is more complicated to 

change battery parameters for different conditions and states of the battery. In addition, to 

account for variations between charge and discharge states, two opposing diodes have to 

be used for each circuit element, making circuit-based battery models more complex [49]. 

 In its most basic form, a Thevenin-based model [56]–[62], shown in Fig. 4.4a, 

consists of a voltage source (Voc(SOC)) in series with an internal resistor, R0, and a 
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parallel combination of a capacitor and resistor to predict battery response to transient 

loads at a particular SOC, by assuming a constant open-circuit voltage, Voc(SOC). Thus, 

this model is unable to properly reflect the SOC influence on the battery behavior [49].  

 Impedance-based models, shown in figure 4.4b, employ the method of 

electrochemical impedance spectroscopy to obtain an AC equivalent impedance model in 

the frequency domain, and then use a complicated equivalent network, Zac, to fit the 

impedance spectra [55], [65]. The fitting process is complex. In addition, impedance-

based models only work for a fixed SOC and temperature settings [63] and therefore 

cannot predict DC response or battery runtime. Runtime-based models [55], [65] use a 

complex circuit network to simulate battery runtime and DC voltage response [49].  

 Figure 4.4c shows a recent runtime-based battery model [65]. On the left hand 

side of the model, a capacitor (CQ) having the value of battery capacity and a current-

controlled current source describe how the battery SOC, represented by VSOC, varies with 

the battery current. On the right hand side, the RC networks, similar to that used in the 

Thevenin-based model, simulate the relation between the battery current and terminal 

voltage [49]. 
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Figure 4.4. Electric circuit based battery models [49]. 

 The relation between the mathematical and circuit-based battery models can be 

evaluated through a comparison study of battery discharge between figure 4.4c and 

equation 4.8 according to the following points taken from reference 49: 

1. The term R0ibatt is equivalent to the term R0id in equation 4.7, which represents the 

internal resistance voltage loss in circuit-based and mathematical battery models, 

respectively.  

2. For the RC networks of the runtime-based battery model, assuming that the 

voltage applied to the i
th

 RC network is vi, then, in the s domain after applying Laplace 

transform, the relation between the voltage vi and the battery current passing through the 

i
th

 RC network is given by equation 4.10 according to which the voltage vi can be 

interpreted as the voltage drop of the low-pass filtered battery current over the resistor Ri 
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of the RC network, in which the cutoff frequency of the low-pass filter is 1/(RiCi). Thus, 

the combined effect of all the RC networks is actually equivalent to a resultant low-pass 

filter applied to a resultant RC network resistance. From this point of view, the low-pass 

filtered current in the circuit-based model is equivalent to i* in equation 4.8, and the 

voltage drop over the RC networks together is equivalent to the term Kdri*/SOC in 

equation 4.8 to reflect the polarization ohmic voltage drop. But, the term Kdri*/SOC in 

the mathematical based model is a function of SOC, which implies that the values of Ri 

and Ci of the RC networks in the circuit-based model should also be functions of SOC, 

which is consistent with results shown in [55] and [65]. 

        

 
    

  
 

    

               

3. In the runtime based battery model, the battery OCV is modeled via a voltage-

controlled voltage source, in which voltage VSOC simulates the battery SOC. A 

comparison between the open-circuit voltage Voc(VSOC) in the circuit-based battery model 

and equation 4.8 indicates that Voc(VSOC) should be equivalent to E0–Kdv(1/SOC-1). As a 

result, Voc(VSOC) in the circuit-based model should be a function of SOC. 

4. It is normally more complex to model electrochemical phenomenon associated 

with the charging or discharging regimes, the age and past history of the battery, and 

temperature effect in the circuit-based battery model. However, such issues are very 

important for research of converter controlled management of batteries that are connected 

to the grid. 
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Chapter 5. Hybrid energy storage system design 

 

5.1 Proposed ESS benefits and comparison to other solutions 

 The proposed Hybrid ESS in this dissertation offers the following benefits and 

advantages over the other solutions: 

1. Simple design 

2. Compact 

3. Control free 

4. Easy to control sharing of cranking current 

Other solutions include: 

1. Enlarged Lead Acid battery 

2. Lead acid battery connected to a single LiC via a DC-DC converter 

The enlarged lead acid battery occupies a bigger volume under the hood of automobiles 

where space is extremely scares. While the DC-DC converter in the second alternative 

saves three LiC's, it adds complications to the design, losses in the converter, and requires 

large output capacitor to keep the battery terminal voltage from sagging during cranking, 

and it requires a large inductor to be able to provide the very large cranking current. 

5.2 Hybrid ESS modeling 

 The proposed ESS is constructed from an ultracapacitor module connected in 

parallel with a lead acid battery. The ultracapacitor module is comprised of four Li-ion 

ultracapacitors connected in series to meet the voltage requirement of a single automobile 

lead acid battery of 12 Volts. The use of Li-ion ultracapacitors requires that they maintain 

a terminal voltage having a minimum of 2.2 Volts and a maximum of 3.8 Volts each. The 
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nominal voltage for each ultracapacitor is 3 Volts. The voltage limits for the 

ultracapacitor module matches the minimum voltage requirement across the lead acid 

battery, its nominal voltage of 12 Volts, and the alternator average charging voltage of 

14.4 Volts. This is one possibility out of four possible ways an automobile can have an 

Energy Storage System (ESS). 

 
Figure 5.1. Engine cranking circuitry. 

 The complete vehicle cranking circuitry is shown in figure 5.1 where the starter 

motor is a compound DC motor and the battery is connected in parallel with the 

ultracapacitor module. The lead acid battery model is simplified to a DC power supply of 

constant voltage of 12 Volts while the ultracapacitor module model is simplified to a 

capacitor having a capacitance value of 550 F, which comes from the equivalent 

capacitance value of four 2200-F capacitors in series. This simplification is not valid for 
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the entire operable region of both the lead acid battery and ultracapacitor. However, for 

the application under study, it is an excellent assumption as the time interval during 

which cranking takes place is not longer than 50 ms not allowing the OCV of the battery 

or the ultracapacitor module to experience any considerable drop. 

 The instantaneous power curve is obtained by taking the instantaneous product of 

voltage and current during the two second period at which the cranking test was 

conducted. Running a Riemann sum on the power curve yields the energy curve. The 

maximum power required during cranking is a little over 4kW and the energy required 

for cranking is about 1.7 kJ. One car used for running cranking tests is a 2002 Toyota 

Solara with a 6-cylinder, 3.0 L engine. The power is chosen to have a negative sign when 

the battery is being discharged and positive sign when being charged. The objective of 

the mathematical modeling is to derive an expression of the battery current as a function 

of the cranking circuit parameters. The circuit shown in figure 5.1 represents the car 

circuitry. The circuit parameters are: 

capL : ultracapacitor branch inductance 

capR : ultracapacitor branch resistance 

batteryL batL : battery branch inductance 

batteryR batR : battery branch resistance 

2fL : compound DC machine field winding inductance 

2fR : compound DC machine field winding resistance 

aL : compound DC machine armature winding inductance 
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1fL : compound DC machine armature winding field inductance 

aR : compound DC machine armature winding resistance 

1fR : compound DC machine armature winding field resistance 

 Using the circuit in figure 5.1, the three equations obtained after applying KVL on 

three loops are given by equations 5.1-5.3 

)3.5()()(

)2.5(

)1.5(

4
114

3
223

1
1

2
2

1
1

3
223

dt

di
LLRRie

dt

di
LRi

dt

di
LRiV

dt

di
LRiV

dt

di
LRiV

dt

di
LiR

dt

di
LRi

faafaff

BatBatbatcapcapcap

BatBatbatcablecableff







 

 Applying Laplace transform to equations 5.1-5.3, and replacing i3 by its 

equivalent from equation 5.4, equations 5.5-5.7 can be written as follows: 

i3 = i1 + i2 – i4   (5.4) 
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 Rearranging terms, the equation that relates the battery current to the rest of the 

circuit parameters and variables is given by equation 5.8. 
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where: 
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 Equation 5.8 is the main equation for which this mathematical analysis was 

performed. For the sake of making equation 5.8 look compact, terms A and B were 

defined in equations 5.9 and 5.10 respectively. This was also the same reason equations 

5.11-5.14 were introduced defining L1, L2, R1, R2.  
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5.3 Cranking current sharing control 

 One simple yet extremely effective technique to control the cranking current 

shared by the Li-ion ultracapacitor module and the lead acid battery is to control the 

branch resistances. Mere varying the cable length for the battery or ultracapacitor module 

changes the current sharing drastically. This was tested experimentally and simulated to 

see the effect of branch resistance. In figure 5.2, the maximum cranking current is 

simulated for a battery branch resistance of 7 mΩ while the ultracapacitor branch 

resistance is allowed to vary. The two current curves should be added together to get the 

total maximum cranking current.  

 
Figure 5.2. Cranking current sharing as a function of ultracapacitor branch resistance. 

 It is interesting to see that an increase of a few mΩ of ultracapacitor branch 
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and a massive decrease of the battery branch contribution. Figure 5.3 shows the opposite 

case where the ultracapacitor branch resistance is kept constant at 9 mΩ while the battery 

branch resistance is allowed to vary. In figure 5.3, the red curve is represents the battery 

current while the blue curve represents the ultracapacitor module current Similar 

observations can be made especially the fact the maximum cranking current is super 

sensitive to the branch resistance value. 

 
Figure 5.3. Cranking current sharing as a function of battery branch resistance. 
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Chapter 6. Lead acid aging analysis 

 The cranking profile presented in reference 66 is a perfect example of a pulsed 

power profile. Any energy storage system having to provide such power for a short 

period of time experiences stress leading to its gradual aging. In this chapter, a number of 

parameters designed to quantify the stress a battery goes through during engine cranking 

as well as quantify the benefits gained from combining a battery with an ultracapacitor 

module in a hybrid ESS will be presented. In a study done by JSR Micro, five parameters 

were introduced to assess the overall performance of such a hybrid ESS considering 

system cost and performance [66]. The pulsed power profile on which the parameters are 

derived is shown in figure 6.1. 

 

Figure 6.1. Pulsed power profile defined in the JSR Micro study [66]. 

 In this study, a basic energy storage system model is used. In particular, a lead 

acid battery equivalent circuit model is used to derive the equations that define the 

energy, capacity, and power required during the pulse period. Also, all aging parameters 
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are also defined based on this equivalent circuit model and simplified pulsed power 

profile mentioned earlier. The lead acid equivalent circuit used in this study is provided 

in figure 6.2. 

 

Figure 6.2. Lead acid battery electrical circuit equivalent model. 

 The amount of charge provided by the battery during a single pulsed power 

interval is given by equation 6.1: 

   
                   

           

        

      

  
  

        
         

  

        

      

 
      

        
         

 

         
              

        

           
              

        
 

 (6.1)  

 The five parameters will be defined next. These parameters are characteristic; i.e. 

they characterize the battery on different levels, they are generalized for pulsed power 

profiles so that they apply to a wide range of pulsed power applications not exclusive to 

the profile on which the aging study is based, and they are normalized parameters having 

a value that ranges between zero and one. 
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A. Battery Loading Factor (BLF) 

 This parameter provides a measure of the battery loading. Since loading is 

directly affected by the amount of current going through the battery especially during 

discharging, one possible equation that can be used to construct this parameter would be 

given by equation 6.2 

     
                       

     
  (6.2) 

 x(t) shows direct proportionality with the battery current; however, it does not 

show the peak power of the pulsed power profile. This equation can be used towards 

defining the BLF by defining the parameter expressed by equation 6.3 and 6.4 
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  (6.4) 

  satisfies all of the properties that the aging parameters are to have; it is unitless, 

normalized, monotonically increasing function of the peak power demand.  is therefore 

elected to be the BLF. 
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B. Battery Stress Factor (BSF) 

 Batteries experience stress when being charged or discharged at a much higher 

rate than the rated current. The current passing through the battery causes thermal stress. 

A parameter showing the stress undergone by the battery is defined as the ratio of energy 

loss as heat versus energy deliverable to the load; this parameter is given in equation 6.5 

     
                         

 
  

 

 

                     
 

 

 

   (6.5) 

Equation 6.5 shows the relationship between BSF and BLF, which is shown in figure  

Figure 6.3. BSF as a function of BLF. 
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C. Hybrid Improvement Factor (HIF) 

 This parameter provides a unitless measure of improvement introduced by the 

hybrid ESS versus battery alone. It is defined as the ratio of the battery BSF when used 

alone versus the battery BSF when used in a hybrid ESS. The definition is shown in 

equation 6.6 where µ is the efficiency of DC-DC conversion if present. 

     
        

       
                   

               
 

                
   (6.6) 

 HIF is a parameter that is highly sensitive to the duty cycle. Figure 6.4 shows HIF 

curves for different cases of BSF plotted versus duty cycle. HIF shows higher HIF for 

smaller duty cycle values. During cranking, the duty cycle is extremely small, which 

renders the hybrid design very useful from an HIF perspective. 

 

Figure  6.4. HIF curves for a number of BSF values. 
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D. Charge Capacity Factor (CCF) 

 This parameter is an instantaneous unitless measure of the charge capacity used 

from battery alone versus charge capacity used from battery in the hybrid ESS as shown 

in equation 6.7. 

     
     

     
 

        
 

 

              
 

 

 

          
             

            
  (6.7) 

 CCF can be plotted versus duty cycle as shown in figure 6.5. It is obvious that the 

value of CCF hovers around unity. This is due to the fact that the addition of an 

ultracapacitor module to the lead acid battery does not add much capacity to energy 

storage. The capacity in an ultracapacitor is only a small fraction of that of a battery's. 

  

Figure 6.5. CCF versus duty cycle for different values of BSF. 
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E. Energy Capacity Factor (ECF) 

 This parameter provides an instantaneous unitless measure of the energy capacity 

used from battery in a hybrid system versus energy capacity used from battery alone. 

Equation 6.8 shows the definition of ECF. 

  
  

  
 

                         
  

 

                   
  

 

  

  
             

        
   

             
        

   

 
             

       

 

             
       

 

 (6.8) 

 where    and    are the times the pulse is applied to the battery in the hybrid 

module and the battery alone respectively, ∆υ is the difference between fully-charged 

battery voltage and fully-discharged battery voltage, and σ is the ratio of    to ∆υ. Figure 

6.6 shows the ECF curves for a number of BSF values. 

 

Figure 6.6. ECF versus duty cycle at different values of BFS. 
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Chapter 7. Experimental test setups and simulation results 

 This chapter presents the test and simulation results of the major milestones of 

this dissertation. Some test and simulation results of other experiments were presented in 

chapters due to the close connection with the text written. 

7.1 Hybrid ESS testing 

 This section presents the designed hybrid ESS test setup and simulation results. 

7.1.1 Hybrid ESS test setup 

 The hybrid ESS was tested on a Saturn Vue 2004 with a 4-cylinder 2.24 Liter 

Engine. Battery current, Ultracapacitor current, hybrid ESS voltage, and engine speed 

were measured. The engine speed was measured using a contactless laser sensor. The 

tests were conducted in a way that also took into consideration possibilities to shape the 

cranking current. Figure 7.1 shows the complete test setup on this car. The hybrid ESS is 

placed on a plastic cart and connected to the car circuitry terminals that were detached 

from the original car battery. An advanced Tektronix oscilloscope was used to collect 

data for two seconds. 
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Figure 7.1 Design Hybrid ESS test setup. 

 The designed hybrid ESS is made up of a lead acid battery connected to the 

ultracapacitor module directly in parallel. Two LEM current sensors are used to measure 

the battery and ultracapacitor module currents as shown in figure 7.2. In this 

configuration, the cable gauge wire and lengths between the battery and the hybrid ESS 

nodes are the exact same gauge wire and lengths as the cables connecting the 

ultracapacitor module to the Hybrid ESS nodes making this connection a balanced 

connection introducing no bias towards one of the two power sources versus the other. 
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Figure 7.2. Balanced parallel connection Hybrid ESS. 

 The starter motor that cranks this car is not a compound DC motor but rather a 

permanent DC motor. This simplifies the mathematical analysis needed to derive the 
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battery current versus the other parameters in the cranking circuit. Figure 7.3 illustrates 

the Saturn Vue cranking circuit that includes the designed hybrid ESS. 

 
Figure 7.3. Saturn Vue cranking circuit with the hybrid ESS installed. 

 The equations modeling the cranking circuit follow the same analysis presented in 

chapter 5 with the more general compound DC motor. In this case, the presence of the 

permanent magnet DC motor reduces the analysis complexity and yields the battery 

current expression given by equation 7.2, which is a simplified version of equation 7.1. 

         (7.1) 

  (7.2) 
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7.1.2 Hybrid ESS simulation results 

 It was observed that the small resistance introduced by having an extension cable 

drastically changes the current response. This idea was discussed and simulated in 

chapter 5 under section 5.3. This section shows test and simulation results of three types 

of parallel connections. When the direct connection to the car circuitry is applied across 

the battery, the battery provides most of the cranking current. When the direct connection 

is applied across the ultracapacitor module, the module shows superiority during 

cranking. When the balanced connection is used, the ultracapacitor module still provides 

most of the cranking current. This gives the possibility of shaping the cranking current 

simply by designing a hybrid ESS with predetermined cable resistances that yield the 

desired cranking current sharing. Figure 7.4 shows a circuit diagram illustrating the 

battery biased parallel connection, a cranking test results, and simulation results obtained 

from simulating this particular circuit in Matlab Simulink of the system in figures 7.4 a, 

b, and c respectively. 

(a)  
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(b)  

(c)  

Figure 7.4. Battery biased parallel connection. (a) Connection diagram. (b) Test results. (c) Simulation 

results. 

 Figure 7.5 shows a circuit diagram illustrating the ultracapacitor module biased 

parallel connection, a cranking test results, and simulation results obtained from 

simulating this particular circuit in Matlab Simulink of the system in figures 7.4 a, b, and 

c respectively. 
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(a)  

(b)  
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

Time (s)

C
u
rr

e
n
t 

(A
)

 

 

Battery Current

LIC Current



98 
 

 
 

(c)  

Figure 7.5. Ultracapacitor biased connection.(a) Connection diagram(b) Test results (c) Simulation results. 

 The balanced hybrid ESS connection test and simulation results are shown in 

figure 7.6 In the balanced connection, the ultracapacitor module provides most of the 

cranking current while the battery provides the smaller portion. The system voltage 

decreases to a minimum of 11 Volts only compared with the much lower voltage of 8.3 

Volts of the lead acid battery when used alone for engine cranking. Figures 7.6 a, b, and c 

show the balanced connection circuit diagram, the test cranking currents of the hybrid 

ESS, and the simulation results of the cranking currents in the balanced connection 

respectively. 
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(c)  

Figure 7.6. Balanced parallel connection. (a) Connection diagram. (b) Test results. (c) Simulation results. 

7.2 Starter motor 

 The Saturn Vue starter motor was purchased and tested to extract its parameters 

for simulation purposes. This section discusses the testing and parameter extraction of 

this starter motor.  

7.2.1 Starter Motor test setup 

 Figure 7.7 shows the test setup used for testing the starter motor. A DC power 

supply that can run constant voltage or constant current mode is used for testing. The 

applied voltage across the starter motor was 12 volts, which is the rated voltage. The 

current and speed waveforms were recorded so as to be used to extract the resistance and 

inductance of the armature winding of the starter motor. A LEM sensor is used to 
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measure the starter motor current and a laser contactless sensor is used to measure the 

speed of the cranking gear. 

 

Figure 7.7. Starter motor test setup. 

 An image showing the structure of the starter motor is given by figure 7.8. The 

bigger cylinder to the left is the body of the motor while the smaller cylinder to the right 

is a solenoid that functions as a relay allowing current to pass through the starter motor 

only when the ignition key is in the switching position. the solenoid also enables a 

mechanism that pushes the cranking gear out so as to mesh with the shaft gear while 

cranking. once the key in the ignition cylinder is pulled back to the Run position, the 

solenoid is deactivated, which deactivates both the starter motor and the mechanism 

effectively pushing the cranking gear back in. 



102 
 

 
 

 

Figure 7.8. Saturn Vue starter motor. 

 Figure 7.9 shows a cross sectional view of the starter motor used. This figure 

shows the flow of current when the ignition switch is in the cranking position. The 

current flows first in the solenoid making it an electromagnet that pulls a bar of a 

ferromagnetic material, most likely a piece of steel, which is then pulled inside the 

solenoid shorting the path for current to pass through the armature winding of the starter 

motor and allowing the cranking gear to pop out. 
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Figure 7.9. Starter motor cross sectional view. 

7.2.2 Starter Motor test results 

 The starter motor test results are shown in figure 7.10. There are three stages in 

this test. The first stage is when the solenoid is activated at 0.1 seconds. The voltage 

across it rises according to the upper graph until it drops again when the relay is activated 

at 0.2 seconds. The current is the first stage is not shown because only the starter motor 

current was measured. Then the second stage kicks in at 0.2 seconds and that is when the 

starter motor armature current appears and decreases to the steady state no load value of 

35 A at 12 Volts. And finally stage three is observed when the power supply current is 

manually cut off at 0.7 seconds, and the speed goes down linearly as the back EMF 

decreases linearly with respect to time. To extract the armature winding resistance and 

inductance, three equations with three unknowns, the armature winding constant k, the 

armature winding resistance, and armature winding inductance are to be calculated. 
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Figure 7.10. Saturn Vue starter motor test results. 

 The starter motor parameters were extracted and found to be as follows: 

k = 0.00436 Vs/ rad 

R = 22 mΩ 

L = 35.6 mH 

7.3 Cranking tests  

 A used car was purchased for the purpose of conducting a large number of 

cranking tests the results of which were to be used to extract the aging parameter values. 
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Figure 7.11 shows the Audi 1996 2.8 L engine car. When it comes to the cranking tests, 

two types were conducted cold and warm cranking tests. Cold cranking happens when the 

engine temperature is not the optimum temperature for driving, i.e. the engine has not 

warmed up yet. Warm cranking happens when the engine is off with its temperature is 

high enough to the point where it is equal to the optimum operating temperature. 1000 

battery alone tests and 1000 hybrid ESS tests were conducted. 

 

Figure 7.11. Audi 1996 used for conducting the cranking tests. 

 7.3.1 ICE battery alone cold cranking test results 

 Figure 7.12 shows the cold cranking results of a battery alone. The maximum cold 

cranking current is 745 A and the battery voltage drops to 9.84 Volts. The battery used 

was a brand new lead acid battery, which explains why the battery voltage did not drop 



106 
 

 
 

below 9 Volts. However, the normal cold cranking voltage is about 7 Volts. Cold 

cranking tests were conducted under 25 
o
C. 

 

Figure 7.12. Battery alone cold cranking results. 

7.3.2 ICE battery alone warm cranking results 

 Figure 7.13 shows the warm cranking results of the same lead acid battery alone. 

The maximum warm cranking current is 680 A and the battery voltage drops to 10.16 

Volts. It is normal for a warmed up car to draw less cranking current and for its voltage to 

sag to a higher voltage value than the cold cranking case. 
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Figure 7.13. Battery alone warm cranking test results. 

7.3.3 ICE hybrid ESS cold cranking test results 

 Figure 7.14 shows the cold cranking results of the hybrid ESS. The maximum 

cold cranking current of the battery inside the hybrid ESS is 283 A and the battery 

voltage drops to 11.84 Volts. The battery used was also a brand new lead acid battery to 

eliminate any aging factors related to shelf life or prior usage factors affecting the 

cranking test results. 
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Figure 7.14. Hybrid ESS cold cranking results. 

7.3.4 ICE hybrid ESS warm cranking test results 

 Figure 7.15 shows the warm cranking results of the same hybrid ESS used in the 

cold cranking case. The maximum cold cranking current of the battery inside the hybrid 

ESS is 212 A and the battery voltage drops to 11.92 Volts.  
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Figure 7.15. Hybrid ESS cold cranking results. 

7.4 Capacity tests 

 The cranking tests mentioned in section 7.3 were conducted so that after every 

200 tests a capacity test was conducted on the battery alone and the battery in the hybrid 

ESS to monitor the capacity of the lead acid battery so as to see if the cranking tests are 

affecting the capacity. The data were logged using Compact Rio and LabView was used 

to run the discharging and charging tests. Figure 7.16 shows the capacity test setup. A 

programmable power supply and an electronic load were used for charging and 

discharging the lead acid battery respectively. 
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Figure 7.16.  Capacity test setup. 

7.4.1 Discharging Capacity check tests 

 The discharging test aims at calculating the capacity left in the lead acid battery 

via measuring the time it takes the battery to discharge under constant current until its 

terminal voltage reaches 10 Volts. The electronic load is used and the constant 

discharging current is 7.5 A as shown in the figure 7.17 showing the constant discharging 

current in the upper graph. The current is turned off automatically as soon as the battery 

terminal voltage reaches the predetermined limit of 10 Volts. 
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Figure 7.17. Discharging capacity check test. 

7.4.2 Charging tests 

 The charging test aims at recharging the lead acid battery to the fully charged 

status. This is done under constant current of 22.5 A until its terminal voltage reaches 14 

Volts. Then the power supply switches to a constant voltage mode and the current is 
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until it reaches a value lower than 1 A, and this is when the power supply is switched off 

and the battery is declared fully charged. Figure 7.18 shows the charging current in the 

upper graph. In this particular charging case, the constant voltage mode is reached after 

almost 36 minutes from the starting point of the test. 
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Figure 7.18. Lead acid charging test. 

 It is interesting to look at table 7.1 showing the capacity values for both the lead 

battery alone and the lead acid battery inside the hybrid ESS module after each step of 

200 cranking tests. It is clear that after a 1000 cranking tests, the battery alone suffered a 

harsher capacity drop than the battery integrated with the ultracapacitor module. 
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Table 7.1. Capacity check test results for both eth battery alone and the battery in the 

hybrid ESS. 

 Capacity of Battery Alone Capacity of Hybrid Battery 

Step 0 28.215 Ah 28.36 Ah 

Step 1 25.56 Ah 26.8 Ah 

Step 2 25.11 Ah 25.8 Ah 

Step 3 24.96 Ah 25.79 Ah 

Step 4 24.855 Ah 25.7 Ah 

Step 5 22.7 Ah 25.245 Ah 

 

7.5 Test results for aging parameter 

 The values of the aging parameters in cranking tests are found for the battery in 

the hybrid ESS as well as when it is used alone to crank the engine for both cold and 

warm cranking. The battery loading factor, battery stress factor, and hybrid improvement 

factor are calculated based on the maximum cranking current. The charge capacity factor 

and energy capacity factors are calculated based on the entire period of time during which 

cranking takes place. Under cold cranking, the battery loading factor decreased from 

0.995 to 0.55 and the stress factor decreased from 0.866 to 0.197as a result of integrating 

the battery with the ultracapacitor module in the hybrid ESS. As for warm cranking, the 

battery loading factor decreased from 0.743 to 0.443 and the stress factor decreased from 

0.743 to 0.145 as a result of hybridization. The improvement factor for cold cranking is 

4.4 meaning that the battery inside the hybrid ESS is 4.4 times less stressed than the 
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battery alone. As for warm cranking, HIF is 5.5. The charge capacity factor is 14.99 and 

8.23 for cold cranking and warm cranking respectively. That means that the battery alone 

provides 14.99 times the capacity that the same battery provides in the hybrid ESS. The 

energy capacity factor is 13.92 and 7.5 for cold cranking and warm cranking respectively. 

That means that the battery alone provides 13.92 times the energy the same battery 

provides in the hybrid ESS. These results show significant improvement to the loading 

conditions for the battery in the proposed hybrid ESS versus the battery alone. In 

summary, loading and stress are reduced while the HIF, CCF, and ECF are increased. 

Table 7.2 shows the aging parameter values calculated for each cranking case. The duty 

cycle for these numbers was not taken into consideration. The calculations were based on 

the maximum cranking current. 

Table 7.2. Aging parameter values. 

 BLF BSF HIF CCF ECF 

Battery alone cold 0.995 0.866 NA NA NA 

Hybrid ESS cold 0.55 0.197 4.4 14.99 13.92 

Battery alone warm 0.978 0.743 NA NA NA 

Hybrid ESS warm 0.443 0.145 5.12 8.23 7.5 

 

 Judging from table 2.1 in chapter 2 as well as the values calculated for aging 

parameters, there is a clear correlation between hybridization and the capacity sustained 

in the battery inside the hybrid ESS versus the battery alone that experienced significant 
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drop in capacity after a thousand cranking tests. While there is no clear models that 

predict aging of lead acid batteries and given the diagnostic nature of the aging 

parameters, it can be deduced that the aging parameters can be used to predict the aging 

process or even age of lead acid batteries. Nevertheless, more data points are needed to 

know when the battery reaches extremely low capacity content. This can be done 

experimentally on a brand new battery until it reaches a value of capacity at which the 

battery cannot provide enough power to crank the engine. While conducting these tests, 

expected to be several thousands, voltage and current will be recorded and the aging 

parameters can be calculated. This enables the possibility of monitoring the aging 

parameters progress as the battery is aging, i.e. while its capacity is periodically 

measured, until it reaches its end of life. The same tests can be done on a sample of lead 

acid batteries large enough to be used to establish a lookup table for lead acid battery age 

estimation. All of the aging parameters defined in chapter 6 can be used together to 

estimate the battery age after creating the 5-dimensional lookup table that corresponds to 

the five parameter values obtained from the tests. An X-labeled battery with unknown 

history can be tested once and then the lookup table can be used to estimate its age after 

fitting its aging values  

7.6 Lead acid battery model verification 

 A Comparison between simulation of a Matlab Simulink lead-acid battery and test 

results from an actual battery as necessary to validate the model suggested by Simulink. 

Therefore a number of comparisons are presented in this section. Figure 7.19 shows the 

Simulink model created to generate the simulated lead acid battery voltage experienced 

while ranking an engine. The input to the Simulink lead acid battery symbol is the 
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cranking current profile that simulates the cranking current loading to the battery. one of 

the outputs of the lead acid battery symbol is the battery terminal voltage with which the 

actual test lead acid battery terminal voltage was to be compared. 

 
Figure 7.19. Simulink model used to generate simulated cranking battery voltage. 

 
Figure 7.20. Simulink circuit based model used in the simulation. 
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 Figure 7.20 shows the circuit based model that is used in the simulation of the 

lead acid battery. The model is a simple dependent voltage source in series with an 

internal resistance. Despite its simple design, the model works very well. Figures 7.21, 

7.22, 7.23, 7.24 show comparisons between test results and simulation results for four 

types of cars used for cranking tests. 

 
Figure 7.21. Test and simulation results on a Toyota Solara 2002. 
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Figure 7.22. Test and simulation results on a Saturn Vue 2004. 

 
Figure 7.23. Test and simulation results on a second test on a Toyota Solara 2002. 
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Figure 7.24. Test and simulation results on a Ford Focus 2011. 

 In figures 7.21, 7.22, 7.23, and 7.24, the cranking phase voltage from test and 

simulation match very closely. However, the charging phase voltage waveforms are quite 

apart. This is expected as the voltage across the battery during charging by the car 

alternator is imposed by the alternator/lead acid reacting together where the alternator 

pulls the voltage across its terminals higher than the terminal voltage of the battery in 

order to inject charging current into it. The simulation circuit in Simulink however takes 

in charging current and shows the voltage response of the lead acid battery as a result of 

this charging current assuming no external voltage source is imposed across its terminals, 

which does not match what happens in reality and hence the mismatch in the charging 

phase. 
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Chapter 8. Conclusions and future research 

 This dissertation presents a hybrid energy storage system (ESS) made from a lead 

acid battery and an ultracapacitor module connected in a parallel configuration. Before 

the connection was made, the Li-ion ultracapacitor was tested and an electric circuit 

equivalent model was developed to predict its behavior when connected in a system 

requiring energy storage. Battery modeling was reviewed and presented in chapter 4 as a 

necessary step to understand the battery behavior before the Li-ion ultracapacitor/ lead 

acid battery hybrid system was assembled. 

 The motivation behind this hybrid ESS design was to develop a system that may 

reduce the stress on the battery while cranking the internal combustion engine for the 

vehicular start-stop feature that requires automatically turning off and on the ICE 

repeatedly. The ICE cranking requirements were to be carefully studied, and this was 

achieved by conducting cranking tests on cars from different manufacturers and year 

models. Cranking data were acquired and used to calculate cranking requirements. 

 Cranking current stresses the battery rendering a short life span. This hybrid ESS 

is modeled, simulated, and tested. The test and simulation results show that the proposed 

hybrid design significantly reduces the cranking loading and stress on the battery. The 

ultracapacitor module can take the majority of the cranking current, effectively reducing 

the stress on the battery. The amount of cranking current provided by the ultracapacitor 

can be easily controlled via controlling the length, hence resistance, of the cable 

connected directly between the ultracapacitor module and the car circuitry. 
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 A study is then presented to define a number of parameters that can be used to 

measure an ESS loading, stress, improvement gained by introducing a hybrid ESS, 

capacity improvement, and finally energy improvement. This study is based on a pulsed 

power profile having a short pulse power over a period of time. The aforementioned 

parameters are diagnostic but not predictive. That is, they can diagnose a hybrid energy 

storage system on five levels, but they cannot predict the life span after hybridization. In 

order to gain the capability to predict the life span of an energy storage system in a hybrid 

system versus the energy storage system alone, further research and experimentation 

should be conducted. 

 From an experimental point of view, life span estimation can be achieved by 

resuming cranking tests the same way they were conducted until the capacity of the 

battery alone reduces to a level where it is no longer capable of cranking the engine. 

Then, a curve showing the degradation of capacity versus counts of loading and/or stress 

can be made showing how long the battery alone can live to provide cranking power and 

energy versus how long the same battery can live in a hybrid ESS providing the same 

requirements to crank the engine. 

 Having established the fact that the hybrid ESS offers significant reduction on the 

loading and stress the lead acid battery experiences during cranking, the designed hybrid 

ESS can now be road tested, and data can be collected in order to establish statistical 

results showing the gas savings that can be achieved with an implemented start-stop 

feature without inflicting damage to the lead acid battery.  
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APPENDIX. Ultracapacitor Simulink model 

Equations describing the electrical model of the 1100-F ultracapacitor at room 

temperature are written below. 
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where    is the open circuit voltage and the polynomial coefficients are 

a = -1401.21545063799 

b = 17406.8525977191 

c = -79908.2275963045 

d = 160796.712499727 

e = -118704.377960371 
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A Simulink model for the simulation of the 1100-F ultracapacitor is provided in figure 

A.1 
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Figure A.1. Simulink model used to simulate the ultracapacitor 
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