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ABSTRACT 
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Under the Supervision of Professor Ying Li 

 
Due to fossil fuel usage, booming industry and other human activities, greenhouse 

gases associated with global warming and drinking water shortage severely threaten 

sustainable development of human society. It is emergent and critical to address and 

solve both of them.  

Greenhouse gases will trap heat and cause global warming, carbon dioxide (CO2) 

from fossil fuel combustion is the major contribution to greenhouse gas emission. In 

order to control CO2 emission, different technologies have been invented. Recently, 

photoreduce CO2 using solar energy with photocatalyst catches a lot of attention. Because 

on the one hand this technology can reduce CO2 in atmosphere, on the other hand 

alternative fuel can be produced with solar energy such as CO, methane, methanol, etc.  

For the drinking water shortage problem, membrane filtration technology has been 

proved as one of the most efficient and reliable methods to provide clean drinking water. 

However, membrane fouling caused by deposition of contaminants on membrane surface 
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has been recognized as one of the major obstacles inhibiting the application of membrane 

technologies. Membrane fouling may dramatically shorten the lifetime of membrane 

module, deteriorate the quality of water produced and increase the operation cost. With 

the help of the photocatalyst, contaminates in water and on membrane can be degraded 

under light irradiation. Membrane fouling caused by contaminates can be significantly 

mitigated.   

Among all photocatalysts that have been investigated, TiO2 is a promising high 

efficient photocatalyst for both environmental and energy application, due to the low 

cost, high redox potential and nontoxicity. However, because of the large bandgap, fast 

hole/electron recombination process and limited visible light absorption, those characters 

significantly limit the application of TiO2. In this study, different TiO2 modification 

strategies were carried out to improve the efficiency of TiO2 photoactivity. 

One objective of this study is to demonstrate visible light functional iodine doped 

titanium oxide (I-TiO2) for CO2 photoreduction. I-TiO2 nanoparticles have been 

synthesized by hydrothermal method. I-TiO2 shows photocatalitically responsive to 

visible light illumination. The structure and properties of I-TiO2 nanocrystals prepared 

with different iodine doping levels and/or calcination temperatures were characterized by 

X-ray diffraction, transmission electron microscopy and diffraction, X-ray photoelectron 

spectroscopy, and UV–vis diffuse reflectance spectra. The three nominal iodine dopant 

levels (5, 10, 15 wt.%) and the two lower calcination temperatures (375, 450◦C) produced 

mixture of anatase and brookite nanocrystals, with small fractions of rutile found at 

550◦C. The anatase phase of TiO2 increased in volume fraction with increased calcination 

temperature and iodine levels. A high CO2 reduction activity was observed for I-TiO2 
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catalysts (highest CO yield equivalent to 2.4 μmol g
−1 h

−1 ) under visible light, and they 

also had much higher CO2 photoreduction efficiency than undoped TiO2 under UV–vis 

irradiation. I-TiO2 calcined at 375◦C has superior activity to those calcined at higher 

temperatures. Optimal doping levels of iodine were identified under visible and UV–vis 

irradiations, respectively.  

Along with promising nonmetal-doped TiO2 results, our study also entails a new 

metal-nonmetal ion co-modified TiO2 nanoparticles fabricated through a combined 

hydrothermal and wet-impregnation process. Under UV–vis irradiation, the activity of the 

co-modified catalyst (Cu–I–TiO2) was higher than that of the single ion-modified 

catalysts (Cu–TiO2 or I–TiO2). Under visible light irradiation, the addition of Cu to I–

TiO2 did not lead to significant improvements in CO2 reduction. Methyl chloride (CH3Cl) 

was detected as a reaction product when CuCl2 was used as the precursor in the synthesis, 

thus suggesting that methyl radicals are reaction intermediates. When CuCl2 was used as 

the Cu precursor, a three-fold increase in CO2 photoreduction activity was observed, as 

compared to when Cu(NO3)2 was used as the Cu precursor. These differences in activities 

were probably due to enhanced Cu dispersion and the hole-scavenging effects of the Cl 

ions.  

The water treatment with membrane filtration technology will always face membrane 

fouling. It is one of the major obstacles inhibiting the wide application of membrane 

technologies for water treatment. Membranes with surface modification of titanium 

dioxide (TiO2) nanoparticles or TiO2 nanowire membranes (Ti–NWM) have 

demonstrated reduced membrane fouling due to the photocatalytic capability of TiO2 in 

degrading foulants on the membrane surface. However, the wide band gap of TiO2 makes 
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it only absorb ultraviolet light, which limits its applications under solar irradiation. In this 

study, our work entailed a novel membrane made of interwoven iron oxide (Fe2O3) 

nanowires and TiO2 nanowires (FeTi–NWM) has demonstrated superior anti-fouling 

capability in removing humic acid (HA) from water. Results showed that under simulated 

solar irradiation the FeTi–NWM achieved nearly complete HA removal during a 2 h 

short-term test at an initial HA concentration of 200 mg/L, compared with 89% HA 

removal by Ti–NWM. During a 12 h long-term test, the FeTi–NWM maintained 98% HA 

removal, while the Ti–NWM showed only 55% removal at the end. Without solar 

irradiation, the FeTi–NWM was severely contaminated and by contrast, a clean surface 

was maintained under solar irradiation after the 12 h test and the transmembrane pressure 

change was minimal. The improved HA removal by FeTi–NWM compared with Ti–

NWM and its excellent anti-fouling capability under solar irradiation can be attributed to 

(1) the enhanced HA absorption by Fe2O3 nanowires and (2) the formed Fe2O3/TiO2 

heterojunctions that increase photo-induced charge transfer and improve visible light 

activity. 

Future work includes further improvement of FeTi-NWM membrane with other 

materials such as graphene etc. Also design and test multi-stage FeTi-NWM membranes 

system for real industry application.  
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Chapter 1 Introduction And Research Objectives 
 

1.1 Research background   

1.1.1 Impact of greenhouse gas and CO2 emission control 
 

Due to the demand of energy and the growth of population, the generation of 

greenhouse gas has tremendously increased. They have seriously threatened the health of 

environment and sustainable development of human society.   

The major greenhouse gases directly emitted by human activities include CO2, CH4, 

N2O, and several other fluorine-containing halogenated substance. Those greenhouse 

gases trap heat and make the planet warmer, which will result in severe weather condition 

and ecosystem collapse. Based on the report of intergovernmental panel on climate 

change (IPCC)[1], just in 2005, the record number of tropical storms and hurricanes 

caused more than 1000 deaths and more than US$ 100 billion in damage along Atlantic 

and gulf coasts of United States. The unique systems of Arctic region and warm water 

coral reefs are also undergoing rapid changes in response to observed warming in ways 

that are potentially irreversible[1].  

Figure 1.1 illustrates the relative contribution of the direct greenhouse gases to total 

U.S. emissions in 2013. The ���primary greenhouse gas emitted by human activities in the 

United States was CO2, representing approximately 82.44 percent of total greenhouse gas 

emissions. The largest source of CO2, and of overall greenhouse gas emissions, was ���fossil 

fuel combustion[2]. ���World wide, CO2 emission from fuel combustion has been increasing 

at an average rate of 2% a year to a 1997 annual global output of around 23 billion tons 

of CO2 (Figure 1.2). Roughly half of these emissions remain in the atmosphere [3].  
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Figure 1.1 2013 Greenhouse Gas Emissions in US by Gas [2] 

 

 

Figure 1.2 World CO2 emission from fuel combustion[3] 

In order to reduce the emissions of CO2, one popular approach is using more efficient 

energy conversion and utilization technologies. However, those technologies alone may 

not be able to help the atmosphere to achieve CO2 stabilization. Therefore, efforts are 

also assigned to the capture and sequestration of CO2 that comes out of fossil fuel 

combustion process. There are three main capture methods for CO2: Pre-combustion 

methods (fuel decarbonization); Combustion in O2/CO2 atmospheres (oxygen-fuel firing); 

Post-combustion capture methods [3].  
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1) Fuel decarbonization:  Prior to combustion, CO2 was removed from gas stream 

rather than after combustion, this is because the higher concentration, lower volumetric 

flow rate and higher pressure before combustion make this process easier. However, this 

method requires a syngas manufacturing plant and a CO2 removal plant, which will 

significantly increase the capital cost of application.  

2) Oxygen-fuel firing: Replacing air with pure or enriched oxygen during the 

combustion process. A separate CO2 removal process is avoided/or minimized with this 

approach, the produced CO2 is ready for sequestration directly. Oxygen-fuel firing can 

produce 75% less fuel gas than air-fueled combustion process. The drawback for this 

technology is that producing pure oxygen will consume large amounts of energy.  

3) Post combustion process: Several different methods to remove CO2 from a gas 

stream exist, including absorption by use of amines, different adsorption techniques, use 

of membranes, etc. These CO2 capture processes have significant energy requirements, 

which reduce the power generation plant’s efficiency by up to 40% (relative), and net 

power output up to 40%[3].  

As mentioned above, all current CO2 capture technologies are energy consuming and 

non-economy. Therefor, more energy friendly and cheap CO2 capture methods are 

desired for the future.  

1.1.2 Water treatment with membrane separation technology 

Same as the situation of greenhouse gases, drinking water shortage is becoming a 

global problem due to the rapid industrialization and exploding population. One-third of 
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the world’s population currently live in countries with insufficient freshwater supply 

(Figure 1.3) and two-thirds of the world population will face water scarcity by 2025 [4, 

5].  

 

Figure 1.3 Predicted water scarcity and stress in 2025 [1] 

The growing global demand of clean water forces scientists to explore new 

technologies for drinking water production [6]. Among all types of technologies, 

membrane filtration is one of the most effective approaches to provide high quality and 

quantity drinking water. The global demand for membrane modules was estimated at 

approximately 15.6 billion USD in 2012 and the market is expected to grow around 8% 

annually [7]. Membrane filtration is favored over other technologies for water treatment, 

such as disinfection, distillation, or media filtration because, in principle, they require no 

chemical additives, thermal inputs, or require regeneration of spent media [8]. Among all 

kinds of different membranes, pressure-driven membrane processes remain the most 

widely used membrane technologies for water treatment applications.  
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Pressure-driven membranes are classified according to characteristic pore size or their 

intended application (Table 1.1) [8-11]. Currently, membrane technology is 

commercially available for suspended solids, protozoa, and bacteria removal (micro- 

filtration, MF), for virus and colloid removal (ultrafiltration, UF), for hardness, heavy 

metals, and dissolved organic matter removal (nanofiltration, NF), and for desalination, 

water reuse, and ultrapure water production (reverse osmosis, RO)[8]. However, 

membrane fouling caused by deposition of contaminants on the membrane surface has 

been recognized as one of the major obstacles inhibiting the application of membrane 

technologies [12, 13]. Membrane fouling may dramatically shorten the lifetime of 

membrane module, deteriorate the quality of water produced and increase the operation 

cost.  

Table 1.1 Membrane characterizations by pore size and target species [8] 

 

 

1.2 Literature review about TiO2 properties and its environmental application  
 

Researchers all over the world have been working on various approaches to try to 

solve the problem of greenhouse gases and drinking water shortage. Photocatalytic 

reaction with semiconductor is a promising way to address this problem, which catches a 

lot of attention. Extensive studies about photoinduced reaction have been carried out. 
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Among all those semiconductors that have been studied, Titanium dioxide (TiO2) is 

considered to be as an ideal material for photocatalytic reaction due to its low cost, strong 

redox ability and environment friendly.  

In 1964, Kota el al.[14] used TiO2 suspension to treat tetralin, which was followed by 

Mclintock et al.[15] who oxidized ethylene and propylene by TiO2. However, in 1972, 

Fujishima and Honda et al.[16] discovered the photocatalytic water splitting process with 

TiO2 electrodes for first time. This discovery opens a new era for photocatalysis research. 

This well-known chemical phenomenon involves the photoirradiation of a TiO2 single 

crystal electrode immersed in an aqueous electrolyte solution induced the evolution of 

oxygen from the TiO2 electrode and the evolution of hydrogen from a platinum counter 

electrode when an anodic bias was applied to the TiO2 working electrode. Following on 

the steps of Fujishima and Honda, the photocatalytic properties of TiO2 have been further 

studied to convert solar energy into chemical energy to obtain useful chemicals such as 

hydrogen[17] and hydrocarbons[18, 19], and to remove pollutants and bacteria on wall 

surfaces[20] or in the water and air [21-24]. 

 TiO2 belongs to the family of transition metal oxides along with ZnO, ZrO. There are 

three TiO2 crystals that commonly exist in nature: anatase[25, 26] (tetragonal), brookite 

(orthorhombic), and rutile (tetragonal)[27, 28]. Besides these polymorphs, there are two 

more high pressure forms that have been found from the rutile phase. They are TiO2 (II) 

with a PbO2 structure and TiO2 (H) with a hollandite structure[29]. Here, this study will 

focus on the three major crystal phases of TiO2: 

      The Rutile Crystal phase of TiO2: Rutile TiO2 has a tetragonal structure (Figure 1.4 

(a)) and contains 6 atoms per unit cell. The TiO6 octahedron is noticed slightly 
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distorted[29]. The rutile phase is stable at most temperatures and pressures up to 60 kbar. 

With increasing the size of anatase and brookite crystal, the crystal phase transfer process 

to rutile will happen, because the rutile phase is more stable than anatase for particle sizes 

greater than 14 nm. Once the rutile phase forms, it grows much faster than the 

anatase[29]. For the photocatalyst activity, the rutile phase is generally very poor.  

      The anatase crystal phase of TiO2: Same as the rutile phase, anatase has a tetragonal 

structure. But compared with the rutile, the distortion of the TiO6 octahedron is slightly 

larger in anatase (Figure 1.4(b)). Muscat et al.[30] found that the anatase phase is more 

stable than the rutile at 0 K, but the energy difference between these two phases is small 

(~2 to 10 kJ/mol). The anatase structure is preferred over other polymorphs for solar cell 

application due to its higher electro mobility[31]. The higher photoreactivity of anatase is 

brought by the slightly higher Fermi level, lower capacity to adsorb oxygen and higher 

degree of hydroxylation[29]. The reactivity of (001) face is greater than that of (101) face 

in the anatase crystal structure based on the work of Wang et al[26].  

       The brookite crystal phase of TiO2: Brookite of TiO2 has a different structure 

compared with the former two crystal phases (anatase and rutile). Brookite belongs to the 

orthorhombic crystal system (Figure 1.4(c)). Its unit cell is composed of 8 formula units 

of TiO2 and is formed by edge sharing TiO6 octahedra. Brookite is more complicated and 

has a larger cell volume. The properties of brookite were still barely investigated.  
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Figure 1.4 Crystal structure of TiO2 (a. Rutile; b. Anatase; c. Brookite) [32] 

 
TiO2 is a large band semiconductor, with band gaps of 3.2, 3.02 and 2.96 eV for 

anatase, rutile and brookite, respectively[29]. The 2p orbitals of oxygen and 3d orbitals of 

titanium compose the valence band of TiO2; meanwhile, the conduction band is only the 

3d orbitals of titanium. When TiO2 is under UV irradiation, electrons in the valence band 

are excited to the conduction band leaving behind holes (h+), as shown in Figure 1.5. The 

excited electrons (e-) in the conduction band are now in a purely 3d state and because of 

dissimilar parity, the transition probability of e- to the valence band decreases, leading to 

a reduction in the probability of e-/h+ recombination. As mentioned earlier, the anatase 

TiO2 is considered the active photocatalytic compound compared with all other crystal 

phases of TiO2. Anatase has spontaneous band bending (Figure 1.6) [29] in a deeper 

region with a steeper potential compared with the rutile, thus surface hole trapping 

dominates because spatial charge separation is achieved by the transfer of photogenerated 

holes towards the surface of the particle via the strong upward band bending. However, in 

the rutile phase, the bulk recombination of electrons and holes occurs, so only holes very 

close to the surface are trapped and transferred to the surface[29]. 
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Figure 1.5 Mechanism of photocatalytic reaction by TiO2 

 

Figure 1.6 Surface band bending of anatase (a) and rutile (b) [29] 

 

1.3 TiO2 based nanomaterials 
 

Due to the large surface area of nano-structure, nano-size TiO2 usually is much more 

efficient for photoinduced reaction than bulk TiO2. When the crystal size of a 

semiconductor is below around 10 nm, the quantum mechanics will significantly affect 

the properties of materials. Many researches reported when the material reached the nano 

scale, the absorption edge blue shifts happened which caused the redox potentials 
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increase for semiconductors[28, 33, 34]. In other words, the photoactivity of nano-size 

semiconductors would be improved. There are two common commercialized TiO2 nano-

materials for sale right now, the P25 and the P20. The P20 is the 100% anatase. The 

difference between P20 and P25 is the TiO2 nanoparticles with 80% anatase and 20% 

rutile in P25. 

 Except the TiO2 nanoparticles, many other morphologies of nano scale TiO2 were also 

synthesized in the lab (Figure 1.7) such as nanotubes[35-37], nanosphere[38, 39], and 

nanowires[6, 40, 41]. Liquid phase associated reaction is one of the most popular and 

convenient methods to synthesize nano-scale TiO2 materials. This method provides the 

possibility to control the stoichiometry and form complex shapes. Guo et al.[42] reported 

using a simple and reliable hydrothermal method to prepare super hydrophobic TiO2 

surface on fluorine-doped tin oxide (FTO) coated glass substrates. The surface shows a 

novel cactus-like cluster structure composed of TiO2 rods. After being modified with 

stearic acid, the as-prepared surface shows a remarkable super hydrophobicity with a 

water contact angle as high as 160° and a sliding angle smaller than 5°. Meanwhile, with 

the help of the hydrothermal method, Hu et al.[43] was able to synthesize the highly 

entangled TiO2 nanowire on Ti substrates at 180 °C with utilizing various organic 

solvents to oxidize Ti. The freestanding TiO2 nanowire membranes with millimeter level 

thickness can be cleaved from Ti substrates or directly prepared from thin Ti foils.  
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Figure 1.7 TiO2 nanostructure (a) nanoparticles[44], (b) nanowires, (c) nanotubes[45] and (d) nanorods[46] 

 

1.4 Comparison between TiO2 and other semiconductor materials as photocatalyst 
 

The redox potential is the primary criteria for an efficient semiconductor. The energy 

level at the bottom of the conduction band determines the reducing ability of 

photoelectrons, meanwhile the energy level at the top of the valence band determines the 

oxidize ability of semiconductors.  

The summary of lower edge of the conduction band, the upper edge of the valence 

band and the band gap of some semiconductors was plot in Figure 1.8. The internal 

energy was represented by ordinate. The internal energy (band gap) is usually larger than 

the free energy of an electron and hole pair because the e-/h+ pairs will have a huge 

entropy arising due to a large number of translational states accessible to the charge 

carriers in the conduction and valence bands[29]. In order to induce the photocatalytic 
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reaction, besides the suitable band gap energy for the reaction, the ideal semiconductor 

should also be cheap, easily be produced and used, high efficient, harmless for the 

environment and human health. Most of the reported photocatalyst shows many 

drawbacks. For example, the ZnO is unstable in aqueous environment because it will 

continuously dissolved in water to yield Zn(OH)2 on the surface of ZnO, which will 

inactivate the catalyst over time[47, 48]. GaAs[49] is not stable in the liquid media too 

and does not even mention the toxicity of it. Among those semiconductors, TiO2 is the 

most promising semiconductor for photocatalyst. As mentioned earlier, TiO2 is low-cost, 

easy to be produced, with high chemical and physical stability and nontoxic, and high 

redox ability. Due to these reasons, many novel applications and photocatalytic reactions 

have been investigated by researchers. For example, Fakeeha et al.[50] and Arenas et 

al.[51] reported to use TiO2 to reform CH4. But TiO2 still has some drawbacks, which 

significantly limit its wide application. First, TiO2 has large bandgap around 3.2 eV for 

anatase. This means pure TiO2 can be only activated under UV irradiation. If the TiO2 is 

used for solar application, that means there is only 5% of total energy that can be used in 

sunlight[7]; Second, the fast recombination process of photoinduced e- and h+ brings very 

low efficiency for TiO2 in some application. To overcome those problems, several 

approaches including dye sensitization, ion doping or coating have been studied 

extensively. The following chapters will cover some of those approaches that be 

investigated in this study aimed at improving the performance of TiO2.  
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Figure 1.8 Band position of different semiconductors [29] 

 

1.5 Research of Objectives of Outline of the Dissertation 
 

The overall objective of this research is to synthesize and modify TiO2 nanostructure, 

in order to improve TiO2 performance on photoreduction and photooxidation for 

environmental application. To achieve the research objective, the work is divided into 

three major tasks, which are summarized below. 

 

Task 1. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 

to fuels (Chapter 2) 

 
       The objective of this task is to investigate the modification of TiO2 by non-mental 

ion doping. The CO2 photoreduction efficiency under visible light irradiation with iodine 

doped TiO2 was tested. Five subtasks were carried out: 
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v TiO2 nanoparticle with iodine doping was synthesized by the hydrothermal 

method.  

v Three different calcination temperatures (375, 450 and 550 ◦ C) were used to 

treat TiO2 samples; meanwhile three different iodine loading levels were also 

applied.  

v The resulting TiO2 nanoparticles were characterized by using various 

techniques, such as X-ray diffraction spectrum (XRD), X-ray photoelectron 

spectroscopy (XPS), scanning electron microscopy (SEM), Brunauer-

Emmett-Teller (BET) surface area analysis, UV-vis diffuse reflectance 

spectra, transmission electron microscopy (TEM), and high-resolution 

transmission electron microscopy (HRTEM).  

v CO2 photoreduction test was carried out in a sealed stainless-steel reactor. 

The reduction production CO was tested by gas chromatography equipped 

with thermal conductivity detector (TCD) and flame ionization detector 

(FID).  

v Effects of calcination temperature and iodine doping level on TiO2 crystal 

structure and CO2 photoreduction efficiency were carefully analyzed.  

 
Task 2. Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 

photoreduction with water vapor (Chapter 3) 

        The objective of this task is to investigate the effect of metal-nonmetal co-

modification on TiO2. Cu-Iodine co-modified TiO2 was synthesized and tested for its CO2 

photoreduction efficiency. Four subtasks were carried out: 
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v Cu-Iodine co-modified TiO2 nanoparticle was fabricated by the 

hydrothermal method followed with the wet impregnation method.  

v All the samples were characterized by using various technologies, such as 

X-ray diffraction spectrum (XRD), X-ray photoelectron spectroscopy 

(XPS), scanning electron microscopy (SEM) equipped with energy 

dispersive X-ray (EDX) spectroscopy, Brunauer-Emmett-Teller (BET) 

surface area analysis, and UV-vis diffuse reflectance spectra.  

v Three different Cu precursors (CuCl2, Cu(NO3)2, and Cu(NO3)2+KCl) were 

used in order to investigate the effect of Cu valence on TiO2 surface 

modification. TiO2 samples that with different Cu loading levels and initial 

10% iodine doping were tested under both visible and UV-vis irradiation 

for CO2 photoreduction. 

v The possible mechanism for TiO2 efficiency promoting by Cu-Iodine co-

modification was discussed.  

 
Task 3. Novel Fe2O3/TiO2 hybrid nanowire membrane for concurrent filtration and 

removal of multi-pollutants in water with anti-fouling feature (Chapter 4) 

          The objective of this task is to fabricate and characterize novel Fe2O3/TiO2 

nanowire membrane, which is used for multiple pollutants degradation in water. Four 

subtasks were carried out: 

 
v Novel Fe2O3/TiO2 hybrid nanowire membrane was fabricated with the 

vacuum filtration method.  
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v Various technologies were used to characterize the hybrid nanowire 

membrane, such as X-ray diffraction spectrum (XRD), scanning electron 

microscopy (SEM) and UV-vis diffuse reflectance spectra.  

v Humic acid was chosen as model pollutants, which represents one of the 

major causes for membrane fouling. The filtration efficiency, degradation 

efficiency and long term anti-fouling ability with hybrid nanowire 

membrane were carefully investigated.  

v The effect of different composite ratios of Fe2O3 to TiO2 on degradation 

efficiency of nanowire membrane was discussed at the same time. 
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Chapter 2 Visible Light Responsive Iodine-Doped TiO2 For 

Photocatalytic Reduction Of CO2 To Fuels 

2.1 Research Background 

      Due to the urgency of the CO2 emission control, recently using photoreduction feature 

of photocatalyst to convert CO2 into fuels by sunlight catches extensive attentions. Not 

only this technology mitigates the CO2 emissions but also produce energy-bearing 

compounds such as CO, methane, and methanol[31, 52, 53] that can be subsequently 

converted to liquid transportation fuels. Compared with other materials that have been 

reported for CO2 photoreduction applications include ZrO2[54], MgO[55], 

NiO/InTaO4[56], Ga2O3, photosensitized complexes[57], TiO2 based catalysts[6, 54, 58] 

are promising candidates because of TiO2 has strong redox ability, low cost, stability, and 

environmental friendly. However, as we mentioned in chapter 1, one challenge for the 

application of TiO2 is the fast recombination of photo-induced holes (h+) and electrons (e-

). Another challenge is the requirement of ultraviolet (UV) light excitation due to the 

wide band gap of TiO2 (3.2 eV for anatase and 3.0 eV for rutile). As a result, the 

efficiency of CO2 conversion to fuels is generally low. Modification of TiO2 with metal 

(e.g. Pt, Pd, Ag, and Cu) particles or clusters has been reported to inhibit charge 

recombination possibly because the metals serve as electron traps[59, 60]. Thus, the 

increased CO2 photoreduction efficiency was observed for metal modified TiO2. Tseng et 

al.[61] synthesized Cu/TiO2 catalysts by a sol–gel method and found the rate of CO2 

photoreduction to methanol was much higher than those without copper loading. Li et 
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al.[62] reported markedly increased CO2 photo-conversion efficiency by Cu/TiO2 catalyst 

dispersed on mesoporous silica and selective CH4 production due to Cu loading. 

However, too high a concentration of metal dopant may form recombination centers that 

lead to a reduced photocatalytic efficiency. Optimal metal concentrations have been 

reported for modified TiO2 (e.g. with Ag or Cu) for both photooxidation and 

photoreduction applications. While metal modifications on TiO2 have apparent 

enhancement in charge separation, they have limited contribution to extend the photo-

response to visible light region. Sasirekha et al.[63] observed that Ru doped TiO2 has 

almost the same absorption spectra as the undoped TiO2. Dholam and Patel[64] reported 

that Cr and Fe doped TiO2 prepared by a sol–gel method had a very limited effect on 

inducing a red-shift in TiO2 absorption spectra compared to those prepared by a 

magnetron sputtering method. 

     On the other hand, it has been widely reported that doping TiO2 with nonmetals (e.g. 

C, N, S, F, etc.) has resulted in more significant band gap narrowing compared to metal 

doping, leading to high photocatalytic efficiency under visible light irradiation. Wu et 

al.[65] reported that the band gaps of N doped and N–B co-doped TiO2were 2.16 eV and 

2.13 eV, respectively, much smaller than that of pure TiO2 (3.18 eV for anatase). Pelaez 

et al.[66] synthesized N–F co-doped TiO2 that exhibited high surface area, low degree of 

agglomeration and high activity in degradation of microcystin under visible light. 

Recently, less studied iodine has been doped into TiO2, and improved visible light 

activity towards the decomposition of organic compounds has been reported. The 

structural and electronic properties of I-doped TiO2 were investigated based on density 
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functional theory (DFT) calculations, and the results indicated that substitutional iodine 

contributes to a much more efficient and stable photocatalyst than pristine TiO2. In 

comparison to other non-metal dopants (N[51], C, B[56], S[67]), iodine doping may 

result in superior photocatalytic activity due to the following reasons. First, unlike other 

nonmetal dopants that substitute lattice oxygen, iodine was reported to be able to replace 

lattice titanium due to the close ionic radii of I
5+

and Ti
4+

. The substitution of Ti
4+ with I

5+ 

causes charge imbalance and results in the generation of Ti
3+ surface states that may trap 

the photoinduced electrons and forestall charge recombination. In addition, first principle 

calculations suggest that iodine atoms prefer to be doped near the TiO2 surface due to the 

strong I–O repulsion[68], and thus, the surface doped I
5+ will not only trap electrons but 

also facilitate electron transfer to the surface adsorbed species. Finally, it is suggested 

that the continuous states consisting of 5p and/or 5s orbitals of I
5+ and O 2p orbitals of the 

valence band are favorable for efficient trapping of holes at the I-induced states in the 

TiO2 particle (not on the surface), which causes a decrease in the oxidation power. For 

CO2 photoreduction, one of the challenges is the reoxidation of the CO2 reduction 

products by h
+ or OH

• 
radicals. Hence, the impaired oxidation power of I-doped TiO2 may 

result in an increased CO2 photoreduction rate. 

      In this study, I-doped TiO2 photocatalysts were synthesized via a hydrothermal 

method and were evaluated for the first time for CO2 reduction under UV and visible 

light irradiation. The effects of iodine doping levels and calcination temperature on the 

catalytic activity were also investigated, a topic that has been scarcely discussed in the 

literature for I-doped TiO2. The structural and compositional properties of the I-TiO2 
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nanomaterials were analyzed and correlated with their photocatalytic reduction 

performance. This is the first time photocatalytic CO2 reduction by nonmetal doped TiO2 

without any other co-catalysts have been reported. Therefore, the findings are an 

important step toward the discovery of cost-effective catalysts for CO2 reduction to solar 

fuels. 

2.2 Experimental 
 
      The method for synthesis of I-doped TiO2 was modified from that reported by Tojo et 

al.[69]. The preparation started by dissolving 3 ml of titanium isopropoxide (TTIP) 

(Acros Organic, >98%) in 3 ml of anhydrous isopropanol (Acros Organic, >99.5%). The 

mixture was then added dropwise into a solution of iodic acid (HIO3) (Alfa 

Aesar, >99.5%) with continuous stirring for 2 h. After the reaction, the resultant white 

mixture was transferred to a Teflon-lined vessel for hydrothermal treatment at 100 °C for 

12 h. The resultant yellow particles were filtrated and washed with copious amount of de-

ionized water until pH 7 followed by drying in an oven at 80◦C for 1 h. The samples were 

finally calcined in air for 2 h at different temperatures (375, 450, or 550◦C). Different 

iodine doping levels were prepared by varying the quantity of HIO3 added (0.06–0.18 g). 

The samples are denoted in the way of “x% I-TiO2-yC”, where x is the nominal weight 

percentage of iodine in the sample (calculated from the bulk solution) and y is the 

calcination temperature. For example, 5% I-TiO2-375C represents 5 wt.% (nominal) I-

doped TiO2 calcined at 375 ◦ C. For comparison, undoped TiO2 was prepared following 

the same procedure without adding HIO3. All samples were grinded and sieved by a 45 

μm stainless steel sieve before characterization and photoreduction experiments.  
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       Brunauer–Emmett–Teller (BET) surface area analysis by N2 adsorption was 

performed using a Quantachrome NOVA 1200 gas sorption analyzer (Boynton Beach, 

FL). The crystal structures of the prepared catalysts were identified by X-ray diffraction 

(XRD) (Scin-tag XDS 2000) using Cu Kα irradiation at 45 kV and a diffracted beam 

monochromator operated at 40 mA in the 2θ range from 20◦ to 70◦ at a scan rate of 

1◦/min. The crystal size of different crystal phases was calculated by the Scherrer 

equation. 

       The lattice structure of individual nanocrystals was visualized by phase-contrast high 

resolution transmission electron microscopy (HRTEM) carried out with 300 keV 

electrons in a Hitachi H9000NAR instrument with 0.18 nm point and 0.11 nm lattice 

resolution. Two-dimensional Fourier transforms were calculated and used to measure 

lattice spacing and interplanar angles. Amplitude contrast TEM images were used to 

obtain direct information about the nanocrystal sizes. Selected area electron diffraction 

(SAED) provided information that is analogous to XRD, but from nanocrystals supported 

on an electron-transparent amorphous carbon film and selected within a ∼450 nm 

diameter aperture. The UV-vis diffuse reflectance spectra were obtained by a UV-vis 

spectrometer (Ocean Optics) using BaSO4 as the background.  

        X-ray photoelectron spectroscopy (XPS) analysis was carried out on a Perkin-Elmer 

PHI 5100 ESCA system with an Al Kα X-ray source (hv = 1253.6 eV) and pass energy of 

35.75 eV operating at a pressure of 8×10-10 Torr. The observed spectra were corrected 

with the C1s binding energy (BE) value of 284.6 eV.  

        The schematic of the photocatalytic reaction system is illustrated in Figure 2.1. 

Compressed CO2 (99.99%, Praxair) regulated by a mass flow controller was passed 
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through a water bubbler to generate CO2 and H2O vapor mixture (H2O, v/v% ≈ 2.3%). 

The gas mixture was then purged through a cylindrical photoreactor (V=58 cm3) with 

stainless steel walls and a quartz window. A fixed amount of powder catalyst (200 mg) 

was dispersed on a glass-fiber filter and placed at the bottom of the reactor. After purging 

for 1.5 h, the gas valves on both sides of the reactor were closed to seal the reactor. A 450 

W Xe lamp (Oriel) was used as the light source and a long-pass filter was applied to cut 

off the short wavelengths that are less than 400 nm if only visible light is needed. A 

spectroradiometer (International Light Technologies ILT950) was used to obtain the 

spectral intensity of the Xe lamp with and without the filter. During the illumination 

period, the gaseous samples in the reactor were taken by a gastight syringe (Hamilton, 

#1750, 500 µl) every 30 min and manually injected to a gas chromatograph (GC, Agilent 

7890A) equipped with both a thermal conductivity detector (TCD) and flame ionization 

detector (FID). 

 

Figure 2.1 Experimental setup for CO2 photoreduction. 1: mass flow controller; 2: water bubbler; 3: 
photoreactor with a quartz window; 4: two-way valve; 5: long-pass filter; 6: gas chromatograph (GC/TCD-
FID); 7: catalyst samples dispersed on glass fiber filter; 8: Xe lamp; 9: sampling port. 
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2.3 Results and Discussion 

2.3.1 Average nanocrystal structure from XRD analysis 
 

Figure 2.2 shows the XRD patterns of TiO2 samples doped with different 

concentrations of iodine calcined at 375◦C and 5% I-TiO2 calcined at different 

temperatures. The calculated values of phase content and crystal size are listed in Table 

2.1. The undoped and I-doped TiO2 mainly consist of two phases, anatase and brookite. 

As the calcination temperature increased from 375 to 450◦C, the anatase phase content 

increased and the brookite phase decreased; when the calcination temperature increased 

to 550◦C, the brookite content further decreased with the appearance of a small percent- 

age of rutile. The phase transition between metastable anatase and brookite is not well 

studied in the literature; however, the result in this study seems to be in agreement with 

some of the literature that upon calcination brookite transforms to rutile via anatase. In 

other words, brookite first transforms to anatase and then anatase transforms to rutile. In 

contrast to undoped nanocrystal TiO2 whose anatase-to-rutile transformation temperature 

is around 700◦C, the lower temperature (450–550◦C) of transformation to rutile in this 

study was possibly due to the dopant-induced instability of TiO2 caused by lattice 

distortion and bond weakening, even at a low dopant concentration (for 5% I-TiO2). 

When the calcination temperature was kept the same at 375◦C, increasing the iodine 

concentration only slightly decreased the brookite content by a few percent. 

In terms of crystal size, it is clear from Table 2.1 that with increasing calcination 

temperature the average crystal size increases for both anatase and brookite crystals (by a 

factor of ∼2.45 ± 0.10 at 550◦C compared with 375◦C). At the same calcination 
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temperature of 375◦C, the undoped TiO2 has the largest crystal size for anatase (8.8 nm), 

and the crystal size decreases (to 7.5, 5.5, and 5.8 nm) as the nominal iodine doping level 

 

Figure 2.2 XRD patterns of I-doped TiO2 at different calcination temperatures (a) and I-doped TiO2 at 
different iodine doping level (b) (A: anatase; B: brookite; R: rutile) 

 

increases in increments of 5% (from 0% to 15%). This result agrees with the literature 

that dopants can favor the formation of smaller particles. For example, Zhou et al.[70] 

reported the particle sizes of N doped and N–I co-doped TiO2 are smaller than pure TiO2. 

Su et al.[71] found that I-doped TiO2 has much smaller crystallite size (7.7 nm, anatase) 

than undoped TiO2 (23.7 nm, anatase) and suggested that the repulsion among adsorbed 
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iodine species inhibits crystal growth. An interesting finding in our study is that the 

brookite crystallite size of I-doped TiO2 is slightly larger than that of undoped one (Table 

2.1), indicating that iodine has opposite effect on the growth rate of anatase and brookite 

nanocrystals under otherwise identical hydrothermal conditions. The lack of literature on 

doping of brookite TiO2 warrants further investigation in this interesting phenomenon.  

Table 2.1 Phase content and average crystal size of I-TiO2 

 
 

2.3.2 Individual nanocrystal structure and morphology from TEM analysis 
 

Figure 2.3 shows amplitude-contrast transmission electron microscopy (TEM in (a)) 

and phase-contrast high-resolution TEM images (HRTEM in (b) and (c)) of the 5% I-

TiO2-375C sample. Both types of images show agglomerates of TiO2 nanocrystals. The 

crystallite size is in the range of 6 – 9 nm, which is in good agreement with the average 

size calculated from the Scherrer equation. Similarly, selected area electron diffraction 

experiments (SAED inset in (a)) recorded from agglomerates within a selecting aperture 

of 450 nm confirm the phase determination of XRD and demonstrates that the anatase 

and brookite phases of I-TiO2 occur in close proximity. The HRTEM images show lattice 

fringes within individual nanocrystals. Analysis of the lattice spacings and interpanar 

angles finds that each nanocrystal has a well-defined phase and the lattice appears cleanly 

and bulk-terminated at the surface. The nanocrystal morphology is defined by low-energy 
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facets that are conjoined by curved surfaces composed of closely spaced terraces and 

steps. For example, the HRTEM image in Fig. 2.3(c) shows clear one-dimensional lattice  

 

Figure 2.3 Electron microscopy of 5% I-TiO2-375C sample: (a) TEM image and SAED, (b) HRTEM 
image with labeled examples of anatase (A) and brookite (B) nanocrystals, and (c) HRTEM lattice spacings 

and dominant surface facets for A (120) and B (111) 

fringes of TiO2 (lattice spacing = 0.345 nm) which is very close to the brookite TiO2 

(111) bulk lattice spacing of 0.346 nm, according to powder diffraction file (PDF) No. 

29-1360. Since all of the anatase spacings overlap with brookite very closely, it is only 

possible to uniquely determine the termination facets of the brookite nanocrystals. These 

consistently yield the (111) type of crystal plane as dominant facet for the brookite TiO2 

nanocrystals. The second type of termination plane occurs for interplanar distance of 

∼0.351 nm [56]which is the (101) plane of anatase or the (120) plane of brookite. It is 

unlikely that brookite nanocrystals would have two very different dominant facets under 

the same growth and calcination condition. Hence, it is possible to conclude, by 

elimination, that the second type of facets belong to anatase (101) type planes. These 

morphology changes are the subject of on-going work and are beyond the scope of this 

initial work to evaluate the efficacy of I-doped TiO2 as an effective material for CO2 

photoreduction. 

2.3.3 UV-vis diffuse reflectance spectroscopy and BET specific surface area analysis 
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The UV–vis diffuse reflectance spectra of undoped TiO2 and I-doped TiO2 samples 

are shown in Figure 2.4 (a). The absorption edge of undoped TiO2 is around 400 nm and 

is extended to the visible light region for I-doped TiO2 with an iodine concentration from 

2.5 to 15%, which matches the yellow color of the I-doped TiO2. Figure 2.4(b) illustrates 

the plots for obtaining the band gap values that are also listed in Table 1. The undoped 

TiO2 has a band gap of 3.13 eV, while the band gaps of I-TiO2 slightly decrease with 

iodine doping and level off at around 3.00 eV when the nominal iodine concentration is 

greater than 10%. 

The BET specific surface areas (SSA) of the various I-TiO2 catalysts are listed in 

Table 2.1. The SSA for undoped TiO2 is 122.9 m
2
/g, which is much higher than that of 

commercially available P25 (∼50 m
2
/g). With iodine doping in TiO2, the SSA slightly 

increases as the crystal size slightly decreases in average, and all the I-TiO2 samples 

calcined at the same temperature (375◦C) have similar SSA (∼137 m
2
/g) since their 

average crystal sizes are very close to each other, as seen in Table 2.1. Increasing the 

calcination temperature of 5% I-TiO2 to 450 and 550◦C dramatically reduces the SSA to 

99.4 and 43.1 m2/g respectively, which corresponds well to the increase in crystal size. 
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Figure 2.4 UV-Vis diffuse reflectance spectra of TiO2 with different iodine doping levels (a) and plots of 
the square root of the Kubelka-Munk function versus the photon energy (b). 

 

2.3.4 Photocatalytic activity for CO2 reduction 
 

CO was identified as the main CO2 reduction product using undoped and I-doped 

TiO2, while our previous study showed that CH4 was produced in addition to CO when 

the TiO2 surface was loaded with Cu species. The following reactions may express the 

pathways of CO2 photoreduction to CO and water oxidation to O2: 
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                                    (R1) 

                          (R2) 

CO! + 2H! + 2e-­‐ → CO+ H!O                  (R3)      

      

Figure 2.5 shows the concentration of CO produced in the reactor (in ppm) as a 

function of illumination time under visible (λ > 400 nm) and UV–vis irradiation (λ > 250 

nm), respectively. Undoped TiO2 had no activity under visible light (results not shown in 

Figure 2.5 a). All I-doped TiO2 showed visible light activity for CO2 photoreduction to 

CO and the concentration of CO increased almost linearly with illumination time (Figure 

2.5 a). With the same iodine concentration (5%), I-TiO2 calcined at 375◦C had the 

highest activity; increased calcination temperatures (450◦C and 550◦C) lowered the CO2 

photoreduction rate. This is likely due to the significant increase of the crystal size and 

decrease in surface area with increasing calcination temperature (Table 2.1). For I-TiO2 

with the same calcination temperature (375◦C), activity of CO2 photoreduction follows 

the order of 10% > 15% > 5% in terms of iodine doping concentration (Figure 2.5 a). 

The band gap analysis (Table 2.1) show that 10% and 15% I-TiO2 samples have very 

close band gap energies (3.00 eV and 3.02 eV, respectively) and surface iodine 

concentrations (2.3 at.% and 2.5 at.%, respectively), suggesting that the 15% I-TiO2 

sample may not be superior to 10% I-TiO2. Furthermore, too high a dopant concentration 

may form charge recombination centers and/or shield the surface of TiO2 from light 

irradiation, both of which reduce the photocatalytic activity. These may explain why 10% 

corresponds to the optimal iodine concentration under visible light irradiation. Similar 

+− +⎯→⎯ vbcb
hv heTiO2

22 442 OHhOH +→+ ++
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findings on the optimal dopant concentration have been reported for metal-doped TiO2, 

while optimal doping concentrations of nonmetals have been much less discussed 

possibly because they are more difficult to control. This is the first study that has reported 

an optimal doping level for I-doped TiO2 . 

 

Figure 2.5 Concentration of CO produced from CO2 photoreduction under visible light (a) and under UV-
vis irradiation (b) using different I-doped TiO2 samples. 

 

The concentration of CO reached 670 ppm at 210 min for the sample of 10% I-TiO2-

375C under visible light (Figure 2.5 a), resulting in a product yield equivalent to 2.4 
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μmol g-1h-1. There have been very few studies on the CO2 photoreduction under visible 

light irradiation. This research, for the first time in the literature, reports photocatalytic 

CO2 reduction by nonmetal-doped TiO2 without any other co-catalysts. Grimes and his 

co-workers[72] synthesized N-doped TiO2 nanotube arrays sputtered with Cu 

nanoparticles (NT/Cu) for CO2 photoreduction under sunlight and they reported that the 

activity in visible light region is only 3% of that under the whole solar spectrum (the rates 

of CO, CH4, and other HCs production are equivalent to 0.11, 0.13, and 0.05 μmol g
−1
h
−1 , 

respectively; the total production rate is about 0.3 μmol g
−1
h
−1 under visible light 

irradiation of the solar spectrum with an intensity of 78.5 mW/cm2 ). Ozcan et al.[73] 

studied dye-sensitized and Pt modified TiO2 for CO2 photoreduction and reported a CH4 

production rate of 0.2 μmol g
−1 h

−1 
using a 75 W daylight lamp as the visible light source. 

Figure 2.6 shows the spectra of the 450 W Xe lamp used in this work, with or without 

the 400 nm long-pass filter, in comparison with the AM 1.5 G standard solar spectrum. 

The integrated light intensity of the Xe lamp was 428 mW/cm
2 (full spectrum) and 233 

mW/cm
2 for the visible region (400–750 nm). While the visible light intensity in our 

study was approximately four times higher than those used by Grimes and co-workers 

and Ozcan et al.[72, 73], our CO2 photoreduction rate under visible light (2.4 μmol g
−1
h
−1

) 

is approximately eight times higher than that reported by Grimes and co-workers and 

twelve times higher than that reported by Ozcan et al. Although the photoactivity may not 

be a linear function of light intensity, and the product selectivities were different in the 

three studies, the I-TiO2 photocatalyst developed in this work is a very attractive and 

promising candidate for larger scale CO2 photoreduction under sunlight. This catalyst is 
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highly responsive to visible light and its synthesis requires only low-cost materials and 

simple manufacturing process steps. 

 

Figure 2.6 Spectra of the Xe lamp used in this study, with and without the 400 nm long-pass filter, in 
comparison to the AM 1.5 G standard solar spectrum. 

 
Figure 2.5 (b) shows the CO2 photoreduction activity of the catalysts under UV-vis 

irradiation. CO2 photoreduction to CO was observed for undoped TiO2 calcined at 375◦C, 

confirming that undoped TiO2 can only be activated by UV irradiation. However, the CO 

production rate is very low for the pure TiO2, especially when compared with the I-doped 

TiO2 calcined at the same temperature. The enhanced activity of I-doped TiO2 under UV-

vis irradiation is likely due to the combinational effects of slightly increased surface area, 

increased visible light absorption, and improved charge separation due to the iodine 

doping. Among the three I-doped TiO2 (2.5%, 5%, and 10%), 5% I-TiO2 exhibited the 

highest activity followed by 10% I-TiO2, and the CO production for 5% I-TiO2 reached 
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nearly 600 ppm in 90 min and leveled off thereafter. The 15% I-TiO2 was not tested 

under UV–vis irradiation as its activity was inferior to 10% I-TiO2 under visible light 

irradiation. 

        It is interesting to find that the optimal iodine concentrations in TiO2 are different 

under visible light (10%) and UV-vis (5%) irradiations, respectively. Furthermore, the 

highest CO production rate under visible light irradiation (670 ppm at 210 min for 10% I-

TiO2-375C) is even higher than that under UV–vis irradiation (600 ppm at 90 min for 5% 

I-TiO2-375C). In addition, the activity of 10% I-TiO2-375C under visible light irradiation 

is higher than that under UV–vis irradiation, but the trend is opposite for 5% I-TiO2-

375C. These results indicate that materials designed for high activity under visible light 

may not be necessarily optimized for UV applications. Similar findings have been 

reported that N- or S-doped TiO2 has superior photooxidation activity to that of undoped 

TiO2 under visible light irradiation but has similar or even lower photocatalytic activity in 

the UV region. 

       To verify the half reaction of O2 production from H2O oxidation, the concentration of 

O2 was monitored in a separate test using 5% I-TiO2-375C as the catalyst under UV–vis 

irradiation. There were background O2 and N2 (a few hundred ppm) detected in the 

reactor, possibly because the reactor was not vacuumed before purging it with the CO2–

H2O mixture. In addition, the GC peaks for O2 and N2 were close to each other and 

overlapped to a certain degree. Hence, the change of volumetric ratio of O2/(O2+N2) in 

the batch reactor would be a better indicator for O2 production during the photocatalytic 



 

 

34 

reaction. As shown in Figure 2.7, the O2/(O2+N2) ratio slightly decreased in the first 30 

min and then increased with the irradiation time at an almost linear rate, implying O2 

production from H2O dissociation according to R2. The increasing CO concentration 

under light irradiation (Figure 2.5) together with the increasing O2/(O2+N2) ratio (Fig 

2.7) provide sound evidence of photocatalytic reaction of CO2 with H2O to form CO and 

O2.  

 

Figure 2.7 Time dependence on the ration of O2/(O2+N2) during photocatalytic reaction with 5% I-TiO2 
375C as photocatalyst 

 
The possibility of H2 production due to photocatalytic H2O reduction was also tested by 

switching the GC carrier gas from helium to nitrogen to enhance the sensitivity for H2. 

However, under identical experimental conditions using the 5% I-TiO2-375C, no H2 was 

detected during a three hour UV–vis illumination. H2O reduction to produce H2, which 

competes with CO2 reduction for electrons, is feasible based on the thermochemical data 

but experimental results from this study and from the literature suggest that the yield of 
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H2 is trace, if any, as compared with those of the CO2 reduction products, and is 

prominent only in the presence of noble metals (e.g. Ru, Pt). 

2.4 Summary and Conclusion 
 

I-doped TiO2 photocatalysts with different iodine doping levels and calcination 

temperatures were prepared and were tested for the activity of photocatalytic CO2 

reduction with H2O. The iodine dopant extended the absorption spectra of TiO2 to the 

visible light region and facilitated charge separation. Significant enhancement of CO2 

photoreduction to CO was observed for I-doped TiO2 compared with undoped TiO2 under 

both visible and UV-vis irradiations. The high activity of CO2 reduction under visible 

light compared to the literature data makes I-doped TiO2 a potentially cost-effective 

photocatalyst. Lower calcination temperature (375 C°) resulted in smaller particle size 

and higher catalytic activity. 10% I-doping level demonstrated the highest CO2 

photoreduction rate under visible light, while 5% I-doping level performed best under 

UV-vis irradiation. Too high an iodine doping level may result in recombination centers 

and thus lower the photocatalytic activity. Further work is needed to determine if the 

nanocrystal morphology changes as a function of doping level and annealing conditions, 

especially for the preparations that show superior photocatalytic activity. 
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Chapter 3 Copper And Iodine Co-Modified TiO2 Nanoparticles For 
Improved Activity Of CO2 Photoreduction With Water Vapor 
 

3.1 Research Background  
 

Among many different TiO2 surface modification approaches, the metal doping have 

been approved can be used to increase the activity of TiO2. Loading metal nanoparticles 

onto TiO2 leads to a redistribution of charges and formation of a Schottky barrier. 

Electrons migrate from the TiO2 to the metal, and charge recombination can be 

suppressed[18]. The incorporation of transition metal ions (e.g., Cu
2+ , Cu

+ , Fe
3+ , etc.) 

can also lead to the formation of electron trapping sites and promote charge transfer from 

TiO2 to metal ions, thus resulting in the enhanced photoreaction of surface adsorbed 

species. For example, Xu et al.[74] suggested that the Cu (identified as Cu
+ ) species that 

were deposited on TiO2 , forming Ti–O–Cu surface bonds, served as acceptors of 

electrons that were transferred from the TiO2 conduction band. While metal 

modifications of TiO2 lead to apparent enhancements in charge separation, their effects in 

altering the optical properties of TiO2 are limited for most catalysts that are prepared 

using wet-chemistry methods [58, 59, 62]. An ion implantation method results in more 

effective doping of metal ions in the TiO2 lattice, and hence extends the TiO2 absorption 

spectrum to the visible light range[75]. However, excess doping of metal ions into the 

TiO2 lattice can result in the formation of electron–hole recombination centers[52, 76].  

Also as being introduced in Chapter 2. Doping of nonmetal ions (e.g., N, S, C, F, etc.) 

into the TiO2 lattice has also been widely reported to modify the nanostructure and 
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optical properties. These dopants create intra-band-gap states close to the conduction or 

valence band edges that induce visible light absorption. Unlike metal ions, nonmetal ions 

are less likely to form recombination centers, and thus are more effective in enhancing 

visible light activity[76]. The less studied iodine-doped TiO2 has been explored, and 

some advantages of the iodine dopant over other nonmetal dopants have been 

reported[28, 69, 71]. First, substitution of a titanium atom with iodine leads to generation 

of Ti
3+ that may trap photoinduced electrons and inhibit charge recombination[7]. 

Second, iodine atoms prefer to be doped near the TiO2 surface due to the strong I-O 

repulsion, and act as surface trapping centers for electrons[41, 68]. Hence, iodine doping 

not only leads to a red-shift in the TiO2 light absorption spectrum, but also enhances 

charge separation[77].  

In last chapter, our previous research[77] tested the activity of iodine-doped TiO2 for 

CO2 photoreduction. I-TiO2 demonstrated significant enhancements in CO2 

photoreduction to CO as compared to undoped TiO2 under both visible light and UV-vis 

illumination. Interestingly, for iodine doping higher than a certain level (i.e., nominal 10 

wt%), the activity of I-TiO2 under UV-vis illumination was not superior to that seen 

under visible light. The formation of recombination centers at high doping levels may 

account for this phenomenon, but further investigation is needed to better understand the 

mechanism. On the other hand, one of our previous studies also showed high CO2 

photoreduction activity using a Cu/TiO2 catalyst dispersed on a mesoporous silica 

support[62]. Given that either metal modification or nonmetal doping can improve the 

photocatalytic activity of TiO2, a new composite catalyst was fabricated in this work by 
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incorporating both Cu and I species into TiO2. Our hypothesis was that co-modification 

of TiO2 with Cu and I would maintain the charge balance and avoid formation of 

recombination centers, and thus the catalyst could perform more effectively under UV-vis 

illumination while maintaining a high activity under visible light.  

There have been literature reports that suggest that co-doping of metal and nonmetal 

species on TiO2 leads to enhanced photocatalytic activity as compared with single ion-

doped TiO2[78]. Examples include co-doping of Cu and S on TiO2 for improved methyl 

orange degradation under visible light [78], Fe and N co-doped TiO2 for narrowed band 

gap and enhanced photoactivity toward degradation of diphenylamine [79], and Zr and I 

co-doped TiO2 for enhanced methyl orange degradation as compared to I/TiO2 because 

of a smaller crystal size and higher surface area[80]. Unfortunately, most of those 

literature publications focused on the applications of photocatalytic oxidation of organic 

compounds; metal and nonmetal co-modified TiO2 for photocatalytic CO2 reduction has 

been reported only once in the literature. Varghese et al.[81] synthesized N-doped TiO2 

nanotube arrays sputtered with Pt or Cu nanoparticles as a co-catalyst and tested the 

catalytic activity for CO2 reduction with water under sunlight. The product yields under 

visible light irradiation contributed to only 3% of that under the entire solar spectrum, 

implying a limited rate for visible light utilization[81]. The raw materials used in the 

work of Varghese et al.[81] were expensive and the fabrication process was relatively 

complicated. In this work, we used a much simpler method and cheaper raw materials to 

synthesize Cu and I co-modified TiO2 nanoparticles. The catalytic activities for the 

photocatalytic reduction of CO2 with water vapor under visible and UV-visible 
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illumination are compared, and new insights regarding the reaction mechanism are 

proposed in this study.  

3.2 Experimental  
 

Copper chloride dehydrate (CuCl2·2H2O, >99%, Acros Organics), iodic acid 

(HIO3, >99.5%, Alfa Aesar), and titanium isopropoxide (TTIP, >99.5%, Acros Organics) 

were used as the precursors for Cu, I, and TiO2, respectively. A two-step process 

modified from the literature [62] was used to prepare Cu and I co-modified TiO2 (Cu-I-

TiO2). The first step was to synthesize I-doped TiO2 through a hydrothermal method 

reported in our previous study[62, 82]. Briefly, a mixture of TTIP and isopropanol was 

first added dropwise into a HIO3 solution under continuous stirring for 2 h, and the 

resultant mixture was transferred to a Teflon-lined vessel for hydrothermal treatment at 

100◦C for 12 h. After that, the particles were filtered and washed with copious amounts 

of deionized water until pH 7. Finally, the I-TiO2 powders were obtained by drying at 

80◦C for 1 h and calcination in air for 2 h at 375◦C. The nominal iodine concentration and 

calcination temperature were kept at 10 wt% and 375◦C, respectively, because these 

parameters corresponded to an optimum activity under visible light, as reported in our 

previous work[77]. The second step in the synthesis process was to incorporate Cu into I-

TiO2 through an incipient wet impregnation process. Typically, 500 mg of the I-TiO2 

sample was mixed in a 20 ml CuCl2 solution for 1 h, and then the mixture was dried in a 

vacuum oven at 80◦C for 12 h and calcined at 300◦C for 1 h. The nominal Cu 

concentration varied from 0.1 to 1 wt%, a range that corresponded to optimum catalytic 

activities reported in many studies for Cu-loaded TiO2[62, 83]. The samples are denoted 
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by “xCu–yI–TiO2”, where x and y are the nominal weight percentages of Cu and I, 

respectively. For comparison, pure TiO2 , Cu–TiO2 , and I–TiO2 were also prepared using 

the same procedure. In addition, to investigate the potential effect of the Cu precursor 

(i.e., to compare with CuCl2), additional samples using different Cu precursor solutions 

(1) Cu(NO3)2 and (2) Cu(NO3)2 + KCl with (Cu:Cl = 1:2) were also prepared using the 

same procedure. All of the samples were grinded to powders and sieved by a 45 μm 

stainless steel sieve before the characterization and photoactivity tests.  

         The characterization part is as same as Chapter 2. Various technology have been 

used, such as X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area 

analyses, scanning electron microscope (SEM) system equipped with energy-dispersive 

X-ray (EDX) spectroscopy, and UV-vis reflectance spectra. The CO2 photoreduction 

activity test also followed with the same procedure as Chapter 2.  

3.3 Results and Discussion 

3.3.1 Characteristics of Cu-I-TiO2 catalysts 
 

Figure 3.1 shows the X-ray diffraction (XRD) patterns of pure TiO2, 10I–TiO2, 1Cu–

TiO2, and 1Cu–10I–TiO2. For all samples, the characteristic peaks at 2θ=25.2◦ and 2θ 

=30.8◦ indicate the (101) plane of anatase (JCPDS 21-1272) and (121) plane of brookite 

(JCPDS 29-1360) TiO2. No characteristic peak of the rutile phase (2θ=27.4◦) was 

detected. The XRD pattern did not show any copper or iodine phase. Calculated values of 

the crystal phase contents and crystal sizes appear in Table 3.1. The pure TiO2 consisted 

of 70% anatase and 30% brookite, with a crystal size of 8.9 nm for anatase and 4.8 nm 

for brookite. The BET surface area of TiO2 was relatively high (117.3 m
2
/g) as compared 
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to commercial P25 TiO2 (∼50 m
2
/g), likely due to its smaller primary particle size (less 

than 10 nm) as compared to that of P25 (∼20 nm). ���Doping (10I-TiO2) did not appear to 

change the phase content, but significantly reduced the crystal size of anatase to 5.6 nm. 

The smaller crystal size due to lattice doping that was detected in this work agrees with 

those reported in the literature[71, 77, 84]. Accordingly, the surface area of 10I-TiO2 

(128.2 m
2
/g) was higher than that of pure TiO2. The incorporation of Cu (i.e., 1Cu-TiO2) 

slightly reduced the anatase content and increased the anatase crystal size, and, 

consequently, its surface area decreased to 95.3 m
2
/g. This trend agrees with the result 

reported by Slamet et al.[85] that Cu-loaded TiO2 had a smaller surface area as compared 

to bare TiO2. This also implies that through the wet impregnation process, Cu species are 

deposited on the surface of TiO2 rather than in the lattice. The combination of both Cu 

and I modification  

 

Figure 3.1 XRD patterns of TiO2 (a), 10I-TiO2 (b), 1Cu-TiO2 (c), and 1Cu-10I-TiO2 (d) samples. 
(A=anatase; B=brookite) 
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(i.e., 1Cu–10I–TiO2) resulted in a sample with the expected characteristics, i.e., similar 

phase content as 1Cu–TiO2 (since iodine does not affect the phase content) and an 

anatase crystal size that was in between that of 1Cu–TiO2 and 10I– TiO2 (Cu increased 

while I reduced the TiO2 crystal size). Interestingly, the surface area of 1Cu–10I–TiO2 

was the highest (146.4 m
2
/g) among all the measured samples, which may relate to its 

smallest brookite crystal size, as shown in Table 3.1. Unlike anatase, the crystal size of 

brookite does not apparently relate to the catalyst composition. Brookite TiO2 is much 

less studied in the literature and the lack of understanding of doped brookite warrants 

further investigation. 

Table 3.1 Phase content and average size of Cu-I-TiO2 samples obtained from X-ray diffraction, band gap 
from optical spectroscopy, and specific surface area from BET analysis (A:anatase; B:brookite). 

 
 
 
       Figure 3.2 shows the results of SEM/EDX analyses of the 1Cu–10I–TiO2 sample. 

Agglomerates of TiO2 nanoparticles were observed in the SEM image. No textural 

difference was found in the SEM images between pure TiO2, single ion-modified, and co- 

modified TiO2 samples. The EDX analyses confirm the presence of Cu and I in the TiO2 

sample. In addition, the element of Cl was also identified (at 2.6 keV), since CuCl2 was 

used as the Cu precursor in the wet-impregnation process. 
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Figure 3.2 EDX analysis and SEM image of 1Cu-10I-TiO2 sample 

The UV–vis diffuse reflectance spectra (converted to absorbance) of pure TiO2, 1Cu– 

TiO2, 10I–TiO2 and Cu–10I–TiO2 samples with different Cu concentrations are shown in 

Figure 3.3. The absorption edge of pure TiO2 is around 400 nm. For the 1Cu–TiO2 

sample, the absorption edge is only slightly shifted as compared to pure TiO2. This result 

is in agreement with our previous research that suggested that impregnation of Cu on 

TiO2 did not have a prominent effect on the optical property[62]. For all I-doped TiO2, 

with or without Cu, the absorption edge shifted to the visible region, in agreement with 

the yellow color of the I-doped TiO2 samples. The Cu concentration on the Cu–10I–TiO2 

samples (at a constant I doping level) did not significantly affect the light absorption. 

These optical properties support the conclusions that Cu that is deposited on the surface 

does not change the TiO2 band structures, and iodine that is doped in the lattice may 

generate intra-band-gap states in TiO2.  



 

 

44 

 
Figure 3.3 UV-vis diffuse reflectance spectra of the Cu/I-TiO2 samples displayed in absorbance 

 

3.3.2 Photocatalytic ability of Cu-I-TiO2 catalysts 
 
      A series of background tests were first conducted to prove that any carbon-containing 

compounds in the effluent gas measured by the GC indeed originated from CO2 through 

photocatalytic reactions. First, tests were conducted using CO2 and H2O vapor as the 

purging and reaction gases for the cases of (1) empty reactor and (2) blank glass-fiber 

filter in the reactor. No carbon-containing compounds were produced under either UV or 

visible irradiation in each of the two cases. This demonstrates that the reactor and the 

glass-fiber filter were clean and that the CO2 conversion could not proceed without the 

photocatalyst. Second, pure helium (instead of CO2) and water vapor were used as the 

purging and reaction gases, and the system was tested with the catalyst loaded in the 

reactor. Again, no carbon-containing compounds were produced by the catalyst under 

either UV or visible irradiation. This verified that the catalyst was clean (i.e., no 

interference from organic residues) and that any C-containing gases that were produced 
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were derived from CO2 in the reaction gases. 

 

Figure 3.4 CO yield under visible light irradiation (a) and UV/vis irradiation (b) 

 
purging and reaction gases, and the system was tested with the catalyst loaded in the 

reactor.  

     CO2 photoreduction with water vapor over TiO2-based catalysts was studied in a batch 

mode for a period of 210 min for each test. Figure 3.4 shows the yield of CO from CO2 

reduction as a function of illumination time for the various catalysts under visible light 

(λ > 400 nm) and UV–vis irradiation (λ > 250 nm). Each sample was tested twice and the 
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average yields and error bars are shown in Figure 3.4. Under visible light, no activity of 

CO2 reduction was observed for either pure TiO2 or 1Cu–TiO2 . Thus, zero activities are 

not shown in Figure 3.4 a. This result is consistent with the inability of TiO2 or 1Cu–TiO2 

to absorb visible light, as shown in Figure 3.3. All I-doped TiO2 samples exhibited visible 

light activities for CO2 photoreduction to CO, and the production was almost linear with 

illumination time (Figure 3.4 a). Among the three Cu–10I–TiO2 samples with different 

Cu concentrations (0.1, 0.5, and 1%), 1%Cu appeared to be the optimum material, having 

a CO production of 6.7 μmol g
−1 at 210 min. However, only the 1Cu–10I–TiO2 sample 

demonstrated a higher activity than the 10I–TiO2 sample (5.3 μmol g
−1 at 210 min) while 

the other two co-modified samples 0.1Cu–10I–TiO2 and 0.5Cu–10I–TiO2 were inferior 

to 10I–TiO2 . Very few studies have reported CO2 photoreduction with water under 

visible light. Varghese et al.[81] used an N-doped TiO2 nanotube array sputtered with Cu 

for CO2 photoreduction with water vapor under sunlight and reported a production rate of 

0.3 μmol g
−1 h

−1 ascribed to the visible light portion (or 3% of the total photocatalytic 

activity under sunlight). Our production rate under visible light (e.g., 1.9 μmol g
−1 h

−1 for 

1Cu–10I–TiO2 ) is much higher than that reported by Varghese et al.[81]，while our raw 

materials are cheaper and our synthesis method is simpler, although the intensity of 

visible light in our work was approximately four times as much as that of sunlight. 

      Under UV–vis irradiation (Figure 3.4 b), very different activity results were observed 

from those under visible light. Pure TiO2 had the lowest activity, while single ion-

modified TiO2 samples (1Cu–TiO2 and 10I–TiO2) exhibited enhanced, yet small 
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activities. Cu and I co-modified TiO2 samples had remarkably higher activities, while the 

0.1%Cu sample appeared to be the best among the three Cu–10I–TiO2 samples. While the 

deposited Cu species may act as hole scavengers and thus enhance the CO2 reduction 

rate, the anion species (e.g., Cl
−
) present on the catalyst and the dispersion of Cu species 

were found to have significant effects on the reaction rate and product selectivity. 

       Another significant result shown in Figure 3.4 is that the 1Cu–10I–TiO2 sample led 

to a higher level of CO production under visible light (6.7 μmol g-1 CO production) as 

compared to that under UV–vis irradiation (5.4 μmol g-1 CO production), while the 

opposite trend was observed for the 0.5Cu–10I–TiO2 and 0.1Cu–10I–TiO2 samples. 

Similarly, in our previous research[77], the 10I–TiO2 sample had a higher activity for 

CO2 photoreduction to CO under visible light than under UV–vis light irradiation, while 

the sample with lower iodine concentration, 5I–TiO2, had an opposite trend. In addition, 

in this work all three Cu–I–TiO2 samples exhibited higher activities than the I–TiO2 

sample under UV–vis light but two out of three Cu–I–TiO2 samples with lower Cu 

concentrations had lower activities than the I–TiO2 sample under visible light. All these 

results suggest that the presence and concentrations of the modifiers (Cu and I) have an 

important role in catalytic activity with different excitation sources. A general 

observation is that to achieve an optimum activity, a higher modifier concentration is 

needed under visible light (e.g., 10I–TiO2 rather than 5I–TiO[77]; 1Cu–10I–TiO2 rather 

than 0.5Cu–10I–TiO2 and 0.1Cu–10I–TiO2 ) but a lower modifier concentration is needed 

under UV–vis light. A possible reason is that very high modifier concentrations may lead 

to the formation of recombination centers, particularly when there is a larger population 
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of photo-induced electron–hole pairs (i.e., under UV–vis light).  

3.3.3 Product selectivity and reaction mechanism 
 

Besides the formation of CO as a major product, two minor products, methyl chloride 

or chloromethane (CH3Cl) and methane (CH4) were also observed using certain catalysts 

under certain excitation sources. The existence of CH3Cl was identified through a GC/MS 

measurement and calibrated by a standard (2000 μg/ml CH3Cl in methanol, Restek). The 

measured amounts of photoreduction products under all of the experimental conditions 

are summarized in Table 3.2. The production of CH4 was only observable under UV–vis 

light irradiation and was only prominent for the Cu–TiO2 sample. The production of 

CH3Cl was observable only when Cu was incorporated into the catalyst, apparently due 

to the use of CuCl2 as the Cu precursor. The existence of Cl species was confirmed by the 

EDX analyses, as previously described. The yield of CH3Cl for the Cu–I–TiO2 samples 

increased with the concentration of Cu (and Cl) on the catalyst. In an additional 

experiment using Cu(NO3)2 as the Cu precursor for the catalyst (i.e., 1CuNO3–10I–TiO2), 

no formation of CH3Cl was observed, while adding KCl together with Cu(NO3)2 (i.e., 

1CuNO3+KCl–10I–TiO2) in the catalyst precursor resulted in the formation of CH3Cl (see 

Table 3.2). These results again confirmed that the source of Cl in CH3Cl was from the 

precursor solution. 
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Table 3.2 Amount of CO2 photoreduction products measured at 210 min under visible and UV-vis light 
irradiation. 

 

This research is the first time to report the formation of CH3Cl as a result of CO2 

photoreduction on Cu-loaded TiO2 when a chlorinated precursor was used. The formation 

of a Cl－ labeled final product (CH3Cl) may provide unique insights into the reaction 

mechanism of CO2 reduction that has not previously been articulated in the literature. The 

path to CH3Cl formation is likely through the reaction of a methyl radical (CH3
�) and a 

chlorine radical (Cl�). The generation of Cl� is a result of the oxidation of chloride ions 

with photo-induced holes. CH3
� was reported to be one of the reaction intermediates for 

CO2 photoreduction to CH4 on TiO2, and was confirmed by electron paramagnetic 

resonance (EPR) spectroscopy. The possible reaction pathways during the CO2 reduction 

process in this work are listed as follows, and the reaction mechanism is illustrated in 

Figure 3.5. 
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Figure 3.5 Mechanism of Cu/Iodine co-doped TiO2 for CO2 reduction 

 

Reactions (1)–(8) suggest that CO2 is first reduced to CO through a two-electron and 

two-proton reaction, which can be further reduced to surface adsorbed C species. These 

adsorbed C species are intermediates for the generation of CH4 and CH3Cl present in the 



 

 

51 

final products (reactions (9)–(11)). The produced amounts of CH4 and CH3Cl are far less 

than that of CO since CO is possibly the precursor. The produced amount of CH3Cl is 

generally higher than that of CH4 (Table 3.2). This result may be because of two reasons: 

(1) Cl� reacts with CH3
� at a higher rate than H� does and/or the abundance of Cl� is larger 

than H�, and (2) CH4 reacts with Cl� to yield CH3Cl as shown in reaction (12). 

Nevertheless, the formation mechanism of CH3Cl should be analogous to that of CH4. 

The detection of CH3Cl in this work verifies the EPR results in the literature that 

indicates that CH3
� is an intermediate species in the CO2 photoreduction process. An 

additional important finding in our experiments is that the color of the catalyst turned 

darker during the process of CO2 photoreduction with H2O, and it would gradually restore 

to (or close to) its original color if the used catalyst was exposed to air at room 

temperature. The darkening in catalyst color may be an indication of the formation of 

intermediate C species adsorbed onto the surface. Since these species are unstable, they 

are difficult to measure under the experimental settings that were used. This intriguing 

phenomenon and the identification of reaction intermediates will be investigated in full 

detail in our future research by using in situ Fourier transform infrared (FTIR) 

spectroscopy. 

     To further investigate the effects of Cl species on CO2 photoreduction, the activities of 

three catalysts were compared: 1Cu–10I–TiO (CuCl as the precursor), 1CuNO3–10I–

TiO2 (Cu(NO3)2 as the precursor), and 1CuNO3–10I–TiO2 (Cu(NO3)2 + KCl as the 

precursor), and the results are as listed in Table 3.2. The 1CuNO3–10I–TiO2 catalyst had 

a CO production (1.5 μmol g
−1 ) that was less than one third of the CO production that 
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was observed using 1Cu–10I–TiO2 (5.4 μmol g
−1 ) under UV–vis irradiation, although the 

yield of CH4 was comparable. The 1CuNO3+KCl–10I–TiO2 catalyst also had a much 

lower CO production (1.5 μmol g
−1

) than 1Cu–10I–TiO2 (6.7 μmol g
−1

) under visible light 

irradiation, although the produced amounts of CH3Cl were close to each other. These 

results indicate that CuCl2 as the Cu precursor is more effective than Cu(NO3)2 . A similar 

finding was reported by Tseng et al.[86] that the choice of a CuCl2 precursor increased 

the Cu dispersion and thus resulted in a higher CO2 photoreduction rate as compared to 

that obtained with a copper acetate precursor. In addition to the enhanced Cu dispersion 

due to CuCl2, the surface Cl ions act as hole-scavengers (reaction (10)) and thus help to 

separate the electron–hole pairs and enable more electrons to react with CO2. The result 

that a mixture of Cu(NO3)2 and KCl as the Cu precursor was less effective in producing 

valuable products as compared to CuCl2 suggests that the additional ions (NO3
−
, K+) may 

have a negative effect on Cu dispersion. On the other hand, using CuCl2 as the precursor 

led to unwanted products (e.g., CH3Cl) even though its CO production rate was about 

three times higher than that using Cu(NO3)2 as the precursor. Therefore, more attention 

should be paid by the research community to the choice of catalyst modifier precursors 

when undertaking CO2 photoreduction studies.  

3.4 Conclusion  
 
    In this study, Cu and I co-modified TiO2 catalysts (Cu–I–TiO2) were synthesized with 

iodine doped into the TiO2 lattice and Cu deposited on the TiO2 surface. The material 

properties and catalytic activities for CO2 photoreduction with water were compared 
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using pure TiO2, single-ion modified TiO2 (Cu–TiO2 and I–TiO2), and co-modified 

catalysts (Cu–I–TiO2). Iodine doping was responsible for visible light activity of the 

catalyst while Cu species, mainly Cu(I), facilitated charge transfer and enhanced CO2 

reduction. However, the catalytic activity and the optimum catalyst composition under 

visible or UV–visible light irradiation were different. Under UV–vis irradiation, the 

activity of the Cu–I–TiO2 sample was higher than that of Cu–TiO2 or I–TiO2, whereas, 

under visible light, Cu–I–TiO2 was not always superior to I–TiO2. To achieve an 

optimum activity, a lower modifier concentration is needed under UV–vis light than 

under visible light, possibly because a high modifier concentration may lead to the 

formation of recombination centers. This work identified the generation of CH3Cl from 

CO2 reduction. The Cl species was derived from CuCl2, a frequently used Cu precursor. 

The in���formation of CH3Cl suggests that surface adsorbed carbon species and methyl 

radicals may be reaction intermediates, which war- rants follow-up investigation using in 

situ IR spectroscopy. While using CuCl2 as the Cu precursor resulted in a much higher 

CO2 photoreduction rate than using Cu(NO3)2 , the undesirable CH3Cl in the reaction 

products may be a concern. 
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Chapter 4 Novel Anti-Fouling Fe2O3/TiO2 Nanowire Membranes For 
Humic Acid Removal From Water 

4.1 Research background 
 

Membrane fouling caused by deposition of contaminants on membrane surface has 

been recognized as one of the major obstacles inhibiting the application of membrane 

technologies [12, 13]. Membrane fouling may dramatically shorten the lifetime of 

membrane module, deteriorate the quality of water produced and increase the operation 

cost.  

      To address the membrane fouling issue, fabrication of unconventional membranes 

such as titanium dioxide (TiO2) nanowire membranes (Ti–NWM) has been reported in 

the literature [87, 88]. Under ultraviolet (UV) light irradiation, electron-hole pairs are 

generated on TiO2 nanowires resulting in the formation of strong oxidants like hydroxyl 

radicals [68, 89], which are effective in mineralizing organic contaminants on the 

membrane surface and thus mitigate membrane fouling. Compared with TiO2 

nanoparticles, the Ti–NWM design can circumvent the separation and recovery of TiO2 

nanoparticles after wastewater treatment [87, 90], and thus it is more convenient to be 

used with lower capital and operation costs. However the wide band gap of TiO2 (3.2 eV 

for anatase and 3.0 eV for rutile) restricts the photo-response of the Ti–NWM to only UV 

light irradiation. Since UV light accounts for only 5% of total solar energy, the Ti–NWM 

shows low photocatalytic activity under solar irritation, and visible light portion (~50% 

of solar energy) of the sunlight is not utilized [91]. Therefore, it is necessary to increase 

the visible light absorption of the Ti–NWM to improve its photoactivity under solar 

irradiation.  
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Nonmetal element (e.g., N, C, S, F, I, etc.) doped TiO2 has been widely reported to 

induce visible light responsive photocatalytic activity, where nitrogen doping is the most 

extensively studied [92-96]. N-doped TiO2 nanowires have also been synthesized through 

thermal reduction in ammonia environment and the nanowire morphology can be largely 

preserved when reduction temperature was lower than 600 ºC [97, 98]. Unfortunately, 

although N-doped TiO2 shows visible light activity, its activity under UV light is 

normally impaired, most likely due to the doping induced formation of recombination 

centers [97, 99]. Another method is to modify TiO2 with other semiconductors with 

smaller band gap to form heterojunctions for improvement in visible light absorption and 

overall photocatalytic activity [95, 96]. Fe2O3 has been used as one of such modifiers to 

TiO2 due to its small band gap (2.2 eV for α-Fe2O3), low cost and non-toxicity [45, 46, 

100-102]. Cong et al. [45] fabricated α-Fe2O3/TiO2 nanorod/nanotube composite by 

filling TiO2 nanotubes with Fe2O3 and they showed higher phenol degradation efficiency 

and stronger photo-responsibility for visible light compared with TiO2 nanotubes alone. 

Zhou et al. [102] showed that a mesoporous α-Fe2O3/TiO2 bifunctional composite can 

take the advantages of enhanced arsenite adsorption by Fe2O3 and the photocatalytic 

oxidation of As (III) to As (V) by TiO2.  

Therefore, we hypothesize that combining the increased visible light photocatalytic 

response and higher adsorption of certain water contaminants onto Fe2O3 would make 

Fe2O3 modified Ti–NWM a more promising membrane than Ti–NWM in water 

treatment, where sunlight instead of UV light can be utilized without secondary 

contamination of TiO2 nanoparticles. The overall objective of this study is to fabricate a 

novel interwoven Fe2O3/TiO2 nanowire membrane (FeTi–NWM) and to test its 
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performances for humic acid removal from water under sunlight. The novelty of this 

work is four-fold: 1) interwoven Fe2O3/TiO2 nanowire membranes have not been 

synthesized before; 2) such FeTi–NWM has not been tested under sunlight for organics 

removal from water; 3) the finding on anti-fouling ability of the FeTi–NWM under 

sunlight is original and not reported before; and 4) this paper elucidates a new mechanism 

of charge transfer between Fe2O3 and TiO2 that may have led to the anti-fouling feature. 

4.2 Experimental  

4.2.1 Synthesis of Fe2O3/TiO2 nanowire membranes (FeTi–NWM) 
 

The TiO2 nanowires were fabricated by a method modified from a previous report 

[103]. Briefly, 1.0 g of TiO2 nanopowder (P25, Degussa) was mixed with 65 mL of 10 M 

NaOH and 65 mL ethanol successively and transferred to a Teflon-lined autoclave. After 

hydrothermal reaction at 160 °C for 16 h, a white pulp suspension containing TiO2 

nanowires was collected and washed with 0.1 M hydrochloric acid and deionized water 

alternately until pH equals near 7. The TiO2 nanowires were then suspended in deionized 

water for further use. The synthesis of the Fe2O3 nanowires followed the method reported 

by Guo et al. [42]. 0.15 M FeCl3 solution was mixed with isopropanol, to which 3 mM 

nitrilotriacetic acid (NTA) was added. After thorough stirring, the mixture was 

transferred into a Teflon-lined autoclave and hydrothermally treated at 180°C for 24 h. 

The resultant floccules were collected and washed with deionized water and ethanol, and 

then vacuum-dried at 60°C for 1 h. 

The as-prepared TiO2 and Fe2O3 nanowires were used to fabricate FeTi–NWM by a 

vacuum filtration and hot pressing method, as shown in Figure 4.2. Water solution 

containing well mixed Fe2O3 and TiO2 nanowires was filtered through a glass-fiber filter 
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paper (P4 grade, Fisher brand) by vacuum. After drying, the filter paper together with the 

Fe2O3 and TiO2 nanowire layer was hot-pressed for 10 min. The nanowire layer was then 

peeled off and finally calcined at 400 °C for 2 h to form FeTi–NWM. The weight ratio of 

Fe2O3/TiO2 in the FeTi–NWM has been varied in this study, and a 1:1 ratio was found to 

be the optimum (see Figure 4.1). Hence, in this paper, the Fe2O3/TiO2 ratio of 1:1 was 

used for FeTi–NWM unless specified. For comparison, Ti–NWM has also been 

fabricated using the same procedure by using only TiO2 nanowires. 

 

Figure 4.1 Procedure of synthesizing Ti–NWM and FeTi–NWM. 

 

 

Figure 4.2 Humic acid removal under solar irradiation by FeTi-NWM with different Fe2O3/TiO2 mass 
ratios. 
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4.2.2 Membrane Characterization  
 

The microstructure of the Ti–NWM and FeTi–NWM were obtained by scanning 

electron microscopy (SEM) (Hitachi S570). The diameters of the TiO2 and Fe2O3 

nanowires and the membrane thickness were estimated based on the SEM images. The 

pore size of the membrane was estimated by evaluating the filtration efficiency of 

polystyrene microsphere (PS) (Alfa Aesar) solutions containing monodispersed 

microspheres with diameters of 0.05, 0.1, and 0.2 μm, respectively [6]. The 

monodispersity of the microspheres was verified by SEM analysis (see Figure 4.3). The 

estimated pore size of the membrane was determined by the diameter of the microspheres  

 

 

Figure 4.3 SEM image of the 0.2 µm polystyrene microsphere. 

 

that have 90% filtration efficiency by the membrane [6]. The concentration of 

microspheres in the initial solution (C0) was kept at 0.0033 wt.% for all tests with 
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different sizes. The concentration of microspheres in the permeate solution after filtration 

through the membrane was Ca. Both C0 and Ca were measured by a TOC analyzer 

(Shimadzu) via a calibration curve. The filtration efficiency of microspheres by the 

membrane was calculated by: 

𝐹𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 1− !!
!!

×100%            (1)                                                   

The crystal structures of nanowires in the membrane were identified by X-ray diffraction 

(XRD) (Scintag XDS 2000) with Cu Kα radiation operated at 40 mA in the 2θ range 

from 20° to 70° at a scan rate of 1°/min. The UV–vis absorption spectrums of the Ti–

NWM and the FeTi–NWM were recorded with a UV–vis spectrophotometer (Ocean 

Optics). 

4.2.3 Humic acid removal under different light conditions 
 

Humic acid (HA) has been identified as one of the major contaminants leading to 

membrane fouling in water treatment processes [104], thus its removal was investigated 

in the current study. A recirculating water filtration system with nanowire membranes 

placed inside a stainless steel reactor was used, which is shown in Figure 4.5. Pump I 

was used to load the HA solution into the reactor (while valve II was closed) till a water 

depth around 1.7 cm (corresponding to a water volume of 90 ml). Then the feed solution 

was stopped by switching valve I, and in the meantime valve II was switched to open and 

pump II was turned on to recirculate the 90 ml solution through the membrane reactor. 

The initial HA concentration in the solution was 200 mg/L, which is much higher than 

that in natural waters as we expected to augment the membrane fouling phenomenon and 

shorten the time to observe fouling. The recirculating flow rate was at 9 ml/min (or 120 

L/h/m2). Hence, every 10 min the entire solution was expected to circulate through the 
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membrane once. Tests under other flow rates (2, 5, and 15 ml/min) were also conducted 

as comparisons (Figure 4.4) but 9 ml/min appeared to be an appropriate flow rate that 

was used for the majority of this work unless specified.  

 

 

Figure 4.4 Humic acid removal using the FeTi-NWM under different flow rates 

 

A 150 W solar simulator (Oriel® Sol1A, Newport) was used as the light source. 

Visible light irradiation was obtained by applying a 400 nm cut-off UV filter on the solar 

light beam. The measured light intensity for the solar simulator was around 8 and 29 

mW/cm2 in the UV (< 400 nm) and visible light (400 – 700 nm) regions, respectively. 

Each test was performed for 2 h and water permeation samples were collected at an 

interval of 30 min for HA concentration analysis. The UV-vis absorbance at 465 nm was 

measured to calculate the HA concentration using a standard curve prepared with known 

concentrations of HA solutions. HA removal at a recirculation time t was calculated by 

the following equation: 
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𝐻𝑢𝑚𝑖𝑐  𝐴𝑐𝑖𝑑  𝑅𝑒𝑚𝑜𝑣𝑎𝑙 = 1− !!
!!

×100%            (2)   

where H0 was the initial HA concentration, 200 mg/L, and Ht was the HA concentration 

collected at the sample port (effluent side of the reactor) at time t.                                                  

 

Figure 4.5 Schematic of the water filtration system for HA removal using nanowire membranes under 
simulated sunlight. 

 

4.2.4 Long-term test of anti-fouling capability 
 

To investigate the anti-fouling behavior of the FeTi–NWM, long-term tests with or 

without solar irradiation have been performed using the same system as described in 

Figure 4.5. The membrane was tested in 4 consecutive cycles and each cycle lasted for 3 

h. Fresh 200 mg/L HA solution was used at the beginning of each cycle and the system 

was maintained a water flow rate of 9 ml/min (or 120 L/h/m2). In a separate experiment, 

transmembrane pressure, an important indicator for membrane fouling was measured by a 

digital pressure gauge (DPG409, Omegadyne) during a 10 h continuous flow test using 

200 mg/L HA solution.  
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4.3 Results and discussion  

4.3.1 Morphological, structural and optical properties of the nanowire membranes 
 
      The SEM images of the nanowires (all after calcinations) and the photos of resultant 

Ti–NWM and FeTi–NWM are shown in Figure 4.6. As can be seen from Figure 4.6a, 

the diameters of the randomly oriented TiO2 nanowires are generally less than 100 nm, 

and the Ti–NWM displayed a white color (inset of Figure 4.6a). Figure 4.6b shows 

severe aggregation of the Fe2O3 nanowires and the diameters of the bundled Fe2O3 

nanowires are in the range of few hundred nanometers. The difficulty of dispersing Fe2O3 

nanowires alone in an aqueous solution is the reason why a Fe–NWM was not made in 

this study. Figure 4.6c shows overlapped or interwoven Fe2O3/TiO2 nanowires where the 

wider ones are most likely Fe2O3 and narrower ones are TiO2, based on the diameter 

information obtained from Figure 4.6a and Figure 4.6b. The FeTi–NWM displayed a 

reddish color due to the presence of Fe2O3 nanowires (inset of Figure 4.6c). Figure 4.6d 

and Figure 4.6e show the cross-section SEM images of the Ti–NWM and FeTi–NWM, 

and one can observe the thicknesses of both nanowire membranes are comparable (ca. 

200 μm). The filtration efficiency of 0.2, 0.1, and 0.05 μm microspheres by the FeTi–

NWM were measured to be 96%, 95%, and 83%, respectively, thus the estimated pore 

size of the FeTi–NWM was somewhere between 0.05 and 0.1 μm according to the 

definition specified in Section 4.2. The filtration efficiency of 0.05 μm microspheres by 

Ti-NWM was also measured to be 88%, which is comparable and slightly greater than 

the filtration efficiency of the FeTi-NWM (83%). This indicates that the addition of 

Fe2O3 nanowires had a minimal effect on the pore structure of the membrane.   
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Figure 4.6 SEM images showing the morphology of (a) Ti–NWM, (b) calcined Fe2O3 nanowires, (c) FeTi–
NWM, (d) cross-section of Ti-NWM, and (e) cross-section of FeTi-NWM. The insets of (a) and (c) show 

photos of 75 mm diameter Ti–NWM and FeTi–NWM, respectively. 

 

Figure 4.7 gives the XRD patterns of the nanowire membranes after calcination. The 

Ti–NWM shows anatase TiO2 (JCPDS 21-1272) crystals (Figure 4.7 a) while the Fe2O3 

nanowires demonstrates α-Fe2O3 (JCPDS 33-0664) crystal structure (Figure 4.7 b). The 

crystal structure FeTi–NWM was a simple assembly of anatase TiO2 and α-Fe2O3 (Figure 

4.7 c). The XRD patterns in Figure 4.7 are consistent with those reported in the literature 

regarding TiO2 and Fe2O3 nanowires synthesized by similar methods [105].  The anatase 

structure of the TiO2 nanowire is preferred to other crystal structures of TiO2 (e.g., rutile, 

brookite) because of higher photocatalytic activity of anatase in general. [106, 107] 
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Figure 4.7 XRD patterns for (a) Ti–NWM, (b) Fe2O3 nanowires, and (c) FeTi–NWM, all after 400°C 
calcination. 

 

Figure 4.8 gives the optical properties of the Ti–NWM and FeTi–NWM that were 

measured by UV-vis diffused reflectance spectroscopy (DRS). As can be seen, the Ti–

NWM shows strong absorption of UV light with an absorption edge at about 385 nm, 

which matches the literature that anatase TiO2 has a band gap around 3.2 eV [99]. The 

FeTi–NWM (with the addition of the Fe2O3 nanowire) exhibited adequate absorptions of 

both UV light and visible light, although the adsorption of UV light is a little weaker than 

that of the Ti–NWM. The absorption edge of FeTi–NWM is at about 610 nm, again in 

agreement with the reported band gap of α-Fe2O3 around 2.2 eV [100]. The higher 

absorption of visible light for the FeTi–NWM than the Ti–NWM agrees with those 

reported in the literature [101].  
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Figure 4.8 UV-vis spectra for Fe2O3-NW, Ti–NWM and FeTi–NWM. 

 

4.3.2 Humic acid removal under different experimental conditions 
 

The optimum Fe2O3/TiO2 mixing ratio in FeTi–NWM for HA removal was firstly 

investigated. The HA removal by the FeTi–NWMs with three Fe2O3/TiO2 weight ratios 

(1:10, 1:1 and 2:1) were measured under solar irradiation in a 2 h test as described in 

Section 2.3. The FeTi–NWM with a Fe2O3/TiO2 weight ratio of 1:1 was found to have the 

highest overall HA removal (~97%) and faster removal rate in the 30 min than the other 

two membranes (see Figure 4.2). Therefore, the FeTi–NWM with a Fe2O3/TiO2 weight 

ratio of 1:1 was used in the following studies. In addition, experiments were conducted 

using the FeTi-NWM (1:1 Fe/Ti) under solar irradiation at four different recirculation 

flow rates (2, 5, 9, and 15 ml/min). The results for HA removal at 30 min are illustrated 
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in Figure 4.4. The results indicate that increasing the flow from 2 to 9 ml/min only 

decreased the HA removal from 91% to 87%, which is not a significant change. Further 

increasing the flow rate to 15 ml/min resulted in a larger drop in HA removal to 80%. 

Based on these results, the use of 9 ml/min for the majority of this work is reasonable 

considering a relatively larger flow rate and a higher removal are both desirable in 

practical applications. 

 

 

Figure 4.9 Humic acid removal in the dark, under visible light and solar light conditions using Ti–NWM 
and FeTi–NWM (a commercial PVDF membrane was also tested as a control). 

 

Figure 4.9 gives the HA removal results under different light conditions using both 

Ti–NWM and FeTi–NWM. As can be seen, in the blank test (without nanowire 

membranes) only 10% of HA was removed under solar irradiation at the end of the 2 h 
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test. With the presence of nanowire membranes, the HA removal was significantly 

improved, due to both adsorption and photocatalytic degradation. Comparing the HA 

removal under dark conditions using both Ti–NWM and FeTi–NWM, it can be seen that 

near 84% of HA removal was achieved using the FeTi–NWM, while only 73% using the 

Ti–NWM. The improved HA removal by the FeTi–NWM under dark condition may be 

attributed to the enhanced adsorption of HA by the Fe2O3 nanowire, likely due to the 

electrostatic force between the Fe2O3 nanowire and the HA molecules [108, 109].  

The improved adsorption of HA onto the surface of the FeTi–NWM may expedite 

membrane fouling if it is not chemically decomposed. Therefore, the capability of 

photocatalytic degradation of HA by the FeTi–NWM is preferred to prevent membrane 

fouling. As can be seen from Figure 4.9, 93% and 97% of HA removal was achieved by 

the FeTi–NWM under visible light and solar light conditions, respectively, after the 2 h 

test, while only 75% and 89%, respectively, for the Ti–NWM. The HA removal by Ti–

NWM in the dark (73%) and under visible light (75%) was very close, indicating TiO2 

alone is not photocatalytically active under visible light, in agreement with its wide band 

gap (3.2 eV), and all the HA removal was due to adsorption. Under solar light, due to the 

UV portion that activated photocatalytic reactions, the HA removal by the Ti–NWM was 

increased to 89% compared with 75% under visible light only. For the FeTi–NWM, the 

HA removal under visible light (93%) was obviously higher than that in the dark (84%), 

suggesting a visible light activated HA degradation besides adsorption. The even higher 

HA removal under solar light (97%) by FeTi–NWM reveals that both UV light and 

visible light can contribute to the overall photocatalytic degradation of HA. Comparing 

the FeTi–NWM and Ti–NWM for HA removal under visible light only, the much higher 
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removal by FeTi–NWM (93%) than by Ti–NWM (75%) is mostly likely due to both 

enhanced adsorption of HA and promoted visible light photocatalytic activity induced by 

Fe2O3 addition to TiO2.  

We have also conducted TOC measurement of the effluent samples to correlate with 

the HA removal by FeTi–NWM under solar irradiation. As shown in Figure 4.10, the 

trend of TOC removal correlates well with that of HA removal but the TOC removal is in 

average about 20% lower than the HA removal. The TOC removal reached as high as 

79% at the end of the 2 h testing. This result suggests that the majority of the HA was  

 

Figure 4.10 Humic acid removal and TOC removal by FeTi-NWM under solar irradiation 

 
completely degraded to CO2 and H2O and a minor portion of it remained in the water as 

byproducts. This observed high HA removal (93%) is superior to that reported in the 

literature where only 60% HA removal was observed after 2 h under UV (356 nm) 
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irradiation at an initial HA concentration of 10 mg/L using TiO2 nanoparticles [110]. The 

FeTi–NWM is also much more effective than a commercial polyvinylidene fluoride 

(PVDF) membrane (see Figure 4.9), which shows only 15% HA removal after 2 h under 

solar irradiation.  

4.3.3 Long-term anti-fouling test results 
 

A long-term test for HA removal using the FeTi–NWM and the Ti–NWM were 

conducted (4 cycles and 3 h in each cycle using fresh 200 mg/L HA) to further 

investigate the anti-fouling capability of the nanowire membranes. The results are given 

in Figure 4.11. As can been seen, 81% of HA was removed under dark condition using 

the Ti–NWM at the end of the 1st cycle, and the HA removal kept decreasing over cycles 

and reached 38% at the end of the 4th cycle (Columns A). Because a new batch of HA 

solution was used in each cycle but using the same membrane, the decreased HA removal 

with increasing number of cycles is likely because more membrane fouling has occurred, 

which decreased the adsorption of HA onto the nanowire surface. By contrast, the HA 

removal decreased only from 96% to 80% using the FeTi–NWM under dark condition 

(Columns C). The overall higher HA removal by FeTi–NWM than Ti–NWM in the dark 

is likely because of more and stronger adsorption sites available on Fe2O3 present on the 

nanowire membrane, which is in line with the results shown in Figure 4.9.  
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Figure 4.11 Long-term test for HA removal using FeTi–NWM and Ti–NWM (4 cycles and 3 h in each 

cycle with fresh 200 mg/L HA introduced at the beginning of each cycle). 

 
Under solar irradiation, the HA removal by the Ti–NWM (Columns B) was higher 

than that in the dark condition for every cycle, but still it decreased significantly (from 

93% to 58%) after 4 cycles. The result suggests that the rate of HA photodegradation on 

the Ti–NWM surface was slower than the rate of HA adsorption. The weak photoactivity 

of the Ti–NWM is likely because of the low intensity of UV light (5%) in the solar 

spectrum. The accumulated HA on the membrane surface may have also blocked the light 

penetration and reduce the photoactivity of the Ti–NWM. By contrast, the FeTi–NWM 

maintained a nearly stable and high HA removal (98%) even after tested four cycles 

(Columns D), suggesting the rate of HA photodegradation on the FeTi–NWM surface 

was able to keep pace with the rate of HA adsorption. In another word, minimal amount 

of HA is expect to accumulate on the FeTi–NWM and thus the blocking of sunlight by 
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deposited HA would not be an issue for FeTi–NWM. The enhanced photocatalytic 

activity under visible light induced by Fe2O3 may be the main reason. Overall, the FeTi–

NWM showed much higher anti-fouling capability than the Ti–NWM during the long-

term test. The photo of two FeTi–NWMs after the long-term test (one under solar 

irradiation and the other in the dark) is given in Figure 4.12. The two membranes were 

cut in half and put together for better contrast. The brown color on the left membrane 

indicates membrane fouling by HA in the dark. The clean membrane on the right 

indicates good anti-fouling ability under solar illumination.  

 

 
 

Figure 4.12 Photos of two FeTi–NWMs after the long-term test of HA removal, one with solar irradiation 
and the other without. 

 
Transmembrane pressure of the Ti–NWM and FeTi–NWM during a separate 10 h 

continuous flow test under both dark and solar irradiation conditions was recorded, as 

shown in Figure 4.13.  As can be seen, the transmembrane pressure was around 9 kPa for 

both Ti–NWM and FeTi–NWM at the beginning of the test. During the tests under dark 

conditions, the pressure increased almost linearly with time and reached 34 and 38 kPa 
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for Ti–NWM and FeTi–NWM, respectively, at the end of the 10 h test. The higher 

pressure change for FeTi–NWM than Ti–NWM suggests a larger amount of HA 

deposition. This is a clear indication of membrane fouling, and it agrees with the 

observation of severe HA deposition on the membrane in the dark illustrated in Figure 8. 

By contrast, under solar irradiation, the transmembrane pressure only increased to 14 and 

12 kPa for Ti–NWM and FeTi–NWM, respectively, at the end of the test, only slightly 

higher than the initial transmembrane pressure 9 kPa. This lower pressure change is 

ascribed to the photocatalytic degradation of HA by both membranes. Given that FeTi–

NWM has the highest pressure change in the dark but lowest pressure change under solar 

irradiation, it is a clear indication that FeTi–NWM is a superb anti-fouling membrane 

when operated under solar irradiation.  

 
 

Figure 4.13 Transmembrane pressure across Ti–NWM and FeTi–NWM during the 10 h test in the dark or 
under solar irradiation. 

 

4.3.4 Proposed mechanism of enhanced HA removal by FeTi-NWM 
 

Figure 4.14 illustrate the possible mechanisms for HA adsorption and photocatalytic 
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degradation by FeTi–NWM under UV and visible light, respectively. Under UV 

irradiation (Figure 4.14a), electron-hole pairs can be generated on both Fe2O3 and TiO2 

[111]. The holes can oxidize water and produce hydroxyl radicals (OH�) to degrade HA 

molecules, while the electrons can be scavenged by oxygen to form superoxide anion 

radicals (O2•_). The presence of Fe2O3 can enhance the adsorption of HA as well. Because 

the CB edge of Fe2O3 is lower than that of TiO2 and the VB edge of Fe2O3 is higher than 

that of TiO2 [112], electrons can transfer from TiO2 CB to Fe2O3 CB and holes can 

transfer from TiO2 VB to Fe2O3 VB. This would actually result in Fe2O3 acting as a 

recombination center and lower the photocatalytic activity, if the amount of TiO2 in the 

composite is dominating. However, in this work, we found under solar irradiation (UV-

vis) the HA removal was higher than that under visible light alone, indicating a positive 

contribution of photocatalytic activity from the UV region. It has been reported by Peng 

et al. [113] that the quantity of Fe2O3 coated on TiO2 may affect transfer of photo-induced 

charges at the interface of Fe2O3 and TiO2 and they identified a Fe2O3/TiO2 mass ratio at 

7:3 to be the optimum, at which level the heterojunction promotes charge separation and 

inhibits charge recombination. It agrees with our result that FeTi–NWM with a 

Fe2O3/TiO2 mass ratio at 1:1 has better performance than those with 1:10 and 2:1 ratios, 

i.e. too high a TiO2 concentration may result in Fe2O3 being a recombination center while 

too high a Fe2O3 concentration may lower the overall activity since Fe2O3 itself is not a 

good photocatalyst due to fast recombination within Fe2O3 [113].   

Under visible light irradiation, as shown in Figure 4.14b, electron-hole pairs cannot 

be produced on TiO2 and only Fe2O3 can be activated. A few literature reports suggested 

that excited CB electrons in Fe2O3 can transfer to TiO2 CB under visible light, leading to 
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the observed visible light activity [100, 114]. This is doubtful since the CB edge of Fe2O3 

is about 0.5 eV lower than that of TiO2 [112]. Here we propose a new model that involves 

the transfer of Fe2O3 CB electrons to the electron trapping sites of anatase TiO2. Leytner 

et al. [115] used time-resolved photoacoustic spectroscopy (TRPAS) and identified the 

existence of electron trapping sites within anatase TiO2 that is 0.8 eV below the CB edge 

of anatase. Gray and coworkers [116, 117] used electron paramagnetic resonance (EPR) 

spectroscopy to study the charge transfer between the mixed TiO2 (anatase-rutile) 

interface, and they found that even though the CB edge of rutile is about 0.2 eV lower 

than the CB edge of anatase, the electrons can actually transfer from rutile CB to the 

electron trapping sites within anatase. This is possible considering that those trapping 

sites have energetics 0.8 eV lower than the anatase CB. Similarly, in this work it is 

feasible for excited electrons in Fe2O3 CB to transfer to the trapping sites of anatase TiO2 

as the Fe2O3 CB edge is about 0.3 eV higher than those trapping sites in TiO2. In this 

case, the photoexcited electron-hole pairs are separated; the oxidation occurs at the Fe2O3 

site and the reduction occurs at the TiO2 site, which explains the FeTi–NWM’s excellent 

photocatalytic activity under visible light. 
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Figure 4.14 Proposed mechanism for the photocatalytic degradation of humic acid (HA) on FeTi–NWM 

under UV light (a) and visible light (b), respectively. 

4.4 Conclusions 
 

A hybrid Fe2O3/TiO2 nanowire membrane (FeTi–NWM) was synthesized in this 

work, which demonstrated high HA removal and excellent anti-fouling capability. The 

FeTi–NWM showed higher HA removal under all conditions (in the dark, under visible 

light and solar light irradiation) compared with Ti–NWM without Fe2O3 nanowires. In the 

2 h test, almost complete HA removal has been achieved using the FeTi–NWM under 

solar irradiation. In the longer-term test, the FeTi–NWM also showed 98% removal of 

HA for 12 h when an extremely high HA concentration was used, and there was 
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minimum transmembrane pressure increase. Both the strong HA adsorption capability 

and the high photocatalytic activity responsive to visible light by the Fe2O3 nanowires 

have contributed to the improved HA removal by the FeTi–NWM. The enhanced 

interfacial charge transfer between Fe2O3 and TiO2 nanowires is believed to result in the 

observed superb photocatalytic activity.  

While the FeTi–NWM is demonstrated promising for antifouling purpose in the 

bench-scale tests, future work will be conducted to establish the membrane performance 

under more realistic conditions. For the example, the testing of a complex water quality 

recipe and the investigation of the effects of solute interference such as turbidity and total 

dissolved solids in a crossflow membrane apparatus are necessary. Future work will also 

aim to treat other water sources with high concentrations of organics such as industrial 

wastewater effluent and produced water. The antibacterial capability of the membrane is 

another area to be examined in the future, which could be beneficial if it can be used to 

remove pathogens and prevent biofouling.  
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Chapter 5 Summary Of Research Work  

5.1 Summary of Research Work 
 
1. Visible light Responsive Iodine-doped TiO2 for Photocatalytic Reduction of CO2 to 
Fuels 
 

Iodine-doped titanium oxide (I-TiO2) nanoparticles that are photocatalitically 

responsive to visible light illumination have been synthesized by hydrothermal method. 

The structure and properties of I-TiO2 nanocrystals prepared with different iodine doping 

levels and/or calcination temperatures were characterized by X-ray diffraction, 

transmission electron microscopy and diffraction, X-ray photoelectron spectroscopy, and 

UV–vis diffuse reflectance spectra. The three nominal iodine dopant levels (5, 10, 

15 wt.%) and the two lower calcination temperatures (375, 450 °C) produced mixture of 

anatase and brookite nanocrystals, with small fraction of rutile found at 550 °C. The 

anatase phase of TiO2 increased in volume fraction with increased calcination 

temperature and iodine levels. The photocatalytic activities of the I-TiO2 powders were 

investigated by photocatalytic reduction of CO2 with H2O under visible light 

(λ > 400 nm) and also under UV–vis illumination. CO was found to be the major 

photoreduction product using both undoped and doped TiO2. A high CO2 reduction 

activity was observed for I-TiO2 catalysts (highest CO yield equivalent to 

2.4 μmol g−1 h−1) under visible light, and they also had much higher CO2 photoreduction 

efficiency than undoped TiO2 under UV–vis irradiation. I-TiO2 calcined at 375 °C has 

superior activity to those calcined at higher temperatures. Optimal doping levels of iodine 

were identified under visible and UV–vis irradiations, respectively. This is the first study 

that investigates nonmetal doped TiO2 without other co-catalysts for CO2 photoreduction 
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to fuels under visible light. 

2. Copper and Iodine Co-modified TiO2 Nanoparticles for Improved Activity of CO2 
Photoreduction with Water Vapor 
 

Copper and iodine co-modified TiO2 nanoparticles (Cu–I–TiO2) were synthesized 

through a combined hydrothermal and wet-impregnation process. The structures and 

properties of the catalysts were characterized by XRD, BET, SEM/EDX, XPS, and UV–

vis diffuse reflectance spectroscopy. Iodine ions were doped in the TiO2 lattice by 

replacing Ti4+ and, consequently, Ti3+ was generated to balance the charge. Iodine doping 

reduced the TiO2 crystal size and was responsible for visible light absorption. Cu species 

were found to deposit on the surface of TiO2 and resulted in a slightly increased particle 

size. The activity of the Cu–I–TiO2 catalyst was investigated by the photocatalytic 

reduction of CO2 with water vapor, and CO was found to be the major reduction product 

with trace amounts of CH4 generated. Under UV–vis irradiation, the activity of the co-

modified catalyst (Cu–I–TiO2) was higher than that of the single ion-modified catalysts 

(Cu–TiO2 or I–TiO2). Under visible light irradiation, the addition of Cu to I–TiO2 did not 

lead to significant improvements in CO2 reduction. Methyl chloride (CH3Cl) was detected 

as a reaction product when CuCl2 was used as the precursor in the synthesis, thus 

suggesting that methyl radicals are reaction intermediates. When CuCl2 was used as the 

Cu precursor, a three-fold increase in CO2 photoreduction activity was observed, as 

compared to when Cu(NO3)2 was used as the Cu precursor. These differences in activities 

were probably due to enhanced Cu dispersion and the hole-scavenging effects of the Cl 

ions. However, the formation of by-products (e.g., CH3Cl) may be undesirable. 

 
3. Novel anti-fouling Fe2O3/TiO2 nanowire membranes for humic acid removal from 
water 
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Membrane fouling is one of the major obstacles inhibiting the wide application of 

membrane technologies for water treatment. Membranes with surface modification of 

titanium dioxide (TiO2) nanoparticles or TiO2 nanowire membranes (Ti–NWM) have 

demonstrated reduced membrane fouling due to the photocatalytic capability of TiO2 in 

degrading foulants on the membrane surface. However, the wide band gap of TiO2 makes 

it only absorb ultraviolet light, which limits its applications under solar irradiation. In this 

study, a novel membrane made of interwoven iron oxide (Fe2O3) nanowires and TiO2 

nanowires (FeTi–NWM) has demonstrated superior anti-fouling capability in removing 

humic acid (HA) from water. Results showed that under simulated solar irradiation the 

FeTi–NWM achieved nearly complete HA removal during a 2 h short-term test at an 

initial HA concentration of 200 mg/L, compared with 89% HA removal by Ti–NWM. 

During a 12 h long-term test, the FeTi–NWM maintained 98% HA removal, while the 

Ti–NWM showed only 55% removal at the end. Without solar irradiation, the FeTi–

NWM was severely contaminated and by contrast, a clean surface was maintained under 

solar irradiation after the 12 h test and the transmembrane pressure change was minimal. 

The improved HA removal by FeTi–NWM compared with Ti–NWM and its excellent 

anti-fouling capability under solar irradiation can be attributed to (1) the enhanced HA 

absorption by Fe2O3 nanowires and (2) the formed Fe2O3/TiO2 heterojunctions that 

increase photo-induced charge transfer and improve visible light activity. 
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Chapter 6 Instrumental Analysis 
 
 
UV-vis reflectance spectra:  

Ultraviolet-visible spectrophotometry (UV-Vis) refers to absorption spectroscopy or 

reflectance spectroscopy in the ultraviolet-visible spectral region. This means it uses light 

in the visible and adjacent (near-UV and near-infrared) ranges. The absorption or 

reflectance in the visible range directly affects the perceived color of the 

chemicals involved. In this region of the electromagnetic 

spectrum, molecules undergo electronic transitions.  

The UV-vis reflectance spectra were recorded with a UV-vis spectrophotometer 

(Ocean Optics) using BaSO4 as the background. The reflectance was converted to F(R) 

using the Kubelka-Munk (K-M) function [F(R)= (1-R)2/2R], and the band gap energy 

was obtained from the plot of [F(R)Eph]1/2 against the photon energy Eph. 

 

X-ray Diffraction: 

X-ray diffraction is the primary method for determining the phase and the crystalline 

structure.  

The crystal structures of the powder catalysts were identified by X-ray diffraction 

(XRD) (Scintag XDS 2000) using Cu Kα irradiation at 45 kV and a diffracted beam 

monochromator operated at 40 mA in the setting 2θ range at a scan rate of 1°/min. The 

crystal size of different crystal phases for TiO2 was calculated by the Scherrer equation. 

The fractional phase content, WA, W B, and WR, for anatase, brookite, and rutile, 

respectively, are mathematically defined in Equations (1), (2) and (3) 
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𝑊! =
!.!!"×!!

(!.!!"×!!!!!!!.!"#×!!)
                                 (1) 

𝑊! =
!.!"#×!!

(!.!!"×!!!!!!!.!"#×!!)
                                 (2) 

𝑊! =
!!

(!.!!"×!!!!!!!.!"#×!!)
                                 (3) 

where AA, A B and AR represent the integrated intensity of the anatase (1 0 1) peak 

(2θ =25.28°), the brookite (1 2 1) peak (2θ=30.81°), and the rutile (1 1 0) peak 

(2θ=27.45°), respectively. Because the brookite (1 2 0) (2θ=25.34°) and brookite (1 1 1) 

(2θ=25.69°) peaks overlap with the anatase (1 0 1) peak, AA and AB were calculated by 

the following method. Using the single isolated brookite (1 2 1) peak as a reference, the 

anatase (1 0 1), brookite (1 2 0) and brookite (1 1 1) overlapped peaks were deconvoluted 

by 0.9 and 0.8 intensity ratio for  and  respectively, 

with the same full width at half maximum (FWHM) of brookite (1 2 1). 

The crystallite size of anatase, brookite and rutile phase TiO2 was calculated by 

Scherrer equation: D = 0.9λ/β cos θ, where D is the average of crystallite size, λ is the X-

ray wavelength used, β is the angular line width of half maximum intensity, and θ is the 

Bragg's angle in degrees. 

BET Analysis:  

The Brunauer, Emmett and Teller (BET) technique is the most common method for 

determining the surface area of powders and porous materials. Nitrogen gas is generally 

employed as the probe molecule and is exposed to a solid under investigation at liquid 

nitrogen conditions (i.e. 77 K). 

Most analysis of adsorption equilibrium begins with the classification of the 

isotherms. In 1985, the IUPAC developed a standard classification that consisted of size 
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general isotherm types shown in the figure as follows. These isotherms included five 

classical isotherm shapes, plus a sixth that involved steps.  

 

Type I isotherms are given by microporous solids having relatively small external 

surfaces (e.g. activated carbons, molecular sieve zeolites and certain porous oxides), the 

limiting uptake being governed by the accessible micropore volume rather than by the 

internal surface area. 

The Type II isotherm represents unrestricted monolayer-multilayer adsorption. 

The Type III: isotherms of this type are not common; the best known examples are 

found with water vapor adsorption on pure non-porous carbons. 

Characteristic features of the Type IV isotherm are its hysteresis loop, which is 

associated with capillary condensation taking place in mesopores, and the limiting uptake 

over a range of high P/P0. The initial part of the Type IV isotherm is attributed to 
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monolayer-multilayer adsorption since it follows the same path as the corresponding part 

of a Type II non-porous form. Type IV are given by many mesoporous industrial 

adsorbents. 

The Type V isotherms is uncommon; it is related to the Type III isotherm in that 

adsorbent-adsorbate interaction is weak, but is obtained with certain porous adsorbents. 

The Type VI isotherm represents stepwise multilayer adsorption on a uniform non-

porous surface. The step-height now represents the monolayer capacity for each adsorbed 

layer and, in the simplest case, remains nearly constant for two or three adsorbed layers. 

Very recently, these hysteresis loops have been classified in a way similar to the 

IUPAC adsorption isotherm schemes shown in the following figure. 

 
 

The Brunauer-Emmett-Teller (BET) specific surface area and pore size of the 

catalysts were measured by nitrogen adsorption-desorption isotherms using a 

Micrometrics ASAP 2020 Surface Area and Porosity Analyzer. 
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