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ABSTRACT

THEORETICAL STUDY OF
MAGNETOELECTRIC EFFECTS IN

NONCENTROSYMMETRIC AND CUPRATE
SUPERCONDUCTORS

by

Manoj K. Kashyap

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Daniel F. Agterberg

A century after the discovery of superconductivity at the lab of Kamerlingh Onnes

in 1911, it is noticeable that the phenomenon is quite ubiquitous in nature. In addi-

tion to a long list of superconducting alloys and compounds, almost half the elements

in the periodic table superconduct. By the late seventies, superconductivity was

thought to be well understood. This turned out to be a myth, with the discovery of

unconventional superconductors that defied Bardeen-Cooper-Schrieffer (BCS) theory.

Cuprates have been the most prominent example among them ever since their discov-

ery in 1986 by Bednorz and Müller. Another example of non-compliance with BCS

theory lie among noncentrosymmetric superconductors. In this dissertation, mag-

netoelectric (ME) effects in these two classes of superconductors have been studied

from different perspectives, utilizing Ginzburg-Landau (GL) theory. Even though GL

theory was proposed before the BCS theory, it was not given much importance due

to its phenomenological nature until Gor’kov proved that it is a limiting form of the

microscopic BCS theory. However today, in the absence of any complete microscopic

theory to explain superconductivity in unconventional superconductors, Ginzburg-

Landau theory is an important tool to move ahead and qualitatively understand the

behavior of varied superconducting systems.
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Noncentrosymmetric superconductors have generated much theoretical interest

since 2004 despite been known for long. The absence of inversion symmetry in non-

centrosymmetric superconductors allows for extra terms called Lifshitz invariants in

the Ginzburg-Landau functional. This leads to magnetoelectric effects that do not

exist in centrosymmetric superconductors. One manifestation of this is in the vortex

structure in materials with a cubic point group O. In particular, a current is pre-

dicted to flow parallel to the applied magnetic field in such a vortex in addition to the

usual vortex supercurrents. In this work, we present both analytical and numerical

solutions of the Ginzburg-Landau equations that reveal the spatial structure of this

current as well as the associated component of the magnetic field for both a single

vortex and in the vortex lattice phase near the upper critical field.

The discovery of superconductivity in lanthanum barium copper oxide (LBCO)

in 1986, was followed by yttrium barium copper oxide (YBCO) in 1987, commenc-

ing the era of high temperature superconductivity. The astonishingly rich phase

diagram of cuprates includes the pseudogap phase which was earlier thought to be

a precursor to superconductivity. Now signatures of broken symmetries have been

seen, indicating a true phase transition. Pair density wave (PDW) order has earlier

been proposed to account for superconducting correlations and charge density wave

(CDW) order in pseudogap phase. There is evidence that the pseudogap phase in the

cuprates also breaks time-reversal symmetry. Here we show that pair density wave

(PDW) states give rise to a translational invariant nonsuperconducting order param-

eter that breaks time-reversal and parity symmetries, but preserves their product.

This secondary order parameter has a different origin, but shares the same symme-

try properties as a magnetoelectric loop current order that has been proposed earlier

in the context of the cuprates to explain the appearance of intracell magnetic or-

der. We further show that, due to fluctuations, this secondary loop current order,

which breaks only discrete symmetries, can preempt PDW order, which breaks both
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continuous and discrete symmetries. In such a phase, the emergent loop current or-

der coexists with spatial short-range superconducting order and possibly short-range

charge density wave (CDW) order. Finally, we propose a PDW phase that accounts

for intracell magnetic order and the polar Kerr effect, has CDW order consistent with

x-ray scattering and nuclear magnetic resonance observations, and quasiparticle (QP)

properties consistent with angle-resolved photoemission spectroscopy. Our work, con-

sistently accommodates all observations of broken symmetries in pseudogap phase in

a single theory.
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Chapter 1

Introduction

At the turn of the 20th century, one of the major question in physics was that what

would happen to electrical resistance at temperatures close to absolute zero given

that resistivity of a metal was known to decrease linearly with temperature [1, 2, 3].

Matthiessen's rule predicted the existence of residual resistivity at low temperatures

depending upon the amount of impurities in the metal. According to Lord Kelvin,

the electrons would re-condense onto their parent atoms causing decrease in electron

mobility. Thereby the resistivity would bottom out and then increase again with

further decrease in temperature, reaching infinity at absolute zero with electrons

frozen in place. A third proposal was that the resistance would continue to decrease in

an orderly fashion, ultimately reaching zero at absolute zero. These three predictions

are shown in Fig. 1.1. The latter idea got more credence with the advent of Einstein's

theory of quantum oscillators in 1906.

Around the same time, Dutch physicist Heike Kamerlingh Onnes (1853-1926) at

Leiden University in the Netherlands was striving to liquefy the helium gas. On the

fateful day of 10 July 1908, he succeeded in his persistent attempts and thus widened

the horizons of low temperature physics to a few degrees Kelvin. This was followed

by the serendipitous discovery of the phenomena of superconductivity [4] in 1911 by
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Figure 1.1: Predicted behavior of metals before the discovery of superconductivity. Figure
reproduced from Ref. [1].

Onnes and his coworkers. They observed that the resistance of mercury abruptly be-

came practically zero at about 4.2 K as the temperature was lowered and it appeared

again at the same temperature when the temperature was increased (see Fig. 1.2).

The observed change was too sudden to be explained by Einstein model. The phe-

nomenon was also found to exist in other metals like lead and tin. Later, Onnes

established what he called a ‘persistent supercurrent’ in lead coil with imperceptible

decay. He observed that magnetic field can quench superconductivity which also im-

plied that the phenomenon was limited by certain critical current. Refs. [1, 2, 3] give

wonderful accounts of the events that led to the discovery of superconductivity and

what followed.

Ever since the discovery, the phenomena of superconductivity has fascinated the

physicists. Apart from the zero d.c. electrical resistance or perfect conductivity be-
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Figure 1.2: Resistance (ohms) versus temperature (kelvin) for mercury showing the
superconducting transition at 4.20 K. Figure reproduced from Ref. [2].
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low a critical temperature Tc (characteristic of the material), the other hallmark of

superconductivity is perfect diamagnetism. It was discovered in 1933 (22 years after

the original phenomenon) by Meissner and Ochsenfeld [5] and thus given the name

Meissner effect. They observed that not only a magnetic field is excluded from en-

tering a superconductor (Fig. 1.3(c)), which can be explained by perfect conductivity

(Fig. 1.3(a)), but also that a field in an originally normal sample is expelled as it is

cooled to T < Tc (Fig. 1.3(d)).

B = 0

B = Ba

B = 0

B = Ba

B → Ba B = Ba B = BaB → Ba

(b) (c) (d)(a)

Perfect Conductor Superconductor

Cool below Tc

T > TcT > Tc

B → 0B → 0

B → 0

B → 0

Figure 1.3: (a) Below Tc, field is excluded from entering a perfect conductor. (b) Flux
is trapped inside a perfect conductor when it is cooled, to T < Tc, in a magnetic field.
(c) Below Tc, field is excluded from entering a superconductor. (d) Field in an originally
normal sample is expelled out of a superconductor, when it is cooled to T < Tc.
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The existence of the reversible Meissner effect implies that superconductivity is

destroyed by a thermodynamic critical magnetic field Hc, which is related to the

so-called ‘condensation energy ’ of the superconducting state

H2
c (T )

8π
= fn(T )− fs(T ), (1.1)

where fn and fs are the Helmholtz free energies per unit volume in the normal and

superconducting states respectively. Empirically, Hc(T ) is quite well approximated

by a parabolic law

Hc(T ) = Hc(0)[1− (T/Tc)
2], (1.2)

as illustrated in Fig. 1.4. In the absence of magnetic field, superconducting transition

at Tc is of second order. In a magnetic field, first order superconducting transition

H

T

Hc(0)

Tc

Normal

Superconducting

Hc(T )

0
×

2
nd

or
de
r

1 st
order

Figure 1.4: Temperature dependence of the critical field. Superconducting transition is
second order at Tc in zero field whereas it is of the first order in the presence of a field.
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occurs (in type I superconductors∗) because of discontinuous change in the thermo-

dynamic state of the system across transition and an associated latent heat.

On the theoretical front, the first notable progress was made by London brothers.

In 1935, Fritz London and Heinz London proposed a phenomenological theory [6]

based on two-fluid picture to explain the electrodynamic properties of superconduc-

tors. Such a picture assumed that below Tc, electrons form two kinds of fluids: a

fluid of normal electrons with concentration nn and superfluid of concentration ns,

where nn + ns = n. This theory led to a characteristic length scale called London

penetration depth λ, with a limiting value at T = 0 given by

λL(0) =

√

mc2

4πne2
, (1.3)

where ns ≈ n, the total number of conduction electrons. London penetration depth

was found to be always smaller that the actual superconducting penetration depths.

This was later explained by Alfred Brian Pippard [7] on the basis of nonlocal gener-

alization of London theory in analogy with nonlocal generalization of Ohm's law and

thereby introducing the idea of coherence length ξ.

The more serious limitations of London theory are: 1) It treats superfluid density

ns as given without giving any insight about its dependence on, for e.g., temperature

or magnetic field. 2) Superfluid density ns is assumed to be uniform in space. These

limitations were taken care of in another phenomenological theory put forward in

1950 by Vitaly Lazarevich Ginzburg and Lev Landau. It is discussed in Chapter 2.

Ginzburg-Landau theory was followed by the first microscopic theory of supercon-

ductivity by John Bardeen, Leon Cooper and John Robert Schrieffer in 1957 - the

BCS theory [8, 9]. BCS theory relies on the Cooper theorem [10] which states that

the ground state of a degenerate Fermi sea of electrons is unstable against formation

of bound states, namely, electron pairs or Cooper pairs in the presence of an arbitrar-

∗See Chapter 2 for a description of type I and type II superconductors.
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ily small net attractive potential between the electrons. Note that BCS formalism

is independent of the origin of pairing interaction. In BCS theory, the electrons at

the Fermi surface form Cooper pairs of the form (k ↑, − k ↓). From the symmetry

point of view, if the spin part of the pair wavefunction is spin singlet S = 0 (the

case considered by BCS) which is antisymmetric under parity then Pauli exclusion

principle requires that the orbital part must be symmetric with l = 0, 2, 4 . . .. Based

on this l value, the superconductors are called s-wave (l = 0), d-wave (l = 2), g-wave

(l = 4) and so on. BCS choice of the interaction potential, Vkk′ = −V , up to k values

limited by the cutoff ±h̄ωc about the Fermi energy and zero elsewhere, implies that

the potential is independent of the direction of k − k′, effectively leads to choosing

l = 0 for orbital part of the wavefunction. This choice is traditionally, in analogy with

atomic physics, called s-wave paring. Pair occupation fraction for the BCS ground

state at T = 0 closely resembles the normal-metal Fermi function at T = 0 [11].

As mentioned in Ref. [11], “In particular, no gap opens up in k space. Rather, the

disorder associated with the partial occupation of these states with random phases”

— in the normal metal at T = Tc — “is being replaced” — at T = 0 — “by a

single quantum state of the system, in which more or less the same set of many body

states with various one-electron occupancies are now superposed with a fixed phase

relation.” Moreover, pairing does lead to an isotropic gap in the energy spectrum.

The energy of a Cooper pair (k ↑, −k ↓) is less than the energy of two independent

electrons with momenta k and −k by an amount 2∆(T ) where ∆(T ) is the minimum

quasiparticle (QP) excitation energy per particle. The quasiparticle energy is given

by

Ek =
√

ξ2k +∆2, (1.4)

where ξk = ǫk − µ is the kinetic energy w.r.t. Fermi level. At T = 0, the minimum

excitation energy in the weak coupling limit (N(0)V ≪ 1, where N(0) is the density
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of states at Fermi level) is

∆(0) = 1.764 kBTc (1.5)

and at some finite temperature T , ∆(T ) can be computed numerically from the self

consistent gap equation

1

N(0)V
=

h̄ωc
∫

−h̄ωc

tanh
[

1
2
β
√

ξ2 +∆2
]

2
√

ξ2 +∆2
dξ. (1.6)

The critical temperature Tc is the temperature at which ∆(T ) → 0. Using this, the

integral in Eq. (1.6) can be evaluated leading to

kBTc = 1.13 h̄ωc exp

(

− 1

N(0)V

)

. (1.7)

The condensation energy of the BCS ground state in the weak coupling limit at T = 0

is the difference between the internal energies of the superconducting state and the

normal state at T = 0

Us(0)− Un(0) = −1

2
N(0)∆(0)2 (1.8)

which is equal to the condensation energy in Eq. (1.1).

In classic superconductors, the pairing interaction is the electron-electron inter-

action mediated by lattice vibrations/phonons. An electron moving through a con-

ductor will attract nearby positive charges in the lattice. This deformation of the

lattice causes another electron, with opposite spin, to move into the region of higher

positive charge density. This indirect attraction overcomes the Coulomb repulsion

between them and the two electrons become correlated. Because there are a lot of

such electron pairs in a superconductor, these pairs overlap very strongly and form a

highly collective condensate. In view of this, a natural choice for cutoff frequency ωc

is Debye frequency ωD. Experimental validity of Eq. (1.5), with ωD as cutoff, and the
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isotope effect on measured thermodynamic critical field in consonance with Eq. (1.8)

validate this picture of pairing mechanism.

Within two decades after the advent of BCS theory, superconductivity seemed to

be a closed subject. It was well understood based on the BCS theory and exten-

sions thereof that dealt with strong interactions. The highest Tc then observed was

23.2 K in Nb3Ge. Then in 1979, superconductivity was observed in heavy-fermion

metal CeCu2Si2 below 0.5 K. In heavy fermion metals the conduction electrons are

f-shell electrons with very strong Coulomb repulsions between them leading to high

effective mass m∗ ≫ me at the Fermi energy. In the same year organic superconduc-

tor (TMTSF)2PF2 was discovered with Tc = 1.1K. In 1986, J. G. Bednorz and K.

A. Müller observed superconductivity in a ceramic material La2−xBaxCuO4 (layered

perovskite cuprate La2CuO4 with some Ba substituted for La) with Tc of the order

of 35 K. Fullerite K3C60 was found to be superconducting below 18 K in the year

1991. The latest class of superconductors includes iron based superconductors which

are again layered compounds. The first among them, LaFePO was discovered to be

superconducting (Tc ≈ 4K) in 2006. These discoveries and many others led to explo-

rations of many new classes of superconductors. Today we know of several families

of superconductors, namely elemental metals, alloys, classical compounds, organic

superconductors, heavy-fermion superconductors, cuprates, noncentrosymmetric su-

perconductors, iron pnictides, metal borides metal carbides, perovskites, fullerites,

chacogenides, high Tc superconductors and the list goes on. These classifications are

based on chemical compositions, structures, range of transitions temperatures and

other common properties. These classes are not mutually exclusive.

A much broader classification labels the superconductors as ‘conventional super-

conductors ’ and ‘unconventional superconductors ’. Conventional superconductors are

largely s-wave superconductors which are more or less BCS type superconductors and

the rest which do not fall in the conventional category are said to be unconventional



10

superconductors. In a normal state isotropic system (which is invariant under all spa-

tial rotations i.e. elements of SO3 group), the irreducible representations are labeled

by values of orbital angular momentum, and the set of 2l+1 spherical harmonics form

the basis functions of the irreducible representations [12]. For s-wave superconduc-

tivity (l = 0), only U(1) gauge symmetry is broken and the superconducting phase is

still isotropic. The other spherical harmonic channels are unconventional. In crystals,

however, the normal state is not isotropic. The crystal symmetry G consists of crystal

point group G, gauge symmetry U(1), and time reversal T , i.e., G = G× U(1)× T .

In this case, again s-wave superconductors break only U(1) gauge symmetry and su-

perconducting phase belong to the identity representation of the crystal point group

G. In general, other forms of superconductivity like p-wave or d-wave can occur in

crystals only when some other point group symmetry is broken in which case super-

conducting phase does not belong to identity representation of the point group of

normal state crystal. Thus, superconductors that belong to the identity representa-

tion of the normal state are said to be conventional superconductors and those which

do not follow this norm are called unconventional superconductors. See Ref. [12].

The work included in this dissertation involves the study of magnetoelectric (ME)

effects in noncentrosymmetric superconductors and cuprates, so the next two sections

provide a background about these two classes of superconductor and then the last

section of this chapter provides a quick overview of the angle-resolved photoemission

spectroscopy, which is an important tool to study the electronic structure of cuprates.

However before that let us look at the pairing symmetry of the Cooper pairs in a

little more detail. Within the BCS formalism (here it means zero center of mass

momentum), from the spin perspective, two kinds of pairing is allowed – spin singlet

and spin triplet. For the singlet pairing the total wavefunction is given by

Ψ (k,−k, s, s′) =
ψ(k,−k)√

2
(| ↑↓〉 − | ↓↑〉), where ψ(−k,k) = ψ(k,−k). (1.9)
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For spin triplet pairing, the total wavefunction is given by

Ψ (k,−k, s, s′) =



































[−dx (k,−k) + idy (k,−k)] | ↑↑〉

1√
2
dz (k,−k) (| ↑↓〉+ | ↓↑〉)

[dx(k,−k) + idy(k,−k)] | ↑↑〉 ,

(1.10)

where d(−k,k) = −d(k,−k).

Since ψ is an even function and d an odd function, in a superconducting crystal

with inversion symmetry only one of the two channels (singlet or triplet) can exist,

depending upon whether the crystal is even under inversion (singlet pairing) or odd

under inversion (triplet pairing). However, if inversion symmetry is absent in the

crystal structure, mixing between even and odd parity is allowed.

The singlet channel involves pairing between two electrons |k, ↑〉 and | − k, ↓〉.

In 1959, Anderson showed that this pairing is possible only if the two states are

degenerate [13]. Since these states are related by time reversal symmetry (T )

T |k, ↑〉 = | − k, ↓〉, (1.11)

the symmetry of the system necessary to form Cooper pairs in this channel is time

reversal symmetry. By the same type of analysis, Anderson, in 1984, showed that

in addition to time reversal T , inversion symmetry I is necessary, so that the four

states, |k, ↑〉, | − k, ↑〉, |k, ↓〉, | − k, ↓〉, involved in triplet pairing are degenerate [14].

1.1 Noncentrosymmetric Superconductors

Noncentrosymmetric superconductors (NCS) have generated much theoretical interest

[15]. At microscopic level, the primary impetus for this interest is the existence of

a single particle antisymmetric spin-orbit coupling, for e.g., Rashba coupling and
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Dresselhaus coupling, that exists when inversion symmetry is broken [15, 16, 17, 18].

Such an antisymmetric coupling can be represented as

HASOC = α
∑

k,s,s′

λk · σs,s′c
†
ksck,s′. (1.12)

Symmetry under time reversal requires, λk = −λ−k, whereas symmetry under inver-

sion requires, λk = λ−k. Hence, if a system possesses both of them (T and I), then

this form of spin-orbit coupling is not allowed. However, if any of them is missing,

then λ 6= 0. NCS lack inversion symmetry and therefore λ−k = −λk, which is an

antisymmetric function and hence the name antisymmetric spin-orbit coupling.

This spin-orbit coupling is often a large energy scale with respect to the supercon-

ducting gap and leads to a variety of important consequences in the superconducting

state. It has been predicted that this spin-orbit coupling leads to the mixing of spin-

singlet and spin-triplet pairing states and that this mixing leads to: two-gap physics

[15, 16, 19]; possible nodes in an s-wave superconductor [20, 21]; and topological su-

perconductivity [22]. Furthermore, strong spin-orbit coupling implies that the spin

susceptibility has the same temperature dependence for superconducting states that

are predominantly spin-singlet and predominantly spin-triplet, indicating that spin

susceptibility can no longer distinguish between these two possibilities [23, 24, 25, 26].

The behavior of NCS in magnetic fields also differs from that expected for centrosym-

metric materials. In many cases, the upper critical field is larger than the Pauli limit

[27, 28] as seen in Fig. 1.5 [29]. Fulde Ferrell Larkin Ovchinnikov (FFLO) like phases

can appear [30, 31, 32, 33], and magnetoelectric (ME) effects associated with broken

inversion symmetry are predicted [24, 28, 34, 35, 36, 37, 38, 39].

Despite being known since 1979 (CeCu2Si2), noncentrosymmetric superconductors

have got prominent attention from researchers only since 2004 with the discovery of

CePt3Si followed by CeRhSi3 and CeIrSi3. These three and some others like CeCoGe3,
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Figure 1.5: Upper critical field Bc2(0) versus transition temperature Tc for heavy fermion
and related superconductors. In particular, red symbols indicate NCS superconductors.
The dotted line corresponds to the Pauli limit BBCS

P . It can be seen that for the NCS
superconductors shown here, Bc2(0) > BBCS

P . Figure reproduced from Ref. [29].
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UIr belong to the heavy fermion family. Many other superconductors, outside the

heavy fermion family are also noncentrosymmetric superconductors. These include

sesquicarbides R2C3−y(R = rare earth), complex metallic alloy β ′−Mg2Al3, BaPtS3 ,

Li2(Pd, Pt)3B, Mo3Al2C, pyrochlores (A2B2O7, AB2O6), T2Ga9(T = Rh, Ir), LaNiC2

etc. One major difference between heavy fermion NCS and others is the presence

of f or d electronic configurations, which involve strong electronic correlations, in

heavy fermion NCS. Such configurations are absent in those NCS which are outside

the heavy fermion family. This makes it all the more important to study all classes

of NCS so as to disentangle the effects of antisymmetric spin-orbit coupling owing to

absence of inversion center, from those due to electronic correlations.

In Chapter 3, we present our phenomenological study of cubic NCS. At the phe-

nomenological level, absence of inversion symmetry allows terms called ‘Lifshitz in-

variants’ that are linear in order parameter gradients, to enter the Ginzburg-Landau

functional. Both Ginzburg-Landau theory and Lifshitz invariants are discussed in

Chapter 2. Three of the materials among the cubic NCS category are Li2(Pd, Pt)3B,

Mo3Al2C. All the three have filled β−Mn type structure, shown in Fig. 1.6, which

lacks inversion symmetry along all principal axes. Li2(Pd, Pt)3B belong to space

group P4332 whereas Mo3Al2C belongs to space group P4132.

Li2Pt3B and Li2Pd3B show superconductivity at 2.7 and 7 K respectively [40,

41, 42, 43]. Mo3Al2C shows superconductivity at 9.2 K [44, 45, 46]. Li2Pt3B, has

been proposed to be a s-wave superconductor with nodes due to the mixing of spin-

singlet and spin-triplet superconductivity [21]. Li2Pd3B shows a Hebel-Slichter peak

at T ≈ Tc in nuclear magnetic resonance (NMR) spectrum (see Fig. 1.7) and is

also proposed to be a s-wave superconductor [47, 48]. Mo3Al2C [45, 46], shows hall

marks of strong spin-orbit coupling relative to the superconducting gap. This is

evidenced by the high critical fields [45, 46] and the temperature dependence of the

spin susceptibility in the superconducting phase [49]. Specifically, it has been observed
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Figure 1.6: Filled β−Mn type structure of Mo3Al2C. Each cubic cell consists of four
distorted octahedra of CMo6. Li2(Pd, Pt)3B share the same structure with C replaced by
B, Al replaced by Li and Mo replaced by Pd(Pt). Figure reproduced from Ref. [46].

Figure 1.7: Solid dots correspond to NMR data representing spin lattice relaxation rate
1/T1 versus temperature T in a magnetic field H = 1.4629 T for Li2Pd3B.Above Tc the
data is compatible with the relation T1T = constant. At Tc the increase in relaxation rate
(Hebel-Slichter) is clearly visible. Figure reproduced from Ref. [47].
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that as the temperature approaches zero, the superconducting spin susceptibility is

approximately 2/3 the normal state spin-susceptibility [49]. This is what is predicted

for a NCS cubic s-wave superconductor with strong spin-orbit coupling [26].

1.2 Cuprates

According to the BCS mechanism, weak attraction between electrons via electron-

phonon coupling bind electrons into Cooper pairs, despite strong direct Coulomb

repulsion, at energies smaller than the typical phonon energy. This, combined with

the remarkable success of the BCS theory in understanding conventional supercon-

ductors, led to conclude that 30 K would be the upper limit of superconducting Tc.

This limit for conventional superconductors has been revised in the previous decade

by the discovery in 2001 of superconductivity in the simple metal MgB2 at Tc = 39 K

[50]. In this case, the increased Tc is due to strong coupling and two gap physics [51]

that can still be described within the BCS realm. However, it was the discovery of

the first copper oxide superconductor (barium doped lanthanum copper oxide LBCO)

by Bednorz and Müller in 1986 that commenced the era of high temperature super-

conductivity. Apart from high Tc, superconductivity in cuprates was a surprise for

two reasons: 1) Cuprates being ceramics are such poor conductors that they cannot

be classified as metals at room temperature and 2) With the slight change in their

chemical composition, they become highly insulating antiferromagnets. Magnetism

arises from strong repulsive interactions between electrons whereas superconductivity

arises from induced attractive interactions between electrons. Hence the two phenom-

ena seem to be incompatible [52]. The 1986 discovery was followed by another big

jump in Tc ∼ 90 K with the discovery of YBa2Cu3O7−δ (YBCO) [53, 54, 55]. Apart

from YBCO, other systems in copper oxides that are known to have high transition

temperatures are BSCCO (mixed oxides of bismuth, strontium, calcium and copper),
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TBCCO (mixed oxides of thallium, barium, calcium and copper), HBCCO (mixed

oxides of mercury, barium, calcium and copper). In YBCO, Y (yttrium) can be re-

placed by many other rare earth elements, for e.g., La, Nd, Sm, Eu, Gd, Ho, Er and

Lu, with similarly high Tc. The highest Tc reported as of now is 134 ∼ 135 K under

ambient pressure [56] and 164 ∼ 165 K under high pressure [57] in ‘mercury’ copper

oxides. Fig. 1.8 shows superconducting transition versus year of discovery for various

classes of superconductors. For long, the term ‘high temperature superconductors’

has been used interchangeably with ‘cuprates’. This monopoly of cuprates is being

challenged by the discovery of MgB2, fullerides like Cs3C60 and specifically iron based

superconductors where the Tc values approach 60 K which is well above the classical

limit of 30 K. There is a theoretical prediction, yet to be verified, by Neil W. Ashcroft

about solid metallic hydrogen to exhibit superconductivity at room temperature un-

der extremely high pressure [58]. From the theoretical perspective, superconductors

Figure 1.8: Superconducting Tc versus year of discovery for various families of super-
conductors. Crystal structures of representative materials are shown on the right. Lines
of progression, for conventional superconductors (yellow), heavy fermion superconductors
(green), cuprates (red), and recently discovered ‘iron superconductors’ (purple), end with
an indication of highest known Tc in respective families. Figure reproduced from Ref. [52].
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with small Fermi energies, such that their Tc is larger fraction of their Fermi tem-

perature compared to that in case of conventional superconductors are considered as

high temperature superconductors, despite the fact that the absolute value of their Tc

is smaller than that for conventional superconductors. Such superconductors include

some organic and heavy fermion superconductors. Very recently, there is a report of

conventional superconductivity at up to 190 K under high pressures in hydrogen sul-

phide (H2S) [59]. Despite all this cuprates preserve their technological importance for

their known high Tc values (much larger than others for which Tc crosses BCS limit)

at ambient pressure and also that they are known to have very high upper critical

fields. At the same time, the astonishing complexity of the cuprate phase diagram

continue to attract a huge amount of research interest.

1.2.1 Structure of Cuprates

The structure of cuprates is related to perovskite structure shown in Fig. 1.9.

Figure 1.9: Perovskite structure†. A larger metal atom ‘A’ occupies the center of a cube.
The smaller metal atom ‘B’ is present at the corners of the cube, and oxygen atoms are
present at the edges of the cube forming a octahedral cage around the smaller metal atom.

†Source: http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.
ImageService.svc/ImageService/Articleimage/2006/CP/b512271f/b512271f-f1.gif

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2006/CP/b512271f/b512271f-f1.gif
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2006/CP/b512271f/b512271f-f1.gif


1.2. CUPRATES 19

Cuprates have essentially a layered structure [60], in which each unit cell consists

of four different types of layers. Fig. 1.10 shows the structure of YBCO.

a) Kinds and Composition of Layers in Cuprates

Conducting layers (DO2) ‘D’. The superconductivity in cuprates occur in these

layers. A conduction layer is formed of CuO2 planes in which Cu atoms form a square

mesh and O atoms are present at the center of edges of squares. A DO2 layer can

have as its closest neighbor either two BO layers (described below) so that each Cu

atom is surrounded by six oxygen atoms or one BO and one C layer (described below)

so that each Cu atom is surrounded by 5 oxygen atoms forming a square pyramid or

two C layers such that each Cu atom is surrounded by four oxygen atom belonging

to DO2 layer itself. Copper may also be partly replaced by 3d-transition metals.

Separating layers (C) ‘C’. Separating layers are aptly name as they are inserted

between two DO2 layers and hence split the octahedron (in perovskites) into two

square pyramids. A separating layer is either surrounded by two DO2 layers or con-

secutive C layers (all sandwiched together between two DO2 layers) are intercalated

by O2 layers just like the oxygen atom in the DO2 layers. Separating layers are formed

of a square mesh of metal atoms, usually Y or Ca atoms and sometimes La and other

rare-earth metal atoms. These layers are not present in perovskite structure.

Bridging layers (BO) ‘B’. Bridging layers are located next to DO2 layers and

contain the apical oxygen atom of the octahedron or square pyramid of a DO2 layer.

These are present in perovskite structure. They consist of square mesh of metal atoms

with oxygen atoms centering the squares. The metal atoms are usually Sr, Ba or La.

Additional layers (AO) ‘A’. These are metal-oxide layers. Typical metal are Th,

Bi, Pb, C, Hg and even Cu sometimes (as in YBCO). These are never in direct

contact with DO2 layers instead separated from DO2 layers by a bridging layer. The
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Figure 1.10: Crystal structure of YBCO (YBa2Cu3O7−x). When x = 1 the oxygen sites
in the additional layer are vacant and the structure is tetragonal. The tetragonal structure of
YBCO does not superconduct. Superconductivity occurs when 0 ≤ x ≤ 0.65. In this range
CuO chains in the additional layers are formed in one direction, distorting the structure to
orthorhombic. At x ∼ 0.07 almost all the oxygen sites in CuO chains (in one direction) are
filled, with only a few vacancies. This is when YBCO shows superconductivity at highest Tc

of 95 K or at highest magnetic fields: 120 T for B perpendicular and 250 T for B parallel
to CuO2 planes. Figure reproduced from Ref. [61].



1.2. CUPRATES 21

composition of additional layers can vary from A to AO2. Metal cations ‘A’ are

arranged in a regular square mesh and oxygen atoms may occupy different positions:

A – contains no oxygen atoms; AO – oxygen atoms at the center of the squares; AO′

– oxygen atoms at the center of the square edges in one direction; AO2 – oxygen

atoms at the center of the square edges in both directions; AO′′ – partial occupancy

at square edges. Additional layers can be stacked on each other to forms slabs that

are surrounded by a bridging layer on each side.

The layers defined above are generally stacked on top of each other such that the

cation sites in neighboring layers are shifted by 1
2
, 1
2
(barring a few exceptions in the

YBCO family). This implies that the translation period in stacking direction must

contain an even number of layers (excluding the O2 layers between consecutive C

layers) in a stacking unit. If the number of layers in a stacking unit is odd then the

translational period in stacking direction must be doubled.

b) Basic structure

The general formula for a basic structure is

AkBlCmDnOk′+l+2m+2, (1.13)

where k′ may or may not be equal to k (depending upon oxygen content in additional

layers); n ≥ 1; m + l ≥ n; m = p(n − 1) [p is number of consecutive C layers];

l = 1 or 2 (k 6= 0 then l = 2). When N = k + l + m + n is even, the conventional

cell of the undistorted structure contains one stacking unit, whereas if N is odd

conventional cell contains two stacking units.

If there are no BO layers and consequently no AO layers, the structure (CpDO2p) is

called ‘limiting structure’. In addition to this, if p = 1, then the structure corresponds

to the so-called ‘infinite layer compounds ’, for e.g., (Sr, La)CuO2.
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Basic structures are commonly denoted by a four digit code. For e.g LaCuO2.95

(A0B1C0D1)is denoted as 0101 and Tl1.64Ba2Ca3Cu4O12 (A2B2C3D4O12) is denoted

as 2234. This code generally reflects the cation ratios in the compound, ignoring

partial vacancies. Different chemical families are distinguished by preceding the four

digit code by the chemical symbol of the cations in the additional layers for e.g.

YBCO (Ba2YCu3O7), often abbreviated as 123 or Y-123, is more properly denoted

as 1212 or Cu-1212 (CuBa2YCu2O7).

1.2.2 Phase Diagram and Broken Symmetries

Copper oxides are highly correlated electron systems. Ref. [52] provides an updated

review on cuprate superconductors. Doped cuprates, in particular the hole doped

cuprates, have an astonishingly rich phase diagram as evident from Fig. 1.11. The

undoped parent compounds are Mott insulators at room temperature. At lower tem-

perature an antiferromagnetic (AF) phase appears at the Neél temperature TN that

decreases with increase in doping concentration. A superconducting phase appears at

a doping concentration pmin. Superconducting order in cuprates is known to be d-wave

order. The transition temperature Tc increases with doping until a critical value called

‘optimal ’ doping popt is reached after which it starts decreasing. Beyond another char-

acteristic doping concentration pmax, superconductivity vanishes and a Fermi liquid

phase, which is consistent with one-electron band theory, appears at low tempera-

tures. For p < popt, the system is said to be ‘underdoped ’ and a system with p > popt

is referred to as ‘overdoped ’. In overdoped regime, a normal (non-superconducting)

phase called ‘strange metal ’ phase appears at higher temperatures. This phase is

termed as strange metal because it does not conform to Fermi liquid theory obeyed

by normal metals. In normal metals the resistivity goes as T 2 at low temperatures

whereas in strange metal phase the resistivity is linear in T at low temperatures. On

the other hand, resistivity in normal metals saturates at high temperatures whereas
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Figure 1.11: Phase diagram of hole doped cuprates. On the left, at low doping fully de-
veloped antiferromagnetic (AF) phase (blue region) sets in at Neél temperature TN. Fully
developed superconducting phase (green region), characterized by d-wave superconducting
order, sets in at transition temperature Tc. At T = 0, superconducting region is bounded by
two critical doping concentrations, namely pmin and pmax. Above pmax, Fermi liquid behav-
ior emerges at low temperatures. At TCDW, fully developed charge order (red striped region)
sets in. TSDW represents fully developed incommensurate spin density wave order. Pseudo-
gap temperature T ∗ marks the crossover from strange metal phase (wedge shaped purple
region) to pseudogap phase (yellow region) in the underdoped regime (see text). TS, onset

(dotted green line), TC, onset and TSC, onset (dotted red line for both, in the pseudogap region)
mark the temperatures at which precursor/incipient order or fluctuations, corresponding to
spin, charge and superconductivity respectively, become apparent. Strange metal wedge is
believed to be originating from quantum critical point (QCP) hidden in the superconducting
region near optimal doping (see text) at T = 0. The arrows indicate the quantum critical
points for superconductivity and charge order. Figure reproduced from Ref. [52]
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in strange metal phase it can remain linear in T up to very high temperatures. Also,

the Hall resistivity has a deviant temperature dependence in strange metals. These

anomalies are attributed to the absence of quasiparticles in the strange metal phase

[62, 63]. Some aspects of the strange behavior exhibited by strange metals could be

explained within the so-called “marginal-Fermi-liquid phenomenology” [64], though

with limited success [65]. Another idea being explored towards this goal is the exis-

tence of a quantum critical point (QCP) at T = 0, hidden inside the superconducting

dome near optimal doping. This picture envisages that a quantum critical wedge

opens up from QCP with increase in temperature [52], leading to the strange metal

phase, above the superconducting dome, flanked by the so-called ‘pseudogap’ phase

in the underdoped regime and Fermi liquid phase in the overdoped regime.

The strange metal behavior seems to be a general property of the strongly corre-

lated electron systems and thus unlikely to be directly responsible for high-Tc super-

conductivity [52]. As opposed to this, the pseudogap phase is more unique to copper

oxides. Therefore, even though strange metal problem in itself is quite important to-

wards understanding the physics of quantum materials, it is understanding the origin

of the pseudogap phase that is believed to be the central problem towards unraveling

the mystery of high-Tc copper-oxide superconductors. The pseudogap phase appears

at the pseudogap temperature T ∗ in the underdoped regime, as seen in the Fig. 1.11.

This phase was originally thought to be a precursor phase to superconductivity with

spin-singlet pairs, no phase coherence, and no broken symmetries [66, 67]. However,

more recent measurements suggest the presence of broken symmetries. Specifically,

polarized elastic neutron scattering observe intraunit cell magnetic order [68] at a

temperature close to the onset of a polar Kerr effect [69, 70]. This suggests broken

time-reversal symmetry [71, 72]. Also, static quasi-long-range charge density wave

(CDW) order has been observed through x-ray scattering [73, 74, 75] and through

nuclear magnetic resonance [76]. This order appears at the incommensurate wavevec-
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tors 2Qx = (2Q, 0) and 2Qy = (0, 2Q) [74]. In addition, there exists evidence for

superconducting (SC) correlations in the pseudogap phase. Diamagnetism is ob-

served much above Tc [77] and also at fields that far exceed the estimated mean-field

SC upper critical field [78]. The work presented in Chapter 4 of this dissertation

provides a single framework to account for all observations of broken symmetries in

the pseudogap phase of cuprates.

1.3 ARPES

Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique to study

electronic structure of solids. It is based on the photoelectric effect observed by Hertz

(1887) and later explained by Einstein (1905) as a manifestation of dual nature of

light (a light wave of frequency ν is composed of light quanta called photons, with each

photon carrying the energy hν). Fig. 1.12 shows geometry of an ARPES experiment.

.

Figure 1.12: ARPES geometry‡.

‡Source: http://www.uj.ac.za/EN/Faculties/science/departments/physics/research/
CondensedMatter/ElectronicStructurestudiesUJPhysics/PublishingImages/ARPES.jpg

http://www.uj.ac.za/EN/Faculties/science/departments/physics/research/CondensedMatter/ElectronicStructurestudiesUJPhysics/PublishingImages/ARPES.jpg
http://www.uj.ac.za/EN/Faculties/science/departments/physics/research/CondensedMatter/ElectronicStructurestudiesUJPhysics/PublishingImages/ARPES.jpg
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When a beam of monochromatic light with sufficient photon energy hν is incident

on a sample, electrons are emitted in all directions. Note that monochromatic light is

not a precondition for photoemission process itself but perhaps required for analytic

feasibility. The emitted photoelectrons are collected with an electron energy analyzer

to measure their kinetic Ekin energy for a given emission angle. Kinetic energy is

related to photoelectron momentum p by: p = h̄K =
√
2mEkin , where K is the

magnitude of the photoelectron wavevector.

By the law of conservation of energy (in the noninteracting electron limit)

Ekin = hν − Φ− |EB|, (1.14)

where Φ is the work function (energy required by an electron to cross the surface

into vacuum) and EB is the Binding energy of the electron. Further, by the law of

conservation of momentum (again in noninteracting electron limit)

k‖ ≈ K‖ =
1

h̄

√

2mEkin sin θ, (1.15)

where h̄k‖ is the component of the electron crystal momentum parallel to the surface

(x − y plane), in the extended -zone scheme. Here, we ignore the photon momentum

because at the low photon energies used in ARPES, pphoton = h/λ << 2π/a, where

‘a’ is lattice parameter. ARPES is usually done with the ultraviolet light. Such

low photon energies are used to achieve higher energy and momentum resolution

[79]. The perpendicular component k⊥ is not conserved due to the abrupt potential

change across the surface and therefore k⊥ 6= K⊥. One of the ways to determine

k⊥ is to repeat the measurements along surface normal over a range of incident

photon energies [80]. However, k⊥ is not very crucial for low dimensional system

with negligible dispersion along the z-direction. This is the case with cuprates in

which superconductivity lies in the CuO2 planes and hence the electronic structure of
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the CuO2 bands is two-dimensional for all practical purposes. In such systems, only

k‖ is required to completely determine the electronic dispersion. Ref. [79] provides a

detailed review of ARPES studies on cuprate superconductors.

For systems like cuprates, where the conventional methods fail to describe the

electronic structure, ARPES is an important tool to provide insights into the many

body physics involved. ARPES data yields direct information about the single particle

spectral function and the associated Green's function. Often, photoemission spectra

is treated under the so-called ‘sudden approximation’, in which electron emission is

assumed to be instantaneous, barring any interaction between an emitted electron and

the system left behind so that the effective potential of the system changes abruptly.

Ignoring the effects of finite energy and momentum resolution and temperature ef-

fects, the ARPES intensity measured for a 2D single-band system (within the sudden

approximation and taking h̄ = 1) is directly proportional to the product of the one-

particle spectral function A(k, ω) and the probability of transition an electron from

an initial state to a final state (allowed by energy and momentum conservation), via

photon absorption. The transition probability is given by
∣

∣〈φk
f |Hint|φk

i 〉
∣

∣

2 ≡
∣

∣Mk
f, i

∣

∣

2
.

In the dipole approximation, so that vector potential A is constant over atomic di-

mensions and therefore consistent with the Coulomb gauge (∇ · A = 0), the inter-

action Hamiltonian (for interaction between a photon and an electron) is given by

Hint = −(e/2mc)A · p.

In the absence of electron-electron correlations, spectral function consist of delta-

function peak at band energy ǫk i.e. A(k, ω) = δ(ω − ǫk). Effects of electronic

correlations can be included in terms of the electron proper self-energy Σ(k, ω) =

Σ′(k, ω) + iΣ′′(k, ω). In this case, Green's and spectral functions are given by

G(k, ω) =
1

ω − ǫk − Σ(k, ω)
, (1.16)
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A(k, ω) = −1

π
Im G(k, ω) = −1

π

Σ′′(k, ω)

[ω − ǫk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
. (1.17)

A correlated system can be described in terms of quasiparticles with renormalized

energy and mass. This leads to separation of G(k, ω) and A(k, ω) into a coherent

part with a single pole and an incoherent smooth part [79, 80]. The coherent part

represent the main line which has a finite width, and therefore a finite life-time, due

to imaginary part of self-energy Σ′′. Also the main peak is shifted with respect to

bare band energy ǫk due to the real part of self energy Σ′. Thus, electron self energy

(real and imaginary parts) can be extracted from the ARPES spectra to study many

body correlations in solids. For a detailed description of ARPES one can refer to

several texts and articles available on the subject, say Ref. [81, 82].



29

Chapter 2

Ginzburg-Landau Theory

The BCS microscopic theory is well suited to situations where the energy gap ∆

is spatially uniform. However in situations, like intermediate state in type I super-

conductors∗and mixed state (Shubnikov phase) in type II superconductors∗, that in-

evitably involve spatial inhomogeneity, a fully microscopic theory like BCS becomes

too cumbersome. In such situations macroscopic Ginzburg-Landau (GL) theory is

quite useful.

Even though GL theory (1950) [83] of superconductivity preceded the BCS the-

ory (1957), it was not given much significance until 1959, due to its phenomenological

nature, when Gor'kov [84] showed that the GL theory was derivable as a rigorous

limiting case of the BCS theory, suitably reformulated in terms of Green's functions

to deal with spatially inhomogeneous regime. The limiting conditions include – 1)

Temperature is restricted to the neighborhood of Tc. 2) Variations in ‘order parame-

ter ’ (introduced in Section 2.1) and vector potential A are slow enough. GL theory

is based on previously established Landau theory of continuous (second order) phase

transitions [85] introduced by Lev Davidovich Landau, one of the great physicists of

20th century, in the year 1937. Landau argues that phase transitions are effected by

the sudden change of symmetry of the system. However, in contrast to first order

∗Type I and type II described in Section 2.4
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transition in which the thermodynamic state of the system changes discontinuously,

in second order transitions the state of the system (specifically the energy) changes

continuously. Therefore, at transition point the states of the two phases are the same

in second order transitions and the symmetry of the system contains all the elements

of symmetry of both the phases. This implies that the symmetry at transition point is

the same as the symmetry everywhere on one side of that point and symmetry group

of lower symmetry phase is a subgroup of that of the higher symmetry phase. In

first order phase transitions, there is no such restriction and the symmetry of the two

phases can be completely unrelated. General observation is that in great majority of

cases the transition from more symmetrical phase to less symmetrical phase happens

with decreasing temperature. In Section 2.1 we will look at the more general Landau

theory. Later sections deal with the GL theory.

2.1 Landau Theory of Phase Transitions

Landau theory of 2nd order phase transitions is one of the several important contribu-

tions of Lev Landau. It plays an important role in many areas of condensed matter

physics including structural and magnetic phase transitions. The central idea of the

theory is the existence of a thermodynamic variable called order parameter which is

zero in more symmetrical phase and takes non-zero values (positive or negative) in less

symmetrical phase. The thermodynamic potential (free energy) of the system can be

expressed as a functional of the order parameter η and other thermodynamic quanti-

ties such as temperature T , pressure P or volume V , magnetic field, etc. However the

functional F(P, T, η) achieves a minimum at a given P and T (specified arbitrarily)

and the value of η is determined from this condition of thermal equilibrium. In this

sense η is not at the same footing as other variables. Note that the stability condition

fixes the value of the order parameter which means that the fluctuations in order
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parameter are neglected and therefore Landau theory is a mean-field theory. The

continuity of the state of the system across transition requires η to take arbitrarily

small values near transition point. Thus we can expand F(P, T, η) in a power series

F(P, T, η) = F0 + αη + Aη2 + Cη3 +Bη4 +O(η5), (2.1)

where η, α, A, B, C, . . . are functions of P and T and F0 is the free energy of the

normal phase (an inconsequential constant). We neglect the 5th and higher order

terms

The functional F(P, T, η) must be invariant by all elements of the high symmetry

group, and so must be each term of the expansion. Since the states with η = 0

and η 6= 0 are of different symmetry and F(P, T, η) must be invariant at transition

point, therefore the coefficient of the linear term must be identically zero otherwise

symmetry breaking transition is not possible. In other words order parameter η cannot

be invariant under all operations of the high symmetry group. The linear term is

allowed only in the presence of external field if the order parameter couples with it

and the coupling term ηh (where h is generalized external field) is invariant under the

elements of the high symmetry group. In such a case, at a given temperature T < Tc,

if field is varied , a phase transition of first kind occurs at h = 0 [86]. Here, we shall

not bother about the first order term. The coefficient A(P, T ) of the quadratic term

vanishes at transition point. This is so because for T > Tc, the value of η = 0 must

correspond to minimum of F(P, T, η) so in this phase A > 0 is necessary (second

derivative must be positive), whereas for T < Tc, the minimum of F(P, T, η) must

be at some non-zero value of η and it must be less than F0, which is possible only if

A < 0. Hence A must vanish at the transition point.

The expansion cannot terminate at an odd order term because that would cause

the free energy to be unbound from below. Thus it must terminate at an even order
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term. However, in many cases cubic or other odd order terms are not allowed by the

symmetry of the system itself, say if some transformation leads to η → −η. Nonethe-

less, when the cubic term is present continuous phase transition can possibly occur

only at isolated points in the P-T diagram determined by the solution of the equations

A(P, T ) = 0 and C(P, T ) = 0 . In general, the cubic term causes discontinuity in the

free energy minima and order parameter corresponding to free energy minima (η0)

across the transition, leading to first order transition. This behavior is illustrated in

Figs. 2.1 and 2.2.

Going to quartic term, it must be positive at the transition and thereby in its

neighborhood, i.e., B(Pc, Tc) > 0 so as to keep the free energy bounded from below.

B > 0 is as such not guaranteed by symmetry and in case this is not true then we

must include terms up to the next even order term whose coefficient is positive. It is

worth mentioning here that inclusion of higher order terms in case B < 0, will lead

to first order transition. Usually it is sufficient to go up to the quartic term.

We can Taylor expand the coefficients about Tc. Keeping terms up to the lowest

allowed order and assuming constant pressure:

A(T ) = a(T − Tc); a > 0 and B(T ) = B(Tc) = B. (2.2)

Keeping the above discussion in mind, we can rewrite the free energy functional

(ignoring odd order terms) as

F(T, η) = αη2 +
β

2
η4, α = α′(T − Tc). (2.3)

Equilibrium conditions are found by examining the extrema of the free energy func-

tional. Above Tc, ∂F(P, T, η)/∂η = 0, has only one real solution η = 0 corresponding

to minima in the high symmetry phase. Below Tc, there are three real solutions – a
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η

F − F0

0

A = 0

Figure 2.1: This figure explains how a first order transition occurs when the cubic term is
present in Landau functional [Eq. (2.1 with α = 0]. Without any loss of generality coefficient
of the cubic term is taken to be negative (C < 0). Black solid curve corresponds to A = 0
and the curves above and below that correspond to A > 0 and A < 0 respectively. For
A > (9/32)C2/B, there is only one minimum at η = 0. For (9/32)C2/B > A > C2/4B, there
is a global minimum at η = 0, a local minimum at η+ and a local maximum at η− (here,
η+ > 0 and η− > 0), for some +ve values of F − F0. For C2/4B > A > 0, there is a local
minimum at η = 0, a global minimum at η+, and a local maximum at η− (again η+ > 0 and
η− > 0). For A < 0, there is a local maximum at η = 0, a global minimum at η+ > 0, and a
local minimum at η− < 0. The global minimum at η+ for A > 0 leads to metastable states
while lowering the temperature because the second derivative at η = 0 (at local minimum) is
still positive. The first two curves below the η = 0 line represent such metastable states. On
increasing the temperature, from below Tc, again we encounter the metastable states (the
first curve above zero line represents such states) until the local maximum at η− becomes
a inflexion point. In the metastable regime a first order transition, with a discontinuous
jump in free energy minimum and corresponding value of order parameter from 0 to η+
(decreasing temperature) or from η+ to 0 (increasing temperature), is imminent, subject to
system conditions. Here, [η± = −(3C/8B)±

√

(3C/8B)2 − (A/2B)].
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Tc T1 T2
Temperature →

ηmin

0

Figure 2.2: The figure illustrates the variation of order parameter minima with tem-
perature in the presence of cubic term in Landau functional. Coefficient C is chosen to
be negative. The green sections of the curve correspond to global minima and the red
sections of the curve correspond to local minima. Here, A is expanded as A = a(T − Tc)
[see Eq. (2.2)]. There are three characteristic temperatures: Tc (corresponding to A = 0),
T1 = 0.25(C2/aB) +Tc, and T2 = 0.28125(C2/aB)+ Tc. The arrows indicate the path of ηmin.
On decreasing the temperature (from above T2), the system passes through global minima
(ηmin = 0) until T1 is reached. Between T1 and Tc, the system is trapped in metastable
states as ηmin = 0 correspond to local minimum. Anywhere in this temperature range a
first order transition can occur, with sudden increase in ηmin from 0 to non-zero finite value
corresponding to global minimum, subject to system conditions. On increasing the temper-
ature (from below Tc), there is no transition at Tc. Instead system passes through global
minima until T1 is reached. Between T1 and T2 the system is trapped in metastable states
(corresponding to local minima) and a discontinuous drop in ηmin, to 0, can occur anywhere
in this range, subject to system conditions, signifying a first order transition. Note that
(T1 − Tc) is 8 times the difference (T2 − T1). Thus, metastability occurs for a very narrow
range of temperature when temperature is increased as compared to when temperature is
decreased.
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maximum at η = 0 and two minima at

ηmin = η0 = ±
√

−α
β
= ±

√

−α
′(T − Tc)

β
. (2.4)

This scaling, η ∝
√

(T − Tc), is a characteristic of mean field theories.

2.2 Ginzburg Landau Functional

GL theory is masterpiece of physical intuition in which Ginzburg and Landau intro-

duced a pseudowavefunction ψ(r) as a complex order parameter with |ψ(r)|2 repre-

senting the local density of superconducting electrons or superfluid ns(r), in analogy

with Bose-Einstein condensation. Therefore,

|ψ|2 = ns(r) and

∫

d3r |ψ|2 = Ns = nsV. (2.5)

The basic postulate of the GL theory extends upon the Landau theory to include

spatial variations of the order parameter in the presence of a magnetic field. The GL

free energy functional, therefore can be expanded in a series of the form

f [T, ψ,A] = f0 + α|ψ|2 + β

2
|ψ|4 + 1

2m∗

∣

∣

∣

∣

(

−ih̄∇− e∗

c
A

)

ψ

∣

∣

∣

∣

2

+
B2

8π
, (2.6)

where α = α′(T − Tc). The last term in the expansion accounts for the energy due

to magnetic field. Here, e∗ and m∗ are the charge and the mass respectively, of a

superconducting charge carrier (Cooper pair).

2.2.1 Absence of fields and gradients

This condition arises when a superconductor is cooled below Tc in zero field or in

the bulk of a type I superconductor in an applied field. In both these cases, fields
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α > 0α = 0

α < 0

ℜ[ψ]

fs − fn

H2
c/8π

0 Ψ−Ψ

Figure 2.3: GL free energy versus order parameter. Only the real axis for the order
parameter is shown. Including the imaginary part will lead to a circle of minima, in the
complex plane, for T < Tc.

and gradients are absent below Tc. Therefore the GL theory in this case is similar to

Landau theory and the stability condition in superconducting state is

|ψ|2min = Ψ 2 = −α
β
. (2.7)

The difference is that in GL theory the order parameter is complex, ψ = |ψ|eiφ.

Therefore, instead of two degenerate solutions, we actually have a continuous set of

degenerate solutions. This can be visualized by rotating Fig. 2.3 about the vertical

axis, which for T < Tc yields a circle of minima in the complex plane. Due to the re-

sulting shape, the solution is called ‘Mexican hat’ or ‘wine bottle’ potential. However,

the superconducting state with ψ = Ψeiφ = (−α/β)1/2eiφ is realized with some fixed

value of the phase φ. This state clearly is not invariant under the rotations of the

phase factor. Hence, we say that the global U(1) gauge symmetry is spontaneously

broken because even though the free energy density f possess gauge symmetry U(1),

the equilibrium state below Tc (superconducting state) does not. In short, normal

state lacks phase coherence whereas the superconducting state is phase coherent.
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In the case of zero applied field, below transition point (T < Tc) ,

fn − fs =
α2

β
− α2

2β
=

α2

2β
. (2.8)

This must be equal to the condensation energy Eq. (1.1). Hence,

Hc(T ) =

√

4π
α2

β
. (2.9)

Same relation can be obtained for type I superconductors in a applied field. How-

ever, when H field is held constant rather than B field, the appropriate thermody-

namic free energy to consider is Gibbs free energy. The two are related by

G = F −
∫

d3r
B.H

4π
(2.10)

Again, in the normal state B = H and in the superconducting state both magnetic

induction B and vector potential A (in the London gauge) vanish. Therefore

gn − gs = −H
2

8π
+
α2

2β
. (2.11)

Now, the system will be superconducting only when gs is smaller than gn, i.e., gn −

gs > 0. Again the critical field above which superconductivity is destroyed, given by

H = Hc, turns out to be the same as given by Eq. (2.9).

Entropy

S = S0 −
∂α

∂T
|ψ|2. (2.12)

In normal phase, η = 0 and S = S0; in superconducting phase,

S = S0 +
(α′)2

β
(T − Tc). (2.13)
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Thus, at ∆S




Tc
= 0, i.e., entropy is continuous at transition temperature.

Specific heat

∆cp




Tc
= T

∂∆S

∂T











Tc

=
(α′)2

β
Tc. (2.14)

Therefore, specific heat shows a discontinuity at transition temperature as expected

in a second order transition. However, this theory results in a simple jump disconti-

nuity in specific heat at Tc whereas in reality most second order transitions show a

discontinuity divergent from both sides of Tc, a behavior known as ‘λ’ anomaly. The

correct behavior can be obtained in a more complex theory that includes fluctuations.

2.2.2 Fields and gradients

To consider the effect of fields and gradients, we write

ψ(r) = |ψ(r)|eiφ = Ψf(r)eiφ(r) (2.15)

where in the last form spatial variation is included in the function f(r) that can take

the values between 0–1.

Now, the fourth term in Eq. (2.6) can be written as

1

2m∗

[

h̄2(∇|ψ|)2 +
(

h̄∇φ − e∗A

c

)2

|ψ|2
]

. (2.16)

The first term in Eq. (2.16) accounts for the energy associated with spatial variations

in the magnitude of the order parameter and the second term represents kinetic

energy density associated with supercurrents. In the London gauge φ is constant so

∇φ = 0. In this limit, comparing the kinetic energy term in Eq. (2.16) to the kinetic

energy density of a London superconductor, namely A2/8πλ2eff [11], and considering



2.3. GINZBURG-LANDAU EQUATIONS 39

that |ψ|2 = n∗
s , we obtain the

λ2eff =
m∗c2

4π|ψ|2e∗2 , (2.17)

where λeff is the effective penetration depth. This agrees with the usual definition of

the London penetration depth Eq. (1.3). Experiments led to conclude that in BCS

superconductors, m∗ = 2me and e
∗ = 2e, as expected for a Cooper pair. Hence [11],

Ψ 2 ≡ n∗
s =

ns

2
=

mc2

8πe2λ2eff
, (2.18)

α(T ) = − 2e2

mc2
H2

c (T )λ
2
eff(T ), (2.19)

β(T ) =
16πe4

m2c4
H2

c (T )λ
4
eff (T ). (2.20)

2.3 Ginzburg-Landau Equations

In the absence of fields and gradients, GL functional is minimized by requiring |ψ| =

Ψ =
√

−α/β, as seen previously. In the presence of fields and gradients, ψ(r) adjust

itself to minimize the functional. We can do this by applying variational approach.

Consider

F [T, ψ∗,A] =

∫

d3rf [T, ψ∗,A]. (2.21)

To minimize it w.r.t. ψ∗, we write

δF = F [ψ∗ + δψ∗]− F [ψ∗] = 0. (2.22)

This leads to the equation

δF =

∫

d3r

[

αψ + β|ψ|2ψ +
1

2m∗

(

h̄

i
∇− e∗A

c

)2

ψ

]

δψ∗ = 0. (2.23)
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Since δψ∗ is arbitrary, the equation is satisfied only if the factor in the square brackets

is zero. This gives us 1st Ginzburg-Landau differential equation.

αψ + β|ψ|2ψ +
1

2m∗

(

h̄

i
∇− e∗A

c

)2

ψ = 0. (2.24)

Similarly, we can minimize the functional w.r.t. vector potential A

δF =

∫

d3r

{

1

2m∗

[

∣

∣

∣

∣

(

h̄

i
∇− e∗(A+ δA)

c

)

ψ

∣

∣

∣

∣

2

−
∣

∣

∣

∣

(

h̄

i
∇− e∗A

c

)

ψ

∣

∣

∣

∣

2
]

+
1

8π

[(

∇× (A+ δA)2 − (∇×A)2
)]

}

=

∫

d3r

[

e∗h̄

i2m∗c
(ψ∇ψ∗ − ψ∗

∇ψ) +
e∗2

m∗c2
ψ∗ψA+

1

c
J

]

δA. (2.25)

This leads to 2nd Ginzburg-Landau differential equation

J(r) =
e∗h̄

i2m∗c
(ψ∗

∇ψ − ψ∇ψ∗) +
e∗2

m∗c2
ψ∗ψA, (2.26)

where J(r) is current density.

Absence of the fields implies A = 0. In this case Eq. (2.24) involves only real

coefficients, therefore we can take ψ to be real. Let, ψ = f(r)Ψ , where f(r) is

dimensionless. Then Eq. (2.24), in one dimension, becomes

h̄2

2m∗|α|
∂2f

∂x2
+ f − f 3 = 0. (2.27)

It is evident from Eq. (2.27) that there exists a characteristic length called coherence

length ξ(T ), associated with the variation of ψ. It is equal to the square root of the

coefficient of second order term in Eq. (2.27), i.e.,

ξ(T ) =

√

h̄2

2m∗|α(T )| ∝
√

1

Tc − T
(2.28)
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This coherence length decreases with decreasing temperature and it diverges at Tc.

Physically, coherence length ξ(T ) signifies the distance over which a small disturbance

of ψ, from Ψ , dies out. In other words, it is the distance over which ψ varies. Using

Eqs. (2.18), (2.19), (2.20), and (2.28), we can define the so called Ginzburg-Landau

parameter κ

κ =
λeff(T )

ξ(T )
=

2
√
2πHc(T )λ

2
eff(T )

Φ0
(2.29)

where Φ0 =
hc
2|e| is the fluxoid quantum.

2.4 Type I and Type II Superconductors

The critical value κ = 1/
√
2 divides superconductors into two classes.

κ =















< 1√
2

Type I superconductors

> 1√
2

Type II superconductors

(2.30)

Suppose a superconductor is cooled below its Tc in a very high magnetic field so

that the flux passes through it and it is no longer superconducting. Now, consider low-

ering the magnetic field slowly. The two classes of superconductors behave differently

in such a situation. In a type I superconductor, depending upon the demagnetization

factor of the geometry of the sample, either the flux is completely expelled below

a certain field value (if demagnetization factor is zero) or the sample first divides

into several normal and superconducting regions and the applied flux passes through

the normal regions (if the demagnetization factor is non-zero) and then on further

decreasing the field, the Meissner state appears. On the other hand, in type II su-

perconductors, at a field much above Hc, the flux bearing (normal) regions subdivide

until a quantum limit is reached such that each quantum of flux passes through the

sample as a distinct flux tube [11]. This state is called mixed phase or Shubnikov
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phase. This is unlike the case for type I superconductors, where the intermediate

state occurs over a small range of magnetic field and there is no such quantization

of flux. The Shubnikov phase occurs over a large range of magnetic field even if the

demagnetization factor is zero. This distinction was predicted by A. A. Abrikosov

[87] before the discovery of type II superconductivity. The primary reason for this

difference between type I and type II superconductors is the surface energy. In type

II superconductors the surface energy at the normal and superconducting interface

is negative, therefore type II superconductors tend to maximize the surface area to

minimize the free energy [88].

This separation of materials into two classes can also be seen in the Eq. (2.31)

which relates the highest field Hc2 at which superconductivity can nucleate in the

bulk of a material to the thermodynamic critical field Hc [11]. When the nucleation

begins |ψ|2 << Ψ 2, therefore we can neglect the β term in Eq. (2.24). This leads to

a linearized equation, which is much easier to solve with a proper gauge choice, say,

Ay = Hx. The solution for Hc2 is given by

Hc2 =
Φ0

2πξ2
=

4πλ2H2
c

Φ0
=

√
2κHc. (2.31)

Equation (2.31) reveals that for type I superconductors Hc2 < Hc and for type II

superconductors Hc2 > Hc. This implies that type I superconductors ‘supercool’

below Hc remaining normal, ideally until Hc2 is reached. Near Hc2 nucleation occurs

followed by a discontinuous jump in |ψ|2 to Ψ 2. And if the field is increased again,

the material remain superconducting until Hc is reached where again the |ψ| drops

to zero discontinuously. Thus superconducting transition in type I superconductors

is irreversible and it shows hysteresis. In contrast to this, in type II materials |ψ|2

increases continuously from 0 at Hc2 becoming superconducting much above Hc in a

second order phase transition. These features are visible in Fig. 2.4.



2.4. TYPE I AND TYPE II SUPERCONDUCTORS 43

|ψ|2

1

HcHHcHc2

Type I (κ < 1/
√
2) Type II (κ > 1/

√
2)

0 HHc20

|ψ|2/Ψ 2

Figure 2.4: Behavior of the order parameter at nucleation field Hc2. In type I su-
perconductors, nucleation field Hc2 smaller than the thermodynamic critical field Hc and
magnitude of the order parameter jumps discontinuously and irreversibly to its maximum
value. In type II superconductors, nucleation occurs above the thermodynamic critical field
and the magnitude of the order parameter increases continuously and reversibly.

Sheath state

Mixed state
Meissner state

H
Hc3

Tc0

Hc2

Hc1

T

Figure 2.5: Temperature dependence of the critical field in type II superconductors.
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Temperature dependence of the critical fields in a type II superconductor is shown

in Fig. 2.5. Below Hc1, flux is completely expelled out of the superconductor. Between

Hc1 and Hc2 mixed phase occurs and between Hc2 and Hc3 only surface superconduc-

tivity occurs in a sheath of thickness ∼ ξ(T ). Nucleation of superconductivity at the

surface begin at Hc3. At a metal-insulator interface, Hc3 = Hc2 for H normal to the

surface and Hc3 = 1.695Hc2 for H parallel to the surface [89].

2.5 Single-vortex solution

Since the major emphasis in Chapter 3 is vortices in s-wave noncentrosymmetric

superconductors, it is worth looking here at single vortex solution in the supercon-

ductors with inversion symmetry. This requires the solution of the GL differential

equations [Eqs. (2.24) and (2.26)]. Symmetry of the problem suggests to work in

cylindrical coordinates. Let us define, ψ = Ψf(r)e−iφ and choose the gauge for A so

that

A = A(r)φ̂ with A(r) =
1

r

r
∫

0

r′B(r′)dr′. (2.32)

Near the center of the vortex, B(r) ≈ B(0), where B(0) is the cutoff, therefore

A(r) =
B(0)r

2
, r → 0, (2.33)

and far away from the center
∮

A.dl = 2πrA∞ = Φ0, because total flux in a vortex

is Φ0. Hence

A(r) =
Φ0

2πr
, r → ∞. (2.34)

This satisfies the condition that B(0) = 0 at r = ∞.

Substituting the above definition of ψ in the GL Eqs. (2.24) and (2.26), we get

f − f 3 − ξ2

[

(

1

r
− 2πA

Φ0

)2

f − 1

r

d

dr

(

r
df

dr

)

]

(2.35)
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and J = −e
∗h̄

m∗ Ψ
2f 2

(

1

r
− 2πA

Φ0

)

φ̂. (2.36)

The problem involves coupled nonlinear differential equations which require to be

solved numerically. Nonetheless, we can look at the asymptotic solution analytically.

Let us expand the f(r) in a power series

f(r) =

∞
∑

k=0

ckr
n+k (2.37)

It is sufficient to substitute first few terms of the series in Eq. (2.35) to find the

solution for small r. It turns out that the expansion contains only odd power terms

and f(r) is linear in the small r limit. Moreover, f(r) must saturate to 1 in the

large r limit. Therefore, a reasonable approximation over the entire range would be

a hyperbolic function †

f ≈ tanh

(

νr

ξ

)

(2.38)

where ν is constant ∼ 1.

In the large κ limit, the solution for B outside the core region of radius ∼ ξ can be

obtained by substituting f = 1 in Eq. (2.36), because f rises to its maximum value

(unity) in a distance ∼ ξ. Therefore,

∇×∇×
( c

4π
B
)

= ∇× J =
Φ0c

8π2λ2

[

∇× (∇φ)− 2π

Φ0
B(r)ẑ

]

. (2.39)

Now,
∫

[∇× (∇φ)].da =

∮

∇φ.dl =

∮

1

r
rdφ = 2π (2.40)

⇒ ∇× (∇φ) = 2πδ2(r)ẑ, (2.41)

†tanh(x) = x− x3

3 + 2x5

15 − 17x7

315 +. . . =
∑∞

n=1
22n(22n−1)B2nx

2n−1

(2n)! , |x| < π
2 , where Bn is nth Bernoulli

number
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where δ2(r) is a two dimensional delta function such that

1 =

∫

δ2(r)ẑ.da =

∫

δ2(r)rdrdφ = 2π

∫

δ2(r)rdr. (2.42)

Hence,

δ2(r) =
δ(r)

2πr
. (2.43)

Thus, from Eq. (2.39), we can write

∇2B(r)− B(r)

λ2
= −Φ0

λ2
ẑ (2.44)

This equation has an exact solution

B(r) =
Φ0

2πλ2
K0

( r

λ

)

, (2.45)

where K0 is a modified Bessel function. K0 and thereby B(r) decreases exponentially

in the large r limit, so that B(r) → 0 as r → ∞ satisfying the physical requirement.

On the hand, B(r) shows a logarithmic divergence ln(λ/r) as r → 0. However, this

divergence is cutoff inside the core where f(r) goes to zero at r = 0.

2.6 Lifshitz Invariants

In the GL functional defined by Eq. (2.2), only second order terms in gradients are

included. This restriction is imposed by the inversion symmetry of the crystal lattice.

However if, inversion symmetry is absent in the point group of the lattice, as is the

case for NCS superconductors, it is allowed to include a term linear in gradient of

the order parameter coupled with the magnetic flux density and multiplied by the

complex conjugate of the order parameter to preserve the U(1) gauge symmetry, plus

its complex conjugate. Such terms are called Lifshitz invariant (LI). The most general
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form of Lifshitz invariants is [15]

KijBi[ψ
∗(Djψ) + ψ(Djψ)

∗], (2.46)

where Di = −i∇i − 2eAi(h̄ = e = me = 1) and Kij is the coupling constant. Under

inversion I, B remains invariant but D changes sign and therefore such a term is not

allowed in materials whose point group contains inversion symmetry. On the other

hand, the term is invariant under Time reversal T because B changes sign and Dψ

goes to −(Dψ)∗, under it.

The detailed form of Lifshitz invariant is point group specific. A list of allowed

Lifshitz invariants corresponding to A1 (identity) representation for different point

groups is given in Ref. [15]. In the Section 2.6.1, Lifshitz invariants for all the 1-

D representations of C4v group are found. It is comparatively easier to determine

Lifshitz invariants for 1-D representations because higher dimensional representation

would require to deal with multidimensional order parameters.

2.6.1 Lifshitz invariants for C4v group

Here, we will find Lifshitz invariants corresponding to all the 1-D representations of

C4v group. Elements of group C4v are (E,C2, C4, C
′
4, σv, σ

′
v, σd, σ

′
d). Defining ji =

ψ∗(Diψ) + ψ(Diψ)
∗ such that ji transform under rotations like Di. Moreover, B

being an axial vector transforms under proper rotation like ordinary (polar) vectors

but behaves differently under improper rotations like reflections. Under reflection, an

axial vector is reflected (like polar vectors) and reversed. Under the elements of C4v,

terms mixing x− z and y− z components, i.e., the terms Bxjz, Byjz , Bzjx, and Bzjx

are not allowed because these transform differently under the elements of the same

class, for e.g.,

Bxjz
C4−→ Byjz Bxjz

C′
4−→ −Byjz (2.47)
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Table 2.1 is the character table for point group C4v. The last column gives the

Lifshitz invariants corresponding to each 1-D representation.

Table 2.1: Character table for group C4v with Lifshitz invariants for 1-D representations.

C4v (4mm) E C2 2C4 2σv 2σd Lifshitz Invariants

x2 + y2, z2 z A1 1 1 1 1 1 K(Bxjy −Byjx)

Rz A2 1 1 1 -1 -1 K1(Bxjx +Byjy) +K2Bzjz
x2 − y2 B1 1 1 -1 1 -1 K(Bxjy +Byjx)

xy B2 1 1 -1 -1 1 K(Bxjx − Byjy)

(xz, yz)
(x, y)
(Rx, Ry)

}

E 2 -2 0 0 0
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Chapter 3

Vortices in Cubic

Noncentrosymmetric

Superconductors

3.1 Introduction

In this chapter, we will examine Ginzburg-Landau (GL) theory for s-wave cubic

superconductors with an emphasis on the vortex structure. The magnetoelectric

effects (ME) play an important role here. This has previously been studied with a

London theory. The London theory predicts a supercurrent that flows parallel to

the applied magnetic field and further indicates that this current diverges in the the

vortex core [90, 91]. GL theory is needed to understand the vortex core structure

properly. In the following, we use GL theory first to derive single vortex solution

in the London limit (finding results that agree with previous results [Ref. [90, 91]]),

then to numerically examine the full single vortex structure. Finally, we find the high

density vortex lattice solution near the upper critical field Hc2 and discuss how it

differs from single vortex solution.
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3.2 Ginzburg Landau Free Energy

For point group symmetry O, the GL free energy is (h̄ = c = me = 1) [15]:

F =

∫

d3r

{

α|η|2 +Kη∗D2η + ǫB ·
[

η∗(Dη) + η(Dη)∗
]

+
β

2
|η|4 + B2

8π

}

, (3.1)

where α = α0(T − Tc), Di = −i∇i − 2eAi and B = ∇×A. An important feature of

Eq. (3.1) is the existence of the Lifshitz invariant denoted by the parameter ǫ. Such

Lifshitz invariants [24, 28, 31, 92, 93, 94] give rise to FFLO-like phases [28, 31, 32,

95, 96], magnetoelectric properties [24, 34, 35, 36, 90, 91] of NCS, and play a central

role in the vortex physics examined here.

Eq. (3.1) leads to the following GL equations:

αη + β|η|2η +KD2η − 2ǫ(∇×A) · (i∇η + 2eAη) = 0 (3.2)

and J =
1

4π

[

∇× (B− 4πM)
]

= 2eK
[

η∗(Dη) + η(Dη)∗
]

+ 4eǫ|η|2B, (3.3)

where M = −ǫ
[

η∗(Dη) + η(Dη)∗
]

= −
(

∂F

∂B

)

T

. (3.4)

These equations are joined by the boundary conditions (which follow from the

surface terms that arise from integration by parts in the variation of F ):

[

Kn̂i(Diη) + ǫBin̂iη
]

boundary
= 0, (3.5)

where n̂j is the component of surface normal along ĵ, and the usual Maxwell bound-

ary conditions on the continuity of the normal component of B and the transverse

components of H = B− 4πM.
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3.3 Single-vortex structure

Here we examine the single vortex structure within London theory and numerically.

We make two approximations, the first is we assume that the Lifshitz invariant can

be treated as a perturbation to the GL free energy and the second assumes that we

are in the large κ = λ/ξ limit. Both these approximations are reasonable for Li2Pt3B

[91] and Mo3Al2C [45, 46].

As seen earlier, the symmetry of the single vortex solution suggest use of cylindrical

coordinate system. In cylindrical coordinates, let η = Ψf(r)eiχ where χ = ∓φ (upper

sign for negative winding and lower sign for positive winding); K = 1
4
, ξ2 = − 1

4α
;

Ψ 2 = −α
β

= 1
8πe2λ2 ; Φo = −π

e
= π

|e| ; µ = 4ǫ
eξ

= 4σ
ξ

and scale the various physical

quantities as: r → λx, A → ± Φo

2πξ
A = ∓2ξeA, B → ± Φo

2πξλ
B and J → ± Φo

2πξλ2J.

Using ∇ × ∇φ = 2πδ2(r)ẑ where δ2(r) = δ(r)
2πr

, the GL Eqs. (3.2) and (3.3)

transform to the dimensionless form as:

d2f

dx2
+

1

x

df

dx
− κ2

(

1

κx
−Aφ

)2

f + κ2(f − f 3)− κ2A2
zf

+ µ
dAz

dx

(

1

x
− κAφ

)

f + κµAz

(

Aφ

x
+
dAφ

dx

)

f = 0, (3.6)

d2Aφ

dx2
+

1

x

dAφ

dx
− Aφ

x2
−

(

Aφ −
1

κx

)

f 2 − µ

κ
Azf

df

dx
− µ

κ
f 2dAz

dx
= 0, (3.7)

d2Az

dx2
+

1

x

dAz

dx
− f 2Az −

µ

κ
f

(

1

κx
− Aφ

)

df

dx
+

µ

κx
f 2Aφ

+
µ

κ
f 2dAφ

dx
− µπ

κ2
f 2δ2(x) = 0. (3.8)

We assume µ to be a small parameter which implies that Az is also small. To first
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order in µ and/or Az:

d2f

dx2
+

1

x

df

dx
− κ2

(

1

κx
− Aφ

)2

f + κ2(f − f 3) = 0, (3.9)

d2Aφ

dx2
+

1

x

dAφ

dx
− Aφ

x2
−
(

Aφ −
1

κx

)

f 2 = 0, (3.10)

d2Az

dx2
+

1

x

dAz

dx
− f 2Az −

µ

κ
f

(

1

κx
− Aφ

)

df

dx
+

µ

κx
f 2Aφ

+
µ

κ
f 2dAφ

dx
− µπ

κ2
f 2δ2(x) = 0. (3.11)

Eqs. (3.9) and (3.10) are usual GL equations, whereas Eq. (3.11) arise due to

Lifshitz invariant in the free energy. In the large κ limit the usual GL equations

simplify. Typically, f varies on distances x ∼ 1/κ [87, 11]. When κ >> 1, f only

varies for small x where the superfluid velocity Q = | 1
κx

−Aφ| varies as 1
κx

(for small

x, Aφ ∼ x). Thus, the usual GL equations can be approximated as:

d2f

dx2
+

1

x

df

dx
− 1

x2
f + κ2(f − f 3) = 0, (3.12)

d2Aφ

dx2
+

1

x

dAφ

dx
− Aφ

x2
− (Aφ −

1

κx
)f 2 = 0. (3.13)

3.3.1 London limit

In the London limit: f = 1 and df
dx

= 0. Also, Bz = Boz(x) =
1
κ
K0(x), where K0(x)

is modified Bessel function of first kind. Therefore, Eq. (3.11) reduces to

∇2Az − kAz = − µ

κ2
K0(x) +

µπ

κ2
δ2(x). (here, k = 1). (3.14)
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The operator on the left hand side is the modified Helmholtz operator with Green's

function: G(x, x′) = 1
2π
K0(|x− x′|). In cylindrical coordinates [97]:

K0(k|x− x′|) = K0(k
√

x2 − x′2 − 2xx′ cos(φ− φ′))

= I0(k x<)K0(k x>) + 2

∞
∑

m=1

cos[m(φ− φ′)]Im(k x<)Km(k x>).

(3.15)

Using this, we can find the solution for Az. The solution involves an area integral

in polar coordinates, but Eq. (3.14) lacks angular dependence and therefore the φ

integral of the second term in Eq. (3.15) always yield zero. Hence, ignoring that

term, the solution for Az is

Az(x) =
µ

κ2

[

K0(x)

∫ x

0

x′I0(x
′)K0(x

′)dx′

+ I0(x)

∫ ∞

x

x′[K0(x
′)]2dx′ − 1

2
K0(x)

]

. (3.16)

where, the last term is the contribution of the δ2(x)-function source term in Eq. (3.14).

Taking curl of Az, we reproduce the result of Lu and Yip [Ref. [90, 91]] for transverse

flux density ∗:

Bφ(x) =
µ

κ2

[

K1(x)

∫ x

0

x′I0(x
′)K0(x

′)dx′ − I1(x)

∫ ∞

x

x′[K0(x
′)]2dx′ − 1

2
K1(x)

]

=
µ

κ2

[

K1(x)

∫ x

0

x′
(

I1(x
′)

x′
+ I ′1(x

′)

)

K0(x
′)dx′

−I1(x)
∫ ∞

x

x′K0(x
′)

(

−K1(x
′)

x′
−K ′

1(x
′)

)

dx′ − 1

2
K1(x)

]

=
µ

κ2

[

K1(x)

∫ x

0
✘
✘
✘
✘
✘
✘✘

I1(x
′)K0(x

′)dx′ +K1(x)

{

x′K0(x
′)I1(x

′)
∣

∣

x

0

−
∫ x

0

[✘✘
✘✘K0(x
′) + x′K ′

0(x
′)] I1(x

′)dx′
}

∗See Appendix A for justifying the intermediate steps to reach Eq. (3.17)
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+ I1(x)

∫ ∞

x
✭
✭
✭

✭
✭
✭✭

K0(x
′)K1(x

′)dx′ + I1(x)

{

x′K0(x
′)K1(x

′)
∣

∣

∞
x

−
∫ ∞

x

[✘✘
✘✘K0(x
′) + x′K ′

0(x
′)]K1(x

′)dx′
}]

=
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

xK0(x)K1(x)I1(x) +K1(x)

∫ x

0

x′K1(x
′)I1(x

′)dx′

+ I1(x)
[

x′K0(x
′)K1(x

′)
∣

∣

x′=∞ −
✭
✭
✭
✭
✭
✭
✭

xK0(x)K1(x)
]

+ I1(x)

∫ ∞

x

x′ [K1(x
′)]

2

=
µ

κ2

[

K1(x)

∫ x

0

x′I1(x
′)K1(x

′)dx′ + I1(x)

∫ ∞

x

x′[K1(x
′)]2dx′ − 1

2
K1(x)

]

. (3.17)

The asymptotic behavior of transverse flux density is:

Bφ ∼















− µ
2κ2 [

1
x
+ x ln x− x

2
], x → 0

µ
κ2

√

πx
8
e−x, x → ∞

(3.18)

Furthermore, we find

Jz(x) =
µ

4πκ2

[

− κ2

µ
Az(x) +

1

2
K0(x)

]

=
µ

4πκ2

[

K0(x)−K0(x)

∫ x

0

x′I0(x
′)K0(x

′)dx′ − I0(x)

∫ ∞

x

x′[K0(x
′)]2dx′

]

.

(3.19)

The asymptotic behavior of current density Jz shows logarithmic divergence in the

small x limit:

Jz(x) ∼















µ
4πκ2 ln

1
x
, x→ 0

− µ
4πκ2

√

πx
8
e−x, x→ ∞

(3.20)

In the limit x→ 0, the 1
x
divergence in the azimuthal component of magnetization

Mφ [see Eq. (3.23)] in the London limit (f = 1) is canceled by the 1
x
divergence in

the transverse flux density Bφ, but the logarithmic divergence in Bφ still shows up
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in current density Jz. This is evident in the numerical solution as shown in Fig. 3.6.

These divergences are an artifact of the London theory and the next section presents

a numerical solution in which these divergences are no longer present. Also, we have

numerical solved London limit solutions to the problem i.e. Eqs. (3.16), (3.17), and

(3.19), using Fortran 90 (Visual Fortran software). The numerical code is provided

in section B.1.

3.3.2 Numerical solution

We use the finite difference (relaxation) method [98] for full solution of the GL equa-

tions [Eqs. (3.12), (3.13) and (3.11)]. The relevant code is provided in section B.2. It

is worthwhile to note that the δ2(x)-source term in the Eq. (3.11) does not contribute

to the full solution. To see this, we work out the solution corresponding to that term.

Part of the solution corresponding to δ2(x)-function source term in

Eq. (3.11)

= − µ

2κ2

[

K0(xf(x))

∫ x

0

f 2(x′)δ(x′)I0(x
′f(x′))dx′

+I0(xf(x))

∫ ∞

x 6=0

f 2(x′)δ(x′)K0(x
′f(x′))dx′

]

. (3.21)

The second term in Eq. (3.21) is zero on account of the delta function,

irrespective of the value of x, as long as it is non-zero. In the small-x

limit, the f(x′) = c0x
′ i.e. f is linear and c0 is constant (slope). Also,

in this limit, I0(x
′f(x′)) is finite. So Eq. (3.21) can be written as

= −µc
2
0

2κ2
K0(xf(x))

∫ x

0

x′
2
δ(x′)I0(x

′f(x′))dx′ = 0. (3.22)

So, we can drop the δ2(x)-function source term from Eq. (3.11) while

looking for full solution. This greatly simplifies the problem.
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The numerical solutions for Bz, Bφ, Hφ, Jφ and Jz are obtained using: B =

∇×A, H = B− 4πM,

Mφ(x) =
µ

8πκ

[

− 1

κx
+ Aφ

]

f 2 (3.23)

and Jz(x) =
1

4π

[

−Az +
µ

2κ
Boz

]

f 2. (3.24)

The results are shown in Figs. 3.1, 3.2, 3.3, 3.4 and 3.5. Numerical integration of the

current density Jz around the vortex line meets the physical requirement that the net

current along the z-direction must be zero (Jz was numerically integrated from x = 0

to x = 40). The full numerical solution for Jz is compared with the solution in the

London limit for µ = 0.020 and κ = 20, in Fig. 3.6. The two match closely outside

the core. Further, Jz,peak decreases non-linearly with κ (Fig. 3.7) for fixed µ.

The magnitude of Bφ,peak is calculated to be ∼ 0.08 gauss (G) and that of Jz,peak

is ∼ 6 × 106 A m−2 for a µ value of 0.020. These values are appropriate for Li2Pt3B

(κ ≈ 20, λ ≈ 360 nm [Ref. [91]]). For Mo3Al2C, κ ≈ 88, λ ≈ 375.5 nm [Ref. [45]]

and with a µ value of 0.088, Bφ,peak ∼ 0.3 gauss (G) and Jz,peak ∼ 9.75× 106 A m−2.

Though, current density along ẑ is large enough to produce measurable current in a

small sample, the measurement of transverse field seem to be out of reach for now,

as by one estimate [91] the resolution limit of µSR (muon spin rotation) technique is

0.5 gauss (G) which is greater than the expected values reported here.

The current Jz changes sign at about 2λ (Fig. 3.5). Thus there exist a zero current

surface at 2λ from vortex line. For negative winding, the current flows upwards before

the zero current surface and it flows downwards after the zero current surface. For

a boundary with normal along ẑ, the boundary conditions do not allow a current to

flow through the surface, consequently, when Jz reaches the boundary from inside the

zero current surface, it will flow radially outward and then flow back into the material

outside the zero boundary surface.
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Figure 3.1: Order parameter (f) vs. radial distance from vortex center (x). Order
parameter rises to its maximum value increasingly faster with larger values of κ
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3.4 Transverse field distribution near the upper

critical field

Near the upper critical field, the order parameter η is known to have an Abrikosov's

vortex lattice solution. Near Bc2, |η|2 << Ψ 2 Therefore we can neglect non-linear

terms in Eq. (3.1). This leads to linearized form of Eq. (3.2),

αη +KD2η = 0. (3.25)

Using London gauge A = (−Boy, 0, 0), Eq. (3.25) can be written as

(

−∇2
y + e2Boy

2 −∇2
x − i4eBoy∇x

)

η =
1

ξ2
η,

(

here,
α

K
= − 1

ξ2

)

. (3.26)

Eq. (3.26) is an eigenvalue equation. The operator on L.H.S. in Eq. (3.26) commutes

with the operator px = −i∇x, because x is absent from it. Therefore the two must
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have simultaneous eigenstates. Hence, η ∝ φ = eikxψ(y) because eigenstates of px are

plane waves (eikx). Due to this separation of variable, we get a harmonic oscillator

equation for ψ(y) which can be written, with all lengths scaled by magnetic length

lB = 1/
√

2|eBo|, as

∇2
y ψ(y) + 2

[

1

2ξ2
− 1

2
(y ∓ k)2

]

ψ(y) = 0. (3.27)

In the last term in Eq. (3.27), upper sign corresponds to eBo < 0 and lower sign to

eBo > 0. Here, ω = l2B2|eBo| = 1. This defines the magnetic length lB. The solution

to Eq. (3.27) is quantized and is given by

ψn(y) = exp

[

−1

2
(y ∓ k)2

]

Hn(y ∓ k), (3.28)

where Hn are Hermite polynomials.

The solution φ is still degenerate w.r.t. allowed values of k. Since we seek a lattice

solution, only discrete values of k are allowed. The most general solution for φ with

k ≡ ym can be written as

φn(r|τ) = an

∞
∑

m=−∞
cme

iymxe−
(y∓ym)2

2 Hn(y ∓ ym), (3.29)

where cm = eiπm(ρ+1−ρm), ym = (m − 1/2)
√
2πσ, ρ = (b/a) sinα, σ = (b/a) cosα,

Hn are Hermite polynomials and an = [2nπ1/2(n!)]−1/2. Eq. (3.29) describes gener-

alized vortex lattice solutions [87, 99, 100] with lattice vectors a = (a, 0) and b =

b(cosα, sinα) and with a single flux quanta per unit cell (this lead to the constraint

ab sinα = 2π, where all lengths are scaled by the magnetic length lB = 1/
√

2|eBo|).

The lattice form depends on the complex parameter τ = ρ + iσ. For conventional

s-wave pairing, lattice is expected to be hexagonal, so we choose a = b and α = π/3

To linear order in ǫ, the transverse field at Hc2, when J ≈ 0, is given by B⊥ =
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Figure 3.8: Transverse flux density (B⊥) distribution near upper critical field, for eBo <
0. The dark circles denote the position of vortex lines. The direction of the field lines is
determined by the sign of ǫ.

−4πǫ[η∗(Dη) + η(Dη)∗]. Let us define operators Π+ = (∓Dx − iDy)/
√

4|eBo| and

Π− = (∓Dx + iDy)/
√

4|eBo| (upper sign for eBo < 0 and lower sign for eBo > 0) in

the landau gauge. It turns out that Π+ and Π− are raising and lowering operators

for φn and thereby for η. So, B⊥ can be expressed in terms of the eigenstates of the

operator Π+Π− which are the same as given in Eq. (3.29). The order parameter near

the upper critical field is η =
√
A φ0. This leads to:

Bx(x, y) = A 4πǫ
√

|eBo| [±(φ∗
0φ1 + φ0φ

∗
1)]

and By(x, y) = A 4πǫ
√

|eBo| [−i(φ∗
0φ1 − φ0φ

∗
1)].

(3.30)

The transverse flux density distribution near Bc2 is shown in Fig. 3.8. Given the
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redistribution of the transverse magnetic induction (as compared to a single vortex)

due to lattice, it is possible that the transverse field in the high density regions is

accessible in a µSR experiment.

In addition, samples with many pinning centers can be treated using the Bean

model. [11, 101] This predicts a non-zero average transverse flux density that is

varying as a function of distance from the surface. This can also be observed through

µSR measurements. The field will be of the same order as in the vortex lattice.

3.5 Conclusions

We have studied s-wave cubic NCS with point group symmetry O using Ginzburg-

Landau theory. Lack of inversion center, allows for the inclusion of Lifshitz invariants

in the Ginzburg-Landau functional. Using the macroscopic theory we reproduced

the single-vortex solution in NCS with cubic point group symmetry O in the London

limit, which was earlier obtained through microscopic means. Going beyond the

London limit, we have calculated the detailed structure of the transverse field Bφ

and current Jz (current component in the same direction as the applied field) for a

single vortex. Also, we have obtained the structure of the transverse field for a vortex

lattice. Estimates of the magnitude of these fields suggest that they will be difficult

to observe. The discovery of new superconductors with point group symmetry O

that have smaller penetration depths and larger κ relative to Li2Pt3B and Mo3Al2C

will allow these transverse fields to be observed more easily. We have not made any

estimates about Li2Pd3B, which definitely needs to be considered. A similar study

could be done for other point groups that lack inversion center. Also, there can be

a theoretical study going beyond s-wave by including the possibility of additional

broken symmetries which also lead to different form of the Lifshitz invariants.

The transverse fields are the result of magnetization Mφ which must be arising
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due to component of the spin polarization in the transverse direction. Thus, Lif-

shitz invariants in cubic NCS lead to additional degrees of freedom in terms of Bphi

(magnetic flux perpendicular to applied field) and Jz to manipulate, which can be po-

tentially exploited in technological applications provided we have materials in which

these effects are enhanced enough to be observed and controlled.
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Chapter 4

Emergent Loop Current Order

from Pair Density Wave

Superconductivity

4.1 Introduction

The primary objective of the work presented in this chapter is to explain the pseu-

dogap phase of the underdoped cuprates. The pseudogap phase shows the signatures

of broken time-reversal (intraunit cell magnetic order), charge density wave (CDW)

order and diamagnetism (indicating superconducting correlations). To explain the

prevalence of superconducting (SC) correlations and CDW order, pair density wave

(PDW) order has been suggested as an order parameter for the pseudogap phase

[78, 102]. This proposal was bolstered by a demonstration that PDW order accounts

for anomalous quasiparticle (QP) properties observed by angle-resolved photoemis-

sion (ARPES) [102]. PDW superconductivity is a spatially varying SC state similar

to Fulde Ferrell Larkin Ovchinnikov (FFLO) states [103, 104]. It has been discussed

in a variety of contexts for the cuprates [102, 105, 106, 107, 108].
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Here we show that PDW order can naturally induce a translational invariant sec-

ondary order parameter that breaks both time-reversal and parity symmetries, but

is invariant under the product of the two. Similar order parameters with this sym-

metry have appeared in the context of the cuprates under the name magnetoelectric

(ME) order [109] and as ME loop current order [110]. Here we name such order ME

loop current order. We further show that there exists a mean-field PDW ground

state with ME loop current order that accounts for the Kerr effect and for intracell

magnetic order, with CDW order at the observed wavevectors 2Qx = (2Q, 0) and

2Qy = (0, 2Q), and which accounts for qp properties observed by ARPES [70]. This

PDW ground state has continuous U(1) degeneracies (associated with broken SC

gauge and translational symmetries) together with a discrete degeneracy associated

with the ME loop current order. Fluctuations of the U(1) degeneracies suppress both

the SC and CDW order, allowing for a state with spatial long-range ME loop current

order and short-range SC and CDW orders (Fig. 4.1). We propose that this state is

responsible for behavior that emerges at the pseudogap temperature T ∗ [70]. Such a

ME loop current state is conceptually similar to the nematic phase that arises due to

magnetic fluctuations proposed for the pnictides [111] and to a translational invari-

ant broken time-reversal symmetry state stemming from CDW and modulated bond

current orders [112].

Since it is closely related to ME loop current PDW state we find, and has been

used to explain the anomalous qp properties observed through ARPES experiments,

we highlight the recent PDW proposal of Lee [102]. In particular, this proposal

has its origin in a gauge theory description of the resonating valence bond phase.

Here, pairing occurs through a transverse gauge field and leads to an incommensurate

checkerboard PDW state for which the PDW order can be qualitatively expressed as

∆(x) = ∆Q[cos(Qx · x) + i cos(Qy · x)]. This state has secondary CDW order at

wavevectors 2Qx and 2Qy, in agreement with experiment. This state cannot account
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Figure 4.1: Qualitative temperature (T ) versus hole doping (p) phase diagram. Here LC
represents the ME loop current phase, PDW represents the pair density wave phase, AF
represents antiferromagnetism, and d-SC represents d-wave superconductivity.

for the observed signatures of translational invariant broken time-reversal symmetry∗.

In the following, we begin with a summary of the symmetry properties of PDW

order and introduce the translational invariant loop current order parameter. This

is followed by the relevant PDW action for tetragonal symmetry. For tetragonal

symmetry, it is not possible to analytically find all possible ground states. For this

reason we then turn to an analysis of PDW order for a theory with orthorhombic

symmetry. This theory allows a complete understanding of all allowed PDW ground

states and can used to establish the existence of a phase which has long-range trans-

lation invariant loop current order but no long-range superconducting or CDW order.

We then return to tetragonal symmetry and examine a loop current phase that is a

natural generalization of that found for orthorhombic symmetry. After this we show

there exists a PDW state that shares the same symmetry properties as the recent

tilted loop current phase discussed by Yakovenko [113]. This phase is consistent with

all observations of broken time-reversal symmetry in the underdoped cuprates. Fi-

∗See Appendix C
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nally, we examine the quasiparticle properties relevant to ARPES measurements for

the tetragonal ME PDW phase. We show that while the qp properties of the ME

PDW phase are similar to those found by Lee [102] for a PDW phase without loop

current order, there are observable differences that will allow these two phases to be

distinguished.

4.2 PDW induced translational invariant loop cur-

rent order

PDW order originates when paired fermions have a finite center of mass momentum.

It is characterized by order parameter components ∆Q which, under a translation

T , transform as ∆Q → eiT ·Q∆Q . Key here are the transformation properties under

time-reversal T and parity symmetries P:

∆Q
T−→ ∆∗

−Q and ∆Q
P−→ ∆−Q. (4.1)

These symmetries suggest a consideration of the secondary ME loop current order

parameter l = (|∆Qi
|2−|∆−Qi

|2). This order parameter has translational invariance,

is odd under both T and P, and invariant under the product T P. If a PDW ground

state satisfies |∆Qi
| 6= |∆−Qi

|, then the state will have non-zero l. This condition

is not satisfied by any of the PDW states proposed in the context of the cuprates

[105, 107, 102, 78]. This motivates the question, are there stable PDW ground states

that do exhibit loop current order? Below we show there are. We find that there exists

a PDW ground state that can qualify as a pseudogap mean-field order parameter. We

impose the following four criteria on such a state:

• It is a mean-field ground state of a Ginzburg-Landau-Wilson (GLW) action (for

parameters that are not a set of measure zero in the GLW action parameter space).
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• It has finite l and accounts for the Kerr effect and intracell magnetic order.

• It has CDW correlations at the observed momenta.

• It can account for ARPES spectra.

Prior to defining the PDW order parameter we consider in more detail, it is useful

to point out that there are two previously found PDW ground states that should have

finite l. The first is the well known Fulde-Ferrel (FF) phase for which ∆(x) = eiQ·x.

This state has no CDW order and therefore cannot represent a pseudogap order

parameter. The second state is found in Ref. [106], for which the gap can qualitatively

be represented as ∆(x) = ∆Q[e
iQx·x + eiQy ·x]. This state has CDW order, but this

order is not at a wavevector that matches experiment and, consequently, cannot be

a pseudogap order parameter†.

Criterion 4 strongly restricts our search for a pseudogap order parameter. Specif-

ically, we require that the Fermi arc is reproduced, the low energy bands near the

anti-nodal point are reproduced (which has a gap minimum at momentum kG 6= kF ,

where kF is Fermi momentum) [70], and the Fermi arc is derived from occupied states

moving up towards the Fermi energy [70, 102]. The PDW state discussed in Ref. [102]

gives rise to these properties, and it is natural to use this as a starting point. However,

the GLW theory based on the PDW momenta chosen in Ref. [102] does not produce

a ground state that satisfies the above four criteria and we must therefore consider

generalizations of this state. To identify such a generalization, we note that a key

feature of Ref. [102] that allows the ARPES spectra to be reproduced is the choice of

the momenta about which fermions are paired. In particular, the mean-field pairing

Hamiltonian for PDW order is

H =
∑

p,s

ǫpc
†
pscps +

∑

Qi,p

[∆Qi
(p)c†p+Ki↑c

†
−p+Ki,↓ + h.c.], (4.2)

†See Appendix C
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Figure 4.2: The positions of the momentaKi about which PDW Cooper pairs are formed.
The corresponding eight PDW order parameter components ∆Qi

have momenta Qi = 2Ki.
The solid line momenta apply only to the theory with orthorhombic symmetry, and all the
momenta (solid and dashed) are included for tetragonal symmetry. The displacement δKy

denotes the shift of the momenta Ki from the zone edge. When δKy = 0, the theory of
Ref. [102] is reproduced.

where cks is the fermion destruction operator with momentum k and spin s, ǫk is the

bare dispersion, and h.c. means Hermitian conjugate. The momenta about which the

fermions are paired are the Ki, leading to PDW order at Qi = 2Ki. In the following

we examine PDW order that stems from the Ki shown in Fig. 4.2. In the limit that

δKy = 0, the theory of Ref. [102] is reproduced. Consequently, we expect that for

sufficiently small δKy, the PDW states examined here should be able to reproduce

the ARPES spectra. Section 4.8 shows that this is indeed the case.

4.3 GLW Action: tetragonal symmetry

The momenta‡ specified in Fig. 4.2 lead to a PDW order parameter with eight com-

plex degrees of freedom: (∆Q1 ,∆Q2 ,∆Q3 ,∆Q4 ,∆−Q1 ,∆−Q2 ,∆−Q3,∆−Q4). To con-

‡Here we consider only δKy 6= 0. See Appendix C for the case when δKy = 0
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struct the GLW free energy, the transformation properties of this order parameter

under rotations are required. The point group symmetry is D4h with generators

{C4, σx, σz} where C4 is a 4-fold rotation about the c-axis and σx (σz) is a mir-

ror reflection through y-z (x-y) plane. Under these generators, the PDW order

(∆Q1 ,∆Q2 ,∆Q3 ,∆Q4 ,∆−Q1 ,∆−Q2,∆−Q3 ,∆−Q4) transforms as

C4 :(∆Q3 ,∆Q4 ,∆−Q1 ,∆−Q2 ,∆−Q3 ,∆−Q4,∆Q1 ,∆Q2),

σx :(∆Q2 ,∆Q1 ,∆−Q4 ,∆−Q3 ,∆−Q2 ,∆−Q1,∆Q4 ,∆Q1),

σz :(∆Q1 ,∆Q2 ,∆Q3 ,∆Q4 ,∆−Q1 ,∆−Q2 ,∆−Q3,∆−Q4).

(4.3)

Considering invariance under translations, rotations, time-reversal, parity and gauge

symmetries, the corresponding GLW action can be written as: S0,tet = S0,hom+S0,grad.

Here, S0,hom and S0,grad are

S0,hom = r0
∑

i
|∆Qi

|2 + β1

(

∑

i
|∆Qi

|2
)2

+ β2
(

|∆Q1 |2|∆−Q1 |2 + |∆Q2 |2|∆−Q2 |2 + |∆Q3 |2|∆−Q3 |2 + |∆Q4 |2|∆−Q4 |2
)

+ β3
(

|∆Q1 |2|∆Q2 |2 + |∆Q3 |2|∆Q4 |2 + |∆−Q1 |2|∆−Q2 |2 + |∆−Q3 |2|∆−Q4 |2
)

+ β4
(

|∆Q1 |2|∆Q3 |2 + |∆Q2 |2|∆Q4 |2 + |∆Q3|2|∆−Q1|2 + |∆Q4|2|∆−Q2|2

+ |∆−Q1 |2|∆−Q3 |2 + |∆−Q2 |2|∆−Q4 |2 + |∆−Q3 |2|∆Q1 |2 + |∆−Q4 |2|∆Q2 |2
)

+ β5
(

|∆Q1 |2|∆Q4 |2 + |∆−Q1 |2|∆−Q4 |2 + |∆Q2 |2|∆−Q3 |2 + |∆Q3 |2|∆−Q2 |2
)

+ β6
(

|∆Q2 |2|∆Q3 |2 + |∆Q4 |2|∆−Q1 |2 + |∆−Q2 |2|∆−Q3 |2 + |∆−Q4 |2|∆Q1 |2
)

+ β7
(

|∆Q1 |2|∆−Q2 |2 + |∆Q2 |2|∆−Q1 |2 + |∆Q3 |2|∆−Q4 |2 + |∆Q4 |2|∆−Q3 |2
)

+ βc1 {[∆Q1∆−Q1(∆Q2∆−Q2)
∗ +∆Q3∆−Q3(∆Q4∆−Q4)

∗] + c.c.}

+ βc2 {[∆Q1∆−Q1(∆Q3∆−Q3)
∗ +∆Q2∆−Q2(∆Q4∆−Q4)

∗] + c.c.}

+ βc3 {[∆Q1∆−Q1(∆Q4∆−Q4)
∗ +∆Q2∆−Q2(∆Q3∆−Q3)

∗] + c.c.} , (4.4)
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S0,grad = κ1
∑

i
|D⊥∆Qi

|2

+ κ2





∑

Qj=±Q1,2

(

|Dx∆Qj
|2 − |Dy∆Qj

|2
)

−
∑

Qk=±Q3,4

(

|Dx∆Qk
|2 − |Dy∆Qk

|2
)





+κ3





∑

Ql=±Q1,4

[(Dx∆Ql
)(Dy∆Ql

)∗ + c.c.] −
∑

Qm=±Q2,3

[(Dx∆Qm
)(Dy∆Qm

)∗ + c.c.]





+ κ4
∑

i
|Dz∆Qi

|2 + 1

2
(∇×A)2, (4.5)

where D = −i∇ − 2eA, D⊥ = (Dx, Dy), and B = ∇ × A. In the spatially ho-

mogeneous case (for which spatial variations of the order parameter are ignored),

the possible ground states depend upon nine unknown phenomenological constants.

This parameter space is too large to carry out a complete analysis of all the possible

ground states. However, with the above action, it is straightforward to find the con-

ditions under which a particular state is a local minimum. In Section 4.5, we shall

consider a simplified theory that applies to materials with orthorhombic symmetry

(such as YBCO), for which a complete analysis can be carried out. This analysis

yields a PDW state compatible with experiments and then we generalize this state

to tetragonal symmetry. Prior to the discussion of the solvable orthorhombic theory,

we first consider the secondary order parameters that are relevant for PDW order.

4.4 Secondary order parameters

Different PDW ground states are distinguished by the secondary order parameters

that are induced by the PDW order. These secondary order parameters play a

central role in situations in which the original PDW order does not appear either

due to impurities or due to fluctuations. In some circumstance, these secondary

order parameters have also been named vestigial order [114]. These secondary or-
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der parameters are identified by examining all possible bi-linear products of the

∆Qi
. This leads to five distinct kinds of secondary order: CDW [105, 106], or-

bital density wave order (ODW) [106] (with spatially modulated orbital currents),

translational invariant charge-4 superconductivity (4SC) [115, 116] (we do not con-

sider finite-momentum charge-4 superconductivity), strain [115, 116], and transla-

tional invariant loop current (LC) order. Specifically, the CDW order is given by

ρ2Q ∝ (∆Q∆
∗
−Q +∆−Q∆

∗
Q) or ρQ1−Q2 ∝ (∆Q1∆

∗
Q2

+∆−Q2∆
∗
−Q1

), the ODW order is

given by Lz
Q1−Q2

∝ i(∆Q1∆
∗
−Q2

−∆Q2∆
∗
−Q1

), the 4SC order is given by ∆4 ∝ ∆Q∆−Q ,

strain order is given by ǫi ∝ (|∆Q1 |2 + |∆−Q1 |2 − |∆Q2 |2 − |∆−Q2 |2) [105, 116], and

the loop current order, which was discussed above, by li ∝ (|∆Qi
|2 − |∆−Qi

|2).

4.5 GLW Action: orthorhombic symmetry

Here we consider the orthorhombic variant of Fig. 4.2. The GLW action in this case

allows all possible ground states to be found and further allows for a analysis of

preemptive loop current order discussed in the next section. The order parameter

has four complex degrees of freedom and is represented by the momenta given by the

solid arrows in Fig. 4.2. The same symmetry considerations as in Section 4.3 lead to

the partition function Z ∝
∫

ΠiD∆ie
−S0 with GLW action S0 given by

S0 = r0
∑

i
|∆Qi

|2 + β1
2

(

∑

i
|∆Qi

|2
)2

+
β2
2

(

|∆Q1 |2 + |∆−Q1 |2 − |∆Q2 |2 − |∆−Q2 |2
)2

+
β3
2

(

|∆Q1 |2 − |∆−Q1|2 − |∆Q2 |2 + |∆−Q2 |2
)2

+
β4
2

(

|∆Q1 |2 − |∆−Q1|2 + |∆Q2 |2 − |∆−Q2 |2
)2

+ β5 [∆Q1∆−Q1(∆Q2∆−Q2)
∗ +∆Q2∆−Q2(∆Q1∆−Q1)

∗]

+ κ1
∑

i
|D⊥∆i|2 + κ2

∑

i

(

|Dx∆i|2 − |Dy∆i|2
)
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+ κ3 [((Dx∆Q1)(Dy∆Q1)
∗ + (Dx∆−Q1)(Dy∆−Q1)

∗

− (Dx∆Q2)(Dy∆Q2)
∗ − (Dx∆−Q2)(Dy∆−Q2)

∗) + c.c.]

+ κ4
∑

i
|Dz∆Qi

|2 + 1

2
(∇×A)2. (4.6)

4.5.1 Ground states

For this action [Eq. (4.6)], it is possible to find all homogeneous mean-field ground

states analytically. These are listed in Table 4.1 together with the corresponding con-

ditions that the ground state represents a global minimum, secondary order param-

eters, and degeneracy manifold (degeneracy manifold specifies the number of states

with the same ground state energy). Of the ground states listed in Table 4.1, only

one state (named the ME PDW state) has the potential to represent a pseudogap

mean-field order parameter when generalized to tetragonal symmetry. This ME PDW

state has the order parameter (∆Q1 ,∆Q2,∆−Q1 ,∆−Q2) = ∆(1, 1, 0, 0) and is de-

picted in Fig. 4.3. It is stable when β1 + β2 > 0, β2 + β3 > 0, β4 < β2, β4 < β3,

and β4 < −|β5|/4. This state can be characterized by the secondary orders that it

induces: loop current order ly = |∆Q1 |2 − |∆−Q1 |2 + |∆Q2 |2 − |∆−Q2 |2; CDW or-

der ρ2Qx
= ∆Q1∆

∗
Q2

+ ∆−Q2∆
∗
−Q1

; and orbital density wave (ODW) order at the

same wavevector as the CDW order Lz
2Qx

= i(∆Q1∆
∗
−Q2

− ∆Q2∆
∗
−Q1

) (Lz is the

z-component of angular momentum). The ground state manifold of the ME PDW

state has a U(1)× U(1) × Z2 degeneracy. The two U(1) degeneracies arise from the

usual SC phase symmetry breaking and from the breaking of translational invariance.

The Z2 symmetry denotes the degeneracy between the (∆Q1 ,∆Q2 ,∆−Q1,∆−Q2) =

∆(1, 1, 0, 0) and ∆(0, 0, 1, 1) states and is associated with the ME loop current

order (which is of opposite sign for these two degenerate states). In the next section

we discuss how this ground state manifold can give rise to a preemptive transition for

which there is only ME loop current long-range order.
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Table 4.1: Properties of PDW Ground States for orthorhombic symmetry in Fig. 4.2. All possible PDW ground
states and accompanying CDW and ODW order. The second column shows the parameter regions for which these phases are
stable. In the third and fourth columns: 2Qx = (2Q, 0), 2Qy = (0, 2Q), other modes can be found by using the relationships
ρQ = (ρ−Q)

∗ and Lz
Q = (Lz

−Q)
∗. The fifth column gives all translational invariant order parameters with lx ∝ |∆Q1 |2−|∆−Q1 |2−

|∆Q2 |2 + |∆−Q2 |2, ly ∝ |∆Q1 |2 − |∆−Q1 |2 + |∆Q2 |2 − |∆−Q2|2, ∆4e,s ∝ ∆Q1∆−Q1 + ∆Q2∆−Q2 , ∆4e,d ∝ ∆Q1∆−Q1 − ∆Q2∆−Q2 ,
and ǫxy ∝ |∆Q1 |2 + |∆−Q1 |2 − |∆Q2 |2 −∆−Q2 |2. The sixth column gives the degeneracy of the ground state.

(∆Q1 ,∆Q2 ,∆−Q1 ,∆−Q2) Stability CDW modes ODW modes Q=0 Order Degeneracy Manifold

(1, 0, 0, 0)

β2 + β3 < 0, β2 + β4 < 0

none none
ǫxy
lx, ly

U(1)× Z2 × Z2β3 + β4 < 0

β2 + β3 + β4 < −|β5|/4

(1, 1, 0, 0)
β2 + β3 > 0, β4 < β2 ρ2Qx

Lz
2Qx

ly U(1)× U(1)× Z2
β4 < β3, β4 < −|β5|/4

(1, 0, 0, 1)
β2 + β4 > 0, β3 < β2 ρ2Qy

Lz
2Qy

lx U(1)× U(1)× Z2
β3 < β4, β3 < −|β5|/4

(1, 0, 1, 0)
β3 + β4 > 0, β2 < β3 ρ2Q1 none

ǫxy U(1)× U(1)× Z2
β2 < β4, β2 < −|β5|/4 ∆4e,s, ∆4e,d

(1, 1, 1, 1)

β5 < 0, β5 < 4β2
ρ2Q1 , ρ2Q2

ρ2Qx
, ρ2Qy

none ∆4e,s U(1)× U(1)× U(1)β5 < 4β3, β5 < 4β4
β5/4 < β2 + β3 + β4

(1, i, 1, i)

β5 > 0,−β5 < 4β2
ρ2Q1 , ρ2Q2

Lz
2Qy

, Lz
2Qx

∆4e,d U(1)× U(1)× U(1)−β5 < 4β3,−β5 < 4β4
−β5/4 < β2 + β3 + β4
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K2 K1

Qx

Figure 4.3: The ME PDW state for orthorhombic symmetry. The arrows Ki depict the
non-zero components of the PDW order parameter (which order at Qi = 2Ki). Together
with the PDW order at the two wavevectors Qi, this state has CDW order at the wavevector
2Qx = Q1 −Q2, ODW order at the same wavevector, and ME loop current order.

4.5.2 Emergent loop current order - Orthorhombic symme-

try

Fluctuations can lead to a preemptive transition in which the U(1)×U(1) symmetry

is not broken, but the Z2 symmetry is. Such a state will exhibit spatial long-range ME

loop current order and short-range SC and CDW order. To examine this possibility,

we consider the partition function given by the effective action in Eq. (4.6) in two

dimensions (2D), ignore the vector potential, and focus on the parameter regime for

which the ME PDW state is stable. We decouple the quartic terms through Hubbard-

Stratonovich (HS) transformations. In particular, we introduce the field ψ to decouple

the (
∑

i |∆i|2)2 term, ǫxy to decouple the (∆Q1 |2 + |∆−Q1 |2 − |∆Q2 |2 − |∆−Q2 |2)2

term, lx to decouple the (|∆Q1 |2 − |∆−Q1 |2 − |∆Q2|2 + |∆−Q2 |2)2 term, ly to decouple

the (|∆Q1|2 − |∆−Q1 |2 + |∆Q2 |2 − |∆−Q2 |2)2 term, and two complex fields ∆4e,s and

∆4e,d to decouple the [∆Q1∆−Q1(∆Q2∆−Q2)
∗ +∆Q2∆−Q2(∆Q1∆−Q1)

∗] term. The

resultant action is quadratic in the fields ∆Qi
and these fields can be integrated out.

For the parameter regime we examine, the phases with non-zero ∆4e,s and ∆4e,d are
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energetically unfavorable. Consequently we set these fields to zero. Additionally, the

remaining fields have Ising symmetry, so it is reasonable to treat these at a mean-field

level. This leads to the following effective action

Seff

A
=

l2x
2|β3|

+
l2y

2|β4|
− ψ2

2β1
−
ǫ2xy
2β2

+

∫

d2q

4π2
ln
[

(χ−1
1,q + ǫxy + lx + ly)(χ

−1
1,q + ǫxy − lx − ly)

(χ−1
2,q − ǫxy + lx − ly)(χ

−1
2,q − ǫxy − lx + ly)

]

, (4.7)

where A is the area, χ−1
1,q = r0 + ψ + κ1q

2 + κ2(q
2
x − q2y) + 2κ3qxqy, χ

−1
2,q = r0 + ψ +

κ1q
2 + κ2(q

2
x − q2y) − 2κ3qxqy. The anisotropy due to κ2 and κ3 can be removed by

rotating and re-scaling qx and qy, yielding (q̃2x + q̃2y)/κ̃ with κ̃ =
√

κ21 − κ22 − κ23, and

the integrals over momenta can then be carried out. Treating Seff within a mean field

approximation leads to the following self-consistency equations

r∗ = r̄0 − β̃1 ln
{[

(r∗ + ǫ∗xy)
2 − (l∗x + l∗y)

2][(r∗ − ǫ∗xy)
2 − (l∗x − l∗y)

2
]}

,

ǫ∗xy = −β̃2 ln
[

(r∗ + ǫ∗xy)
2 − (l∗x + l∗y)

2

(r∗ − ǫ∗xy)
2 − (l∗x − l∗y)

2)

]

,

l∗x = −β̃3 ln
[

(r∗ + l∗x)
2 − (ǫ∗xy + l∗y)

2

(r∗ − l∗x)
2 − (ǫ∗xy − l∗y)

2

]

,

l∗y = ln

[

(r∗ + l∗y)
2 − (ǫ∗xy + l∗x)

2

(r∗ − l∗y)
2 − (ǫ∗xy − l∗x)

2

]

,

(4.8)

where r∗ = r∗0 + ψ∗, the ∗ denotes a rescaling by a factor 4πκ̃/|β4|, β̃i = βi/|β4|,

r̄0 = r∗0 + 8β̃1 lnΛ + 4β̄1 ln(4πκ̃/|β4|) and Λ is the momentum cutoff. We find that

for parameters βi such that the ME PDW state is stable, the mean field solution

is given by ǫxy = lx = 0 and ly 6= 0. Therefore, the solution reduces to only two

self-consistency equations

r∗ = r̄0 − 2β̃1 ln
{[

(r∗2 − l∗y
2]
}

(4.9)
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and l∗y = 2 ln

[

(r∗ + l∗y)

(r∗ − l∗y)

]

(4.10)

Eq. (4.10) can be rewritten as§

r∗ = l∗y coth

(

l∗y
4

)

(4.11)

Eliminating r∗ from Eq. (4.11) using Eq. (4.9) we get

¯̄r0 = l̄y coth(l̄y) + β̃1 ln

[

l̄y
sinh(l̄y)

]

(4.12)

where l̄y =
l∗y
4
and ¯̄r0 = r̄0

4
− 2β̃1 ln 2. The mathematical analysis of this solution is

the same as that used to examine preemptive nematic order in Ref. [111]. This work

implies that there is a second order transition into a ME loop current state when

β̃1 > 2 (this becomes first order transition if β̃1 < 2). This analysis can be extended

to three dimensions and, provided κ4/κ̃ is sufficiently small, a second order transition

into a loop current phase will occur [111]. Such a preemptive ME loop current phase

will exhibit: SC and CDW correlations consistent with experiment [73, 74, 75, 77, 78];

broken time-reversal symmetry; broken parity symmetry; and is invariant under the

product of time-reversal and parity symmetry.

4.6 In-plane loop current order – tetragonal sym-

metry

The ME PDW state found in Section 4.5.1 has a natural generalization to tetrag-

onal symmetry. In particular, (∆Q1 ,∆Q2 ,∆Q3,∆Q4 ,∆−Q1 ,∆−Q2 ,∆−Q3 ,∆−Q4) =

(∆1,∆2, 0, 0, 0, 0,∆2,∆1) is a stable state of the tetragonal GLW action (this will

§coth(x) = ex+e−x

ex−e−x
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Figure 4.4: The ME PDW state for tetragonal symmetry. (a) The arrows Ki depict the
non-zero components of the PDW order parameter in the ME PDW state (which order at
Qi = 2Ki). This state has the same symmetry properties as the ME loop current phase
discussed in Ref. [110]. (b) ME Loop current state introduced in Ref. [110]. Here the larger
dark circles are Cu sites, the smaller circles are O sites, the arrows represent the direction
of the current, and the arrow heads and tails give the direction of the magnetic moments
induced by the currents.

become apparent in the analysis that follows). This state is depicted in Fig. 4.4(a).

It shares the same symmetries as the ME loop current state shown in Fig. 4.4(b) which

has been discussed in Refs. [110, 117]. Note that ∆1 6= ∆2, however, as δKy = 0,

we recover the state examined in Ref. [102] for which ∆1 = ∆2, so for sufficiently

small δKy, we expect that ∆1 ≈ ∆2. To carry out an analysis of this phase, we

follow the approach used in Section 4.5 for orthorhombic symmetry. In particular,

we re-write the free energy terms denoted by β1 to β7 as squares of basis functions

of irreducible invariants for tetragonal symmetry. This allows for a straightforward

HS transformation. While we can also introduce HS fields for the terms βci, for the

loop current phases we are interested in, these fields vanish (as they did in the or-

thorhombic case), consequently, we will not include these terms in the following. To

reformulate the quartic portion of the effective action, we set li = |∆Qi
|2 − |∆−Qi

|2
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and ǫi = |∆Qi
|2 + |∆−Qi

|2. Basis functions for irreducible representations of D4h are

then p1x = −l3 − l4, p1y = l1 + l2, p2x = l1 − l2, p2y = l3 − l4 (p1 and p2 are both

bases for the Eu representation), ψ =
∑

i ǫi (corresponding to the A1g representation),

γ = ǫ1−ǫ2+ǫ3−ǫ4 (corresponding to the A2g representation), ǫx2−y2 = ǫ1+ǫ2−ǫ3−ǫ4
(corresponding to the B1g representation), ǫxy = ǫ1 − ǫ2 − ǫ3 + ǫ4 (corresponding to

the B2g representation). In terms of these basis functions Eq. (4.4) can be rewritten:

S0,hom = r0
∑

i
|∆Qi

|2 + β̃1ψ
2 + β̃2p

2
1 + β̃3p

2
2 + β̃4p1.p2

+ β̃5γ
2 + β̃6ǫ

2
x2−y2 + β̃7ǫ

2
xy

+ βc1 {[∆Q1∆−Q1(∆Q2∆−Q2)
∗ +∆Q3∆−Q3(∆Q4∆−Q4)

∗] + c.c.}

+ βc2 {[∆Q1∆−Q1(∆Q3∆−Q3)
∗ +∆Q2∆−Q2(∆Q4∆−Q4)

∗] + c.c.}

+ βc3 {[∆Q1∆−Q1(∆Q4∆−Q4)
∗ +∆Q2∆−Q2(∆Q3∆−Q3)

∗] + c.c.} , (4.13)

where β̃1 = β1+(1/8)(β4+β6+β7−β2), β̃2 = (1/8)(β3−β2−β7), β̃3 = (1/8)(β7−β2−

β3), β̃4 = (1/4)(β6− β5), β̃5 = (1/8)(β4− β3− β6), β̃6 = (β2/4)+ (1/8)(β3− β4 − β6),

β̃7 = (1/8)(β2 + β6 − β4 − β7). In the above expression, all terms except βci and

β̃4 are squares of basis functions. To account for β̃4, we rotate l1i = cos θ p1i +

sin θ p2i and l2i = − sin θ p1i + cos θ p2i with cos θ =

√

(

β̃2−β̃3+
√

(β̃2−β̃3)2+β̃2
4

)2
+β̃2

4

2
√

(β̃2−β̃3)2+β̃2
4

and

sin θ =

√

(

β̃2−β̃3−
√

(β̃2−β̃3)2+β̃2
4

)2
+β̃2

4

2
√

(β̃2−β̃3)2+β̃2
4

. In terms of these new parameters Eq. (4.13) can

be expressed as (β̃'s and λ's have been rescaled by a factor of half for convenience)

S0,hom = r0
∑

i
|∆Qi

|2 + β̃1
2
ψ2 +

λ1
2

(

l21x + l21y
)

+
λ2
2

(

l22x + l22y
)

+
β̃5
2
γ2 +

β̃6
2
ǫ2x2−y2 +

β̃7
2
ǫ2xy

+ βc1 {[∆Q1∆−Q1(∆Q2∆−Q2)
∗ +∆Q3∆−Q3(∆Q4∆−Q4)

∗] + c.c.}

+ βc2 {[∆Q1∆−Q1(∆Q3∆−Q3)
∗ +∆Q2∆−Q2(∆Q4∆−Q4)

∗] + c.c.}

+ βc3 {[∆Q1∆−Q1(∆Q4∆−Q4)
∗ +∆Q2∆−Q2(∆Q3∆−Q3)

∗] + c.c.}
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= r0
∑

i
|∆Qi

|2 + β̃1
2

(

∑

i
|∆Qi

|2
)2

+
λ1
2

[(

−|∆Q3 |2 + |∆−Q3 |2 − |∆Q4 |2 + |∆−Q4 |2
)

cos θ

+
(

|∆Q1 |2 − |∆−Q1 |2 − |∆Q2 |2 + |∆−Q2 |2
)

sin θ
]2

+
λ1
2

[(

|∆Q1 |2 − |∆−Q1 |2 + |∆Q2 |2 − |∆−Q2 |2
)

cos θ

+
(

|∆Q3 |2 − |∆−Q3 |2 − |∆Q4 |2 + |∆−Q4 |2
)

sin θ
]2

+
λ2
2

[(

|∆Q3 |2 − |∆−Q3 |2 + |∆Q4 |2 − |∆−Q4 |2
)

sin θ

+
(

|∆Q1 |2 − |∆−Q1|2 − |∆Q2 |2 + |∆−Q2 |2
)

cos θ
]2

+
λ2
2

[(

−|∆Q1 |2 + |∆−Q1 |2 − |∆Q2|2 + |∆−Q2|2
)

sin θ

+
(

|∆Q3 |2 − |∆−Q3|2 − |∆Q4 |2 + |∆−Q4 |2
)

cos θ
]2

+
β̃5
2

(

|∆Q1 |2 + |∆−Q1 |2 − |∆Q2 |2 − |∆−Q2|2

+ |∆Q3|2 + |∆−Q3|2 − |∆Q4 |2 − |∆−Q4 |2
)2

+
β̃6
2

(

|∆Q1 |2 + |∆−Q1 |2 + |∆Q2 |2 + |∆−Q2 |2

− |∆Q3|2 − |∆−Q3 |2 − |∆Q4 |2 − |∆−Q4|2
)2

+
β̃7
2

(

|∆Q1 |2 + |∆−Q1 |2 − |∆Q2 |2 − |∆−Q2|2

− |∆Q3 |2 − |∆−Q3 |2 + |∆Q4 |2 + |∆−Q4 |2
)2

+ βc1 {[∆Q1∆−Q1(∆Q2∆−Q2)
∗ +∆Q3∆−Q3(∆Q4∆−Q4)

∗] + c.c.}

+ βc2 {[∆Q1∆−Q1(∆Q3∆−Q3)
∗ +∆Q2∆−Q2(∆Q4∆−Q4)

∗] + c.c.}

+ βc3 {[∆Q1∆−Q1(∆Q4∆−Q4)
∗ +∆Q2∆−Q2(∆Q3∆−Q3)

∗] + c.c.} , (4.14)

where λ1 =
β̃2+β̃3+

√

(β̃2−β̃3)
2
+β̃2

4

2
and λ2 =

β̃2+β̃3−
√

(β̃2−β̃3)
2
+β̃2

4

2
. Notice that if λ1 < 0,

βci are sufficiently small, and all other quartic terms are positive, then the ME loop

current phase will be the mean-field ground state. This is the limit that we will

examine further. In particular, in the next paragraph, we examine preemptive loop

current order emerging from this ME PDW phase.
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We decouple the quartic terms of Eq. (4.14) through HS transformations. In

particular, introducing ψ, l1x, l1y, l2x, l2y, γ, ǫx2−y2 and ǫxy to decouple the second

((
∑

i |∆i|2)2), third, fourth, fifth, sixth, seventh, eighth and ninth term respectively.

The resultant action is quadratic in fields ∆Qi
and these fields can be integrated out.

As in the orthorhombic case, the terms with βci do not contribute to the effective

action in the ME PDW phase, so we ignore these terms (HS decomposition of these

terms can proceed through charge-4e superconducting fields, ignoring these terms is

equivalent to setting these fields to zero). The remaining fields have discrete symme-

tries, so it is reasonable to treat these at a mean-field level. This leads to the following

effective action (note we have set λ1 < 0 and all other quartic terms are positive)

Seff,tet

A
=
l21x + l21y
2|λ1|

−
l22x + l22y
2λ2

− ψ2

2β̃1
− γ2

2β̃5
−
ǫ2x2−y2

2β̃6
−
ǫ2xy

2β̃7

+

∫

d2q

4π2
ln
[

(χ−1
1,q + γ + ǫx2−y2 + ǫxy − l1x sin θ − l1y cos θ + l2x cos θ − l2y sin θ)

(χ−1
1,q + γ + ǫx2−y2 + ǫxy + l1x sin θ + l1y cos θ − l2x cos θ + l2y sin θ)

(χ−1
2,q − γ + ǫx2−y2 − ǫxy + l1x sin θ − l1y cos θ − l2x cos θ − l2y sin θ)

(χ−1
2,q − γ + ǫx2−y2 − ǫxy − l1x sin θ + l1y cos θ + l2x cos θ + l2y sin θ)

(χ−1
3,q + γ − ǫx2−y2 − ǫxy + l1x cos θ − l1y sin θ + l2x sin θ + l2y cos θ)

(χ−1
3,q + γ − ǫx2−y2 − ǫxy − l1x cos θ + l1y sin θ − l2x sin θ − l2y cos θ)

(χ−1
4,q − γ − ǫx2−y2 + ǫxy + l1x cos θ + l1y sin θ + l2x sin θ − l2y cos θ)

(χ−1
4,q − γ − ǫx2−y2 + ǫxy − l1x cos θ − l1y sin θ − l2x sin θ + l2y cos θ)

]

, (4.15)

where χ−1
1,q = r0 + ψ + κ1(q

2
x + q2y) + κ2(q

2
x − q2y) + 2κ3qxqy, χ

−1
2,q = r0 + ψ + κ1(q

2
x +

q2y) + κ2(q
2
x − q2y)− 2κ3qxqy, χ

−1
3,q = r0 + ψ + κ1(q

2
x + q2y)− κ2(q

2
x − q2y)− 2κ3qxqy, and

χ−1
4,q = r0 + ψ + κ1(q

2
x + q2y)− κ2(q

2
x − q2y) + 2κ3qxqy.

To carry out the integrals, the anisotropy in χ−1
i,q due to κ2 and κ3, can again

be removed by rotating and re-scaling qx and qy, yielding (q̃2x + q̃2y)/κ̃ with κ̃ =
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√

κ21 − κ22 − κ23. We find the self-consistency equations by setting the first derivatives

with respect to the field equal to zero. The relevant solution that minimizes the action

satisfies γ = 0, ǫx2−y2 = 0, l1x = l1y ≡ ℓ1 and l2x = l2y ≡ ℓ2 and the self consistency

equations become (here r = r0 + ψ and r̄0 = r0 + (4β̃1/πκ̃) lnΛ)

r = r̄0 −
8β̃1
πκ̃

ln
{[

(r + ǫxy)
2 − (ℓ1 cos θ + ℓ1 sin θ + ℓ2 sin θ − ℓ2 cos θ)

2]

[

(r − ǫxy)
2 − (ℓ1 cos θ − ℓ1 sin θ + ℓ2 sin θ + ℓ2 cos θ)

2]} , (4.16)

ǫxy = − β̃7
4πκ̃

{

ln

[

(r + ǫxy)
2 − (ℓ1 sin θ + ℓ1 cos θ − ℓ2 cos θ + ℓ2 sin θ)

2

(r − ǫxy)
2 − (ℓ1 cos θ − ℓ1 sin θ + ℓ2 sin θ + ℓ2 cos θ)

2

]

+ ln

[

(r + ǫxy)
2 − (ℓ1 cos θ + ℓ1 sin θ + ℓ2 sin θ − ℓ2 cos θ)

2

(r − ǫxy)
2 − (ℓ1 sin θ − ℓ1 cos θ − ℓ2 cos θ − ℓ2 sin θ)

2

]}

, (4.17)

ℓ1 =
|λ1|
4πκ̃

{

cos θ ln

[

(r + ℓ1 cos θ + ℓ2 sin θ)
2 − (ǫxy + ℓ1 sin θ − ℓ2 cos θ)

2

(r − ℓ1 cos θ − ℓ2 sin θ)
2 − (ǫxy − ℓ1 sin θ + ℓ2 cos θ)

2

]

+ sin θ ln

[

(r + ℓ1 sin θ − ℓ2 cos θ)
2 − (ǫxy + ℓ1 cos θ + ℓ2 sin θ)

2

(r − ℓ1 sin θ + ℓ2 cos θ)
2 − (ǫxy − ℓ1 cos θ − ℓ2 sin θ)

2

]}

, (4.18)

ℓ2 = − λ2
4πκ̃

{

cos θ ln

[

(r − ℓ1 sin θ + ℓ2 cos θ)
2 − (ǫxy − ℓ1 cos θ − ℓ2 sin θ)

2

(r + ℓ1 sin θ − ℓ2 cos θ)
2 − (ǫxy + ℓ1 cos θ + ℓ2 sin θ)

2

]

+ sin θ ln

[

(r + ℓ1 cos θ + ℓ2 sin θ)
2 − (ǫxy + ℓ1 sin θ − ℓ2 cos θ)

2

(r − ℓ1 cos θ − ℓ2 sin θ)
2 − (ǫxy − ℓ1 sin θ + ℓ2 cos θ)

2

]}

. (4.19)

To address whether or not there can be a second order transition into a phase

with loop current order, we expand in powers of ℓ1. To cubic order in ℓ1 we find

ǫxy = − β̃∗
7

2(2β̃∗
7 + r)r

[

4 cos 2θ ℓ1ℓ2 + 2 sin 2θ(−ℓ21 + ℓ22)
]

, (4.20)
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ℓ2 ∼ O(ℓ31), (4.21)

4r2(r − |λ∗1|)ℓ1 = −4 |λ∗1|
β̃∗
7

2(2β̃∗
7 + r)

sin2 2θ ℓ31 −
2

3
|λ∗1| (cos 4θ − 3) ℓ31, (4.22)

where ∗ denotes that the coefficients are scaled by πκ̃. Thus to leading order in ℓ1,

r = |λ∗1|. Going to next higher order, let r = rδ=0 + δ = |λ∗1| + δ where δ is small

correction such that (δ/ |λ∗1| ≪ 1), then the previous equation becomes

δ

|λ∗1|
=

(

− α7

2α7 + 1
+

1

6

)

sin2 2θ ℓ∗1
2 − 1

6
cos2 2θ ℓ∗1

2 +
1

2
ℓ∗1

2 (4.23)

and Eq. (4.16) leads to

¯̄r0 = 1 + (1 + 32α1)
δ

|λ∗1|
− 16α1ℓ

∗
1
2, (4.24)

where ¯̄r0 = (r̄0/ |λ∗1|) − 32α1 ln |λ∗1|, α1 = β̃1/ |λ1|, α7 = β̃7/ |λ1| and ℓ∗1 = ℓ1/ |λ∗1|.

Eliminating δ between Eqs. (4.23) and (4.24), we obtain

¯̄r0 = 1 + (1 + 32α1)

[(

− α7

1 + 2α7

+
1

6

)

sin2 2θ − 1

6
cos2 2θ

]

ℓ∗1
2 +

1

2
ℓ∗1

2. (4.25)

Equation (4.25) shows that a local maximum ¯̄r0 = 1 occurs if the quadratic term in

ℓ∗1 is negative. Since ¯̄r0 is monotonically increasing with temperature, this maximum

gives the highest possible transition temperature (provided there are no other local

maxima at higher ¯̄r0 – here we note that no such maxima occurred in a related model

[111]) and the corresponding transition is second order. However, if the quadratic

term in ℓ∗1 is positive, then the largest value of ¯̄r0 will occur at non-zero ℓ
∗
1, indicating

a first order transition. This emergent loop current phase shares the same symmetry

properties as the ME loop current state discussed in Refs. [110, 117]. While such a
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phase captures much of the physics associated with broken time-reversal symmetry, it

does not provide a complete explanation of all the signatures of broken time-reversal

symmetry in the pseudogap phase [113]. We address this in the next section.

4.7 Tilted loop current order

It has been argued that the Kerr effect [69, 118] is zero for the ME loop current state

discussed above and a non-vanishing Kerr effect requires additional physics (such as

a structural transition [119] or ordering along the c-axis). This has been discussed

in detail by Yakovenko [113] and he has identified a modified loop current state

consistent with all experiments of broken time-reversal symmetry. This tilted loop

��
��
��
��

��
��
��
��

O

Cu

(a)

K4−

K3−

K2+ K1+

(b)

Figure 4.5: (a) Tilted loop current state proposed by Yakovenko [113]. The arrows
on the bonds depict the direction of the current, the longer arrows depict the associated
magnetic moments. (b) PDW state with the same symmetry properties as the tilted loop
current state. The arrows Ki depict the non-zero components of the PDW order parameter.
Wavevectors labeled “+”(black arrows) are above the x-y plane and those labeled “–”(red
arrows) are below the x-y plane.
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current state is shown in Fig. 4.5(a). It is possible to find a PDW state that shares

the same symmetry properties as the tilted loop current state (once the SC and CDW

orders are removed through fluctuations). The simplest way to find such a state is to

allow for the pairing momenta to have a c-axis component. The corresponding PDW

order parameter has sixteen complex degrees of freedom (eight for momenta Qi+Qzẑ

and eight for PDW momenta Qi − Qz ẑ where the Qi are the momenta considered

in Section 4.6). Here we do not present a complete analysis of this order parameter.

However, it is possible to show that the state depicted in Fig. 4.5(b) is a mean-field

ground state and thus represents a viable order parameter. In this state only four

of the PDW momenta have non-zero order parameter components. As depicted in

Fig. 4.5(b), two of these momenta lie below the x-y plane and two lie above the

x-y plane. When the SC and CDW order are removed through fluctuations, this

state will have the same symmetry properties as the tilted loop-current phase and is

therefore also consistent with all existing experiments that show broken time-reversal

symmetry.

4.8 Quasiparticle properties of loop current PDW

phases

In this section we examine whether the broken time-reversal symmetric PDW states

are consistent with ARPES measurements. Here we focus our analysis on the tetrag-

onal ME PDW state discussed in Section 4.6 (qualitatively similar results will appear

for the PDW state discussed in Section 4.7). To examine the qp properties, we con-

sider the Hamiltonian

H =
∑

k,s

ǫkc
†
kscks +

∑

Qi,k

[∆Qi
(k)c†

k+
Qi
2
,↑
c†
−k+

Qi
2
,↓
+ h.c.], (4.26)
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where cks is the fermion destruction operator with momentum k and spin s, ǫk is the

bare dispersion, and h.c. means Hermitian conjugate. We compute the eigenstates of

Eq. (4.26) and the spectral weight using

I(ω,k) = Im
∑

α

|uα,k|2
w − Eα,k − iΓ

, (4.27)

where Eα,k are the eigenenergies of Eq. (4.26), uα,k is the weight of the fermion with

momentum k in the band α, and the damping factor Γ models short-range order in

the PDW phase. In our calculations we use the bare dispersion ǫk given in Ref. [70]

and set Γ = 0.1 eV. In addition, we set ∆Qi
(k) = ∆ifi(k −Ki) which localizes the

pairing in k space as described in [102] (for ∆Q1 , f1(k − K1) = e−(ky−Ky)2/k20 , the

other fi are determined by tetragonal symmetry). Figures 4.6(a) and 4.6(b) show the

bands weighted by a factor |uα,k|2 for fixed ky = π and ky = π−0.7 as a function of kx

(with ∆1 = ∆2). These first two figures show that the Fermi arc results from occupied

states moving towards the Fermi level, a point emphasized in Ref. [102]. In Fig. 4.6(c)

we illustrate the role of ∆1 6= ∆2. Notice that the ARPES bands become asymmetric

about kx = 0. This asymmetry is consistent with existing ARPES measurements and
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−.3−.2−.1 0 .1 .2 .3

−0.1

0

0.1

0.2

kx/π

E
/e

V

 

 

0.2

0.4

0.6

0.8

(c) ∆1 6= ∆2; ky = π

Figure 4.6: Quasiparticle spectrum for the ME PDW state with δKy = 0.1. Shown are
the bare electron dispersion (the white parabola) and the PDW bands weighted by |u(k)|2
(the negative energy portion is observable by ARPES). (a) ∆1 = ∆2 = 75 meV and ky = π.
(b) ∆1 = ∆2 = 75 meV and ky = π − 0.7, here occupied bands have moved up to ǫF to
create the Fermi arcs. (c) ∆1 = 85 meV, ∆2 = 65 meV, and ky = π. Notice the asymmetry
in kx about kx = 0. [The spectra was calculated by Drew S. Melchert]
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Figure 4.7: Spectral weight showing Fermi arcs for ME PDW state. Here ∆1 = ∆2 = 75
meV and Γ = 10 meV. [The spectal weight map was calculated by Drew S. Melchert]

it would be of interest to examine this experimentally. We note that this asymmetry

does not exist in the PDW phase proposed in Ref. [102]. Fig. 4.7 shows the spectral

weight for ∆1 = ∆2 = 75 meV revealing the Fermi arcs.

4.9 Conclusions

PDW order has earlier been proposed to account for the SC correlations and CDW

order in pseudogap phase in cuprates. Also proposals for translational invariant

loop current orders already exist to account for broken time reversal in pseudogap

phase. This work shows that PDW order naturally induces what we call ME loop

current order parameter as secondary order parameter, which has the same symmetry
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properties as existing proposals. ME loop current order parameter is translational

invariant. It breaks both time-reversal and parity symmetries, but is invariant under

the product of the two. This translational invariant ME loop current order parameter

can account for the signatures of broken time-reversal like intracell magnetic order

and Kerr effect.

We have shown that for both orthorhombic and tetragonal pairing symmetries,

there exist a mean-field PDW ground state with ME loop current order that accounts

for CDW order at observed wave vectors, intracell magnetic order and SC correlations.

Going further, we restored the continuous symmetries by including the fluctuations

associated with U(1) degeneracies in the GLW action using a Hubbard-Stratonovich

transformation. This allows for a state with emergent long-range ME loop current

order coexisting with short range SC and CDW correlations, which agrees with the

observation that Tmag ≈ T ∗, where Tmag is the temperature at which intracell magnetic

order appears and T ∗ is pseudogap temperature.

We have also identified a state, by including c-axis component to the pairing

momenta, that has the same symmetry properties as Yakovenko’s loop current order

which can account for Kerr effect. Since experiments reveal that Kerr temperature

TKerr is lower than T ∗(≈ Tmag) [68, 119], we propose that as temperature is lowered

initially only the c-component of the magnetic order (in-plane loop current order)

sets in near T ∗ and then on further decreasing the temperature somehow the pairing

correlations along the c-axis become active leading to in-plane component of the

magnetic order (in addition to c-axis component) and Kerr effect. This proposal

is further bolstered by the observation that at Tmag only the c-component of the

magnetic order appears and the in-plane component appears only when temperature

is further reduced [120].

The ME loop current ground state considered here, for tetragonal symmetry, is

shown to have compliance with the ARPES data. In particular, not only does it lead
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to Fermi arcs but it also agrees with the observation that Fermi arcs are produced

by occupied states moving up (from below the Fermi energy) as you go from anti-

nodal region to nodal region. This cannot be explained by considering charge order

as the primary order because Fermi arcs in that case are theoretically shown to be

produced by occupied states moving down [102] as you go from antinodal region to

nodal region. Our theoretical model also results in an asymmetry in the magnitude of

the minimum gap wavevectors on the two side of the zero of the axis (see Fig. 4.6(c)).

Such an observation is consistent with the existing ARPES data [70] though it has

been attributed to experimental artifact. In light of our prediction, it would be

interesting to further examine it experimentally.

In essence, the work produced here explains all observations of broken symmetries

in the pseudogap phase of cuprates within a single theory.
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[82] S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, 3rd ed.
(Springer, 2003).

[83] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950), [L. D.
Landau, Collected papers (Oxford: Pergamon Press, 1965) p. 546].

[84] L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959), [Sov. Phys. JETP 9, 1364
(1959)].

[85] L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 19 (1937), [Ukr. J. Phys. 53, 25-35
(2008)].

[86] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd ed., Course
of Theoretical Physics, Vol. 5 (Butterworth-Heinemann, Oxford, Boston,
Johannesburg, Melbourn, New Delhi, Singapore, 1980).

[87] A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957), [Sov. Phys. JETP 5,
1174 (1957)].

[88] A. C. Rose-Innes and E. H. Rhoderick, Introduction to Superconductivity, 2nd
ed., edited by R. Smoluchowski and N. Kurti, International Series in Solid
Stae Physics, Vol. 6 (Permagon Press, 1988).

[89] D. Saint-James and P. G. de Gennes, Phys. Lett. 7, 306 (1963).

[90] C.-K. Lu and S. Yip, Phys. Rev. B 77, 054515 (2008).

[91] C.-K. Lu and S. Yip, J. Low. Temp. Phys. 155, 160 (2009).

[92] V. P. Mineev and K. V. Samokhin, Zh. Eksp. Teor. Fiz. 105, 747 (1994),
[JETP 78, 401 (1994)].

http://dx.doi.org/10.1103/PhysRevB.81.054510
http://arxiv.org/abs/1402.7371v1
http://arxiv.org/abs/1402.7371v1
http://dx.doi.org/10.1103/revmodphys.75.473
http://stacks.iop.org/1402-4896/2004/i=T109/a=005
http://dx.doi.org/10.1088/0034-4885/59/10/002
http://dx.doi.org/10.1103/PhysRevB.77.054515
http://dx.doi.org/10.1007/s10909-009-9876-0


REFERENCES 97

[93] V. M. Edelstein, J. Phys.: Condens. Matter 8, 339 (1996).

[94] V. P. Mineev and K. V. Samokhin, Phys. Rev. B 78, 144503 (2008).

[95] O. V. Dimitrova and M. V. Feigel’man, Pis’ma Zh. Eksp. Teor. Fiz. 78, 1132
(2003).

[96] D. F. Agterberg and R. P. Kaur, Phys. Rev. B 75, 064511 (2007).

[97] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley India (P) Ltd., New
Delhi, 2007).

[98] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes: The Art of Scientific Computing (FORTRAN Version)
(Cambridge University Press, New York, 1989).

[99] I. A. Luk’yanchuk and M. E. Zhitomirsky, Supercond. Rev. 1, 207 (1995).

[100] D. F. Agterberg, Phys. Rev. B 58, 14 484 (1998).

[101] C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).

[102] P. A. Lee, Phys. Rev. X 4, 031017 (2014).

[103] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).

[104] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964).

[105] E. Berg, E. Fradkin, S. A. Kivelson, and J. M. Tranquada, New J. Phys. 11,
115004 (2009).

[106] D. F. Agterberg and H. Tsunetsugu, Nat. Phys. 4, 639 (2008).

[107] P. Corboz, T. M. Rice, and M. Troyer, Phys. Rev. Lett. 113, 046402 (2014),
arXiv:1402.2859v2 [cond-mat.str-el] .

[108] M. Zelli, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 84, 174525 (2011).

[109] J. Orenstein, Phys. Rev. Lett. 107, 067002 (2011).

[110] M. E. Simon and C. M. Varma, Phys. Rev. Lett. 89, 247003 (2002).

[111] R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin, and J. Schmalian,
Phys. Rev. B 85, 024534 (2012).

http://dx.doi.org/10.1088/0953-8984/8/3/012
http://dx.doi.org/10.1103/PhysRevB.78.144503
http://dx.doi.org/10.1134/1.1644308
http://dx.doi.org/10.1103/PhysRevB.75.064511
http://arxiv.org/abs/cond-mat/9501091
http://dx.doi.org/10.1103/PhysRevB.58.14484
http://dx.doi.org/10.1103/PhysRevLett.8.250
http://dx.doi.org/10.1103/PhysRevX.4.031017
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1088/1367-2630/11/11/115004
http://dx.doi.org/10.1038/nphys999
http://dx.doi.org/10.1103/PhysRevLett.113.046402
http://arxiv.org/abs/1402.2859v2
http://dx.doi.org/10.1103/PhysRevB.84.174525
http://dx.doi.org/10.1103/PhysRevLett.107.067002
http://dx.doi.org/10.1103/PhysRevLett.89.247003
http://dx.doi.org/ 10.1103/PhysRevB.85.024534


REFERENCES 98

[112] Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149 (2014).

[113] V. M. Yakovenko, Physica B: Condensed Matter 460, 159–164 (2015).

[114] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, (2014), arXiv:1407.4480v2
[cond-mat.supr-con] .

[115] E. Berg, E. Fradkin, and S. A. Kivelson, Nat. Phys. 5, 830 (2009).

[116] L. Radzihovsky and A. Vishwanath, Phys. Rev. Lett. 103, 010404 (2009).

[117] V. Aji, Y. He, and C. M. Varma, Phys. Rev. B 87, 174518 (2013).
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Appendix A

Modified Bessel functions

A.1 Some properties of Modified Bessel functions

(

1

z

d

dz

)k

{zνLν(z)} = zν−kLν−k, Lν =















Iν

eiπνKν

(A.1)

where Iν and Kν are modified Bessel functions. This leads to the identities

K0(x) = −K1(x)

x
−K ′

1(x) (A.2)

I0(x) =
I1(x)

x
+ I ′1(x) (A.3)

Also,

K ′
0(x) = −K1(x) and I ′0(x)I1(x) (A.4)

Another useful identity is

Iν(x)K
′
ν(x)− I ′ν(x)Kν = −1

x
(A.5)
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A.1.1 Limiting forms for small arguments

In the limit z → 0

K0(z) ∼ − ln(z) (A.6)

Kν(z) ∼ 1

2
Γ(ν)(

1

2
z)−ν , (ℜ ν > 0) (A.7)

Iν(z) ∼ (
1

2
z)ν/Γ(ν + 1), (ν 6= −1,−2, . . . ) (A.8)

A.1.2 Asymptotic expansions

Defining µ = 4ν2, in the limit |z| → ∞, the asymptotic expansions are

Kν(z) ∼
√

π

2z
e−z

{

1 +
(µ− 1)

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+

(µ− 1)(µ− 9)(µ− 25)

3!(8z3)

}

,

(where |arg z| < 3

2
π) (A.9)

Iν(z) ∼
ez√
2πz

{

1− (µ− 1)

8z
+

(µ− 1)(µ− 9)

2!(8z)2
− (µ− 1)(µ− 9)(µ− 25)

3!(8z3)

}

,

(where |arg z| < 1

2
π) (A.10)



101

Appendix B

Numerical codes

B.1 London limit solution

! The equation being solved is

! Az(x) = (MU/(KAPPA**2))(K0(x)*(int(0 to x) dt t*I0(t)*K0(t))

! + I0(x)*(int(x to infnty) dt t*((K0(t))^2)) - K0/2)

! Output is Az, Bphi and Jz

MODULE KINDS

! To determine the kinds of single and double precision real values on a

! particular computer

IMPLICIT NONE

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(3), MEDIUM = SELE&

& CTED_INT_KIND (9), LONG = SELECTED_INT_KIND(18)

INTEGER, PARAMETER :: SGL = KIND(0.0), DBL = KIND(0.0D0)

END MODULE KINDS

!****************************************************************************

!****************************************************************************

MODULE FILE_NOMEN

USE KINDS

IMPLICIT NONE

CONTAINS

SUBROUTINE FILE_NAME(STRING, MU, FILENAME1, FILENAME2)
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CHARACTER(LEN = *) :: STRING

CHARACTER(LEN = 25) :: FILENAME1, FILENAME2

REAL(DBL) :: MU

IF(MU .LT. 10.0_DBL) THEN

WRITE(STRING, ’(F5.3)’) MU

ELSE IF (MU .LT. 100.0_DBL) THEN

WRITE(STRING, ’(F6.3)’) MU

END IF

FILENAME1 = ’lvec2mu’//TRIM(STRING)//’.dat’

FILENAME2 = ’ljzmu’//TRIM(STRING)//’.dat’

END SUBROUTINE FILE_NAME

END MODULE FILE_NOMEN

!*****************************************************************************

!*****************************************************************************

PROGRAM LONDONZ

USE KINDS

USE FILE_NOMEN

USE numerical_libraries !uses the ISML libraries

REAL(DBL) :: XLEFT, XRIGHT, H, X, Az, Bphi, Jz, KAPPA, MU, PI

REAL(DBL) :: KAPMIN, KAPMAX, KAPSTEP, MUMIN, MUMAX, MUSTEP

REAL(DBL) :: F1, F3, A, B, RES1, RES3, ERREST1, ERREST3

REAL(DBL) :: K0, I0, K1, I1, ERRABS, ERRREL

REAL(DBL) :: F2, F4, BOUND, RES2, RES4, ERREST2, ERREST4

INTEGER(MEDIUM) :: K, M

INTEGER(SHORT) :: L, N

CHARACTER(LEN = 19) :: STRING

CHARACTER(LEN = 25) :: FILENAME1, FILENAME2

INTEGER :: INTERV

EXTERNAL F1, F2, F3, F4

ERRABS = 0.0 !Set error tolerances

ERRREL = 0.001

WRITE(*, *) ’MODIFY MODULE FILE_NOMEN TO EDIT THE OUTPUT FILE NAMES’

WRITE (*, *) ’ENTER KAPPA MINIMUM’
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READ (*, *) KAPMIN

WRITE (*, *) ’ENTER KAPPA MAXIMUM’

READ (*, *) KAPMAX

WRITE (*, *) ’ENTER KAPPA STEP (NON ZERO POSITIVE #)’

READ (*, *) KAPSTEP

WRITE (*, *) ’ENTER MINIMUM COUPLING PARAMETER’

READ (*, *) MUMIN

WRITE (*, *) ’ENTER MAXIMUM COUPLING PARAMETER’

READ (*, *) MUMAX

WRITE (*, *) ’ENTER MU STEP (NON ZERO POSITIVE #)’

READ (*, *) MUSTEP

PI = 3.141592653589793238

XLEFT = 0.0_DBL

XRIGHT = 40.0_DBL

H = 0.0001

M = 168651

L = NINT((MUMAX - MUMIN)/MUSTEP) + 1

WRITE(*, *) ’# OF MU VALUES BEING SOLVED FOR IS’, L

N = NINT((KAPMAX - KAPMIN)/KAPSTEP) + 1

WRITE(*, *) ’# OF KAPPA VALUES BEING SOLVED FOR IS’, N

OPEN(UNIT = 3, FILE = ’lmu_filename.dat’, STATUS = ’REPLACE’)

WRITE (3, *) "# The first column contains mu value, second ",&

& " column contains the name of the corresponding result file and"

WRITE (3, *) "# third column contains the name of the ",&

& "corresponding result file for current Jz."

MU = MUMIN

DO I = 1, L

CALL FILE_NAME(STRING, MU, FILENAME1, FILENAME2)

WRITE(3, *) MU, " ", TRIM(FILENAME1), " ", TRIM(FILENAME2)

OPEN(UNIT = 1, FILE = TRIM(FILENAME1), STATUS = ’REPLACE’)

OPEN(UNIT = 2, FILE = TRIM(FILENAME2), STATUS = ’REPLACE’)

WRITE (1, *) "# Coupling parameter mu =", MU

WRITE (1, *) "# "
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WRITE (1, *) "# First column is spatial coordinate, second ",&

& "# column contains vector potential(Az),"

WRITE (1, *) "#third column contains magnetic flux (Bphi)."

WRITE (1, *) "# "

WRITE (2, *) "# Coupling parameter mu =", MU

WRITE (2, *) "# "

WRITE (2, *) "# First column is spatial coordinate, second ",&

& "column contains Current(Jz)."

WRITE (2, *) "# "

N = 0

KAPPA = KAPMIN

DO

IF(KAPPA .GT. KAPMAX) EXIT

N = N + 1

WRITE (1, *) "# G-L PARAMETER KAPPA =", KAPPA

WRITE (2, *) "# G-L PARAMETER KAPPA =", KAPPA

DO K = 1, M-1

X = XLEFT + (K)*H

! X = 0 is excluded for K0 is divergent there

K0 = DBSK0(X)

I0 = DBSI0(X)

K1 = DBSK1(X)

I1 = DBSI1(X)

A= 0.0_DBL

B = X

BOUND = X

INTERV = 1

CALL DQDAGS (F1, A, B, ERRABS, ERRREL, RES1, ERREST1)

CALL DQDAGI (F2, BOUND, INTERV, ERRABS, ERRREL, RES2, ERREST2)

CALL DQDAGS (F3, A, B, ERRABS, ERRREL, RES3, ERREST3)

CALL DQDAGI (F4, BOUND, INTERV, ERRABS, ERRREL, RES4, ERREST4)

Az = K0*RES1 + I0*RES2 - K0/2

Bphi = K1*RES3 + I1*RES4 - K1/2
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Jz = K0 - K0*RES1 - I0*RES2

Az = (MU/(KAPPA**2)) * Az

Bphi = (MU/(KAPPA**2)) * Bphi

Jz = (MU/(4.0_DBL*PI*(KAPPA**2))) * Jz

Jz = 10**6 * Jz

! Multiplied with 10^6 to obtain proper scaling for plotting.

WRITE (1, *) X, Az, Bphi

WRITE (2, *) X, Jz

END DO

WRITE (1, *) "#*************************************",&

& "*********************************"

WRITE (1, *) " "

WRITE (1, *) " "

WRITE (2, *) "#*************************************",&

& "*********************************"

WRITE (2, *) " "

WRITE (2, *) " "

KAPPA = KAPPA + KAPSTEP

END DO

WRITE(*, *) ’# of Kappa values solved for is ’, N

CLOSE(UNIT = 1); CLOSE(UNIT = 2)

MU = MU + MUSTEP

END DO

END PROGRAM LONDONZ

! ****************************************************************************

! ****************************************************************************

FUNCTION F1 (t)

USE KINDS

REAL(DBL) :: t, I0, K0

EXTERNAL DBSI0, DBSK0

I0 = DBSI0 (t)

K0 = DBSK0 (t)
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F1 = t*I0*K0

RETURN

END

! ****************************************************************************

! ****************************************************************************

FUNCTION F2 (t)

USE KINDS

REAL(DBL) :: t, K0

EXTERNAL DBSK0

K0 = DBSK0 (t)

F2 = t*K0*K0

RETURN

END

! ****************************************************************************

! ****************************************************************************

FUNCTION F3 (t)

USE KINDS

REAL(DBL) :: t, I1, K1

EXTERNAL DBSI1, DBSK1

I1 = DBSI1 (t)

K1 = DBSK1 (t)

F3 = t * I1 * K1

RETURN

END

! ****************************************************************************

! ****************************************************************************

FUNCTION F4 (t)

USE KINDS

REAL(DBL) :: t, K1

EXTERNAL DBSK1

K1 = DBSK1 (t)

F4 = t * K1 * K1

RETURN
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END

B.2 Full solution

The code included here generates numerical solution for Eq. (3.12). This same code

can be appropriately modified to solve Eqs. (3.13) and (3.11).

MODULE KINDS

! To determine the kinds of single and double precision real

! values on a particular computer.

IMPLICIT NONE

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(3), MEDIUM = SELEC&

&TED_INT_KIND(9), LONG = SELECTED_INT_KIND(18)

INTEGER, PARAMETER :: SGL = KIND(0.0), DBL = KIND(0.0D0)

END MODULE KINDS

!******************************************************************************

!******************************************************************************

MODULE PARAMETER

USE KINDS

IMPLICIT NONE

! Global Parameters

INTEGER(SHORT), PARAMETER :: NE = 2, NB = 1

! NE is number of first order equations and NB is number of boundary conditions

! at first boundary

INTEGER(LONG), PARAMETER :: M = 400001

! M is no. of grid points (including first and last boundary)

INTEGER(KIND = SHORT), PARAMETER :: NSI = NE, NSJ = 2*NE + 1

INTEGER(KIND = SHORT), PARAMETER :: NCI = NE, NCJ = NE - NB + 1

INTEGER(KIND = LONG), PARAMETER :: NCK = M + 1

INTEGER(LONG), PARAMETER :: ITMAX = 1000

REAL(DBL), PARAMETER :: CONV = 1.0E-16
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REAL(DBL), PARAMETER :: XLEFT = 0.0_DBL, XRIGHT = 40.0_DBL,&

& H = 0.0001

! XLEFT and XRIGHT: initial and final mesh points respectively. H is mesh size.

! If XRIGHT or H is changed M must be adjusted. M = NINT((XRIGHT - XLEFT)/H)+1

REAL(KIND = DBL), DIMENSION(M) :: X ! Matrix X stores mesh points

REAL(KIND = DBL), DIMENSION(NE, M):: Y

! Matrix Y stores the intial guess and then the calculated corrections are

! added to stored values after each iteration.

REAL(KIND = DBL), DIMENSION(NSI, NSJ):: S

REAL(KIND = DBL), DIMENSION(NCI, NCJ, NCK):: C

END MODULE PARAMETER

!******************************************************************************

!******************************************************************************

MODULE STEPS

! This module include the subroutines used to solve the Matrix equation.

! This module is completely independent of the equations being solved.

USE KINDS

USE PARAMETER

IMPLICIT NONE

CONTAINS

SUBROUTINE PINVS(K)

! PINVS Diagonalize the required section of the S matrix at given mesh point to

! unit matrix. K keeps the count of mesh points

INTEGER(SHORT) :: ID, I, J, JP, IPIV, JPIV, IROW, L

INTEGER(SHORT), DIMENSION(NE) :: INDXR

INTEGER(SHORT) :: IINIT, IFIN, JINIT, JFIN, ICOFF, JCOFF, JS1

INTEGER(LONG) :: K

REAL(DBL) :: BIG, PIV, PIVINV, DUM

REAL(DBL), DIMENSION(NE) :: PSCL

IINIT = 1

IFIN = NE

JFIN = NE + NB

ICOFF = -NB
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JCOFF = -NE - NB

IF (K == 1) THEN

IINIT = NE - NB + 1

JINIT = NE + 1

ELSE

IF(K == M + 1) THEN

IFIN = NE - NB

JINIT = NE + NB + 1

JFIN = 2*NE

ICOFF = -NE - NB

ELSE

JINIT = NB + 1

END IF

END IF

DO I = IINIT, IFIN

BIG = 0.0_DBL

DO J = JINIT, JFIN

IF(ABS(S(I, J)) > BIG) THEN

BIG = ABS(S(I, J))

END IF

END DO

IF(BIG == 0.0_DBL)THEN

STOP

END IF

PSCL(I) = BIG

INDXR(I) = 0

END DO

BIG = 0.0_DBL

L = 0

DO ID = IINIT, IFIN

PIV = 0.0_DBL

DO I = IINIT, IFIN

IF(INDXR(I) == 0)THEN
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IF(L == 0) THEN

DO J = JINIT, JFIN

IF(ABS(S(I, J)) .GT. BIG) THEN

BIG = ABS(S(I, J))

JPIV = J

IPIV = I

END IF

END DO

ELSE

BIG = 0.0_DBL

DO J = JINIT, JFIN

IF(ABS(S(I, J)) > BIG) THEN

BIG = ABS(S(I, J))

JP = J

END IF

END DO

IF(BIG/PSCL(I) > PIV) THEN

IPIV = I

JPIV = JP

PIV = BIG/PSCL(I)

END IF

END IF

ENDIF

END DO

IF(S(IPIV, JPIV) == 0.0_DBL) THEN

WRITE(*, *) ’## SINGULAR MATRIX’

STOP

ENDIF

INDXR(IPIV) = JPIV

PIVINV = 1.0_DBL / S(IPIV, JPIV)

DO J = JINIT, NSJ

S(IPIV, J) = S(IPIV, J)*PIVINV

END DO
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S(IPIV, JPIV) = 1.0_DBL

DO I = IINIT, IFIN

IF(I /= IPIV) THEN

IF(S(I, JPIV) /= 0.0_DBL) THEN

DUM = S(I, JPIV)

DO J = JINIT, NSJ

S(I, J) = S(I, J) - DUM &

& *S(IPIV, J)

END DO

S(I, JPIV) = 0.0_DBL

END IF

END IF

END DO

L = L + 1

END DO

JS1 = JFIN + 1

DO I = IINIT, IFIN

IROW = INDXR(I) + ICOFF

DO J = JS1, NSJ

C(IROW, J + JCOFF, K) = S(I, J)

! The modified S matrix is stored in C matrix for each mesh point labeled by K.

END DO

END DO

END SUBROUTINE PINVS

!******************************************************************************

!******************************************************************************

SUBROUTINE RED(K) ! This reduces the first NB coulumns of a S Matrix to zero.

INTEGER(SHORT) :: I, J, L, IC

INTEGER(SHORT) :: IFIN, JINIT, JFIN, LINIT, LFIN

INTEGER(LONG) :: K

REAL(DBL) :: VX

IFIN = NE

JINIT = 1
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JFIN = NB

LINIT = NB + 1

LFIN = NE

IC = NCJ

IF (K == 1) RETURN ! At first mesh point no reduction is required.

IF (K == M + 1) THEN

IFIN = NE - NB

JINIT = NE + 1

JFIN = NE + NB

LINIT = NE + NB + 1

LFIN = 2*NE

END IF

DO J = JINIT, JFIN

DO L = LINIT, LFIN

VX = C (IC, L - JFIN, K - 1)

DO I = 1, IFIN

S(I, L) = S(I, L) - S(I, J)*VX

END DO

END DO

VX = C(IC, NCJ, K - 1)

DO I = 1, IFIN

S(I, NSJ) = S(I, NSJ) - S(I, J)*VX

END DO

IC = IC + 1

END DO

END SUBROUTINE RED

!******************************************************************************

!******************************************************************************

SUBROUTINE BKSUB()

! This subroutine involves Back Substitution . This is used only once for an

! iteration. It operates on the C matrix.

INTEGER(SHORT) :: I, J, IC1

INTEGER(LONG) :: K
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REAL(DBL) :: XX

IC1 = 1

DO K = M, 1, -1

IF(K == 1) IC1 = NCJ

DO J = 1, NE - NB

XX = C(J, NCJ, K + 1)

DO I = IC1, NE

C(I, NCJ, K) = C(I, NCJ, K) - C(I, J, K)*XX

END DO

END DO

END DO

! REORDER CORRECTION IN COULUMN 1

DO K = 1, M

DO I = 1, NB

C(I, 1, K) = C (I + NE - NB, NCJ, K)

END DO

DO I = 1, NE - NB

C(I + NB, 1, K) = C(I, NCJ, K + 1)

! WRITE(*, *) K,’’, I+NB,’’, C(I + NB, 1, K)

END DO

END DO

END SUBROUTINE BKSUB

END MODULE STEPS

!******************************************************************************

!******************************************************************************

MODULE EQUATIONS

USE KINDS

USE PARAMETER

IMPLICIT NONE

CONTAINS

SUBROUTINE DIFEQ(K, KAPPA)

! This subroutine is used to enter S matrix (boundary conditions and Jacobian
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! matrix). It calculates the elements of S matrix at each mesh point.

REAL(KIND = DBL) :: KAPPA

INTEGER(LONG) :: K

IF(K == 1) THEN

S(2, 3) = 1.0_DBL

S(2, 4) = 0.0_DBL

S(2, NSJ) = Y(1, 1)

ELSE IF(K == M + 1) THEN

S(1, 3 )= 1.0_DBL

S(1, 4) = 0.0_DBL

S(1, NSJ) = Y(1, M) - 1.0_DBL

ELSE

S(1,1) = -1.0_DBL

S(1,2) = -0.5_DBL * (X(K) - X(K - 1))

S(1,3) = 1.0_DBL

S(1,4) = -0.5_DBL * (X(K) - X(K - 1))

S(2, 1)= (X(K) - X(K - 1))*(-(3.0_DBL/8.0_DBL)*(KAPPA**2)* &

& (((Y(1, K) + Y(1, K - 1))**2)) + 0.5_DBL * (KAPPA**2) &

& - (2.0_DBL/((X(K) + X(K - 1))**2)))

S(2, 2)= -1.0_DBL + (X(K) - X(K - 1))/(X(K) + X(K - 1))

S(2, 3)= S(2, 1)

S(2, 4) = 1.0_DBL + (X(K) - X(K - 1))/(X(K) + X(K - 1))

S(1, NSJ) = Y(1, K) - Y(1, K-1) - 0.5_DBL*(X(K) - &

& X(K - 1))*(Y(2, K) + Y(2, K-1))

S(2, NSJ) = Y(2, K) - Y(2, K-1) - (X(K) - X(K - 1))* &

& (-((Y(2, K) + Y(2, K - 1))/(X(K) + X(K - 1))) + &

& ((2.0_DBL*(Y(1, K) + Y(1, K - 1))/((X(K) + X(K - 1))**2))) -&

& 0.5_DBL*(KAPPA**2)*(Y(1, K) + Y(1, K - 1)) * &

& (1.0_DBL - 0.25_DBL *((Y(1, K) + Y(1, K - 1))**2)))

END IF

END SUBROUTINE DIFEQ

END MODULE EQUATIONS

!******************************************************************************
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!******************************************************************************

MODULE SOLVE

USE KINDS

USE PARAMETER

USE STEPS

USE EQUATIONS

IMPLICIT NONE

INTEGER(LONG) :: IT, JV, KM

REAL(DBL) :: SLOWC, ERROR, ERRJ, FAC, VMAX, VZ, NVARS

REAL(DBL), DIMENSION(NE) :: ERMAX, KMAX, SCALV

PRIVATE :: IT, JV, KM, SLOWC, ERROR, ERRJ, FAC, VMAX, VZ, NVARS,&

& ERMAX, KMAX

CONTAINS

SUBROUTINE SOLVDE(KAPPA)

REAL(KIND = DBL) :: KAPPA

INTEGER(LONG) :: K, J ! K defined here is local to this subroutine.

SLOWC = 1.0_DBL

NVARS = NE*M

DO IT = 1, ITMAX

! WRITE(*, *) IT

DO K = 1, M + 1

CALL DIFEQ(K, KAPPA)

CALL RED (K)

CALL PINVS(K)

END DO

CALL BKSUB() ! BKSUB is called only once during an iteration.

ERROR = 0.0_DBL

DO J = 1, NE

! Variables in this Do loop to be adjusted according to the problem

! being solved.

JV = J

ERRJ = 0.0_DBL

KM = 0
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VMAX = 0.0_DBL

DO K = 1, M

VZ = ABS(C(JV, 1, K))

IF (VZ .GT. VMAX) THEN

VMAX = VZ

!VMAX is the maximum absolute value of the calculated corrections

KM = K

! KM is the mesh point where VMAX is found.

END IF

ERRJ = ERRJ + VZ

END DO

ERROR = ERROR + ERRJ/SCALV(J)

! Absolute value of each correction is scaled and all of them are added

! together.

ERMAX(J) = C(JV, 1, KM)/SCALV(J)

KMAX(J) = KM

END DO

ERROR = ERROR/NVARS ! Average correction is calculated.

FAC = SLOWC/(MAX(SLOWC, ERROR))

! FAC is the fraction which is multiplied to the corrections before adding to

! previous values of order parameter and its derivative.

DO J = 1, NE

JV = J

DO K = 1, M

Y(J, K) = Y(J, K) - FAC * C(JV, 1, K)

! The corrections are being subtracted because the Right hand side of the

! matrix equation or the last column of each S matrix must have had an explicit

! -ve sign.

END DO

END DO

WRITE(*, *) IT, ERROR, FAC

! This is what printed in the terminal. The result for order parameter is

! directed to a file.
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! IF (IT == 1) THEN

! DO K = 1, M

! WRITE(*, *) K,’ ’, C(2, 1, K),’ ’,Y(2, K)

! END DO

! END IF

IF (ERROR .LT. CONV) RETURN

END DO

WRITE(*, *) ’ITMAX EXCEEDED IN SOLVDE for KAPPA =’, KAPPA ! CONVERGENCE FAILED

END SUBROUTINE SOLVDE

END MODULE SOLVE

!******************************************************************************

!******************************************************************************

PROGRAM SINGLE_VORTEX_f

USE KINDS

USE PARAMETER

USE STEPS

USE SOLVE

USE EQUATIONS

IMPLICIT NONE

INTEGER(LONG) :: K, KK, N

REAL(KIND = DBL) :: KAPMIN, KAPMAX, KAPSTEP, KAPPA !KAPPA IS G-L PARMETER

OPEN(UNIT = 1, FILE = ’init.dat’, STATUS = ’REPLACE’, ACTION = &

& ’WRITE’) ! initial guess is written to this file

OPEN(UNIT = 2, FILE = ’order.dat’, STATUS = ’REPLACE’, ACTION = &

& ’WRITE’) ! result is written in this file

OPEN(UNIT = 3, FILE = ’f.dat’, STATUS = ’REPLACE’, ACTION = &

& ’WRITE’)

OPEN(UNIT = 4, FILE= ’dfdx.dat’, STATUS= ’REPLACE’, ACTION = &

& ’WRITE’)

WRITE(*, *) ’Enter KAPPA MINIMUM’

READ(*, *) KAPMIN

WRITE(*, *) ’Enter KAPPA MAXIMUM’

READ(*, *) KAPMAX
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WRITE(*, *) ’Enter KAPPA STEP (NON ZERO POSITIVE #)’

READ(*, *) KAPSTEP

! KAPMIN = 8.0_DBL

! KAPMAX = 16.0_DBL

! KAPSTEP = 2.0_DBL

KAPPA = KAPMIN

! INITIAL GUESS

DO K = 1, M

! In this Do loop mesh points are designated.

X(K) = XLEFT + (K - 1)*H

Y(1, K) = TANH(KAPPA*X(K)) ! initial Guess for order parameter

Y(2, K) = KAPPA*(1 - (Y(1, K))**2)

! initial guess for the derivative of order parameter

WRITE(1, *) X(K), Y(1, K), Y(2, K)

END DO

! SCALING

SCALV(1) = 1.0_DBL

SCALV(2) = MAX(1.0_DBL, Y(2, M))

! This scaling is defined w.r.t. the derivative Y(2, M).

N = 0

WRITE(2, *)"# The first column is spatial coordinate, second ", &

& "column contains order parameter and"

WRITE(2, *)"# third column contains the spatial derivative of ",&

& "order parameter."

DO

IF (KAPPA .GT. KAPMAX) EXIT

CALL SOLVDE (KAPPA)

N = N + 1

WRITE(2, *) "# G-L PARAMETER KAPPA =", KAPPA

DO K = 1, M

WRITE(2, *) X(K), Y(1, K), Y(2, K)

WRITE(3, *) Y(1, K)
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WRITE(4, *) Y(2, K)

END DO

WRITE(2, *) "#*******************************************",&

& "***************************************"

WRITE(2, *) " "

WRITE(2, *) " "

WRITE(3, *) " "

WRITE(3, *) " "

WRITE(4, *) " "

WRITE(4, *) " "

KAPPA = KAPPA + KAPSTEP

END DO

WRITE(*, *) "NUMBER OF KAPPA VALUES SOLVED FOR IS ", N

END PROGRAM SINGLE_VORTEX_f
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Appendix C

Tetragonal PDW pairing at high

symmetry points

C.1 Tetragonal symmetry (δKy = 0)

When δKy = 0 in Fig. 4.2, the momenta Ki, about which PDW cooper pairs are

formed, move to high symmetry points on the Brillouin zone boundary, as shown

in Fig. C.1. The analysis for this configuration is the same as in Ref. [106]. The

corresponding mean-field ground states are listed in Table C.1.

It is clear from Table C.1 that the only ground state that contains both CDW

and loop current order is (∆Q1 ,∆Q2 ,∆−Q1,∆−Q2) = (1, 1, 0, 0), which has four fold

discrete degeneracy i.e (1, 1, 0, 0) ≡ (0, 0, 1, 1) ≡ (1, 0, 0, 1) ≡ (0, 1, 1, 0). However, the

charge order ρQ1−Q2 in this state is not at the observed wave vector, so it cannot be

a pseudogap order parameter.

The ground state considered in Ref. [102] is (∆Q1 ,∆Q2 ,∆−Q1 ,∆−Q2) = (1, 1, 1, 1).

This state lacks loop current order and hence cannot account for observed signatures

of translational invariant broken time-reversal symmetry even though it reproduces

the ARPES spectra and accounts for the anomalous qp properties observed.
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Figure C.1: The positions of the momenta Ki about which PDW Cooper pairs are
formed. The corresponding four PDW order parameter components ∆Qi

have momenta
Qi = 2Ki. Here δKy = 0 see Fig 4.2. This reproduces the theory of Ref. [102].
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Table C.1: Properties of PDW Ground States for tetragonal symmetry in Fig. C.1. All possible PDW ground
states and accompanying CDW and ODW order. The second column shows the parameter regions for which these phases are
stable. In the third and fourth columns: 2Qx = (2Q, 0), 2Qy = (0, 2Q), other modes can be found by using the relationships
ρQ = (ρ−Q)

∗ and Lz
Q = (Lz

−Q)
∗. The fifth column gives all translational invariant order parameters with lx ∝ |∆Q2 |2 − |∆−Q2 |2,

ly ∝ |∆Q1 |2 − |∆−Q1 |2, ∆4e,s ∝ ∆Q1∆−Q1 + ∆Q2∆−Q2 , ∆4e,d ∝ ∆Q1∆−Q1 − ∆Q2∆−Q2 , and ǫxx − ǫyy ∝ |∆Q2 |2 + |∆−Q2|2 −
|∆Q1 |2 − |∆−Q1|2. The sixth column gives the degeneracy of the ground state.

(∆Q1 ,∆Q2 ,∆−Q1,∆−Q2) Stability CDW modes ODW modes Q=0 Order Degeneracy Manifold

(1, 0, 0, 0)
β2 + β3 < 0, β3 < 0

none none
ly

U(1)× Z2 × Z2β2 + 2β3 < −|β5|/4 ǫxx − ǫyy

(1, 1, 0, 0)
β2 + β3 > 0

ρQ1−Q2
Lz
Q1−Q2

lx = ly U(1)× U(1)× Z4
β3 < −|β5|/4

(1, 0, 1, 0)
β3 > 0

ρ2Qx
none

∆4e,s, ∆4e,d U(1)× U(1)× Z2
β2 < −|β5|/4 ǫxx − ǫyy

(1, 1, 1, 1)

β5 < 0, β5 < 4β2
ρ2Qx

, ρ2Qy

ρQ1−Q2 , ρQ1+Q2

none ∆4e,s U(1)× U(1)× U(1)β5 < 4β3
β5/4 < β2 + 2β3

(1, i, 1, i)

β5 > 0,−β5 < 4β2
ρ2Qx

, ρ2Qy

Lz
Q1−Q2

Lz
Q1+Q2

∆4e,d U(1)× U(1)× U(1)−β5 < 4β3
−β5/4 < β2 + 2β3
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