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ABSTRACT 
ANCESTRAL DVELOPMENTAL EXPOSURE TO METHYLMERCURY 

INDUCES TRANSGENERATIONAL INHERITANCE OF VISUAL 
AND NEUROBEHAVIORAL DEFICITS 

 

by 

 

Thomas A. Kalluvila 

 

The University of Wisconsin-Milwaukee, 2015 
Under the Supervision of Professor Michael J. Carvan III 

 

 Methylmercury (MeHg) is an environmental neurotoxicant of global 

concern. It is considered one of the top ten chemicals of public health concern by 

the World Health Organization. Prenatal exposure to MeHg has been associated 

with altered neurodevelopment, neurobehavioral and neurocognitive functions. 

The effects of low dose MeHg exposure are more subtle and can range from 

impaired motor function to sensory defects. Using quantitative neurobehavioral 

assays and zebrafish as a model organism, our laboratory has demonstrated that 

developmental MeHg exposure causes neurological dysfunction in adult 

zebrafish. Recently, a wide range of environmental insults (e.g., pesticides, 

fungicides, plasticizers and endocrine disruptors) has been shown to induce 

disease phenotypes in individuals whose great grandparents were exposed to 

the toxicant. This phenomenon is known as transgenerational inheritance.  To 

date, studies have shown that in transgenerational inheritance of diseases due to 
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developmental exposure, heritable changes occurred in the epigenome not the 

genome and were transmitted to subsequent generations without further 

exposure. Based on this evidence, we hypothesized that ancestral 

developmental exposure to MeHg induces transgenerational neurobehavioral 

deficits in F3 generation zebrafish. The F1-generation zebrafish embryos (less 

than 4 hour post fertilization) were exposed to either 0, 0.001, 0.003, 0.01, 0.03 

or 0.1 µM MeHg for 24 hrs. These concentrations of MeHg are sublethal and 

environmentally relevant. Quantitative neurobehavioral assays for visual startle 

response and locomotor activity were used to assess MeHg-induced 

neurotoxicity in F3 generation. Our study demonstrated that developmental 

exposure to MeHg induces transgenerational visual deficits and locomotor 

dysfunctions in zebrafish. Altered retinal electrophysiology was also observed in 

the transgenerational population with visual deficits. To identify the genes and 

pathways involved with the phenotypes observed in the transgenerational 

population, we analyzed the whole transcriptome of the brain and retina of the 

transgenerational lineage animals, using RNAseq. Tissue specific altered gene 

expression was observed in both brain and retina. This is the first evidence of a 

transgenerational transcriptome induced by ancestral developmental exposure to 

MeHg. Gene set enrichment analysis revealed the correlation between 

dysregulated functional pathways and the observed phenotypic variation, 

including vision, phototransduction, motor activity, and retinal electrophysiology. 

Our studies also identify that the mode of germline transmission varies between 

the transgenerational phenotypes.  This research has identified new mechanisms 
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associated with MeHg-induced phenotypes which may have significant impacts 

on public health, in terms of developing biomarkers to identify susceptible 

populations and developing preventative measures. The long term effects of 

MeHg observed in this study could be used to improve the awareness of 

reproductive age group women to monitor the type of fish that they consume. 

Since we observed the neurobehavioral deficits in a fish species, our findings 

have ecological impacts including the feeding behavior of fish, survival and 

reproduction. The findings made in this thesis also set the stage for future 

research into the identification of new transgenerational phenotypes associated 

with ancestral developmental exposure to MeHg.  
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I. Atmospheric emission of mercury 

Heavy metals such as cadmium (Cd), lead (Pb) and mercury (Hg) and the 

metalloid arsenic (As) are among the top ten chemicals or groups of chemicals of 

global public health concern identified by the World Health Organization (WHO 

2013). There are 92 naturally occurring metals and about 30 of them have toxic 

effects on humans.  The neurotoxic effects of Cd, Pb, As, and Hg have been well 

documented (Wang and Du 2013; Mason et al. 2014; Bartrem et al. 2014; Ishi 

and Tamaoka 2015; Rodríguez-Barranco et al. 2015). Humans have been using 

these metals for thousands of years. However, industrialization and globalization 

have caused the emission of atmospheric toxicants to reach an all time high in 

the history of this planet (Izatt et al. 2014).  

Glacier ice core studies have revealed that the environmental release of 

metals have greatly accelerated during the past century (Schuster et al. 2002; 

Barbante et al. 2004). Hg is released into the atmosphere through both natural 

and anthropogenic activities. Anthropogenic activities contributed 52% of Hg 

identified in the Upper Fremont Glacier in the Wind River mountain range of 

Wyoming during the past 270 years. However, human activities account for 72% 

of Hg released during the past century, a 20-fold increase from the preindustrial 

era (Fig 1.1) (Schuster et al. 2002). Human activities that cause environmental 

emission of Hg include artisanal and small scale gold production, coal 

combustion, the chlor-alkali industry and the cement industry. Artisanal and small 

scale gold production is the leading source of anthropogenic Hg (37%) followed 

by coal burning (24%) (Fig 1.2)(UNEP 2013). It is estimated that up to 15 million 
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people are working in the poorly-regulated artisanal gold mining sector including 

3 million women and children around the world (UNEP 2012).  

 

 

Figure 1.1. Atmospheric Hg deposition analysis. The patterns of mercury deposition 
in the ice core samples were tested. Both natural (volcanoes) and anthropogenic 
activities attribute the emission of Hg. Industrialization era significantly contributed the 
emission of Hg to the environment indicating the human activities as the primary source 
of environmental contamination of Hg (Image courtesy Schuster et al. 2002).  
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Anthropogenic activities along with natural emission of mercury have 

accelerated the burden of MeHg in the environment. Climate change has 

impacted the transport pathways, speciation and cycling of mercury within Arctic 

ecosystems and resulted in increased emission of Hg to the environment and 

bioaccumulation of MeHg in fish species (Booth and Zeller 2005; Stern and 

MacDonald 2005; Leitch et al. 2007). Projections generated using the global 

climate-chemistry model system have estimated that atmospheric Hg levels in 

the U.S. will significantly increase by 2050 due to the combined effect of human 

activities and climate change (Lei et al. 2014). The model also predicts that a 

domestic reduction of Hg emission could mitigate the effects of climate change in 

the U.S. However, regulations in other parts of the world are also required in 

global reduction of environmental Hg emission and related adverse health 

outcomes in different ecosystems and humans.  
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Figure 1.2. Sources of environmental mercury emission. Artisanal gold mining and 
coal combustion are the major anthropogenic sources of mercury in the environment. 
The mercury emission in 2010 was estimated at 1960 metric tons due to human 
activities (Modified from UNEP 2013).   
 

 
II. Human exposure and health effects of Hg 

Mercury exists in metallic, inorganic, and organic forms. Like other metals, 

mercury enters the food chain through the atmosphere, soil, and water. Once 

mercury enters water or soil, under anoxic conditions, bacteria convert inorganic 

mercury to the more highly neurotoxic form, methylmercury (MeHg) (Batten and 

Scow 2003).  MeHg enters the food web through the consumption of the mercury 

converting bacteria by zooplankton (Kainz et al. 2006). The consumption of 

plankton results in the accumulation of MeHg in fish species (Rolfhus et al. 

2011), with higher levels of MeHg accumulating in larger carnivorous species ( A 

Kehrig et al. 2009) leading to bioaccumulation. Bioaccumulation, the 

accumulation of a chemical in an organism, of MeHg in predator fish has been 

associated with the amount of food consumed each year (Donald et al. 2015). 

MeHg also biomagnifies along the food chain as the concentration of this 

pollutant exceeds the background levels in higher-level predators (Lavoie et al. 

2013; Cardoso et al. 2014). In humans, virtually everyone has accumulated some 

level of mercury in their tissues primarily through the ingestion of MeHg 

contaminated fish (Ström et al. 2011). Human populations whose diet contains a 

significant amount of fish tend to bioaccumulate this toxicant and suffer increased 

health risks  (Buchanan et al. 2015).  

Development is the life-stage most sensitive to MeHg toxicity. As the 

“developmental origins of health and diseases ” hypothesis suggests, the 
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environment during development plays a significant role in the health of a person 

later in life (Barker 1990). The adverse health effects of developmental exposure 

to MeHg were reported as early as 1865 with symptoms including ataxia, tunnel 

vision, altered facial sensation, loss of coordination and deafness (Grandjean et 

al. 2010). The two major outbreaks of MeHg poisoning in Minamata (1956) and 

Iraq (1971) revealed the public health impacts of this environmental toxicant in 

humans (Greenwood 1985; Harada 1995). The Minamata outbreak was the first 

evidence of the multigenerational effect of MeHg due to developmental exposure. 

Congenital Minamata disease. developed in children due to intrauterine exposure 

to MeHg (Harada 1978). There were no abnormalities observed in either mothers 

or fetuses during pregnancy. The clinical symptoms started to develop at the 

beginning of 6th month after birth in those children prenatally exposed to MeHg. 

Children born after 1955 (Minamata outbreak) developed neurodevelopmental 

and neurobehavioral disorders such as instability of neck, convulsions, primitive 

reflex and intelligence disturbance (Harada 1978).  

Minamata outbreak revealed the public health impacts of developmental 

toxicity of MeHg. Neurotoxic effects of environmental and occupational exposure 

to MeHg have been reported around the world during the past decades 

(Ohlander et al. 2013; Mostafazadeh et al. 2013; Peplow and Augustine 2014; 

Gibb and O’Leary 2014; De Miguel et al. 2014). It has been well established that 

prenatal exposure to high doses of MeHg can lead to widespread brain damage 

and impaired neurological development resulting in defects ranging from severe 

cerebral palsy and mental retardation to impaired motor and sensory functions.  
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The effects of low dose MeHg exposure are more subtle and can range from 

impaired motor function and sensory defects to slight deficiencies in learning and 

memory.   

In 2001, the EPA set the reference blood level for maternal mercury at 

5.8µg/L, the concentration below which the detrimental effects of Hg are 

expected to be minimal (including sensitive populations). However, Hg 

concentration in umbilical cord blood is 1.7 times higher than the maternal blood 

(Stern and Smith 2003; Rice 2004). Given the amplification of Hg in cord blood, 

the safe level for Hg in maternal blood is 3.5µg/L. Thus, maternal blood 

concentrations of 3.5µg/L actually result in embryos exposed to 5.95µg/L MeHg.  

Studies have shown that the fetus is exposed to nearly twice the mercury 

compared to maternal blood levels through placental transfer and accumulation 

in cord blood (Ou et al. 2014). In the U.S, it is estimated that 1 to 3 percent of 

women of child bearing age are at risk from MeHg exposure (EPA 2014). Studies 

have also shown that Hg levels in the fish species of Great Lakes are also on the 

rise resulting in wide-spread advisories on fish consumption (Bhavsar et al. 2011; 

Evers et al. 2011; Wiener et al. 2012). In support of these data, recent analysis of 

blood mercury concentrations of newborns from the U.S. Lake Superior Basin 

showed that 8% of newborns had blood mercury levels above the reference dose 

(5.8µg/L) and 1% of newborns had mercury levels above 58µg/L (Mercury Levels 

in Blood from Newborns in the Lake Superior Basin GLNPO ID 2007). The 

environmental burden of Hg is on the rise and the adverse health impacts of 
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developmental exposure to MeHg have been identified in different species 

including humans.    

 

III. MeHg induced neurobehavioral deficits and zebrafish model  

Prenatal exposure to MeHg results in significant neurodevelopmental 

deficits in neonates and these  deficits can be observed as neurobehavioral 

dysfunctions later in life (Boucher et al. 2014; Obi et al. 2015; Jacobson et al. 

2015). A "behavior" is defined as anything an organism does involving action and 

response to stimuli; it requires the ability to perceive the stimulus as well as the 

ability to respond appropriately (Anholt and Mackay 2010). A reaction to a 

stimulus involves complex biological processes including stimulus transduction, 

transmission, integration and response. Behavioral response to a stimulus 

depends on factors such as genetics, development and functional properties of 

organs involved in stimulus perception and processing, social, psychological and 

environmental conditions. Neurotoxicants alter the normal structure or function of 

the nervous system and these changes can often be observed as changes in 

behavior (Tierney 2011). Quantitative neurobehavioral assays are extremely 

useful and sensitive indicators of neurotoxicity as the chosen endpoints require 

functional integration of all nervous system components, while the analyses do 

not require an understanding of the underlying neurobiological mechanisms of 

toxicity (Tierney 2011)). High level exposure to neurotoxicants tend to cause 

devastating effects to motor and cognitive functions which are easily identified, 

but the effects of low level exposures are much more difficult to recognize as 
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they tend to result in subtle changes to normal cognition or behavior. A powerful, 

well-established animal model is necessary to orchestrate appropriate 

experimental design to identify subtle neurobehavioral changes and the 

mechanistic underpinnings.  

Zebrafish is a powerful model organism for  human developmental and  

disease research due to similarity in physiological, morphological, and genetic 

characteristics with humans (Bibliowicz et al. 2011). Zebrafish has also be used 

in neurodevelopmental and behavioral studies (Tierney 2011; Nishimura et al. 

2015). Our laboratory has been using zebrafish as a model organism to elucidate 

the neurobehavioral effects of exposure to toxicants such as ethanol (Carvan et 

al. 2004) and MeHg (Smith et al. 2010; Xu et al. 2012); and gene expression 

changes due to dioxin (Liu et al. 2014) and MeHg (Liu et al. 2013) . Our 

laboratory  also identified the neurotoxic effect of direct developmental exposure 

to MeHg by measuring visual startle response in adults (Weber et al. 2008), 

demonstrating the zebrafish equivalent of the “fetal origins of adult disease”. The 

study describes significant visual deficits due to developmental exposure to 

MeHg with potential linkage to altered retinal electrophysiology. Based on our 

previous knowledge and expertise with the visual startle response assay as a 

tool to measure neurobehavior, we further investigated the potential of 

developmental exposure to MeHg to induce neurobehavioral deficits in 

subsequent generations of zebrafish without additional exposure, a phenomenon 

known as transgenerational inheritance. Zebrafish have been identified as one of 

the best vertebrate model systems for studies involving environmental toxicant 
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induced transgenerational onset of diseases due to its short generation time 

(Baker et al. 2014) and well defined genome and epigenome sequences.  

 

IV.  Transgenerational inheritance of phenotypes 

A phenotype is simply an observable characteristic (physical, biochemical, 

physiological or behavioral) exhibited by an individual.  If direct exposure to a 

toxicant influences a phenotype in multiple generations (e.g. child and 

grandchild, or F1 and F2), it is defined as a multiple generation phenotype. In 

contrast, a transgenerational phenotype requires transmission of the phenotype 

in the absence of direct exposure (e.g. great grandchild, or F3) (Skinner 2014). 

Recently, a number of environmental toxicants such as vinclozolin (Guerrero-

Bosagna et al. 2012)  and DDT (Skinner et al. 2013) have been shown to cause 

heritable changes in DNA function without changing the DNA sequence, known 

as epigenetic changes. The altered epigenetic information is inherited through 

the germline in the absence of direct environmental exposure and leads to 

phenotypic variation. This type of phenotypic inheritance in subsequent 

generations without direct exposure is known as transgenerational inheritance 

(Fig 1.3).  

 

Mutational genetic changes such as additions or deletions in the coding or 

transcriptional regions of the genome could lead to altered physiology and to 

disease phenotypes. However, less than 1% of human diseases are associated 

with changes in DNA sequence. The incidence of majority of the diseases are not 
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associated with random genetic mutations. We also know that social and 

environmental factors are associated with disease etiology without manipulating 

DNA sequence. Recently, an exponential growth in the incidence of health 

conditions such as diabetes and cardiovascular diseases without any specific 

triggering factors has been observed in different human subpopulations. The lack 

of genetic change and onset of disease phenotypes without any specific 

identifiable cause directs the recent research efforts toward epigenetic 

transgenerational inheritance (Skinner 2008). Life style factors such as stress, 

nutrition, alcohol and smoking are associated with transgenerational inheritance 

of diseases (Matthews and Phillips 2012; Nilsson and Skinner 2015). 

Developmental exposure to environmental pollutants such as pesticides, 

bisphenol A, dioxin and hydrocarbon compounds have also been associated with 

the onset of adult diseases and their transgenerational inheritance (Manikkam et 

al. 2012). Mounting evidences of transgenerational onset of different diseases 

are emerging including cryptorchidism (Chen et al. 2015), metabolic diseases 

(Stegemann and Buchner 2015) and respiratory diseases (Krauss-Etschmann et 

al. 2015).  

The dynamic nature of development leads to critical periods of genetic and 

epigenetic susceptibility. Primordial germ cells undergo epigenetic 

reprogramming during fetal gonadal determination (Skinner et al. 2010). 

Alteration of the epigenome at this time can lead to their transmission to 

subsequent generations resulting in transcriptomic and physiologic alterations 

without direct exposure to the environmental factor—transgenerational 
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inheritance. Given the fact that direct developmental exposure to MeHg induces 

neurobehavioral deficits, this thesis investigates the potential of developmental 

exposure to MeHg to induce transgenerational inheritance of neurobehavioral 

deficits.  

 

 

Figure 1.3. Schematic comparison of transgenerational inheritance between 
different species. A transgenerational phenotype requires the absence of a direct 
exposure and onset of a phenotype to minimally the F3 lineage. Both F1 organism and 
F2 primordial germ cells are directly exposed. In Mice and humans, exposure happens 
in utero. In zebrafish, developing embryos are exposed to MeHg externally.  

 

In mammals, prenatal exposure results in direct effects on both F1 and F2 

generations (Fig 1.3). In zebrafish, embryogenesis occurs outside of the body. 

This provides an excellent opportunity to closely monitor the developmental 

stages and physiological variations. Our early exposure paradigm with persistent 

chemicals in zebrafish mimics mammalian maternal transfer to the fetus in that 

lipophilic persistent chemicals first accumulate in the yolk and the embryo 

receives a measured dose throughout development as it utilizes the yolk as an 
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energy source. To keep nomenclature parallel to that of humans and laboratory 

mammals and to reflect the parallel with placental transfer, zebrafish embryos 

that are directly exposed to MeHg are considered as the first (F1) generation. 

The second generation (F2) fish develops from the germ cells of the embryo, 

which were directly exposed to MeHg. The third generation (F3) is the first 

generation that was not directly exposed to MeHg but inherited the altered 

physiology from the MeHg exposed first generation. Studies have shown that the 

inheritance of phenotypic variations occur in F3 generations and permanent 

alteration in DNA methylation of the germlines is one of the mechanisms 

identified in such inheritances (Guerrero-Bosagna et al. 2012; Skinner et al. 

2013; Manikkam et al. 2014; Baker et al. 2014).  

 

V. Role of DNA methylation in transgenerational inheritance 

Genetic and epigenetic molecular mechanisms play key roles in the 

transmission of phenotypes to offspring. Epigenetic changes cause alterations in 

DNA function without changing the underlying DNA sequence.  Three major 

molecular mechanisms of epigenetics have been identified as DNA modification, 

histone modification and RNA associated gene silencing through small and large 

non coding RNAs (Egger et al. 2004; Holoch and Moazed 2015). In eukaryotes, 

DNA methylation is the addition of a methyl group to the cytosine bases of DNA 

mediated by the enzyme DNA methyltransferase (Dnmt). The methyl group is 

methyl group is removed from the universal methyl donor S-Adenosylmethionine 

(SAM). Methylation of the cytosines in CpG islands in the promoter regions of 
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genes limit the access to transcription factors resulting in altered phenotypes (Fig 

1.5). Hypermethylation, methylation above the normal level, prevents the 

transcription control proteins to access gene enhancers which will result in the 

dysregulation of gene expression (Suzuki and Bird 2008). DNA methylation 

usually occurs at specific CpG dinucleotides throughout the genome and is 

intimately involved in the control of gene expression. Methylation and 

demethylation at different sites along the whole genome occur to maintain normal 

cellular functions. The methylation pattern established in early embryogenesis is 

important in setting up the structural integrity of the genome and plays an 

important role in gene imprinting, gene transcription, normal cellular function, and 

the development of cells (Suzuki and Bird 2008b). 

 

 
Figure 1.4. Role of DNA methylation in phenotypic variation. Cytosine nucleotides in 
the CpG islands of the promoter regions are normally unmethylated in the actively 
transcribed genes. DNA methyltransferases (DNMTs) transfer methyl group (-CH3) from 
SAM to cytosines to form 5-methylcytosines. DNA demthylase converts 5-methylcytoine 
to cytosines by removing the -CH3 group. Hypermethylation of the promoter region 
prevents access to transcription factors (TF) resulting in altered transcription and 
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phenotype. Numbers 1-4 indicate the major steps at which MeHg could influence the 
DNA methylation process.   

 

Developmental exposure to toxicants such as Pb (Faulk et al. 2013; Li et 

al. 2015) and BPA (Goodrich et al. 2015; Nahar et al. 2015) are associated with 

alteration of DNA methylation patterns in humans. DNA methylation has been 

identified as one of the molecular mechanisms behind the transgenerational 

inheritance of disease phenotypes due to environmental exposure to toxicants 

(Skinner et al. 2013a; Skinner et al. 2013b; Manikkam et al. 2014).  Exposure to 

environmental factors during fetal development could alter DNA methylation 

patterns and set the stage for adult disease susceptibility. Exposure to 

environmental factors during the critical window of primordial germ cell 

development could create permanent, heritable changes in the patterns of DNA 

methylation.                   

Environmental chemicals and their metabolites limit the availability of methyl 

donors such as S-adenosylmethionine (SAM) (Selhub 2002; Davis and Uthus 

2004). The reduced availability of SAM is often associated with the depletion of 

glutathione (GSH) used in the detoxification pathway of chemicals and results in 

the alteration of DNA methylation pattern. Alteration of the methylation pattern in 

the promoter region of genes could lead to altered phenotypes through 

transcriptional modification and disruption of cellular and molecular pathways 

(Fig 1.4) (Irvine et al. 2002). Recently, DNA methylation changes in low density 

CpG regions known as “CpG deserts” located outside of the promoter regions of 

genes have also been associated with regulation of gene expression (Skinner 
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and Guerrero-Bosagna 2014).  MeHg has been associated with alteration in DNA 

methylation in mammals including humans, rodents, and polar bears (Pilsner et 

al. 2010,Basu et al. 2014). Prenatal exposure to mercury in humans has also 

been associated with an altered epigenome and neurobehavioral outcomes 

(Maccani et al. 2015; Bakulski et al. 2015; Cardenas et al. 2015) 

Neurobehavioral deficits in rodents induced by perinatal exposure to MeHg are 

associated with  hypermethylation of the promoter region of the brain-derived 

neurotrophic factor (BDNF) gene and the down regulation of this gene 

(Onishchenko et al. 2008). Given the potential of MeHg to induce 

transgenerational phenotypes, it is important to investigate the potential of MeHg 

to induce inheritable changes in DNA methylation. 

 

VI. Linkage between MeHg exposure and gene expression 

 As previously stated, MeHg is associated with dysregulation of molecular 

pathways that are involved with neurodevelopment and neurobehavior. In 

zebrafish, developmental MeHg exposure results in the dysregulation of 

numerous genes involved in cellular homeostasis, oxidative stress responses, 

cell protection, and transport mechanisms (Ho et al. 2013). Brain development 

involves the expression of critical genes at specific embryonic stages that are 

associated with neural migration, neuronal growth and differentiation. In utero 

exposure to low levels of MeHg has been associated with the suppression of  

Rac1, Cdc42, and RhoA genes involved in the migration of cerebrocortical 

neurons during the early stage of brain development (Guo et al. 2013). The 
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evidence suggests that MeHg induces phenotypic variation by altering the 

expression of genes in critical pathways involved in neural development.  

Transgenerational inheritance of such phenotypic variations involve the 

transmission of altered epigenetic marks resulting in changes in the 

transcriptome (Fig 1.5) (Skinner et al. 2012; Skinner et al. 2013b).  It is important 

to investigate whether MeHg can induce transgenerational neurobehavioral 

phenotypes and identify the differential expression of genes involved in the 

variation of phenotypes. The functional properties and the global roles of the 

differentially expressed genes are better elucidated by pathway analyses. 
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Figure 1.5. Transgenerational onset of disease etiology. DNA methylation pattern of 
germ cells is altered by direct exposure to environmental toxicants, these epigenetic 
mutations act like imprinted genes and are passed on to the offspring.  Imprinted DNA 
methylation sites escape the genome-wide DNA methylation erasure events that occur 
during gonadal development and early embryogenesis.  Therefore, these 
epimutations become programmed into the genome and can cause  
transgenerational onset of changes in gene expression leading to disease phenotypes in 
offsprings who inherit the epigenetically altered allele.   

 

 

VII. Rationales of studies of the dissertation 

 The environmental burden of mercury has been steadily increasing due 

to human activities. Growth in the world population and the rise of a global middle 

class have accelerated the demand for gold and electronic items. Mercury-

containing electronic waste (e-waste) is on the rise, and the recycling process for 

electric and electronic wastes that contain mercury has significantly increased 



19 
 

 
 

the re-emission of this toxicant into the environment (Ni et al. 2014; Lau et al. 

2014; Julander et al. 2014). Mercury emission is directly linked to significant 

ecological and health impacts in geological areas close to gold mining and e-

waste recycling sites. Mercury is transported by atmospheric processes around 

the globe, so a local contamination issue becomes a global health concern. For 

instance, species in arctic regions, far from any significant mercury source, have 

a high body burden of mercury  (Pilsner et al. 2010).  

 The major source of mercury in the US is coal-fired power plants (US 

EPA). Even though, coal-fired power plants in the U.S. are showing a steady 

decrease in mercury emission, the environmental burden is predicted to rise due 

to increased global emission levels and changes in climate (Lei et al. 2014). 

Increases in atmospheric temperatures accelerate the mercury cycle and 

increase human exposure. In the U.S., humans are primarily exposed to mercury 

in its organic form, MeHg, through fish consumption or the use of fishmeal in the 

animal feed industry.  Most women of reproductive age in the U.S. have low 

levels of mercury in their blood and, therefore, the risk to their offspring is 

minimal. However, there are subpopulations with an increased risk due to 

elevated blood mercury levels. In the U.S., high income people and Asian 

populations have the highest blood mercury levels due to an increased 

consumption of fish and seafood (Buchanan et al. 2015). Populations who 

consume contaminated fish from rivers and lakes are also at high risk regardless 

of whether they are recreational sport fishers or subsistence fishers feeding their 

families (Thomas et al. 2011; Loflen 2013; Burch et al. 2014). Prenatal exposure 
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to MeHg is the most toxic pathway that results in adverse health outcomes in 

humans. MeHg crosses the placental barrier and interferes with the development 

of the nervous system of the fetus. Cord blood mercury levels are often 

associated with physiological, behavioral and cognitive functions.  

Epidemiological studies have revealed the association between developmental 

exposures to MeHg with neurodevelopmental and neurobehavioral outcomes. 

The public health and economic impacts created by this condition is significant.   

The transgenerational effect of MeHg has not been identified in any 

animal model prior to this study. Our studies were motivated by the potential of 

prenatal MeHg exposure to induce neurobehavioral deficits and the 

demonstrated ability to alter DNA methylation. The central hypothesis was that 

developmental exposure to MeHg would induce the transgenerational onset of 

neurobehavioral deficits. Previously published studies by our laboratory have 

shown the direct effect of MeHg exposure on visual reflex behaviors and retinal 

electrophysiology in zebrafish (Weber et al. 2008) . In the present study, 

zebrafish embryos were exposed to sublethal concentrations of MeHg relevant to 

environmental exposures and exposure-specific lineages were created to the F3, 

the first generation without direct exposure. As in the directly exposed lineages, 

the F3 generation demonstrated abnormalities in visual reflex behaviors and 

retinal electrophysiology. Locomotor behavior analysis was included for the F3 to 

identify the role of motor functions in explaining the visual startle response, 

presuming they had some locomotor defect that prevented a normal escape 
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response. Surprisingly, the exposed F3 lineages were actually hyperactivite 

relative to the unexposed control lineage.  

After demonstrating that ancestral developmental exposure to MeHg resulted in 

transgenerational visual and locomotor deficits, we further investigated the mode 

of germline transmission and inheritance of the phenotypes to the F3 generation. 

Zebrafish from exposed F2 lineages were outcrossed with the unexposed F2 

control lineage to create F3 populations in which only one parent came from an 

exposed F2 lineage. We observed that the two phenotypes were inherited 

independently, and that the visual reflex deficit and hyperactivity were inherited 

differently by the F3 generation. Inheritance of the visual deficits only required 

one parent from an exposed lineage; however, inheritance of hyperactivity 

required that both parents come from exposed lineages. These findings suggest 

that MeHg induced phenotypes are inherited transgenerationally through different 

modes of germline transmission, and that there are likely to be many more 

abnormal neurological phenotypes yet to be identified.  

Ancestrally induced transgenerational phenotypes in the F3 lineages 

suggests that gene expression and molecular pathways associated with these 

phenotypes are dysregulated. The alteration of gene expressions involved in 

vision and the molecular mechanisms behind the transgenerational inheritance of 

visual defects due to developmental exposure to MeHg are not yet identified. We 

naturally hypothesized that genes and pathways associated with visual functions 

and cellular physiology would be dysregulated in the MeHg exposed F3 lineage. 

To test this hypothesis, we performed transcriptomic analysis of the retina and 
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brain of F3 lineage zebrafish by RNAseq.  As expected, we found differential 

expression of genes associated with visual functions and retinal 

electrophysiology. However, we also identified dysregulation of genes and 

pathways associated with phenotypes that were not previously tested (e.g. 

circadian rhythm) which generates a whole new set of hypotheses for future 

studies.  

Our findings have significant impact on the global fight against mercury pollution. 

They provide the basis for developing tools for identifying individuals and 

populations who are at high risk for MeHg-influenced neurobehavioral disorders 

even though they may have not been exposed directly. Public health 

interventions are only possible with the identification of high risk populations. This 

thesis has identified for the first time the potential for developmental exposure to 

MeHg to induce transgenerational neurobehavioral deficits. Our transcriptome 

findings have directed future studies that are likely to identify additional specific 

transgenerational phenotypes associated with MeHg toxicity. This thesis should 

provide a foundation for public health interventions to alleviate the neurotoxic 

effects of developmental MeHg exposure through preventative measures and the 

development for future therapeutic interventions.  
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CHAPTER 2 

Ancestral developmental exposure to methylmercury induces 

transgenerational inheritance of visual and locomotor deficits 
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ABSTRACT 

Exposure to the environmental toxicant methylmercury (MeHg) during 

embryonic development has been shown to induce a wide variety of 

neurobehavioral deficits in humans and animals. Direct exposure to MeHg during 

development induces altered retinal electrophysiology and neurobehavioral 

deficits including altered behavioral response to visual stimuli and learning 

deficits. However, the capacity of developmental MeHg exposure to induce 

transgenerational phenotypes is unknown. Given the potential of direct 

developmental exposure to MeHg to induce neurobehavioral deficits, we 

hypothesized that developmental exposure to MeHg induces transgenerational 

neurobehavioral phenotypic variations in zebrafish. In this study, we tested F3 

zebrafish, whose grandparents (F1) were exposed to MeHg during early 

development, for visual startle response and locomotor activity. Exposure of the 

F1 grandparents to MeHg during development caused a significant reduction in 

visual startle responses, altered function of potassium ion channels of bipolar 

cells of the retina, and induced hyperactivity in the F3 generation zebrafish in the 

absence of additional exposure to MeHg. Furthermore, a dose dependent 

increase in the proportions of fish that exhibited a visual deficit or hyperactivity 

was observed. Finally, we found that direct exposure of zebrafish embryos to 

MeHg caused a decrease in global DNA methylation.  Our data suggests that 

developmental exposure to MeHg induces transgenerational inheritance of 

neurobehavioral deficits and that altered DNA methylation may be the 

mechanism responsible for this transgenerational inheritance. This is the first 
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evidence of transgenerational neurotoxic effects from developmental exposure to 

MeHg in any species.  

Keywords  Methylmercury   Zebrafish  Transgenerational inheritance  

Neurobehavioral deficits  DNA methylation 
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INTRODUCTION 
 

It is well established that prenatal exposure to high doses of MeHg can 

lead to widespread brain damage and impaired neurological development 

resulting in defects ranging from severe cerebral palsy and cognitive impairment 

to impaired motor and sensory functions (Davidson et al. 2004; Ekino et al. 2007; 

Patel and Reynolds 2013). Exposure to MeHg at low levels during fetal 

development has been associated with neurodevelopmental defects, including  

visual deficits in humans (Shamlaye et al. 1995; Grandjean et al. 1997; 

Jedrychowski et al. 2006). The neurodevelopmental defects induced by 

developmental MeHg exposure can be permanent and have been linked to 

persistent changes in brain structure and activity in the exposed individual (Fox 

et al. 2012).  

The 2009-2010 National Health and Nutrition Examination Survey 

reported that 2.14% of American women of childbearing age have blood MeHg 

concentrations above the reference dose level (5.8 µg/L), which is expected to 

cause developmental deficits in children due to prenatal exposure (Birch et al. 

2014). Recent analysis of blood mercury concentrations of newborns from the 

Lake Superior Basin showed that 8% of newborns had blood mercury levels 

above the reference dose and 1% of newborns had mercury levels above 58 

µg/L (McCann P et al. 2011). Global environmental emission of Hg has 

significantly increased during the past century and it is expected that levels will 

continue to increase, unless drastic measures are taken to reduce emissions.    
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The early developmental stages of an organism are susceptible to both 

genetic and epigenetic modifications resulting in permanent changes to the basic 

physiology of the organism (Skinner 2011). Exposure to certain environmental 

toxicants such as vinclozolin, DDT and methoxychlor during critical 

developmental windows has been shown to result in disease or dysfunction 

phenotypes that persist for multiple generations without further exposure. In 

order to be considered transgenerational, this phenotype must be observed in a 

generation that was never directly exposed to the toxicant. A directly exposed 

embryo (F1) will contain germ cells that contribute directly to the F2 generation; 

therefore, the F3 is the first generation without direct exposure. Ancestral 

exposure to the insecticide dichlorodiphenyltrichloroethane (DDT) in rats, for 

instance, results in obesity and related cardiovascular diseases in the F3 

generation (Skinner et al. 2013). Ovarian disease, testis disease and obesity 

have been transgenerationally induced in rats by exposure to the endocrine 

disruptors bisphenol-A (BPA), bis (2-ethylhexyl) phthalate (DEHP) and dibutyl 

phthalate (DBP) (Manikkam et al. 2013). Vinclozolin, a fungicide, has also been 

shown to induce diseases in male rat reproductive physiology in multiple 

generations including F3 without direct exposure (Anway et al. 2006). As 

demonstrated in these studies, exposure to environmental toxicants can induce 

permanent changes in the DNA methylation pattern of germ cells from 

developmentally exposed individuals and this altered epigenome was inherited 

by the following generations resulting in disease phenotypes without further 

exposure (Anway et al. 2006; Manikkam et al. 2013; Skinner et al. 2013).  
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Ancestral exposure to toxicants such as nicotine and BPA has been 

associated with transgenerational inheritance of neurobehavioral phenotypes 

including changes in social behavior and hyperactivity (Wolstenholme et al. 2012; 

Zhu et al. 2014). The transgenerational actions of prenatal MeHg exposure are 

still unclear. In order to close this knowledge gap, it is important to investigate the 

long-term adverse health outcomes of prenatal exposure to MeHg.  Zebrafish are 

well characterized model organisms used to study visual defects and complex 

brain disorders due to the similarities in physiological, morphological, and genetic 

characteristics of zebrafish and humans (Bibliowicz et al. 2011; Kalueff et al. 

2014). The short generation time (3 months) of zebrafish also makes it a great 

model organism for transgenerational studies. We have previously shown that 

direct developmental exposure to low doses of MeHg results in dysfunction in the 

electrophysiology of the retina, altered response to visual stimuli, as well as 

deficits in learning and memory in adult zebrafish (Smith et al. 2010; Weber et al. 

2008). In our current study, we investigated the potential of ancestral 

developmental exposure to a range of environmentally relevant and higher and 

doses of MeHg to induce transgenerational visual and neurobehavioral deficits in 

the F3 generation.  
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MATERIALS AND METHODS 

Animal studies 

All animal care and experiments using animals or involving hazardous 

materials were pre-approved by the Institutional Animal Care and Use 

Committee, Environmental Protection, and Laboratory Safety offices of University 

Safety & Assurances of the University of Wisconsin-Milwaukee. 

 

Zebrafish stock and egg collection 

Adult EK strain zebrafish were originally obtained from Ekkwill Waterlife 

Resources, Gibsonton, FL. and have been maintained in the lab for over 10 

years. Adult fish were housed at a maximum density of 10 adult fish/L in a flow-

through dechlorinated water system maintained at 26 to 29 °C on a 14:10 h light: 

dark photoperiod at the Aquatic Animal Facility of the NIEHS-funded Children’s 

Environmental Health Sciences Core Center at the University of Wisconsin-

Milwaukee. For spawning, male and female fish (male:female ratio 1:2) were kept 

overnight in a 2 L plastic aquarium with a 3 mm nylon mesh bottom to separate 

newly fertilized eggs from the adults. The fish were moved to clean water 30min 

prior to the onset of light to ensure that only eggs fertilized within a narrow time 

period were used in experiments. Eggs were collected ≤ 1 h post fertilization 

(hpf) and placed into metal-free, plastic culture dishes (100 mm diameter × 50 

mm depth) in E2 medium (Nüsslein-Volhard 2002; pH 7.2; in one liter --  0.875 g 

NaCl, 0.038 g KCl, 0.120 g MgSO4, 0.021 g KH2PO4, and 0.006 g Na2HPO4; Hg-
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free as determined by Inductively Coupled Plasma-Mass Spectrometer (ICP-

MS). 

 

Methylmercury exposure and breeding 

The newly fertilized eggs were then transferred to 12-well non-treated 

culture plates (10 eggs/well) and rinsed twice with E2 medium. The eggs were 

exposed to 1.5 ml of E2 medium containing MeHg (0.0, 0.001, 0.003, 0.01, 0.03, 

0.1 μM with ethanol as a carrier < 0.01% total volume). Following 24 h exposure, 

embryos were rinsed three times with E2 medium and transferred to 2L tanks (60 

embryos per tank) containing static E2 medium for rearing. Starting at 5 dpf, 

eleutheroembryos were fed 5-100 micron Golden Pearl Reef & Larval Fish Diet 

(Brine Shrimp Direct, Ogden, UT).  Platinum Grade Artemia nauplii (Argent 

Laboratories, Redmond, WA) were fed starting at 9 dpf. At 21 dpf, fish were 

transferred to 1L flow-through tanks and raised using standard husbandry 

techniques until 4 months of age, at which point they were used for behavior 

assays and breeding. Juvenile and adult fish were fed a combination of Platinum 

and Gold grade Artemia nauplii and Aquarian™ flake food (Aquarium 

Pharmaceuticals, Inc., Chalfont, PA).  

In mammalian models of developmental toxicity, the pregnant animal is 

directly exposed to the toxicant and is designated as F0. The developing progeny 

which are exposed to the toxicant in-utero are considered the F1 generation. In 

our zebrafish model system, the directly exposed embryos are analogous to the 

F1 progeny in mammalian animal models. After the initial 24 h MeHg exposure of 
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the F1 embryos, there was no exposure to Hg during the entire life cycle beyond 

the background levels found in all fish food. Many different fish foods were 

screened, and those with the lowest levels of Hg (as determined by ICP-MS) 

were used as much as possible in this study. Adult F1 fish were inbred to create 

the F2 generation, which were inbred to create the F3 generation. F2 and F3 

generations were never exposed to exogenous MeHg. However, the F2 

generation is also considered to be directly exposed as they were primordial 

germ cells within the F1 embryos of the time of initial MeHg exposure. In our 

current study, we tested the F3 generational animals for transgenerational 

inheritance of neurobehavioral deficits.  

 

Mercury determination 

Mercury levels in embryos and food were determined by ICP-MS.  Briefly, 

zebrafish embryos were exposed to MeHg as described above. Embryos were 

tested with (chorion-intact) and without (dechorionated) chorions. For 

dechorionation, embryos were first treated with 2mg/mL Proteinase-K for 2 min at 

28oC and then rinsed with E2 medium. The embryos were placed on a plate 

shaker at 75rpm to agitate and break the chorions. Embryos were rinsed again 

with E2 medium to remove the broken chorions. Chorion-intact and 

dechorionated embryos were analyzed separately. Embryos were transferred to 

pre-weighed 13x100 mm 8 mL Round Bottom Polystyrene Shelf Pack (RB PS 

SPK) tubes (SARSTEDT Inc, Newton, NC ).  Two hundred embryos were pooled 

for each of the 0.001µM, 0.003µM, 0.01µM and 0.03µM exposure groups, and 



32 
 

 
 

100 embryos were pooled for the 0.1µM and 0.3µM exposure groups. Pooling 

was identical for both chorion-intact and dechorionated embryos. All liquid was 

carefully removed and the embryos were weighed to determine tissue mass. 

Digestion of the embryo or food samples was performed using 1.0mL of 

20% Nitric Acid (Optima™ Fisher Scientific) with 2000 ppb gold standard (Gold 

Standard for ICP/MS - Claritas PPT Grade, SPEX CertiPrep™ Fisher Scientific).  

Each sample was transferred to a 3mL CEM MicroVessel and allowed to run in a 

CEM MARS 5 Microwave at 130oC for 10 min at ≤ 50 psi.  Samples were 

discarded if 1.0mL of each sample was not retrieved after the microwave 

digestion as this was evidence of improper MicroVessel sealing. After the 

cooling, the samples were diluted 1:4 with 5% nitric acid and 500 ppb gold and 

store at room temperature in RB PS SPK tubes.   

Hg concentration was determined using a Micromass Platform ICP-MS 

(GV Instruments Ltd, Manchester, UK) controlled with MassLynx software. The 

concentration range was set to 10-100 ppb Hg for all isotopes. The response at 

each mass unit was acquired for 1 minute following a 1.5 minute solvent delay. 

Five concentrations of standards were prepared (0, 1, 10, 50, and 100 ppb) from 

commercially available ICP-MS standard solutions in 5% nitric acid with 500 ppb 

gold for calibration. Total Hg levels were statistically analyzed using one-way 

ANOVA with multiple comparisons versus control by Holm-Sidak method for post 

hoc test. The overall significance level was kept at 0.05.  
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Global DNA methylation  

Zebrafish embryos were exposed to MeHg as described above.  Fifty 

embryos were transferred to a 1.7 mL Eppendorf tube containing 250 μL 

RNAlater and quickly flash frozen in liquid nitrogen.  Embryos were then stored at 

-80°C until DNA extraction.  Samples were thawed to room temperature and all 

RNAlater was removed.  DNA extraction was performed using the IBI Genomic 

DNA Mini-Kit-(Tissue; Midwest Scientific #IB47222) as described by the 

manufacturer with minor modifications for use with zebrafish embryos.  Briefly, 

200 μL of GT buffer and 10 μL of Proteinase K (10 mg/mL) were added to the 

embryos, vortexed, and incubated at 60°C for 15 min until fully dissociated.  200 

μL of GBT buffer was added to the samples, vortexed, and incubated at 70° C for 

5 min.  RNA was removed using RNAse A (2 μL, 20 mg/mL; Invitrogen) with 

incubation at room temperature for 5 min.  Washing and elution procedures were 

performed as directed by the manufacture’s protocol.  DNA was quantified in 

triplicate using a NanoDrop 1000 Spectrophotometer (Thermo Scientific, 

Pittsburgh, PA) and/or Qubit® 2.0 Fluorometer (Life Technologies, Grand Island, 

NY).  The accuracy of this assay is dependent on precise quantification of DNA; 

therefore, multiple dilutions were quantified (initial concentration; triplicate 

measurements), after dilution to 25 ng/μL (quintuplicate measurements), and 

again after dilution to 12.5 ng/μL (triplicate measurements). 

  

Methylated DNA quantification was performed using the MethylFlash 

Methylated DNA Quantification Kit – Colorimetric Assay (Epigentek, 
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Farmingdale, NY) according to the manufacturer’s specifications with minor 

modifications.  Samples, standard curves (0.25 ng, 0.5 ng, 0.75 ng, 1 ng, 2 ng, 5 

ng ME4 positive control DNA), negative controls (5 ng ME3) and blanks (no 

DNA) were analyzed in duplicate. Spatial location on the plate was randomized 

to account for any variances in incubation time due to pipetting. To minimize well-

to-well variation due to pipetting error or improper mixing of DNA and Binding 

Solution, stock solutions containing standards or sample DNA and ME2 Binding 

Solution were prepared for all samples prior to plate loading.  The same stock 

solution was used for both of the technical duplicate wells. The methylated DNA 

capture (ME5 antibody), detection (ME6 antibody), and enhancement (ME7 

solution) were carried out as directed by the manufacturer.  Signal development 

(ME8) was monitored using a BioTek SynergyTM H4 Plate reader and stopped 

by the addition of ME9 when the absorbance at 370 nm reached 1.0 O.D. The 

stop reaction causes a spectral shift and absorbance of 450 nm was used to 

quantification methylated DNA.  Reported data are normalized to the control 

group for comparison of data across multiple plates. One-way ANOVA 

(SigmaPlot 12.0) was used to analyze global methylation differences between 

treatment and control groups. Level of significance was set at P < 0.05.   
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Visual startle response 

The behavioral response of the fish to visual stimuli was analyzed as 

previously described [Dowling et al. 1997, Weber et al. 2008]. Adult male and 

female fish (n = 20, 10M, 10F; 4-6 months old, 1.5-2.0 cm standard length) from 

all exposure groups were assigned random numbers to blind the observer to their 

exposure. Individual fish were placed in a stationary glass crystallizing dish (10 

cm diameter, 5 cm depth, approximately 200ml of dechlorinated water) 

surrounded by a rotating white PVC drum with a black vertical stripe (1 cm width 

x 5 cm height). The drum speed was set to 10 rev/min and the black object 

elicited a startle response when it entered the fish’s field of vision.  When 

startled, zebrafish will elicit either a C-start escape response or an avoidance 

maneuver.  After a 5-minute low light acclimation period, the PVC drum rotation 

was initiated and the response of fish to the rotating black bar was captured for 5 

min using infrared digital video. All tests were conducted between the hours of 

1300-1600 due to the zebrafish circadian rhythm which exhibit the most 

consistent light sensitivity and basal activity levels during the afternoon hours 

(Dowling et a. 1997). Blinded analysis was conducted on the videos of visual 

startle response and the number of C-start escape reactions exhibited by fish 

during the encounter with the rotating black bar was quantified. All data are 

expressed as responses relative to the control group. One-way ANOVA 

(SigmaPlot 12.0) was used to analyze visual startle response data with P< 0.05.   
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Retinal electrophysiology 

Whole-cell voltage gated current responses were recorded from bipolar 

cells within intact zebrafish retinal slice preparations using methods described 

previously (Weber et al., 2008).  All protocols and procedures were approved by 

the Animal Care and Use Committee at American University. 

Adult zebrafish were maintained on a 14hr light: 10hr dark photoperiod at 26-28 

oC, and fed Tetramin flakes daily until needed for experiments.  Retinal slices 

were prepared following established protocols (Connaughton & Maguire, 1998; 

Connaughton and Nelson, 2000; Connaughton, 2003).  Briefly, fish were 

removed from aquaria, dark adapted (at least 20 min), anesthetized in a 0.02% 

tricaine solution until gill ventilation stopped, and then decapitated.  Retinas were 

removed from the eyes and mounted vitreal-side down on a piece of Millipore 

filter paper (0.45μm pore size).  The filters along with the retina were then 

mounted onto Vaseline strips in the recording chamber, covered with the 

standard extracellular solution, and sectioned (100μm sections).  Sections were 

rotated 90o and viewed in cross-section using an Olympus BX50WI microscope 

fitted with a 40X water immersion lens and Hoffman modulation contrast optics.  

Whole-cell voltage-gated currents were recorded in response to voltage 

steps from a holding potential of -60mV (-80 to +60mV, in 10mV increments).  

Recording chambers contained a standard extracellular solution composed of 

120mM NaCl, 2mM KCl, 3mM CaCl2, 1mM MgCl2, 4mM HEPES, and 3mM D-

glucose, brought to pH 7.4-7.5 with NaOH.   Patch electrodes were made of thin 

walled, filamented borosilicate glass capillary tubes pulled to the desired tip 
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diameter (10-15MΩ) with a Flaming-Brown P-80 Micropipette Puller.  Pipettes 

were filled with an intracellular solution composed of 12mM KCl, 104mM K-

gluconate, 1mM EGTA, 4mM HEPES, and 100µM CaCl2.  Once mixed, the 

intracellular solution was brought to pH 7.4-7.5 using KOH.  Lucifer Yellow (1% 

solution) was added to the intracellular solution to label recorded neurons.  

Labeled cells were visualized at the end of the experiment.   Recordings were 

made using an Axopatch 1-D patch clamp amplifier and pCLAMP (ver. 8.0) 

software.  Traces were analyzed in pCLAMP; graphs were made in SigmaPlot 

(ver. 12.5). Statistical analyses for the bipolar cell electrophysiology data were 

accomplished using SPSS 20 for Windows software and ANOVA (SigmaPlot 

12.5, Systat software Inc, San Jose, CA). 

 

Locomotor Activity 

Locomotor activity was quantified using a Behavior Observation Box (BOB). 

Fish were placed in a clean glass crystallizing dish (10 cm diameter and 5 cm 

depth) in a light-tight chamber. The light intensity inside the chamber was produced 

by a standard computer monitor (76 Lux). The chamber was equipped with four 

Logitech c920 USB cameras (Logitech, Newark, CA) for capturing digital video of 

four arenas simultaneously. In our experiment, we used the two distant cameras 

at a time. The fish were acclimated for 5 minutes (min) after which a digital video 

was recorded for an additional 5 min.  The files were obtained in M-MJPEG format 

using the Matlab Image Acquisition ToolboxTM (MathWorks, Natick, MA) at a 960 

x 720 pixels resolution.  Video was cropped to 600 x 600 pixels with ffmpeg 
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(https://www.ffmpeg.org/ ) prior to being imported into EthoVision XT (Noldus 

Information Technology Inc, Leesburg, VA) for automated analysis of distance 

traveled in 5 min. One-way ANOVA (SigmaPlot 12.0) was used to identify the 

difference in locomotor activity between the exposure and control groups. Level of 

statistical significance was set at P < 0.05. 
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RESULTS 

Mercury accumulation in zebrafish F1 embryos 

Zebrafish embryos were exposed to MeHg during the first 24hpf, then 

rinsed and placed in clean medium. The levels of Hg in the embryos were 

measured by ICP-MS at 24 hpf (chorion-intact or dechorionated), and 144 hpf 

(Fig 2.1). Developmental exposure to MeHg during the first 24hpf resulted in a 

dose-dependent accumulation of Hg at 144 hpf (Table 2.1). The chorion-intact 

24hpf embryos had higher Hg concentrations (total ng/embryo) than both 24 hpf 

dechorionated and 144 hpf. Exposure to 0.01µM and 0.03 µM concentration 

resulted in approximately 47 times and 181 times more Hg than the control 

respectively in the chorion-intact embryos. Exposure to two highest doses (0.1µM 

and 0.3µM) resulted in significant increase in the accumulation of Hg at 144 hpf 

(one way ANOVA, p < 0.05).   At 144 hpf, the 0.01µM exposure caused 1.6 times 

and 0.03 resulted in 18.1 times higher Hg accumulation than the control. The two 

lowest doses (0.001µM and 0.003µM) did not cause Hg accumulation above 

background levels observed in the control embryos. A regression analysis of the 

uptake of Hg due to exposure ranging from 0µM to 0.3µM at 144 hpf resulted 

with a R-square of 0.977. The P value for the significance of the interaction term 

is <0.001. The lowest three exposures resulted in significantly lower 

accumulation of Hg than the human reference dose for cord blood (5.8 µg/L), 

whereas, exposure to 0.03 µM MeHg resulted in a tissue dose (1.63 ng/embryo) 

comparable to the reference dose. The 0.1 µM MeHg exposure resulted in a 

tissue dose (1.76 ng/embryo) that is consistent with the higher range of in utero 
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exposures for fish consumers in the US reported by the latest NHANES and 

other epidemiological studies (Wolkin et al. 2012). The ICP-MS analysis included 

data from embryos exposed to 0.3µM but it was excluded from further analysis 

because of a low but significant incidence of abnormalities. 

 

 

Table 2.1. MeHg treatment of zebrafish embryos and the resultant tissue 

dose in whole embryos 

    F1 exposure  Tissue Hg (ng/embryo)   

  (µM) (µg/L)   

  0 0 <0.1 (near detection limit)  
  0.001 0.216 <0.1  
  0.003 0.647 <0.1  
  0.01 2.16 0.18  
  0.03 6.47 1.63  

    0.1 21.6 1.76   
Concentration of Hg presented in one embryo vs MeHg exposure in µM and equivalent µg/L. 

The amount of Hg accumulated in the embryo at 144 hpf after 24 hpf of developmental exposure 

to above mentioned concentrations of MeHg (One way ANOVA, p = 0.001).  
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Figure 2.1. Hg uptake analysis. Concentration of Hg (ng per one embryo) present in 
zebrafish embryos at 24 hpf measured with chorion (○), 24 hpf without chorion (●) and 
144 hpf  ( ) at each exposure concentration (μM) of MeHg exposure. Exposure to the 

highest concentrations (0.1 and 0.3 µM MeHg) resulted in a significant increase in the 
accumulation of Hg at 144 hpf (one way ANOVA, * indicates p < 0.05).  
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Global DNA methylation analysis  

Transgenerational onsets of disease phenotypes are often due to 

permanent heritable epigenetic modifications (Skinner et al. 2013). A number of 

studies have shown that the CpG islands associated with critical genes are 

differentially methylated in transgenerationally inherited diseases (Nilsson et al. 

2012; Guerrero-Bosagna et al. 2012; Manikkam et al. 2012). Dietary exposure to 

MeHg in yellow perch did not cause alteration in global DNA methylation in the 

telencephalon brain (Basu et al. 2013). Global DNA methylation was not 

significantly changed in the F1 and F2 zebrafish embryos whose F0 female fish 

were fed with dietary MeHg (Olsvik et al. 2014). In our current study we 

quantified the changes in global DNA methylation during embryogenesis due to 

MeHg exposure during the 24 hpf (Fig 2.2). Analysis of DNA methylation 

revealed that MeHg exposure at 0.1µM resulted in global DNA hypomethylation 

relative to controls (ONEWAY ANOVA, Holm-Sidak method, p <0.001). This does 

not rule out changes in DNA methylation at lower concentrations. However, this 

method is not sensitive enough, nor does it have the necessary resolution, to 

detect the subtle differences that have the potential for dramatic influences on 

gene transcription.  
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Figure 2.2. Alteration of DNA methylation by direct exposure to MeHg. Exposure of 
embryos for 12 hpf with different concentrations of MeHg resulted in altered DNA 
methylation. Error bars indicate standard deviation. Exposure to the highest 
concentration (0.1µM MeHg) resulted in a significant reduction in the magnitude of global 
DNA methylation (ONEWAY ANOVA, * indicates  p <0.001).  
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Transgenerational visual deficits 

We exposed zebrafish embryos to sublethal concentrations of MeHg at 

levels below or equivalent to human developmental exposure levels as described 

above. No overt morphological abnormalities were observed in any of the F1, F2 

or F3 groups at concentrations up to 0.1 µM MeHg. We have previously reported 

dose-dependent visual startle deficits in adult F1 zebrafish following 

developmental exposure to MeHg (Weber et al. 2008). This phenotype persists 

into the F2 generation (data not shown). The visual startle response of F3 

generation zebrafish (Fig 2.3) was significantly reduced in all exposure groups as 

compared to controls (one-way ANOVA, p < 0.001, F = 10.842, df = 5). Thus the 

fish, whose grandparents were exposed to MeHg during development, 

responded significantly less frequently to the rotating black bar than the controls. 

Unlike the F1 and F2 generations, the visual deficit observed in the F3 

generation was not dose-dependent.  
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Figure 2.3. Transgenerational visual deficit in F3 zebrafish due to ancestral MeHg 
exposure. Twenty animals from each lineage were tested for their visual startle 
response. Relative response of all ancestrally exposed populations of F3 fish were 
significantly lower than the control group (ONEWAY ANOVA, * indicates p <0.001). Solid 
horizontal lines represent the median, dashed horizontal lines represent the mean, the 

box represents the 25th and 75th percentiles, the whiskers show the 5th and 95
th
 

percentiles, and outliers are represented by dots. 
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Transgenerational effects on retinal electrophysiology 

In our previous study (Weber et al. 2008), the bipolar cells of the retina 

exhibit either a delayed rectifying IK potassium current or a transiently activating 

and inactivating IA potassium current in response to membrane depolarizations 

following developmental exposure to MeHg . In this study whole-cell voltage-

gated currents were measured in retinal bipolar cells from the F3 zebrafish 

ancestrally exposed to MeHg. In most bipolar cells recorded from the F3 fish, the 

IK current was present (N=47); while the remaining cells (N=27) expressed the IA 

current.  In both current groups, there was a clear trend of increasing current 

amplitude with increasing MeHg exposure concentration.   

When examining changes in IK current amplitude, mean peak values, 

elicited from a voltage step to +60mV in bipolar cells in retinas exposed to 

control, 0.01μM, or 0.03μM MeHg were significantly different (ANOVA, p = 0.039; 

Fig 2.4).  A Tukey posthoc test revealed the difference to be between the 0.03μM 

and control groups; mean current amplitude between the 0.01μM and control 

groups were not significantly different.  There was also a significant trend (p = 

0.012) of increased current amplitude with increased MeHg concentration across 

exposure groups, with current amplitude increasing by 59% in the 0.01μM group 

and by 139% in the 0.03μM group (Table 2.2) compared to controls . 

Interestingly, peak current amplitudes recorded from cells within the highest 

MeHg exposure group (0.1μM) were reduced and comparable in value to peak 

current amplitudes recorded from cells in the 0.01μM exposure group (Table 2.1, 

Fig 2.4).  If the 0.1μM exposure was included in the statistical analysis, 



47 
 

 
 

differences in current amplitude at +60mV became non-significant (ANOVA, p = 

0.095).  The range of peak current amplitudes recorded from individual bipolar 

cells was large, though the variability was smallest in the control animals (139-

764pA).  The greatest variability in peak current amplitudes was observed in 

bipolar cells from the 0.03μM exposure, which was also the exposure that 

showed the greatest increase in current amplitude.   

There was also a significant trend of increased IA current amplitude with 

increasing MeHg concentration (p=0.022) when control, 0.01μM, and 0.03μM 

exposure groups were compared (Table 2.3, Fig 2.5).  However,  mean peak 

current amplitudes recorded from bipolar cells in these three exposure groups, 

following a voltage step to +60mV, were not significantly different (ANOVA, p = 

0.065).  Current amplitude was increased by 32% in the 0.01μM exposure group 

and by 68% in the 0.03μM exposure group (Table 2.2).  If the 0.1μM exposure 

group was included in the statistical analysis, changes in peak current amplitudes 

remained non-significant (ANOVA, p = 0.102).  As noted for IK, peak current 

amplitude varied among cells within a given exposure group.  The smallest 

variability was seen in the 0.01μM exposure group (range of peak current 

amplitude = 628-878pA).  Variability in peak current amplitudes in control 0.03μM 

and 0.1μM exposure groups were comparable.   
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Table 2.2. IK current amplitude changes in response to ancestral MeHg 

exposure.  

MeHg exposure 
group 

IK peak amplitude in 
response to +60mV step 

Percent change in peak 
amplitude from control 

Control 382 ±51.6pA (16) -- 

0.01μM MeHg 584 ± 102.8pA (12) 53% increase 

0.03μM MeHg 914 ± 313.9pA (7) 139% increase 

0.1μM MeHg 561 ± 141.8pA (12) 47% increase 
Mean peak amplitudes (+/- SE) and the corresponding percent change in amplitude of the 
delayed rectifying IK current recorded from retinal bipolar cells in F3 generation zebrafish.  
Currents were elicited in response to a voltage step to +60mV.  N’s are given in parentheses.  
Control recordings include both water- and ethanol-treated fish.  

 

 

Table 2.3. IA current amplitude changes in response to ancestral 

MeHg exposure.  

MeHg exposure 
group 

IA peak amplitude in 
response to +60mV step 

Percent change in peak 
amplitude from control 

Control 556 ± 83.1pA (12) -- 

0.01μM MeHg 734 ± 53pA (4) 32% increase 

0.03μM MeHg 936 ± 156.5pA (6) 68% increase 

0.1μM MeHg 597 ± 123.5pA (5) 7% increase 
Mean peak amplitudes (+/- SE) and the corresponding percent change in amplitude of 

the depolarization elicited A-type current recorded from retinal bipolar cells from F3 

generation zebrafish.  Currents were elicited in response to a voltage step to +60mV.  

N’s are given in parentheses.  Control recordings include both water- and ethanol-

treated fish. 
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Figure 2.4.  Change in mean peak amplitude of I
K
 current recorded from bipolar 

cells in retinas from F3 zebrafish ancestrally exposed to various concentrations of 
MeHg. (a) Representative whole-cell current traces recorded from bipolar cells in control 
(0μM), 0.01μM, 0.03μM, and 0.1μM MeHg exposure groups.  (b) Current-voltage 
relationship showing the mean peak currents elicited at different voltage steps from a 
holding potential of -60mV.  One-way ANOVA comparing peak currents at a voltage step 
to +60mV was not significant (p = 0.095), due to the reduction in current amplitude seen 
in the 0.1μM exposure (open triangles).  If this high exposure is removed from the 
analysis, ANOVA results become significant (p = 0.039, *), with amplitude larger in the 
0.03μM group (solid triangles) compared to control (solid circles) or the 0.01μM group 
(open circles).  There was also a significant linear trend of increasing current amplitude 
with increasing MeHg exposure concentration for the control, 0.01μM, and 0.03μM 
exposure groups (p = 0.012).  
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Figure 2.5. Change in mean peak amplitude of I
A
 current recorded from bipolar 

cells in retinas from F3 zebrafish ancestrally exposed to various concentrations of 
MeHg.  (a) Representative whole-cell current traces recorded from bipolar cells in 
control (0μM), 0.01μM, 0.03μM, and 0.1μM exposure groups.  (b) Current-voltage 
relationship showing the mean peak current amplitudes elicited at different voltage steps 
from a holding potential of -60mV.  One-way ANOVA comparing peak currents at a 
voltage step to +60mV was not significant (p = 0.102).  However, there was a significant 
linear trend in the data (p = 0.022) of increasing current amplitude with increasing MeHg 
exposure concentration (control, 0.01μM, and 0.03μM groups only). 
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Transgenerational effects on locomotor activity 

Developmental exposure to MeHg has shown defects in locomotor activity 

in different species including decreased flight performance in songbirds (Carlson 

et al. 2014) decreased exploratory activity in mice (Onishchenko et al. 2007). 

Exposure to MeHg also results in neurobehavioral deficits in different fish species 

affecting their foraging ability, survival skills and swimming pattern (Alvarez et al. 

2006; Jakka et al. 2007). In our study, developmental exposure to MeHg resulted 

in transgenerational inheritance of altered visual startle behavior in zebrafish. 

The altered response exhibited by the F3 population zebrafish to visual stimuli 

could have various causes including motor dysfunction, sensory damage, or 

damage in the signal relay and processing elements of the brain.  In order to rule 

out motor dysfunction as a factor we quantified the spontaneous locomotor 

activity of adult F3 generation zebrafish (4-6 months old) ancestrally exposed to 

MeHg. Prenatal exposure to MeHg has been associated with motor dysfunctions 

and coordination (Montgomery et al. 2008). Locomotor analysis was conducted 

on the same F3 fish that were used for the visual startle response tests. The 

swimming distance traveled by the fish without any stimulus was recorded. 

Locomotor activity test revealed that all MeHg exposure groups of F3 fish were 

significantly hyperactive compared to the control group (one way ANOVA, p < 

0.006, F = 3.498, df = 5). The fish of all exposure groups traveled more distance 

in 5 min than the control group (Fig 2.6). 
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Figure 2.6. Transgenerational locomotor deficit in F3 zebrafish due to ancestral 
MeHg exposure. Twenty animals from each lineage were tested for their locomotor 
activity. The relative distance traveled in all ancestrally exposed populations of F3 fish 
were significantly higher than the control group (ONEWAY ANOVA, Holm-Sidak method, 
*indicates  p <0.001). Solid horizontal lines represent the median, dashed horizontal 
lines represent the mean, the box represents the 25th and 75th percentiles, the whiskers 
show the 5th and 95th percentiles, and outliers are represented by dots. 
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Dose dependent expression of phenotypes 

Although significant differences in the visual startle response and 

locomotor activity were observed in F3 zebrafish ancestrally exposed to MeHg as 

compared to controls, these differences were not dose-dependent when 

analyzed at the population level. As both neurobehavioral assays were 

performed on the same fish, we were able to determine the behavioral 

phenotypes exhibited by each individual.  A fish was considered to have a defect 

in the behavioral response to visual startle if the number of responses fell below 

the 5th percentile as determined by the distribution of responses in the control 

group.  A fish was considered to be hyperactive (as only increased locomotion 

was observed) if it traveled further in the locomotor assay than the 95th percentile 

as determined by the distribution of responses in the control group.  Using these 

criteria, we were able to identify each individual fish as "normal" compared to 

controls or as having a defect (“outside the norm”) for each of the specific 

endpoints.  As the ancestral MeHg dose increases, the proportion of fish that 

exhibit both phenotypes (visual defects and hyperactivity) increases (Fig 2.7).  

The proportion of fish exhibiting each individual neurobehavioral deficit compared 

to those expressing both phenotypes suggests that the phenotypes are inherited 

independently (Chi-square, p=0.224).  
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Figure 2.7. Proportion of the F3 populations showing transgenerational 
phenotypes. A fish is considered to have locomotor deficit, if the fish traveled 
further in the locomotor assay than the 95th percentile as determined by the 
distribution of responses in the control group. A fish is considered to have visual 
deficit, if the number of responses of the fish fell below the 5th percentile as 
determined by the distribution of responses in the control group. At lower 
concentrations, more fish exhibited a single deficit. The number of fish with both 
deficits had increased as the ancestral exposure concentration increased 
suggesting the independent inheritance of deficits.  
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DISCUSSION 

Exposure to MeHg during prenatal nervous system development results in 

neurobehavioral disease phenotypes (Montgomery et al. 2008; Boucher et al. 

2012; Ceccatelli et al. 2013). Developmental MeHg exposure has been shown to 

cause a wide range of defects in humans and animal models including 

teratogenic effects, defects in sensory functions, problems with learning and 

memory, Attention Deficit Hyperactivity Disorder (ADHD), and  more subtle 

behavioral changes (Baraldi et al. 2002; Newland et al. 2006; Onishchenko et al. 

2007; Smith et al. 2010; Mela et al. 2010; Boucher et al. 2012; Radonjic et al. 

2013). Recently, a number of environmental toxicants including pesticides and 

fungicides have been shown to induce the transgenerational phenotypic 

variations. Thus far, the molecular mechanism behind transgenerational 

inheritance of phenotypes has been identified as permanent inheritable 

epigenetic modifications in the germline (Manikkam et al. 2012; Guerrero-

Bosagna et al. 2012; Skinner et al. 2013). Given the neurotoxic effects of 

prenatal exposure to MeHg, we tested the potential of sublethal concentrations of 

MeHg to induce transgenerational neurobehavioral deficits in zebrafish. We have 

previously  demonstrated that direct developmental exposure to low 

concentrations of MeHg results in altered visual functions and retinal 

electrophysiology of adult zebrafish (Weber et al. 2008). The endpoints tested in 

our current study include visual startle response, electrophysiology of bipolar 

cells of the retina and locomotor functions of the F3 generation zebrafish whose 

grandparents (F1) were developmentally exposed to MeHg. In the present study, 
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we demonstrate, for the first time, the potential of developmental MeHg exposure 

to induce transgenerational inheritance of neurobehavioral and 

electrophysiological deficits.  

The concentrations of MeHg used in this study were sublethal and 

ecologically relevant. In 2001, the EPA set the reference dose for MeHg at 5.8 

µg/L, the cord blood concentration below which the detrimental effects of MeHg 

are expected to be minimal (U.S. EPA 2014). According to 2009-2010 National 

Health and Nutrition Examination Survey (NHANES) data, total blood mercury 

levels range between 0.23 to 85.7 µg/L in the general U.S. population (Birch et 

al. 2014). The exposure regimen used in our study resulted in tissue doses 

ranging from <0.1 to 1.76 ng/embryo with the three lowest doses being 

significantly lower than the reference dose for humans.  However, the tissue 

doses that we observed doesn’t represent the concentration of Hg in the embryo 

because the majority is in the yolk at 24hpf. The threshold concentrations of 

dietary MeHg that causes adverse behavioral deficits in fish species has been 

identified as above 0.5 µg/g wet weight (Depew et al. 2012). Reproductive and 

subclinical effects were observed in fish at dietary concentrations below 0.2 µg/g 

wet weight. The exposure concentrations of MeHg that we used were below the 

ecological dietary threshold for fish. There were variation in behavioral effects 

reported in studies involved maternal dietary exposure to MeHg due to the 

amount of MeHg exposed to individual embryos (Alvarez et al. 2006). In an effort 

to avoid variation in exposure concentrations and behavioral outcomes, we 
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directly exposed zebrafish embryos to MeHg during the first 24 hpf and quantified 

the resultant embryo concentrations of Hg. 

The embryos directly exposed to MeHg were raised as F1. Since the 

primordial germ cells present in F1 were also exposed, the F2 was also 

considered to be an exposed generation. The phenotypes observed in F3 were 

truly transgenerational phenotypes as the F3 generation was not directly 

exposed to MeHg neither as egg (F1) nor as germ cell (F2). There were no 

additional mercury exposure to F2 and F3 during their life cycles. We did not 

expect to have any mercury residues in F2 and F3 population fish due to both 

low concentrations of exposure and excretion of mercury from the F1 as they 

develop from larvae to adult. Finally, all zebrafish are exposed to background 

levels of Hg through their diet but our study populations are housed side-by-side 

and provided with the same routine care, thus the altered neurobehavioral and 

physiological differences observed are purely due to ancestral exposure.  

Our current study revealed the potential of developing transgenerational 

neurobehavioral phenotypes upon developmental exposure to environmentally 

relevant levels of MeHg. The phenotypes tested include visual function, retinal 

electrophysiology and locomotion in both the F1 (directly exposed) and the F3 

(ancestrally exposed) generations of zebrafish. Both F1 and F3 have shown 

visual deficits; however, the phenotypes were not dose-dependent. We have 

observed comparatively fewer effects on the visual startle response and retinal 

electrophysiology at the highest ancestral exposure concentration (0.1µM) than 

the second highest concentration (0.03 µM). This might be due to the subtle 
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negative impacts on health and fitness resulting in a differential distribution of the 

trait in the F3 populations.  

In this study, the electrophysiology of the retinal bipolar cells in the F3 

MeHg exposure lineage revealed dysfunctional potassium ion channels. 

Developmental exposure to MeHg has shown alteration of cellular and metabolic 

functions of the visual pathway leading to altered neurobehavioral outcomes 

(Glover et al. 2009; Ho et al. 2013). MeHg has also been associated with delayed 

latencies of visual evoked potentials in children of the Faroe Islands even without 

clinical conditions (Yorifuji et al. 2013). As previously reported, there was no 

significant difference in morphology of retina between the control and exposure 

groups in F1 zebrafish (Weber et al. 2008). However, the electrophysiology of the 

retinal bipolar cells was altered in F1 zebrafish. Direct MeHg exposure caused an 

enhanced outflow of K+ currents due to an induced depolarization in the bipolar 

cells of the retina. We investigated the electrophysiology of three dosage groups 

of F3 fish (0.01, 0.03 and 0.1µM MeHg). The bipolar cells of F3 0.01 and 0.03 

lineage showed similar electrophysiology as that of F1. A visual response to a 

stimulus requires coordinated cellular and molecular functions starting from the 

sensory cells of the retina to the skeletal muscular cells through the central and 

peripheral nervous systems. During phototransduction, bipolar cells of the retina 

are activated by photoreceptor cells (Leskov et al. 2000; Ebrey and Koutalos 

2001). Thereafter, the bipolar cells relay signals to both ganglion cells and the 

optic tectum (i.e., the final destination of the visual signals) of the brain with 

being. Proper function of potassium ion channels of the bipolar cells are required 
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for creating action potentials for signal transmission to ganglionic cells and to the 

brain. The normal function of Na+ and K+ voltage-gated cation channels is 

critical for the phototransduction process. Delayed potassium ion outward flow 

results in hyperpolarization of the bipolar cells and thus affect signal transmission 

to the ganglionic cells and beyond (Nelson and Connaughton 1995). We found 

that retinal electrophysiology was altered due to dysfunctional K+ ion channels in 

the bipolar cells of the retina due to ancestral developmental exposure to MeHg. 

Our findings revealed that delayed K+ current in the bipolar cells of the retina 

likely to play role in the visual deficits exhibited by the F3 lineage fish. The fish 

with that exhibited visual deficits were also tested for their locomotor activity to 

better understand the mechanism behind the reduced response to visual stimuli.  

The movement of the organism is dependent on the normal locomotor 

physiology. Prenatal exposure to MeHg has been linked to locomotor behavioral 

deficits in rodents (Bisen-Hersh et al. 2014). One of the mechanisms by which 

prenatal exposure to MeHg affects locomotor functions by reducing the 

dopaminergic transmission in the caudate putamen  of the brain (Daré et al. 

2003; Montgomery et al. 2008). As mentioned previously, we analyzed 

locomotion in order to eliminate problems in movement as a causative factor in 

the visual deficits. Our data demonstrates that these fish not only swim 

effectively, but they actually exhibit significant hyperactivity, compared to control 

fish. Thus, the F3-generation zebrafish have the physical ability to respond, but 

are not responding due to the visual stimuli provided in the visual startle 

response neurobehavioral assay. Studies have shown that motor functions of 
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male rats are impacted more than the female rats due to prenatal MeHg 

exposure (Rossi et al. 1997). Some other studies show that the locomotor 

functions are reduced in female progenies due to gestational MeHg exposure 

(Goulet et al. 2003; Gralewicz et al. 2009). In our study, we did not observe a 

gender difference in transgenerational locomotor hyperactivity due to ancestral 

MeHg exposure.  Even though the exact mechanism by which MeHg induces 

transgenerational hyperactivity has not yet been fully characterized, our findings 

have wide-spread implications.  Hyperactivity represents a newly identified 

transgenerational neurobehavioral defect induced by developmental MeHg 

exposure. There are mounting evidences of the association between 

developmental exposure to MeHg and attention-deficit hyperactivity disorder 

(ADHD)  in children (Sagiv et al. 2012; Yoshimasu et al. 2014). Since zebrafish 

has been identified as an animal model for ADHD (Whalley 2015), future studies 

could be conducted in this model to elucidate the association between MeHg 

exposure, hyperactivity, and ADHD.   

A number of recent studies have shown that environmental toxicants such 

as DDT, hydrocarbons, pesticides, fungicides, plastic, and dioxin induce a variety 

of transgenerational disease phenotypes (Manikkam et al. 2012; Manikkam et al. 

2013; Skinner et al. 2013a; Skinner et al. 2013b; Tracey et al. 2013). These 

studies have identified the molecular mechanism responsible for transmission of 

the disease phenotypes as inherited epigenetic modification of DNA methylation 

in the germ cells.  MeHg exposure causes oxidative stress, leading to DNA 

damage, at very high doses. However, random mutagenesis is not likely involved 
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in the inheritance of MeHg-induced phenotypes because of the relatively low 

doses used and the very high percentage of affected individuals in subsequent 

generations. Further studies are necessary to confirm that ancestral exposure to 

MeHg causes inheritable alteration of DNA methylation pattern in the  germ cells 

and  passed on to the offspring. The parental origin of the inheritance of 

transgenerational neurobehavioral phenotypes need to be further investigated.  

Imprinted DNA methylation sites escape the genome-wide DNA methylation 

erasure events which occur during gonadal development (Seisenberger et al. 

2012) and early embryogenesis (Mhanni and McGowan 2004).  Therefore, these 

epimutations become programmed into the genome and can cause changes in 

gene expression and function in offspring who inherit the epigenetically altered 

allele (Skinner et al. 2012). Transcriptome and methylome analysis of the F3 

generation are required to identify the genes, pathways and the role of DNA 

methylation in the inheritance of phenotypes. 

MeHg has been linked to decreases in global DNA methylation (Pilsner et 

al. 2010; Basu et al. 2013; Ceccatelli et al. 2013). However, significant variation 

in changes in global DNA methylation induced by MeHg exposure exists among 

different species (Basu et al. 2013; Basu et al. 2014). Dietary exposure to MeHg 

has not shown alteration in global DNA methylation either in yellow perch or 

zebrafish (Basu et al. 2013; Olsvik et al. 2014). The significant change in global 

DNA methylation that we observed in our study at 0.1µM exposure indicate the 

potential of direct exposure to MeHg during embryogenesis to alter DNA 

methylation. The direct exposure to MeHg resulted in genome-wide 
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hypomethylation of the embryo indicating the possibility of permanent alteration 

of epigenome and inheritance of disease phenotypes. Further investigations are 

needed to identify the gene specific changes in methylation and the differentially 

methylated regions (DMR).  

It is almost six decades since the Minamata outbreak showed the adverse 

neurological impacts of developmental exposure to MeHg. The neurotoxic effects 

of MeHg due to prenatal exposure have been well established in a variety of 

species, but the potential to induce transgenerational effects was unknown.  In 

the present study, we investigated the potential of developmental exposure to 

MeHg in inducing transgenerational neurobehavioral deficits in zebrafish. Our 

data suggests that developmental exposure to MeHg causes transgenerational 

inheritance of visual deficits, abnormal retinal electrophysiology and 

hyperactivity. We also report that MeHg has the ability to alter the DNA 

methylation pattern in directly exposed embryonic zebrafish. If the observations 

that we made in zebrafish are also seen in other species such as wild fish and 

humans, our findings will have considerable ecological and public health impacts 

in areas of risk assessment and interventions.  
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CHAPTER 3 

 

Ancestral Developmental Exposure to Methylmercury Induces  

Phenotype-Specific Germline Transmission of Transgenerational 

 Neurobehavioral Deficits
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ABSTRACT 

 Developmental exposure to the environmental neurotoxicant 

methylmercury (MeHg) is associated with neurobehavioral deficits. Our previous 

study has demonstrated the potential of MeHg to induce the transgenerational 

onset of visual and neurobehavioral deficits in the zebrafish of randomly-bred 

MeHg lineages. With the current study, we sought to identify the difference in the 

incidence of deficits between direct and transgenerational lineages as well as 

determine the parental origin of deficits transmission. We exposed zebrafish 

embryos to sublethal concentrations of MeHg and subsequently investigated 

visual response and locomotor behavior in the directly-exposed F1 individuals 

(grandparents) and in their descendant lineage (F3 generation or grandchildren). 

We used several breeding schemes to identify the parental origin of 

transgenerational inheritance and to explore the difference between random and 

selective breeding in F2 (parents) inheritance. To identify the parental origin of 

the deficits, we outcrossed F2 control and MeHg-exposure groups to generate F3 

outcross populations. To identify the change in incidence of visual deficits due to 

selective breeding, we bred the F1 animals that exhibited severe visual deficits to 

create a F2 population. Our study demonstrated that the visual response was 

significantly reduced in both directly exposed groups and transgenerational 

lineages. Selective breeding resulted in higher incidence of visual deficits in the 

F2 population. The outcross study demonstrated that transgenerational 

inheritance of visual deficit to the F3 generation required either male or female 

germline transmission. No significant difference in locomotor behavior was 

observed in the F1 population; however, the phenotype was observed in the F3 
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generation. Outcross analysis revealed that the transgenerational inheritance of 

hyperactivity behavior required both maternal and paternal germline. The 

difference in the transgenerational inheritance of the visual startle deficit and 

hyperactivity phenotypes strongly suggests that MeHg-induced transgenerational 

phenotypes are the result of multiple independent genomic events with 

independent inheritance patterns.   

Key words: MeHg  Transgenerational Parental origin   Selective breeding     

Outcross 
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INTRODUCTION 

Developmental exposure to nutritional and environmental stressors has 

demonstrated the potential to induce epigenetic changes and transgenerational 

inheritance of phenotypic variation in several species (Skinner et al. 2010; 

Colombo et al. 2014). Transgenerationally-inherited stressor-induced phenotypes 

result from the germline (egg or sperm) transmission of a phenotype between 

generations in the absence of any additional environmental exposure (Skinner et 

al. 2013a; Skinner et al. 2013c; Manikkam et al. 2014). Transgenerational 

inheritance of environmentally-induced disease and dysfunction resulting from 

specific environmental toxicants (e.g., vinclozolin, DDT, dioxin,  and BPA) include 

cancers, obesity, reproductive defects, kidney diseases, and ovarian diseases 

(Manikkam et al. 2012; Guerrero-Bosagna et al. 2012; Manikkam et al. 2013; 

Skinner et al. 2013a; Tracey et al. 2013). Behavioral changes (e.g., anxiety, mate 

preferences, and learning) are  also suggested to be transgenerationally 

inherited and the result of ancestral exposure to environmental stressors (Crews 

et al. 2012).  

The etiology of transgenerational inheritance of phenotypic variation or 

diseases involves, in many cases, the germline transmission of an altered 

epigenome between generations. Recent studies have demonstrated that 

exposure to environmental toxicants (e.g., vinclozolin, DDT, dioxin, and  BPA) 

results in transgenerational inheritance of adult onset dysfunction via permanent 

heritable changes in the DNA methylation pattern (epimutations) (Manikkam et 

al. 2012; Guerrero-Bosagna et al. 2012; Manikkam et al. 2013; Skinner et al. 
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2013a; Tracey et al. 2013). The window of susceptibility for altering the DNA 

methylation pattern leading to transgenerational inheritance is that of gonadal 

germline development during embryogenesis (Guerrero-Bosagna et al. 2014; 

Nilsson and Skinner 2015). Transcriptome analysis of transgenerationally 

affected populations has shown that the expression of specific genes in critical 

pathways is dysregulated by differentially methylated regions (DMRs) of the 

genome. The dysregulated genes associated with altered phenotypes are often 

clustered in regions within 2 to 5 megabases of the identified DMR (Skinner et al. 

2012). 

 Most of the studies investigating the transgenerational inheritance of 

environmentally induced phenotypes use  in utero exposure models with rodent. 

In this paradigm, exposure to an environmental stressor during gestation results 

in the direct exposure to three generations, the mother (F0), the embryo (F1) and 

the germline of the embryo (which will give rise to the F2). The phenotype 

observed in the F3 is considered a transgenerational phenotype because it is 

inherited in the absence of any direct exposure to a stressor/contaminant. 

Outcrossing studies (breeding with unexposed lineages) have shown that 

environmental toxicants may vary in the way that they transmit transgenerational 

environmental phenotypes from the F2 to the F3 and subsequent generations. 

For instance, gestational exposure to a high fat diet (Dunn and Bale 2011) or 

vinclozolin (Anway et al. 2005; Guerrero-Bosagna et al. 2012), an endocrine 

disruptor,  result in the epigenetic transmission of transgenerational disease 

through the male germline. While, developmental exposure to methoxychlor, a 
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pesticide, is associated with the transgenerational inheritance of male obesity 

through the female germline. Conversely, transgenerational inheritance of female 

obesity from ancestral methoxychlor requires the exposure of both the male and 

female germlines (Manikkam et al. 2014b). The DDT-induced transgenerational 

inheritance of obesity, kidney disease, and gonadal disease are highly complex 

and suggest that the parental germline origins for transgenerational disease may 

be disease or organ specific (Skinner et al. 2013a). Finally, both male and female 

germline transmission of transgenerational phenotypic variations were observed 

due to environmental stressors such as dioxin, BPA, and JP-8 jet fuel (Manikkam 

et al. 2012, Manikkam et al. 2013, Tracey et al. 2013). The evidences suggest 

that there is no single mode of germline transmission of environmentally induced 

transgenerational phenotypes. The pattern varies between the environmental 

insult and the transgenerational phenotype. The germline mode of transmission 

of MeHg induced transgenerational neurobehavioral variation is previously 

unknown.   

MeHg is a global environmental neurotoxicant. Environmental release of 

mercury from human activities has been rising since the industrial revolution. 

Current anthropogenic environmental releases of mercury are dominated by 

artisanal gold mining and coal combustion for the purpose of energy production. 

The World Health Organization has listed mercury as one of the top ten 

chemicals of global public health concern due to its toxic effects on humans 

(WHO). Humans are primarily exposed to MeHg through the consumption of 

contaminated fish and seafood (Davidson et al. 2006; Buchanan et al. 2015). 
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MeHg stays in the maternal blood and fetus is exposed to the toxicant during 

development through the umbilical cord blood. The developing embryo is much 

more sensitive to the neurodevelopmental and behavioral effects of MeHg than 

are other life stages, and these effects can persist throughout the entire lifespan 

(Castoldi et al. 2003; Bertossi et al. 2004; Huang et al. 2011).  

In the U.S., people live in certain regions and some subpopulations are at 

risk from mercury exposure. In the U.S., studies based on the National Health 

and Nutrition Examination Survey (NHANES) found that total blood mercury 

levels are higher in the Northeastern region of the country (Mortensen et al. 

2014). Asian ethnicity and higher income were also associated with higher blood 

mercury level due to greater seafood consumption (Buchanan et al. 2015). There 

is an estimated 1 to 3 percent of women of child bearing age are at risk from 

MeHg exposure in the U.S. (EPA 2014). Studies have also shown that Hg levels 

in the fish species of Great Lakes are also on the rise resulting in wide-spread 

advisories on fish consumption in this region (Bhavsar et al. 2011; Evers et al. 

2011; Wiener et al. 2012). Total blood mercury at levels generally considered 

safe (below the US EPA reference dose) are also associated with a higher risk of 

developing disorders in reproductive-age females (Somers et al. 2015). 

Evidences suggest that developmental exposure to MeHg is a public health 

concern due to its adverse neurodevelopmental and neurobehavioral effects in 

offspring.  

Our laboratory uses zebrafish as a model organism for human 

biomedicine and our previous studies have shown that ancestral developmental 
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exposure to MeHg induces transgenerational inheritance of visual and 

neurobehavioral deficits. Examination of the transcriptome in the brain and retina 

of the F3 generation revealed that numerous biological pathways related to 

neurological function are disrupted due to ancestral developmental MeHg 

exposure.  In the study described herein, we used several breeding schemes to 

identify the parental origin of transgenerational inheritance of visual and 

neurobehavioral deficits by outcrossing males and females from MeHg-exposed 

zebrafish lineages, as well as to explore the difference between random and 

selective breeding in F2 inheritance of the same phenotypes. We have 

demonstrated that parental inheritance of transgenerational phenotypes are 

phenotype-specific. We also show that selective breeding greatly enhances the 

incidence of the visual deficit. The identification of phenotype-specific germline 

transmission involved in transgenerational inheritance of neurobehavioral deficits 

would serve critical roles in targeting susceptible subpopulations for interventions 

to reduce MeHg toxicity. Our findings also lead to future research to identify the 

mode of germline transmission of other phenotypes associated with MeHg 

exposure.  Developmental and occupational exposure to MeHg is associated 

with both visual sensory and motor dysfunctions (Burbacher et al. 2005; 

Rodrigues et al. 2007; Barboni et al. 2009). 
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MATERIALS AND METHODS 

Animal studies 

All animal care and experiments using animals or involving hazardous 

materials were pre-approved by the Institutional Animal Care and Use 

Committee, Environmental Protection, and Laboratory Safety offices of University 

Safety & Assurances of the University of Wisconsin-Milwaukee. 

 

Zebrafish stock and egg collection 

Adult EK strain zebrafish were originally obtained from Ekkwill Waterlife 

Resources (Gibsonton, FL, USA) and have been maintained in our laboratory for 

over 10 years. Adult fish were housed at a maximum density of 10 adult fish/L in 

a flow-through dechlorinated water system maintained at 26 to 29 °C on a 14:10 

h light: dark photoperiod at the Aquatic Animal Facility of the NIEHS-funded 

Children’s Environmental Health Sciences Core Center at the University of 

Wisconsin-Milwaukee. For spawning, male and female fish (male: female ratio 

1:2) were kept overnight in a 2 L plastic aquarium with a 3-mm nylon mesh 

bottom to separate newly fertilized eggs from the adults. The fish were moved to 

clean water 30 min prior to the onset of light to ensure that only eggs fertilized 

within a narrow time period were used in experiments. Eggs were collected ≤ 1 h 

post fertilization (hpf) and placed into metal-free, plastic  culture dishes (100 mm 

diameter × 50 mm depth) in E2 medium (Nüsslein-Volhard 2002; pH 7.2; in one 

liter:  0.875 g NaCl, 0.038 g KCl, 0.120 g MgSO4, 0.021 g KH2PO4, and 0.006 g 

Na2HPO4; Hg-free as determined by Inductively Coupled Plasma-Mass 

Spectrometer (ICP-MS). 
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Methylmercury exposure  

The newly fertilized eggs were then transferred to 12-well culture plates 

(10 eggs/well) and rinsed twice with E2 medium. The eggs were exposed to 1.5 

ml of E2 medium containing MeHg (0.0, 0.001, 0.003, 0.01, 0.03, 0.1 μM with 

ethanol as a carrier [< 0.01% total volume]). Following a 24 h exposure, embryos 

were rinsed three times with E2 medium and transferred to 2 L tanks (60 

embryos per tank) containing static E2 medium for rearing. Starting at 5 dpf, 

eleutheroembryos were fed 5-100 micron Golden Pearl Reef & Larval Fish Diet 

(Brine Shrimp Direct, Ogden, UT, USA).  Platinum Grade Artemia nauplii (Argent 

Laboratories, Redmond, WA, USA) were fed starting at 9 dpf. At 21 dpf, fish were 

transferred to 1 L flow-through tanks and raised using standard husbandry 

techniques until 3 months of age, at which point they were used for behavior 

assays and breeding. Juvenile and adult fish were fed a combination of Platinum 

and Gold grade Artemia nauplii and Aquarian™ flake food (Aquarium 

Pharmaceuticals, Inc., Chalfont, PA, USA).  

In mammalian models of developmental toxicity, the pregnant animal is 

directly exposed to the toxicant and is designated as F0. The developing 

progeny, which are exposed to the toxicant in-utero, are considered the F1 

generation. In our zebrafish model system, the directly exposed embryos are 

analogous to the F1 progeny in mammalian animal models. After the initial 24-h 

MeHg exposure of the F1 embryos, there was no additional exposure to Hg 

during the entire life cycle, beyond the background levels inherent to all fish food. 
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Many different fish foods were screened, and those with the lowest levels of Hg 

(as determined by ICP-MS) were used as much as possible in this study.  

 

Generation of F1, F2 and F3 population for selective breeding  

Adult F1 fish that were exposed to MeHg as embryos were tested for 

visual deficits by visual startle reflex test as previously described (Weber et al. 

2008). Ten male and ten female animals from each group (0.0, 0.001, 0.003, 

0.01, 0.03, 0.1 μM MeHg) were tested. All fish were kept in individual tanks after 

testing to maintain individual identity during the analysis process.  

Three male and three female F1 control animals were chosen randomly to create 

F2 control population. The three males and females that had the lowest number 

of responses in the visual startle reflex tests were chosen from each exposure 

group to generate the F2 exposure population. Two rounds of pair-wise breeding 

were conducted. After the breeding of a pair, the mates were switched for the 

second breeding, so that ultimately each of individual was spawned with two 

mates. Equal numbers of embryos from each pair for each spawning were 

combined to create the F2 population. The selection and spawning protocols 

were repeated on the F2 adult population to create the F3 generation. The F2 

and F3 generations were never exposed to exogenous MeHg. However, the F2 

generation is also considered to be directly exposed as they were the primordial 

germ cells within the F1 embryos at the time of initial MeHg exposure.  
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Breeding scheme for outcross analysis 

To identify the parental origin of transgenerational phenotypic 

transmission, we generated an outcross offspring population from the F2 

animals. Briefly, zebrafish embryos were exposed to 0.0, 0.003 and 0.03 µM 

MeHg as described above. The selection of the exposure lineage was based on 

the population response from those lineages to visual response, retinal 

electrophysiology and locomotor activity. The F1 adults were inbred to generate 

F2 population. Outcrosses of the F3 generation were created by spawning the F2 

control male with F2 MeHg-exposed females and F2 control female with F2 

MeHg-exposed males (Fig 3.2). F3 outcross animals were, then, screened for 

their visual and locomotor behavioral functions.   
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Visual startle response 

The behavioral response of the fish to visual stimuli was analyzed as 

previously described [Dowling et al. 1997, Weber et al. 2008]. Adult male and 

female fish (n = 20, 10 of each gender; 3 months old from all exposure groups 

were randomly assigned  numbers to blind the observer to their exposure. 

Individual fish were placed in a stationary glass crystallizing dish (10 cm 

diameter, 5 cm depth, approximately 200 ml of dechlorinated water) surrounded 

by a rotating white PVC drum with a black vertical stripe (1 cm width x 5 cm 

height). The drum speed was set to 10 rev/min and the black vertical stripe 

elicited a startle response when it entered the fish’s field of vision.  When 

startled, zebrafish will elicit either a C-start escape response or an avoidance 

maneuver.  After a 5-minute l acclimation period in low light, the PVC drum 

rotation was initiated and the response of each fish to the rotating black bar was 

captured for 5 min using infrared digital video. All tests were conducted between 

the hours of 1300-1600 due to the zebrafish circadian rhythm, which exhibit the 

most consistent light sensitivity and basal activity levels during the afternoon 

hours (Dowling et a. 1997). Blinded analysis was conducted on the videos for the 

visual startle response and the number of C-start escape reactions exhibited per 

fish during the encounter with the rotating black bar was quantified. All data are 

expressed as responses relative to the control group. One-way ANOVA 

(SigmaPlot 12.0, Systat Software, San Jose, CA) was used to analyze visual 

startle response data with P< 0.05 as the threshold of statistical significance. 
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Locomotor Activity 

Locomotor activity was quantified using a Behavior Observation Box 

(BOB) (Fig 3.3). Fish were placed in a clean glass crystallizing dish (10 cm 

diameter and 5 cm depth) in a light-tight chamber. The light intensity inside the 

chamber was produced by a standard computer monitor (76 Lux). The chamber 

was equipped with four Logitech c920 USB cameras (Logitech, Newark, CA) for 

capturing digital video of four arenas simultaneously. In our experiment, we used 

the two distant cameras at a time. The fish were acclimated for 5 minutes (min) 

after which a digital video was recorded for an additional 5 min.  The files were 

obtained in M-MJPEG format using the Matlab Image Acquisition ToolboxTM 

(MathWorks, Natick, MA) at a 960 x 720 pixels resolution.  Video was cropped to 

600 x 600 pixels with ffmpeg (https://www.ffmpeg.org/ ) prior to being imported 

into EthoVision XT (Noldus Information Technology Inc, Leesburg, VA) for 

automated analysis of distance traveled in 5 min. One-way ANOVA (SigmaPlot 

12.0) was used to identify the difference in locomotor activity between the 

exposure and control groups. Level of statistical significance was set at P < 0.05. 
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Figure 3.3. Schematic representation of locomotor activity recording. The recording 
chamber was equipped with Logitech c920 cameras. In our study, we placed fish in 
glass crystallizing dish and used the cameras at both ends to capture the movements of 
the fish. The cameras were operated from a remote computer running the MATLAB 
Image acquisition toolbox. Fish were acclimated for 5 min after which digital video was 
recorded for an additional 5 min. 
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RESULTS 

 

Male and female transgenerational visual deficits 

The difference in incidence of transgenerational visual deficits in male and 

female populations due to developmental exposure to MeHg zebrafish embryos 

was investigated. Zebrafish embryos were exposed to 0.0, 0.001, 0.003, 0.01, 

0.03, 0.1 μM concentrations of MeHg during the first 24 hrs of development. The 

adult fish (F1) were directly exposed to MeHg as they developed from the MeHg 

exposed embryos. The F2 generation was exposed as primordial germ cells, 

making F3 generation the first generation without any direct exposure to MeHg. 

Adult F1 and F3 zebrafish were tested for visual deficits. Direct exposure to 

MeHg induced statistically significant visual deficits in both males and females 

relative to control (Fig. 3.4) (one-way ANOVA, p < 0.05). The incidence of visual 

deficits in F3 lineage males and females are shown in Figure 3.1. The visual 

response of females from all exposure concentrations was significantly reduced 

in the F3 lineage as compared to control (Fig. 3.4 A) (one-way ANOVA, p < 0.05, 

F = 5.415, df = 5). The visual response of the F3 lineage males in all exposure 

groups except the lowest were also significantly reduced (Fig. 3.4 B) (one-way 

ANOVA, p < 0.05, F = 4.823, df = 5). The F3 lineage males in the lowest 

concentration (0.001 μM) were also reduced relative to control males but the 

magnitude was not statistically significant (p = 0.178).  
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Figure 3.4. Direct and transgenerational visual deficits. Relative response of females 

(A) and males (B) compared to control males and females. Direct exposure (F1) groups 

are represented by white bars and transgenerational (F3) groups are shown as black 

bars. The significance difference of the exposure groups of each generation was tested 

against the control group of that generation. One-way ANOVA analysis was performed 

and * indicates F1 groups significantly different than F1 control group and # indicates F3 

exposure groups significantly different than F3 control group (p <0.05).  
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Selective breeding of animals with visual deficits 

 The incidence of visual deficits between generations due to the selective 

breeding of the animals that exhibited visual deficits was investigated. There 

were significant difference in visual responses between the F1 control and all 

MeHg exposure groups (Figure 3.4). The incidences of visual deficits were 

calculated by determining the number of fish in each exposure group with a 

visual response below the 5th percentile as determined by the distribution of 

responses in the control group. The lowest responding males and females of 

each F1 group were identified and spawned together to generate a F2 selective 

breeding (SB) population, as described above. The F1 control animals were 

randomly chosen for breeding to create a F2 lineage control population. The 

incidence of visual deficits in the F2 (SB) lineage was significantly higher than the 

corresponding F1 exposure group, with the exception of the 0.001 group (Table 

3.1). These data suggest that at higher MeHg exposure concentrations, selective 

breeding of animals with visual deficits increases the incidence of the phenotype 

in the offspring.  
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Table 3.1. Incidence of visual deficits in F1 and F2 from selectively bred 

F1 

  
MeHg exposure (µM) 

F1 
(%) 

F2 (SB)                     
(%)     

  0.0 5 5     

  0.001 52.6 45     

  0.003 40 70     

  0.01 42.1 75     

  0.03 66.6 90     

    0.1 60 70        

 

 
Germline transmission of transgenerational visual deficit and hyperactivity 

 

 Transgenerational inheritance of disease phenotypes occurs through the 

transmission of an altered epigenome by the sperm, egg, or both. Our current 

study was designed to identify the parental origin of the transgenerational 

inheritance of visual deficits in zebrafish. F1 fish were exposed to MeHg as 

embryos and the F2 generation was created by inbreeding theseF1 fish. Since 

the F2 individuals were directly exposed to MeHg as primordial germ cells within 

the F1 embryo, a phenotype observed in F2 is considered multigenerational not 

transgenerational. The F2-lineage control males were outcrossed to the F2-

lineage MeHg-exposed females and the F2-lineage control females were 

outcrossed to F2-lineage MeHg-exposed males to generate F3-lineage fish. The 

F3-lineage control and outcross fish were grown to adulthood and their visual 

function and locomotor behavior was evaluated (Figure 3.5). The visual response 

of all F3-outcross groups were significantly reduced compared to the control 

group (one way ANOVA, p < 0.002, F = 8.281, df = 4). This suggests that either 
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maternal or paternal germline is sufficient to transmit visual deficit to the F3 

generation.  

Locomotor behavior was tested by measuring the total distance traveled by fish 

in 5 min without any visual stimuli. No significant difference in the distance 

traveled by the F3-outcross lineage were observed (Fig 3.6) (one way ANOVA, p 

< 0.05). Our study demonstrates that the hyperactivity phenotype observed in 

inbred F3-lineage exposure groups was not exhibited by the F3-outcross lineage. 

This suggests that transgenerational transmission of hyperactivity phenotype 

requires both male and female germlines. 
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Figure 3.5. Germline transmission of transgenerational visual deficit. Visual 

startle response of fish to a rotating black bar was captured for 5 min. Relative 

visual response of F3-lineage control and outcross animals are shown. One way 

ANOVA analysis was performed and * indicates a statistically significant 

reduction in  the visual response of outcross animals compared to the  control 

group (p<0.002).  
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Figure 3.6. Germline transmission of locomotor behavior.  Relative distance 
traveled in 5 min was recorded. One way ANOVA analysis revealed no 
statistically significant difference between that F3-outcross lineage compared to 
the control group (p<0.05).  
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Direct and transgenerational effect on locomotor behavior 

 

A comparison of direct and transgenerational effect on locomotor behavior 

due to developmental exposure to MeHg was conducted. The swimming distance 

traveled by the fish without any stimulus was recorded. No statistically significant 

changes in locomotor function were detected in any F1 exposure population (Fig. 

3.7) (one way ANOVA, p < 0.05). The F3 lineage of each exposure population 

traveled significantly farther than the F3 control lineage (Fig 3.6) (one way 

ANOVA, p < 0.006, F = 3.498, df = 5). Statistical analysis was also conducted to 

identify the difference in incidence in hyperactivity among males and females of 

both F1 and F3 generations, but no statistically significant differences were 

observed between the males and females of either direct or transgenerational 

populations (data not shown, P>0.05).  
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Figure 3.7. Direct and transgenerational locomotor activity. Relative distance 
traveled in 5 min was recorded. Direct exposure (F1) groups are represented by white 
bars and transgenerational (F3) groups are shown as black bars. One way ANOVA 
analysis was performed and * indicates that the F3 MeHg-exposed groups were 
significantly different than F3 control group (p <0.05).  
 

 

 

 

 

 

 

 

 

F
3
 R

e
la

ti
v

e
 D

is
ta

n
c

e
 T

ra
v

e
le

d
 (

m
/5

m
in

) 

 



90 
 

 
 

DISCUSSION 

 

 The mechanism of environmentally induced transgenerational inheritance 

of phenotypic variation and diseases requires heritable epigenetic changes in the 

germline and transmission to subsequent generations without further exposure 

(Manikkam et al. 2012; Manikkam et al. 2013; Skinner et al. 2013a; Skinner et al. 

2013b; Tracey et al. 2013). The germline mode of epigenetic transmission of 

disease phenotypes varies between environmental factors. The four possible 

ways of transmission of a phenotype through germlines are through the male 

only, through the female only, either male or female is sufficient and both male 

and female are required.   Research has shown that ancestral vinclozolin 

exposure caused male infertility (?)up to four generations through male germline 

only (Anway et al. 2005). While female transmission of male obesity was 

observed in methoxychlor(a pesticide) -exposed transgenerational populations 

(Manikkam et al. 2014). Sex-specific inheritance of transgenerational diseases 

such as obesity were identified following ancestral DDT exposure (Skinner et al. 

2013a). Female transgenerational obesity due to ancestral DDT exposure was 

transmitted through the male germline or combined effect of both male and 

female germlines. Male obesity was transmitted only though the female germline. 

Evidences suggest that there is no single mode of inheritance of 

transgenerational disease phenotypes. The germline through which a 

transgenerational phenotype is being inherited depends upon the triggering 

environmental factor and the phenotype.  
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The neurotoxic effects of MeHg due to prenatal exposure has been well 

documented (Farina et al. 2011; Bose et al. 2012; Grandjean et al. 2014). Our 

previous research has identified the potential of ancestral developmental 

exposure to MeHg to induce visual and locomotor behavioral deficits in zebrafish. 

Our current study indicates that the visual functions of both males and females in 

both direct (F1) and transgenerational (F3) populations were significantly affected 

by developmental exposure to MeHg. The effect of developmental exposure to 

MeHg on visual response in both F1 and F3 generations is similar to the actions 

of  environmental toxicants such as vinclozolin (Anway et al. 2006) and 

methoxychlor (Manikkam et al. 2014b). Vinclozolin caused reduced 

spermatogenesis in F1 through F4 generations while methoxychlor yielded 

kidney disease in the females of both the F1 and F3 generations. Our findings, 

along with other studies on environmental toxicants, suggest that a phenotype 

can be induced by direct exposure during development of an organism and future 

generations could exhibit the same phenotype due to permanent inheritable 

changes made in the exposed generation. It is also noted that certain phenotype 

might not be necessarily observed in direct exposure lineage, however exhibited 

by the transgenerational lineage.   

The incidence of visual deficits due to selective breeding of F1 animals 

with the phenotype was investigated. The F1 animals that exhibited significant 

visual deficits were inbred to generate F2 population. The percentage of F2 

lineage fish with visual deficits in the lowest exposure concentration (0.001 µM) 

was not significantly different from the corresponding F1 group. The incidence of 
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visual deficits in F2 lineage fish in all other exposure groups were higher. Our 

current study demonstrated that incidence of visual deficits due to MeHg 

exposure had increased due to selective breeding of affected population. The 

incidence of transgenerational disease phenotypes varies with the environmental 

factor and the phenotype observed. There was a significant increase in female 

pubertal abnormalities and polycystic ovary diseases in F3 generation dioxin 

lineage rats compared to the F1 generation (Manikkam et al. 2012b). However, 

the incidences of the male pubertal abnormalities, primordial follicle loss and 

male tumor development were lower in F3 generation than the F1 generation 

dioxin lineage rats. The incidence of female kidney diseases, ovary diseases, 

male obesity and polycystic ovary conditions were higher in F3 generation 

methyoxychlor lineage rats than the F1 generation (Manikkam et al. 2014b). The 

F1 methoxychlor animals had higher incidences of male pubertal abnormalities, 

primordial follicle loss and uterine infection than the F3 group. The above 

mentioned studies did not do a selective breeding scheme, however they 

observed increase in incidence of some phenotypes but not all.  

A transgenerational phenotype is not necessarily observed in all 

generations. In directly exposed organism, the whole system is being exposed to 

the toxicant resulting in system wide response to the exposure. In 

transgenerational inheritance, the phenotype inducing epigenetic change is being 

inherited through the germline targeting specific systems or phenotypes. Hence, 

the mechanistic pathway of disease induction could be different in direct and 

transgenerational populations. For example, obesity was developed in F3 
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generation DDT lineage rats but not in directly exposed F1 lineage (Skinner et al. 

2013c). In this study we demonstrated no significant locomotor behavior in adult 

zebrafish due to direct exposure to MeHg. However, transgenerational onset of 

hyperactivity was observed due to ancestral developmental exposure to MeHg. 

There is mounting evidence of association between prenatal exposure to MeHg 

and hyperactivity disorder (Boucher et al. 2012; Sagiv et al. 2012; Hong et al. 

2013; Yoshimasu et al. 2014). It is estimated that 9.5 % of children between the 

age of 4 to 17 years have attention deficit hyperactivity disorder as of 2011-2013 

(Pastor et al. 2015). Further epidemiological studies are necessary to find out the 

association between prenatal exposure to MeHg and transgenerational 

hyperactivity behaviors. Our findings need to be further validated with ADHD 

animal model organisms such as the zebrafish mutant for the circadian rhythm-

related gene period1b (Whalley 2015).  

The parental origin of the transmission of transgenerational phenotypes 

due to developmental exposure to MeHg was investigated in this study. The 

germline through which the visual deficit and hyperactivity behaviors were 

passed on to the F3 generation was identified by an outcrossing study. The F2 

lineage control males were bred against F2 lineage MeHg exposure females and 

vice versa to generate F3 outcross population.  Visual deficit was observed in all 

F3-outcross offsprings, suggesting that either male or female germline was 

sufficient for the onset of visual deficit in F3 lineage fish. This is one of the first 

cases where only one parent was required to transmit a transgenerational 

phenotype due to ancestral exposure. Previous studies showed that 
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transgenerational disease phenotypes were inherited in different ways such as, 

only through female germline (Manikkam et al. 2014b), only through male 

germline (Anway et al. 2005; Dunn and Bale 2011) or requiring both germlines 

(Skinner et al. 2013c). We have shown that a very sensitive neurobehavioral 

phenotype, the visual response, could be transgenerationally inherited even if 

only one of the parents carry the dysregulated allele due to developmental 

exposure to MeHg.  

Experiments were also conducted to identify the parental origin of 

transgenerational hyperactivity behavior. Locomotor behavior analysis of F3 

outcross lineage indicated the requirement of germline transmission of both male 

and female combined. The inbred F3 lineage MeHg exposure groups were 

significantly hyperactive, however F3 outcross between exposure and control 

lineage did not induce hyperactivity, suggesting neither male nor female alone 

were sufficient to induce the phenotype. Similar modes of germline transmissions 

were observed in environmental exposures to toxicants such as dioxin and 

hydrocarbons (Manikkam et al. 2012a; Manikkam et al. 2012c). Ancestral DDT 

exposure resulted in obesity in F3 generation and it required the combination of 

both male and female germlines to induce the phenotype (Skinner et al. 2013c). 

Our study demonstrates the significance of equal role of male and female 

germlines to induce transgenerational neurobehavioral phenotypes.  

Our study demonstrates the complexity of transgenerational disease 

transmission due to MeHg exposure. The two phenotypes that we evaluated 

were inherited differently. Our study suggests that MeHg-induced 
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transgenerational transmission of unique phenotypes, such as visual deficit and 

locomotor behavior, occur through different modes of parental origin. Further 

studies are necessary for the complete elucidation of the pattern of 

transgenerational inheritance and mechanisms. Our observations indicate that an 

environmental toxicant could potentially induce different transgenerational traits 

through different modes of transmission. Our findings have significant 

implications on different levels of addressing the environmental health impacts of 

mercury such as changing the previous belief of mercury toxicity only due to 

maternal exposure. Since male germline is sufficient for the onset of 

transgenerational visual deficit due to MeHg exposure, the target population to 

prevent such phenotypes should be widened to include the possibility of male 

germline transmission.  
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CHAPTER 4 

Methylmercury Promotes Transgenerational Inheritance of Transcriptome 

Associated with Neurobehavioral Deficits 
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ABSTRACT 

Methylmercury (MeHg) is a ubiquitous environmental toxicant that is often 

detected in the tissues of fish-eating species. It has been well established that 

prenatal exposure to MeHg can lead to widespread brain damage and impaired 

neurological development resulting in defects ranging from severe cerebral palsy 

and cognitive deficits to impaired motor and sensory function. A wide range of 

environmental toxicants have been shown to induce transgenerational 

inheritance of diseases via changes in DNA methylation—a well-known 

epigenetic modification. Our previous research has demonstrated that 

developmental MeHg exposure may yield transgenerational inheritance of 

neurological dysfunction in adult F3-lineage zebrafish via quantitative 

neurobehavioral assays that evaluated the visual startle response, retinal 

electrophysiology, and locomotor function. The objective of the current study was 

to examine the correlation between neurobehavioral phenotypes and the 

transcriptome activity in the brain and retina of F3 zebrafish by RNA sequencing 

(RNAseq). Transcriptomic analyses of F3 generation MeHg-treated zebrafish 

(compared to control) revealed significant gene dysregulation in both the brain 

and retina. There were 1648 and 138 differentially expressed genes in the retina 

and brain, respectively (FDR <0.05). Thirty-five genes were commonly 

dysregulated in both organs. Gene set enrichment analysis revealed significantly 

enriched pathways including: neurodevelopment, visual functions, 

phototransduction, and motor movement. Moreover, commonly dysregulated 

genes were associated with circadian rhythm and metabolic pathways, as well as 
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arginine and proline metabolism. To our knowledge, this is the first evidence of a 

transgenerational transcriptome induced by ancestral developmental exposure to 

MeHg in any species.  If the transgenerational phenotypes, transcriptome, 

homologous biomarkers, or similar molecular pathways hold true for human 

populations, our findings have significant impact on global public health in terms 

of identifying the susceptible populations using biomarkers and preventing  

transgenerational inheritance of MeHg-induced neurobehavioral deficits.  

 

Key words: Methylmercury     Transgenerational inheritance   Transcriptome 

Epigenome 
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INTRODUCTION 

Developmental exposure to MeHg results in adverse neurodevelopmental 

and neurobehavioral outcomes. The precise expression of genes during 

embryogenesis is crucial in proper neurodevelopment (Kang et al. 2011). The 

expression of genes associated with neurodevelopment and behavior have 

shown to be dysregulated by MeHg exposure (Richter et al. 2011; Ho et al. 

2013a; Engel and Rand 2014). Low level exposure to MeHg has been shown to 

disrupt the neuroendocrine pathways in the brain by altering the expression of 

genes associated with motor functions (Richter et al. 2014). In addition, Liu et al. 

(2013) have demonstrated that genes involved in iron ion homeostasis, 

glutathione transferase activity, regulation of muscle contraction, troponin I 

binding, and calcium-dependent protein binding were affected by dietary 

exposure to sublethal doses of MeHg. However, the role of altered gene 

expression in developmental MeHg-induced transgenerational phenotypic 

variation is unknown. 

Our previous studies have shown the potential of developmental exposure 

to MeHg to induce transgenerational neurobehavioral deficits including a reduced 

visual startle response, altered electrophysiology of the bipolar cells of retina and 

hyperactivity in zebrafish. Little is known about the dysregulated genes or the 

associated biological, molecular, and functional pathways responsible for these 

MeHg-induced transgenerational neurobehavioral deficits. Studies have shown 

that direct exposure to MeHg alters the development and functions of the central 

nervous system in zebrafish by altering the expression of critical genes (Yang et 
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al. 2010; Cambier et al. 2012; Ho et al. 2013b). We also know that 

developmental exposure to MeHg induces transgenerational neurobehavioral 

phenotypic variation. The objective of this study was to identify the 

transgenerational transcriptome associated with MeHg-induced neurobehavioral 

deficits.  

Our previous research demonstrated that ancestral developmental 

exposure to MeHg induces neurobehavioral deficits in F3-lineage zebrafish. 

Developmental exposure of zebrafish embryos (F1) and their progeny (F2) to 

MeHg resulted in visual deficits in both generations, but since the F2 lineage was 

exposed as germ cells, the F3 lineage was the first generation of zebrafish to not 

endure direct exposure to MeHg. The deficits such as a reduced visual response, 

altered functions of potassium ion channels of the retina and hyperactivity 

observed in the fish from F3 lineage represent the transgenerational inheritance 

of phenotypes. The current study focused on elucidating the genes dysregulated 

in the brain and retina of the affected population. The identification of the genes 

and pathways dysregulated in the F3 lineage brain and retina would help us to 

better understand the etiology of MeHg induced transgenerational neurotoxicity. 

To date, no other study has conducted genome-wide analysis of gene expression 

following ancestral exposure to MeHg.  

Visual deficit was one of the transgenerational phenotypes induced by 

ancestral developmental exposure to MeHg. Proper gene function is critical for 

normal vision and response to a visual stimulus. Direct exposure during the 

prenatal and perinatal phases of pregnancy, as well as occupational exposure, to 
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mercury has been associated with visual dysfunctions (Lebel et al. 1998; 

Jedrejko and Skoczyńska 2011; Yorifuji et al. 2013). Direct exposure to MeHg 

has been shown to mediate the alteration of gene expression in visual pathway. 

MeHg affects the functions of the photoreceptor cells of the retina (Korbas et al. 

2013) and the visual cortex of the brain (Berlin et al. 1975; O’Kusky 1985; Ethier 

et al. 2012). The development of photoreceptor cells in the retina has shown to 

be impaired due to the down regulation of opn1lw1  associated with 

developmental exposure to MeHg (Ho et al. 2013c). Dietary exposure to MeHg 

has resulted in the cellular damage of the optic tectum in zebrafish brain 

suggesting impaired visual response leading to increase susceptibility to 

predation (Cambier et al. 2012). Since developmental exposure to MeHg induces 

transgenerational visual deficit, the objective of our current study focused on the 

identification of dysregulated genes and pathways involved in the 

transgenerational visual deficit.  

Research has shown that MeHg can affect the retina leading to visual 

deficits in humans (Ekinci et al. 2014) and other species including fish (Tanan et 

al. 2006; Weber et al. 2008a; Mela et al. 2010), monkey (Warfvinge and Bruun 

2000), and chicken (Papaconstantinou et al. 2003). Our previous studies have 

shown altered electrophysiology of the retinal bipolar cells in zebrafish due to 

both direct (F1) and transgenerational (F3) MeHg exposure lineages. In our 

current study we conducted a genome-wide transcriptome analysis of the retina 

of the F3-lineage zebrafish to identify the changes in gene expression and the 

related functional pathways leading to visual deficits. We also looked at the 
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dysregulation of genes associated with potassium ion channels in the retina of F3 

zebrafish.  

Recently, diverse environmental toxicants have been showen to alter the 

epigenome of an organism, specifically by changing the DNA methylation pattern 

(Guerrero-Bosagna et al. 2010; Manikkam et al. 2012; Skinner et al. 2013; 

Manikkam et al. 2014). Thereafter, the altered epigenome is passed on to 

subsequent generations, even in the absence of further toxicant exposure, and 

leads to adult diseases and deficits. DNA methylation patterns are established in 

the primordial germ cells during gonadal development for the male or female 

specific germline patterning (Burdge et al. 2009). During embryogenesis, 

environmental factors can interfere with the patterning of DNA methylation during 

gonadal development (Ceccatelli et al. 2013). Once a DNA methylation pattern 

has been altered during gonadal development, the epigenome becomes 

permanent and escapes the de-methylation which occurs after fertilization 

(erasure), in the same manner as imprinted genes (Hales et al. 2011; Crews et 

al. 2012).The inheritance of permanently altered DNA methylation regions (DMR) 

leads to cell-specific changes in gene expression which yields altered cell 

physiology (Manikkam et al. 2012; Guerrero-Bosagna et al. 2014; Li et al. 2014). 

Some tissues are resistant to the altered physiology and some are sensitive to 

such changes. The tissues that are sensitive to the dysregulated genes and 

pathways potentially lead to the onset of disease phenotypes.  

MeHg-induced developmental neurotoxicity and the mounting evidence of 

environmentally driven epigenetic transgenerational inheritance of diseases 
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directed our focus towards the epigenetic effects of MeHg. Direct exposure to 

MeHg has been associated with alterations in DNA methylation in different 

species (Pilsner et al. 2010; Basu et al. 2013; Goodrich et al. 2013; Maccani et 

al. 2015; Bakulski et al. 2015). For example, hypomethylation was shown to be 

associated with the amount of mercury in the brain of polar bears (Pilsner et al. 

2010). In addition, the exposure of embryonic stem cells  to mercury has shown 

aberrant DNA methylation (Arai et al. 2011). Other evidence suggests that 

altered DNA methylation can result in altered phenotypes, including diseases. 

For example, neurobehavioral deficits have been observed due to perinatal 

exposure to MeHg and subsequent down regulation of Bdnf was associated with 

hypermethylation of the promoter region of the gene (Ceccatelli et al. 2013). The 

molecular mechanism by which MeHg alters DNA methylation is thought to be 

through altering the glutathione pathway.   

MeHg is removed from the human body as a glutathione (GSH) conjugate. 

GSH is an important antioxidant found throughout the body and it is crucial for 

the metabolism of MeHg. Specifically, the mercury atom of MeHg binds directly 

to the thiol group of GSH (Farina et al. 2011).This complex, GS-HgCH3, can then 

be transported out of the cell and excreted. It has been suggested that exposure 

to toxicants, including MeHg, has the capacity to deplete the cellular GSH stores, 

potentially to the degree that reactive oxygen species accumulate within the cell 

and cause oxidative damage (Lee et al. 2009; Farina et al. 2011). Subsequently, 

the depletion of GSH due to MeHg exposure causes homocysteine to be 

recruited into the GSH synthesis pathway. As homocysteine normally contributes 
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to both methionine and GSH synthesis pathways, increased cellular demand for 

GSH decreases the availability of homocysteine for methionine synthesis. This, 

in turn, results in the depletion of cellular S-adenosyl methionine (SAM), a critical 

methyl donor,  and presumably reduce DNA methylation (Caudill et al. 2001). 

Current evidence suggests that if the DNA methylation pattern of germ cells is 

altered by direct exposure to environmental toxicants, these epigenetic mutations 

(i.e., epimutations) act like imprinted genes and are passed on to the offspring. 

Imprinted DNA methylation sites escape the genome-wide DNA methylation 

erasure events which occur during gonadal development and early 

embryogenesis. Therefore, these epimutations become programmed into the 

genome and can cause changes in gene expression in offspring who inherit the 

epigenetically altered allele.  

Ancestral developmental exposure to MeHg induces variation in 

neurobehavioral phenotypes. The alteration of phenotypes requires changes in 

gene expressions associated with the phenotypes. The current study identifies 

the genes and pathways dysregulated in the brain and retina of F3-lineage 

zebrafish. Genome wide transcriptome analysis was conducted to identify all 

dysregulated genes. Gene set enrichment analysis was performed to identify the 

functional pathways significantly enriched in the brain and retina and their 

association with the phenotypes observed. This approach also helped to identify 

potential variation in phenotypes that we previously has not screened. The 

current study revealed the involvement of different genes and pathways 

associated with MeHg induced transgenerational neurobehavior.  
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MATERIALS AND METHODS 

Animal studies 

All animal care and experiments using animals or involving hazardous 

materials were approved by the Institutional Animal Care and Use Committee, 

Environmental Protection, and Laboratory Safety offices of University Safety & 

Assurances of the University of Wisconsin-Milwaukee. 

Zebrafish stock and egg collection 

Adult EK strain zebrafish were originally obtained from Ekkwill Waterlife 

Resources (Gibsonton, FL, USA) and have been maintained in Children’s 

Environmental Health Sciences Core Center for over 10 years. Adult fish were 

housed at a maximum density of 10 adult fish/L in a flow-through dechlorinated 

water system maintained at 26-29 °C on a 14:10 h light:dark photoperiod at the 

Aquatic Animal Facility of the NIEHS-funded Children’s Environmental Health 

Sciences Core Center at the University of Wisconsin-Milwaukee. For spawning, 

male and female fish (1:2 ratio) were kept overnight in a 2 L plastic aquarium with 

a 3 mm nylon mesh bottom to separate newly fertilized eggs from the adults. The 

fish were moved to clean water 30 min prior to the onset of light to ensure that 

only eggs fertilized within a narrow time period were used in experiments. Eggs 

were collected ≤ 1 hours post fertilization (hpf) and placed into metal-free plastic 

culture dishes (100 mm diameter × 50 mm depth) in E2 medium (Nüsslein-

Volhard 2002; pH 7.2; in 1 L:  0.875 g NaCl, 0.038 g KCl, 0.120 g MgSO4, 0.021 
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g KH2PO4, and 0.006 g Na2HPO4; Hg-free as determined by Inductively Coupled 

Plasma-Mass Spectrometer [ICP-MS]). 

Methylmercury exposure and breeding 

The newly fertilized eggs were transferred to 12-well non-treated culture 

plates (10 eggs/well) and rinsed twice with E2 medium. The eggs were exposed 

to 1.5 ml of E2 medium containing MeHg (0.0, 0.001, 0.003, 0.01, 0.03, 0.1 μM 

with ethanol as the vehicle; < 0.01% total volume). Following a 24-h exposure, 

embryos were rinsed three times with E2 medium and transferred to 2-L tanks 

(60 embryos per tank) containing static E2 medium for rearing. Starting at 5 dpf, 

eleutheroembryos were fed Golden Pearl Reef & Larval Fish Diet (5-100 micron; 

Brine Shrimp Direct, Ogden, UT, USA).  Platinum Grade Artemia nauplii (Argent 

Laboratories, Redmond, WA, USA) were fed starting at 9 dpf. At 21 dpf, the fish 

were transferred to 1-L flow-through tanks and raised using standard husbandry 

techniques until 4 months of age. At this point the fish were used for behavior 

assays and breeding. Juvenile and adult fish were fed a combination of Platinum 

and Gold grade Artemia nauplii and Aquarian™ flake food (Aquarium 

Pharmaceuticals, Inc., Chalfont, PA, USA). 

In mammalian models of developmental toxicity, the pregnant animal is 

directly exposed to the toxicant and is designated as the F0 generation. The 

developing progeny are exposed to the toxicant in-utero and are considered the 

F1 generation. In our zebrafish model system, the directly exposed embryos 

resemble the F1 progeny in the mammalian models. After the initial 24-h MeHg 

exposure of the F1 embryos, there was no additional exposure to Hg during the 
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entire life cycle beyond the background levels inherent to all fish food. Many 

different fish foods were screened and those with the lowest levels of Hg (as 

determined by ICP-MS) were used as much as possible in this study. Adult F1 

fish were inbred to create the F2 generation, which were subsequently inbred to 

create the F3 generation. The F2 and F3 generations were never exposed to 

exogenous MeHg. However, the F2 generation is also considered to be directly 

exposed as they were primordial germ cells within the F1 embryos at the time of 

the initial MeHg exposure. Ultimately, we tested the F3-generation zebrafish for 

transgenerational inheritance of neurobehavioral deficits.  

Animal selection and sample collection 

The screening of the F3-lineage zebrafish for the visual startle response, 

retinal electrophysiology, and locomotor activity revealed transgenerational 

inheritance of visual and motor deficits due to ancestral developmental exposure 

to MeHg (Chapter 2). The lowest responders of the F3-MeHg exposure lineage 

and the best responders of the F3-control lineage zebrafish in the visual startle 

assay were selected for the collection of brain, retina and sperm. The control and 

0.03 µM MeHg ancestral exposure groups were used for the sample collection. 

For brain and retina collection, fish were euthanized via 0.1% tricaine (MS-222, 

Sigma-Aldrich, St. Louis, MO, USA) for at least 10 minutes after cessation of gill 

movement. Whole brain and retina tissues were removed and transferred to 250 

µL of RNAlater® (Life Technologies, Carlsbad, CA, USA) and then immediately 

frozen in liquid nitrogen. Thereafter, samples were stored at -80oC until RNA 

extraction. Fish were anesthetized for sperm collection by using 0.004% tricaine. 
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Abdominal massage followed by microcapillary suction was used to collect 

sperm. Sperm samples were transferred to 250 µL of RNAlater®, immediately 

frozen in liquid nitrogen, and then kept at -80oC until DNA extraction.  

RNA extraction and transcriptomic analysis by RNAseq 

High quality total RNA was extracted from the brain and retina using 

RNeasy Micro Kit (QIAGEN, Valencia, CA, USA).  The concentration of RNA was 

quantified using the NanoDrop-1000 (Thermo Fisher Scientific, Wilmington, 

Delaware, USA). RNA integrity was assessed via the Experion automated 

electrophoresis system (Bio-Rad Laboratories, Hercules, CA, USA). Illumina 

TruSeq RNA Library Preparation and Sequencing was performed at the 

Biotechnology Center at the University of Wisconsin-Madison. Each library was 

generated using a paired-end approach following the Illumina “TruSeq RNA 

Sample Preparation Guide” and the Illumina TruSeq RNA Sample Preparation Kit 

(Illumina Inc., San Diego, CA, USA). Samples were run with 12 samples per 

lane, with 100 base pair, paired-end reads. Sequencing depth was 14-32 million 

reads per sample. 

 All bioinformatics procedures and analyses were performed by the UW-

Milwaukee Laboratory for Public Health Informatics and Genomics (LPHIG). 

Adapters and low quality bases were removed from the initial 2x101bp Illumina 

TruSeq reads and trimmed using Cutadapt (Martin 2011). Illumina TruSeq 

adapters were removed as prescribed by the Cutadapt manual, using an error 

rate of 10% and a minimum overlap between the read and the adapter of five 

nucleotide bases. To alleviate sequencing-related GC biases at the 5’ end of 
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each read, the first seven bases were removed from all forward and reverse 

strand reads. FastQC was used to ensure that cleaned reads were of higher 

quality than initial raw reads supplied by the sequencer; per-base GC% and over-

represented sequence statistics also confirmed adapter contamination was 

minimized. The cleaned reads for each sample were independently aligned to the 

reference zebrafish genome (Zv9, UCSC) using TopHat (v. 2.0.11) (Trapnell et 

al. 2009; Trapnell et al. 2010; Kim et al. 2013). The alignment output from 

TopHat was converted into a transcriptome using Cufflinks (v. 2.2.1), with the 

Zv9 Gene Transfer Format (GTF) as a guide; a mate-pair-distance of zero and a 

maximum of two mismatches bases per alignment was used. Alignment data was 

confirmed using RNAseQC (DeLuca et al. 2012) against the Zv9 reference 

transcriptome of zebrafish. Using these alignments, sample specific 

transcriptomes were assembled using Cufflinks (Trapnell et al. 2010), with the 

Zv9 transcriptome as a reference to correct fragment biases by better identifying 

the start/end point of each exon (Roberts et al. 2011). The transcriptome from 

each sample was then merged together into brain and retina specific 

transcriptome using Cuffmerge. Differential expression was conducted with 

Cuffdiff using pooled dispersion, geometric normalization, and the merged brain 

and retina transcriptome. TopHat alignments were grouped according to MeHg 

exposure levels. Differentially expressed genes were further used for gene-set 

enrichment analysis by WebGestalt (http://www.webgestalt.org or 

http://bioinfo.vanderbilt.edu/webgestalt/) and GSEA 
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(http://www.broadinstitute.org/gsea/index.jsp) (Broad Institute, Cambridge, MA) 

platforms.  
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RESULTS 

In this study, we selectively harvested brain and retina from the F3-lineage 

fish from the exposure group that demonstrated the poorest performance in our 

panel of neurobehavioral assays. Total RNA was isolated from the brain and 

retina for the transcriptome analysis by RNAseq. Rigorous bioinformatics 

methods were exploited to ensure high quality transcriptomic analysis.  

Differential expression of genes in the brain and retina of F3-lineage zebrafish 

were identified. There were 1648 and 138 differentially expressed genes within 

the retina and brain (FDR <0.05), respectively. The majority of differential gene 

expression was tissue specific; however, 35 genes were commonly dysregulated 

(Fig 4.1).  

 

 

Figure 4.1. Number of genes differentially expressed in the brain and retina of F3-
lineage zebrafish ancestrally exposed to MeHg during development. A distinct 
number of genes were dysregulated in both the brain and retina. There were also genes 
commonly dysregulated in both organs.  
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The molecular, cellular and biological functions of the differentially 

expressed gene (DEG) sets in the brain (Table 4.1) and retina (Table 4.2) were 

identified by Gene Ontology analysis. Differentially expressed genes involved in 

critical functional pathways included metabolic process, response to stimulus, ion 

binding, development, cellular components, as well as nucleotide and nucleic 

acid binding. In both organs, there were 7 genes differentially expressed that 

were associated with the response to stimulus biological function. Genes 

specifically associated with the transduction of light stimulus were differentially 

expressed both in the retina (20 genes) and the brain (19 genes). Genes 

involved in photoperiodism and circadian rhythm were dysregulated in the brain. 

Gene Ontology analysis of the commonly dysregulated genes in brain and retina 

demonstrated that genes were differentially expressed in response to abiotic 

stimulus (7 genes), response to light stimulus (6 genes) and photoperiodism (5 

genes). The dysregulation of genes associated with the visual pathway both in 

the brain and retina supports our previous conclusion that MeHg may induce 

visual and neurobehavioral deficits in zebrafish (refer to Chapter 2).  Genes 

associated with visual functions such arntl1a, per3, clock, arntl1b, arntl2 were 

differentially expressed both in retina and brain. Ancestral developmental 

exposure to MeHg was found to induce transgenerational gene dysregulation 

within the brain and retina. Cluster analysis showed the variation among the 

individual animals between the control and MeHg-treatedF3-lineage zebrafish 

(Figures 4.2 and 4.3).  
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Figure 4.2. Heat map of DEGs in the retina of F3 lineage ancestrally exposed to 

MeHg during development. The DEGs in individual control (RC1-5) and MeHg 

exposure (RT0-5) animals were hierarchically clustered.   
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Figure 4.3. Heat map of DEGs in the brain of F3 lineage ancestrally exposed to 

MeHg during development. The DEGs in individual control (BC1-5) and MeHg 

exposure (BT0-5) animals were hierarchically clustered.   
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MeHg induced transgenerational transcriptome  

Gene Set Enrichment Analysis (GSEA) of the DEGs of the brain and 

retina yielded significantly enriched pathways that included vision, 

electrophysiology, and neurodevelopment. In the retina, enrichment analysis of 

the Gene Ontology set revealed upregulation of 8-gene sets and downregulation 

of 3-gene sets out of 11 total sets. There were 8 and 11 gene sets that were 

upregulated and downregulated, respectively, out of 19 total sets tested in the 

pathway enrichment analysis. Human-phenotypic enrichment analysis resulted 

with the upregulation of 22-gene sets and downregulation of 18 gene set of 40 

sets tested. The significant enrichment gene sets are shown in Table 4.3.  

Table 4.3. GSEA of DEGs in the retina of F3 lineage.  

Name Size ES 
NOM  
p-val 

FDR  
q-val 

Nervous system development 36 0.3621 0 0 

Axon guidance 28 0.3112 0.008016 0.012176 

Extracellular region 32 0.2779 0.014286 0.036451 

Generation of neurons 10 0.4494 0.02834 0.036722 

Developmental biology 40 0.2435 0.024793 0.041788 

Neurogenesis 10 0.4494 0.024194 0.045653 

Development of central nervous system 13 0.3474 0.052738 0.081185 

Abnormality of movement 55 0.2328 0.001976 0.095318 

MAPK_Signaling pathway 22 0.259 0.081395 0.171972 

Transmission of nerve impulse 18 0.2615 0.165306 0.17889 

Circadian clock 14 0.2924 0.138067 0.230248 

Autism 16 0.2563 0.219124 0.230417 

Size refers to the number of genes from the dysregulated genes that are found in a 
particular gene set tested; NES is the normalized enrichment scores for the set; p-value 
is the nominal p-value associated with the NES; FDR q-value is the false discovery rate 
ratio. Gene sets that passed the FDR threshold 0.25 are shown.  
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Dysregulation of phototransduction pathway  

WebGestalt analysis revealed that the phototransduction pathway was 

significantly dysregulated both in the brain and retina. As shown in Figure 4.5, 

critical genes involved in phototransduction pathway were dysregulated due to 

ancestral developmental exposure to MeHg. Genes associated with both light 

and dark vision were also dysregulated. Moreover, transcriptomic analysis 

revealed that 12 genes associated with potassium channels were dysregulated 

(Table 4.4). Among the other pathways affected, genes in the photoperiodism 

and circadian rhythm pathways were also differentially expressed (Fig 4.4).  

                        

Figure 4.4. Protein network analysis of DEGS in the circadian rhythm pathway of 
F3 lineage brain. Green indicates dysregulated genes in the pathway.  
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Figure 4.5. Phototransduction pathway showing the DEGs in the retina of F3 
lineage ancestrally exposed to MeHg during development by Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis. The genes in the red boxes are 
differentially expressed genes associated with visual transduction in the retina of F3 
MeHg exposure lineage zebrafish.  
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DISCUSSION 

Developmental exposure to environmental toxicants has been associated 

with the induction of transgenerational phenotypes such as obesity, reproductive 

diseases, and kidney diseases (Manikkam et al. 2012). Alterated DNA 

methylation of the germline and the inheritance of the modified epigenome have 

been identified as the molecular mechanism behind the inheritance of 

phenotypes without direct exposure. In addition, research has shown that the 

dysregulation of the genes involved in critical cellular functions and pathways 

were caused by the inheritance of epimutations (Manikkam et al. 2012; Crews et 

al. 2012; Guerrero-Bosagna et al. 2014). Our previous study demonstrated that 

developmental exposure to MeHg may induce the transgenerational onset of 

visual and neurobehavioral phenotypes in F3-lineage zebrafish in the absence of 

further exposure. The identification of altered phenotypes in the F3-generation 

MeHg-treated descendants indicated that developmental exposure to MeHg 

resulted in inheritable changes in the epigenome. The objective of the current 

study was to survey the transgenerational transcriptome to identify whether the 

dysregulation of critical genes were associated with the transgenerational 

phenotypes observed.  

A genome-wide transcriptome approach was taken to identify not only the 

genes involved in the phenotypes of interest but also to discover dysregulation of 

genes in previously unidentified transgenerational phenotypes. The hypothesis 

tested in this study was that altered phenotypes due to ancestral developmental 

exposure to MeHg are the result of dysregulated genes in the F3 lineage 



122 
 

 
 

generation. Genome-wide transcriptomic analysis of the brain and retina of 

control and MeHg-exposed generations (F3-lineage zebrafish) was conducted to 

identify the transgenerational inheritance of altered gene functions. We chose the 

whole brain transcriptome analysis rather than just the optic tectum, region 

associated with vision. The function of the brain is a synchronous process (Birn 

2012; Richiardi et al. 2015). Different anatomical regions of the brain functionally 

connected for neurobehavioral outcomes including vision and memory. Hence, 

the whole brain transcriptome was investigated to identify the common gene 

expression profiles among the different regions of the brain.  

The analysis of transcriptome of brain demonstrated 1648 genes 

differentially expressed in the retina and 138 differentially expressed genes in the 

brain. There were 35 genes commonly dysregulated between brain and retina. 

This suggests that MeHg exposure during embryonic development alters the 

transgenerational transcriptome of the brain and retina differently. However, the 

overlap of commonly dysregulated genes indicates common pathways affected in 

both organs. A previous study has shown that maternal exposure to mercury 

resulted in the differential expression of 131 genes in the brain of mice pups 

(Glover et al. 2009). We have seen similar number of genes dysregulated in the 

brain tissue of the transgenerational offsprings of zebrafish developmentally 

exposed to MeHg. The differentially expressed genes are involved in wide variety 

of cellular, molecular, and biological functions including: neural development, 

neurogenesis, signaling pathways, and photoreceptor development.   
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Our analysis was focused on the differential expression of genes 

associated with visual functions, retinal electrophysiology, and locomotor activity. 

Pathway analysis demonstrated that 10 pathways were dysregulated in the brain, 

with at least two differentially expressed genes in each pathway. The top three 

significant (p<0.05) pathways with a maximum number of genes dysregulated 

were circadian rhythm (11 genes), phototransduction (10 genes), as well as 

arginine and proline metabolism (5 genes). Our findings of genes altered in 

circadian rhythm (i.e., nr1d1, clock, cry1a, bhlhe40, arntl1b, per1b, per1a, 

arntl1a, per3, bhlhe41, and cry3), and phototransduction (i.e., grk1b, grk1a, 

guca1b, pde6b, gngt1, pde6g, pde6a, gnat1, and guca1a) were in conjunction 

with the visual deficits that we observed in the F3 descendants.  Studies have 

shown the association of the activities of biological clock genes with visual and 

behavioral functions (Claridge-Chang et al. 2001; Owens et al. 2012; Friedrich 

2013). Our current study reveals the MeHg induced transgenerational differential 

expression of genes associated with visual pathways in zebrafish. 

One of the transgenerational phenotypes that we observed in F3-MeHg 

lineage was hyperactivity. Hyperactivity-type behavior is associated with 

abnormalities in circadian rhythm (Van Veen et al. 2010; Kooij and Bijlenga 2013; 

Huang et al. 2015). We have identified more than 10 genes in the circadian 

rhythm pathway that were dysregulated in the MeHg-exposed F3-lineage fish. 

One of these genes was period 1b (per1b). Huang et al. (2015) has identified 

hyperactivity behaviors in zebrafish that were mutant for per1b, suggesting that 

the per1b-mutant zebrafish as a promising model for attention deficit 
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hyperactivity disorders. Since we identified that F3-lineage zebrafish were 

hyperactive and that the critical gene associated with the hyperactivity behaviors 

(i.e., per1b) was dysregulated, future studies using this mutant zebrafish model 

are necessary to further confirm the role of MeHg in inducing transgenerational 

ADHD.   

Functional pathway analysis was conducted on the genes differentially 

expressed in the brain and retina. Visual gene networks in the retina were used 

for enrichment analysis for the identification of different pathways affected in the 

visual phototransduction process. Pathway analysis demonstrated that 25 

pathways were dysregulated in the retina in which at least four genes were 

differentially expressed in each pathway. The top three significant (p<0.05) 

pathways with a maximum number of genes dysregulated were metabolic 

pathways (87 genes), cell cycle (26 genes) and purine metabolism (14 genes). 

The dysregulated pathways associated with visual functions were retinol 

metabolism (5 genes), phototransduction (5 genes) and circadian rhythm (12 

genes). Human phenotypic pathway enrichment analysis of the dysregulated 

genes in the retina demonstrated that genes involved in retinal disease (27 

genes), eye disease (29 genes), vision disorders (15 genes) and dim vision (12 

genes) were differentially expressed.  

Thirty-five genes associated with response to light stimulus, circadian 

rhythm, and photoperiodism were dysregulated in both brain and retina. Our 

findings indicate that developmental exposure to MeHg dysregulated genes 

involved with vision in both organs, thus suggesting a common molecular 
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mechanism prior to cellular differentiation. For example, amd1 

(adenosylmethionine decarboxylase 1), which was dysregulated both in brain 

and retina, encodes for an essential enzyme which catalyzes the conversion of 

S-adenosyl methionine (SAM) to S-adenosylmethioninamine in the polyamine 

pathway. SAM is the methyl donor for the methylation of DNA. Therefore, the 

dysregulation of amd1 could alter DNA methylation process. This finding suggest 

that ancestral MeHg exposure could alter the DNA methylation pathway via 

dysregulation of amd1. Other studies have reported that amd1 also plays a role 

in embryonic development and self-renewal of embryonic stem cells (Nishimura 

et al. 2002; Zhang et al. 2012), suggesting that this gene may play a role in 

MeHg-mediated abnormalities in development. 

Evidence has demonstrated that direct exposure to MeHg affects the 

functions of potassium ion (K+) channels (Leonhardt et al. 1996; Yuan et al. 

2005). For example, Weber et al. (2008) showed that direct MeHg exposure was 

associated with a delay in depolarization-elicited outward K+ currents in the 

bipolar cells of zebrafish retina (Weber et al. 2008b). Our study on the 

transgenerational population of zebrafish demonstrated that K+ channels were 

dysfunctional in F3 exposure lineage. Transcriptomic analysis of the retina from 

MeHg-exposed zebrafish (F3 lineage) revealed that 12 genes associated with 

potassium ion channels were dysregulated. These findings suggest that 

developmental exposure to MeHg induces transgenerational inheritance of 

altered gene expression related to potassium ion channels in the retina. 

However, since we used the whole retina for transcriptome analysis, it is not 
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clear that the dysregulated potassium ion channel genes were solely from the 

bipolar cells. Further studies are necessary to confirm that the dysregulated 

potassium ion channels genes are indeed located in the bipolar cells.  

We have demonstrated that ancestral developmental exposure to MeHg 

alters the transcriptome of the brain and retina in zebrafish. Our results revealed 

that common genes were dysregulated in both organs, suggesting the presence 

of a common molecular mechanism of toxicity during development. There was an 

association observed between the neurobehavioral deficits and differentially 

expressed genes. Pathways involved with the phenotypes observed were 

significantly enriched by gene set enrichment analysis. To our knowledge, this is 

the first study to report an altered transgenerational transcriptome due to 

developmental exposure to MeHg.  

The implications of these findings are significant in terms of public 

health—especially due to  the rising global emission of mercury and the fact that 

a significant cohort of the human population depend on fish and seafood as their 

main source of protein. To this end, our findings suggest that the 

transgenerational effects of MeHg on neurobehavioral functions need to be 

addressed, coupled with a focus on preventing direct exposure to this 

neurotoxicant, when establishing public health policies. In the future, the 

identification of biomarkers associated with visual and neurodevelopmental 

deficits would aid in the eventual screening of susceptible human populations. 

Moreover, our study highlighted the dysregulation of novel pathways such as 

circadian rhythm and hyperactivity disorders. Subsequently, future studies are 
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necessary to explore the onset of transgenerational circadian rhythm and autistic 

spectrum disorder phenotypes due to ancestral developmental MeHg exposure.  
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CHAPTER 5 

DISCUSSION AND FUTURE DIRECTIONS 
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DISCUSSION AND FUTURE DIRECTIONS 

 

 MeHg is a global environmental neurotoxicant of both ecological and 

public health concern. Developmental exposure to MeHg has been associated 

with the onset of variations in neurobehavioral phenotypic variations later in life 

(Gilbert and Grant-Webster 1995; Ceccatelli et al. 2013; Maccani et al. 2015). 

Recently, the developmental exposure to environmental factors such as 

pesticides, fungicides, plasticizers, and endocrine disruptors have been shown to 

induce different phenotypic variations (e.g., metabolic, reproductive and 

cardiovascular diseases) in subsequent generations without further exposure 

(Skinner 2011; Skinner et al. 2013; Nilsson and Skinner 2015). DNA methylation, 

an epigenetic modification, has been identified as one of the molecular 

mechanisms that induces such  phenotypic variations (Manikkam et al. 2014; 

Skinner et al. 2014; Skinner and Guerrero-Bosagna 2014). Hence, 

transgenerational epigenetic inheritance is “the germline (egg or sperm) 

transmission of epigenetic information between generations in the absence of 

any environmental exposure” (Skinner 2011). Developmental stage of an 

organism has been identified as the susceptible stage for environmental insults 

to create permanent inheritable changes in the germline.  

The discovery that environmental insults have the potential to induce 

transgenerational phenotypes has further strengthen the theory of developmental 

origin of health and diseases (Barker et al. 1993). Developmental stages have 

been identified as susceptible to permanent epigenetic alteration that could 

potentially lead to the onset of diseases in generations that never had exposed to 
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the specific environmental factor. It has been well established that MeHg induces 

neurotoxicity due to developmental exposure (McKeown-Eyssen et al. 1983; 

Jedrychowski et al. 2006; Suzuki et al. 2010). Our previous study has shown that 

embryonic exposure  to MeHg induces neurobehavioral deficits in zebrafish 

(Weber et al. 2008). In our current studies, we investigated the potential of 

developmental MeHg exposure to induce transgenerational neurobehavioral 

deficits.  

 The neurotoxic effects of mercury in humans and other species are well 

documented (Basu et al. 2005; Basu et al. 2007; Gandhi et al. 2014; Nakamura 

et al. 2014; Krey et al. 2015). Prenatal exposure to mercury adversely affects 

neurodevelopment and neurobehavioral functions during infancy, childhood, and  

later in life (Jedrychowski et al. 2006; Sagiv et al. 2012; Wu et al. 2014). We used 

neurobehavior as an assessment tool since it integrates the functions at various 

stages including molecular, cellular, organ system to organism levels. A problem 

in any one of the functional levels would affect the neural integration process 

leading to alteration in behavior. Visual response is one of the complex 

neurobehavioral functions dysregulated by developmental exposure to MeHg 

(Rice and Gilbert 1990; Weber et al. 2008). A response to a visual stimulus 

involves the coordinated functions of different components of nervous and 

muscular systems including retina, optic nerve, neurotransmitters, ion channels, 

tectum, cerebellum, motor neuron and skeletal muscles. Adverse effects of Hg 

exposure in visual nervous system physiology has been reported by different 

studies (da Costa et al. 2008; Fillion et al. 2013; Yorifuji et al. 2013).  
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Previous studies of our lab have shown that direct exposure to MeHg 

induces visual startle response, vibrational startle response, and learning and 

memory deficits in zebrafish (Carvan et al. 2004; Weber et al. 2008; Smith et al. 

2010; Xu et al. 2012). We use zebrafish as a model organism due to its 

physiological, morphological and genetic similarities to humans, and in this study 

we wished to further explored the effects of MeHg and the potential for 

transgenerational actions. The ability of a direct exposure to influence multiple 

generations (i.e. F0, F1, and F2) is defined as a multiple generation phenotype.  

In contrast, a transgenerational phenotype requires transmission of the 

phenotype in the absence of direct exposure. Most of the transgenerational 

studies were conducted in the context of mammalian physiology and 

development, and we applied those principles to the zebrafish model system 

(Figure 1.4).  Following dietary MeHg exposure of F0 adult females the F3 

generation is the first not directly exposed to MeHg.  The zebrafish model allows 

us to bypass F0 adult exposure and directly expose the F1 zebrafish embryos to 

waterborne MeHg.  Again, the MeHg is rapidly absorbed by the yolk and 

distributed to the developing embryo (F1) and its’ primordial germ cells (F2).In 

the current study, we screened the F3 generation for visual and locomotor 

behavioral deficits using the same approaches as previously published. 

The findings of this thesis demonstrated that developmental exposure to 

MeHg induced both direct and transgenerational visual deficits in zebrafish. The 

present study also demonstrated that locomotor activity was not significantly 

affected in the F1 lineage (direct exposure). However, significant hyperactivity 
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was observed in the F3 exposure lineage (transgenerational). This study is the 

first study to show that developmental MeHg exposure can promote 

transgenerational neurobehavioral phenotypes. If these findings in zebrafish 

translate to human populations, the societal costs of mercury pollution are, at 

present, dramatically underestimated. Developmental disabilities are on the rise 

in the US among children between the ages of 3 and 17 (Boyle et al. 2011). 

There is an unexplained increase in neurobehavioral disorders such as autism 

and attention deficit hyperactivity disorder among the children in the US 

(Newschaffer et al. 2005; Safer 2015). Mercury is not the sole causative agent 

responsible for these changes, There is, as yet, no direct link between blood Hg 

levels and autism spectrum disorders (Yau et al. 2014). It is much more likely 

that developmental exposures to environmental chemical mixtures are 

influencing disease susceptibility. Future epidemiological studies are needed to 

elucidate the transgenerational potential of MeHg, alone and in combination with 

other common environmental chemicals, to induce such disorders. Our studies 

on the transgenerational inheritance of altered neurophysiology may provide 

guidance for the design of such studies. 

In our previous studies, retinal electrophysiology was conducted to identify 

alteration in cellular physiology due to the absence of histopathological 

anomalies in the retina of the F1 generation. Zebrafish retina has three distinct 

neuronal cell layers, ganglion cell layer, inner and outer nuclear layers with seven 

major types of cell types as that of humans (Malicki 2000). There are 17 

morphological types of bipolar cells identified in the zebrafish retina, transmitting 
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signals between the photoreceptor cells and ganglionic cells (Connaughton and 

Nelson 2000). Photons of the light cause hyperpolarization of the photoreceptor 

cone cells and a subsequent drop in the neurotransmitter glutamate release to 

bipolar cells (Leskov et al. 2000; Ebrey and Koutalos 2001). Bipolar cells 

depolarize due to decrease in inhibitory glutamate levels resulting in signal 

transduction to ganglionic cells from there to the optic tectum of the brain. 

Our previous study has demonstrated developmental exposure to MeHg 

alters the functions of voltage gated K+ ion channels of the bipolar cells of 

zebrafish retina (Weber et al. 2008). We found that retinal electrophysiology was 

also altered due to dysfunctional K+ ion channels in the bipolar cells of the retina 

due to ancestral developmental exposure to MeHg. The normal functions of 

voltage gated cation channels, Na+ and K+ are critical for the phototransduction 

process. Delayed potassium ion outward flow results in hyperpolarization of the 

bipolar cells and thus affect signal transmission to the ganglionic cells and 

beyond. Our findings revealed one specific change in cellular physiology (there 

may be more) that is likely involved in visual deficits the F3 lineage fish. Bipolar 

cells are one of the structural components of visual nervous system. In addition 

to its role in phototransduction, K+ ion channels are also directly involved with the 

locomotor activity (Manira et al. 1994; Hess and Manira 2001; Grillner et al. 

2001). Voltage gate K+ ion channels play crucial role in neural excitability (Pongs 

1999) and signal propagation (Hoffman et al. 1997). The blockage of K+ ion 

channels in the neurons of lamprey affected both single neuron firing and the 

generation of locomotor pattern, suggesting the role of K+ ion channels in 
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locomotor activities (Grillner et al. 2001). It has also shown that the activity of the 

hippocampal interneurons can be altered by inhibiting K+ ion channels leading to 

increased release of the neurotransmitter GABA resulting in anticonvulsant 

properties (Miller et al. 1997; Svoboda and Lupica 1998). In our current studies, 

we did not establish a correlation between MeHg induced locomotor dysfunctions 

and altered K+ ion channels. Future studies are necessary to establish the 

association between developmental neurotoxicity of MeHg and locomotor 

dysfunctions due to altered functions of K+ ion channels. In our current study, we 

looked at the functions of K+ ion channels in only bipolar cells of the retina. Future 

studies are also necessary to identify the role of MeHg in other cell types in the 

retina (e.g. photoreceptors, ganglion cells and amacrine cells) brain (e.g., cells of 

medial septal glutamatergic circuit) and spinal cord (e.g., glutamatergic and 

glycinergic interneurons). The function of all the cell types in this pathway need to 

be elucidated for the better understanding of the influence of MeHg in visual 

startle response.  

Previous studies have shown that transgenerational inheritance of 

phenotypic variations do not follow a specific parental germline transmission 

(Lawlor et al. 2003; Pembrey et al. 2006; Veenendaal et al. 2013; Bygren et al. 

2014). Paternal grandfather’s nutrition status was associated with mortality risk 

ratios of the grandsons not granddaughters (Pembrey et al. 2006b). DDT induced 

transgenerational phenotypes including obesity and testis diseases in males was 

identified to be transmitted through the female germline (Skinner et al. 2013). In 

our studies, we identified that both males and females of the F3 lineage fish were 
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affected by the ancestral MeHg exposure. Either male or female germline was 

sufficient to induce transgenerational visual deficit. However, both male and 

female germlines were required to induce locomotor deficit. The two phenotypes 

that we monitored were inherited differently, suggesting that MeHg induced 

phenotypes are inherited independently. The significance of the mode of 

germline transmission of a MeHg induced phenotype is that it provides the 

knowledge to target which parent for preventative measures for a specific 

phenotype. Future studies are necessary for understanding the sex specific 

transmission of environmentally-induced transgenerational phenotypes.  

 The visual deficit exhibited by the F3 lineage fish were followed up with 

genome wide transcriptome analysis to explore potential molecular mechanisms. 

Differential gene expression of brain and retina of F3 lineage zebrafish revealed 

a d transgenerational transcriptome with 1648 genes differentially expressed in 

the retina and138 genes dysregulated in the brain. Thirty-five genes were 

commonly dysregulated between brain and retina. Get set enrichment analysis of 

differentially expressed genes revealed significant enrichments of pathways such 

as neurodevelopment, neurogenesis, and phototransduction. The top three 

pathways significantly enriched in the brain were circadian rhythm, 

phototransduction and arginine and proline metabolism. Retinol metabolism, 

phototransduction and circadian rhythm pathways were shown to be significantly 

enriched in the retina. The commonly dysregulated genes in both brain and retina 

were involved with response to light stimulus, circadian rhythm, and 

photoperiodism. Disease pathway analysis of the differentially expressed genes 
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in the retina resulted in the enrichment of diseases including retinal diseases, eye 

disease, vision disorders and dim vision. Transcriptome analysis of brain and 

retina of F3 lineage has demonstrated that critical genes and pathways involved 

in visual functions were differentially expressed due to ancestral MeHg exposure. 

The dysregulated pathways revealed in our transcriptomic analysis are 

consistent with visual deficit, phenotype, observed in the F3 lineage animals  

The altered potassium ion channel function of the bipolar cells of retina 

motivated us to screen differentially expressed genes in the retina associated 

with potassium ion channels. We identified 12 genes associated with potassium 

ion channels that were dysregulated in the retina of F3 lineage exposure groups. 

The retina contains several cell types, so our study did not confirm whether the 

dysregulated genes were located in the bipolar cells. Further analysis of the 

bipolar cell transcriptome is needed to confirm the role of the dysregulated 

potassium channels in bipolar cells.  

One of the genes dysregulated both in retina and brain was amd1, which 

codes for an enzyme associated with the polyamine pathway. Polyamine 

pathway is involved with two major functions; embryonic development and DNA 

methylation. Previous studies have shown that MeHg exposure affects both 

development and DNA methylation. The discovery of differential expression of 

amd1 gene identifies one of the possible pathways by which MeHg affects 

development and gene expression.  

The RNAseq method that we used to identify the association between 

MeHg induced phenotype and the transcriptome turned out to be a powerful tool 
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in transgenerational inheritance research. The method provided us the 

opportunity to survey gene expression of the whole entire genome. We were also 

able to identify alterations in pathways such as circadian rhythm that were not 

included in our prior phenotype screening. Since we have identified the possible 

phenotypic pathways induced by MeHg exposure, future studies can be directed 

towards the identification of specific transgenerational phenotypes such as 

circadian rhythm and hyperactivity disorders.  

The discoveries that we made in our current study have significant impact 

on both ecological settings and public health. Environmental impacts of Hg is not 

limited to human beings. Large carnivorous fish, fish eating birds, mammals and 

predators of fish eating animals are at risk for Hg toxicity (Varian-Ramos et al. 

2014; Goutte et al. 2014; Lavoie et al. 2015). The reproductive success and the 

population of songbirds are adversely affected by mercury exposure (Varian-

Ramos et al. 2014). The primary source of protein for the one third of the world’s 

population is fish. Fish are vital components of every marine and aquatic 

ecosystems my. Exposure to MeHg has adverse impacts on  cellular and 

physiological functions of fish species including higher oxidative stress (Claveau 

et al. 2015), reproduction (Crump and Trudeau 2009), feeding habit and habitat 

preference and survival skills (Alvarez et al. 2006). If the transgenerational 

neurobehavioral defects that we observed in zebrafish in the laboratory are true 

in the wild, it will have significant impact on the survival of different fish species 

leading to significant population reduction.  
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The significance of our findings is that in addition to other environmental 

toxicants, a heavy metal for the first time has been identified for its ability to 

induce phenotypic variations in multiple generations without further exposure. 

Our findings have opened the door to a new area of biomedical research in 

identifying transgenerational toxicity of metals such as Pb, Cd and As. The 

transgenerational potential of the metals have not yet elucidated. If other metals 

also show similar effects as that of Hg, our findings have monumental impact on 

global public health.  

Our findings will have significant impacts on public health. Neurocognitive 

functions were significantly affected in the Minamata population exposed 

prenatally during Hg outbreak (Yorifuji et al. 2014). Transgenerational inheritance 

of altered phenotypes due to prenatal exposure to MeHg (or any environmental 

chemical) has yet to be identified in humans.  To confirm our findings in human 

population, epidemiological studies need to be designed to assess effects over 

several generations with consideration of high level ancestral exposure to 

mercury and other persistent pollutants pose an especially difficult case since 

there are no unexposed human populations. Our study mimics the human 

condition. It is impossible to find fish food without trace levels of mercury—much 

like the human diet. We were able to identify the transgenerational phenotypes 

against the background noise induced by trace levels of Hg in an outbred animal 

model. This suggests that transgenerational phenotypes in humans will be 

discovered as part of well-designed longitudinal human studies. 
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Mercury pollution is a global environmental health concern. Countries 

around the world have come to a consensus around this significant threat which 

is outlined in the Minamata Convention treaty focused on reducing global 

emission of mercury from anthropogenic activities. All parties recognize this dire 

public health problem. Our discovery of transgenerational neurotoxic effects of 

mercury provides additional compelling evidence that reducing mercury emission 

is essential to protect public health.  

Fish consumption provides important nutrients such as omega-3 fatty acid 

needed for fetal brain development. On the other hand, fish consumption is the 

major source of mercury in humans. The mercury levels in fish species vary and 

women of child-bearing age need to make informed intelligent choices about fish 

consumption. It is important to take necessary preventative interventions to 

reduce the bioaccumulation of mercury in reproductive age to prevent neurotoxic 

affects in our descendants, because we could transmit a silent ghost in our 

genome to our next generations causing diseases in them.   
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