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ABSTRACT 

TIN NANOPARTICLES ENCAPSULATED IN 

HOLLOW TIO2 SPHERES AS HIGH 

PERFORMANCE ANODE MATERIALS FOR LI-

ION BATTERIES 

 

by 
 

Xiang Pan 

 

The University of Wisconsin-Milwaukee, 2015  

Under the Supervision of Professor Junhong Chen 

 

Tin, an anode material with a high capacity for lithium-ion batteries, has poor cyclic 

performance because of the high volume expansion upon lithiation. Based on a literature 

review of the applications of lithium-ion batteries and current research progress of the tin-

based anode materials for lithium-ion batteries, we developed a method to synthesize 

hollow TiO2 spheres with tin nanoparticles anchored on the inner surface of the TiO2 

shell. Such a unique tin/TiO2 composite alleviates the volume change of tin–based anode 

materials in charge-discharge processes. SnCl2·2H2O (Tin (II) chloride dihydrate) and 

titanium (IV) isopropoxide (TIPT) were used as the Sn source and the Ti source, 

respectively, while CaCO3 was used as a template to fabricate the TiO2 hollow shell. A 

variety of modern material testing methods (XRD, SEM, XPS, Raman, BET, etc.) and 
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electrochemical measurements such as galvanostatic charge-discharge and cyclic 

voltammetry (CV) testing were employed to systematically study effects of various 

synthesis parameters on the structure and battery performance of the as-prepared 

materials. We also discussed the key factors influencing the cycle performance of the 

composite electrode material and the related mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

javascript:void(0);
javascript:void(0);


 

iv 
 

 

 

 

 

 

 

 

 

 

 

 Copyright by Xiang Pan, 2015 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 



 

v 
 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................................... II 

TABLE OF CONTENTS ............................................................................................................................... V 

LIST OF FIGURES ...................................................................................................................................... VII 

LIST OF TABLES .......................................................................................................................................... X 

LIST OF ABBREVIATIONS ........................................................................................................................ XI 

ACKNOWLEDGEMENTS ......................................................................................................................... XII 

1.Background .................................................................................................................................................. 1 

1.1 Lithium-Ion Battery (LIB) ..................................................................................................................... 1 

1.2 Principle of Lithium-Ion Batteries......................................................................................................... 2 

1.3 Tin (Sn) Based Materials for LIBs ........................................................................................................ 3 

2 Literature Review ......................................................................................................................................... 4 

2.1 Carbon Anode Materials ........................................................................................................................ 5 

2.2 Silicon (Si) Based Anode Materials ...................................................................................................... 6 

2.3 Nitrides .................................................................................................................................................. 8 

2.4 Spinel Li4Ti5O12 (LTO) .......................................................................................................................... 8 

2.5 Tin Based Anode Materials ................................................................................................................... 9 

3. Experimental ............................................................................................................................................. 12 

3.1. Materials ............................................................................................................................................. 12 

3.2 Synthesis of Materials ......................................................................................................................... 12 

3.3. Battery Assembly ............................................................................................................................... 15 

3.4. Material Characterization ................................................................................................................... 18 

3.5 Characterization of The Electrochemical Performance ....................................................................... 20 

4 Structure and Performance Results............................................................................................................. 20 

4.1 Structure Characterization ................................................................................................................... 20 

SEM ...................................................................................................................................................... 20 

XRD ...................................................................................................................................................... 21 

Raman ................................................................................................................................................... 22 

XPS ....................................................................................................................................................... 23 

BET ....................................................................................................................................................... 25 

4.2 Electrochemical Performance .............................................................................................................. 25 

4.2.1 The First Charge-Discharge Performance .................................................................................... 25 

4.2.2 Cyclic Voltammetry ...................................................................................................................... 27 

4.2.3 Electrochemical Impedance Spectra (EIS) ................................................................................... 28 

4.2.4 Cycle Stability .............................................................................................................................. 30 

4.2.5 Rate Performance ......................................................................................................................... 32 

5 Parametric Studies ...................................................................................................................................... 33 



 

vi 
 

5.1 Binder Impact on Performance ............................................................................................................ 33 

5.2 Effect of Sn Content on Performance .................................................................................................. 33 

5.3 The Effects of Different Ti Content ................................................................................................. 35 

5.3.1 Effect of Ti Content on Structure ................................................................................................. 35 

5.3.2 Ti Content Impact on Electrochemistry ........................................................................................ 36 

6. Conclusion ................................................................................................................................................. 37 

7. Future Research ......................................................................................................................................... 38 

References ..................................................................................................................................................... 40 

 

 

 

 

 

 

 

  



 

vii 
 

LIST OF FIGURES 

 

Figure 1 Internal structure of Cylindrical Lithium-ion Battery (Reprinted courtesy of 

HowStuffWorks.com) .......................................................................................................... 2 

Figure 2 Lithium-ion batteries charge and discharge mechanism sketches (Reprinted 

courtesy of HowStuffWorks.com) ....................................................................................... 3 

Figure 3 Schematic illustration of active anode materials for the next generation of lithium 

batteries. Potential vs. Li/Li+ and the corresponding capacity density are shown [7]. .......... 5 

Figure 4 Synthetic scheme of tin nanoparticles encapsulated in elastic hollow carbon 

spheres (TNHCs) [27]. ......................................................................................................... 11 

Figure 5 SEM images of the prepared nanowire arrays of TiO2-Sn/C. [28] ....................... 11 

Figure 6(a).Filter flask. (b). Stirring samples on magnetic stirrers. ................................... 13 

Figure 7 SEM images of prepared samples before removing the CaCO3, which appeared 

from split shell. .................................................................................................................. 14 

Figure 8(a). Tube furnace (Thermo Scientific Lindberg/Blue M™ Vacuum Ovens). (b). 

Samples became white powder after calcination ............................................................... 14 

Figure 9(a). Vacuum tube oven. (b). Earthy yellow powder obtained after reduction....... 15 

Figure 10(a) (b). Active materials coat on Cu foil. (c). Tablet press. ................................ 16 

Figure 11 CR2032 cell battery assembly diagram. ............................................................ 17 

Figure 12(a). Glove box. (b). Hohson Corp HS-HCR2 manual coin crimper in glove box.

............................................................................................................................................ 17 

Figure 13(a). Bruker X-Ray Diffraction (b). Land battery testing system. (c). Micromiritics 

file:///C:/Users/xiang/Desktop/0727%20combine.docx%23_Toc425758399


 

viii 
 

ASAP 2020 BET measurement. (d). Raman spectroscopy (Renishaw 1000B). (e). Perkin 

Elemer 5440 X-Ray Photoelectron Spectrometer. ............................................................. 19 

Figure 14 Microstructure of samples observed by scanning electron microscopy (SEM). 

The full view of TiO2 sphere can be observed in (b) and (c). The Sn particles can be clearly 

found in (a) and (d). ........................................................................................................... 21 

Figure 15 XRD spectra of samples from various batches. ................................................. 22 

Figure 16 Raman spectra of samples from various batches. .............................................. 23 

Figure 17 Overview of XPS result. .................................................................................... 24 

Figure 18 Individual XPS peak of Ti, Sn, C and O............................................................ 24 

Figure 19 Pore size distribution according to the BJH adsorption branch. ....................... 25 

Figure 20 Specific capacity of first cycle. ......................................................................... 26 

Figure 21 First three cycles of cyclic voltammogram of materials. .................................. 27 

Figure 22 Nyquist plots of materials at 2 h, 4 h, 6 h, and 8 h, fully charged and fully 

discharged states. ............................................................................................................... 29 

Figure 23 Equivalent circuits of charged and discharged states. ....................................... 29 

Figure 24 Specific capacity of sample in 200 cycles. ........................................................ 31 

Figure 25 Charge Curve of the 1st, 2nd, 4th and 200th cycles. ............................................. 32 

Figure 26 Specific capacity of materials at various C rates (1C=600 mA g-1). ................. 32 

Figure 27 XRD diagram of samples containing 0.00125 and 0.0025 mol Sn. .................. 33 

Figure 28 Specific capacity of first cycle of samples containing 0.003 and 0.0025 mol Sn, 

respectively. ....................................................................................................................... 34 

Figure 29 Specific capacity in 100 cycles of three samples content Sn 0.0025 and 0.003 

file:///C:/Users/xiang/Desktop/0727%20combine.docx%23_Toc425758399
file:///C:/Users/xiang/Desktop/0727%20combine.docx%23_Toc425758399


 

ix 
 

respectively. ....................................................................................................................... 34 

Figure 30 SEM of samples (a), (b) and (c) with 0.0042, 0.0035 and 0.0028 mol TIPT (which 

indicate 0.0028, 0.0035 and 0.0042 mol of Ti Content, respectively) ............................... 36 

Figure 31 Specific capacity in 200 cycles of three samples obtained in the presence of 

0.0028, 0.0035 and 0.0042 mol TIPT (which indicate 0.0028, 0.0035 and 0.0042 mol of Ti 

Content, respectively). ....................................................................................................... 37 

 

 

  



 

x 
 

LIST OF TABLES 

 

Table 1 Comparison of the theoretical specific capacity, charge density, volume change and 

onset potential of various anode materials. .......................................................................... 4 

Table 2 Main materials used in the experiments. ............................................................... 12 

Table 3 Corresponding parameter of elements in equivalent circuits. ............................... 30 

 

  



 

xi 
 

LIST OF ABBREVIATIONS 

 

CMC……….…Carboxy Methylated Cellulose 

CV……………Cyclic Voltammetry  

DI Water……...De-ionized water 

EDS…………...Energy-dispersive X-ray Spectroscopy  

EIS…………….Electrochemical Impedance Spectroscopy  

FEC…………....Fluoroethylene Carbonate  

LIB………….....Lithium-ion Battery  

LTO…………... Lithium Titanium Oxide 

MCMB……..….Mesophase Carbon Micro Beads  

NMP………..….N-Methyl-2-Pyrrolidone  

NWs…………...Nanowires 

PAA………….. Poly (Acrylic Acid) 

PE……………..Polyethylene 

PP……………..Polypropylene 

SBR………….. Styrene-Butadiene Rubber  

SEM…………..Scanning Electron Microscopy 

TIPT…………..Titanium (IV) Isopropoxide  

VC…………….Vinylene Carbonate  

XRD…………..X-ray Diffraction 

XPS………….. X-ray Photoelectron Spectrometer 



 

xii 
 

ACKNOWLEDGEMENTS 

 

  I would like to thank my advisor, Professor Junhong Chen, for his support thoughout my 

graduation project. His encouragement is the power to let me go the distance. The weekly 

group meeting also inspired me to make greater progress. 

  I also want to express my gratitude to Dr. Xingkang Huang, who is the man who gave 

me a guiding hand on experiments and paper work. My work would not have been possible 

without his meticulous guidance. His rigorous academic attitude educated me on what is a 

researcher should be like. 

  My appreciation goes out to Professor Benjamin Church, Professor Nidal Abu-Zahra and 

other professors in the College of Engineering & Applied Science. You always give me 

pertinent advice when I was facing a tough choice. 

  I have to show my appreciation to senior students in Professor Chen’s group, like Guihua 

Zhou, Xiaoru Guo, et al. They helped me a lot in the lab and regarded me as a friend in the 

daily life. I would like to thank Miss Gwen Barker, who was working for Johnson Controls, 

for training me on many instruments used for lithium-ion battery fabrication and 

characterization. My deep gratitude goes out to Dr. Steven Hardcastle for training me on 

analytical instruments in the Advanced Analysis Facility, as well Professor Deyang Qu for 

allowing me to use the experimental apparatus in his lab, EMS 810. 

  Finally, I would love to dedicate the last sentence to my parents and my partner who give 

me unconditional support. I am willing to do everything I can to make you proud. 



1 

 

1. Background 

It is imperative to solve the problem of energy shortages and the increasingly serious 

environmental pollution problems. Various high energy batteries will play a more 

important role in the future. The existing rechargeable batteries mainly include lead-

acid batteries, nickel cadmium batteries, nickel metal hydride batteries, and lithium-ion 

(Li-ion) batteries (LIBs). The Li-ion batteries attract tremendous attention because of 

the advantages of high energy density, high average output voltage, low self-discharge, 

broad operating temperature range, no memory effect, a long cycle life, and less 

pollution compared with lead-acid batteries. Since the birth of the LIB prototype, 

researchers have never stopped improving the performance of LIBs. Along with the 

advancement of technology, the performance of LIBs has been significantly enhanced. 

Now LIBs have been widely used in mobile phones, notebook computers, and portable 

electronic devices. 

1.1 Lithium-ion Battery (LIB) 

Lithium-ion batteries that have high energy density in all kinds of green secondary 

batteries, have been widely used in notebook computers, mobile phones, and other 

consumer electronics products. With the rapid development of wireless 

communications products, electric cars, and electric tools, an urgent need has been 

developed to improve the energy density, power density and life performance of 

lithium-ion battery electrode materials.  
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1.2 Principle of lithium-ion batteries 

 

Figure 1 Internal structure of cylindrical lithium-ion battery (Reprinted courtesy of 

HowStuffWorks.com) 

The LIB is one of the rechargeable secondary batteries in which Li+ can be inserted 

into and extracted from cathode and anode materials. The internal structure of a 

cylindrical LIB is shown in Figure 1. Actually it is a concentration cell, with embedded 

lithium compounds always used as a cathode, such as LiCoO2 and LiMn2O4. Graphite 

is commonly used as an anode electrode, and organic solvents with lithium salt (LiFP6, 

LiAsF6) are common for the electrolyte. Both electrodes allow lithium ions to move in 

and out of their interiors. During insertion (or intercalation) lithium ions move into the 

electrode. During the reverse process, lithium ions move back out. When a lithium-ion 

based cell is discharging, the positive lithium ion moves from the negative electrode 

and enters the positive electrode. The sketches of the charge/discharge processes are 

shown in Figure 2. 

http://en.wikipedia.org/wiki/Graphite_intercalation_compound
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Figure 2 Lithium-ion batteries charge and discharge mechanism sketches (Reprinted courtesy of 

HowStuffWorks.com) 

The following equations show one example of the chemistry: 

The positive electrode half-reaction is:  

LiCoO2 ↔ Li1-xCoO2 + xLi+ + xe-    (1) 

The negative electrode half reaction is: 

xLi+ + xe- + xC6 ↔ xLiC6           (2) 

The overall reaction has its limits. Over discharge supersaturates lithium cobalt oxide, 

leading to the production of lithium oxide [2] possibly by the following irreversible 

reaction: 

Li+ + e- + LiCoO2 ↔ Li2O + CoO    (3) 

1.3 Tin (Sn) based materials for LIBs 

Sn and Li can form Li4.4 Sn alloy, whose high theoretical specific capacity (993.4 

mAh g-1) [36] has attracted widespread attention. However, a Li-Sn alloy is accompanied 

by huge volume expansion, so the cycle performance is unsatisfying, limiting its 

practical application.  

http://en.wikipedia.org/wiki/Half-reaction
http://en.wikipedia.org/wiki/Lithium_cobalt_oxide
http://en.wikipedia.org/wiki/Lithium_oxide
http://en.wikipedia.org/wiki/Lithium_oxide
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2 Literature Review 

At present, lithium-ion battery anode materials generally use carbon materials, such 

as graphite, hard carbon, etc. Other than carbon anode materials, nitrides, lithium-ion 

oxides, transition metal oxide, silicon materials, tin base material and some other new 

alloy materials are also used. Some main parameters of various anode materials are 

given in Table 1. Potential vs. Li/Li+ and the corresponding capacity density of some 

potential anode active materials are displayed in Figure 3. Nanoscale materials, because 

of their unique performance, also have received widespread attention in the studies of 

anode materials. 

Table 1 Comparison of the theoretical specific capacity, charge density, volume change and onset 

potential of various anode materials. 

Materials Li C Li4Ti5O12 Si Sn Sb Al Mg Bi 

Density ( g cm−3) 0.53 2.25 3.5 2.33 7.29 6.7 2.7 1.3 9.78 

Lithiated phase Li LiC6 Li7Ti5O12 Li4.4Si Li4.4Sn Li3Sb LiAl Li3Mg Li3Bi 

Theoretical 

specific capacity 

( mAh g−1) 

3862 372 175 4200 994 660 993 3350 385 

Theoretical 

charge density 

( mAh cm−3) 

2047 837 613 9786 7246 4422 2681 4355 3765 

Volume change 

(%) 

100 12 1 320 260 200 96 100 215 

Potential vs. Li 

( ~V) 

0 0.05 1.6 0.4 0.6 0.9 0.3 0.1 0.8 
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Figure 3 Schematic illustration of active anode materials for the next generation of lithium batteries. 

Potential vs. Li/Li+ and the corresponding capacity density are shown [7]. 

2.1  Carbon anode materials 

A carbon anode of lithium-ion batteries in terms of safety and cycle life shows better 

performance, and carbon materials are cheap and non-toxic; so they are widely used in 

commercial lithium-ion battery anode materials. Commercially developed lithium-ion 

battery anode materials mainly include graphite, petroleum coke, carbon fiber, 

pyrolysis, Mesophase Carbon Micro Beads (MCMB), carbon black, carbon glass, etc. 

Carbon anode materials are divided into graphite and amorphous carbon materials; they 

are all made of graphite crystallite, but their crystallinity is different; some other 

structural parameters are different also. So, their chemical and physical properties and 

electrochemical properties show different features.   

Graphite is definitely the most used anode [3-6] owing to its excellent features, such 

as flat and low working potential vs. lithium, low cost and good cycle life. However, 

graphite allows the intercalation of only one Li-ion with six carbon atoms, with a 
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resulting stoichiometry of LiC6 and thus an equivalent reversible capacity of 372 mAh 

g-1 [7]. It also is sensitive to the composition of the electrolyte, and organic solvent 

compatible ability is poor; only a small number of electrolyte has good electrochemical 

performance, and the resistance to overcharge ability is poor. During the process of 

charging and discharging, solvent molecules may be embedded into the graphite, which 

easily ruins the graphite structure. In addition, the diffusion coefficient of lithium ions 

in the graphite is small.  

Amorphous carbon has high capacity and the discharge performance under large 

current is good, with a de-intercalation capacity up to more than 900 mAh g-1. But high 

first irreversible capacity and voltage hysteresis limits the performance of amorphous 

carbon materials. In addition, the cycle performance is not ideal, with reversible 

capacity dropping rapidly upon cycling. Both the graphite and amorphous carbon 

material have their advantages and disadvantages; they have been investigated 

extensively to improve their electrochemical performance.  

2.2 Silicon (Si) based anode materials 

Silicon has both the highest gravimetric capacity (4,200 mAh g-1, Li22Si5) and 

volumetric capacity (9,786 mAh cm-3) among the anode material candidates [8-12]. 

In addition, the discharge (lithiation) potential of silicon is a little higher than that of 

graphite, 0.4 V vs. Li +/Li. Therefore, it has less chance to develop dendrite on the Si 

anode, compared with the graphite anodes during the process of charging and 

discharging, which means a better safety performance. The electrochemical lithiation 

http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib155
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib159


7 

 

of Si electrodes has been deeply investigated by many groups. It has been clarified that 

the high specific capacity value is due to the formation of intermetallic Li–Si binary 

compounds such as Li12Si7, Li7Si3, Li13Si4, Li22Si5
[7]. However, the main drawback of 

silicon-based anode materials is the poor cycle stability, because of the large volume 

change (∼400%) in alloying and dealloying, resulting in pulverization and spalling of 

electrode materials. 

To overcome these problems, nanowires, nanotubes and nanospheres were 

considered due to their capability of providing the necessary free volume for 

accommodating the Si expansion during the alloying/de-alloying process. In particular, 

Si nanowires (Si NWs) and nanotubes have shown a reversible capacity over 2,000 

mAh g−1 with good cycling stability. [7]  

SiO is considered an alternative choice to silicon as an anode candidate, although its 

theoretical capacity (>1,600 mAh g-1) is lower than that of Si. In addition, lithium 

oxygen co-ordination implies minimal volume change and, at the same time, lower 

activation energy [13-16]. The mechanism can be expressed as follows: 

xLi + SiO ↔ Lix–ySiz + LixSiOz          (4) 

The effects of both the oxygen concentration and the particle size on the cycling life 

and on the reversible capacity of SiOx were studied [17]. Different oxygen concentrations 

of SiO, such as SiO0.8, SiO and SiO1.1, along with the particle size, such as 30 and 50 

nm, were prepared. It was observed that SiO0.8 with 50 nm particle size shows a high 

capacity of 1,700 mAh g-1 at initial cycles, but along with large capacity falling over 

cycling [17]. However, SiO1.1 can maintain a stable capacity over cycling of 750 mAh g-

1. The conclusion was that lower oxygen contents in SiOx indicate higher specific 

http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib156
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib173
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib176
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib47


8 

 

capacity but also cause poorer cycling life. In addition, 30 nm SiOx particle size showed 

better capacity retention with high reversible capacity compared with larger particles. 

 

2.3 Nitrides 

Nitrides as lithium-ion battery anode materials have been researched mainly because 

of the high conductivity of Li3N. The product by the reaction of Li3N and transition 

metal is lithium transition metal nitrides. It basically has two kinds of structure: anti-

fluorite structure and Li3N structure, both have very good ionic conductivity, electronic 

conductivity and chemical stability. The electrochemical performance and the lithium 

insertion/removal capacity of titanium-based oxides mainly depend on the different 

kinds of materials. Gillot et al. prepared Ni3N by various synthetic routes, such as 

ammonolysis of nickel salts, or nickel particles, and thermal decomposition of nickel-

amide in the presence of ammonia [29]. Ni3N from nickel-amide showed the best 

electrochemical performances, with the largest capacity (1,200 mAh g-1) [7].  

2.4 Spinel Li4Ti5O12 (LTO) 

LTO has generated significant interest for researchers because of the excellent Li-ion 

reversibility at the high operating potential of 1.55 V (vs .Li/Li+). The high operating 

potential guarantees safety conditions; in fact, the formation of the solid electrolyte 

interphase (SEI) is mitigated and the development of dendrites, a typical issue in 

carbon-based anodes, is avoided [30]. But the low specific capacity limits the application 

of LTO materials. Researchers have considered that enhancing the electronic 

http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib274
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib129
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conductivity of LTO by surface treatments [31-32], and enhancing the Li-ion diffusion by 

downsizing the LTO to the nanoscale [7]. 

2.5 Tin based anode materials 

Tin has reversible alloying and dealloying reaction with lithium, forming and 

decomposing the alloy phase LixSny, including LiSn, Li2Sn5, Li7Sn3, Li5Sn2, Li7Sn2, 

Li13Sn5 and Li22Sn5. LiSn and Li2Sn5 are layered crystal structures, while others can 

hardly form a long-range order crystal structure [18]. 

As a lithium metal alloy anode material, Sn has received widespread attention once 

proposed. Its main advantage is high specific capacity (993 mAh g-1), which is twice 

that of the graphite. However, like other metal alloy anode materials, a huge volume 

change accompanies the alloying and de-alloying process, which leads to stress and 

pulverization of active materials, finally resulting in a poor cycle performance. 

Tin oxide was first developed by Fuji Photo film corporation[7] and it received 

significant attention as an anode for Li-ion batteries due to the high theoretical capacity 

and low work potential, i.e., 0.6 V vs. Li/Li+[19-22]. The electrochemical lithium alloying 

reactions can be summarized in a first partially irreversible step, where SnO2 is reduced 

into Sn and lithium oxides (SnO2+4Li↔Sn+2Li2O), which is followed by the reversible 

Sn–lithium alloying/de-alloying reaction (Sn+4.4Li+↔Li4.4Sn). This overall 

electrochemical process involves 8.4 Li for one SnO2 formula unit [7]. The 

corresponding theoretical capacity is 1,491 mAh g-1 but it is reduced to 783 mAh g-1 

when the second highly reversible step is reached. Hence, 783 mAh g-1 is commonly 

http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib131
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib12
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib127
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considered as the actual theoretical capacity. However, it has the same problem as other 

Sn-based materials; volume change will crash the structure, resulting in a quick capacity 

decay upon cycling.  

Therefore, the main issue to be addressed is how to reduce the effect of volume 

expansion and improve the cycle performance. Porous nanostructures, nanocomposites, 

and hollow nanostructured Sn/SnO2 have been proposed to overcome the above 

specified issues [23-25]. Porosity in nanostructured SnO2 is capable of balancing the 

volume changes during the lithium insertion/de-insertion. These pores act as a buffer 

for the large volume changes. Yin et al. prepared SnO2 mesoporous spheres in the range 

of 100–300 nm from tin sulphate, by a cost-effective and easy solution method. These 

prepared SnO2 spheres delivered capacities of 761 and retained 480 mAh g-1 after 50 

charge–discharge cycles at current densities of 200 mA g-1 and 2,000 mA g-1, 

respectively [26].  

SnO2/C were also proposed considering the wide use of carbon in LIBs. Carbon-free 

and carbon-coated SnO2 hollow microspheres were prepared through a cost-effective 

hydrothermal route where glucose was used as a carbon source [25]. The results showed 

better performance for the carbon-coated SnO2, in terms of storage capacity, Coulombic 

efficiency and cycling life [7]. 

More and more researchers are now paying close attention to some specific Sn－

based composite materials. Zhang et al. [27] prepared hollow carbon spheres to supply 

the shell for Sn nanoparticles, with a synthetic scheme presented in Figure 4. This work 

improved the cycle performance (800 mAh g-1 in the initial 10 cycles, and 550 mAh g-

http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib51
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib203
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib204
http://www.sciencedirect.com/science/article/pii/S0378775313019460#bib203
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1 after 100 cycles). Liao et al. [28] prepared three- dimensional mesoporous TiO2-Sn/C 

core-shell nanowire arrays, where Sn formed by a reduction of SnO2 was encapsulated 

into TiO2 nanowires with carbon coating (Figure 5). The resulting TiO2-Sn/C nanowire 

arrays displayed rechargeable discharge capacities of 769, 663, 365, 193, and 90 mA h 

g−1 at 0.1 C, 0.5 C, 2 C 10 C, and 30 C, respectively (1 C = 335 mA g−1). The TiO2-

Sn/C nanowire arrays exhibit a capacity retention rate of 84.8% with a discharge 

capacity of over 160 mAh g-1 , even after 100 cycles at a high current rate of 10 C [28]. 

 

Figure 4 Synthetic scheme of tin nanoparticles encapsulated in elastic hollow carbon spheres (TNHCs) 

[27]. 

 
Figure 5 SEM images of the prepared nanowire arrays of TiO2-Sn/C. [28] 

In order to overcome the issues of Sn-based materials mentioned above, particularly 

results from Zhang et al. [27] and Liao et al. [28], we propose a cost-effective and simple 

method to prepare core-shell Sn/Ti anode materials that show better electrochemical 
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performance than simple Sn/Ti mixture materials and porous Sn materials. 

3. Experimental 

3.1. Materials 

  Materials used for the experiments are listed in Table 2. 

 

Table 2 Main Materials used in the experiments.  

Materials Vendor Chemical formula 

Tin(II) chloride dihydrate Alfa Aesar SnCl2·2H2O 

Sodium Carbonate  VWR Na2CO3 

Calcium chloride dihydrate Alfa Aesar CaCl2·2H2O 

Titanium(IV) isopropoxide Alfa Aesar C12H28O4Ti 

Poly(acrylic acid) Alfa Aesar [-CH2CH(CO2H)-] 

Separator Celgard PP/PE/PP  

CMC  Carboxy Methylated Cellulose 

SBR  Styrene-butadiene rubber 

Electrolyte  EC/EMC+5%FEC+1%VC 

Carbon black  C 

 

3.2 Synthesis of Materials 

A certain amount of SnCl2·2H2O, NaCO3 and CaCl2·2H2O was dissolved in de-

ionized (DI) water to make the concentrations as 0.025, 0.5, 0.3 mol L-1, respectively. 

In order to compare the difference ratio of the Sn and Ca effect on the performance of 

the electrode materials, several control samples were prepared. The concentration of 

SnCl2·2H2O of these controls were 0.025, 0.05 and 0.06 mol L-1, ceteris paribus. And 

the concentration of CaCl2·2H2O were 0.3 and 0.36 mol L-1, all other variables were 

same. The SnCl2 and the NaCO3 solutions were mixed while stirring by a magnetic 
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stirring bar for 5 min at 300 rpm, followed by adding the CaCl2 solution while stirring 

at 300 rpm for 20 minutes, resulting in a white suspension. According to the reference 

[36], chemical equations of the above process are shown in (5) & (6).  

6SnCl2 + 6Na2CO3 + 2H2O → Sn6O4(OH)4 + 12NaCl + 6CO2↑     (5)  

Na2CO3 + CaCl2 → CaCO3 + 2NaCl                          (6) 

After filtration, the resulting white precipitate was dried at 80 C for 4 h under 

vacuum. The vacuum filter flask is shown in Figure 6. 

 

 

Figure 6(a).Filter flask. (b). Stirring samples on magnetic stirrers. 

With gentle grinding, the fine powder was transferred into a flask, containing 10 ml 

ethyl alcohol. In order to compare the different ratio of the Ti effect on the structure and 

performance of the materials, various amounts of titanium isopropoxide (TIPT) were 

prepared to make controls. The molar quantities of controls are 0.0028, 0.0035 and 

0.0042 mol, ceteris paribus, which will be detailed later. Weighted TIPT was slowly 

dropped into the flask.  

To make the hydrolysis homogenous, we premade the alcohol at a volume ratio of 
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(ethyl alcohol: DI water) 4.5ml: 0.5ml, 2ml: 0.5ml and 0.5ml: 0.5ml, then added the 

alcoholic solution into the flask dropwise, followed by adding 5 ml DI water and stirring 

at 300 rpm for 10 min to hydrolyze completely. The turbid liquid became a faint yellow. 

The stirring process was shown in Figure 5(b). The chemical equation of the above 

process was shown in (7). 

Ti{OCH(CH3)2}4 + 2 H2O → TiO2 + 4 (CH3)2CHOH          (7) 

A light yellow paste product was obtained after filtration and was dried under vacuum 

at 80C for 4 h. The resulting powders were observed by SEM, exhibiting a shell-core 

structure, as indicated by the crushed particles (Figure 7). 

 

 

Figure 7 SEM images of prepared samples before removing the CaCO3, which appeared from split 

shell. 

 

Figure 8(a). Tube furnace (Thermo Scientific Lindberg/Blue M™ Vacuum Ovens). (b). Samples 

became white powder after calcination 
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A crucible with powder was put into the tube furnace, as shown in Figure 8(a), and 

heated at 500 C for 20 min for crystallization. The white powder in Figure 8(b) is the 

product after heat treatment. 

The resulting white powder was then put into 100 ml DI water and stirred at 300 rpm 

and then dropped in dilute hydrochloric acid to remove the CaCO3. Additional stirring 

was applied for 20 min to ensure the complete reaction. 

A vacuum filter flask was used to filter the turbid liquid, followed by rinsing using 

DI water until the acid was completely gone.  

  

Figure 9(a). Vacuum tube oven. (b). Earthy yellow powder obtained after reduction. 

After drying by vacuum oven at 80 C for 4 h, the sample was ground into powders. 

The powders with the crucible were then put into the vacuum tube oven shown in Figure 

9(a), to allow SnO2 to be reduced to Sn under a hydrogen atmosphere at 500 C for 1 

h. The final product in Figure 9(b) was sealed in a glass bottle. 

3.3. Battery assembly 

The active material, carbon black, and binder were mixed by a mass ratio of 8:1:1. 

In order to compare the different binder effects of the performance of material, two 
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kinds of water-based binder (CMC-SBR and PAA) were used. The mixture was 

uniformly ground with an appropriate viscosity and coated on the cleaned Cu foil 

(Figure 10).  

  

 

Figure 10(a) (b). Active materials coat on Cu foil. (c). Tablet press. 

The slurry-coated copper foil was dried in a vacuum oven at 80 C for 12 h, followed 

by being bunched into electrode slices that had a diameter of 7/16 in, and then pressed 

at 4 T. A tablet press shown in Figure 10(c) was used for tableting the slices for assembly. 
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Figure 11 CR2032 cell battery assembly diagram. 

  
Figure 12(a). Glove box. (b). Hohson Corp HS-HCR2 manual coin crimper in glove box. 

Batteries were assembled in a glove box (Figure 12(a)) that was filled with argon and 

crimped by a HS-HCR2 manual coin crimper presented in Figure 12(b). Oxygen and 

moisture contents were less than 0.5 and 0.1 ppm, respectively. A Lithium disk was 

used as the counter electrode. 5% Fluoroethylene Carbonate (FEC) and 1% Vinylene 
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Carbonate (VC) were used as electrolyte additives. A schematic illustration of 

assembling is shown in Figure 11. 

3.4. Material Characterization 

1. Phase analysis 

The phase of sample was analyzed by X-Ray Diffraction (XRD) (Bruker D8 

Discover), which is presented in Figure 13(a), using Cu-Kα as a radiation source from 

10 ° to 70 ° with a step size of 0.02 °. 

2. Morphology and composition analysis 

The morphology of samples was observed by a scanning electron microscope 

(SEM) at an acceleration voltage of 10 kV. Energy-dispersive X-ray spectroscopy 

(EDS) was used to characterize the elemental composition. SEM was carried out with 

a Hitachi S-4800 electron microscope. 

3. The structures were analyzed by Raman spectroscopy (Renishaw 1000B) (Figure 

13(d)).  

4. The surface chemical composition was characterized by using XPS (Perkin Elmer 

5440 X-Ray Photoelectron Spectrometer) that is shown in Figure 13(e). The binding 

energy of C 1s equal to 284.8 eV as a benchmark for the binding energy correction. 

5. Surface area and pore size of powders measured by BET (Micromiritics ASAP 

2020) are shown in Figure 13(c).  

6. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of the 

as-prepared anodes were measured on a PARSTAT 4000 electrochemical station by 
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using a three-electrode cell, with the Sn/C composite electrode as a working electrode, 

a Lithium disk as a counter electrode, and a Lithium ring as a reference electrode. CV 

was carried out at a scanning rate of 0.05 mV s-1 while EIS was tested between 10,000-

0.1 Hz with an amplitude of 10 mV. 

 

Figure 13(a). Bruker X-Ray Diffraction (b). Land battery testing system. (c). Micromiritics ASAP 

2020 BET measurement. (d). Raman spectroscopy (Renishaw 1000B). (e). Perkin Elemer 5440 X-Ray 

Photoelectron Spectrometer. 
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3.5 Characterization of the Electrochemical 

Performance 

A galvanostatic charge-discharge test was carried out on a land battery testing system. 

The specific current densities and specific capacities were calculated based on the total 

mass of the active materials. Cyclic voltammetry (CV) started with the open circuit 

voltage of approximately 3 V, while scanning between 10 mV and 3 V, at a scan rate of 

0.05 mV s-1. All tests were carried out under room temperature.  

 

4 Structure and Performance Results 

4.1 Structure Characterization 

SEM 

Morphology of the materials after being reduced was observed by SEM. Compared 

with the materials before removing the template (Figure 7), the shell structure of the 

final product can be best seen under SEM, which is composed of TiO2. Figure 14 

displays the morphology of various samples. We can find hundreds nanoparticles 

anchored on the inner surfaces of TiO2 shells. By using EDS, Sn was concentrated in 

these nanoparticles. The typical size of TiO2 sphere and Sn particles are 5-8 µm and 50-

250 nm. This kind of hollow sphere structure that we designed can supply a huge 

buffering space for the volume expansion of Sn during charge and discharge. At the 

same time, nanocrystallization of Sn can also enhance the cycle performance of the 
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materials.  

 

 
Figure 14 Microstructure of samples observed by scanning electron microscopy (SEM). The full view 

of TiO2 sphere can be observed in (b) and (c). The Sn particles can be clearly found in (a) and (d). 

 

XRD 

XRD results are given in Figure 15. The XRD peaks of the three samples were 

indexed (200), (101), (220), (211), (301), (112) and (321) planes of Sn (JCPDS No. 04-

0673). The peaks of TiO2 are not clearly found by XRD, likely due to the formation of 

(Ti+Sn)O2 solid solution [35] during the process of heat treatment, resulting in shifting 

of the peak of TiO2 in the XRD pattern. The existence of Ti can be proved by XPS, 

Raman and SEM-EDS results.  

The XRD patterns for three samples in various batches we obtained are very similar, 
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and no contaminants were detected, especially CaCO3 or other calcium compounds. It 

suggests that our products of different batches are consistent and reliable.

 

Figure 15 XRD spectra of samples from various batches.  

Raman 

  Figure 16 shows a representative Raman spectrum of the samples. Raman 

spectroscopy relies on Raman scattering of monochromatic light usually from a laser. 

The laser light interacts with molecular vibrations, phonons or other excitations in the 

system, resulting in the energy of the laser photons being shifted up or down. The shift 

in energy provides a fingerprint by which molecules can be identified, which can help 

us to confirm the TiO2 in our composite. Similar results were obtained from several 

other different samples. According to the reference[37], Raman active modes for anatase 

TiO2 could be detected at 139, 194, 395, 514 and 634 cm-1, while peaks for our materials 

https://en.wikipedia.org/wiki/Raman_scattering
https://en.wikipedia.org/wiki/Monochromatic
https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/Phonon


23 

 

appeared at 105, 163, 418 and 608 cm-1. The consistent peak shift toward a lower 

wavenumber suggests the presence of a Sn/TiO2 solid solution.   

 

Figure 16 Representative Raman spectrum of the samples. 

XPS 

According to the reference [33], the binding energy of the Ti+4 (TiO2), Ti3+ (Ti2O3) and 

Ti2+ (TiO) are 458.7eV, 456.8 eV and 455.2 eV, respectively. Accordingly, all Ti was 

distributed on Ti+4 (TiO2).
  

From the Sn 3d, we can find the peak at 486.5 eV (Figure 17 & 18) is close to Sn 

3d5/2 SnO2 (487.3 eV) and SnO (487.0 eV), but far away from that of Sn (495.3 eV). 

This suggests that the Sn in our composite is covered by SnOx because Sn is naturally 

easily oxidized [36].  
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Figure 17 Overview of XPS result. 

 

 
Figure 18 Individual XPS peak of Ti, Sn, C and O. 
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BET 

According to the BET results, the specific surface area is 29.5 m² g-1
, with the 

relatively low surface area ascribed to the high density of Sn. Figure 19 shows BJH 

adsorption dA/dlog (D) pore volume, indicating that pores are present in materials, and 

the diameter of pores is mainly distributed between 5 nm to 10 nm.  

 

Figure 19 Pore size distribution according to the BJH adsorption branch. 

 

4.2 Electrochemical performance 

4.2.1 The first Charge-Discharge performance 

The specific capacity of the first charge of the tin/TiO2 composite is 698 mAh g-1, 

and the first irreversible capacity is 312.8 mAh g-1, with a Coulombic efficiency of 69 % 
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(Figure 20). The Coulombic efficiency of the composite is related to some irreversible 

processes such as SEI formation and the reduction of surface SnOx. There is no apparent 

discharge plateau below 0.6 V for all samples. In the subsequent charge curve, a charge 

plateau around 0.5 V corresponds to the de-alloying process of Li-Sn. For the alloying 

and de-alloying of SnO2, according to the previous reports, the chemical reaction is: 

SnO2 + 4Li+ + 4e- → 2Li2O+ Sn        (7) 

According to the literature, there should be a charge plateau around 0.9 V in a charge 

curve. However, it was not found in our charge-discharge figure, indicating that SnO2 

is not the main composition in our materials. Most Sn exists as an elemental Sn that can 

enhance the first cycle performance. 

 

Figure 20 Specific capacity of first cycle. 
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4.2.2 Cyclic Voltammetry 

Figure 20 shows the initial three CV cycles of the Sn/TiO2 materials. A high 

irreversible reduction peak appeared in the process, which indicates the formation of 

the SEI film. A reduction peak also is found between 0.1-0.25 V, corresponding with an 

oxidation peak around 0.5 V, which indicates the reversible alloying-dealloying process 

of Li-Sn. The Li+ intercalation and deintercalation process is also shown from the 

reduction peak at 1.0 V and the oxidation peak at 1.25 V. Compared with the second 

and third cycle, we can find a reduction peak around 0.75 V, which is considered to be 

the main reason for the first cycle reversibility.  
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Figure 21 First three cycles of cyclic voltammogram of materials. 
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4.2.3 Electrochemical impedance spectra (EIS) 

Figure 22 depicts the electrochemical impedance spectra (EIS) of the tin/TiO2 

composite in 2 h, 4 h, 6 h, and 8 h, in fully charged and fully discharged states. The 

equivalent circuit for fitting the Nyquist plots (using ZView) and the corresponding 

parameters of elements are shown in Figure 23 and Table 3. Fitting results of a fully 

discharged battery are based on the equivalent circuit A because only one semi-circle 

can be observed and there is no charge transfer resistance due to the high potential. The 

parameter of diffusion process is shown as W, which cannot be found in the fully 

charged curve based on the equivalent circuit C because no diffusion resistance is 

present. The Ohmic resistance was measured by the intercepts of the Nyquist plots at 

high frequencies; the values are 2.6 Ohm for fully charged and discharged states and 

2.2, 2.4, 2.4, 2.4 Ohm for 2, 4, 6, and 8 h charged states at C/10, respectively (Shown 

as R1 in Figure 23, which is determined by the intersection of the curve and X axis in 

Figure 22). The EIS spectrum obtained from charged states consists of two depressed 

semi-circles, resulting from the SEI layer and the charge transfer process (Shown as R2 

and R3 in C of Figure 23, determined by diameter of first and second semi-circles of 

curves in Figure 22, respectively). The measured resistances are 25.1 and 104.1 Ohm 

for the SEI layer and the charge transfer process, and the fitting errors are 0.6 and 0.4 %, 

respectively. We related the depressed semi-circle at high frequencies to the SEI layer 

because we can also find it in the fully discharged curve due to the initial charge cycle; 

its resistance is 12.2 Ohm, which is a little higher than the resistances of 2, 4, 6, and 8 

h charged states but lower than that at the fully charged state. 
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Figure 22 Nyquist plots of materials at 2 h, 4 h, 6 h, and 8 h, fully charged and fully discharged states. 

 

 

 

 

 

Figure 23 Equivalent circuits of fully discharged (A), partially charged (B), and fully charged (C) state. 

 

 

 

 

 

 

 

 

 

 

R1 CPE1

R2 W1

Element Freedom Value Error Error %

R1 Free(+) 2.572 0.035915 1.3964

CPE1-T Free(+) 0.00042074 1.3092E-05 3.1117

CPE1-P Free(+) 0.6447 0.0030311 0.47016

R2 Free(+) 12.17 0.36657 3.0121

W1-R Free(+) 41581 2347.4 5.6454

W1-T Free(+) 11.88 0.31957 2.69

W1-P Free(+) 0.88487 0.0076299 0.86226

Chi-Squared: 0.0014533

Weighted Sum of Squares: 0.15841

Data File: E:\UWM\Experimental\Carbonate-templates\TiO2-Sn\CV-EIS\0.z

Circuit Model File: E:\UWM\Experimental\Hollow-Si\XkHuang\130726-SCa08\RC.mdl

Mode: Run Fitting / All Data Points (1 - 58)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

R1 CPE1

R2

CPE2

R3 W1

Element Freedom Value Error Error %

R1 Free(+) 2.555 N/A N/A

CPE1-T Free(+) 0.00031882 N/A N/A

CPE1-P Free(+) 0.58829 N/A N/A

R2 Free(+) 25.69 N/A N/A

CPE2-T Free(+) 0.0016498 N/A N/A

CPE2-P Free(+) 0.87093 N/A N/A

R3 Free(+) 74.25 N/A N/A

W1-R Free(+) 14.72 N/A N/A

W1-T Free(+) 0.0059291 N/A N/A

W1-P Free(+) 0.04632 N/A N/A

Data File:

Circuit Model File: E:\UWM\Experimental\Hollow-Si\XkHuang\130726-SCa08\RCR.mdl

Mode: Run Simulation / All Data Points (1 - 58)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

R1 CPE1

R2

CPE2

R3

Element Freedom Value Error Error %

R1 Free(+) 2.555 N/A N/A

CPE1-T Free(+) 0.00031882 N/A N/A

CPE1-P Free(+) 0.58829 N/A N/A

R2 Free(+) 25.69 N/A N/A

CPE2-T Free(+) 0.0016498 N/A N/A

CPE2-P Free(+) 0.87093 N/A N/A

R3 Free(+) 74.25 N/A N/A

Data File:

Circuit Model File: E:\UWM\Experimental\Hollow-Si\XkHuang\130726-SCa08\RCR.mdl

Mode: Run Simulation / All Data Points (1 - 58)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

A 

B 

C 
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Table 3 Corresponding parameter of elements in equivalent circuits

 

 

4.2.4 Cycle stability  

Due to the huge volume expansion of Sn in Li+ intercalation and deintercalation 

process, the structure of Sn is easy to collapse, resulting in rapid decay of the reversible 

capacity [34].  

In our design, TiO2 shell offers a huge buffer space for the volume expansion of Sn 

during charge and discharge. At the same time, nanocrystallization of a Sn particle can 

also maintain a good electrical contact, so our materials showed excellent cycle stability. 

As shown in Figure 24, the specific capacity of samples can be retained above 450 mAh 

g-1 at 100 cycles and 400 mAh g-1 at 200 cycles. 

Charge state R1 R1 

(Error %) 

R2 R2 

(Error %) 

R3 R3 

(Error %) 

Fully 

discharged 

2.6 1.4 12.2 3.0 N/A N/A 

2h charged 2.2 2.7 9.1 5.7 24.7 63.0 

4 h charged 2.4 1.8 7.0 1.4 12.7 4.6 

6 h charged 2.4 2.0 6.2 1.4 13.5 4.2 

8h charged 2.4 2.1 7.7 1.4 21.4 8.4 

Fully charged 2.6 0.7 25.1 0.6 104.

1 

0.4 

       

Charge state W1-R W1-R 

(Error %) 

Equivale

nt circuit 

   

Fully 

discharged 

41581.

0 

5.6 A    

2h charged 28.6 128.7 B    

4 h charged 25.0 10.3 B    

6 h charged 25.3 8.4 B    

8h charged 45.5 5.6 B    

Fully charged N/A N/A C    
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The capacity dropped relatively quickly in the first few cycles, but became stable 

after 10 cycles (Cells were cycled at C/20 for 2 cycles and then at C/5 for 200 cycles). 

Compared with the first reversible specific capacity 498.5 mAh g-1, the specific 

capacity of our product can maintain 95.3% at 100 cycles and 78.8% at 200 cycles.  

The initial discharge (delithiation) capacity at 0.05 C is 698 mAh g-1 (Figure 25), 

which is very close to the theoretical capacity of Sn/TiO2 materials. Sn and TiO2 

contributes to 551.6 and 146.3 mAh g-1, respectively (The molar ratio of Sn/TiO2 is 

0.857 and the mass ratio is 1.274; theoretical capacities of Sn and TiO2 are 993 and 335 

mAh g-1, and thus the theoretical capacity of the composite material is 703.3 mAh g-1). 

After activation for the initial two cycles, the anode was cycled at 0.2 C, exhibiting 

capacities of 498.5 and 393.2 mAh g-1 for the 4th and 200th cycles, respectively. By 

comparing with the results in the reference [36], we can conclude that the capacity 

located above 0.9 V mainly resulted from TiO2. 

 
Figure 24 Specific capacity of sample in 200 cycles. 
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Figure 25 Charge Curve of the 1st, 2nd, 4th and 200th cycles. 

4.2.5 Rate performance 

  The rate performance of our materials is shown Figure 26. At a high current density 

of 2C, the capacity can reach 231 mAh g-1, 40% of the capacity obtained at the small 

current of 0.1C (567 mAh g-1). It is worth mentioning that the capacity of this anode 

material can reach 311.6 mAh g-1 at 1C. 

 

Figure 26 Specific capacity of materials at various C rates (1C=600 mA g-1). 
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5 Parametric Studies 

5.1 Binder impact on performance  

Poly (acrylic acid) (PAA) is the most suitable binder compared with NMP and CMC-

SBR. To compare the binder effect on the performance of material, some control tests 

were conducted. We found that the capacities of batteries that used NMP and CMC-

SBR as a binder dropped rapidly after 100 cycles, possibly because of the destroyed 

structure.  

5.2 Effect of Sn content on performance 

In order to compare the different ratios of Sn on the performance of the electrode 

materials, several controls were prepared. The molar mass of SnCl2 of these controls 

are 0.00125, 0.0025 and 0.003 mol, ceteris paribus. As can be seen in Figure 27, the 

XRD peak intensity of Sn peak of 0.0025 mol L-1 sample is significantly higher than 

that in the case of the 0.00125 mol L-1.  

 
Figure 27 XRD diagram of samples containing 0.00125 and 0.0025 mol Sn. 
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Figure 28 Specific capacity of first cycle of samples containing 0.003 and 0.0025 mol Sn, respectively. 

Figure 28 shows the first charge-discharge property of the different Sn content 

samples. The first charge capacities are 510.9 mAh g-1 and 698 mAh g-1 for 0.0025, and 

0.003 mol SnCl2·H2O samples, respectively. The first irreversible capacity and first 

cycle Coulombic efficiency are 303.1 mAh g-1 and 312.8 mAh g-1, 62.8% and 69%, 

respectively. Obviously, a higher Sn content resulted in a better first charge capacity 

and first cycle Coulombic efficiency. 

 

Figure 29 Specific capacity in 100 cycles of three samples content Sn 0.0025 and 0.003, respectively. 
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Figure 29 shows the specific capacity in 100 cycles for three different Sn contents. 

The sample obtained with 0.003 mol and 0.0025 mol SnCl2·H2O can retain the specific 

capacity 460 mAh g-1 and 400 mAh g-1 at 100 cycles, respectively.  

5.3 The effects of different Ti content 

In order to compare the effect of the different Ti content on the structure and 

performance of the materials, several controls were prepared. The molar quantities of 

TIPT of controls were 0.0028, 0.0035, and 0.0042 mol, ceteris paribus. 

5.3.1 Effect of Ti content on structure 

  Considering that CaCO3 is the template for TiO2 shell, TiO2 is stretched over the 

CaCO3 sphere before it is removed. Supposing that the size of CaCO3 spheres is 

homogenous on the same condition, the thickness of shell will be mainly determined 

by the amount of the Ti. In Figure 28, the molar quantities of TIPT of (a), (b) and (c) 

are 0.0042, 0.0035 and 0.0028 mol, respectively. Obviously, the TiO2 shell in Figure 

29(a) is thicker than the others, while maintaining a more complete hollow sphere 

structure. On the contrary, we can hardly recognize the shell structure of the sample in 

Figure 29(c); it just tore to pieces.  

  As a result, we can infer, in the same condition, the sample with higher molar 

quantities of Ti tends to form a thicker TiO2 and has a higher possibility of maintaining 

the original structure. 
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Figure 30 SEM of samples (a), (b) and (c) with 0.0042, 0.0035 and 0.0028 mol TIPT (which indicate 

0.0028, 0.0035 and 0.0042 mol of Ti Content, respectively) 

5.3.2 Ti content impact on electrochemistry 

The electrochemical properties of materials obtained in the presence of 0.0028, 

0.0035, and 0.0042 mol TIPT are shown in Figure 29. The first charge capacities of the 

samples in the case of 0.0028, 0.0035, and 0.0042 mol TIPT content samples are 650, 

550, and 540 mAh g-1; and the first reversible capacities are 620 mAh g-1, 450 mAh g-

1 and 417.9 mAh g-1, decaying to 388 mAh g-1, 310 mAh g-1 and 293 mAh g-1 while 

retaining 62.5%, 68.8% and 70.1%, respectively, after 150 cycles. The sample in the 

case of 0.0042 mol TIPT still remained at 68% capacity at 200 cycles. 

Coupled with the SEM images, we can speculate that a higher Ti content contributes 

to the more complete and thicker TiO2 shell, which can help to continually supply a 
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necessary buffer space for the volume expansion of Sn when charged-discharged 

without collapse.  

 

Figure 31 Specific capacity in 200 cycles of three samples obtained in the presence of 0.0028, 0.0035 

and 0.0042 mol TIPT (which indicate 0.0028, 0.0035 and 0.0042 mol of Ti Content, respectively). 

 

6. Conclusion  

  A new efficient and economical method to synthesize a core-shell structure 

composite material was introduced in this thesis. CaCO3, a cheap and accessible 

material that is also easy to remove, is used as a template in the synthesis process. 

Through a series of chemical reactions and heat treatments, we obtained the target 

product with Sn nanoparticles attached on inner surfaces of spherical TiO2 shells, as 

evidenced by SEM observation. The composition of materials was verified by XRD, 

XPS, and Raman. BET measurements were also used to obtain the surface area and the 
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pore size distribution. The TiO2 hollow sphere structure can offer enough voids for 

volume expansion of tin in charge-discharge processes, which avoids the formation of 

cracks in tin. Therefore, the cycling performance can be improved.   Compared with 

pure tin and other tin-based materials in the literature, the cycle performance of our 

samples is superior. The specific capacity of samples can be retained above 450 mAh 

g-1 at 100 cycles and 400 mAh g-1 at 200 cycles. These are 95% and 78.8% of the first 

reversible capacity, respectively. 

  To investigate effects of Sn and Ti content on the performance of materials, 

controlled experiments were designed. Through the characterization and testing, we 

found that a high Sn content is helpful to enhance the first cycle capacity, while a high 

Ti content contributes to a more stable microstructure, which improves the cycle 

performance of the material. However, the theoretical capacity will decrease with the 

increase of the Ti content. Therefore, a tradeoff between capacity and cycle 

performance has to be optimized. 

 

7. Future Research 

Subject to the limited time, some work was not perfect in the experiments, and there 

are also many questions worth studying further. A list of additional ideas is presented 

below. 

1. As mentioned before, TiO2 peaks in XRD spectra are shifted for some unknown 

reasons. I propose that some Sn-TiO2 composite is formed in the synthesis process, 
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which requires Additional characterizationto verify the primary cause of this 

phenomenon.   

2. To find out the reason for the capacity decay, especially after 100 cycles, I propose 

observing the change of microstructure and composite of the samples that charged-

discharged for 2, 50, 100 and 200 cycles. Through additional characterization on 

the electrochemical performance, one may find out the main factors impacting the 

cycle performance and improve the synthesis method.  

3. Various calcination and reduction temperatures and different ramp up rates can be 

studied. By comparing the performance and microstructure of the as-prepared 

samples, the optimum temperature for heat-treatment could be found. 

4. Carbon/graphene coating, and nanotubes could be used to further increase the 

conductivity and the rate performance of these materials. 
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