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Injured tissues are often accompanied by morphological or biochemical changes 

that can be detected optically. Therefore, it would be valuable to visualize the changes in 

both structure and biochemistry responses of organs for early detection of disease and 

monitoring of its progression. Oxidative stress is a biochemical byproduct of these 

diseases. Thus, obtaining sensitive and specific measurements of oxidative stress at the 

cellular level would provide vital information for understanding the pathogenesis of a 

disease.  

The objective of this research was to use a fluorescence optical imaging technique 

in order to evaluate the cellular redox state in kidney tissues, and develop an instrument 

to acquire high resolution 3D images of tissue. 

I have improved upon a custom-designed device called a cryoimager to acquire 

autofluorescent mitochondrial metabolic coenzyme (NADH, FAD) signals. The ratio of 

these fluorophores, referred to as the mitochondrial redox ratio (RR = NADH/ FAD), can 
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be used as a quantitative metabolic marker of tissue. The improvement to the instrument 

includes addition of higher resolution imaging capabilities to the system. This 

improvement in the resolution of image acquisition enables microscopy imaging in cryo 

temperatures to obtain high resolution 3D images. The imaging is performed in cryogenic 

temperatures to increase the quantum yield of the fluorophores for a higher signal to 

noise ratio. I also implemented an automated tissue boundary detection algorithm. The 

algorithm will help provide more accurate results by removing the background of low 

contrast images. 

I examined the redox states of kidneys from genetically modified salt sensitive 

rats (SSBN13, SSp67phx -/-, and SSNox4-/-), in order to study the contribution of 

chromosome 13, the p67phox gene and the Nox4 gene in the development of salt 

sensitive hypertension. The result showed that the genetically manipulated rats are more 

resistant to hypertension caused by excess dietary salt  ,, in comparison with salt sensitive 

(SS) rats.  

I also studied how endoglin genes affected the redox state and vascular networks 

of mice kidneys using high resolution images. The results showed that the next 

generation of the cryoimager can simultaneously monitor the structural changes and 

physiological state of tissue to quantify the effect of injuries.   

  In conclusion, the combination of high resolution optical instrumentation and  

image processing tools provides quantitative physiological and structural information of 

diseased tissue due to oxidative stress. 
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Overview 

Biophotonics is a progressing research area involving a combination of biology 

and photonics, to bring dedicated instruments and rigorous measurement methods in the 

field of biology utilizing light, one of the most precise tools of nature [1]. Photonics is the 

science and technology of the generation, propagation, and detection of light [2].  

Biophotonics can also be described as a field that deals with the development and 

application of optical techniques, particularly imaging, to study interactions between 

biological items and photons [1]. The interaction between light and tissue refers to some 

optical phenomena such as emission, absorption, reflection, modification, and creation of 

radiation from biomaterials [3, 4]. One of the most common methods that have been used 

to gather information about biological organs is the study of fluorescence light emitted 

from biomaterials. Fluorescence imaging, a technique capable of producing quantitative 

measures related to the tissue health, has been employed for the analysis of many 

different sample types in clinical practice and research [5].  

Various preclinical and clinical studies have established fluorescence imaging as a 

suitable technique for medical diagnosis and monitoring due to its simplicity, cost 

effectiveness, higher level of sensitivity and specificity in comparison with other imaging 

techniques such as MRI and CT [6]. 

The aim of the research presented in this thesis is to implement and apply optical 

tools to monitor metabolic state in diseases of clinically important disorders, such as salt-

induced hypertension. The ultimate goal of our research is to translate optical fluorescent 

imaging to clinics as a reliable tool for spatiotemporal diagnosis of injuries. 
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1.1 My Contributions 

I have contributed to three major areas in this research: 

1- Instrumentation: 

I have been involved in the modification and implementation of the cryoimager to 

add high resolution capability to the system. This improvement of the cryoimager enables 

microscopy imaging in cryogenic temperatures, which allows for visualization of 

structural changes due to the injury, and correlate the results with metabolic changes in 

the tissue. I have also contributed to the optimization of the cryoimaging system’s 

microtome hardware to increase the quality of the acquired images. 

2- Image processing: 

I have processed raw images from the cryoimager to evaluate the redox ratio of 

frozen tissues. The processing was mostly done via algorithms I developed in Matlab, 

and ImageJ. In order to improve the accuracy of the quantification and construct clearer 

3D- rendered representation images, I have developed an image processing algorithm to 

automatically detect the tissue’s boundary and remove the background surrounding the 

detected borders.  In some cases, such as having low contrast images due to the mounting 

medium, this algorithm results in the improvement of the data analysis outcome. The 

algorithm is often used in the processing of high resolution imaging data.  

3- Interpretation of metabolic data in renal injuries: 

The focus of this thesis is kidney tissue metabolism in different renal injuries. The 

first injury model studied was salt sensitive hypertension. Hypertension is a major cause 

in the development of diseases, such as strokes, heart failure, and end stage renal injuries 
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[7]. In the US, almost 31% of adults over the age of 18 are affected by hypertension [8, 

9]. Excess dietary salt intake is one of the most important environmental factors in 

development of salt sensitive hypertension [7, 10]. Because the susceptibility of 

individuals to salt intake is genetically determined, there exists a need to study the genes 

that contribute to salt sensitive hypertension [7]. I studied the effect of chromosome 13, 

the p67phox gene, and the Nox4 gene in the development of salt sensitive hypertension. 

The results of this study validated the performance of the cryoimaging technique in 

measuring the oxidative state of the tissues.  

The second injury model studied was a severe vascular dysplasia (HHT-1 or Endoglin+/-) 

with the aim of investigating structural changes in the kidney due to disease as well as the 

mitochondrial redox state of the tissue with the new cryo-microscopy setup. HHT-1 

(Hereditary hemorrhagic telangiectasia) is a good model of a disease in which the 

vasculature networks of several different organs, such as lung, kidney and brain are 

affected [11-13].   

1.2 Biological Background 

1.2.1 Cell structure and the mitochondrion  

All known living organisms are composed of cells [14]. Cell is the structural and 

functional unit of life. A generalized structure of the animal cell is shown in Fig.1-1(a) 

[15]. Many injuries and illnesses can be traced back to irregularities in the operations 

within the cell [16]. Although all cellular organelles are essential to the organism’s health 

and ability to survive, it is the mitochondria that play a central role in cellular energy 
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metabolism (see Fig.1-1(b)) [17, 18]. The number of mitochondria per cells varies 

depending on the energy requirements; tissues with a high capacity to perform aerobic 

metabolic functions, such as skeletal muscle or kidneys, will have a larger number of 

mitochondria [14, 19]. Mitochondria have two membranes within the inner membrane 

encloses and convolutes into the mitochondrial matrix, forming cristae [20]. A major 

consequence of the architecture of mitochondria is the impermeability of the inner 

membrane, which facilitates the generation of a proton gradient [20].  

  

1.2.2 Electron transport chain (ETC) 

Mitochondria are the powerhouses of the living cell, and it is responsible for 

producing most of the cell‘s energy through oxidative phosphorylation [21]. This 

process of energy production requires the proton gradient which is provided by 

electron trasport chain (ETC), including four major complexes. These components 

are located in the inner mitochondrial membrane. Fig.1-2 [22] gives a schematic 

representation of the electron transport chain. Two mitochondrial metabolic 

 

Figure 1-1: (a) Cell structure including its organelles [9], (b) Mitochondrion [18]. 
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coenzymes, NADH and FADH2, are the main electron carriers in the electron 

transport chain. When electrons are transported along the chain, three of the four 

complexes (I, III, and IV) act as proton pumps, sending out protons from the matrix 

and generating the proton gradient. The protons are allowed to return to the matrix 

through another enzyme, the ATP synthase [19]. This enzyme uses the proton 

gradient to generate ATP (adenosine triphosphate) from ADP (adenosine 

diphosphate) and Pi (inorganic phosphate). Therefore, variation in the redox state of 

NADH and FADH2 can be an indicator of a change in tissue bioenergetics [20, 23]. 

Britten Chance and colleagues [24] [25] [26] have demonstrated that the 

autofluorescence signal from tissues originates almost exclusively from NADH in 

the mitochondria. The contribution of NADH, which is present in the cytosol, is 

small since as soon as NADH is produced by glycolysis in the cytosol, the electron 

from NADH is transported to the mitochondria through the malate-aspartate shuttle.  

NADH is therefore largely oxidized to NAD in the cytosol, consistent with the low 

NADH/NAD ratio in the cytosol as calculated from the lactate dehydrogenase 

(LDH) reaction (which is mostly an equilibrium reaction).  We are unaware of any 

evidence showing a significant presence of NADH in the cytosol.   Regarding FAD, 

it is known that FAD is strictly localized within the mitochondria [27, 28] so the 

FAD signal that we are detecting derives only from the mitochondria [29, 30]. 
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Figure 1-2: Electron Transport Chain. Simplified block diagram of the electron transport chain [22]  

 

1.2.3  Oxidative stress  

In normal conditions, the final destination for an electron along the electron 

transport chain is its reduction to produce water. However, about 0.1–2% of electrons 

passing through the chain do not complete the whole series and instead leak directly to 

oxygen, resulting in the generation of the superoxide free-radical (O2
.−

). Free-radicals are 

highly reactive molecules that contribute to the production of other oxygen-derived 

species such as H2O2 [31, 32].  These reactive oxygen spices (ROS) play a causal role in 

the development of cardiovascular disease, including hypertension, diabetes, and heart 

failure [33]. The term “oxidative stress (OS)” reflects an imbalance between the 
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production of ROS and the ability of a biological system to eliminate the resulting 

damage, causing an increased level of ROS [34].  

Indeed, in many cases the amount of oxygen available to a cell can accurately 

represent the health of the cell and be used as a tool for diagnosis. In these cases, the 

oxidation state, or redox state, of the tissue serves as a sensitive and reliable measure for 

evaluation of cell behavior [35]. 

 

1.2.4 NAD(P)H oxidase  

The NADPH oxidases (nicotinamide adenine dinucleotide phosphate-oxidases) are 

transmembrane multi-subunit enzyme complexes whose primary biological function is to 

produce ROS [36, 37]. The prototypical NADPH oxidase consists of at least six subunits: 

four cytosolic proteins, Rac, p40phox (“phox” stands for phagocyte oxidase), p47phox 

and p67phox, together with two membrane-bound components, gp91phox (also termed 

“Nox2”) and p22phox [20, 38, 39]. In unstimulated cells (while cell is at rest), p47phox, 

p67phox, and p40phox exist in the cytosol, whereas p22phox and gp91phox are in the 

membrane (see Fig.1-3 (a)) [40]. Once activated, these subunits translocate to the 

membrane and form an active enzyme (see Fig.1-3 (b)) [40, 41].  

Although NAD(P)H oxidases were originally considered enzymes, expressed only 

in phagocytic cells involved in host defense and innate immunity, recent evidence have 

demonstrated that similar NADPH oxidases are present in a wide variety of 

nonphagocyte cells and tissues [20, 42]. These newly discovered homologs, along with 

gp91phox, are designated the Nox family of NAD(P)H oxidases [43, 44]. The Nox family 
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is comprised of seven members, including Nox1, Nox2 (formerly termed “gp91phox”), 

Nox3, Nox4, Nox5, Duox1, and Duox2 [40, 45]. Nox4, originally termed “Renox” (renal 

oxidase), because of its abundance in the kidney, is also found in vascular cells and 

osteoclasts [46, 47]. The regulation and function of each Nox remains unclear, but it is 

evident that Nox enzymes are critical for normal biological responses and that they 

contribute to cardiovascular and renal disease, including hypertension and atherosclerosis 

[34, 48, 49]. A complete coverage of the biochemistry and physiology of the NADPH 

oxidase itself is beyond the scope of this thesis. Here we highlight developments in the 

field of ROS and renal disease, focusing specifically on the protective effect of subunits 

of NAD(P)H oxidase in hypertension, which are Nox4 and P67phox.  

 

 

Figure 1-3: Assembly of NADPH oxidase. (a) At rest (b) Active [40]. 
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1.3 Fluorescence imaging 

Fluorescence imaging in the past several decades became a promising structural 

and molecular imaging technique for clinical diagnosis [50, 51]. The optical signals can 

provide greater insight into biological tissues at the molecular level and are correlated 

with physiological information about the tissue [52]. Fluorescence imaging as an ideal 

technique has been widely used to analyze various type of samples including fixed and 

living specimens, and different organs [53-56]. This method deals with the selective and 

specific detection of molecules at small concentrations with a good signal-to-noise ratio 

[57]. As a practical technique, fluorescence imaging has been exploited to examine tissue 

health and redox state in intact organs. This method is capable of determining the amount 

of oxygen existent in the cell's environment via the intrinsic fluorescence of some of the 

chemicals present in the cell [35]. 

 

1.3.1 Principle of fluorescence 

Fluorescence spectroscopy works based on the phenomenon that certain 

molecules, referred to as fluorophores, absorb energy of a specific wavelength and then 

re-emit energy that is detectable as visible light, at a different but equally specific 

wavelength. The basic principle of fluorescence is shown in a Jablonski diagram Fig.1-4. 

Electrons of a molecule are generally located in the ground state (S0). Once a resting 

molecule is exposed to a source of energy, e.g. a bright light source, it absorbs a photon 

with the energy hνex. The absorption excites the molecule and increases its energy level, 
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the unstable electronic singlet state (S1') as depicted by the green arrow. This excited state 

is rather unstable and thus has a very short lifetime. The excited fluorophore falls to the 

lowest vibrational energy level within the electronic excited state (S1), dissipating the 

energy in the form of heat (yellow arrow). Finally, the orbital electron relaxes from the 

excited state S1 toward the ground state S0, while emitting the fluorescence light (red 

arrow). The energy of the photon that is emitted in this process, hνem, is exactly the 

difference between S1 and S0. Each fluorophore has a characteristic excitation and 

emission wavelength, which is determined by the difference in energy between electronic 

energy levels [53]. The amount of energy emitted and its corresponding wavelength 

depend on both the fluorophore and the chemical environment of the fluorophore [57]. 

 

 

Based on the conservation of energy law in the system, since the molecule lost 

some portion of energy as a heat, the emitted light has a lower energy, and therefore 

longer wavelength compare to the excitation light. This phenomenon is known as Stokes 

shift, and has been shown in Fig.1-5 [53, 58].  

 

Figure 1-4: Jablonski Diagram of Fluorescence [53]. 
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The probability of emitting a fluorescence photons after absorption of excitation 

photon, termed the fluorescence quantum yield, is the indicator of the efficiency of the 

fluorescence process. It is defined as the ratio of the number of photons emitted to the 

number of photons absorbed [53, 58]. 

 

1.3.2 Endogenous fluorophores in mitochondria 

Fluorescent imaging is associated with the administration of fluorescent probes, 

which are categorized as endogenous (naturally occurring) or exogenous (external 

labeling) fluorophores. There are several endogenous fluorophores in tissues and cells 

that can generate autofluorescence, such as keratin, melanin, NADH and FAD. Two of 

these fluorophores, NADH (reduced form of NAD
+
) and FAD (oxidized form of 

FADH2), are essential proteins in the metabolic pathway of mitochondria [14]. The 

fluorescence light of these coenzymes can be monitored by optical detectors and have 

been exploited to assess the metabolic activity in different tissues [55]. The excitation and 

 

Figure 1-5: Stokes shift [58]. 
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emission spectra of these intrinsic fluorophores are presented in Fig.1-6 [59, 60]. Neither 

their excitation spectra overlap each other nor their emission spectra, which assures the 

selective detection of fluorescence between the two fluorophores.  

 

NADH only fluoresces in its reduced form, and FAD only fluoresces in its 

oxidized form, so their fluorescence signals have been used as indicators of tissue 

mitochondrial redox state, in the context of clinical diagnosis [55]. In addition, the ratio 

of these two fluorophores (NADH/FAD), called the mitochondrial redox ratio (NADH 

RR), is used to identify the metabolic state within the tissue [26, 56, 61-63].  

 

1.3.3 Relation between ROS and redox ratio (NADH/FAD) 

As stated above, the electrons from NADH produced during glycolysis within the 

cytosolic compartment are quickly transported into the mitochondria through the malate-

aspartate shuttle with NAD remaining in the cytosol.  Thus, the tissue redox ratio can be 

 

Figure 1-6: NADH and FAD Fluorescence Spectra [50,51]. 
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effectively considered as the balance between fluxes through the TCA cycle and the ETC.  

In the presence of oxidative stress, the ETC does not function efficiently due to oxidative 

damage of ETC complexes. This leads to excess electron leak and ROS production which 

leads to the accumulation of the mitochondrial coenzymes NADH and FADH2 in their 

oxidized forms NAD and FAD.  Hence, the levels of NADH decrease and the levels of 

FAD increase resulting in a decreased NADH/FAD redox ratio.  Therefore lower tissue 

redox ratios represent higher levels of oxidative stress and the tissue redox ratio shows an 

inverse relationship with the oxidative stress level of the tissue. 

1.4 Animal model of hypertensive kidneys  

Hypertension is one of the most influential factors in the development and 

progression of strokes, heart failure, and end-stage renal disease [7]. The kidneys play a 

key role in keeping a person's blood pressure in a healthy range, and blood pressure, in 

turn, can affect the health of the kidneys. High blood pressure, also called hypertension, 

can damage the kidneys and lead to chronic kidney disease [64]. There is an increasing 

evidence that suggests excess dietary salt intake has a greater impact on individuals who 

have a genetic predisposition for salt sensitivity [10]. Therefore, there is a need to 

investigate ways to protect individuals against developing salt sensitivity [7]. 
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1.4.1 Salt sensitive hypertension 

Essential hypertension affects 972 million (26.4%) of the world’s adult population 

and 67 million (31%) of US adults over the age of 18 [8, 9].  There are many different 

environmental factors that cause hypertension. One of the most important factors is 

excess salt consumption.  Nearly half of the adults with hypertension in the US exhibit 

enhanced blood pressure sensitivity to dietary salt intake, reaching as high as 75% in 

African Americans [65-67]. A number of mechanisms are recognized to contribute 

physiologically to the development of hypertension, with the most prominent of these 

being the reduced ability of the kidneys to excrete sodium, as characterized by a 

reduction in the pressure-natriuresis relationship [68, 69].   

1.4.2 Mitochondrial dysfunction in hypertension 

While ROS play essential roles in normal renal function, oxidative stress is deeply 

involved in pathological conditions related to abnormal kidney function, including salt-

sensitive hypertension and diabetes [20, 33]. It is recognized that an imbalance in the 

redox state of the kidney contributes importantly to this renal dysfunction. For instance, 

Dahl salt-sensitive rats exhibit elevated levels of O
•
2

-
 and H2O2 in both the medulla and 

cortex, which contribute to reductions of medullary perfusion, reduced sodium excretion, 

glomerular sclerosis, tubular injury, and interstitial fibrosis [6,26,40,41,42]. It is also 

known that NADPH oxidase activity is upregulated by prolonged infusion of a high salt 

diet [70]. Since these are major factors underlying the development of hypertension, renal 

NADPH oxidase may have an important pathophysiological role [71]. 
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The sources and localization of ROS production within the kidney have been of 

great interest given the need to develop therapeutic strategies that can reduce ROS in the 

kidney, where it is produced in excess under conditions like aging, diabetes and 

hypertension.  Mitochondria and NADPH-oxidases (Noxs) are major sources of O
•
2

-
 and 

H2O2 in the kidney [72-75] with the mitochondria appearing to be both a source of ROS 

production and also a target for ROS produced by NADPH oxidase (referred to as ROS-

induced ROS production [76-79].  Of the seven identified Nox isoforms, Nox2 and Nox4 

appear to be the two most robustly expressed in the kidney [80], although the specific 

functions and relative importance of these isoforms remain unclear.  More specifically 

within the renal outer medulla , the source of excess ROS production has been attributed 

to NADPH-oxidase [7]. There is also an ample evidence that indicates the mitochondria 

are responsible for most of the fundamental ROS production in the outer medullary 

region of the kidney [81].    

1.4.3 Animal models for salt sensitive hypertension 

The Dahl salt-sensitive (SS) rat mimics many of the traits found in African 

American hypertensive patients [82-84] and has been studied extensively as a model of a 

complex multifactorial genetic disease [85-89].   

A total of four groups of rats (SS, SSBN13, SSNox4-/- and SSp67phox-/-) were 

studied in this thesis. All the rats were bred and housed in an American Association for 

Accreditation of Laboratory Animal Care-approved animal care facility at the Medical 

College of Wisconsin. The rats had free access to food and water throughout the study. 
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All experimental procedures were approved by the Institutional Care and Use Committee 

of the Medical College of Wisconsin. 

 

Generation of SSBN13 Consomic Rats: 

There are ample evidences shown that a powerful gene, or a set of genes, within 

chromosome 13 of Brown Norway (BN/Mcw) rats confers protection from the 

detrimental effects of high salt to the Dahl salt-sensitive (SS/Mcw) rats [90, 91]. The 

consomic rats (SS.BN13) were bred to investigate the effect of this gene upon the 

development of salt-sensitive hypertension. In order to produce consomic rats 

(SS.BN13), chromosome 13 from normotensive inbred Brown Norway rats (BN/Mcw) 

was introgressed into the background of Dahl salt-sensitive (SS/Mcw) rats were bred 

[88]. Genotyping has found this strain to be 98% identical to SS rats differing by only the 

subset of allelic differences (including the renin gene) present on chromosome 13 that 

were carried from the parental BN strain [81, 90, 92].  

 

p67phox-Null Mutant SS Rat: 

To determine the functional relevance of the NADPH-oxidase subunit, p67phox, 

in the development of salt-sensitive hypertension in SS rats, the SSp67phox null rat 

(p67phox-/- rat) model was generated as weanlings from colonies maintained at the 

Medical College of Wisconsin. The SSp67phox null rats were produced in the genomic 

background of SS rats using zinc-finger nuclease (ZFNs) techniques [93, 94]. Genomic 

DNA of p67phox-null mutant (p67phox-/-) rats was sequenced. Sequencing results 

suggested there was a 5 bp deletion (GAGAA) in the genomic sequence of p67phox-/- 
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rats. The western blot and respiratory burst experiments were performed to validate the 

generation of p67phox-/- rats. p67phox is known to be critically involved in the 

respiratory burst of macrophages [95, 96]. The respiratory burst experiments 

demonstrated a complete loss of functional respiratory burst activity in macrophages 

obtained from p67phox-/- rats. 

 

  



 

19 

 

 

 

 

 

 

 

 

Chapter 2:  Optical Cryoimaging System 
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Overview 

NADH and FAD co-enzymes in the mitochondria indicate the cellular redox state 

of an intact organ. Cellular redox state is a quantitative marker to examine oxidative 

stress of tissue, which assess the oxidation state and health of the tissue. There are a 

handful of fluorescence imaging methods to probe the biochemical and morphological 

characteristics of tissues such as microscopic fluorescence imaging. Some of these 

methods require offline assay analysis on homogenized tissue, and take significant time 

to analyze. Our cryoimaging has the ability to determine endogenous and exogenous 

fluorophores relative concentrations with high fluorescence quantum yields. This device 

uses the autofluorescence of the previously mentioned NADH and FAD co-enzymes 

within the mitochondria to determine the cellular redox state. 

Cryoimaging is capable to construct a 3-D image of a tissue, which becomes 

important for structural studies of a large biological sample. It also provides a strong 

fluorescence quantum yield of NADH and FAD as compared to room-temperature 

imaging techniques.  In addition, the cryoimaging evaluates the ratio of NADH and FAD. 

By evaluating the ratio of these two coenzymes, some of the confounding factors in 

determining the oxidative state can be removed, such as absorbers, including blood, as 

well as system variations. This ratio is a quantitative marker of tissue metabolism and is 

independent of the concentration of the mitochondria in the tissue. 

The cryoimager is a custom-designed imaging system, consisting of automated 

hardware and software to acquire images of up to five fluorophores from the frozen tissue 

sections. The cryoimaging system consists of a 200W mercury arc lamp light source used 
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to excite fluorophores from tissue and a CCD camera to collect the tissue 

autofluorescence.  Desired wavelengths are selected by filtering the broad band output of 

the mercury arc lamp.  After it has been reflected off a cold mirror, filters are selected to 

excite the desired fluorophores in the exposed surface of the frozen tissue block. Then the 

emitted light from tissue is collected by a CCD camera after passing through a band-pass 

filter to remove undesired lights. 

A schematic of a cryoimaging system along with an actual device can be seen in 

Fig.2-1. In order to construct a 3D image of the tissue a motor-driven blade sequentially 

slices the frozen tissue with an adjustable thickness.(add a sentence about imaging each 

slice and combining to form a full 3D image) The tissue temperature is kept at -40 

centigrade during the experiment. This helps to preserves the metabolic state of the 

tissue, and provides higher quantum yields. Further details of each component are found 

in the following section.  

 

 

Figure 2-1: (a) Cryoimager schematic. (b) Cryoimager 
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2.1 Optical system and components 

Like other fluorescence imaging systems, the cryoimager possesses an excitation 

and emission path. All of the optical components making up these paths are located 

outside of the freezer. In the following sections, an overall view of each path is explained 

first, then  characteristics of all optical components are described.  

 

Excitation light pathway 

The excitation light path, which is shown in Fig.2-2, starts with an intense light 

source. The light source used in the cryoimaging setup is a mercury-arc lamp that emits a 

broadband light. An initial rough filtering is performed by removing the infrared region 

of the spectrum utilizing reflection from a cold mirror. The light is then guided through a 

filter wheel to select the desired wavelengths for excitation of NADH and FAD 

 

Figure 2-2: Cryoimager excitation path 
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fluorophores. After passing through the proper filter, the excitation light is incident 

normally on the tissue surface via reflecting from a mirror. At each slice multiple 

fluorophores can be excited by rotating the filter wheel. 

 

Emission light pathway 

The tissue exposed by the excitation light emits fluorescence light which is 

delivered to an emission filter wheel. The emission light pathway has been shown in 

Fig.2-3. By sending emission light through a filter wheel, undesired lights such as 

reflected and ambient light are blocked. In the next step, filtered light is coupled into a 

lens to create an image on a CCD camera. The camera records a fluorescence image of 

the tissue block in desired pixel dimensions to be later analyzed for fluorophore 

distribution. It should be mentioned that the distance between the tissue surface and the 

lens, referred to as the working distance, is selected to be24.3 cm, because it provides a 

field of view large enough to image the whole kidney.  

 

Figure 2-3: Cryoimager emission path 
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The specifications of the components used in this optical setup are described as 

follows. 

2.1.1 Light source 

 The illumination source used in the cryoimaging setup is a 200 W mercury-arc 

lamp (Oriel, Newport Instrument, 6283NS, CT, U.S.A). This is an intense broadband 

light source, and the most significant feature of its spectrum is the presence of strong 

spectral peaks corresponding to the excitation wavelengths of both NADH and FAD 

fluorophores. As can be seen from Fig.2-4, the lamp produces a peak at 365 nm, which 

falls right on the high end of the NADH excitation spectrum, and another peak at 436 nm, 

which is at the low end of the FAD excitation spectrum [97]. The white light from the 

mercury arc lamp is coupled into a condenser to homogenize the output light. The lamp 

intensity will stabilize at its peak 10 to 15 minutes after turning on the power supply.  

The mercury arc lamp has a limited lifetime of 1000 hours and should be replaced when 

needed.  

 

Figure 2-4: Spectral intensity of Mercury arc lamp [87] 
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2.1.2 Cold mirror   

A cold mirror is a specialized dielectric mirror that reflects almost 90% of visible 

light while very efficiently transmitting infrared wavelengths. The infrared wavelengths 

are blocked to decrease the undesirable heat caused by infrared radiation on tissue. The 

cold mirrors are constructed from multi-layer dichroic coating and can be designed for an 

incidence angle ranging between zero and 45 degrees. A schematic of the cold mirror has 

been shown in Fig.2-5 [98].        

2.1.3  Motorized optical filter wheels 

The cryoimaging system includes two motorized filter wheels to isolate the 

fluorescence excitation and emission wavelengths. Each unit is designed with five slots 

of fifty-millimeter diameter to mount optical band-pass or neutral density filters. A 

controller and a stepper motor (Oriental Motor Vexta Step Motor PK268-01B) rotate the 

 

Figure 2-5: Cold Mirror 
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filter wheels to adjust which filters are being used for imaging different fluorophores. The 

utilized optical bandpass filters allow transmission through a specified range of 

wavelengths, but has an optical density of 5 for wavelengths outside of a very narrow 

transition regime. Specification of the band pass filters housed in the filter wheels during 

this study are as follows: The excitation filter for NADH is centered at 350 nm with 80 

nm bandwidth (UV Pass Blacklite, HD Dichroic, Los Angeles, CA) and corresponding 

FAD filter is centered at 437 nm with 20 nm bandwidth (440QV21, Omega Optical, 

Brattleboro, VT). Moreover, the emission filter for NADH is centered at 460 nm 

(D460/50M, Chroma, Bellows Falls, VT) and for FAD is centered at 537 nm (QMAX 

EM 510-560, Omega Optical, Brattleboro, VT). Both emission filters have 50 nm 

bandwidth. 

 

2.1.4 Camera 

In this study a monochromatic EMCCD camera (QImaging®, Rolera EM-C
2
, 

Canada) was used. This camera has low noise, high speed dynamic range, and high 

sensitivity in terms of signal detection. This camera possesses EM Gain that boosts the 

signal-to-noise ratio, and is suitable to acquire clear images under extremely low-light 

conditions [99]. The camera possesses a 1004 x 1002 light sensitive silicon chip near its 

optical interface that converts light intensity into an electric signal. (add sentence about 

converting signal to image.) The camera is mounted on a micro positioner which allows it 

to move backward, forward, and side-to-side easily.  
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2.1.5 Lens 

The imaging lens is required component for image registration. A Canon standard 

zoom lens (EF 28-135mm, f/3.5-5.6 IS) with low distortions is placed in front of the CCD 

camera for the purpose of image formation. Because of the different mounting ports of 

the camera and lens a C-mount to F-mount connecter adaptor has been used to attach the 

lens and camera. The lens extends during zooming from its minimum length at 28mm to 

reach its maximum length at 135mm [100]. Due to a 1.6x cropping factor the zoom has a 

range of fields of view equivalent to ~45-216mm on full frame cameras.    

2.2 Mechanical system and components  

The unique features of cryoimaging setup including acquiring 3D images of tissue 

and producing high quantum yield, are possible mainly because of its mechanical 

characteristics. Sectioning tissues into slices provides layer-by-layer images of tissue 

required for 3D imaging. High quantum yield is provided by the low temperature 

experiment environment including tissue preparation and a temperature monitored 

freezer. The entire slicing system is housed inside the ultra-low temperature freezer.  

2.2.1 Freezer 

During an experiment, the organ is imaged in low temperature of -40⁰C to 

preserve its metabolic state. In order to have a cryogenic temperature during the imaging, 

a large freezer with a viewing window on the side has been designed. The temperature 

inside the freezer is controlled by an accurate (±1C° sensitivity) interchangeable 
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temperature sensor (Johnson Control, MR4PMUHV). In order to begin cooling the 

sample chamber, the freezer should be plugged in and the control switch should be turned 

on. It usually takes 2-3 hours to cool down to the imaging temperature (-40 c).  

2.2.2 Microtome blade 

Image quality, the smoothness of the imaged surface, and thickness of each slice, 

which determines the number of possible slices, are directly related to the blade 

employed for tissue sectioning. A microtome blade with capability of cutting extremely 

thin slices of tissue is used in the cryoimaging system. Briefly, two kinds of knives have 

been used in Cryo setup. One is a solid tungsten carbide, and the other one is a two- piece 

knife.  The blade most often used in the experiments of this study is the two-piece knife 

(Delaware Diamond Knives, profile D,WC125cryo), which  is a tungsten carbide tip 

cutting edge on a steel base.  The parameters crucial to the performance and longevity of 

the blade are the clearance angle, specimen material, and the knife profile.  The details 

are discussed in blade troubleshooting section.  

The blade is mounted on the holder, as can be seen in Fig.2-6. The blade holder is 

then attached to the aluminum platform connected to the moving arm. A mechanical 

system is designed to provide blade movements and is powered by an AC motor (Blador, 

1/3 HP AC motor VL 3501).  The aluminum plate is connected to four pillow block 

bearings (Thomson, SPB-16-OPN) to smoothly move the blade side to side through the 

steel rails. Two micro switches (Honeywell, V3L-4-D8) are positioned on top of the 

pillow block bearings and control the limit of blade movement. Fig.2-6 shows the sensor 

and the position of the blade inside the cryoimager.  
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Figure 2-6: Inside the cryoimager 

2.3  Software and automation 

The cryoimager is an automated image acquisition system, and it is controlled by 

a written LabVIEW program.  This user interface enables operators to easily control all 

of the hardware in action, record the images and display them while the slicing is in 

progress. By initializing the program, the software searches for all connected 

components, such as filter wheels, sample step motor, and camera. Without all proper 

connections, an error will occur in the software while initializing. The LabVIEW 

program has three primary panels: main, setup, and acquire. These panels are responsible 

for all aspects of the program. The main panel is the user interface which allows the user 

to monitor the cooling status of camera. The setup panel is the gateway panel, and allows 
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for configuration and control of the majority of the cryoimaging subsystem, and the 

setting of the experiment parameters. The acquire panel is used to control the operation of 

the experiment. Most of the experiment parameters and adjustments can be set using the 

setup panel. The setup panel, as shown in Fig.2-7, includes four subpanels: Camera, File, 

Filter wheel, and Sample. Firstly, the user specifies the image destination for both NADH 

and FAD image channels. Then, the user specifies the positions of the desired excitation 

and emission filters using the Filter Wheel subpanel. By selecting the camera subpanel, a 

live image display window shows up, and camera configurations such as exposure time 

and gain can be modified through this panel while observing the results of changes on 

display window. The time duration that the camera shutter is open and light reaches the 

 

Figure 2-7: Setup panel of LabVIEW software 

 

 



 

31 

 

sensor, referred to as exposure time, is adjustable in range of 1msec to 59 minutes. The 

camera gain, which is the amount of analog electrical signal amplification, can be set 

from 0 to 4095 for the Rolera camera. Through the sample subpanel the position of the 

sample block can be adjusted where two micro-switches control the limit of sample 

movement range. The slice thickness is also set through the sample subpanel. 

2.4 Linearity test 

A linear response curve is a necessary condition for the reliable acquisition of 

signals. The linear response of the cryoimaging system has been evaluated using FAD 

and NADH concentrations in an aqueous solution. The range of NADH and FAD 

concentrations used in the linearity test span the normal NADH and FAD concentrations 

in typical tissues. The NADH solution concentrations range between 10 µM and 50 µM, 

moreover, the FAD solution concentrations are in the range of 50 nM to 250 nM that are 

 

Figure 2-8: a) FAD solutions b) NADH solutions 

 

 



 

32 

 

comparable to tissue concentrations.  Sensitivity curves of the cryoimager demonstrate a 

linear response to a change in the concentration of NADH (or FAD) in the presence of 

FAD (or NADH) over a wide range of NADH and FAD concentrations, as shown in 

Fig.2-8 Solid lines are linear regression fits. Linear regression resulted in R
2
 of 0.958 and 

0.999 for NADH and FAD, respectively.  

 

2.5 Cryo-microscopy implementation 

The newer version of our custom-made cryoimaging system is improved to 

increase the resolution of imaging in order to visualize the detailed information about 

structural changes in different organs. There are several diseases, such as 

cardiopulmonary injuries and diabetes that cause structural changes, especially in the 

vasculature. The cryoimager has the microscopy capability to monitor the structural 

changes as an effect of the disease and correlate the results with metabolic changes in the 

tissues.  
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The cryo-microscopy setup is different compared to the cryo-macroscopy setup 

and the schematic of optical path of cryo-microscopy is presented in Figure 2-9. As you 

can see from this figure, the excitation path of the microscopy setup is the same e as 

macroscopy. In favor of decreasing the working distance, a large filter wheel has been 

replaced with a small one. The filter wheel is mounted between the lens and camera, so 

that emitted light coming from the tissue surface first encounters the lens, then passes 

through the emission filter wheel, and ultimately reaches the camera. The cryo-

microscopy setup is also equipped with raster scanning to be able to image large samples, 

such as rat kidneys. The additional component using in microscopy setup is as follows: 

 

Figure 2-9: Excitation and emission path in cryo-microscopy design. 
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2.5.1 Zoom lens 

The utilized lens in the system is an Optem Zoom lens (125C 12.5:1 Micro-

Inspection, Qioptiq), which provides magnified images by holding high resolution. This 

lens is able to magnify the image up to 6.5X without any auxiliary lens, and the working 

distance with this parameter would be 89 mm. Since the minimum working distance of 

the cryo setup was 98 mm, we used a 0.75 auxiliary lens in order to increase the lens' 

working distance up to 114 mm [101]. Resolution is defined in number of line pairs per 

millimeter (LP/mm). Each pair consists of a black line and a white line. Higher LP/mm 

means higher image resolution [102, 103]. By adding the 0.75 auxiliary lens the 

magnification is ranging from 0.39X to 4.9X which results the resolution of 42 LP/mm 

and 217 LP/mm, respectively. The other advantage of using the Optem zoom lens is 

having the small focal shift.  

 

2.5.2 Linear micro stage 

The optical lenses have the chromatic aberration, which is focusing different 

wavelength in different focal points. As I mentioned before we are imaging two 

fluorophores, NADH and FAD, and the emission wavelength of these fluorophores are 

different. Therefore, the NADH image and FAD images have shifted focal length due to 

the chromatic aberration. It means without refocusing, image in one of the channels 

always becomes blurry in high resolution images.  The camera is installed in a linear 

translation micro-stage (NRT 150, Thorlabs with 150mm moving distance) to be able to 
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move the position of the camera in order to eliminate the chromatic aberration of the 

imaging lens.  

2.5.3 Raster scanning 

Magnification of the images resulted in losing the field of view, which means the 

whole tissue cannot be imaged once at time for larger samples. Raster scanning is a 

solution to this problem. Raster scanning is implemented by subdividing the image into 

several fields of view, and taking images of each single field of view. Then these single 

images will be stitched together to construct the whole image. For raster scanning, 

movements in two directions (X and Y) are required. To implement raster scanning we 

have used a two-axis motorized micro stage (Standa 8MTF - Motorized XY Scanning 

Stage). The stage is vertically installed in the cryo freezer chamber and the tissue block is 

mounted onto it. A sample image from raster scanned kidney, and reconstructed image is 

presented in Figure 2-10. More details of cryo-microscopy setup have been reported 

previously [104]. 
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Figure 2-10: Multiple fields of view of one slice of a rat kidney sample with cryo-microscopy setup. 

 

Figure 2-11:Stitched fields of view of one slice of a rat kidney sample. 
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2.6 Cryo System optimization and troubleshooting  

The cryoimaging system includes optical, electrical, and mechanical components. 

Like any other systems wear in the hardware units will result in problems arising over 

time. Failure in any of these units would affect the final result. More importantly, each of 

these elements should be accurately adjusted to achieve the optimum operation of the 

cryoimaging system. Herein the most likely challenges, possible causes, and the method 

to mitigate the issues and optimize the device operation are discussed.  

2.6.1 Sectioning problem 

The quality of acquired images is directly influenced by tissue sectioning. 

Smoothness of tissue surface ensures the fine image acquisition. A slight angle in tissue 

cut results in a change of working distance for part of the sample, resulting in some areas 

being out of focus, causing obscure image. Sectioning results with a tungsten carbide 

knife are affected by section thickness, sectioning speed, block hardness and clearance 

angle setting. It is very important to know how any changes in these operating parameters 

will affect sectioning quality. Sectioning problems usually come in three forms: chatter, 

compression, and knife marks. 

Chatter is the result of vibration during cutting and appears as regularly spaced 

thick and thin lines on the section perpendicular to the direction of the cut (Fig.2-12 (a)). 

Low clearance angle, too fast of an approach and too hard specimen are several possible 

causes of chatter.  
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Compression is the crushing of a section as it is cut resulting in a section that is 

shorter than the original block face and thicker than the microtome setting (Fig.2-12 (b)). 

Usually too high of a clearance angle, too soft of a specimen, and a dull knife can cause 

compression. Finally, knife marks are lines that appear on the section parallel to the 

direction of cut (Fig. 2-12 (c)). A dirty or damaged knife edge causes knife marks. 

Prior to performing any maintenance, the type of artifacts should be identified 

followed by constructive steps taken to overcome the sectioning problem. In general, 

knives should be sharpened after 15,000 slices or when necessary. This would solve the 

knife mark risk and any other problem caused by a dull blade. In following, the other two 

most effective parameters that should be considered when facing a slicing problem have 

been discussed. 

 

 

 

 

 

Figure 2-12: sectioning patterns: (a) chatter (b) compression (c) knife mark 
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Optimal clearance and cutting angle 

The microtome blades are characterized by their profile and two main angles 

named: clearance and cutting angle. The clearance angle prevents contact between the 

knife facet and the face of the block. The clearance and cutting angles of the cryoimaging 

blade are approximately 35
o
 and 30

o
, respectively. A shadowgraph has been utilized to 

measure the blade angles (see Fig.2-13); both angles are represented in the highlighted 

shadow of the actual blade in the cryoimaging system. 

The cutting angle is an inherent characteristic of the blade.  The clearance angle is 

adjustable while mounting the blade on the holder. There is a clearance angle in which 

blade performance is optimal. In order to set the blade clearance angle optimally in the 

 

Figure 2-13: Shadowgraph and blade angles 
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cryoimaging system, the following steps should be accomplished: first, the blade should 

be removed from the holder and from the aluminum platform. This is feasible by 

unscrewing the row of two and four bolts (Fig.2-14). Second, the row of five screws 

should be loosened as much as needed; these screws hold the blade in place, and then the 

blade could be easily removed by sliding it out. The third step is cleaning the blade and 

holder with alcohol. The fourth step is to put the blade back and tighten the row of five 

screws eventually. This should be done by carefully, tightening all the screws 

progressively, rather than tightening one by one. If one is tightened too much this will 

affect the final angle adjustment. The last step would be to reattach the blade to the 

aluminum platform. For appropriate clearance angle adjustment, two washers with 

specific thickness are placed underneath each screw in the row of two screws. 

 

Blade arm vibrations 

The blade arm vibration is another possible issue that causes noise and disturbs 

the blade function. Horizontal movement of the blade arm originates from a rotating 

motor. The arm linkages convert the rotary motion to the linear motion, which advances 

the blade toward the sample and backward. Several cylindrical bearings have been used 

 

Figure 2-14: Blade holder  
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at the connections of these arms. As mentioned before, the pillow blocks are also used to 

ease movement of the blade toward the sample along the steel rails. 

Several things could cause these vibrations, such as: damaged bearings, 

insufficient lubrication, tilted rails and arms, or warped platform. In order to prevent the 

rotary mechanic part from damage, regular service is needed.   

2.7 Tissue preparation for cryoimaging 

Experimental procedures were approved by UWM and Medical College of 

Wisconsin Institutional Animal Care and Use Committee (IACUC). Male rats were 

obtained as weanlings from colonies maintained at the Medical College of Wisconsin. 

Kidney tissues from rats were used in the frozen tissue studies. Each set of tissues has 

been prepared distinctly; a brief description of our tissue preparation protocols are as 

follows. There are several steps to prepare the sample for cryoimaging, including tissue 

preparation, sample freezing, mounting medium preparation, and sample embedding. 

These steps are explained in more detail in the following sections. 

2.7.1 Freezing Protocol and Embedding 

Freezing: In order to preserve the metabolic state of the kidney tissue, it has been 

rapidly frozen in cooled isopentane (2-methyl butane, Fisher Scientific, IL) cooled by 

liquid nitrogen (LN2, -196
o
C). When it is close to reaching the correct temperature the 

isopentane starts to become opaque as it nears freezing. The hemisected kidney is 

dropped into a container of isopentane for 5-10 seconds, and then tissue is removed to 
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LN2 container for 2 minutes. Finally, the hemisected kidney was wrapped in in tin foil for 

permanent storage at ultralow freezer (-80
o
C) until imaging was performed. This method 

has the advantage of very rapid freezing without causing cracking due to sudden 

temperature change. For fluorescence imaging, the tissue was embedded in a customized 

black mounting medium, which is not fluorescent in the excitation wavelengths, and 

placed on a chilled aluminum plate to keep the tissue in place for freezing and slicing. 

Mounting medium: The mounting medium was prepared in the Biophotonics lab 

(UWM), using polyvinyl alcohol (PVA, Grade 71-30, PVOH7130, Chemical Store 

Inc.,Clifton, NJ), distilled water and Indian ink. To make one liter of the black mounting 

medium, 80 g of PVA is mixed into 920 g of cold distilled water and stirred until the 

PVA completely dissolves. The liquid is heated at 300 
o
F for 1.5 hours. The solution 

should be stirred while it is boiling until the liquid becomes transparent and dense. Prior 

to adding Indian ink, the temperature of the solution should be turned down (250 
o
F) to 

stop boiling. Enough amount of ink should be added and mixed thoroughly to make the 

entire solution black. Heating at (250 
o
F) will continue for 30 minutes, and then the 

 

Figure 2-15: Black mounting medium preparation steps 
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solution is allowed to cool down to room temperature. The mixture is stored in the 

regular refrigerator until needed. Several steps are showing in Fig.2-15. One day before 

use, the mixture is placed on the rotary motor rock tumbler to mix and warm up to room 

temperature.  

Embedding: Prior to embedding the tissue, an aluminum stand has been frozen 

(Fig.2-16 (a)) and a mold with four Teflon pieces is prepared (Fig.2-16 (b)). The tissue is 

also trimmed to remove fats. The first step in embedding a tissue sample is to sit on the 

mold on a chilled stand, pour the black mounting medium inside to make 0.5 cm thick 

base. The embedding process follows with freezing the base medium, then embedding the 

tissue and fixing its position by adding more black medium around the tissue. After 

embedding, the tissue is stored in an ultralow freezer (-80
o
C) for at least 4 hours. (Fig.2-

16 (c)) shows a sample block ready for cryoimaging. Before starting the experiment, the 

sample stand is installed on the sample carriage in the cryoimager using four nuts such 

that the surface of the black medium is parallel to the cryoimager microtome 

 

Figure 2-16: Sample embedding steps 
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Chapter 3:  Image processing  
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Overview 

Raw data collected from cryoimaging has been enhanced and analyzed using 

image processing tools. The acquired raw images of NADH and FAD fluorophores from 

each group of kidneys were analyzed using MATLAB software. Before quantifying the 

redox, raw images were preprocessed to compensate day-to-day variations, such as light 

intensity, illumination pattern, and mirror angle. Then, an automated algorithm was 

implemented to remove the undesired background of the images. After preprocessing and 

calibration, three dimension representations of the kidneys were rendered using z-stacks 

of all the image slices (about 400 images for each kidney), for both NADH and FAD 

channels. In the following section, details of each step are provided. 

3.1 Preprocessing of raw images 

As discussed in the previous chapter, gathering experimental data requires 

running the experiment for a few days. During this time, there are a few possible 

problems that could affect the quality of final results, such as change in light intensity, 

mirror angle, and illumination pattern. In order to exclude any possible variation and 

make the necessary corrections, preprocessing was carried out both in MATLAB and 

ImageJ software. Each step to correct these problems has been explained in detail in this 

section. 
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In the experiments conducted for this thesis, the thickness of each slice was 

adjusted to 30 µm. Based on this thickness, each kidney sample resulted in 300 to 400 

images in each of the NADH and FAD channels. 

3.1.1 Lens focusing and image scale measurement 

At the beginning of each experiment, a piece of grid paper was placed in front of 

the camera and right on top of the embedded tissue. This grid was used to set the focus of 

the lens, as shown in Fig.3-1 (a). This image is referred to as the grid-image. The grid-

image was also used to determine the resolution of each experiment. In order to examine 

the resolution, the number of pixels within a known distance on both the x- and y-axis 

was counted to get the number of microns per pixel in the horizontal and vertical 

directions. 

3.1.2 Dark current noise correction 

For each different camera setting used in the experiment, the dark-current image 

was captured before image acquisition. A representative dark current image of the 

experiment has been shown in Fig.3-1 (b). In order to collect the dark-current image, the 

lens of the camera was covered and the lamp was shuttered. Dark current noise correction 

was done by subtracting the appropriate dark-current image from the experimental 

images. 

3.1.3 Non-uniform illumination correction  

The light source used to illuminate the sample is not perfectly uniform on the 

surface plane of the sample.  Also, the lighting pattern slightly changes for each 
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experiment set. Before slicing the tissue, a uniformly yellow-green fluorescent acrylic 

plate that was completely flat was placed at the position of the tissue. In the same field of 

view in which the grid-image was acquired, an image of the flat plate was captured in 

both NADH and FAD channels. These acquired images are called flat-field images. The 

flat-field images should not be saturated in order to be used for correcting distortions 

caused by day-to-day light intensity variations, as well as possible non-uniform 

illumination on the sample (Fig.3-1 (c,d)). The acquired dark-current image was 

subtracted from the flat-field image, and then to correct experimental images for non-

uniform illumination, all the data images were divided by the resulting difference image.  

 

Figure 3-1: (a) Grid (b) Dark current; Fat field in (c) NADH Ch. (d) FAD Ch. 
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3.1.4 Shadow correction  

Sometimes a shadow in the images was observed. Because the cryoimaging setup 

is sensitive to background noise and vibration, this could be caused by a small movement 

in the mirrors, any other movements, reflection from metallic materials, and the 

displacement of the black curtain cover. To correct for the shadow, a shadow pattern is 

obtained by subtracting two consecutive images, one just before the appearance of the 

shadow and one afterward. The shadow pattern (Fig.3-2 (c)) is removed by subtraction of 

this difference from the all of the affected images. The (Fig.3-2 (b)) and (Fig.3-2 (d)) 

 

Figure 3-2: Shadow correction steps 
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shows an image affected by shadow and corrected image respectively, and for 

comparison, (Fig.3-2 (a)) shows an unaffected image.  

 

3.1.5 Removing and replacing defective image 

In the process of slicing and imaging, sometimes a previously sliced tissue layer 

could cover part of the sample surface and blocks the camera’s view, leading to a partial 

dark area in the next image. Since this image doesn't contain any information about the 

sample, it is useless and should be discarded. Figure 3-3 shows two samples of defective 

slices in the NADH channel that are removed in this step. Both image stacks of NADH 

and FAD were checked for removal of these undesired slices. A single unwanted image is 

going to be removed in the stack. If there were more than a couple of defective images in 

series, instead of copying previous and following images, a creeping median filter of 3 

images was used. 

 

 

Figure 3-3: Defective Images 
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3.1.6 Intensity and exposure changes corrections 

Usually at the beginning of the experiment, exposure is set to a desired value. 

However, because of the uniqueness of the illumination for each sample, especially for a 

new sample, sometimes it becomes necessary to modify the exposure in the middle of 

experiment. This is to prevent saturation or to improve the contrast. There are also other 

factors that might cause a sudden increase or decrease in intensity during the experiment. 

Figure 3-4 shows two consecutive slices in an imaging experiment in which the exposure 

time was increased by the operator to increase tissue intensity, in order to improve the 

contrast of images. In the image processing, a linear scaling factor is used to compensate 

for the intensity change. 

 

 

 

 

 

Figure 3-4: Different exposures in NADH Ch. 

 



 

51 

 

3.1.7 3D representation of sample and present from specific cross section 

As mentioned earlier, each kidney experiment results in 300-400 images and it is 

time consuming to check them one by one to remove the defective images. An easy 

method is to reconstruct a 3D structure from the preprocessed stack of images and check 

the resulting 3D image from different views. If, for any reason, some part of the sample 

was missed or an unwanted slice was included, it is simply visible in the 3-D structure. A 

proper 3-D reconstructed image of a kidney can be seen in Figure 3-5.  

 

Figure 3-5: 3D rendered of a kidney 
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It is also possible to filter the 3D volume of the tissue in such a way that a specific 

cross section or a targeted region of tissue is highlighted. For example, a 3D-rendered 

representation of hemisected kidneys could be presented in a view that shows the 

structure inside the kidney and allows the examination of the differences between the 

medulla regions. The cross-sectioned 3D rendering was performed by defining a tilted 

plane in the 3D volume (using the voxels' inherent coordinate geometry), and filtering the 

image on either desired side of the tilted plane (see Figure 3-6). 

 

Figure 3-6: Specific cross sections 
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3.2 Boundary detection and background removal  

Analysis of multiple cross-sectional images of a kidney has many problems. 

Micro slicing of each kidney produces around 400 slices. Sometimes, due to low contrast 

of the image and problems with the mounting medium, it is difficult to remove the 

background by thresholding. In the other words, some part of the sample in a 2D cross 

sectional image has an equal or lower intensity compared to the background, so removing 

the background simply by thresholding will cause a deletion of some of the tissue pixels. 

Usually, the first step to analyze all of the slices of a sample is background removal, 

which is manually done by employing ImageJ. Manual background removal is time 

consuming, user-dependent, and results in variation between different slices. Since the 

size of the object changes in each slice, manual edge detection is a laborious task. 

Creation of the 3D-rendered image of a tissue also suffers from the 

aforementioned problems, especially in high resolution imaging. Removing the 

background is essential, otherwise the output would be a black box that shows the 

medium where the tissue is embedded. Manual selection of the borders results in an 

unsmooth surface in the 3D image. The thresholding method also increases the noise 

around the tissue and removes some tissue features due to the low contrast between some 

parts of tissue and background. To overcome this problem, an automated algorithm has 

been designed to determine the border of the cross-sectional images of the kidney in 

different z-depths, removing the background and enhancing the contrast of the result. In 

the following section, a brief introduction of the image processing concepts has been 

described, and the proposed algorithm has been explained in detail.  
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3.2.1 Morphological image processing 

The term morphology refers to the properties of the geometric structure of any 

object. Operations of mathematical morphology were originally defined as operations on 

set theory, but it later became clear that they are also useful for image processing tasks by 

performing operations on a set of points in a two-dimensional space, like an image. Sets 

in mathematical morphology represent objects in the binary image. For instance, the set 

of all background pixels of a binary image (zero values) is one set which could be defined 

in an image. Mathematical morphology operators are the main tool used to extract the 

structures present in the image. These structures are useful for quantitative analysis of the 

image. For example, some structures that can be extracted are contours, skeletons and 

convex hulls. The most elementary operators of mathematical morphology are erosions 

and dilations. More complicated morphological operators such as thinning and thickening 

can be designed by means of combining erosion and dilation operations. Also, 

morphological methods are used in the preliminary and final image processing [105].  

 

3.2.2 General algorithm implementation 

An edge detection package has been developed to find the boundary of the tissue 

and clear the background of the images. This algorithm has been written in MATLAB 

(The MathWorks, Inc). Figure 3-7 shows the flow diagram of the basic coding process 

for a stack of images. The procedure was initiated by loading the slice that contains the 

largest portion of tissue in the stack of the images. A region of interest (ROI) was 

selected around the tissue to get rid of extra calculation and minimize the memory usage. 
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In the next step, the ROI position was applied for each slice of the tissue and the image 

was cropped. Separate folders were produced and located in the same directory to store 

the output images and preserve the raw data. After cropping the image, the feature is 

detected using the edge detection algorithm, and the background has been removed. The 

details of the edge detection algorithm are described in the next section. Following the 

removal of the background, contrast enhancement has been done using a histogram 

equalization method to improve the appearance of the structural features in the 3D 

rendered image. Both the background image and contrast enhanced image are stored in 

their defined directories. 

The aforementioned steps have been carried out on every single slice of the stack 

in both the NADH and FAD images. 

 

 

Figure 3-7: General boundary detection algorithm 
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3.2.3 Proposed boundary detection algorithm     

Figure 3-8 shows the flow diagram of overall methodology to find the boundary 

and extract the feature from the background. The details of the edge detection algorithm 

are as follows.  

First, the cropped image is smoothed using a 5×5 Gaussian filter, as a low pass 

filter, to reduce some machine-induced artifacts, and image noise (Fig.3-9 (b)). 

Mathematically, applying a Gaussian filter to an image is the same as convolving the 

image with a Gaussian function. Image pre-smoothing is applied prior to the edge 

detection in order to obtain better results. Pre-smoothing also helps to improve global 

thresholding.  

Secondly, the gray scale smoothed image is converted to a binary image by 

 

Figure 3-8: Proposed boundary detection algorithm  
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selecting an appropriate threshold, as shown in Fig.3-9 (c), where all pixel values in the 

input image with luminance greater than threshold level are replaced with 1 (white) and 

all other pixel values with 0 (black).  

Thirdly, after generating a binary image, the connected components were found in 

the binary image, and because the tissue is the dominant part of the image the biggest 

connected component has been considered to be the tissue (Fig.3-9 (d)). This is an 

efficient way to remove extra noise and dots which are surrounding the feature.  

The fourth step is the sharpening of the cleaned binary image by means of a 

Laplacian filtering to enhance discontinuous regions such as edges (Fig.3-9 (e)). High-

pass filtering can “enhance” the high-frequency (lines and edges) while “suppress” the 

low-frequency (smudge regions). Following the sharpening of the image, the gradient 

magnitude of the image was calculated. The gradient was used to enhance sudden 

changes and eliminate slowly varying background features. In this process, pixels with 

large gradient values are more likely to be the edge pixels. The high gradient pixels that 

are in the direction of the gradient are considered edge pixels, and edges are traced in the 

direction perpendicular to the gradient direction.  

The next step is applying a thinning operator to the binary image to tidy up the 

output of previous step by reducing all lines to single pixel thickness.. In other words, 

thinning is particularly useful for skeletonization (Fig.3-9 (f)). Before moving to the next 

step, the border corrections have been done. This is particularly for the cases that tissue 

exceeds camera’s field of view, and continues over the image border. Border correction 

includes a modification in pixel values adjacent to the image border to consider them as 

edge pixels and have a connected boundary. 
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Finally, the hole regions encircled by the edge were filled and a mask was 

produced to extract the feature from the background (Fig.3-9 (g)). A hole is defined as a 

background region surrounded by a connected border of foreground pixels. This mask 

could be applied to both NADH and FAD channel slices, so a composite binary mask 

image was created from each slice. The algorithm terminates by multiplication of the 

mask and original image to remove the background (Fig.3-9 (h)).  

As a summary, the morphological edge detection implemented is an effective 

method for finding the border of the images and clearing the background. By removing 

the background of the slices, the accuracy of data analysis has been improved. This 

program automatically performs elimination of the background, which is essential to have 

a smooth, artifact-free 3D rendered image. By using this program, a considerable amount 

of time was saved in the image processing part of my research. 
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Figure 3-9: Background removal algorithm steps 
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3.3 Redox calculations and data representation 

The pre-processed FAD and NADH fluorophore images from each group of 

kidneys were analyzed using MATLAB. Three dimension representations of the kidneys 

were rendered using z-stacks of all of the image slices, for both NADH and FAD signals. 

The intensity at each voxel in the NADH and FAD images is used as an indicator of the 

concentration of the fluorophore at that voxel. The NADH Redox ratio of each slice of 

kidney was calculated pixel by pixel, using MATLAB, according to equation (1).  

NADH Redox Ratio =NADH RR = NADH / FAD           (1) 

Then, the corresponding histograms, which are distributions of intensities in 3D volume, 

were plotted. The histogram is a scaled probability density function of the mitochondrial 

redox ratio intensities in a kidney used for quantitative analogy between the groups. The 

arithmetic mean values of the histograms were calculated according to Eq. (2) 
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where Nx, Ny and Nz are the number of pixels in the x, y and z directions. In my studies, 

the pixel size in the x and y directions were 10μm, but in the z direction was 30μm. There 

are three methods to present the data, which are described in following section. The final 

presentation method was selected based on the purpose and desired part of the tissue. 

3.3.1 Different methods to present the data 

In this part the three methods are reported for representation of the results. Each 

method has its own advantages and disadvantages which are mentioned in following: 
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The largest slice representation and focus on specific region  

In this method, the slice with the most tissue from the image stacks is chosen to 

present the Data. Especially when we need to examine the differences in a region of 

interest such as medulla this method is useful. Figure 3-10 shows NADH, FAD, and 

NADH redox images from the biggest slice of a salt-sensitive kidney.  

The disadvantage of reporting the data using a single slice is that it introduces a 

sampling error in which the result is only dependent on one slice and may not precisely 

represent the overall tissue's redox state. However, this method is useful to focus on a 

specific region of the tissue, which is of more interest. For example, the renal medulla of 

the kidneys can be segmented and their corresponding histograms are compared to 

examine the regional injury. 

Maximum intensity projection representation 

In this method, the maximum intensities along the z axis of the NADH, FAD, and 

redox ratio z-stack were obtained and results a 2-D representation to compare the data of 

different groups. Figure 3-11 shows the maximum intensity projection of NADH, FAD, 

and NADH redox in a salt-sensitive kidney.  

 

Figure 3-10: The largest slice representative panel 
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The maximum intensity projection method is advantageous in that it may 

highlight the details that are not observed in the other methods. For instance, the vascular 

dysfunction in kidney caused by hypertension can be shown using this method.  

 

3D rendered representation 

In this method, the 3-D composite images created from all of the slices are used 

for representation and comparison of the data and calculation of the histograms. Figure 3-

12 displays the 3-D rendered NADH and FAD images and the NADH redox of a salt-

sensitive kidney.  

 

Figure 3-11: Maximum projection representative panel 

 

 

Figure 3-12: Volume rendering representative panel 
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The advantage of the whole volume method is that all of the voxels that belong to 

the tissue are involved in calculations of redox ratio. Therefore, it is a more precise 

method for the comparison of results between different groups. 

In each injury model of my research, the more sensitive technique in terms of 

expected results has been selected to examine the NADH RR, and present the results. 

This issue has been discussed in chapter four in more detail.  

3.4 Statistical analysis 

All of the values are reported as mean ± standard error of the mean (SEM), where 

n refers to the number of rats used. Statistical significance (p< 0.05) was found based on 

two-tailed unpaired Student’s t-test for each group of kidneys. In some of the studies, a 

two-way ANOVA followed by a Holm-Sidak post hoc test for multiple comparisons was 

used and significance determined at the p<0.05 level.  
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Chapter 4:  Optical imaging of biological tissue 
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Overview 

As a disease progresses, many changes occur within the body, including the 

alteration of organ structures and biochemical properties, the latter can result in the 

mitochondrial redox state. In order to study the effect of structural changes on the redox 

ratio, we study the correlation between changing vasculature structure in the kidneys and 

redox measurements in the hereditary hemorrhagic telangiectasia (HHT-1) disease model 

as well as gene knockout animal models. HHT-1 is used as a model to investigate the 

effects of disease on vasculature network in different organs. Hypertension can trigger 

excess generation of ROS and plays an important role in increasing OS, including 

kidneys. As we described earlier, there are several genomes that contribute to the 

development and progression of salt sensitive hypertension.  

In this thesis, four categories of rats with different genotypes were used for 

hypertension studies. SS rats, which are the Dahl salt-sensitive rats have been used as a 

control model to compare with other three groups of rats. SS rats are more susceptible to 

OS and are thus expected to have a lower NADH RR. Other three groups (SSBN13, the 

NOX4
-/-

, and the p67phox
-/-

) are genetically modified Dahl salt-sensitive rats, which are 

protected against OS. Thus, they are compared to SS rats, and expected to have a higher 

NADH RR. 
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4.1 Cryo-Microscopy imaging: Endoglin (HHT-1 model) 

HHT-1 is a dominant vascular dysplasia caused by loss-of-function mutations in 

the human Endoglin gene. HHT-1 results in excessive bleeding and vascular 

malformation due to failure to recruit perivascular supporting cells to the newly forming 

blood vessels [106]. Symptoms of HHT-1 include frequent nose bleeds, telangiectases, 

mucosa, and arteriovenous malformations in lung, liver, kidney, and brain [106, 107]. 

Complete deletion of the Endoglin gene is embryonically lethal. In mice with Endoglin 

gene knockout (Eng -/-), death occurs in utero from improper remodeling of their mature 

vascular network, leading to defects in the cardiovascular system. [11, 107-109].  

In mice with partial knockout of the Endoglin gene (Eng +/-), vasculature was analyzed 

using the cryo-microscopy setup. Some observed vascular defects were consistent with 

those of Endoglin haploinsufficiency in humans [110].  Continuing to study vasculature 

as a result of structural changes allows the discovery of unknown aspects of the disease, 

which would prove useful in diagnosis and quantifying the severity of the organ injury 

due to this disease.  

Figure 4-1 shows an Endoglin knockout mouse (Eng +/-) kidney versus that of a 

wild type mouse (Eng +/+), both sacrificed at nine months of age. The figure shows a 

maximum projection representation of the fluorescence signals of NADH and FAD, as 

well as the NADH redox ratio.  In comparison to the wildtype mouse, the Endoglin 

knockout mouse shows an increased NADH signal and decreased FAD signal, and as a 

result, an increase in the NADH redox ratio. Figure 4-2 shows histograms of the NADH 

redox ratios of both the Eng +/- and Eng +/+ kidneys.  The mean values of these 
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histograms suggest a more oxidized mitochondrial redox state for the Eng +/- kidney, and 

a more reduced mitochondrial redox state for Eng +/+. 

Figure 4-3 and Figure 4-4 show 3D renderings of the Eng +/- and Eng +/+ mouse kidneys 

 

Figure 4-1: Maximum projection of NADH, FAD and NADH redox in 9 month Eng +/- and Eng +/+  

mouse kidney 

 

Figure 4-2: Histogram of NADH redox in 9 month Eng +/- (blue) and Eng +/+ (red) mouse kidney. 
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imaged in microscopy configuration. The automated edge detection algorithm has been 

applied to remove the background of the 2D slices, and preparing the nice 3D rendered. 

The comparison of these images illustrates more branching with smaller caliber and 

vessel coverage in the vasculature network of the Eng +/- kidney. These vessels are more 

torturous than those of the Eng +/+ kidney and demonstrate premature branching.  

According to the comparison of the images, many properties exist, including amount of 

branching, size of caliber, amount of vessel coverage, premature branching, and 

tortuosity, that differ in the vasculature networks of kidneys in Eng +/- and Eng +/+ mice, 

as revealed by optical imaging using 3D cryo-microscopy.  

 

Figure 4-3: 3D rendering of NADH redox in 9 month Eng +/+ mouse kidney 

 

Figure 4-4: 3D rendering of NADH redox in 9 month Eng +/- mouse kidney sample. 
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4.2 Cryo-Macroscopy imaging: Hypertensive animal models 

4.2.1 Tissue preparation (rodent model) 

The following four groups of animals that have been used in this study: 

SS rat: This strain is the Dahl salt-sensitive rat and is the control salt-sensitive strain used 

for the comparison to the SSBN13, the NOX4
-/-

, and the p67phox
-/-

. 

SSBN13 rat: This strain is a salt-resistant consomic strain with the Brown Norway (BN) 

chromosome 13 introgressed into the Dahl salt-sensitive (SS) background [90]. 

 NOX4
-/- 

rat: This strain is the homozygous knockout of the NOX4 gene on the SS 

background achieved using zinc finger nuclease (ZFN) technology.   

p67phox
-/-

 rat: This strain is the homozygous knockout of the p67phox gene on the SS 

background using ZFN [7]. 

 

Diet protocol 

Rats were fed a custom AIN-76 diet (Dyets, Inc., Bethlehem, PA) containing 

0.4% NaCl , low salt (LS), since weaning. At 6 weeks of age, a subgroup of these rats 

was switched to a diet with 10-fold higher salt content, 4.0% NaCl diet (HS), for 21 days 

before the kidneys were collected.  

On the day of tissue harvest, rats were deeply anesthetized with sodium pentobarbital 

(60mg/kg) and a catheter placed in the aorta for a rapid infusion of 20 ml of cold isotonic 

saline to flush the kidneys of blood.  The left kidney was then quickly removed, 

hemisected, and rapidly frozen through specific protocol. 
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4.2.2 SS rats versus SSBN13 rats 

Figure 4-5, is a representative panel of kidney fluorescent images to compare SS 

and SSBN13 rats. From top to bottom display the maximum intensity projected NADH, 

FAD, redox ratio, and its respective histogram are displayed, from SS and SSBN13 rats. 

The right graph shows the histogram of NADH RR of two group of rats. As the figure 4-5 

shows, NADH signal of kidney from SSBN13 group is higher than SS kidneys. 

Differences in NADH RR images suggest that SSBN13 kidneys have a more reduced 

NADH respiratory chain than SS kidneys. Therefore, the NADH RR increased in renal 

medulla. The mean values of these histograms suggest a more reduced mitochondrial 

redox state for SSBN13 kidney compared to SS kidney.  

 

Figure 4-5:Maximum projection panel SS Vs. SSBN13 representative panel. Maximum intensity 

projected images of NADH (top), FAD (middle) and NADH RR (bottom) in salt-sensitive SS (left), 

SSBN13 (right) rat kidneys. Histogram distribution of NADH RR with their respective mean values. 
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Figure 4-6 displays a bar graph comparing the mean values of NADH RR from 

SSBN13 consomic strains versus SS rats. The results demonstrate a significant 49% 

decrease in the mean value of NADH RR in kidneys from a SS rat (2.143 ± 0.220; n=4) 

compared to a SSBN13 rat (3.189 ± 0.424; n=2) using student's t-test, with P < 0.05 as 

the criterion for statistical significance. 

  

The renal medulla is the main region of interest to study the effect of chromosome 

13 on tissue metabolism. To quantify regional injury, the middle slice of the 

representative kidney, which contains the largest portion of tissue, was selected to study 

the metabolic state of outer medulla. The NADH redox of the middle slice of 

representative kidneys, from both group of SS and SSBN13 rats, were measured and their 

corresponding histograms were plotted. Figure 4-7 (a) shows the middle slice from a 

representative kidney, from both groups of SS and SSBN13, and its respective histogram. 

The mean values of histograms were also calculated and presented. The result shows a 

 

Figure 4-6: Statistical analysis SS versus SSBN13 rats. Bar graph showing the average values and 

standard errors of the mean value of the histogram of the mitochondrial redox ratio for each groups. 
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48% decrease in NADH RR. In figure 4-7 (b), a manually segmented medulla regions are 

selected and normalized histogram were obtained. By calculating the mean value of 

segmented regions, demonstrated in figure 4-7 (b), a 161% reduction of NADH RR 

occurred in SSBN13 kidney compared to SS. We conclude that this huge difference in 

percentage change is due the regional injury, which is mainly observed in renal medulla 

[92]. 

 

 

Figure 4-7: Percentage change of whole slice Vs. segmented medulla. (a) 2D images of the middle 

slice NADH redox of kidneys and their respective histograms and mean values.(b) 2D images of the 

largest slice NADH redox with segmented medulla of kidneys and the respective histogram of 

segmented part and mean values. 
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4.2.3 SS rats versus SS
p67phox

 null rats 

Representative examples of 3-D images of the FAD and NADH fluorescence 

signals and their redox ratios (NADH RR = NADH/FAD) obtained from a representative 

SS rat and a SSp67phox null rat on 0.4% NaCl diet and a rat of each strain on 4.0% NaCl 

diet are shown in Figure 4-8.  As can be seen, higher NADH and lower FAD fluorescence 

signals were observed within the renal medulla region of SSp67phox null rats compared 

to SS rats fed 0.4% NaCl diet.  When fed 4.0% NaCl diet for 21 days, both strains of rats 

exhibited relatively higher levels of NADH RR throughout the kidney and especially in 

the renal medulla as apparent by the pseudo-red color intensity. Notably, the SSp67phox 

rat remained relatively well-protected from the high salt-induced oxidative stress as 

reflected by the high mitochondrial NADH RR values (higher NADH relative FAD) 

compared to the SS rat.  These results indicate greater electron transport chain metabolic 

activity and reduction of oxidative stress in the renal medulla of the SSp67phox null 

mutant rats. 

 

 

Figure 4-8: 3D rendering representative panel of SS rats versus SSp67phox null rats. 
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Figure 4-9 shows the corresponding histogram plots of NADH RR of the same 

four kidneys shown in Figure 4-8 in order to display the 3D fluorescence intensity 

distribution throughout the kidney tissue. The computed mean values of the normalized 

histograms (see Methods) clearly show that mitochondrial redox state is reduced in both 

SSp67phox null and SS rats in response to a high salt diet.  However, SSp67phox null rat 

kidneys exhibited a lower overall level of oxidative stress throughout all regions.   

 

Using this analysis method for all of the kidneys collected, Figure 4-10 

summarizes the group data for the two strains on the two salt diets.  The kidneys from the 

SS rats fed a 4.0% high salt diet (n=5) averaged a 43% decrease (p<0.0005) in the mean 

histogram of NADH Redox Ratio (RR) compared to kidneys from SS rats maintained on 

0.4% NaCl diet (n=5), a consequence of a substantial reduction of NADH relative to 

FAD fluorescence.  In contrast, the mean NADH RR of kidneys from the SSp67phox null 

 

Figure 4-9: NADH Redox ratio histograms of representative kidneys. 
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rats (n=7) fed the 4.0% NaCl diet was reduced by only 14% when comparing kidneys 

from 0.4% NaCl fed rats (n=5).  Even though high salt diet increased the mean NADH 

RR of SSp67phox null rats, this ratio was never greater than that observed in SS on 0.4% 

NaCl diet.  

  

 

Figure 4-10: Statistical analysis SS versus SSp67phox null rats. 
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4.2.4 SS rats versus SS
Nox4

 null rats 

To determine the effect of salt intake and Nox4 gene on the NADH RR, the 

mitochondrial redox state was determined on kidney from SS rats and SSNox4-/- rats fed 

on a 4.0% NaCl (HS) and 0.4% NaCl (LS) diet. Figure 4-11 displays the 3D rendering of 

FAD and NADH fluorescence signals, and their redox ratio (NADH RR) from 

representative kidneys of the four group of rats. 

 As expected, less expression of Nox4 increases the NADH signal, and decreases 

the FAD in Medulla. Therefore, the NADH RR increased in renal medulla of SSNax4-/- 

groups compared to the SS groups. In the rats fed on HS diet, NADH RR shows a 

remarkable decease in comparison with LS diet kidneys. Figure 4-12 shows 

corresponding histograms of NADH RR of kidneys shown in representative panel (Fig. 

4-11) to better compare the intensity distribution of the redox ratio. The mean values of 

the normalized histograms were calculated as described in image processing section. The 

 

Figure 4-11: rendering representative panel of SS rats versus SSNox4 null rats. 
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mean values of these histograms suggest a more reduced mitochondrial redox state for 

knocked out (SSNox4-/-) kidneys compared to SS kidneys. There is a blue shift in 

histograms from LS diet versus HS diet kidneys. The tail of histograms is due to higher 

redox ratio in medulla region of kidneys.   

 

To evaluate the statistical significance of the results, five kidneys in the SS groups 

(LS and HS), five kidneys in SSNox4-/- (LS) groups, and nine kidneys in SSNox4-/- 

(HS) groups were imaged. The mean values of the histograms of 3D rendered images 

were compared, the result of which is represented in figure 4-13. This figure displays a 

bar graph comparing the mean values of the histograms of 3D rendered images of 

kidneys from knocked out strains (SSNox4-/-) versus SS on both diet. The results 

demonstrate a remarkable 38% decrease (p<0.0005) in the mean histogram of NADH RR 

in kidneys from a SS rat on HS diet (0.994 ± 0.071; n=5) compared to a SS rat on LS diet 

 

Figure 4-12: NADH Redox ratio histograms of representative kidneys. 
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(1.425 ± 0.142; n=5).  The result presented in the bar graph indicated that the mean 

NADH RR of kidney from knocked out strain (SSNox4-/-) on HS diet (1.384 ± 0.141; 

n=9) showed significant 18% decrease (P<0.05) in comparison with this stain on LS diet 

(1.639 ± 0.163; n=5). However, as Figure 4-13 shows kidneys from SS rats on LS diet 

exhibit a slight difference (0.5%) compared to the SSNox4-/- rats on HS diet.  The direct 

effect of Nox4 gene in salt-induced hypertension and renal injury has not been explored 

in low salt diet, however the cryoimaging result can clearly show the protective effect of 

Nox4 gene on ROS production.  

 

As we ascribed earlier, NADH and FADH2 are fluorescent when they are in their 

reduced and oxidized form, respectively. Therefore, the observed (fig.4-11) higher signal 

in NADH, and lower signal in FAD in SSNox4-/-  rats is consistent with the fact that in 

the absence of Nox4 the mitochondrial coenzymes NADH and FAD accumulate in their 

reduced forms, so the chain become reduce. As a result, the mitochondrial NADH RR 

 

Figure 4-13: Statistical analysis SS versus SSNox4 null rats. 



 

79 

 

increase is associated to a decrease in oxidative stress. Figure 4-12 indicates 3D rendered 

of representative kidney of four groups, the SSNox4-/- on LS diet shows the highest 

NADH RR which is the representative of lowest ROS production, and it goes down as we 

move from right to the left. The lowest NADH RR is for SS high salt which is 

representative of highest ROS production, and the two middle one are not significantly 

different, statistically. It means that their NADH RR is almost in the same range, and the 

ROS production in these two groups is approximately the same. In the presence of 

excessive Nox4, renal damage occurred more rapidly, translated to a further decrease in 

NADH RR compared to its knocked out counterpart (Figure 4-13) and enhanced renal 

injuries. Thus, NADH RR can be used as a quantitative marker to evaluate the oxidative 

stress in knocked out genes in kidneys. The results revealed that salt-sensitive 

hypertension decreases the NADH RR in the kidney due to mitochondrial dysfunction, 

which is detectable by optical imaging. The 3D images also conclusively suggested that 

the increased oxidative stress in SS rats emanate almost entirely from the renal medulla. 

  



 

80 

 

 

 

 

 

 

 

 

Chapter 5:  Conclusion and future work 
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5.1 Conclusion 

In this research, I have improved upon an optical imaging instrument called the 

cryoimager to acquire 3D images of biological tissues in high resolution. I have also 

developed an algorithm written in MATLAB in order to improve the image processing. I 

have employed two different configurations of the cryo imager to study two different 

injury models.   

In order to improve the quality of images taken by the cryo imaging system, I 

have optimized the slicing hardware to increase the smoothness of the slice surface. 

Furthermore, in order to achieve high resolution images, I extended the operation of the 

cryo imager from the macroscopic to the microscopic levels. This improvement has been 

done by upgrading the imaging setup and adding a raster scanning mechanism to capture 

high resolution and magnified images. 

In addition, I have developed a fast image processing algorithm to automatically 

detect the tissue’s boundary and remove the background from outside the detected 

borders. This algorithm has mostly been used in processing of high resolution imaging 

data. An improvement in the data analysis outcome has resulted from using this algorithm 

in a special case where we had problems with the mounting medium and low contrast 

images.  

Using the 3D cryo-macroscopy setup, I have investigated protection against salt-

sensitive hypertension associated with alterations of regional (mitochondrial) metabolism 

and oxidative stress within the kidney. For this study, the cryoimager enabled the direct 

assessment of the contribution of a selected gene on renal oxidative stress in SS rats. 
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The results show that even SS rats that were fed the non-hypertensive salt (0.4% NaCl) 

exhibit a lower mean NADH/FAD RR, indicating greater levels of oxidative stress 

compared to genetically manipulated rat kidneys (SSBN13, SSp67pho-/- ,SSNox4-/-). It 

is evident from the results that the major differences in oxidative stress were observed 

most prominently in the renal medullary region of the kidney, which is rich in 

mitochondria, signifying the involvement of mitochondria in oxidative stress. This 

difference in redox ratio between the SS and genetically modified rats substantially 

increased as a consequence of high salt (4.0% NaCl) feeding. Importantly, this data 

indicates that genetically-altered rat kidneys remain relatively well protected from 

oxidative stress. 

Using the implemented 3D cryo-microscopy setup, I investigated simultaneous 

examination of the tissue redox state and the structural deformation in the vasculature 

network of mouse kidneys caused by HHT-1. HHT-1 (Hereditary hemorrhagic 

telangiectasia) is our disease model. The results showed that in the absence of the 

endoglin gene, the vasculature network in the kidney has more branching, is smaller 

caliber, has smaller vessel coverage, and has premature branching in respect to control 

mice. The Endoglin knockout mouse also showed higher NADH RR, which translates to 

more oxidized mitochondrial redox state. 

I conclude from the present study that optical fluorescence 3D cryoimaging can 

effectively assess the effects of genetic manipulation on renal function and dysfunction. 

The optical cryoimaging technique including two different macroscopic and microscopic 

configurations provides a useful tool for the analysis of the cellular redox states of the 

kidney, as well as structural changes in various disease models. 
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5.2 Future work 

The capabilities of the cryoimaging system are essential for 3D imaging of 

biological studies. This system could be improved in the future by enhancement of high 

resolution imaging at cellular and sub-cellular resolutions. In terms of instrumentation, 

the next step to improve the following generation of the cryoimaging system would be to 

add an active optical table to separate the optical components from mechanical part of the 

instrument. In this way, the vibrations caused by the freezer's compressor will not affect 

the quality of the image acquisition in the high resolution imaging setup. We can also 

design a more robust enclosure for the optical components in order to eliminate the 

ambient lights. 

In terms of image processing, a productive step would be to extend the automated  

segmentation algorithm to 3D using  active contour method to quantify regional injury in 

salt sensitive kidneys.  An image processing algorithm should be developed to quantify 

the variation of vessel coverage due to injuries such as HHT-1. In addition, the Nox4 

gene is highly expressed within the endothelium and contributes to ROS production. It 

has been shown that endogenous Nox4 protects the vasculature during ischemic or 

inflammatory stress [47, 111]. The future direction could be to use a cryomicroscopy 

setup to evaluate the protective vascular function of Nox4 in the kidneys at higher 

resolutions.  
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