
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2015

Optimal Cyclic Control of a Buffer Between Two
Consecutive Non-Synchronized Manufacturing
Processes
WenHuan Hsieh
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Human Resources Management Commons, and the Operational Research Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Hsieh, WenHuan, "Optimal Cyclic Control of a Buffer Between Two Consecutive Non-Synchronized Manufacturing Processes"
(2015). Theses and Dissertations. 955.
https://dc.uwm.edu/etd/955

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/633?utm_source=dc.uwm.edu%2Fetd%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=dc.uwm.edu%2Fetd%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/955?utm_source=dc.uwm.edu%2Fetd%2F955&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

OPTIMAL CYCLIC CONTROL OF A BUFFER BETWEEN TWO

CONSECUTIVE NON-SYNCHRONIZED MANUFACTURING PROCESSES

by

Wen-Huan Hsieh

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Engineering

at

The University of Wisconsin-Milwaukee

August 2015

ii

ABSTRACT

OPTIMAL CYCLIC CONTROL OF A BUFFER BETWEEN TWO

CONSECUTIVE NON-SYNCHRONIZED MANUFACTURING

PROCESSES

by

Wen-Huan Hsieh

The University of Wisconsin-Milwaukee, 2015

Under the Supervision of Professor Matthew E.H. Petering

 This thesis presents methods for efficiently controlling a buffer that is located

between two non-synchronized manufacturing processes. Several machines with different

cycle times and/or batch sizes perform each manufacturing process. The overall operation

cycles every T time units. The first objective of the problem is to minimize the average

buffer inventory level during one cycle. The second objective is to minimize the

maximum inventory level observed at any point during the cycle. This new optimization

problem has not been previously considered in the literature. An integer program is

developed to model this problem. In addition, two heuristic methods—a simulated

annealing algorithm and random algorithm—are devised for addressing this problem.

Extensive experiments are conducted to compare the performance of four methods for

attacking this problem: pure integer programming using the solver CPLEX; integer

programming where CPLEX is initialized with a feasible solution; simulated annealing;

and a random algorithm. The advantages and disadvantages of each method are discussed.

 Keywords: buffer control; cyclic scheduling; just-in-time; simulated annealing

iii

© Copyright by Wen-Huan Hsieh, 2015

All Rights Reserved

iv

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Research objective .. 2

1.3 Contribution of the thesis .. 2

CHAPTER 2: LITERATURE REVIEW .. 5

2.1 Cyclic inventory systems .. 6

2.2 Just-in-time inventory theory .. 7

2.3 Buffer control .. 10

2.4 Simulated annealing algorithms .. 11

CHAPTER 3: PROBLEM DESCRIPTION AND MATH MODEL 13

3.1 Problem description .. 13

3.2 Illustrative example ... 14

3.3 Math model ... 17

3.4 Math model explanation ... 20

CHAPTER 4: NECESSARY AND SUFFICIENT CONDITIONS FOR PROBLEM

FEASIBILITY ... 21

4.1 Computation of secondary parameters .. 21

4.2 Necessary and sufficient conditions for problem feasibility....................... 21

4.3 Method for automatically constructing a feasible solution 22

4.4 Tightening the mathematical formulation ... 29

CHAPTER 5: FOUR SOLUTION METHODS ... 32

5.1 Integer programming using CPLEX ... 32

5.2 CPLEX initialized with a feasible solution ... 33

v

5.3 Simulated annealing algorithm ... 34

5.4 Random algorithm .. 37

CHAPTER 6: COMPUTATIONAL RESULTS .. 38

6.1 Generating problem instances ... 38

6.2 Software settings, hardware settings, and termination criteria 40

6.3 Simulated annealing algorithm settings .. 40

6.4 Results for easy problem instances ... 50

6.5 Results for hard problem instances ... 59

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH 66

REFERENCES ... 67

vi

LIST OF FIGURES

Figure 1-1. Framework of the thesis ... 4

Figure 3-1. System under investigation ... 14

Figure 4-1. Step 1 in procedure for constructing a feasible solution: generate random

demands and supplies ... 24

Figure 4-2. Step 2 in procedure for constructing a feasible solution: reduce supplies

... 25

Figure 4-3. Step 3 in procedure for constructing a feasible solution: build inventory

diagram ... 26

Figure 4-4. Step 4 in procedure for constructing a feasible solution: move x-axis ... 27

Figure 4-5. Step 5 in procedure for constructing a feasible solution: move y-axis ... 28

Figure 5-1. Integer programming procedure initialized with a feasible solution 33

Figure 5-2. Simulated annealing algorithm procedure .. 36

Figure 5-3. Random algorithm procedure ... 37

Figure 6-1. Summary of results for simulated annealing algorithms (objective 1) ... 49

Figure 6-2. Summary of results for simulated annealing algorithms (objective 2) ... 49

Figure 6-3. Avg. value of objective 1 by method (left) and by problem size (right)

(easy instances) ... 56

Figure 6-4. Avg. value of objective 1 achieved for each combination of method and

problem size (easy instances).. 57

Figure 6-5. Avg. value of objective 2 by method (left) and by problem size (right)

(easy instances) ... 58

Figure 6-6. Avg. value of objective 2 achieved for each combination of method and

problem size (easy instances).. 58

Figure 6-7. Avg. value of objective 1 by method (left) and by problem size (right)

(hard instances) ... 63

Figure 6-8. Avg. value of objective 1 achieved for each combination of method and

problem size (hard instances).. 63

Figure 6-9. Avg. value of objective 2 by method (left) and by problem size (right)

vii

(hard instances) ... 64

Figure 6-10. Avg. value of objective 2 achieved for each combination of method and

problem size (hard instances).. 65

viii

LIST OF TABLES

Table 3-1. Illustrative instance #1 ... 16

Table 3-2. Feasible solution for illustrative instance #1 .. 16

Table 3-3. Indices in Math Model #1 .. 18

Table 3-4. Parameters in Math Model #1 .. 18

Table 3-5. Decision variables in Math Model #1 .. 19

Table 4-1. Summary of procedure for automatically generating a feasible solution . 22

Table 4-2. Illustrative instance #2 ... 23

Table 4-3. Example for supporting the proof of Theorem 4-2 30

Table 6-1. Parameter value ranges for the experiments .. 39

Table 6-2. Instance categories considered in the experiments 39

Table 6-3. Simulated annealing algorithm parameter settings 41

Table 6-4. Simulated annealing results with P=1000 and α=0.999 41

Table 6-5. Simulated annealing results with P=100 and α=0.999 43

Table 6-6. Simulated annealing results with P=10 and α=0.999 44

Table 6-7. Simulated annealing results with P=1 and α=0.999 45

Table 6-8. Detailed simulated annealing results with P=1000 and α=0.999 46

Table 6-9. Detailed simulated annealing results with P=100 and α=0.999 47

Table 6-10. Detailed simulated annealing results with P=10 and α=0.999 47

Table 6-11. Detailed simulated annealing results with P=1 and α=0.999 48

Table 6-12. Experimental results for CPLEX without an initial feasible solution

(easy instances) ... 50

Table 6-13. Experimental results for CPLEX with an initial feasible solution (easy

instances)... 51

Table 6-14. Experimental results for the simulated annealing algorithm (easy

instances; same as Table 6-4) .. 52

Table 6-15. Experimental results for the random algorithm (easy instances) 53

Table 6-16. Iteration comparison of random and simulated annealing algorithms ... 54

Table 6-17. Overall experimental results (easy instances) .. 55

ix

Table 6-18. Categories of hard problem instances .. 59

Table 6-19. Results for CPLEX without an initial feasible solution (hard instances)60

Table 6-20. Results for CPLEX with an initial feasible solution (hard instances) 60

Table 6-21. Results for the simulated annealing algorithm (hard instances) 61

Table 6-22. Results for the random algorithm (hard instances) 61

Table 6-23. Overall experimental results (hard instances) .. 62

x

 ACKNOWLEDGMENTS

 I would like to thank the following people for their assistance. First, I would thank

my advisor, Dr. Matthew Petering, for continuous support during my master’s degree

study and this research, and for his patience and immense knowledge. His supervision

helped my research and writing of this thesis.

 Besides my advisor, I would like to thank Dr. Jaejin Jang, Dr. Wilkistar Otieno,

and Dr. Ichiro Suzuki for serving on my thesis committee, and for their insightful

comments and feedback.

 I would also like to thank Dr. Ping-Shun Chen, and UWM Sr. Administrative

Specialist, Elisabeth Warras for their encouragement and assistance. My sincere thanks

also go to Yi-Chen Lin, who supported me to pursue my master’s degree all the way from

Taiwan to the USA.

 Last but not least, I would like to thank my family—my parents and my sister—

for supporting me spiritually throughout the writing of this thesis and my life in general.

1

CHAPTER 1: INTRODUCTION

1.1 Motivation

All industrial systems operate with significant investments in inventory. Inventory is

caused by demands and supplies not being synchronized, which is a basic circumstance

between those who demand and those who supply. That is, inventory always exists.

Demanders typically want goods as soon as possible when they need it. As a result,

suppliers are required to have enough merchandise on hand. However, suppliers often do

not have as much inventory as they want because inventories are connected to cost and

the limited capacities of warehouses.

In a manufacturing environment, there are many ways in which inventory in the

system—also known as work-in-process or WIP—and buffer space between machines

can be managed. As a result, a material requirement planning (MRP) procedure is usually

adopted that generates a production plan which insures that the exact quantity of the right

supplies is available at the desired time. However, in some manufacturing systems the

process times are not synchronized and/or the batch sizes for two consecutive processes

are not the same. For these types of systems, advanced buffer control strategies are

needed. This thesis presents one such advanced buffer control strategy.

 The particular environment considered in this thesis is as follows. Consider a

generic, two-process manufacturing system that produces a single, discrete product. The

product undergoes manufacturing process 1 before undergoing process 2. A set of S

parallel machines (i.e. suppliers) perform manufacturing process 1. A set of D parallel

machines (i.e. demanders) perform manufacturing process 2. A buffer with infinite

capacity is located between the suppliers and demanders. This buffer stores work-in-

process. Time is discretized into time periods (e.g. days). The operations are cyclic,

repeating every T days (i.e. time periods). The demand associated with each demander d

is defined by two parameters—the demand quantity DQd and the demand frequency DFd.

2

Demander d is satisfied as long as he/she can take one batch of at least DQd items from

the buffer every DFd days or more often for all d. The supply associated with each

supplier s is defined by two parameters—the supply quantity SQs and the supply

frequency SFs. Supplier s is capable of delivering a batch of at most SQs items to the

system every SFs days or less often for all s. Assume that supplies come in at the

beginning of the day and are followed immediately by demands. The amount left over

after the demand is taken is held as inventory for the entire day. The timing and batch

sizes for each demander and supplier are decided by the manager of the manufacturing

system. The entire system operates on a T day cycle. The goal is to feasibly satisfy the

demands with the available supplies (i.e. to keep the buffer inventory at least 0 every day)

while minimizing the total and/or maximum inventory held in the buffer over the entire

cycle.

1.2 Research objective

The main objective of this study is to develop and test methods and algorithms that

seek to minimize the total inventory level within the system described above. These

methods will be benchmarked against a less sophisticated method. A secondary objective

of this study is to develop a mathematical formulation of the above problem and to obtain

theoretical insights that (1) relate to problem feasibility and that (2) strengthen the

mathematical formulation.

1.3 Contribution of the thesis

The contributions of this thesis are the following. First, this thesis introduces a new

operational problem that has not been previously considered in the literature. Second, we

present a mathematical formulation of this new problem. Third, we derive some

3

theoretical results concerning problem feasibility and improving the initial mathematical

formulation. Fourth, we present a method for generating feasible solutions for any

problem instance that has a feasible region. Finally, we develop four algorithms for

solving the problem: (1) traditional integer programming using the solver IBM ILOG

CPLEX; (2) integer programming where the solver is given a feasible solution at the

outset; (3) a simulated annealing algorithm; and (4) a simple random algorithm. The

performance of these four methods is compared across a variety of problem categories

and problem sizes. All proposed methods mentioned in this research focus on minimizing

the total and/or maximum inventory held during a cycle.

This study is organized as follows. Section 2 reviews the relevant literatures. Section

3 formally describes the problem; presents an example to illustrate the problem; and

presents a mathematical formulation of the problem. Section 4 introduces theory that can

be used to automatically generate feasible solutions and strengthen the mathematical

formulation. Section 5 introduces four methods for solving the problem. Section 6

presents and discusses the results of experiments that compare the performance of these

four methods. Section 7 summarizes this research and proposes future extensions of this

work. Figure 1-1 shows the flow of this thesis.

4

Introduction

(Chapter 1)

Problem description

and math model

(Chapter 3)

Random

algorithm

(Section 5.4)

 Simulated

annealing

(Section 5.3)

Experimental results

and discussion

(Chapter 6)

Summary and

future research

(Chapter 7)

Literature review

(Chapter 2)

Theoretical results;

generating feasible

solutions

(Chapter 4)

 CPLEX

initialized with a

feasible solution

(Section 5.2)

Integer

programming

using the

CPLEX solver

(Section 5.1)

Figure 1-1. Framework of the thesis

5

CHAPTER 2: LITERATURE REVIEW

The literature relevant to this exploration includes various survey papers on

inventory management; papers that consider cyclic inventory systems, just-in-time (JIT)

inventory theory, and buffer control; and papers that proposed the original simulated

annealing meta-heuristic algorithm for solving various optimization problems.

Major progress in research on supply chain management and inventory management

was made at the end of the 20th century when Harris (1990) derived the Economic order

Quantity (EOQ) formula that specifies the optimal management protocol for certain types

of inventory systems. The EOQ applies when the demand rate is constant. Numerous

researchers have elaborated different variations of this EOQ model in recent decades.

Supply and demand inventory optimization problems have been studied broadly

under stochastic settings using different methodologies. Florian et al. (1980) consider a

class of production planning problems in which known demands have to be satisfied over

a finite horizon at minimum total cost. He points out that the problems are NP-hard and

unlikely to be solvable in polynomial time. Then he proposes several algorithms and the

experimental results are analyzed. Sarker and Parija (1994) consider a manufacturing

system which procures raw materials from suppliers and converts them into finished

products. The paper develops an ordering policy for raw materials to meet the

requirements of a production facility. The objective is to minimize the manufacturing

batch size which determines the total cost for making shipments of the finished products.

The organization of the remainder of this chapter is as follows. Section 2.1 provides

an overview of cyclic inventory systems. Section 2.2 gives a brief review of the literature

on just-in-time (JIT) inventory theory. Section 2.3 reviews the literature on buffer control.

Section 2.4 discusses the literature related to simulated annealing.

6

2.1 Cyclic inventory systems

Graves (1987) describes why cyclic inventory systems are essential: cyclic stock is

the inventory in a manufacturing system that exists because production and ordering

processes are batch operations. In order to reduce the cyclic stock, the batch size of

operations should be reduced. Anticipation stock is the inventory in a manufacturing

system intended to smooth the required production rate in the event of a seasonal demand

peak exceeding system capacity. To reduce the anticipation stock, the production system

must be more closely matched with the cumulative demand placed upon it. Graves

elaborates that inventories are the “excess inventories held beyond the minimum

inventory level that would be possible in a deterministic and incapacitated world.” As a

result, inventory holding is essential because manufacturing systems operate in an

uncertain environment.

 Whybark and Williams (1976) classify four uncertainties of cyclic inventory

systems. The first uncertainty is demand quantity uncertainty. That is, in any given time

period, the quantity required of a given part may be different from the planned

requirement. Demand quantity uncertainty may result from forecasting errors which

require a revision of the master production schedule. The second uncertainty is demand

timing uncertainty. This type of uncertainty is present when the expected demand for a

given part shifts in time. Demand timing uncertainty may result from changes in the

promised delivery date to one or more customers. The third uncertainty is supply quantity

uncertainty. This type of uncertainty is present when the quantity of parts available for

use is different from the planned quantity. Supply quantity uncertainty may result from

unstable yield rates for various in-house manufacturing processes, or from vendors who

fail to deliver a promised quantity of raw materials. The last type of uncertainty is supply

timing uncertainty. This type of uncertainty is present when the expected set of parts is

not available for use exactly when expected. Supply timing uncertainty may result from

7

the variability of in-house production process lead times, or vendors who fail to deliver

raw materials on time.

The problem considered in this thesis considers all four of the above uncertainties,

but does so from a unique standpoint. Instead of considering these four aspects as random

variables, we allow the decision maker to decide these aspects as long as certain

requirements can concerning (1) minimum demand quantity, (2) demand timing, (3)

maximum supply quantity, and (4) supply timing are met.

Dobson and Yano (1994) consider a cyclic inventory scheduling problem in which

there is a constant supply of raw materials and a constant demand for all finished goods.

They use a linear programming formulation to determine the optimal cycle length and

finishing times for a given set of processes. The objective is to find a production

sequence and a cycle length that minimize the average cost per unit time of holding

inventory. They assume that inventory can be held at the beginning of the production line,

the end of the production line, or between any stations on the line. Xu (2004) provides

two approaches to solve a buffer management problem in which demand is uncertain.

The first method is make-to-anticipated-order (MTAO), which combines the benefits of

the make-to-order (MTO) and anticipated order methods. The second approach is called a

postponement and commonality strategy. Mauro (2008) presents a maturity model to

develop inventory and operations planning processes for Honeywell Aerospace. This

model includes three phases. The first phase is the foundational stage where an initial

state with inventory levels based on actual practice is initialized. The second phase,

called the right sizing phase, uses traditional single echelon inventory methods to modify

the stock levels. Finally, in the third phase, the inventory levels are optimized based on

multi-echelon inventory concepts.

2.2 Just-in-time inventory theory

8

There are four major and common methods to approach inventory (i.e. stock) control:

fixed stock level reordering, fixed time re-ordering, economic order quantity, and just-in-

time (JIT) inventory control. The philosophy of just-in-time inventory control is to

minimize inventory and drive it to zero. That is, the suppliers should only produce

exactly the amount required by the demanders. Consequently, the ideal inventory level

will be zero and also it can meet the demanders’ requirements.

Just-in-time philosophy focuses on the importance minimizing inventory uncertainty,

so that the demand quantities and supply quantities match. It is important to realize that

the minimizing of demand and supply uncertainty is the goal of JIT, so that inventory

safety stocks will no longer be necessary.

Much research has been devoted to evaluating the performance of JIT production

systems. Ardalan (1997) and Chu and Shih (1992) use simulations to make evaluations;

nevertheless, some researchers have developed analytical methods. Hay (1988) points out

that the inventory buffers intended to minimize the impact of production process

problems may actually serve to hide these problems from view, and therefore reduce the

company’s likelihood of taking any steps to solve them. Deleersnyder et al. (1989)

analyze a JIT production system using a discrete-time Markov process. Numerical

computations are used to study the effects of the number of kanbans, machine reliability,

demand variability, and safety stock requirements on the performance of the system.

Mitra and Mitrani (1990, 1991) study a multi-stage, serial JIT production system. The

subsystem corresponding to each stage is analyzed precisely and an approximation

algorithm for finding the best kanban discipline is devised using a decomposition

technique.

Wang and Wang (1990) study multi-item JIT production systems using Markovian

queues and determine the optimal numbers of kanbans for serial, merge-, or split-type JIT

production systems. Halim and Ohta (1994) propose an algorithm to solve batch-

scheduling problems to try to minimize inventory cost. In that research, a JIT system is

considered and numerical results are presented. Mascolo et al. (1996) use synchronization

9

mechanisms to break down a kanban-controlled production system into a set of

subsystems, each of which is analyzed using a product-form approximation. An iterative

procedure is developed to determine the performance measures of the overall system.

Dong et al. (2001) present an analysis about the impact of JIT theory on supply chain

management. The authors introduce a rigorous model to understand under which

situations more profit can be achieved using JIT principles. The results show that if

suppliers cooperate with each other, they can successfully implement JIT principles to

everyone’s benefit. Then, they extend the first model via empirical testing. Survey

questionnaires are collected and the authors point out that in a JIT system, supply chain

integration can improve the buyers’ performance, and supplier cooperation can improve

the suppliers’ performance. Furthermore, if the processes of the suppliers are uncertain

and the demand of buyers is certain, or buyers’ firms are larger than those of the suppliers,

JIT principles have a positive influence. Salameh and Ghattas (2001) mention that the

success of the JIT production system lies in the considerable reduction in material

inventories that it can achieve. That is, each phase of inventory is highly connected to the

total cost, so companies want to minimize the total inventory to reduce the cost of

holding inventory. Khan and Sarker (2002) propose an ordering policy for raw materials

to meet the requirements of a production facility. First they estimate production batch

sizes for a JIT delivery system, and then they incorporate a JIT raw material supply

system into the model. A simple algorithm is developed to compute the batch sizes for

both manufacturing and raw material purchasing policies.

Chuah (2004) use three heuristic algorithms, including a taboo search algorithm and

an ant colony optimization algorithm, to solve a general frequency routing (GFR)

problem for a just-in-time supply pickup and delivery system. Matta et al. (2005)

consider two different kanban release policies—an independent policy and a

simultaneous policy—and compare them by approximate analytical methods. Abuhilal et

al. (2006) provide engineering managers with guidelines to choose a cost-effective supply

chain inventory control system. They consider push inventory systems (MRP), pull

10

systems (JIT), and MRP with information sharing. Lee et al. (2009) note that executing a

production plan at high speed still remains a goal for MRP systems. The authors present

the concept of using a computational grid to achieve a breakthrough in MRP performance

under conditions of finite capacity. Later, Iwase and Ohno (2011) perform a

mathematical evaluation of a multi-stage JIT production system with stochastic demand

and limited production capacities. Roy et al. (2012) consider a system where there is a

strong bond between a producer and a buyer. An integrated producer-buyer inventory

model with constant demand and small lot sizes is considered in two different production

environments: an EMQ (economic manufacturing quantity)-based production

environment and a JIT-based production environment. The objective is to minimize the

inventory level.

Overall, the goal of many JIT-related research papers is to solve inventory problems

related to demand and supply imbalance so that inventory levels can be reduced. Having

less inventory on hand can reduce cost. The goal of the models and algorithms introduced

in this thesis are the same.

2.3 Buffer control

 Several papers in the literature investigate buffer control policies within a single

facility. Kneppelt (1984) proposes an option overplanting method which requires buffers

for storage of, and which increase the safety factor of, sub-assemblies and components in

the bill of materials. Newman et al. (1993) argue that companies or factories might be

using various “buffers” such as inventory, lead time, and excess capacity to compensate

for an inequity between production flexibility and the level of uncertainty in the

environment. Buzacott and Shanthikumar (1994) compare using safety stock versus using

safety time in a production system and conclude that using safety time is preferable to

using safety stock if there is a good prediction of future required shipments. McDonald

and Karimi (1997) develop mixed-integer linear programs (MILPs) to minimize the

11

production, inventory, and setup costs for a single facility. Metters (1997) quantifies the

bullwhip effect in a supply chain under three inventory control strategies: triggering a

new order when there is no inventory; triggering a new order whenever the inventory

drops down to the safety stock level; and using a stale safety stock policy. Tang and

Grubbström (2002) propose methods for planning and re-planning the master production

schedule under stochastic demand to attain a favorable inventory situation. Radhoui et al.

(2009) develop a joint quality control and preventive maintenance policy for a randomly

failing production system that occasionally produces non-conforming items. Alfieri and

Matta (2012) develop mathematical programming formulations that can approximately

represent a class of production systems characterized by several stages, limited buffer

capacities, and stochastic production times. Fernandez et al. (2013) presents a nonlinear

integer programming (NIP) formulation for buffer inventory management to reduce peak

electricity consumption without compromising system productivity.

 To sum up, hundreds of outstanding articles on inventory control and buffer

control can be found in the literature. However, there appears to be no article that studies

the same type of system considered in this thesis. In particular, there is no published

article that considers the cyclic control of a buffer that lies between two non-

synchronized manufacturing processes where a single decision maker can decide the

supply frequencies, supply quantities, demand frequencies, and demand quantities as in

the present thesis.

2.4 Simulated annealing algorithms

Simulated annealing is a generic probabilistic methodology for finding the global

optimum to a large (typically combinational) optimization problem characterized by (1) a

huge number of variables; (2) a relatively unconstrained feasible region (where feasible

neighboring solutions can be easily generated), and (3) a complex objective function. The

method of simulated annealing (SA) was pioneered by Metropolis et al. (1953). The

12

name SA comes from annealing in metallurgy which utilizes heating followed by

controlled cooling in order to increase the size of the crystals (and thereby reduce defects)

in various metal parts used in industry. This method, however, did not receive much

attention at the time. After that, Kirkpatrick et al. (1983) applied these ideas and proposed

what we know today as the simulated annealing algorithm.

One feature of SA is that it probabilistically replaces a current solution with a worse

neighboring solution so that the search can jump out of a local optimal solution. Consider

an optimization problem where the goal is to minimize the objective value. Let the

objective value of the current solution be E. Then a perturbation mechanism is applied to

create a candidate (i.e. neighboring) solution that is slightly different than the current

solution. The candidate objective value comes from the neighboring solution. If the

difference between these two corresponding values of the objective values,

 , is less or equal than zero, then the search is continued with the neighboring solution.

Otherwise, if is greater than zero, the inferior neighboring solution is accepted with

probability

 (Kirkpatrick et al., 1983). The parameter P represents the current

temperature, which controls the annealing process and the acceptance probability. The

temperature is gradually cooled as the procedure unfolds. When the temperature is high,

it is easier to accept an inferior neighboring solution; this brings the feature of

diversification. When the temperature is low, there is a lower probability of accepting an

inferior neighboring solution and the search for a final optimal solution intensifies; this

feature is known as intensification.

 Overall, simulated annealing has been shown to be an effective method for

attacking large optimization problems because it combines the features of diversification

and intensification. Simulated annealing is one of the four methods we use to solve the

optimization problem introduced in this thesis.

13

CHAPTER 3: PROBLEM DESCRIPTION AND MATH MODEL

3.1 Problem description

We now formally describe the problem under investigation in this thesis. Consider a

generic, two-process manufacturing system that produces a single, discrete product. The

product undergoes manufacturing process 1 before undergoing process 2. A set of S

parallel machines (i.e. upstream machines, suppliers) perform manufacturing process 1.

A set of D parallel machines (i.e. downstream machines, demanders) perform

manufacturing process 2. A buffer with infinite capacity is located between the S

suppliers (i.e. upstream machines) and D demanders (i.e. downstream machines). This

buffer stores work-in-process, i.e. parts that have completed manufacturing process 1 and

are waiting to start manufacturing process 2. Time is discretized into time periods (e.g.

days). The operations are cyclic, repeating every T days (i.e. time periods). The demand

associated with each demander d is defined by two parameters—the demand quantity

DQd and the demand frequency DFd. Demander d is satisfied as long as he/she can take

one batch of at least DQd items from the buffer every DFd days or more often for all d.

The supply associated with each supplier s is defined by two parameters—the supply

quantity SQs and the supply frequency SFs. Supplier s is capable of delivering a batch of

at most SQs items to the system every SFs days or less often for all s. Assume that

supplies come in at the beginning of the day and are followed immediately by demands.

The amount left over after the demand is taken is held as inventory for the entire day. The

demand timing and batch sizes for each demander are decided by the manager of the

manufacturing system. The supply timing and batch sizes for each supplier are also

decided by the manager of the system. The entire system operates on a T day cycle. The

goal is to feasibly satisfy the demands with the available supplies (i.e. to keep the buffer

inventory at least 0 every day) while minimizing the total and/or maximum inventory

held in the buffer during each cycle.

14

Figure 3.1 depicts this cyclic system. The buffer is indicated by a solid rectangle in

the middle of the diagram. The S suppliers comprising manufacturing process 1—each

with a unique supply quantity SQs and supply frequency SFs—are shown inside the dotted

rectangle on the left. The D demanders comprising manufacturing process 2—each with a

unique demand quantity DQd and demand frequency DFd—are shown inside the dotted

rectangle on the right. As mentioned at the top of the diagram, the overall operation

cycles every T days. The goal is to minimize the average inventory held in the buffer

during a cycle and/or the maximum inventory level achieved at any time during the cycle.

Buffer

(Inventory ≥0

at all times)

Supplier 1
(SF1,SQ1)

Supplier 2
(SF2,SQ2)

Supplier S
(SFS,SQS)

Demander 1
(DF1,DQ1)

Demander 2
(DF2,DQ2)

Demander D
(DFD,DQD)

Operations cycle every T time periods

Manufacturing process 1 Manufacturing process 2

Figure 3-1. System under investigation

3.2 Illustrative example

Tables 3-1 and 3-2 provide an illustration of the problem at hand. The input data for

this example are shown in Table 3-1. In this simple problem we have three demanders

and three suppliers. The demand frequencies for demanders 1, 2, 3 are 3, 2, 6 days

respectively. The demand quantities for demanders 1, 2, 3 are 2, 4, 2 units respectively.

The supply frequencies for suppliers 1, 2, 3 are 2, 5, 3 days respectively. The supply

15

quantities for suppliers 1, 2, 3 are 4, 3, 5 units respectively. The required cycle length is

10 days.

Table 3-2 shows a feasible solution for this problem instance. In this solution,

demander 1 takes 2 items from the buffer on each of the days T3, T5, T7, and T10;

demander 2 takes 4 items on each of days T2, T4, T6, T8 and T10; and demander 3 takes

2 items on each of the days T4 and T10. Note that the batch sizes taken by the

demanders—2, 4, and 2 items respectively—are greater than or equal to the values of

DQ1, DQ2, and DQ3 respectively. Also, the time that elapses between consecutive

demand occurrences never exceeds the values of DF1, DF2, and DF3—3, 2, and 6 days

respectively—for demanders 1, 2, and 3 respectively. In Table 3-2, supplier 1 replenishes

the buffer with 4, 4, 4, 1, and 3 items at the beginning of days T1, T3, T5, T7, and T9;

supplier 2 replenishes the buffer with 3 and 3 items at the beginning of days T2 and T7;

and supplier 3 replenishes the buffer with 4, 3, and 3 items at the beginning of days T1,

T4, and T8. Note that the amount delivered by supplier 1, 2, and 3 never exceeds the

values of SQ1, SQ2, and SQ3—4, 3, and 5 respectively—for suppliers 1, 2, and 3

respectively. Also, the time that elapses between consecutive supply occurrences is never

less (i.e. never more often) than the values of SF1, SF2, SF3—2, 5, and 3 days

respectively—for suppliers 1, 2, and 3 respectively. Note that the operations cycle every

10 days so that day T1 immediately follows day T10. The inventory held in the buffer

during each day is shown in the long row near the bottom of the table. The sum of these

values—61—is the total inventory held during the cycle (i.e. objective 1). The maximum

inventory held at any time—the value of objective 2—is 9 units. The zeroes in Table 3-2

mean that no demand is made or nothing is supplied at that time. The goal is to minimize

objective 1 and/or objective 2. The displayed solution is not optimal and is only one of

thousands of feasible solutions to this problem instance. One can imagine that this type of

problem becomes more difficult to solve to optimality as the number of demanders and

suppliers, and the cycle length, increase. Thus, the goal of this thesis is to find a way to

solve this challenging problem with an efficient method.

16

Table 3-1. Illustrative instance #1

of demanders: 3 #of suppliers: 3

DQ1: 2 DF1: 3 SQ1: 4 SF1: 2

DQ2: 4 DF2: 2 SQ2: 3 SF2: 5

DQ3: 2 DF3: 6 SQ3: 5 SF3: 3

T=10

Table 3-2. Feasible solution for illustrative instance #1

 Time Period (Day)

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Demander 1 0 0 2 0 2 0 2 0 0 2

Demander 2 0 4 0 4 0 4 0 4 0 4

Demander 3 0 0 0 2 0 0 0 0 0 2

Sum up (DI) 0 4 2 6 2 4 2 4 0 8

Supplier 1 4 0 4 0 4 0 1 0 3 0

Supplier 2 0 3 0 0 0 0 3 0 0 0

Supplier 3 4 0 0 3 0 0 0 3 0 0

Sum up (SI) 8 3 4 3 4 0 4 3 3 0

SI-DI 8 -1 2 -3 2 -4 2 -1 3 -8

Inventory

held
8 7 9 6 8 4 6 5 8 0

Objective 1

(Cumulative

inventory)

61

Objective 2

(Maximum

inventory)

9

There are seven major elements that define the feasible solution shown in Table 3-2.

First, a demand start point is the time period in which a demander first initiates a demand.

For example, demander 1's start point is T3. Second, a supply start point is time period in

which a supplier first initiates a supply. For instance, supplier 2’s start point is time

period T2. Third, demand intervals indicate the time that elapses between demand

occurrences beginning with the demand start point. For example, demander 1’s intervals

17

are (2, 2, 3, 3) corresponding to the time between the demand occurrences corresponding

to this demander—T3, T5, T7, and T10. Indeed, T3 and T5 are separated by 2 time

intervals; T5 and T7 are separated by 2 time intervals; T7 and T10 are separated by 3

time intervals; and T10 and T3 are separated by 3 time intervals. Fourth, supply intervals

indicate the time that elapses between supply occurrences beginning with the supply start

point. For example, supplier 2’s intervals are (5, 5). Note that each demander’s intervals

and each supplier’s intervals should sum to T. Also, no demand interval for demander d

should exceed DFd. Also, no supply interval for supplier s should be less than SFs. Fifth,

a supply subtraction epoch indicates where the amount actually supplied is less than a

supplier’s ability to supply. For example, supplier 1 has two subtraction epochs—T7 and

T9—where less than the maximum value of SQ1 (=4) is supplied. Supplier 2, on the other

hand, has no subtraction epochs. Finally, the number of demand (supply) occurrences is

the number of times during the cycle when a demander (supplier) takes a batch of

sufficient size from (supplies a batch to) the buffer. For example, the number of demand

occurrences for demander 1 is 4, and the number of supply occurrences for supplier 3 is 3.

3.3 Math model

The above situation can be modeled as an integer linear program (ILP). The

notations used in this ILP are given in Table 3-3, Table 3-4, and Table 3-5. Table 3-3

displays the indices used in the math model. Index d denotes a demander; index s denotes

a supplier; indices t and u denote a time interval; and index e denotes an objective

function component. Table 3-4 shows the primary parameters used in the math model: the

total number of demanders D; total number of suppliers S; cycle length for the inventory

system T; minimum quantity demand per batch for demander d (DQd); demand frequency

for demander d (DFd); maximum quantity supplied per batch for supplier s (SQs); supply

frequency for supplier s (SFs); and weight for objective function component e (We). For

example, when W1 equals 1 and W2 equals zero, it means that the sole objective is to

18

minimize the total inventory level. Table 3-5 displays the decision variables in the math

model. SYNs,t is a binary variable that indicates if supplier s supplies a batch at the

beginning of time interval t or not. SAmts,t is an integer variable that decides the amount

supplied by supplier s at the beginning of time interval t. DYNd,t is a binary variable that

indicates if demander d demands a batch of sufficient size at the beginning of time

interval t or not. DAmtd,t is an integer variable that decides the amount demanded by

demander d at the beginning of time interval t. It is the inventory on hand during time

interval t. IMax is the maximum interval level observed during the entire cycle.

Table 3-3. Indices in Math Model #1

d demander (d = 1 to D)

s supplier (s = 1 to S)

t, u time interval (t, u = 1 to T)

e index of the objective function (e = 1, 2)

Table 3-4. Parameters in Math Model #1

PRIMARY PARAMETERS

T Cycle length for the inventory system (integer, > 0).

D Number of demanders (integer, >0).

S Number of suppliers (integer, >0).

DQd Minimum quantity demand per batch for demander d (integer, >0).

DFd Demand frequency for demander d (integer, >0, ≤T). Maximum number of days

between consecutive batches of sufficient size taken by demander d.

SQs Maximum quantity supplied per batch for supplier s (integer, > 0).

SFs Supply frequency for supplier s (integer, > 0, ≤T). Minimum number of days between

consecutive batches supplied by supplier s.

We Weight for index e of the objective function (real, ≥0)

SECONDARY PARAMETERS (Derived parameters)

TotalD

TotalS

Minimum total quantity that is demanded during the cycle (integer, >0).

Maximum total quantity that can be supplied during the cycle (integer, >0).

19

Table 3-5. Decision variables in Math Model #1

 = 1 if supplier s supplies a batch at the beginning of time interval t (binary).

 Amount supplied by supplier s at the beginning of time interval t (integer, ≥ 0).

 = 1 if demander d takes a batch of sufficient size at the beginning of day t (binary).

 Amount demanded by demander d at the beginning of time interval t (integer, ≥ 0).

 Inventory on hand during time interval t (integer, ≥ 0).

IMax Maximum inventory during the cycle (integer, ≥ 0).

Math Model #1:

Minimize: 1 2

1

() ()()
T

t

t

W I W IMax

 (1)

Subject to: tI IMax t (2)

tsSYNSQSAmt tssts))((,, (3)

 tdDYNDQDAmt tddtd))((,, (4)

 tsSYN
sSFt

tu

Tus

 1
1

1)mod)1((, (5)

 tdDYN
dDFt

tu

Tud

 1
1

1)mod)1((, (6)

D

d

d

S

s

sT DAmtSAmtII
1

1,

1

1,1 (7)

 TttDAmtSAmtII
D

d

td

S

s

tstt

 2:
1

,

1

,1 (8)

20

 0TI (9)

3.4 Math model explanation

In Math Model #1, the first objective is to minimize the total item-days of inventory

held over the entire cycle of T days, and the second objective is to minimize the

maximum inventory level achieved at any time during the cycle (1). Constraint (2)

confirms that each inventory level will not exceed the maximum inventory level.

Constraint (3) ensures that the amount supplied by supplier s cannot exceed SQs on any

given day and that supplier s cannot supply anything at the beginning of day t if the

variable SYNs,t = 0. Constraint (4) ensures that the amount demanded by demander d is at

least DQd when DYNd,t = 1 and is at least 0 when DYNd,t = 0. Constraint (5) ensures that

at most one batch is supplied by supplier s during any SFs-day period. Constraint (6)

ensures that at least one batch of sufficient size is taken by demander d during any DFd-

day period. Constraints (7-8) ensure that the inventory on hand during each time interval

is properly computed. Constraint (9) requires that no inventory be on hand during the

final time interval. This constraint eliminates symmetries and redundant solutions that are

cycles of each other.

21

CHAPTER 4: NECESSARY AND SUFFICIENT CONDITIONS FOR

PROBLEM FEASIBILITY

4.1 Computation of secondary parameters

The secondary parameters TotalD and TotalS from Table 3-4 are computed as

follows.

1

()() where .
D

d d d

d d

T
TotalD NumD DQ NumD d

DF

 (10)

1

()() where .
S

s s s

s s

T
TotalS NumS SQ NumS s

SF

 (11)

 As stated in Table 3-4, TotalD is minimum total quantity that is demanded during

the cycle (integer, >0). Also, TotalS is maximum total quantity that can be supplied

during the cycle (integer, >0). NumDd is minimum number of demand occurrences for

demander d during the cycle. It equals the smallest integer greater than or equal to T

divided by DFd. Also, NumSs is the maximum number of replenishments (i.e. supply

occurrences) made by supplier S during the cycle. It equals the largest integer less than or

equal to T divided by SFs.

4.2 Necessary and sufficient conditions for problem feasibility

The following theorem provides clarity on the issue of problem feasibility.

Theorem 4-1: The problem is feasible if and only if TotalS ≥ TotalD.

Proof: If we sum up constraint (7) and all constraints of type (8) in Math Model #1, we

arrive at the following:

22

D

d

T

t

td

S

s

T

t

ts DAmtSAmt
1 1

,

1 1

, (12)

In other words, the total amount supplied during the entire cycle should equal the total

amount demanded. If TotalS < TotalD, the above requirement cannot met and the

problem is infeasible.

Next, we observe that whenever the maximum total supply quantity TotalS is equal

to or greater than the minimum total demand quantity TotalD, we can always construct a

feasible solution. Section 4.3 will present a method to generate such a solution.

4.3 Method for automatically constructing a feasible solution

In this section, we present a method to automatically generate a random feasible

solution to Math Model #1 wherever TotalS ≥ TotalD. This method is summarized in

Table 4-1.

We use the problem instance shown in Table 4-2 to illustrate this method. Assume

that there are six demanders and six suppliers and their requirements/capabilities are

shown in Table 4-2.

Table 4-1. Summary of procedure for automatically generating a feasible solution

Step Explanation

1 Generate random demand occurrences and supply occurrences

2 Reduce supplies

3 Build inventory diagram

4 Move X-axis equal to the lowest inventory level

5 Move Y-axis so the final inventory value is 0

23

Table 4-2. Illustrative instance #2

of demanders: 6 #of suppliers: 6

DF1: 3 (NumD1=6) DQ1: 2 SF1: 9 (NumS1=1) SQ1: 7

DF2: 7 (NumD2=3) DQ2: 4 SF2: 8 (NumS2=2) SQ2: 6

DF3: 6 (NumD3=3) DQ3: 2 SF3: 6 (NumS3=2) SQ3: 9

DF4: 5 (NumD4=4) DQ4: 2 SF4: 7 (NumS4=2) SQ4: 4

DF5: 3 (NumD5=6) DQ5: 1 SF5: 5 (NumS5=3) SQ5: 9

DF6: 4 (NumD6=5) DQ6: 7 SF6: 7 (NumS6=2) SQ6: 4

T=17

 In step 1, we generate random demand occurrences and supply occurrences that

satisfy constraints (3-6) in Math Model #1. All supplies and demands need to be guided

by each quantity and frequency. To satisfy constraints (4) and (6), a random demand start

point between 1 and T is selected for each demander. Then, random demand intervals are

generated for each demander so as to agree with constraint (6). In particular, for each d,

we let demander d’s demand intervals be a set of NumDd random positive integers that

sum to T, each of which is ≤ DFd. The amount demanded by demander d for each of

his/her demand occurrences is set equal to DQd for all d. To satisfy constraints (3) and (5),

a random supply start point between 1 and T is selected for each supplier. Then, random

supply intervals are generated for each supplier so as to agree with constraint (5). In

particular, for each s, we let supplier s’s supply intervals be a set of NumSs random

positive integers that sum to T, each of which is ≥ SFs. The amount supplied by supplier s

for each of his/her supply occurrences is set equal to SQs for all s. Overall, we randomly

arrange each demander’s demand intervals and supplier’s supply intervals within T cycle

days and make sure that the intervals do not violate the demand and supply frequencies

specified by DFd and SFs. Figure 4-1 shows the result of the above process applied to

Illustrative Instance #2. We call this item an initial supply and demand table. Note that

the total amount supplied in Figure 4-1 is 80 units per cycle and the total amount

demanded in the Figure 4-1 is 79 units per cycle. That is, condition (12) is not satisfied.

24

S1

S2

S3

S4

S5

S6

D1

D2

D3

D4

D5

D6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

7

9

9

4

6

4

9

9

4

9

4

6

2 2 2 2 2 2

4

2

2

1

7

1

7

2

2

4

1

7

1

2

2

7

4

2

11

7

Total amount supplied: 80

Total amount demanded: 79
Figure 4-1. Step 1 in procedure for constructing a feasible solution: generate random demands and supplies

 In step 2, we reduce some of the supply amounts until the total amount supplied

equals the total amount demanded. In other words, if the total supply quantity value is

greater than total demand quantities, then we subtract some surplus from some supply

occurrences to meet the total demand quantities. In this step we keep randomly deleting a

random unit of supply until the total amount supplied during the cycle equals the total

amount demanded during the cycle. After this, we obtain a balanced supply and demand

table, as shown in Figure 4-2. In this table, condition (12) is met. We then sum up the

total amount supplied in each time interval and the total amount demanded in each time

interval (bottom of Figure 4-2).

25

S1

S2

S3

S4

S5

S6

D1

D2

D3

D4

D5

D6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

6

9

9

4

6

4

9

9

4

9

4

6

2 2 2 2 2 2

4

2

2

1

7

1

7

2

2

4

1

7

1

2

2

7

4

2

11

7

Supply Sum up

Demand Sum up

15 9 4 6 4 9 0 9 0 4 9 10 0 0 0 0 0

18 0 0 3 7 2 5 4 7 3 2 0 12 0 4 5 7

Total amount supplied: 79

Total amount demanded: 79

Figure 4-2. Step 2 in procedure for constructing a feasible solution: reduce supplies

 In step 3, we first compute the net amount supplied (amount supplied minus

amount demanded) during each time period. This is displayed in the “Balance” row in

Figure 4-3. Then, we use these values to compute the inventory on hand during each time

interval in the cycle. This is displayed in the “Inventory” row in Figure 4-3. Then, we

draw an initial inventory diagram that shows the inventory level over the entire cycle.

The diagram helps us check for errors or mistakes. Figure 4-3 shows the results.

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

-1

-2

-3

21

22

23

24

25

26

27

28

29

30

Inventory -3 6 10 13 10 17 12 17 10 11 18 28 16 16 12 7 0

Balance -3 9 4 3 -3 7 -5 5 -7 1 7 10 -12 0 -4 -5 -7

Figure 4-3. Step 3 in procedure for constructing a feasible solution: build inventory diagram

 In step 4, we compute the lowest inventory value. Then we subtract the lowest

inventory value observed during the cycle from every inventory value in the cycle. A new

inventory diagram is then created (see Figure 4-4).

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

-1

-2

-3

21

22

23

24

25

26

27

28

29

30

31

Inventory 0 9 13 16 13 20 15 20 13 14 21 31 19 19 15 10 3
Figure 4-4. Step 4 in procedure for constructing a feasible solution: move x-axis

In step 5, according to constraint (9) in Math Model #1, the last time period of T

should not have any inventory on hand. Consequently, we use the feature of cyclic

systems so that we can move the entire diagram horizon around until the zero phase

occurs during the last time period (T) as shown in Figure 4-5. Figure 4-5 is the final

inventory diagram corresponding to the balanced supply and demand table shown in

Figure 4-2. It satisfies all constraints in Math Model #1. Then we look at the inventory

levels and compute the two objective values. In this example, objective 1’s value is 251

units and objective 2’s value is 31 units.

28

The above procedure is utilized within three of the four solution methods presented

in the next chapter.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

0

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

-1

-2

-3

21

22

23

24

25

26

27

28

29

30

31

Inventory 09 13 16 13 20 15 20 13 14 21 31 19 19 15 10 3
Figure 4-5. Step 5 in procedure for constructing a feasible solution: move y-axis

29

4.4 Tightening the mathematical formulation

Math Model #1 can be tightened to allow better solutions to be obtained in the same

or less time. The following theorem provides the basis for this tightening.

Theorem 4-2: There always exists an optimal solution to Math Model #1 in which DAmtd,t

equals either 0 or DQd for all d and all t. In other words, there exists an optimal solution

in which the demands are just barely satisfied (i.e. the demands are exactly met, i.e. the

demand quantities are never exceeded).

Proof: We show it would be absurd for either (i) 0 < DAmtd, t < DQd or (ii) DAmtd, t >

DQd for any (d, t). Note that, in both cases (i) and (ii), extra units are demanded but these

“extra demands” are not helping to satisfy any constraints in Math Model #1 beyond what

the values (i) 0 and (ii) DQd would accomplish respectively. Consider any feasible

solution Z in which one or more “extra units of demand” in the form of (i) or (ii) exist.

From this solution, we can generate another solution Z' in which DAmtd, t = 0 or DQd for

all d and all t such that the value of objective 1 for Z' is at least as good as that for Z and

the value of objective 2 for Z' is at least as good as that for Z. Here is how. In solution Z,

consider each “extra unit of demand” one at a time. Delete each such “extra unit of

demand”, and delete one unit of supply occurring during the same time interval (if

possible) or the time interval that is earlier than and as close as possible to this time

interval. The resulting solution Z is still feasible and has objectives 1 and 2 at least as

good as before.

Table 4-3 shows an example of this process. The top half of the table shows a

feasible solution Z for illustrative instance #1 with no “extra units of demand.” The value

of objective 1 (2) for this solution is (). The bottom half of the table shows feasible

solution Z'. for this instance that is obtained using the above process. The values in bold

have been changed. Note that the value of objective 1 (2) for solution Z’ is (), which is at

least as good as the respective value for Z.

30

Table 4-3. Example for supporting the proof of Theorem 4-2

(Z')
Time Period (Day)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Demander 1 0 0 2 0 2 0 2 0 0 2

Demander 2 0 4 0 4 0 4 0 4 0 4

Demander 3 0 0 0 2 0 0 0 0 0 2

Sum up (DI) 0 4 2 6 2 4 2 4 0 8

Supplier 1 4 0 4 0 4 0 1 0 3 0

Supplier 2 0 3 0 0 0 0 3 0 0 0

Supplier 3 4 0 0 3 0 0 0 3 0 0

Sum up (SI) 8 3 4 3 4 0 4 3 3 0

SI-DI 8 -1 2 -3 2 -4 2 -1 3 -8

Inventory held 8 7 9 6 8 4 6 5 8 0

Objective 1

(Cumulative

inventory)
61

Objective 2

(Maximum

inventory)

9

(Z)
Time Period (Day)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Demander 1 0 0 2 0 2 0 2 0 0 2

Demander 2 0 4 0 4 0 5 0 4 0 4

Demander 3 0 0 0 2 0 0 0 0 0 2

Sum up (DI) 0 4 2 6 2 5 2 4 0 8

Supplier 1 4 0 4 0 5 0 1 0 3 0

Supplier 2 0 3 0 0 0 0 3 0 0 0

Supplier 3 4 0 0 3 0 0 0 3 0 0

Sum up (SI) 8 3 4 3 5 0 4 3 3 0

SI-DI 8 -1 2 -3 3 -5 2 -1 3 -8

Inventory held 8 7 9 6 9 4 6 5 8 0

Objective 1

(Cumulative

inventory)
62

Objective 2

(Maximum

inventory)

9

 Theorem 4-2 allows us to simplify and tighten Math Model #1 to remove portions

of the feasible region that do not include solution Z'. In particular, we can compute the

total amount that is demanded per cycle (equal to the total amount supplied per cycle) at

the outset prior to solving the problem. Let TotalD denote this quantity. Then the

following math model can be used instead of Math Model #1 as a correct formulation of

this problem.

31

Math Model #2:

(1), (2), (3), (5), (6), (7), (8), (9) from Math Model #1

tdDYNDQDAmt tddtd))((,,

 (4')

TotalDDAmt
D

d

T

t

td
 1 1

, (13)

TotalDSAmt
S

s

T

t

ts
 1 1

, (14)

In Math Model #2, constraint (4') specifies that the amount demanded should equal

0 or DQd in all cases. Also, constraints (13-14) ensure that both the total amount supplied

in the cycle and the total amount demanded in the cycle equal the parameter TotalD

(Table 3-4 and equation (10)) and no more. From this point onwards, all discussion of

math models concerns Math Model #2. Thus, Math Model #2 is the basis of the math-

programming-related methods and experiments described in Sections 5.1, 5.2, and 6.

32

CHAPTER 5: FOUR SOLUTION METHODS

This section describes the various procedures used in the computational study.

Overall, a total of four algorithms (i.e. methods) were developed to solve Math Model #2.

The first method is pure integer programming using the solver CPLEX. The second

method is CPLEX initialized with a feasible solution. The third method is simulated

annealing (SA). The fourth method is a random algorithm that provides a benchmark for

the SA method.

The procedure from Section 4.3 (which automatically generates a random feasible

solution) assists three of the above solution methods. First, it provides the initial feasible

solution for the integer programming solver CPLEX. Second, it is embedded within the

simulated annealing method. Finally, it is the core of the random algorithm.

5.1 Integer programming using CPLEX

IBM ILOG CPLEX 12.5 is an advanced integer linear programming (ILP) solver

that has the ability to efficiently solve problems with thousands of integer variables and

tens of thousands of constraints as long as the constraints and objective function are

linear. The CPLEX solver uses a combination of branch and bound techniques, cutting

plane algorithms, and heuristics, in an attempt to find the best feasible solution to an ILP

within the minimum time. To use this advantage, we formulated Math Model #2 as an

ILP within the Microsoft Visual C++ 2010 environment, and we used protocols from the

IBM ILOG Concert Technology libraries to allow C++ to cooperate with the CPLEX

solver.

33

5.2 CPLEX initialized with a feasible solution

 We also combined the method for generating a feasible solution with the CPLEX

solver, so that CPLEX can have a better chance to obtain a better result. The procedure of

this method is shown in Figure 5-1. First, we generate a random feasible solution by the

method proposed in Section 4.3. Then we collect the values of the DYN, DAmt, SYN, and

SAmt variables and feed them as a start point for the CPLEX solver. After doing this, we

expect the CPLEX solver to able to find an optimal solution more quickly because

CPLEX will not waste time searching for an initial feasible solution or for solutions

whose objective values are worse than the randomly generated initial feasible solution.

Start

Generate a random feasible solution

using method from Section 4.3 .

Input the feasible solution to

CPLEX.

Time bound or

iteration bound

reached?

Output the best solution found.

End

CPLEX searches for better solutions

Yes

No

Figure 5-1. Integer programming procedure initialized with a feasible solution

34

5.3 Simulated annealing algorithm

 The procedure of the simulated annealing (SA) algorithm developed in this thesis

is presented as follows and the procedure is shown in Figure 5-2. An initial feasible

solution is generated by the method described in Section 4.3. This solution is entirely

specified by its (1) demand start points, (2) demand intervals, (3) supply start points, (4)

supply intervals, and (5) supply subtraction epochs (see Sections 3-2 and 4-3). The

elaboration of the simulated annealing algorithm proposed in this thesis includes the

following:

(1) Initial Solution

To have an initial solution for the search procedure, we randomly generate an

initial solution. The initial solution is guaranteed to be feasible because it follows

the protocol from Section 4.3.

(2) Neighbor generation

Five neighborhoods are used in the global search. In the first neighborhood

structure, one or more demand start points are changed to new random values

between 1 and T. In the second neighborhood structure, the demand intervals are

changed to new, random values for one or more demanders. In the third

neighborhood structure, one or more supply start points are changed to new

random values between 1 and T. In the fourth neighborhood structure, the supply

intervals are changed to new, random values for one or more suppliers. In the fifth

neighborhood structure, the supply subtraction epochs are changed to new

randomly selected values. The probability of using neighborhood #5 is

(min{2E,20})% where E=TotalS-TotalD. The probability of using each of the

neighborhoods #1-#4 is ((100-(probability of using neighborhood #5))/4)%. The

procedure from Section 4.3 is then used to construct a neighboring solution, based

35

on the demand start points, demand intervals, supply start points, supply intervals,

and supply subtraction epochs of the neighboring solution.

(3) Acceptance probability

According to the principles of simulated annealing, when the neighboring solution

is worse than the current solution, the probability of accepting the neighbor

𝑃𝑟𝑜𝑏 𝑎𝑐𝑐
−

𝑃 , where P denotes the control temperature and △ denotes the

change in the objective value from the current to the neighboring solution. A

worse neighbor will be accepted when 𝛾 < 𝑃𝑟𝑜𝑏 𝑎𝑐𝑐 , where 𝛾 is a

uniformly distributed random variable between 0 and 1. Note that a neighboring

solution is always accepted if its objective value is equal to or better than that of

the current solution.

(4) Computation of temperatures

From the above discussion, SA exploits the temperature parameter P to control

the diversification and intensification of the search path. Thus, it is important to

choose the initial temperature wisely.

(5) Cooling factor

All SA algorithms use a cooling factor α to gradually lower the temperature. After

every iteration of a SA algorithm, the current temperature P is lowered to the

value α𝑃 where (0<α<1). This gradual cooling is one feature that allows

simulated annealing algorithms to be effective at finding near optimal solutions

when dealing with large problems which contain numerous local optimums. The

value of the cooling factor should be chosen wisely to optimize the performance

of the SA algorithm.

36

(6) Terminating condition

The algorithm terminates when the maximum allowed CPU computation time

expires.

Start

Set the initial temperature P, cooling

factorαand stop condition.

Generate an initial solution using

procedure from section 4.3.

Compute its objective value S.

Move: find a neighbor solution.

Compute its objective value S' .

Calculate objective difference

ΔE=S'-S.

 ΔE<=0

Update current solution. Compute

its objective value S.

Cooling: adjust current temperature.

P=α*P

Stopping condition is

met?

End

Generate a random

number X~U(0, 1)

 X<=e^(-ΔE/P)

No

Yes

Yes

No

Yes

No

If necessary, update best solution

found.

Figure 5-2. Simulated annealing algorithm procedure

37

5.4 Random algorithm

 The final algorithm—the random algorithm—is a simple method that provides a

benchmark for the SA algorithm. Figure 5-3 displays the procedure of the random

algorithm. Basically, the method keeps randomly generating feasible solutions using the

procedure from Section 4.3 until the time limit is reached. After that, the best solution

found and its objective values are outputted.

Start

Generate a random feasible solution

using method from Section 4.3

If necessary, update best solution found

Time bound

or iteration bound

reached ?

Output best solution found.

End

Yes

No

Figure 5-3. Random algorithm procedure

38

CHAPTER 6: COMPUTATIONAL RESULTS

This chapter presents and discusses our experiments that compare the performance

of the four methods described in Chapter 5 on several problem instances. This chapter is

organized as follows. In Section 6.1, we introduce the method for generating the problem

instances that are considered in the experiments. Section 6.2 describes the software,

hardware, and algorithm stopping condition used for experimentation. Section 6.3

describes our efforts to calibrate the SA algorithm. The purpose of the calibration is to

decide the values of the initial temperature P and cooling factor α—the two major factors

that impact the searching ability. Section 6.4 and 6.5 present and discuss the experimental

results concerning two types of problem instances. Section 6.4 presents the results for the

easy problem instances. Section 6.5 presents the results for the hard problem instances in

which we force TotalS – TotalD ≤ 10.

6.1 Generating problem instances

To be more comprehensive to this research, we create not only small size problems

but also large size problems. In this manner, we can compare each method’s ability to

solve small size problems versus large problems.

Table 6-1 shows the parameter value ranges used for generating the problem

instances. In all instances, D and S equal 2, 6, 20, or 60. T equals 10, 30, or 100. In each

instance, the demand quantities, demand frequencies, supply quantities and supply

frequencies are random variables from the discrete uniform (DU) distribution within the

ranges displayed in Table 6-1.

39

Table 6-1. Parameter value ranges for the experiments

Parameter Range of possible values # of possible values

D, S 2, 6, 20, 60 4

T 10, 30, 100 3

DQd DU(1, 9) 9

DFd DU(2, 9) 8

SQs DU(1, 9) 9

SFs DU(2, 9) 8

Table 6-2. Instance categories considered in the experiments

Number of demanders (D) and suppliers (S) Length of cycle time (T) Instance category

2 10 d02s02t010

2 30 d02s02t030

2 100 d02s02t100

6 10 d06s06t010

6 30 d06s06t030

6 100 d06s06t100

20 10 d20s20t010

20 30 d20s20t030

20 100 d20s20t100

60 10 d60s60t010

60 30 d60s60t030

60 100 d60s60t100

Table 6-2 displays the problem sizes (i.e. instance categories) that are considered. A

total of 12 instance categories are considered, corresponding to all possible combinations

for the number of demanders and suppliers—2, 6, 20, and 60—and the length of the

cycle—10 days, 30 days, and 100 days. Furthermore, 10 instances are considered in each

category. Thus, a total of 120 instances are considered in the experiments.

40

Two instance difficulty levels are considered in the experiments. For the easy

instances, no particular stipulations are placed on the instances other than the requirement

that they be feasible. In the hard instances, we stipulate that the instances be feasible and

that TotalS – TotalD ≤ 10. This gives the decision maker less flexibility regarding supply

quantities and supply subtraction epochs.

6.2 Software settings, hardware settings, and termination criteria

 All the experiments are coded using the Microsoft Visual C++ 2010 professional

compiler and IBM ILOG CPLEX 12.5 under the Windows 7 operating system and are

executed on a personal computer equipped with an 8-core Intel i7-4770 3.4 GHz CPU

with 16 GB of RAM. All algorithms are required to terminate after 60 seconds of

computation time have elapsed.

6.3 Simulated annealing algorithm settings

 In this subchapter, we attempt to find the best settings for the SA algorithm. The

two main factors in the simulated annealing algorithm are the temperature and cooling

factor. In preliminary experiments, we found out that the SA algorithm can generate

millions of neighboring solutions within the 60 second time limit. As a result, we set the

cooling factor to 0.999 so the temperature will not freeze too early. If the temperature

drops too rapidly, it will increase the chance that the algorithm will become stuck in a

local optimal solution.

 The four values considered for the temperature factor are shown in Table 6-3.

Preliminary experiments will compare the performance of these four options. After

comparison, we will choose the best setting to use in our final experiments.

41

Table 6-3. Simulated annealing algorithm parameter settings

 Level

 factor

1 2 3 4

Temperature (P) 1000 100 10 1

Cooling factor (α) 0.999

Table 6-4. Simulated annealing results with P=1000 and α=0.999

Problem size

Objective

Instance
Avg.

0 1 2 3 4 5 6 7 8 9

d02s02t010
OBJ1 3 0 0 12 1 4 12 4 5 0 4.1

OBJ2 1 0 0 3 1 1 3 4 4 0 1.7

d02s02t030
OBJ1 23 16 16 65 90 0 10 12 55 46 33.3

OBJ2 3 4 2 5 6 0 2 1 6 5 3.4

d02s02t100
OBJ1 310 113 123 380 258 95 168 408 101 204 216

OBJ2 6 3 3 9 6 3 8 9 3 5 5.5

d06s06t010
OBJ1 2 3 2 7 4 1 1 2 0 2 2.4

OBJ2 0 1 0 3 1 1 1 0 0 0 0.7

d06s06t030
OBJ1 32 21 64 37 19 16 50 41 43 46 36.9

OBJ2 3 2 6 4 2 1 3 4 2 3 3

d06s06t100
OBJ1 344 194 351 311 271 315 359 373 369 480 336.7

OBJ2 8 5 10 8 6 7 9 8 8 10 7.9

d20s20t010
OBJ1 2 0 0 0 0 0 0 0 0 6 0.8

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d20s20t030
OBJ1 73 37 40 46 53 38 65 40 35 37 46.4

OBJ2 2 2 2 3 3 4 4 3 4 2 2.9

d20s20t100
OBJ1 337 315 416 429 486 288 417 346 361 428 382.3

OBJ2 9 8 11 10 9 9 9 8 11 10 9.4

d60s60t010
OBJ1 5 0 1 0 1 0 0 1 2 2 1.2

OBJ2 0 1 0 0 1 0 0 0 0 0 0.2

d60s60t030
OBJ1 34 51 27 68 20 60 32 37 36 36 40.1

OBJ2 2 3 3 3 3 3 2 2 3 3 2.7

d60s60t100
OBJ1 398 424 295 328 428 350 483 288 324 424 374.2

OBJ2 12 14 13 13 14 12 15 12 12 12 12.9

42

Table 6-4 shows the results for the SA algorithm on the 120 easy problem instances

when P=1000 and α=0. 999. The first column shows the instance category. For example,

d02s02t010 means this problem has 2 demanders and 2 suppliers with cycle length of 10

days. The second column shows which objective is being considered—objective 1 or

objective 2. Columns 0 to 9 relate to the ten individual instances within each instance

category. The last column shows the average objective value of each problem size. There

are 12 rows in the table. Each row represents a problem size. The values in the table are

the best objective values found by the algorithm within the 60 second time limit.

Table 6-5 shows the results for the SA algorithm on the 120 easy problem instances

when P=100 and α=0. 999. In this setting most of the results are similar to the setting

P=1000 and α=0.999. However, some instances’ objective values are worse than setting

P=1000. The worse situation can be explained by the different initial temperature. In

larger problems such as d20s20t100 and d60s60t100, a lower initial temperature means

that the procedure of searching will freeze earlier. That is, there is a higher chance that

the search will become trapped in a local optimal solution. This helps to explain why the

results for category d20s20t100 with temperature 100 are worse than with temperature

1000 by 13.7%.

Table 6-6 shows the results for the SA algorithm on the 120 easy problem instances

when P=10 and α=0.999. In this setting we see that some instances’ objective values are

different or worse compared to the setting P=1000 and α=0.999. The worse situation can

be explained by the low initial temperature. In larger problems, such as d20s20t100 and

d60s60t100, an initial temperature of 10 means that the procedure of searching will freeze

earlier then when P=1000 and P=100. In that case, the chance that the search procedure

will become trapped in a local optimum is higher.

43

Table 6-5. Simulated annealing results with P=100 and α=0.999

Problem

size
Objective

Instance
Avg.

0 1 2 3 4 5 6 7 8 9

d02s02t010
OBJ1 3 1 0 12 0 4 10 4 5 0 3.9

OBJ2 1 0 0 3 0 1 3 4 4 0 1.6

d02s02t030
OBJ1 18 26 22 65 90 0 9 12 55 46 34.3

OBJ2 3 4 2 5 6 0 2 1 6 5 3.4

d02s02t100
OBJ1 262 126 106 371 252 115 170 352 91 221 206.6

OBJ2 7 3 3 9 6 3 8 9 3 6 5.7

d06s06t010
OBJ1 0 3 0 5 4 1 2 3 0 2 2

OBJ2 0 1 0 1 1 1 0 1 0 0 0.5

d06s06t030
OBJ1 22 23 66 38 16 29 50 41 60 28 37.3

OBJ2 3 2 5 3 2 1 4 4 1 3 2.8

d06s06t100
OBJ1 311 186 447 373 272 332 370 322 328 428 336.9

OBJ2 8 5 10 7 6 7 9 7 8 9 7.6

d20s20t010
OBJ1 1 0 0 0 0 0 0 1 1 0 0.3

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d20s20t030
OBJ1 61 38 44 40 37 42 44 37 41 45 42.9

OBJ2 2 2 3 3 3 3 3 3 3 2 2.7

d20s20t100
OBJ1 386 413 366 498 427 461 443 399 502 453 434.8

OBJ2 7 9 10 10 10 9 11 8 11 9 9.4

d60s60t010
OBJ1 0 0 2 0 4 0 0 3 0 0 0.9

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d60s60t030
OBJ1 53 29 54 55 26 24 62 19 27 32 38.1

OBJ2 2 3 3 2 3 4 3 3 3 3 2.9

d60s60t100
OBJ1 484 471 299 364 414 374 421 319 434 335 391.5

OBJ2 12 10 10 15 12 12 11 13 11 12 11.8

44

Table 6-6. Simulated annealing results with P=10 and α=0.999

Problem

size
 Objective

Instance
Avg.

0 1 2 3 4 5 6 7 8 9

d02s02t010
OBJ1 3 0 0 16 2 5 10 4 5 0 4.5

OBJ2 1 1 0 3 0 1 3 4 4 0 1.7

d02s02t030
OBJ1 18 16 13 65 90 0 14 13 55 50 33.4

OBJ2 3 4 2 5 6 0 2 1 6 5 3.4

d02s02t100
OBJ1 215 129 131 368 259 100 239 432 95 238 220.6

OBJ2 6 3 3 9 6 3 8 9 3 6 5.6

d06s06t010
OBJ1 0 3 0 12 8 1 5 4 1 0 3.4

OBJ2 0 1 0 2 1 1 0 0 0 0 0.5

d06s06t030
OBJ1 35 32 62 47 23 34 88 46 38 47 45.2

OBJ2 2 2 5 4 2 2 5 5 1 3 3.1

d06s06t100
OBJ1 378 238 416 357 318 283 467 429 374 465 372.5

OBJ2 8 5 10 7 6 7 9 6 8 11 7.7

d20s20t010
OBJ1 0 3 0 0 0 0 1 0 0 0 0.4

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d20s20t030
OBJ1 43 48 57 55 35 41 90 26 46 43 48.4

OBJ2 3 2 3 3 2 2 2 2 3 2 2.4

d20s20t100
OBJ1 462 518 479 478 552 411 375 327 562 441 460.5

OBJ2 10 9 9 8 10 8 9 8 11 9 9.1

d60s60t010
OBJ1 1 0 1 1 0 0 0 0 0 0 0.3

OBJ2 0 0 0 1 0 0 0 0 0 0 0.1

d60s60t030
OBJ1 41 107 73 47 44 68 16 48 47 25 51.6

OBJ2 3 3 4 3 3 3 3 2 3 3 3

d60s60t100
OBJ1 629 541 511 636 545 444 604 437 480 536 536.3

OBJ2 13 12 12 14 12 13 13 12 13 12 12.6

Table 6-7 shows the results for the SA algorithm on the 120 easy problem instances

when P=1 and α=0.999. In this setting we see that most instances’ objective values are

worse than when of P=1000, P=100, and P=10. The worse situation can be explained by

the low initial temperature. In most cases, an initial temperature of 1 means that the

procedure of searching will freeze earlier than when P=1000, P=100, and P=10. In that

45

case, the chance that the search procedure will become trapped in a local optimum is

higher.

Table 6-7. Simulated annealing results with P=1 and α=0.999

Problem size Objective
Instance

Avg.
0 1 2 3 4 5 6 7 8 9

d02s02t010
OBJ1 4 1 4 12 4 7 20 6 5 2 6.5

OBJ2 1 1 0 3 1 1 3 4 4 0 1.8

d02s02t030
OBJ1 38 27 14 80 90 0 17 12 60 63 40.1

OBJ2 3 4 2 5 6 1 2 1 6 5 3.5

d02s02t100
OBJ1 274 116 154 375 313 134 202 386 110 225 228.9

OBJ2 6 3 3 9 6 3 8 9 3 6 5.6

d06s06t010
OBJ1 0 3 12 19 7 6 1 11 0 14 7.3

OBJ2 0 1 1 2 0 1 0 1 0 0 0.6

d06s06t030
OBJ1 29 28 56 64 17 84 63 55 33 42 47.1

OBJ2 3 2 6 4 2 2 3 4 3 3 3.2

d06s06t100
OBJ1 429 220 436 398 309 399 455 440 429 388 390.3

OBJ2 8 5 10 7 7 8 9 7 9 10 8

d20s20t010
OBJ1 0 0 0 2 0 2 2 0 0 2 0.8

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d20s20t030
OBJ1 39 80 56 63 54 70 83 50 59 87 64.1

OBJ2 3 3 2 2 2 2 2 2 3 2 2.3

d20s20t100
OBJ1 503 572 596 396 438 377 635 396 638 390 494.1

OBJ2 8 7 11 8 10 9 8 8 11 10 9

d60s60t010
OBJ1 0 0 0 1 0 0 0 0 0 1 0.2

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d60s60t030
OBJ1 67 21 78 43 38 35 34 54 36 58 46.4

OBJ2 3 3 2 3 2 2 2 2 3 3 2.5

d60s60t100
OBJ1 420 499 455 528 798 731 502 494 728 835 599

OBJ2 13 11 12 15 15 12 16 12 12 11 12.9

Table 6-8 shows average total number of iterations, average iteration number when

the best solution is found, and the average number of neighboring solutions accepted for

the experiments from Table 6-4 concerning objective 1 (P=1000 and α=0. 999). In this

46

table, we can see that the average total number of iterations is decreasing as the problem

size increases. For example, for problem sizes d02s02t010, d06s06t010, d20s20t010, and

d60s60t010, there is a trend that when the number of demanders and suppliers goes up

the average total number of iterations that can be completed within the time limit goes

down. On the other hand, when only the cycle length increases, average total number of

iterations will decrease. These observations agree with intuition.

 The other fact we can find out in Table 6-8 is that when the SA algorithm solves

small problems, the best solution can be found earlier in the entire searching process than

for large problems. For example, for problem sizes d02s02t010, d02s02t030, and

d02s02t100 “Avg. best iteration” is increasing with the cycle length. Note in column

“Avg. # accepted” that neighboring solutions are accepted for about 20% of the iterations

for most problem sizes.

 Table 6-8. Detailed simulated annealing results with P=1000 and α=0.999

Problem

size
Avg. total iteration Avg. best iteration Avg. # accepted

d02s02t010 3651886 6095 963330

d02s02t030 2808722 153028 780598

d02s02t100 1543960 210564 262906

d06s06t010 2809549 18404 823578

d06s06t030 1669276 146072 461401

d06s06t100 648196 142713 115775

d20s20t010 1659768 89852 621086

d20s20t030 657810 206895 180783

d20s20t100 196335 93290 43578

d60s60t010 760052 126158 476076

d60s60t030 239104 87170 63956

d60s60t100 51281 30673 15793

Table 6-9 shows the detailed results for the experiments from Table 6-5 (objective 1

only) where P=100 and α=0.999. Here again, we see that the average total number of

iterations is decreasing as the problem size increases. For example, for problem sizes

47

d02s02t010, d06s06t010, d20s20t010, and d60s60t010, there is a trend that when the

number of demanders and suppliers goes up the average total number of iterations goes

down. On the other hand, when only the cycle length increases, the average total number

of iterations will decrease.

 Table 6-9. Detailed simulated annealing results with P=100 and α=0.999

Problem

size
Avg. total iteration Avg. best iteration Avg. # accepted

d02s02t010 3647096 5896 896280

d02s02t030 2811906 50906 832105

d02s02t100 1547149 154081 262175

d06s06t010 2807321 88324 824956

d06s06t030 1674763 342281 448378

d06s06t100 646671 281772 114327

d20s20t010 1620074 53207 478701

d20s20t030 659404 213317 178160

d20s20t100 198025 117554 42966

d60s60t010 750880 179915 456011

d60s60t030 252475 120095 79605

d60s60t100 51812 37694 14188

 Table 6-10. Detailed simulated annealing results with P=10 and α=0.999

Problem

size
Avg. total iteration Avg. best iteration Avg. # accepted

d02s02t010 3580073 3551 895835

d02s02t030 2757993 202027 799997

d02s02t100 1533605 271400 258562

d06s06t010 2788498 36275 789727

d06s06t030 1670562 369609 463702

d06s06t100 646049 257741 110857

d20s20t010 1655042 80868 574303

d20s20t030 656069 233120 174794

d20s20t100 196818 111793 40695

d60s60t010 750423 115795 449765

d60s60t030 239461 81336 67106

d60s60t100 51044 31815 12213

48

Table 6-10 displays the detailed results for the experiments from Table 6-6

(objective 1 only) where P=10 and α=0. 999. Here we can see that the average total

number of iterations is also decreasing as the problem size goes up.

Table 6-11 shows the detailed results for the experiments from Table 6-6 (objective

1 only) where P=1 and α=0. 999. Here we can see that the average number of total

iterations is also decreasing as the problem size goes up.

 Table 6-11. Detailed simulated annealing results with P=1 and α=0.999

Problem

size
Avg. total iteration Avg. best iteration Avg. # accepted

d02s02t010 3628787 1641 954616

d02s02t030 2804909 176304 752671

d02s02t100 1539674 94427 242842

d06s06t010 2799561 157964 818074

d06s06t030 1668477 253513 460714

d06s06t100 645475 111536 111453

d20s20t010 1618086 119283 506098

d20s20t030 656710 263980 174441

d20s20t100 196399 107478 39521

d60s60t010 734746 127221 297833

d60s60t030 220223 88704 51547

d60s60t100 51131 30508 11105

 Figure 6-1 summarizes the performance of the four temperature levels for

objective 1. In most cases, the setting P=1000 and α=0.999 has better performance than

other settings. This is especially true for the large problem sizes such as d20s20t100 and

d60s60t100.

Figure 6-2 summarizes the performance of the four temperature levels for objective

2. In this figure we observe no significant difference in performance between the options.

Based on these results, we decide to use the settings P=1000 and α=0.999 for

comparison with the other three algorithms in Sections 6.4 and 6.5.

49

Figure 6-1. Summary of results for simulated annealing algorithms (objective 1)

Figure 6-2. Summary of results for simulated annealing algorithms (objective 2)

0

100

200

300

400

500

600

700
A

v
g

.
o

b
je

ct
iv

e
v

a
lu

e

Size of instance

Objective 1

1000

100

10

1

0

2

4

6

8

10

12

14

A
v

g
.
o

b
je

ct
iv

e
v

a
lu

e

Size of instance

Objective 2

1000

100

10

1

50

6.4 Results for easy problem instances

Table 6-12 shows the results when CPLEX is called to solve Math Model #2 for the

120 easy problem instances. The first column indicates the problem size. Experiments

consider ten randomly generated problem instances for each problem size.

 Table 6-12. Experimental results for CPLEX without an initial feasible solution (easy instances)

Problem

size
Objective

Instance
Avg.

0 1 2 3 4 5 6 7 8 9

d02s02t10
OBJ1 2 0 0 10 0 4 10 0 5 0

3.1

OBJ2 1 0 0 3 0 1 3 0 4 0
1.2

d02s02t30
OBJ1 0 0 8 65 90 0 0 0 55 34

25.2

OBJ2 0 0 2 5 6 0 0 0 6 5
2.4

d02s02t100
OBJ1 0 0 0 246 18 77 162 342 2 141

98.8

OBJ2 0 0 0 7 2 2 8 8 1 5
3.3

d06s06t10
OBJ1 0 1 0 0 0 0 0 0 0 0

0.1

OBJ2 0 1 0 0 0 0 0 0 0 0
0.1

d06s06t30
OBJ1 0 0 32 0 0 0 0 7 0 0

3.9

OBJ2 0 0 5 0 0 0 0 2 0 0
0.7

d06s06t100
OBJ1 0 0 0 0 0 0 0 0 81 0

8.1

OBJ2 0 0 0 0 0 2 0 3 5 1
1.1

d20s20t10
OBJ1 0 0 0 0 0 0 0 0 0 0

0

OBJ2 0 0 0 0 0 0 0 0 0 0
0

d20s20t30
OBJ1 11 0 0 16 8 0 0 0 0 10 4.5

OBJ2 2 0 1 2 2 0 0 0 0 3 1

d20s20t100
OBJ1 150 210 209 0 0 662 0 355 0 474

206

OBJ2 N/A 18 4496 0 0 25 0 19 0 23 -

d60s60t10
OBJ1 0 0 0 0 0 0 0 0 0 0

0

OBJ2 0 0 0 0 0 0 0 0 0 0
0

d60s60t30
OBJ1 0 0 0 3 0 0 0 0 0 0

0.3

OBJ2 0 6 N/A N/A 0 0 0 6 0 0
-

d60s60t100
OBJ1 N/A 3066 N/A 356 N/A N/A 130 N/A N/A N/A -

OBJ2 N/A 0 N/A N/A N/A N/A 0 N/A N/A N/A
-

N/A: Can't find any feasible solution in 60 seconds

Bold: Optimal solution

51

Each problem instance is considered twice: using objective 1 and using objective 2.

Columns 0 to 9 relate to the ten individual instances within each instance category. The

last column shows the average optimal value across all instances for each problem size

and objective. Numbers in bold denote provably optimal values. The term “N/A” means

that CPLEX was unable to identify a feasible solution within the 1 minute time limit.

Table 6-13. Experimental results for CPLEX with an initial feasible solution (easy instances)

Problem

size
Objective

Instance
Avg.

0 1 2 3 4 5 6 7 8 9

d02s02t10
OBJ1 2 0 0 10 0 4 10 0 5 0 3.1

OBJ2 1 0 0 3 0 1 3 0 4 0 1.2

d02s02t30
OBJ1 0 0 8 65 90 0 0 0 55 34 25.2

OBJ2 0 0 2 5 6 0 0 0 6 5 2.4

d02s02t100
OBJ1 0 0 0 246 18 77 162 342 2 141 98.8

OBJ2 0 0 0 7 2 2 8 8 1 5 3.3

d06s06t10
OBJ1 0 1 0 0 0 0 0 0 0 0 0.1

OBJ2 0 1 0 0 0 0 0 0 0 0 0.1

d06s06t30
OBJ1 0 0 32 0 0 0 0 7 0 0 3.9

OBJ2 0 0 5 0 0 0 0 2 0 0 0.7

d06s06t100
OBJ1 0 0 0 0 0 0 0 23 90 14 12.7

OBJ2 0 0 0 0 0 0 0 4 8 1 1.3

d20s20t10
OBJ1 0 0 0 0 0 0 0 0 0 0 0.0

OBJ2 0 0 0 0 0 0 0 0 0 0 0.0

d20s20t30
OBJ1 0 0 0 16 12 0 0 0 0 13 4.1

OBJ2 1 0 1 2 3 0 0 0 0 4 1.1

d20s20t100
OBJ1 715 452 342 0 0 725 209 302 0 385 313.0

OBJ2 23 29 6 0 0 39 0 14 0 24 13.5

d60s60t10
OBJ1 0 0 0 0 0 0 0 0 0 0 0.0

OBJ2 0 0 0 0 0 0 0 0 0 0 0.0

d60s60t30
OBJ1 0 0 0 15 0 0 0 2 0 0 1.7

OBJ2 0 0 0 58 0 0 0 0 0 0 5.8

d60s60t100
OBJ1 4617 464 1592 3945 1148 1522 6524 1407 4759 755 2673.3

OBJ2 105 43 70 80 159 82 0 47 117 35 73.8

 Bold: Optimal solution

52

Table 6-13 displays the results on the easy problem instance for the second solution

method—CPLEX initialized with a feasible solution. The first column indicates the

problems size. Columns 0 to 9 relate to the ten individual instances within each instance

category. The last column shows the average optimal value across all instances for each

problem size and objective.

Table 6-14 shows the results on the easy instances for the third solution method—

the simulated annealing algorithm with P=1000 and α=0.999. This table is identical to

Table 6-4.

Table 6-14. Experimental results for the simulated annealing algorithm (easy instances; same as Table 6-4)

Problem

size
Objective

Instance
Avg.

0 1 2 3 4 5 6 7 8 9

d02s02t010
OBJ1 3 0 0 12 1 4 12 4 5 0 4.1

OBJ2 1 0 0 3 1 1 3 4 4 0 1.7

d02s02t030
OBJ1 23 16 16 65 90 0 10 12 55 46 33.3

OBJ2 3 4 2 5 6 0 2 1 6 5 3.4

d02s02t100
OBJ1 310 113 123 380 258 95 168 408 101 204 216

OBJ2 6 3 3 9 6 3 8 9 3 5 5.5

d06s06t010
OBJ1 2 3 2 7 4 1 1 2 0 2 2.4

OBJ2 0 1 0 3 1 1 1 0 0 0 0.7

d06s06t030
OBJ1 32 21 64 37 19 16 50 41 43 46 36.9

OBJ2 3 2 6 4 2 1 3 4 2 3 3

d06s06t100
OBJ1 344 194 351 311 271 315 359 373 369 480 336.7

OBJ2 8 5 10 8 6 7 9 8 8 10 7.9

d20s20t010
OBJ1 2 0 0 0 0 0 0 0 0 6 0.8

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d20s20t030
OBJ1 73 37 40 46 53 38 65 40 35 37 46.4

OBJ2 2 2 2 3 3 4 4 3 4 2 2.9

d20s20t100
OBJ1 337 315 416 429 486 288 417 346 361 428 382.3

OBJ2 9 8 11 10 9 9 9 8 11 10 9.4

d60s60t010
OBJ1 5 0 1 0 1 0 0 1 2 2 1.2

OBJ2 0 1 0 0 1 0 0 0 0 0 0.2

d60s60t030
OBJ1 34 51 27 68 20 60 32 37 36 36 40.1

OBJ2 2 3 3 3 3 3 2 2 3 3 2.7

d60s60t100
OBJ1 398 424 295 328 428 350 483 288 324 424 374.2

OBJ2 12 14 13 13 14 12 15 12 12 12 12.9

Bold: Optimal solution

53

Table 6-15 displays the results on the easy instances for the final solution method—

the random algorithm.

 Table 6-15. Experimental results for the random algorithm (easy instances)

Problem

size
Objective

Instance
Avg.

0 1 2 3 4 5 6 7 8 9

d02s02t10 OBJ1 2 0 0 13 0 4 10 4 5 0 3.8

OBJ2 1 0 0 4 0 1 3 2 4 0 1.5

d02s02t30 OBJ1 24 34 34 72 80 6 39 23 55 55 42.2

OBJ2 2 4 4 5 6 1 4 2 6 6 4.0

d02s02t100 OBJ1 342 203 212 452 332 145 253 402 195 280 281.6

OBJ2 7 5 6 10 7 4 8 9 5 6 6.7

d06s06t10 OBJ1 8 9 6 9 6 8 8 2 10 6 7.2

OBJ2 2 2 2 3 2 2 2 1 2 2 2.0

d06s06t30 OBJ1 75 53 102 110 61 75 103 82 82 96 83.9

OBJ2 6 5 9 9 5 6 8 7 6 7 6.8

d06s06t100 OBJ1 610 449 656 604 444 562 606 540 665 776 591.2

OBJ2 13 10 16 14 10 13 15 15 14 18 13.8

d20s20t10 OBJ1 21 20 18 19 14 19 29 14 12 16 18.2

OBJ2 5 6 5 6 3 5 7 4 3 3 4.7

d20s20t30 OBJ1 187 177 195 195 178 174 191 187 177 177 183.8

OBJ2 15 14 13 14 14 16 15 14 16 12 14.3

d20s20t100 OBJ1 1076 1126 1227 1298 1339 1080 1206 1001 1348 1213 1191.4

OBJ2 22 26 28 29 29 25 27 23 29 26 26.4

d60s60t10 OBJ1 47 40 45 52 42 48 48 52 46 44 46.4

OBJ2 10 9 10 10 10 13 9 12 9 11 10.3

d60s60t30 OBJ1 333 374 394 295 399 357 333 330 339 305 345.9

OBJ2 25 28 31 28 29 29 28 29 26 24 27.7

d60s60t100 OBJ1 2198 1963 2022 2117 2007 1878 2291 1923 1959 2037 2039.5

OBJ2 48 40 46 49 48 41 46 46 48 46 45.8

 Bold: Optimal solution

Table 6-16 compares the average number of iterations executed by the random

algorithm and the simulated annealing algorithm. As the table shows, the number of

iterations for the algorithm is higher than for the simulated annealing algorithm. From

this information, we determine that the simulated annealing algorithm’s superiority over

the random algorithm is not due to the total number of iterations it considers, but rather

due to its superior searching ability.

54

Table 6-16. Iteration comparison of random and simulated annealing algorithms

Problem

size
Random SA-1000 *RPD

Avg. total # iterations Avg. total # iterations %

d02s02t010 4962797 3651886 26%

 d02s02t030 3907395 2808722 28%

 d02s02t100 2265827 1543960 32%

 d06s06t010 3914124 2809549 28%

 d06s06t030 2449035 1669276 32%

 d06s06t100 990053 648196 35%

 d20s20t010 2120100 1659768 22%

 d20s20t030 961769 657810 32%

 d20s20t100 292531 196335 33%

 d60s60t010 889318 760052 15%

 d60s60t030 316083 239104 24%

 d60s60t100 68811 51281 25%
 (*Relative Percent Deviation, RPD)

Table 6-17 summarizes the performance of the four methods. It shows the average

objective value achieved by each method for each problem size and objective. Note that

the CPLEX method has some “-” in the table. This means that the CPLEX solver could

not find a feasible solution within given time limit (60 seconds) for one or more instances

in the category.

The overall performance of the four methods is as follows. Interestingly, the first

method—pure CPLEX—generally finds the lowest objective value among all the

methods. Indeed, as shown in Table 6-12, CPLEX finds an optimal solution for the

majority of the 120 easy problem instances that are considered. Interestingly, we can

observe that even if we give a feasible solution to CPLEX as a start point, there is a

decent chance that it will lead to a worse result than using pure CPLEX. However, when

there are 20 or 60 demanders and suppliers and a large cycle length, CPLEX sometimes

cannot find a feasible solution within 60 seconds. For such cases, it is better to use the

second method—CPLEX initialized with a feasible solution—to generate a feasible

solution for CPLEX as an initial start point.

55

It is noteworthy that the simulated annealing algorithm can find much better

solutions than either CPLEX method when there are 60 demanders and 60 suppliers with

a cycle length of 100. However, the SA algorithm generally does not perform as well as

the CPLEX-based methods on the other problem instances. Nevertheless, the SA

algorithm significantly outperforms the random algorithm for the vast majority of

problem sizes.

 Table 6-17. Overall experimental results (easy instances)

Problem

size
Objective

CPLEX w/o

Initial Feas.

Soln.

CPLEX w/

Initial Feas.

Soln.

SA Random

d2s2t10
Objective 1 3.1 3.1 4.1 3.7

Objective 2 1.2 1.2 1.7 1.3

d2s2t30
Objective 1 25.2 25.2 33.3 36.6

Objective 2 2.4 2.4 3.4 3.7

d2s2t100
Objective 1 98.8 98.8 216 263.3

Objective 2 3.3 3.3 5.5 6.6

d6s6t10
Objective 1 0.1 0.1 2.4 4.4

Objective 2 0.1 0.1 0.7 1.5

d6s6t30
Objective 1 3.9 3.9 36.9 67.9

Objective 2 0.7 0.7 3 6.2

d6s6t100
Objective 1 8.1 12.7 336.7 532.9

Objective 2 1.1 1.3 7.9 12.7

d20s20t10
Objective 1 0 0 0.8 15

Objective 2 0 0 0 3.5

d20s20t30
Objective 1 4.5 4.1 46.4 154.4

Objective 2 1 1.1 2.9 12.7

d20s20t100
Objective 1 206 313 382.3 1065.5

Objective 2 - 13.5 9.4 24.2

d60s60t10
Objective 1 0 0 1.2 29.8

Objective 2 0 0 0.2 7.4

d60s60t30
Objective 1 0.3 1.7 40.1 300.4

Objective 2 - 5.8 2.7 23.4

d60s60t100
Objective 1 - 2673.3 374.2 1870.1

Objective 2 - 73.8 12.9 42.1

 Bold: Best performance among the four methods

56

 Figures 6-3 through 6-6 show the overall results to a greater degree of aggregation

than Table 6-17. Figure 6-3 shows the individual impact of the solution method (left) and

problem size (right) on the best value that is found for objective 1. The results for the first

method—pure CPLEX—are not included because it cannot find a feasible solution for

some instances. The second method—CPLEX with an initial feasible solution—generally

has better performance than other methods but it cannot find good feasible solutions for

the d60s60t100 instances so its performance appears slightly worse than SA algorithm in

the figure. Regarding the right side of the figure, note that the objective value goes up as

the number of demanders, suppliers, and/or cycle length increases.

Ran
domSA

C
PLEX

 w
/ I

ni.

1800

1600

1400

1200

1000

800

600

400

200

0

d60
s 60

t1
00

d60
s6

0t
03

0

d6
0s

60
t0

10

d20
s 20

t1
00

d20
s2

0t
03

0

d20
s2

0t0
10

d06
s 06

t1
00

d06
s0

6t
03

0

d06
s0

6t
01

0

d02
s 02

t1
00

d02
s0

2t
030

d02
s0

2t
01

0

Method

M
e
a
n

 o
f

o
b
je

c
ti

ve
 1

Instance category

Main Effects Plot for Objective1

Data Means

Figure 6-3. Avg. value of objective 1 by method (left) and by problem size (right) (easy instances)

 Figure 6-4 illustrates the combined impact of the solution method and problem

size on the best value that is found for objective 1. Here we see that when the number of

demanders and suppliers goes up, the objective value will also go up. The same situation

happens regarding the length of the cycle.

57

Figure 6-5 shows the individual impact of the solution method (left) and problem

size (right) on the best value that is found for objective 2. The results for the first

method—pure CPLEX—are not included because it cannot find a feasible solution for

some instances. The second method—CPLEX with an initial feasible solution—generally

has better performance than other methods but it cannot find good feasible solutions for

the d60s60t100 instances so its performance appears slightly worse than SA algorithm in

the figure. Regarding the right side of the figure, note that the objective value goes up as

the number of demanders, suppliers, and/or cycle length increases.

d6
0s

60
t1

00

d60
s6

0t
03

0

d60
s6

0t
01

0

d20
s 20

t1
00

d20
s 20

t0
30

d20
s2

0t
01

0

d06
s0

6t
100

d06s
06

t0
30

d0
6s

06
t0

10

d02
s0

2t
10

0

d02
s0

2t
03

0

d02
s 02

t0
10

3000

2500

2000

1500

1000

500

0

Instance category

M
e
a
n

 o
f

o
b
je

c
ti

ve
 1

CPLEX w/ Ini.

SA

Random

Method

Interaction Plot for Objective1

Data Means

Figure 6-4. Avg. value of objective 1 achieved for each combination of method and problem size (easy

instances)

Figure 6-6 illustrates the combined impact of the solution method and problem size

on the best value that is found for objective 2. Here we see that when the number of

demanders and suppliers goes up, the objective value will also go up. The same situation

happens regarding the length of the cycle.

58

Ran
domSA

C
PLEX

 w
/ I

ni.

50

40

30

20

10

0

d60
s6

0t
10

0

d60
s6

0t
03

0

d60
s 60

t0
10

d20
s 20

t1
00

d20
s 20

t0
30

d20
s 20

t0
10

d06
s0

6t
10

0

d06
s0

6t
03

0

d06
s0

6t
01

0

d02
s0

2t
100

d02s
02

t0
30

d02s
02

t0
10

Method
M

e
a
n

 o
f

o
b
je

c
ti

ve
 2

Instance category

Main Effects Plot for Objective2

Data Means

Figure 6-5. Avg. value of objective 2 by method (left) and by problem size (right) (easy instances)

d60
s 60

t1
00

d60
s 60

t0
30

d60
s6

0t
01

0

d20
s2

0t
10

0

d20
s2

0t
03

0

d20
s2

0t
01

0

d06
s0

6t
10

0

d06
s0

6t
030

d06s
06

t0
10

d02s
02

t1
00

d02s
02

t0
30

d02s
02

t0
10

80

70

60

50

40

30

20

10

0

Instance category

M
e
a
n

 o
f

o
b
je

c
ti

ve
 2

CPLEX w/ Ini.

SA

Random

Method

Interaction Plot for Objective2

Data Means

Figure 6-6. Avg. value of objective 2 achieved for each combination of method and problem size (easy

instances)

59

6.5 Results for hard problem instances

The results from Section 6.4 show that CPLEX performs quite well on most

problems but CPLEX is not doing so well on the largest (i.e. most difficult) problems.

The purpose of this section is to perform a more detailed analysis of all four solution

methods on more difficult problem instances. Toward this end, we searched for other

factors besides problem size that impact problem difficulty. During this search, we found

that when TotalS is close to TotalD, the problem becomes harder to solve to optimality.

Consequently, five additional sets of problem instances with TotalS - TotalD less than or

equal to 10 were created. Ten instances are considered in each category.

Table 6-18 shows the criteria defing the five categories of problem instances

considered in this section. In all problem instances TotalS – TotalD is less than or equal

to 10 units.

Table 6-18. Categories of hard problem instances

Instance category # of demanders & suppliers Length of cycle (T) TotalS- TotalD

d06s06t030 6 30 ≤ 10

d06s06t100 6 100 ≤ 10

d10s10t010 10 10 ≤ 10

d10s10t030 10 30 ≤ 10

d10s10t100 10 100 ≤ 10

Tables 6-19, 6-20, 6-21, and 6-22 respectively show the results where following

methods are used to solve the hard problem instances: pure CPLEX, CPLEX initialized

with a feasible solution, simulated annealing, and the random algorithm. We can see that

most of the objective values are much higher in these tables than the tables in Section 6.4.

Consider the results for problem size d06s06t30. Section 6.4 also considered the same

problem size d06s06t30 but the average result for objective 1 and objective 2 was much

lower in Section 6.4 than in this section. Indeed, the average value of objective 1 for the

60

pure CPLEX algorithm is 3.9 for the easy problem instances (Table 6-12) but is 30.6 for

the hard problem instances (Table 6-19). This phenomenon can be explained by the

requirement that TotalS – TotalD ≤10 for the hard instances. This requirement limits the

decision maker’s options regarding supplies and supply subtraction epochs.

Table 6-19. Results for CPLEX without an initial feasible solution (hard instances)

Problem size Objective
Instance

Avg.
0 1 2 3 4 5 6 7 8 9

d06s06t30
OBJ1 41 25 45 17 11 14 26 48 33 46 30.6

OBJ2 4 3 6 3 2 2 4 6 6 6 4.2

d06s06t100
OBJ1 373 412 343 243 299 150 275 209 217 303 282.4

OBJ2 11 9 10 8 9 7 11 7 6 9 8.7

d10s10t10
OBJ1 0 0 0 0 0 0 0 0 0 0 0

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d10s10t30
OBJ1 33 9 10 4 20 2 33 31 33 1 17.6

OBJ2 4 3 3 2 3 3 4 3 4 1 3

d10s10t100
OBJ1 373 353 372 381 343 313 447 270 239 359 345.4

OBJ2 10 10 10 11 17 11 13 9 8 11 11

Bold: Optimal solution

Table 6-20. Results for CPLEX with an initial feasible solution (hard instances)

Problem size Objective
Instance

Avg.
0 1 2 3 4 5 6 7 8 9

d06s06t30
OBJ1 41 26 45 23 13 14 30 48 33 46 31.9

OBJ2 4 3 6 4 2 3 4 6 6 6 4.4

d06s06t100
OBJ1 389 380 372 238 266 186 253 268 232 250 283.4

OBJ2 11 11 9 7 9 7 10 7 6 8 8.5

d10s10t10
OBJ1 0 0 0 0 0 0 0 0 0 0 0

OBJ2 0 0 0 0 0 0 0 0 0 0 0

d10s10t30
OBJ1 34 10 10 2 14 8 27 33 27 1 16.6

OBJ2 5 3 3 2 4 3 4 3 5 1 3.3

d10s10t100
OBJ1 371 394 331 306 437 264 419 319 258 329 342.8

OBJ2 11 11 10 9 13 14 11 7 14 7 10.7

Bold: Optimal solution

The results for pure CPLEX (Table 6-19) and CPLEX with an initial feasible

solution (Table 6-20) are very similar. Table 6-21 shows the results for the simulated

annealing algorithm with P=1000 and α=0.999. Table 6-23 shows the overall results for

the hard problem instances. These results show many of the same trends that were

61

observed for the easy instances. In particular, the random algorithm is not performing

well. Also, the SA algorithm performs better than the random algorithm but usually not

as well as the CPLEX-based algorithms.

Table 6-21. Results for the simulated annealing algorithm (hard instances)

Problem size Objective
Instance

Avg.
0 1 2 3 4 5 6 7 8 9

d06s06t30
OBJ1 66 79 70 49 58 51 62 81 72 56 64.4

OBJ2 4 3 6 4 4 5 5 7 7 7 5.2

d06s06t100
OBJ1 433 513 399 335 253 154 330 306 325 306 335.4

OBJ2 11 12 11 7 9 7 8 7 7 9 8.8

d10s10t10
OBJ1 2 5 5 0 2 0 0 1 3 2 2

OBJ2 0 1 0 0 0 0 0 0 1 0 0.2

d10s10t30
OBJ1 71 29 66 39 33 50 45 66 64 29 49.2

OBJ2 3 4 4 3 3 3 3 4 5 3 3.5

d10s10t100
OBJ1 341 324 369 349 450 365 296 351 336 352 353.3

OBJ2 8 8 8 8 9 9 9 6 7 8 8

Bold: Optimal solution

Table 6-22. Results for the random algorithm (hard instances)

Problem size Objective
Instance

Avg.
0 1 2 3 4 5 6 7 8 9

d06s06t30
OBJ1 90 100 97 84 101 96 76 97 108 87 93.6

OBJ2 8 8 9 8 8 8 8 8 8 8 8.1

d06s06t100
OBJ1 483 723 541 529 579 413 504 470 418 465 512.5

OBJ2 12 17 12 12 13 10 11 11 9 10 11.7

d10s10t10
OBJ1 10 11 10 10 8 10 10 11 10 8 9.8

OBJ2 3 3 3 3 2 3 2 3 2 3 2.7

d10s10t30
OBJ1 108 110 104 105 102 125 109 99 121 73 105.6

OBJ2 9 10 10 9 9 10 10 9 10 6 9.2

d10s10t100
OBJ1 593 674 581 694 710 751 791 479 715 690 667.8

OBJ2 13 15 14 15 17 18 19 12 16 17 15.6

Interestingly, there is only one combination of hard instance category and

objective—d10s10t100 with objective 2—in which the SA algorithm outperforms a

CPLEX-based algorithm. This indicates that the SA algorithms advantage over traditional

62

integer programming is mainly limited to the largest problem instances, not the “tight”

instances where TotalS – TotalD ≤10.

Table 6-23. Overall experimental results (hard instances)

Problem size Objective

CPLEX w/o

Initial Feas.

Soln.

CPLEX w/

Initial Feas.

Soln.

SA Random

d06s06t30
Objective 1 30.6 31.9 64.4 93.6

Objective 2 4.2 4.4 5.2 8.1

d06s06t100
Objective 1 282.4 283.4 335.4 512.5

Objective 2 8.7 8.5 8.8 11.7

d10s10t10
Objective 1 0 0 2 9.8

Objective 2 0 0 0.2 2.7

d10s10t30
Objective 1 17.6 16.6 49.2 105.6

Objective 2 3 3.3 3.5 9.2

d10s10t100
Objective 1 345.4 342.8 353.3 667.8

Objective 2 11 10.7 8 15.6

 Bold: Best performance among the four methods

Figure 6-7 shows the individual impact of the solution method (left) and problem

size (right) on the best value that is found for objective 1. This figure shows that the

CPLEX-based methods have better results than other methods. In addition, the pure

CPLEX algorithm performs slightly better on average than the method where CPLEX is

initialized with a feasible solution. Note that the objective value goes up as the number of

demanders and suppliers and the cycle length increase.

Figure 6-8 shows the combined impact of the solution method and problem size on

the best value that is found for objective 1. This figure indicates that the objective value

is higher for problems with a large cycle length than those with a small cycle length.

63

RandomSA

C
PLEX

 w
/ I

ni.

CPLEX

400

300

200

100

0

d10
s1

0t
10

0

d10
s1

0t
03

0

d10
s1

0t
10

d06
s 06

t1
00

d06s
06

t3
0

Method

M
e
a
n

 o
f

o
b
je

c
ti

ve
 1

Instance category

Main Effects Plot for Objective1

Data Means

Figure 6-7. Avg. value of objective 1 by method (left) and by problem size (right) (hard instances)

d10s10t100d10s10t030d10s10t10d06s06t100d06s06t30

700

600

500

400

300

200

100

0

Instance category

M
e
a
n

 o
f

o
b
je

c
ti

ve
 1

CPLEX

CPLEX w/ Ini.

SA

Random

Method

Interaction Plot for Objective1

Data Means

Figure 6-8. Avg. value of objective 1 achieved for each combination of method and problem size (hard

instances)

 Figure 6-9 shows the individual impact of the solution method (left) and problem

size (right) on the best value that is found for objective 2. This figure shows that the SA

64

algorithm’s overall performance is slightly better than the other methods for objective 2.

This is due to its much better performance than the other methods for instance category

d10s10t100. We also observe that the objective value goes up as the number of

demanders and suppliers and the cycle length increase.

Figure 6-10 shows the combined impact of the solution method and problem size on

the best value that is found for objective 2. This figure indicates that the objective value

is higher for problems with a large cycle length than those with a small cycle length.

Overall, the results from Sections 6.4 and 6.5 indicate that traditional integer

programming using the CPLEX solver is a good method for solving this problem.

Simulated annealing can be also useful for solving the largest problems.

RandomSA

C
PL

EX
 w

/ I
ni.

CPLEX

12

10

8

6

4

2

0

d10s
10

t1
00

d10
s1

0t
03

0

d10s
10

t1
0

d06s
06

t1
00

d06
s0

6t
30

Method

M
e
a
n

 o
f

o
b
je

c
ti

ve
 2

Instance category

Main Effects Plot for Objective2

Data Means

Figure 6-9. Avg. value of objective 2 by method (left) and by problem size (right) (hard instances)

65

d10s10t100d10s10t030d10s10t10d06s06t100d06s06t30

16

14

12

10

8

6

4

2

0

Instance category

M
e
a
n

 o
f

o
b
je

c
ti

ve
 2

CPLEX

CPLEX w/ Ini.

SA

Random

Method

Interaction Plot for Objective2

Data Means

Figure 6-10. Avg. value of objective 2 achieved for each combination of method and problem size

(hard instances)

66

CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH

This thesis introduces a new optimization problem to the operations research

literature: optimal cyclic control of buffer between two non-synchronized manufacturing

processes. This problem is formally defined and modeled as an integer linear program

(ILP). Two theorems concerning (1) problem feasibility and (2) tightening the ILP are

proved. Four solution methods are proposed for solving this problem: pure integer

programming using CPLEX, CPLEX initialized with a feasible solution, simulated

annealing, and a random algorithm. These methods are compared in two sets of

experiments.

Results show that traditional integer programming is a good method for attacking

this problem. However, even this method begins to show limitations when facing a large

problem or a problem where the total supply quantity is close to the total demand

quantity. For the largest problems, simulated annealing exhibits better performance than

other methods.

In the future, there are some more aspects that we can consider. This thesis can be

extended in several directions. First, we can consider both objectives simultaneously.

Second, we could incorporate delivery distances and delays into the problem. Finally, the

objective could consider not only the buffer inventory, but also the cost for each supplier

to replenish the buffer. These costs could be different for different suppliers.

67

REFERENCES

Abuhilal, L., Rabadi, G., & Sousa-Poza, A. (2006). Supply chain inventory control: A

comparison among JIT, MRP, and MRP with information sharing using

simulation. Engineering Management Journal, 18(2), 51-57.

Alfieri, A., & Matta, A. (2012). Mathematical programming formulations for approximate

simulation of multistage production systems. European Journal of Operational

Research, 219(3), 773-783.

Ardalan, A. (1997). Analysis of Local Decision Rules in a Dual‐Kanban Flow Shop.

Decision Sciences, 28(1), 195-211.

Buzacott, J., & Shanthikumar, J. (1994). Safety stock versus safety time in MRP

controlled production systems. Management Science, 40(12), 1678-1689.

Chu, C.-H., & Shih, W.-L. (1992). Simulation studies in JIT production. The

International Journal Of Production Research, 30(11), 2573-2586.

Chuah, K. H. (2004). Optimization and simulation of just-in-time supply pickup and

delivery systems. University of kentucky.

Deleersnyder, J.-L., Hodgson, T. J., Muller-Malek, H., & O'Grady, P. J. (1989). Kanban

controlled pull systems: an analytic approach. Management Science, 35(9), 1079-

1091.

Dobson, G., & Yano, C. A. (1994). Cyclic scheduling to minimize inventory in a batch

flow line. European Journal of Operational Research, 75(2), 441-461.

Dong, Y., Carter, C. R., & Dresner, M. E. (2001). JIT purchasing and performance: an

exploratory analysis of buyer and supplier perspectives. Journal of Operations

Management, 19(4), 471-483.

Fernandez, M., Li, L., & Sun, Z. (2013). “Just-for-Peak” buffer inventory for peak

electricity demand reduction of manufacturing systems. International Journal of

Production Economics, 146(1), 178-184.

Florian, M., Lenstra, J. K., & Rinnooy Kan, A. (1980). Deterministic production

planning: Algorithms and complexity. Management Science, 26(7), 669-679.

Graves, S. C. (1987). Safety stocks in manufacturing systems: Sloan School of

Management, Massachusetts Institute of Technology.

Halim, A. H., & Ohta, H. (1994). Batch-scheduling problems to minimize inventory cost

in the shop with both receiving and delivery just-in-times. International Journal

of Production Economics, 33(1), 185-194.

Harris, F. W. (1990). How many parts to make at once. Operations Research, 38(6), 947-

950.

Hay, E. J. (1988). The just-in-time breakthrough: implementing the new manufacturing

basics: Wiley.

Iwase, M., & Ohno, K. (2011). The performance evaluation of a multi-stage JIT

production system with stochastic demand and production capacities. European

Journal of Operational Research, 214(2), 216-222.

Khan, L. R., & Sarker, R. A. (2002). An optimal batch size for a JIT manufacturing

68

system. Computers & Industrial Engineering, 42(2), 127-136.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598), 671-680.

Kneppelt, L. R. (1984). Product structuring considerations for master production

scheduling. Prod. Inventory Manage, 25(1), 83-99.

Lee, H.-G., Park, N., & Park, J. (2009). A high performance finite capacitated MRP

process using a computational grid. International Journal of Production

Research, 47(8), 2109-2123.

Mascolo, M. D., Frein, Y., & Dallery, Y. (1996). An analytical method for performance

evaluation of kanban controlled production systems. Operations Research, 44(1),

50-64.

Matta, A., Dallery, Y., & Di Mascolo, M. (2005). Analysis of assembly systems controlled

with kanbans. European Journal of Operational Research, 166(2), 310-336.

Mauro, J. J. P. (2008). Strategic inventory management in an aerospace supply chain.

Massachusetts Institute of Technology.

McDonald, C. M., & Karimi, I. A. (1997). Planning and scheduling of parallel

semicontinuous processes. 1. Production planning. Industrial & Engineering

Chemistry Research, 36(7), 2691-2700.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).

Equation of state calculations by fast computing machines. The Journal of

Chemical Physics, 21(6), 1087-1092.

Metters, R. (1997). Quantifying the bullwhip effect in supply chains. Journal of

Operations Management, 15(2), 89-100.

Mitra, D., & Mitrani, I. (1990). Analysis of a kanban discipline for cell coordination in

production lines. I. Management Science, 36(12), 1548-1566.

Mitra, D., & Mitrani, I. (1991). Analysis of a kanban discipline for cell coordination in

production lines, II: Stochastic demands. Operations Research, 39(5), 807-823.

Newman, W. R., Hanna, M., & Maffei, M. J. (1993). Dealing with the uncertainties of

manufacturing: flexibility, buffers and integration. International Journal of

Operations and Production Management, 13, 19-19.

Radhoui, M., Rezg, N., & Chelbi, A. (2009). Integrated model of preventive maintenance,

quality control and buffer sizing for unreliable and imperfect production systems.

International Journal of Production Research, 47(2), 389-402.

Roy, M. D., Sana, S. S., & Chaudhuri, K. (2012). An integrated producer–buyer

relationship in the environment of EMQ and JIT production systems.

International Journal of Production Research, 50(19), 5597-5614.

Salameh, M., & Ghattas, R. (2001). Optimal just-in-time buffer inventory for regular

preventive maintenance. International Journal of Production Economics, 74(1),

157-161.

Sarker, B. R., & Parija, G. R. (1994). An optimal batch size for a production system

operating under a fixed-quantity, periodic delivery policy. Journal of the

Operational Research Society, 891-900.

Tang, O., & Grubbström, R. W. (2002). Planning and replanning the master production

69

schedule under demand uncertainty. International Journal of Production

Economics, 78(3), 323-334.

Wang, H., & Wang, H.-P. (1990). Determining the number of kanbans: A step toward

non-stock-production. The International Journal Of Production Research, 28(11),

2101-2115.

Whybark, D. C., & Williams, J. G. (1976). Material requirements planning under

uncertainty. Decision Sciences, 7(4), 595-606.

Xu, Z. (2004). Two approaches to buffer management under demand uncertainty: an

analytical process. Massachusetts Institute of Technology.

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2015

	Optimal Cyclic Control of a Buffer Between Two Consecutive Non-Synchronized Manufacturing Processes
	WenHuan Hsieh
	Recommended Citation

	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Research objective
	1.3 Contribution of the thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Cyclic inventory systems
	2.2 Just-in-time inventory theory
	2.3 Buffer control
	2.4 Simulated annealing algorithms

	CHAPTER 3: PROBLEM DESCRIPTION AND MATH MODEL
	3.1 Problem description
	3.2 Illustrative example
	3.3 Math model
	3.4 Math model explanation

	CHAPTER 4: NECESSARY AND SUFFICIENT CONDITIONS FOR PROBLEM FEASIBILITY
	4.1 Computation of secondary parameters
	4.2 Necessary and sufficient conditions for problem feasibility
	4.3 Method for automatically constructing a feasible solution
	4.4 Tightening the mathematical formulation

	CHAPTER 5: FOUR SOLUTION METHODS
	5.1 Integer programming using CPLEX
	5.2 CPLEX initialized with a feasible solution
	5.3 Simulated annealing algorithm
	5.4 Random algorithm

	CHAPTER 6: COMPUTATIONAL RESULTS
	6.1 Generating problem instances
	6.2 Software settings, hardware settings, and termination criteria
	6.3 Simulated annealing algorithm settings
	6.4 Results for easy problem instances
	6.5 Results for hard problem instances

	CHAPTER 7: CONCLUSIONS AND FUTURE RESEARCH
	REFERENCES

