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ABSTRACT

Shape-Invariant Models for

Non-Independent Functional Data

by

Wen Yang

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Daniel Gervini

Non-independent functional data frequently arise in evolutionary and biological

studies. It is important to possess models that incorporate correlations between sub-

jects and appropriately describe the relationships between response and covariates.

The variation in the response curves is usually a mixture of amplitude and phase vari-

ation, both of which should be explicitly modeled for efficient statistical inference. In

this dissertation we propose a shape-invariant model that explicitly addresses ampli-

tude and phase variability. We incorporate genetic and environmental random effects

for the parameters, and use the additive genetic information matrix in the repre-

sentation of the covariance matrices to make the unobservable genetic components

mathematically identifiable. We derive the asymptotic properties of the maximum

likelihood estimators and study their finite sample behavior by simulation. Then we

apply the new method to the analysis of growth curves of flour beetles.
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Chapter 1

Introduction

In many studies, data are collected by observing a number of observations on each

subject at different times or under different conditions, and this type of data is called

repeated measures. For example, the daily weights of a subject are repeated measures

which record the same type of information on the same subject over a period of time.

The outcome of interest in these studies may be continuous rather than discrete, such

as the shape of the response curve itself, the slope at a particular point, or the loca-

tions of extrema. For repeated measures, it is common that the relationship between

the explanatory variable (e.g., time) and the response variable (e.g., growth) is non-

linear. Therefore, a nonlinear regression model can usually fit the data. However, the

results sometimes may be difficult to interpret.

Self-modeling regression, introduced by Lawton et al. (1972), provides a way of

estimating the model and its parameters at the same time. It allows the data to

choose the underlying model by utilizing the information from themselves. When the

knowledge of model building is limited, it would be more flexible to use self-modeling

regression than the classical nonlinear regression approaches.

The model that implements the idea of the self-modeling approach is called shape-

invariant model (SIM). It is a semi-parametric method of estimating a functional re-
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lationship and has been used in many studies. SIM assumes a common shape function

for all subjects and the curve of each subject is a shift or/and a scale transformation

of the common shape. The estimation of the common shape function is usually non-

parametric, using the entire data set, while subject-specific effects are modeled in a

parametric way. The parameters in a SIM usually have a straightforward interpreta-

tion, i.e., shift or scale, and can be estimated by techniques in nonlinear regression.

Lawton et al. (1972) implemented the shape function through a piece-wise linear

spline, and Lindstrom (1995) extended it by introducing a free-knot (knots are al-

lowed to vary) cubic spline function which is smooth and provides more flexibility

of the shape function. In addition, the use of the mixed-effects structure on the pa-

rameters reduces the number of parameters and allows inclusion of subjects with few

observations (Lindstrom, 1995).

In many cases, the variability of shift and scale between subjects in SIMs can be

viewed as phase (usually in time) and amplitude variabilities, respectively. Taking

the growth curves of insects as an example, all insects experience certain events in

their life cycle. Although all growth curves look similar, each insect reaches its own

growth peak at a particular time with a particular weight. These features vary from

one subject to another, which produces the variation of curves both in time and

amplitude. Variation of features in amplitude is usually given more attention in the

statistical analysis, but it is worth noting that ignoring the time variability can lead

to severe problems on the results. For example, it is natural to use the point-wise

sample mean to estimate the population mean function. However, the point-wise

mean may not resemble any sample curve because of the confounding effect of time

and amplitude variation. Therefore, it is important to take both time and amplitude

variability into account when building models. In recent years, Functional Data

Analysis (FDA), which is the study of samples of functions or curves, has developed

tools for curve registration (or time-warping), which aim at adjusting for random
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time distortions (Kneip and Engel, 1995; Ramsay and Li, 1998; Wang and Gasser,

1999; Gervini and Gasser, 2004). Curve registration eliminates time variation by

aligning salient features of the curves and gives a more sensible structural mean than

the point-wise mean.

In biological studies, correlations between subjects are common. For instance, in

evolutionary studies of pedigree data, subjects can have a variety of relationships, such

as grandparent and grandchild, parent and child, and half/full siblings. Therefore,

it is not always appropriate to assume independence between subjects. Since the

relationship between subjects can be represented by genetic information, it is useful

to investigate their genetic correlations.

In quantitative genetics, two types of variability are involved in the observed phys-

ical traits, genetic variability and environmental variability. The knowledge about ge-

netic variability is important in determining how physical traits develop and evolve.

The additive genetic relationship matrix, which describes relationships among indi-

viduals, is often used in quantitative genetic literature (Henderson, 1975). It is im-

portant to possess statistical tools for non-independent functional data involving time

and amplitude variability. Gervini and Carter (2014) proposed a functional ANOVA

approach explicitly addressing time variability through a time-warping component

which sheds light on our shape-invariant model building process.

This dissertation presents a shape-invariant model for genetically correlated func-

tional data. We introduce genetic and environmental random effects representing time

and amplitude variability, and utilize the additive genetic relationship matrix to in-

corporate the genetic correlation among subjects. We develop a four-parameter model

for a special growth pattern. For the general situations, we propose a self-modeling

regression which can handle more complex data structures. These shape-invariant

models solve the problems caused by time variation and inherit the flexibility of self-

modeling regression and nonlinear mixed-effects modeling.
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This dissertation is organized as follows. In Chapter 2, we review the background

of self-modeling regression, nonlinear mixed-effects models, curve registration, and

some useful results from quantitative genetics. We also introduce the Beetle’s growth

data as an example to describe the issues we want to solve. Chapter 3 presents the

new shape-invariant model. In Chapter 4 we prove the consistency and asymptotic

normality of the estimators. In Chapter 5 we conduct a simulation study, and in

Chapter 6 we illustrate the model using the flour-beetle growth data.
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Chapter 2

Preliminaries

In this chapter, we first present the background of nonlinear mixed-effects models for

repeated measures data and self-modeling regression. Then, we review the techniques

for curve registration in functional data analysis. A real data example is presented

to describe the issues in model building. In the last section, some important results

in quantitative genetics are provided.

2.1 Nonlinear mixed-effects model

In studies of biology and physical sciences, data commonly consist of measurements

repeatedly taken on each subject. This kind of data is termed repeated measures.

Mixed-effects models for repeated measures data have become prevailing because

of their flexibility. They can easily handle unbalanced repeated-measures data and

allow flexible specification of the covariance structure. In many applications, the

relationship between the response y and the covariates x is nonlinear. Lindstrom and

Bates (1990) proposed a general nonlinear mixed-effects model for repeated measures

data as a hierarchical model that in some ways generalizes both the linear mixed-

effects model of Laird and Ware (1982) and the standard fixed-effects nonlinear model

of Bates and Watts (1988). In this section, we carefully review the main results of
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Lindstrom and Bates (1990).

Let yij and xij be the jth response and covariates of the ith subject. There are

two stages in this hierarchical model. In the first stage, the nonlinear mixed-effects

model is defined as

yij = f(φi,xij) + εij, i = 1, · · · ,M, j = 1, · · · , ni, (2.1)

where φi is a r-dimensional vector of subject-specific parameters, xij is covariates, f

is a nonlinear function of φi and xij, and εij is a normally distributed noise term. M is

the total number of subjects and ni is the number of observations on the ith subject.

In the second stage, we introduce a mixed-effects structure into the subject-specific

parameter vector φi, and it is given by

φi = Aiβ +Bibi, bi ∼ N(0,D), (2.2)

where β is a p-dimensional vector of the fixed effects and is assumed to be the same

for all subjects, bi is a q-dimensional vector of the random effects and is assumed to

follow a multivariate normal distribution with zero mean and covariance matrix D.

The matrices Ai and Bi are the corresponding design matrices with dimensions r×p

and r×q for the fixed and random effects, respectively. For example, suppose we have

φi = (φi1, φi2, φi3)
T , and φi1 = β1 + bi1, φi2 = β2, φi3 = β3, which means only the first

parameter is allowed to vary from subject to subject. Writing them into the form as

in (2.2), we have Ai = I,Bi = (1, 0, 0)T . (2.1) and (2.2) together give the general

form of the nonlinear mixed-effects model. Collecting the responses and errors for the
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ith individual into vectors yi = (yi1, · · · , yini
)T and εi = (εi1, · · · , εini

)T , and letting

f i(φi) =



f(φi,xi1)

f(φi,xi2)

...

f(φi,xini
)


,

we obtain the model for the ith subject

yi = f i(φi) + εi. (2.3)

Following the classical framework of model given by (2.1), we assume that εi ∼

N(0,Λi). Λi is a matrix that depends on i only through its dimension, and in many

situations, Λi = I. We also assume that the random effects bi are uncorrelated with

the error term εi. Next, we write the M individual models as one by defining

y =



y1

y2

...

yM


, φ =



φ1

φ2

...

φM


, f(φ) =



f 1(φ1)

f 2(φ2)

...

f I(φM)


,

D̃ = diag(D,D, · · · ,D), and Λ = diag(Λ1,Λ2, · · · ,ΛM). Then, the whole model is

y|b ∼ N(f(φ),Λ), φ = Aβ +Bb, (2.4)

b ∼ N(0, D̃), (2.5)
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where

B = diag(B1,B2, · · · ,BM), b =



b1

b2
...,

bM


, A =



A1

A2

...

AM


.

When the variance components of Λ and D are known and f is a linear function of

β and b, the estimators of β and b can be derived by the generalized least squares

approach. In the case that they are unknown and f is a nonlinear in β and b, the

estimation to the parameters usually makes use of the likelihood approach based on

the marginal density of y

p(y|β,D, Λ̃, σ2) =

∫
p(y|b,β,D, Λ̃, σ2)p(b) db. (2.6)

Unfortunately, this integral does not have a closed-form expression because the model

function f is nonlinear in β and b.

Different approximation procedures have been proposed, such as LME method

(Lindstrom and Bates, 1990), Laplace’s approximation (Tierney and Kadane, 1986),

importance sampling (Geweke, 1989) and Gaussian quadrature (Davidian and Gal-

lant, 1992). Pinheiro and Bates (1995) compared these four different approximations

based on their computational and statistical properties and concluded that LME

method, Laplace’s approximation, and Gaussian quadrature centered at the condi-

tional modes of the random effects are quite accurate and computationally efficient.

In this dissertation, we use the Laplace’s approximation, since it has a relatively

simple mathematical form which is illustrated as follows.

In general, Laplace’s approximation is used to approximate integrals of the form

∫
e−g(x) dx,
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where x ∈ Rd. Assume that g(x) is smooth and has a global minimum point x∗, then

the second-order Taylor expansion of g around x∗ is

g(x) ≈ g(x∗) +
1

2
(x− x∗)THg(x

∗)(x− x∗), (2.7)

where Hg is the Hessian of g. The linear term vanishes because the gradient Dg(x
∗) =

0. Then, the Laplace’s approximation is

∫
exp {−g(x)} dx ≈

∫
exp

{
−g(x∗)− 1

2
(x− x∗)THg(x

∗)(x− x∗)
}
dx

= exp {−g(x∗)} (2π)d/2√
det Hg(x∗)

. (2.8)

2.2 Self-modeling regression

As we discussed in the previous section, nonlinear models arise frequently in studies

of repeated-measures data. The relevant nonlinear relationship between the response

and the covariates can be derived on physical or mechanistic backgrounds or simply

to provide an empirical description of the data. However, in the case of lack of a

priori specification, it is hard to find a model that can provide a good fit to the data,

or the results from the proposed model are difficult to interpret.

Self-modeling regression (Lawton et al., 1972) is used to model the continuous re-

sponse curve for a number of individuals and provides more flexibility to the nonlinear

relationship between the response and covariates. It utilizes the information of data

themselves to describe the nonlinear relationship, especially when no appropriate pri-

ori information is available. In many studies, individual curves follow a similar trend,

such as the growth curves of human being from born to adult which all experience a

period of pubertal spurt and then become relatively stable. Self-modeling regression

makes use of this characteristic. It assumes that all individual curves share a common
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shape and a particular curve is a shift or/and a scale transformation of the common

shape.

The model that implements the idea of self-modeling regression is called the shape-

invariant model. For the ith subject, the shape-invariant model (Lawton et al., 1972)

can be represented as

yi(x) = θi1 + θi2 · s
(
x− θi3
θi4

)
+ εi(x), (2.9)

where s(x) denotes the shape function which describes the characteristic shape of the

response curve, θi = (θi1, · · · , θi4)T is the parameter vector, and εi(x) is the random

error. As shown in model (2.9), the parameters have direct graphical interpretation:

θi1 and θi3 are the shift parameters for the ith curve on the y and x axes respectively,

and θi2 and θi4 are the corresponding scale parameters on the y and x axes. Using

this approach, the problem of model selection is simplified to that of selecting the

appropriate shape function s(x). In some cases, a simple mathematical function can

be an appropriate choice of the shape function s(x). For instance, the logistic model

s(x) = 1/(1 + exp(−x)) and the Gompertz model s(x) = exp(− exp(−x)) are often

used in studies on the pubertal spurt (Marubini et al., 1972). In other contexts,

one can implement a piece-wise linear spline (Lawton et al. 1972) or cubic splines

(Lindstrom 1995) for a more complex nonlinear relationship. When the shape function

s(x) is unknown, both s(x) and the parameter vector θi have to be estimated from

the data simultaneously using an iterative procedure through either the nonlinear

least squares regression or a likelihood based approach.

Identifiability is a pervasive issue in self-modeling regressions, that is, given all

possible realizations of the underlying process, it is possible that different functions

and parameter vectors generate the same model. For example, in model (2.9), one

could achieve the same model by taking s∗(x) = 2s(x) and θ∗2 = θ2/2 while holding
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the other parameters the same. Kneip and Gasser (1988) suggested using the shape-

invariant model to find the conditions that guarantee the identifiability in practice.

For instance, one can limit the family of shape functions such that it is not closed

under aforementioned type of scaling. As originally addressed by Lawton et al. (1972),

this problem was solved by forcing the range of the shape function to be [0, 1] and

some other relevant properties. However, the choice of required conditions will depend

on the particular data analysis problem.

A natural extension of the shape-invariant model (2.9) is to introduce a mixed-

effects structure on the shift and scale parameters, since these parameters vary from

individual to individual. The mixed-effects shape-invariant model (Lindstrom, 1995)

is defined as follows,

yij = (β1 + bi1) + (β2 + bi2) · s
(
xij − (β3 + bi3)

β4 + bi4

)
+ εij, bi ∼ N(0,D), (2.10)

where s is the shape function, εij ∼ N(0, σ2), bi = (bi1, · · · , bi4)T , and cov(bik, εij) = 0

for all i, j and k. A substantial improvement of this model is that the dimension

of the parameter space is reduced and does not depend on the number of subjects

anymore. In addition, this model inherits all properties of the nonlinear mixed-effects

model defined by (2.1) and (2.2).

2.3 Curve registration

In many studies, the outcome of interest is about the response curve, such as its

overall shape, the slope at a particular point, or the location of an turning point.

The observed curves usually exhibit two types of variability: amplitude and time.

For example, consider the sample curves shown in Figure 2.1 (a). All curves have a

common trend with two small peaks followed by a large one, but the intensity and

the timing of the peaks differ from one curve to another. The variability in amplitude
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Figure 2.1: Example of curve registration from Wang and Gasser (1999). (a) 10 sample
curves; (b) aligned sample curves; (c) the estimated time transformations used for the
alignment; (d) the average curves [solid: average of the aligned curves in (b); dashed:
average of the sample curves in (a)].

is considered in many analyses, like using a point-wise sample mean to estimate the

overall curve. However, the time variability is usually neglected and this can lead to

large bias in the estimates. As shown in Figure 2.1 (d), the point-wise sample mean

(dashed line) has much less variation and does not resemble any of the observed

curves. Thus, it is necessary to take the time variation into account when conducting

statistical analysis.

A commonly used technique to handle this issue is curve registration (or time-

warping) which has been frequently addressed in the literature (Gasser et al., 1990;

Kneip and Gasser, 1992; Kneip and Engel, 1995; Ramsay and Li, 1998; Wand and

Gasser, 1999; Gervini and Gasser, 2004). Curve registration is aiming at adjusting

for random time distortions by aligning various salient features (such as maxima,
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minima, and zero crossings of curves), since the intensity of these salient features of

different curves should be compared at their respective time rather than at any fixed

time. An example is given in Figure 2.1 (b), where all curves are aligned to have the

same timing for peaks and valleys. The average of aligned sample curves, as shown

by the solid line in Figure 2.1 (d), resembles more of the common shape and provides

a more meaningful structural mean than the unaligned sample curves.

To be more specific, let {xi : R → R} be a sample of curves on [a, b] ∈ R. The

goal of curve registration is to construct a transformation wi : [a, b] → [a, b] for each

curve such that the aligned curves with values

x∗i (t) = xi{wi(t)}

have identical arguments values for any given features. The functions {wi} are called

time-warping functions. Let τ 0 = (τ01, · · · , τ0p)T be a sequence of the salient fea-

tures of the population mean curve such that a < τ01 < · · · < τ0p < b, and

τ i = (τi1, · · · , τip)T be the corresponding features of the ith curve with a < τi1 <

· · · < τip < b. Ramsay and Silverman (2005) presents the properties of the time-

warping functions: (1) wi(a) = a and wi(b) = b; (2) wi(τ0k) = τik, for k = 1, · · · , p;

(3) wi is strictly monotonic, i.e., wi(t1) < wi(t2) for any t1 < t2. The first property

means that the warping functions keep the endpoints fixed. The second one implies

that the salient features of the aligned curves each occur at the same time as in

the mean function. The third one indicates the warping-functions are invertible so

that for the same event the time points before and after warping have a one-to-one

mapping.

There are different types of warping functions available. The simplest method is

linear interpolation, but the resulting warping functions are not differentiable every-

where. Differentiable families of warping functions are given by penalized B-splines
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(Telesca and Inoue, 2008), the smooth monotone family of Ramsay and Li (1998)

and monotone interpolating Hermite splines (Gervini and Carter, 2014). Figure 2.1

(c) illustrates (non-smooth) estimated time-warping functions. If the plot is given

using the warped time versus the actual time on the vertical and horizontal axes

respectively, any estimated time-warping function below the diagonal line indicates

the warped time is earlier than the actual time of features, and vice versa.

2.4 Flour-beetle growth data

In evolutionary biology, researchers are particularly interested in patterns of growth.

The growth trajectories provide important information on the growth rate, the de-

velopment time of some events, and the adult fecundity. Consider, for example, the

growth curve of the flour-beetle which is a common insect model for population ge-

netic and development studies (Irwin and Carter, 2013). The whole data set consists

of 1124 larvae, representing 134 full-sib families nested with 29 half-sib families. Fig-

ure 2.2 (a) shows these growth trajectories describing how body masses change over

time of larvae from hatching to pupation. For better visualization, we only plotted

100 randomly chosen curves from the whole data set.

Figure 2.2: Beetle-growth curves. (a) Raw mass trajectories; (b) Trajectories of log-mass.
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The mass measurements were collected every 1-4 days during the larval period

for each individual and more frequent, usually every day, around the anticipation of

pupation period. Therefore, the time points of taking records for different individuals

vary from one to another. From Figure 2.2 (a), we see that all curves share a common

shape, increasing exponentially at the beginning and then decreasing after a specific

time point. These turning points are around day 15 and indicate the timing when

larvae stop eating and begin pupating which causes the loss of body mass. This

process is caused by hormonal mechanisms and varies among individuals. Since there

are two orders of magnitude in the body size between younger and older ages of each

flour-beetle, a log-transformation is taken to the mass measurements to stabilize the

error variance. Figure 2.2 (b) shows the log-transformed growth trajectories.

Figure 2.3: Beetle-growth trajectories of two different families.

All log-transformed growth trajectories follow a common piece-wise linear trend,

but they still differ in many features, such as the growth rate, the peak of the body

size, and the time of the turning point. However, as shown in Figure 2.3, these features

share more in common for subjects within the same family because of their genetic

correlation. Therefore, it would be important to take the genetic information into
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account to increase the accuracy of prediction on the evolution of traits in response

to selection. In the last section, we review some useful results of quantitative genetics

which gives methods of utilizing the genetic correlation between subjects.

2.5 Some results of quantitative genetics

In evolutionary studies, biologists are dedicated to investigate how phenotypes (or

physical traits) change across generations, including both the similarities across all

life and the diversity of a particular life. A phenotype can be qualitative (e.g., hair

color and blood type) or quantitative (e.g., height and weight). It is the result of

interactions between the genes and the environment. In quantitative genetics, the

evolution of phenotypes consists of two components: a selection mechanism and ge-

netic variability. The selection mechanism can provide the change of the distribution

of the phenotype across generations. For example, birds can easily spot insects of

bright colors, and this can cause fewer bright-colored individuals in the next genera-

tion. However, without the genetic variation a selection mechanism cannot operate,

e.g., if all insects in the population are of the same color, selection does not have

any effects because the genetic make-up in the population could not change. Thus,

knowledge about the genetic variability of the phenotype is important in determining

how the phenotype evolves.

A basic idea in the study of genetic variability is its partitioning into compo-

nents attributable to different causes. Let z denote the observable phenotype. The

decomposition of z is

z = g + e, (2.11)

where g is called the additive genetic component, and e is the environmental com-

ponent (Kirkpatrick and Heckman, 1989; Heckman, 2003). It is commonly assumed

that the unobservable g and e are uncorrelated. Since all subjects can be raised in
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independent but similar environments, the environment effects for all subjects are

assumed uncorrelated and identically distributed. However, we cannot make such

assumption on the genetic effects, because they may be genetically correlated.

Using the standard genetic arguments (Bürger, 2000), we can obtain the cor-

relation between all kinds of relatives. Some of these relationships are shown in

Table (2.1). A good way to describe the correlation structure of the genetic effects

Table 2.1: Correlation of some relationship between relatives

Relationship Correlation
identical twins 1

parent-offspring 0.5
full siblings 0.5
half siblings 0.25

grandparent-grandchild 0.25
uncle/aunt-nephew/niece 0.25

great grandparent-great grandchild 0.125

in a pedigree is to use the additive genetic relationship matrix. The additive genetic

relationship matrix A is symmetric. The diagonal element aii is equal to 1+Fi, where

Fi is the inbreeding coefficient of the ith subject; the off-diagonal element aij equals

rij
√
aiiajj, where rij is the coefficient of relationship between subject i and subject j

(Wright, 1922).

The cost of computing the matrixA by the path coefficient method (Wright, 1922)

is computationally expensive as the number of subjects increases and the structure

of the relationship becomes complex. Henderson (1976) proposed a simple and fast

recursive method to compute A. As an example, suppose that a data set contains

six subjects and their relationship is shown in Table 2.2 (Mrode, 2014).
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Table 2.2: Pedigree for six subjects.

Subjects Sire Dam
3 1 2
4 1 unknown
5 4 3
6 5 2

Using Henderson’s method, we obtain the additive genetic relationship matrix

A =



1.00 0.00 0.50 0.50 0.50 0.25

0.00 1.00 0.50 0.00 0.25 0.625

0.50 0.50 1.00 0.25 0.625 0.563

0.50 0.00 0.25 1.00 0.625 0.313

0.50 0.25 0.625 0.625 1.125 0.688

0.25 0.625 0.563 0.313 0.688 1.125


.

In particular, if the n subjects in the data set are equally related, such as full-siblings

or half-siblings, the additive genetic relationship matrix becomes

A =



1 p p · · · p

p 1 p · · · p

...
...

...
. . .

...

p p p · · · 1


n×n

,

where p = 0.5 for full-siblings and p = 0.25 for half-siblings.

Next, we explain how the additive relationship matrix A is involved in the co-

variance of the genetic effects. Consider sample data of n subjects. To formalize the

discussion, let zi ∈ Rk be phenotype of the ith individual and zi = gi + ei by (2.11).

Denote Σg = cov(gi) the covariance of the additive genetic effects and Σe = cov(ei)
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the covariance of the environmental effects. Then, define

z =



z1

z2
...

zn


, g =



g1

g2
...

gn


, e =



e1

e2
...

en


,

we have the following decomposition of the covariance matrix of z,

cov(z) = cov(g) + cov(e)

=



σ(g1, g1) σ(g1, g2) · · · σ(g1, gn)

σ(g2, g1) σ(g2, g2) · · · σ(g2, gn)

...
...

. . .
...

σ(gn, g1) σ(gn, g2) · · · σ(gn, gn)


+



σ(e1, e1) σ(e1, e2) · · · σ(e1, en)

σ(e2, e1) σ(e2, e2) · · · σ(e2, en)

...
...

. . .
...

σ(en, e1) σ(en, e2) · · · σ(en, en)



=



a11Σg a12Σg · · · a1nΣg

a21Σg a22Σg · · · a2nΣg

...
...

. . .
...

an1Σg an2Σg · · · annΣg


+



Σe 0 · · · 0

0 Σe · · · 0

...
...

. . .
...

0 0 · · · Σe


≡ A⊗Σg + In ⊗Σe, (2.12)

where In is the n-dimensional identity matrix. As we can see, the additive genetic

relationship matrix A plays a key role in equation (2.12), because it makes the covari-

ance of the unobservable genetic characteristics estimable. In the following chapters,

our models are built on this equation when introducing the random genetic and en-

vironmental effects. Another thing we should note is that many statistical methods

involving A also require the calculation of its inverse in the estimation procedures.

A recursive algorithm is also available in Henderson (1976) when A−1 is needed.
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Chapter 3

Shape-Invariant Model

In this chapter, we develop a shape-invariant model for a special growth pattern which

is motivated by the flour-beetle growth curves. We present the model specification of

the two-factor model, i.e., considering father and mother factors in the genetic effects,

and derive its maximum likelihood estimators in Sections 3.1 and 3.2, respectively.

The balanced one-factor four-parameter model, i.e., only considering the father fac-

tor in the genetic effects, and its maximum likelihood estimators which are used to

establish the asymptotic properties are presented in Section 3.3. In Sections 3.4 and

3.5, we propose a general shape-invariant model and derive the maximum likelihood

estimators of the two-factor model.

3.1 Two-factor model specification

Suppose there are n subjects in the data. For each subject i, we observe its responses

at mi time points. Assume that the jth observation of the ith subject follows

yij = fi(tij) + εij,
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where {fi(t)} are the individual growth curves, {εij} are random errors. We assume

that {εij} are i.i.d. from N(0, σ2) and they are independent of {fi(t)}. Motivated

by the log-transformed flour-beetle growth curves, we propose the following four-

parameter shape-invariant model

fi(t) := f(φi, t) =


φi2 + φi1(t− φi4) t ≤ φi4,

φi2 + φi3(t− φi4) t ≥ φi4,

(3.1)

where φi = (φi1, φi2, φi3, φi4)
T are the parameters of the ith subject such that φi4 is

the location of the turning point, φi2 represents the response at φi4, and φi1 and φi3

are the constant growth rates before and after the turning point. The key of the four-

parameter model (3.1) is that it not only considers the amplitude variability through

φi1, φi2, and φi3, but also takes the time variability into account by φi4. Although

this model is of a special growth pattern, it can be easily generalized to many others,

such as a joint curve of a spline and an exponential function or a curve with more

than two pieces of functions. The choice of functions in the common shape is based

on the structure of the curves of interest.

Since most estimation procedures require the derivative of fi with respect to the

parameters to be continuous, we introduce a transition function (Morrell et al., 1995)

to smooth out the connection of the two linear functions. The transition function

trn(x) is defined as

trn(x) =
ecx

1 + ecx
, (3.2)

where c is a fixed positive number which controls the speed and smoothness of

the transition and satisfies the following conditions: (a) limx→∞ trn(x) = 1, (b)

limx→−∞ trn(x) = 0, and (c) trn(0) = 0.5. With the transition function trn(x),
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the proposed shape-invariant model becomes

fi(t) = [φi2 + φi1(t− φi4)]trn(φi4 − t) + [φi2 + φi3(t− φi4)]trn(t− φi4), (3.3)

and we can see that fi(t) is a weighted average of the two linear functions. Morrell et

al. (1995) used c = 2 in trn(x) which provides a fairly rapid transition between the

two functions.

The parameter vector φi in the model (3.3) varies from individual to individ-

ual. For data from pedigrees, this randomness comes not only from the environment

but also from the genetic factor, e.g., beetles from one family may have larger born

mass and earlier occurrence of the pupation period than those from another. As we

discussed in Section 2.5, the parameters φi can be partitioned into the genetic and

environmental random effects. Thus, we assume

φi = gi + ei,

gi ∼ N(µ,Σg), ei
iid∼ N(0,Σe),

where gi is the genetic random effect, ei is the environmental effect, and {gi} and {ei}

are assumed uncorrelated. Although the genetic effects {gi} are not independent,

their covariance structure can be captured using the additive genetic relationship

matrix A. We write the n individual models as one by letting

y =



y1

y2

...

yn


, φ =



φ1

φ2

...

φn


, f(φ) =



f 1(φ1)

f 2(φ2)

...

fn(φn)


,

where yi = (yi1, · · · , yimi
)T , f i(φi) = [f(φi, ti1), · · · , f(φi, timi

)]T . Then, according
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to (2.12), we have

y|(g, e) ∼ N(f(φ), σ2IN), φ = g + e, (3.4)

g ∼ N(µ̃,A⊗Σg), e ∼ N(0, In ⊗Σe), (3.5)

where N =
∑n

i=1mi, and

g =



g1

g2
...

gn


, e =



e1

e2
...

en


, µ̃ =



µ

µ

...

µ


.

The model defined by (3.4) and (3.5) is a nonlinear mixed-effects model which uses

ideas similar to those described in Lindstrom and Bates (1995), but the major dif-

ference is the non-independence of subjects due to the genetic effects. The random

effects in Lindstrom and Bates (1995) have a diagonal structure in the covariance

matrix, while (3.5) involves a more complex covariance matrix through the additive

genetic relationship matrix A which complicates the process of parameter estimation.

3.2 Maximum likelihood estimators of the param-

eters

In this section, we derive the maximum likelihood estimators of the four-parameter

shape-invariant model. First, we have the marginal density of y which is defined by

p(y) =

∫
p(y|g, e)p(g)p(e) dg de. (3.6)
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This integral does not have an explicit form. To find maximum likelihood estimators

for the parameters µ,Σg,Σe and σ2, we use the log-likelihood function

l = ln p(y)

= ln

∫
(2πσ2)−N/2 exp

{
− 1

2σ2 [y − f(φ)]T [y − f(φ)]

}
× (2π)−nk/2|A⊗Σg|−1/2 exp

{
−1

2
(g − 1n ⊗ µ)T (A⊗Σg)

−1(g − 1n ⊗ µ)

}
× (2π)−nk/2|In ⊗Σe|−1/2 exp

{
−1

2
eT (In ⊗Σe)

−1e

}
dg de, (3.7)

where k is the dimension of the subject-specific parameter vector φi and 1n is the

n × 1 vector whose elements are all 1. Define the k × n dimensional matrices G =

(g1, · · · , gn), V = (g1 − µ, · · · , gn − µ), and E = (e1, · · · , en). Then, we take the

partial derivatives of the log-likelihood l with respect to µ, Σg, Σe and σ2, and obtain

∂l

∂µ
=

1

p(y)

∫ {
Σ−1g GA

−1
1n − 1

T
nA

−1
1nΣ

−1
g µ

}
p(y|g, e)p(g)p(e) dg de,

∂l

∂Σ−1g
=

1

p(y)

∫ {
n

2
Σg −

1

2
V A−1V T

}
p(y|g, e)p(g)p(e) dg de,

∂l

∂Σ−1e
=

1

p(y)

∫ {
n

2
Σe −

1

2
EET

}
p(y|g, e)p(g)p(e) dg de,

∂l

∂σ2 =
1

p(y)

∫ {
− N

2σ2 +
1

2σ4 [y − f(φ)]T [y − f(φ)]

}
p(y|g, e)p(g)p(e) dg de,

Note that p(y|g, e)p(g)p(e)/p(y) is the posterior density of the parameters g and e

given y. Therefore, setting the equations to be zero and solving for the parameters,

we have the following maximum likelihood estimating equations:

µ̂ =
1

(1TnA
−1
1n)

E{GA−11n|y},

Σ̂g =
1

n
E{V A−1V T |y},

Σ̂e =
1

n
E{EET |y},
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σ̂2 =
1

N
E{[y − f(φ)]T [y − f(φ)] |y}.

The difficulty for calculating these estimators is caused by the integrals in the formu-

lae, since there is no closed form of the density p(y). As mentioned in Section 2.1, we

use Laplace’s method to approximate the marginal density p(y) and the expectations

in the calculation of these maximum likelihood estimators.

3.3 Balanced one-factor model

Suppose that we have I fathers and each father has J descendants. Assume that the

observations of all subjects are obtained at the same time grids (t1, · · · , tm). Thus, a

total of N = I×J×m observations are available. Let yijk denote the kth observation

of the jth descendant of father i, and assume it follows the four-parameter shape-

invariant model

yijk = fij(tijk) + εijk,

fij(t) = [φij2 + φij1(t− φij4)]trn(φij4 − t) + [φij2 + φij3(t− φij4)]trn(t− φij4),

where fij(t) is the growth curve of the jth descendant of father i, {εijk} are i.i.d.

N(0, σ2) random errors, and {fij(tijk)} are independent of {εijk}. We propose the one-

factor design of this model as follows. Assume that the subject-specific parameters

φij = (φij1, · · · , φij4)T have a structure

φij = αi + eij,

where {αi} are i.i.d. from N(µ,Σg) representing the father effects, {eij} are i.i.d.

from N(0,Σe) indicating the environmental effects and the genetic contribution of
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the mothers. We also assume {αi} and {eij} are uncorrelated. Then

yij|(αi, eij) ∼ N(f(φij), σ
2Im), φij = αi + eij, (3.8)

where f(φij) = [fij(tij1,φij), · · · , fij(tijm,φij)]T . Denote p(yi·) = p(yi1, · · · ,yiJ).

Since subjects from different fathers are independent, the log-likelihood function is

l =
I∑
i=1

log p(yi·).

Under all assumptions, {yij} are identically distributed and they are conditionally

independent given (αi, eij). Therefore, the component p(yi·) in l is

p(yi·) =

∫ { J∏
j=1

p(yij|αi, eij)

}{
J∏
j=1

p(eij)

}
p(αi) d(αi, ei1, · · · , eiJ).

Similar to Section 3.2, the maximum likelihood estimators of µ, Σg, Σe and σ2 can

be obtained by taking the partial derivatives of l with respect to the corresponding

parameters, and they are:

µ̂ =
1

I

I∑
i=1

E{αi|yi·},

Σ̂g =
1

I

I∑
i=1

E{(αi − µ)(αi − µ)T
∣∣yi·},

Σ̂e =
1

n

I∑
i=1

E

{
J∑
j=1

eije
T
ij

∣∣yi·
}
,

σ̂2 =
1

N

I∑
i=1

E

{
J∑
j=1

[yij − f(φij)]
T [yij − f(φij)]

∣∣yi·
}
.
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3.4 General self-modeling regression

Now we propose a more general shape-invariant model than the four-parameter model

discussed above. Suppose there are n subjects in the data set. Assume that the jth

observation of the i subject follows the shape-invariant model

yij = aif(vi(tij)) + εij, for j = 1, · · · ,mi, (3.9)

where ai is the amplitude factor, f : T → R is the common shape function, {vi : T →

T} are the inverse functions of the warping functions {wi}, and {εij} are random

errors which are i.i.d. from N(0, σ2). From the expression of model (3.9), we see that

it separates the amplitude variability and the time variability explicitly through {ai}

and {vi}: the aligned curves

yi ◦ wi(t) = aif{vi(wi(t))} = aif(t), for i = 1, · · · , n,

only exhibit amplitude variation, which makes the comparison on the intensity of

salient features of different curves more sensible. It is also worth noting that we must

take model identifiability into account whenever using self-modeling regression. In

fact, without further conditions model (3.9) is not identifiable. Consider the following

situations:

Situation 1: let h be a monotone increasing function, then

yi(t) = aif(vi(t)) = aif(h−1(h(vi(t))) = aif
∗(v∗i (t)),

where v∗i (t) = h(vi(t)) and f ∗(t) = f(h−1(t)).

Situation 2: let c 6= 0, then

yi(t) = aif(vi(t)) =
ai
c
{cf(vi(t)} = ãif̃(vi(t)),
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where ãi = ai
c and f̃(t) = cf(t).

Thus, {ai, v∗i (t), f ∗(t)} and {ãi, vi(t), f ∗(t)} define the same model as {ai, vi(t), f(t)}

does. This means model (3.9) is not identifiable, since there exist different functions

and parameter vectors that generate the same model. Therefore, it is necessary to

make some further assumptions on the amplitude factor and the warping functions.

For identifiability (which is proved in Section 4.3), we assume that ai 6= 0, ā = 1, and

w̄(t) = t for all t. Although the assumptions on the amplitude variability make the

model rather limited, it is appropriate for many real data sets.

For the shape function in model (3.9), there are a number of choices available, such

as linear splines (Lawton et al., 1972) and cubic splines (Lindstrom, 1995). Define a

knot sequence of the shape function as τ = (τ1, · · · , τp)T on the interval T = [a, b] such

that a < τ1 < τ2 < · · · < τp < b (the knot sequence is usually a sequence of salient

features of the curve). In general, a spline function of order r is a linear combination

of the basis functions {1, x, · · · , xr−1, (x− τ1)r−1+ , · · · , (x− τp)r−1+ }. This basis system

is called the truncated power basis. A disadvantage of it is lack of numerical stability.

To overcome this problem, we use the equivalent B-spline basis (see Eubank (1999)

for the definition), denoted by b1(x), · · · , bm(x), where m = p+r. A direct derivation

of B-spline from the truncated power basis can be found in de Boor (1978). The

B-spline representation of the shape function f on [a, b] is

f(t) =
m∑
k=1

dkbk(t) := dTB(t),

where d is a vector of the B-spline coefficients andB(t) is the B-spline basis introduced

by the knot sequence τ .

Next, we consider the subject-specific parameters. Let τ i = (τi1, τi2, · · · , τip)T

is a strictly increasing knot sequence of the ith subject on (a, b) which represents
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the locations of the salient features. Then, the parameters of each curve consist of

the amplitude parameter ai and the knot sequence τ i. These parameters vary from

subject to subject and produce the randomness of each individual curve. Note that

{τ i} are increasing and constrained on [a, b], it is difficult to assume an appropriate

distribution on them. The Jupp transformation (Jupp, 1978) is widely applied in the

estimation of series of increasing parameters. Define θi = Jupp(τ i), where

θi1 = log

(
τi2 − τi1
τi1 − a

)
,

θik = log

(
τi,k+1 − τik
τik − τi,k−1

)
, for k = 2, · · · , p− 1,

θip = log

(
b− τip

τip − τi,p−1

)
.

This transformation is invertible which makes θi uniquely defining the location of

the the knot sequence τ i. Using this transformation, {θi} are not constrained any

more. Therefore, we define φi = (ai,θi)
T ∈ Rp+1 the subject-specific parameters and

assume that

φi = gi + ei,

where gi is the vector of the genetic effects and ei is the vector of the environmental

effects. We assume that {gi} are identically distributed from N(µ,Σg), {ei} are i.i.d.

from N(0,Σe), and the genetic and environmental effects are independent. By (2.12),

g ∼ N(µ̃,A⊗Σg) with g = (gT1 , · · · , gTn )T , µ̃ = (µT , · · · ,µT )T , and A the additive

genetic relationship matrix. Next, we write the n individual models as one by defining

yi =



yi1

yi2
...

yimi


, f̃ i(φi) =



aif{vi(ti1,θi)}

aif{vi(ti2,θi)}
...

aif{vi(timi
,θi)}


.
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Then, let

y =



y1

y2

...

yn


, φ =



φ1

φ2

...

φn


, f̃(φ) =



f̃ 1(φ1)

f̃ 2(φ2)

...

f̃n(φn)


,

we obtain

y|(g, e) ∼ N(f̃(φ), σ2IN), φ = g + e, (3.10)

g ∼ N(µ̃,A⊗Σg), e ∼ N(0, In ⊗Σe), and (3.11)

f(t) = dTB(t), (3.12)

where N =
∑n

i=1mi is the total number of observations in the data set.

In this general shape-invariant model, we are interested in the estimation of the

amplitude factor and the locations of the salient features. The variability of these pa-

rameters is decomposed into the genetic and environmental variabilities, and warping

functions are used to address the time variability. For the warping functions {wi}, we

recommend to use the family of monotone interpolating cubic Hermite splines. The

coefficients of this spline family can be directly related to features of the sample curves

and the model identifiability has been proved (Gervini and Carter, 2014). Another

difference from the four-parameter shape-invariant model is that the use of cubic

splines in the shape function provides more flexibility to various growth patterns.
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3.5 Maximum likelihood estimators of the general

model

The parameters that need to be estimated are µ, Σg, Σe, σ
2, and d. The marginal

density function of y is the same as that defined by (3.6),

p(y) =

∫
p(y|g, e)p(g)p(e) dg de,

and the log-likelihood function is

l = ln

∫
(2πσ2)−N/2 exp

{
− 1

2σ2

[
y − f̃(φ)

]T [
y − f̃(φ)

]}
× (2π)−n(p+1)/2|A⊗Σg|−1/2 exp

{
−1

2
(g − 1n ⊗ µ)T (A⊗Σg)

−1(g − 1n ⊗ µ)

}
× (2π)−n(p+1)/2|In ⊗Σe|−1/2 exp

{
−1

2
eT (In ⊗Σe)

−1e

}
dg de.

Define the (p+1)×n dimensional matrices G = (g1, · · · , gn), V = (g1−µ, · · · , gn−

µ), and E = (e1, · · · , en). Taking the partial derivatives of l with respect to the

parameters, we obtain

∂l

∂Σ−1g
=

1

p(y)

∫ {
Σ−1g GA

−1
1n − 1

T
nA

−1
1nΣ

−1
g µ

}
p(y|g, e)p(g)p(e) dg de,

∂l

∂Σ−1g
=

1

p(y)

∫ {
n

2
Σg −

1

2
V A−1V T

}
p(y|g, e)p(g)p(e) dg de,

∂l

∂Σ−1e
=

1

p(y)

∫ {
n

2
Σe −

1

2
EET

}
p(y|g, e)p(g)p(e) dg de,

∂l

∂σ2 =
1

p(y)

∫ {
− N

2σ2 +
1

2σ4

[
y − f̃(φ)

]T [
y − f̃(φ)

]}
p(y|g, e)p(g)p(e) dg de,

∂l

∂d
=

1

p(y)

∫ {
1

σ2

n∑
i=1

mi∑
j=1

[yij − aidB(tij,θi)] [aiB(tij,θi)]

}
p(y|g, e)p(g)p(e) dg de,
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Note that p(y|g, e)p(g)p(e)/p(y) is the posterior density of the parameter g and e

given y. Therefore, setting the equations to be zero and solving for the parameters,

we obtain the maximum likelihood estimators as follows:

µ̂ =
1

(1TnA
−1
1n)

E{GA−11n|y},

Σ̂g =
1

n
E{V A−1V T |y},

Σ̂e =
1

n
E{EET |y},

σ̂2 =
1

N
E
{[
y − f̃(φ)

]T [
y − f̃(φ)

] ∣∣∣y} ,
d̂ =

[
n∑
i=1

E

{
a2i

mi∑
j=1

B(tij,θi)B
T (tij,θi)

∣∣yi
}]−1

×

[
n∑
i=1

E

{
ai

mi∑
j=1

B(tij,θi)yij
∣∣yi
}]

As before, the calculation of these maximum likelihood estimators involves approxi-

mations to the marginal density p(y) and the expectations which can be obtained by

Laplace’s method.
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Chapter 4

Asymptotics

In this chapter we prove, in detail, consistency and asymptotic normality of the

maximum likelihood estimators for the four-parameter shape-invariant model, and

indicate the necessary modifications that would extend the results to the general

model.

4.1 Consistency

Based on the model assumptions in Section 3.3, {yi·} are independently and identi-

cally distributed from the following distribution

p(yi·) =

∫
p(yi·|αi, ei·)p(αi)p(ei·) d(αi, ei·)

=

∫
(2πσ2)−Jm/2 exp

{
− 1

2σ2 [yi· − f(αi, ei·)]
T [yi· − f(αi, ei·)]

}
× (2π)−1/2|Σg|−1/2 exp

{
−1

2
(αi − µ)TΣ−1g (αi − µ)

}
× (2π)−Jk/2|Σe|−J/2 exp

{
−1

2
eTi· (IJ ⊗Σe)

−1ei·

}
d(αi, ei·), (4.1)
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where ei· = (ei1, · · · , eiJ). Let γ and λ be the row vectors containing the unique

elements of the covariance matrices Σg and Σe, respectively. Then, define

θ = (µT ,γ,λ, σ2)

as the unknown parameter vector. We shall show the consistency of the maximum

likelihood estimator θ̂ by verifying that the balanced one-factor four-parameter model

satisfies the assumptions of Wald’s consistency theorem (Wald, 1949). Let X1, · · · , Xn

be a sequence of independently and identically distributed random variables. For any

parameter point θ in the parameter space Θ, let F (x, θ) denote the corresponding

cumulative distribution function of Xi. If F (x, θ) is absolutely continuous, p(x, θ)

denotes the density at x. If F (x, θ) is discrete, p(x, θ) is equal to the probability that

Xi = x.

Assumption 1. Let F (x, θ) denote the corresponding cumulative distribution func-

tion of the random variables Xi, then F (x, θ) is either discrete for all θ or is absolutely

continuous for all θ.

Proof. This is satisfied because the probability density function p(yi·,θ) exists under

our model specification.

Assumption 2. If limn→∞ θn = θ, then limn→∞ p(x, θn) = p(x, θ) for all x except

perhaps on a set which may depend on the limit point θ (but not on the sequence

{θn}) and whose probability measure is zero according to the probability distribution

corresponding to the true parameter point θ0.

Proof. This is immediate given the continuity of p(yi·,θ) in θ.

Assumption 3. If limk→∞ |θk| =∞, then limk→∞ p(x, θk) = 0 for any x except on a

fixed set (independent of the sequence {θk}) whose probability is zero according to the

true parameter point θ0.
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Proof. If any elements of θ tends to be infinity, the corresponding density function

p(yi·|αi, ei·), p(αi), and p(ei·) tends to be zero. This implies the marginal density

p(yi·,θ) tends to be zero, which shows the assumption.

Assumption 4. For the true parameter point θ0 we have

∫
| log p(x, θ0)| dF (x, θ0) <∞.

Proof. Without ambiguity, we write p(yi·) := p(yi·,θ0). Then,

p(yi·) =

∫
p(yi·|αi, ei·)p(αi)p(ei·) d(αi, ei·) = Eαi,ei· [p(yi·|αi, ei·)].

Since − log(·) is a convex function, by Jensen’s inequality, we have

− log p(yi·) = − logEαi,ei· [p(yi·|αi, ei·)] ≤ Eαi,ei· [− log p(yi·|αi, ei·)] := M(yi·).

Note that

− log p(yi·|αi, ei·) =C +
1

2σ2 [yi· − f(αi, ei·)]
T [yi· − f(αi, ei·)] ,

=C +
1

2σ2

[
yTi·yi· − 2f(αi, ei·)

Tyi· + f(αi, ei·)
Tf(αi, ei·)

]
,

where C = (Jm/2) log(2πσ2). Then

M(yi·) =Eαi,ei· [− log p(yi·|αi, ei·)]

=Eαi,ei·

[
C +

1

2σ2

{
yTi·yi· − 2f(αi, ei·)

Tyi· + f(αi, ei·)
Tf(αi, ei·)

}]
=C +

1

2σ2

{
yTi·yi· − 2ETαi,ei·

[f(αi, ei·)]yi· + Eαi,ei· [f(αi, ei·)
Tf(αi, ei·)]

}
.
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Thus, M(yi·) is a quadratic expression in yi·. By the law of total expectation,

Eyi· [M(yi·)] =Eαi,ei·

[
Eyi·|αi,ei·{M(yi·)|αi, ei·}

]
=Eαi,ei·

[
Eyi·|αi,ei·

{
C + 1/(2σ2)

(
yTi·yi· − 2ETαi,ei·

[f(αi, ei·)]yi·

+Eαi,ei· [f(αi, ei·)
Tf(αi, ei·)]

) ∣∣αi, ei·}] .
Since p(yi·|αi, ei·) is normally distributed, Eyi·|αi,ei· [h(yi·)|αi, ei·] is finite for any poly-

nomial function h(yi·). The elements of Eαi,ei· [f(αi, ei·)] and Eαi,ei· [f(αi, ei·)
Tf(αi, ei·)]

are all finite, because the shape function is bounded on the closed interval T ∈ R.

Therefore, E[M(yi·)] is finite, which implies E[− log p(yi·)] has an upper bound, or

equivalently, E[log p(yi·)] has a lower bound.

On the other hand, p(yi·|αi, ei·) is a normal density which is bounded by (2πσ2)−Jm/2,

because

exp{− 1

2σ2 [yi· − f(αi, ei·)]
T [yi· − f(αi, ei·)]} ≤ 1.

Thus,

E[log p(yi·)] =Eyi· [logEαi,ei·{p(yi·|αi, ei·)}]

≤Eyi· [logEαi,ei·{(2πσ2)−Jm/2}]

=− Jm

2
log(2πσ2) <∞,

which provides an upper bound of E[log p(yi·)]. Therefore,
∫
| log p(yi·,θ0)| dF (yi·,θ0) =

Eyi· [| log p(yi·,θ0)|] <∞.

For any θ and for any positive value ρ, let p(x, θ, ρ) be the supremum of p(x, θ′)

with respect to θ′ when |θ− θ′| ≤ ρ. For any positive r, let ψ(x, r) be the supremum

of p(x, θ) with respect to θ when |θ| > r. Furthermore, let p∗(x, θ, ρ) = p(x, θ, ρ) when

p(x, θ, ρ) > 1, and = 1 otherwise. Similarly, let ψ∗(x, r) = ψ(x, r) when ψ(x, r) > 1,

and = 1 otherwise.
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Assumption 5. For sufficiently small ρ and for sufficiently large r, the expected

values ∫
log p∗(x, θ, ρ) dF (x, θ0) and

∫
logψ∗(x, r) dF (x, θ0)

are finite.

Proof. For ‖θ‖ > r > 0

p(yi·,θ) =

∫
pθ(yi·|αi, ei·)pθ(αi)pθ(ei·) d(αi, ei·)

=

∫
(2πσ2)−Jm/2 exp

{
− 1

2σ2 [yi· − f(αi, ei·)]
T [yi· − f(αi, ei·)]

}
× pθ(αi)pθ(ei·) d(αi, ei·)

≤
∫

(2πσ2)−Jm/2pθ(αi)pθ(ei·) d(αi, ei·)

=(2πσ2)−Jm/2

≤(2πr)−Jm/2 := Mr,

and

Eθ0{logMr} = −Jm
2

log(2π)− Jm

2
log r <∞,

therefore,

Eθ0{logψ∗(y, r)} ≤ Eθ0{logMr} <∞.

Next, we show that
∫

log p∗(yi·,θ, ρ) dF (yi·,θ0) <∞. First, note thatEθ0 [log p∗(yi·,θ, ρ)]

is finite if and only if Eθ0 [| log p∗(yi·,θ, ρ)|] <∞. For any ρ > 0, {θ′ : ‖θ − θ′‖ ≤ ρ}

is closed. Since log p(yi·,θ) is continuous in θ, by the Mean Value Theorem, we have

log p(yi·,θ
′)− log p(yi·,θ) = D(yi·,θ + ξ(yi·))

T (θ′ − θ),

with ‖ξ(yi·)‖ < ‖θ′ − θ‖, where D(yi·,θ) is the gradient of log p(yi·,θ) with respect
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to θ. Then,

| log p(yi·,θ
′)− log p(yi·,θ)| ≤ ‖D(yi·,θ + ξ(yi·))

T‖ · ‖θ′ − θ‖.

Therefore, for ‖θ′ − θ‖ < ρ,

| log p(yi·,θ, ρ)| ≤ ‖D(yi·,θ + ξ(yi·))
T‖ · ρ+ | log p(yi·,θ)|.

Since Eθ0{| log p(yi·,θ)|} is finite (by Assumption 4), it suffices to show Eθ0{|D(yi·,θ+

ξ(yi·))|} is finite. Note that p(yi·,θ) =
∫
pθ(yi·|αi, ei·)pθ(αi)pθ(ei·) d(αi, ei·), then

∂ log p(yi·,θ)

∂θj
=

∫
∂
∂θj
{pθ(yi·|αi, ei·)pθ(αi)pθ(ei·)} d(αi, ei·)

p(y,θ)

=

∫
∂
∂θj

log{pθ(yi·|αi, ei·)pθ(αi)pθ(ei·)}pθ(yi·|αi, ei·)pθ(αi)pθ(ei·) d(αi, ei·)

p(yi·,θ)
,

Thus, it remains to show that | ∂
∂θj

log{pθ(yi·|αi, ei·)pθ(αi)pθ(ei·)}| is bounded.

Recall that

(∗) := log{pθ(yi·|αi, ei·)pθ(αi)pθ(ei·)}

=− Jm

2
log(2πσ2)− 1

2σ2 [yi· − f(αi, ei·)]
T [yi· − f(αi, ei·)]

− 1

2
log(2π)− 1

2
log |Σg| −

1

2
(αi − µ)TΣ−1g (αi − µ)

− Jk

2
log(2π)− J

2
log |Σe| −

1

2

J∑
j=1

eTijΣ
−1
e eij.

For σ2, we have

∂(∗)
∂σ2 = −Jm

2σ2 +
1

2σ4 [yi· − f(αi, ei·)]
T [yi· − f(αi, ei·)] ,
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then, for |ξ| < ‖θ′ − θ‖ ≤ ρ,

|∂(∗)
∂σ2 (σ2 + ξ)| =| − Jm

2(σ2 + ξ)
+

1

2(σ2 + ξ)2
[yi· − f(αi, ei·)]

T [yi· − f(αi, ei·)] |

≤| − Jm

2(σ2 + ρ)
+

1

2(σ2 − ρ)2
[yi· − f(αi, ei·)]

T [yi· − f(αi, ei·)] |

≤ Jm

2(σ2 + ρ)
+

1

2(σ2 − ρ)2
[yi· − f(αi, ei·)]

T [yi· − f(αi, ei·)] .

As discussed in Assumption 4, once we integrate αi, ei· out from this upper bound,

it becomes a quadratic function of yi·, which has finite expectation.

Next, we find the upper bound for the partial derivative of (∗) with respect to µ. We

have

∂(∗)
∂µ

= (Σ−1g )(αi − µ),

then,

∂(∗)
∂µ

(µ+ ξ) = Σ−1g (αi − µ− ξ),

and, for ‖ξ‖ ≤ ρ,

‖∂(∗)
∂µ

(µl + ξ)‖ ≤ ‖Σ−1g (αi − µ− ξ)‖ ≤ ‖Σ−1g ‖(‖αi‖+ ‖µ‖+ ρ). (4.2)

For the partial derivative of (∗) with respect to Σg, we have

∂(∗)
∂Σg

= −1

2
Σ−1g +

1

2
Σ−1g (αi − µ)(αi − µ)TΣ−1g .

Note that, for any matrices G (G is invertible) and E such that ‖EG−1‖ < 1, we have

‖(G+E)−1‖ = ‖[(I+EG−1)G]−1‖ ≤ ‖G−1‖·‖(I+EG−1)−1‖ ≤ ‖G−1‖· 1

1− ‖EG−1‖
.
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Thus, for sufficient small ρ such that ‖E‖ < ρ and ‖EΣ−1g ‖ < 1, we have

‖∂(∗)
∂Σg

(Σg + E)‖ =‖ − 1

2
(Σg + E)−1 +

1

2
(Σg + E)−1(αi − µ)(αi − µ)T (Σg + E)−1‖

≤1

2
‖(Σg + E)−1‖+

1

2
‖(Σg + E)−1‖2 · ‖(αi − µ)(αi − µ)T‖

≤1

2
‖Σ−1g ‖ ·

1

1− ‖EΣ−1g ‖

+
1

2

{
‖Σ−1g ‖ ·

1

1− ‖EΣ−1g ‖

}2

· ‖(αi − µ)(αi − µ)T‖

≤1

2
‖Σ−1g ‖ ·

1

1− ρ‖Σ−1g ‖

+
1

2

{
‖Σ−1g ‖ ·

1

1− ρ‖Σ−1g ‖

}2

· ‖(αi − µ)(αi − µ)T‖. (4.3)

Finally, for the partial derivative of (∗) with respect to Σe, we have

∂(∗)
∂Σe

= −J
2

Σ−1e +
1

2
Σ−1e

(
J∑
j=1

eije
T
ij

)
Σ−1e .

Similarly, for sufficient small ρ such that ‖E‖ < ρ and ‖EΣ−1e ‖ < 1, we have

‖∂(∗)
∂Σe

(Σe + E)‖ =‖ − J

2
Σ−1e +

1

2
Σ−1e

(
J∑
j=1

eije
T
ij

)
Σ−1e ‖

≤J
2
‖Σ−1e ‖ ·

1

1− ρ‖Σ−1e ‖
+

1

2

{
‖Σ−1e ‖ ·

1

1− ρ‖Σ−1e ‖

}2

· ‖
J∑
j=1

eije
T
ij‖.

(4.4)

For the upper bounds in (4.2), (4.3), and (4.4), they all have finite expectations with

respect toαi and ei·, sinceαi and ei· are normally distributed. Then, the expectations

with respect to yi· are also finite and this completes the proof.

Assumption 6. p(x, θ, ρ) is a measurable function of x for any θ and ρ.

Proof. Since pθ(yi·|αi, ei·), pθ(αi), and pθ(ei·) are measurable, p(yi·,θ) is measur-
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able because the limit of measurable functions is measurable. Then, the supremum

p(yi·,θ, ρ) is measurable.

Assumption 7. If θ1 is a parameter point different from the true parameter point

θ0, then F (x, θ1) 6= F (x, θ0) for at least one value of x.

Proof. We show the identifiability directly on the models, which will imply the iden-

tifiability of the distribution. For the kth observation on the jth subject of father i,

the four-parameter model is

yijk = fij(tijk) + εijk,

fij(t) = [φij2 + φij1(t− φij4)]trn(φij4 − t) + [φij2 + φij3(t− φij4)]trn(t− φij4),

where trn(x) = ecx/(1 + ecx) and c > 0. We assume that the parameters φij1 6= φij3,

otherwise fij is just a linear function. We shall show the model is identifiable. Since

E{εij(t)} = 0, we have that εij(t) = yij(t)−E{yij(t)}, so there is no ambiguity about

the error term. Suppose that E{yij(t)} = f(φij, t) = f(φ∗ij, t) for all i, j. We first

show the identifiability of φij1 and φij3. Note that

trn(−x) =
e−cx

1 + e−cx
=

1

1 + ecx
= 1− trn(x),

so we have

fij(t) =[φij2 + φij1(t− φij4)][1− trn(t− φij4)] + [φij2 + φij3(t− φij4)]trn(t− φij4)

=φij2 + φij1(t− φij4) + (φij3 − φij1)(t− φij4)trn(t− φij4).

Then,

f ′ij(t) = φij1 + (φij3 − φij1)trn(t− φij4) + (φij3 − φij1)(t− φij4)trn′(t− φi4).
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Since trn′(x) = cecx/(1 + ecx)2, we have

lim
x→∞

xtrn′(x) = lim
x→∞

cxecx

(1 + ecx)2
= lim

x→∞

cx

e−cx + 2 + ecx
= lim

x→∞

c

−ce−cx + cecx
= 0,

similarly,

lim
x→−∞

xtrn′(x) = lim
x→−∞

c

−ce−cx + cecx
= 0.

Therefore,

lim
t→−∞

f ′ij(t) = φij1,

lim
t→∞

f ′ij(t) = φij3.

Since the linear functions f(φij, t) and f(φ∗ij, t) have the same derivatives at infinities,

we obtain φ∗ij1 = φij1 and φ∗ij3 = φij3. Thus, φij1 and φij3 are identifiable. Next, we

prove the identifiability of φij2 and φij4. We can show that

f ′′ij(t) = (φij3 − φij1)[2trn′(t− φij4) + (t− φij4)trn′′(t− φij4)],

and

f ′′′ij (t) = (φij3 − φij1)[3trn′′(t− φij4) + (t− φij4)trn′′′(t− φij4)].

The turning point of the function fij(t) can be characterized as the maximum of its

second derivative of f ′′ij(t), which is given by the root of the third derivative f ′′′ij (t).

Equivalently, we have to find the root of the following function

h(x) = 3trn′′(x) + xtrn′′′(x).
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Since

trn′′(x) =
c2ecx(1− ecx)

(1 + ecx)3
,

trn′′′(x) =
c3ecx(e2cx − 4ecx + 1)

(1 + ecx)4
,

we obtain

h(x) =3trn′′(x) + xtrn′′′(x)

=
3c2ecx(1− ecx)

(1 + ecx)3
+
c3xecx(e2cx − 4ecx + 1)

(1 + ecx)4

=
3c2ecx(1− ecx)(1 + ecx) + c3xecx(e2cx − 4ecx + 1)

(1 + ecx)4

=
c2ecx[3− 3e2cx + cxe2cx − 4cxecx + cx]

(1 + ecx)4

It can be shown that this function has three roots. x = 0, or equivalently, t = φij4

is the root such that f ′′ij(t) attaining its maximum. Thus, φij4 is the only turning

point of fij(t). Since f(φij, t) and f(φ∗ij, t) must have the same turning point and the

values at the turning point are equal, we obtain the identifiability of φij4 and φij2.

This completes the proof of model identifiability.

Assumption 8. The parameter space Θ is a closed subset of the k-dimensional Carte-

sian space.

Assumption 8 is actually not true as stated because the parameter space of this

model is open (the variances have to be strictly positive). As mentioned in Wald

(1949), Assumptions 2, 3, and 8 can be replaced by the following one:

Assumption 9. It is possible to introduce a distance δ(θ1, θ2) in the space Θ such

that the following four conditions hold:

(i) The distance δ(θ1, θ2) makes Θ to a metric space.

(ii) If limk→∞ θk = θ, then limk→∞ p(x, θk) = p(x, θ) for all x except perhaps on a
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set which may depend on the limit point θ (but not on the sequence {θk}) and whose

probability measure is zero according to the probability distribution corresponding to

the true parameter point θ0. (This is Assumption 2).

(iii) If θ0 is a fixed point in Θ and limk→∞ δ(θk, θ0) = ∞, then limk→∞ p(x, θn) = 0.

(This is Assumption 3).

(iv) Any closed and bounded subset of Θ is compact.

Proof. Using the Euclidean distance on the parameter space Θ, Assumption 9 (i) and

(iv) hold immediately.

Since all the assumptions in Wald (1949) are satisfied, the consistency of the maximum

likelihood estimator follows.

4.2 Asymptotic normality

Now we establish the asymptotic normality of θ̂ for I →∞ and J fixed by verifying

the sufficient conditions of Huber (1967). Let Tn = Tn(x1, x2, · · · , xn) be the sequence

of maximum likelihood estimators. The consistency of Tn has been proved. Let

ψ(x, θ) = (∂/∂θ) log p(x, θ). Then, Tn is asymptotically normal, if the following

conditions are satisfied:

(N-1) For each fixed θ ∈ Θ, ψ(x, θ) is a U-measurable and ψ(x, θ) is separable.

Let λ(θ) = Eψ(x, θ), and u(x, θ, d) = sup
|τ−θ|≤d

|ψ(x, τ)− ψ(x, θ)|.

(N-2) There is a θ0 ∈ Θ such that λ(θ0) = 0.

(N-3) There are strictly positive numbers a, b, c, d0 such that

(i) |λ(θ)| ≥ a|θ − θ0| for |θ − θ0| ≤ d0,

(ii) Eu(x, θ, d) ≤ bd for |θ − θ0|+ d ≤ d0, d ≥ 0,

(iii) E[u(x, θ, d)2] ≤ cd for |θ − θ0|+ d ≤ d0, d ≥ 0,
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(N-4) The expectation E[|ψ(x, θ0)|2] is finite.

Proof. (N-1) is satisfied, since the log-likelihood function is continuous in yi· and

θ. Let M(θ) = E[log p(yi·,θ)]. By Lemma 1 of Wald (1976), M(θ) has a unique

maximum at θ0. Note that λ(θ) is the gradient of M(θ), then λ(θ0) = 0 and thus

(N-2) holds. Next, we verify the conditions in (N-3). Note that λ(θ) is continuous

on {θ : ‖θ − θ0‖ ≤ d0}, by the mean value theorem, we have

λ(θ) = λ(θ0) +H(θ̄)(θ − θ0),

where θ̄ is a point between θ and θ0, and H(θ̄) is the Hessian matrix of M(θ) at θ̄.

Note that λ(θ0) = 0 and the Hessian of M(θ) is invertible at points near θ0. Thus,

‖H(θ̄)−1‖‖λ(θ)‖ ≥ ‖H(θ̄)−1λ(θ)‖ = ‖θ − θ0‖,

and then,

‖λ(θ)‖ ≥ ‖H(θ̄)−1‖−1‖θ − θ0‖.

Since H(θ0) is invertible, we have ‖H(θ0)
−1‖ < ∞. Moreover, H(θ) is continuous,

then there is a c <∞ such that ‖H(θ)−1‖ < c for all θ such that ‖θ − θ0‖ ≤ d0 for

d0 > 0. Thus, taking a = 1/c, we have (N-3) (i) verified.

By the differentiability of ψ(yi,·,θ) and the mean value theorem,

ψ(yi·, τ )− ψ(yi·,θ) =Oψ(yi·,θ + η(yi·))(τ − θ),

for ‖η(yi·)‖ < d and ‖τ − θ‖ ≤ d. Note that ‖E[Oψ(yi·,θ0)]‖ is equal to the norm

of the Fisher Information Matrix, and then it is finite. Moreover, since E[Oψ(yi·,θ)]

is continuous, there is a b < ∞ such that ‖E[Oψ(yi·,θ)]‖ < b for all θ such that
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‖θ − θ0‖ ≤ d0 − d for some d0. Since θ + η(yi·) ∈ {θ : ‖θ − θ0‖ ≤ d0 − d}, we have

E[u(yi·,θ, d)] ≤ b · d,

and

E[u(yi·,θ, d)2] ≤ c · d,

where c = d · b2. Then, (N-3) (ii) and (iii) are satisfied.

Finally, note that

E[ψ(yi·,θ0)
Tψ(yi·,θ0)] = E[tr{ψ(yi·,θ0)

Tψ(yi·,θ0)}]

= E[tr{ψ(yi·,θ0)ψ(yi·,θ0)
T}]

= tr{E[ψ(yi·,θ0)ψ(yi·,θ0)
T ]}.

Then, (N-4) is satisfied because the trace of the Fisher Information Matrix is finite.

Since all conditions of Theorem 3 in Huber (1967) are satisfied,

√
I(θ̂ − θ)

D→ N(0,F−1),

where F = E[{ ∂
∂θ

log p(yi·)}{ ∂∂θ log p(yi·)}T ] is the Fisher Information Matrix for

the parameter vector θ. The elements of the partial derivatives involved can be

calculated by straightforward differentiation of (4.1), which we do below.

Part I: Derivative of log p(yi·) w.r.t. µ

Since {αi} are i.i.d. from N(µ,Σg), we have

log p(αi) ∝ −
1

2
(αi − µ)TΣ−1g (αi − µ).
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Then

∂ log p(αi)

∂µ
= Σ−1g (αi − µ).

Therefore, for l = 1, · · · , k,

∂ log p(αi)

∂µl
= (Σ−1g )l·(αi − µ),

where (Σ−1g )l· denotes the lth row of Σ−1g . Then,

∂ log p(yi·)

∂µl
=

1

p(yi·)

∂p(yi·)

∂µl

=
1

p(yi·)

∫ { J∏
j=1

p(yij|eij,αi)

}{
J∏
j=1

p(eij)

}
∂p(αi)

∂µl
d(ei1, · · · , eiJ ,αi)

=
1

p(yi·)

∫ { J∏
j=1

p(yij|eij,αi)

}{
J∏
j=1

p(eij)

}
∂ log p(αi)

∂µl
p(αi) d(ei1, · · · ,αi)

=E
{
∂ log p(αi)

∂µl

∣∣∣yi·}
=E

{
(Σ−1g )l·(αi − µ)|yi·

}
=(Σ−1g )l·[E(αi|yi·)− µ].

Part II: Derivative of log p(yi·) w.r.t. Σg

Similarly, since {αi} are i.i.d. from N(µ,Σg),

log p(αi) ∝ −
1

2
log det Σg −

1

2
(αi − µ)TΣ−1g (αi − µ),

then,

dΣg log p(αi) = −1

2
tr(Σ−1g dΣg) +

1

2
(αi − µ)TΣ−1g (dΣg)Σ

−1
g (αi − µ).
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For l, r = 1, · · · , k, the partial derivative is

∂ log p(αi)

∂(Σg)lr
=− 1

2
tr(Σ−1g Elr) +

1

2
(αi − µ)TΣ−1g (Elr)Σ

−1
g (αi − µ)

=− 1

2
(Σ−1g )lr +

1

2
(αi − µ)T (Σ−1g )·l(Σ

−1
g )T·r(αi − µ).

where Elr the k×k matrix with 1 in the (l, r) coordinate and 0 elsewhere, and (Σ−1g )·l

denotes the lth column of Σ−1g . Then

∂ log p(yi·)

∂(Σg)lr
=

1

p(yi·)

∂p(yi·)

∂(Σg)lr

=
1

p(yi·)

∫ { J∏
j=1

p(yij|eij,αi)p(eij)

}
∂p(αi)

∂(Σg)lr
d(ei1, · · · , eiJ ,αi)

=
1

p(yi·)

∫ { J∏
j=1

p(yij|eij,αi)p(eij)

}
p(αi)

∂ log p(αi)

∂(Σg)lr
d(ei1, · · · , eiJ ,αi)

=E
{
∂ log p(αi)

∂(Σg)lr

∣∣∣yi·}
=E

{
−1

2
(Σ−1g )lr +

1

2
(αi − µ)T (Σ−1g )·l(Σ

−1
g )T·r(αi − µ)

∣∣yi·}
=− 1

2
(Σ−1g )lr +

1

2
(Σ−1g )T·rE

[
(αi − µ)(αi − µ)T

∣∣yi·] (Σ−1g )·l

Part III: Derivative of log p(yi·) w.r.t. Σe

Since {eij} are i.i.d. from N(0,Σe), we have

log p(eij) ∝ −
1

2
log det Σe −

1

2
eTijΣ

−1
e eij.

Then,

dΣe log p(eij) = −1

2
tr(Σ−1e dΣe) +

1

2
eTijΣ

−1
e (dΣe)Σ

−1
e eij.

For l, r = 1, · · · , k,

∂ log p(eij)

∂(Σe)lr
=− 1

2
tr(Σ−1e Elr) +

1

2
eTijΣ

−1
e (Elr)Σ

−1
e eij
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=− 1

2
(Σ−1e )lr +

1

2
eTij(Σ

−1
e )·l(Σ

−1
e )T·reij.

Therefore,

∂ log p(yi·)

∂(Σe)lr
=

1

p(yi·)

∂p(yi·)

∂(Σe)lr

=
1

p(yi·)

∫ { J∏
i=1

p(yij|eij,αi)

}{
J∑
j=1

[
∂p(eij)

∂(Σe)lr

∏
j′ 6=j

p(eij′)

]}

× p(αi) d(ei1, · · · , eiJ ,αi)

=
1

p(yi·)

∫ { J∏
i=1

p(yij|eij,αi)

}{
J∑
j=1

[
∂ log p(eij)

∂(Σe)lr
p(eij)

∏
j′ 6=j

p(eij′)

]}

× p(αi) d(ei1, · · · , eiJ ,αi)

=
1

p(yi·)

∫ { J∏
i=1

p(yij|eij,αi)

}{
J∑
j=1

∂ log p(eij)

∂(Σe)lr

}{
J∏
j=1

p(eij)

}

× p(αi) d(ei1, · · · , eiJ ,αi)

=E

{
J∑
j=1

∂ log p(eij)

∂(Σe)lr

∣∣∣yi·
}

=E

{
J∑
j=1

[
−1

2
(Σ−1e )lr +

1

2
eTij(Σ

−1
e )·l(Σ

−1
e )T·reij

] ∣∣∣yi·
}

=− J

2
(Σ−1e )lr +

1

2
(Σ−1e )T·rE

(
J∑
j=1

eije
T
ij

∣∣∣yi·
)

(Σ−1e )·l.

Part IV: Derivative of log p(yi·) w.r.t. σ2

Since yij|(αi, eij) ∼ N(f(φij), σ
2Im) with φij = αi + eij, we have

log p(yij|eij,αi) ∝ −
m

2
log σ2 − 1

2σ2 [yij − f(φij)]
T [yij − f(φij)],

then
∂ log p(yij|eij,αi)

∂σ2 = − m

2σ2 +
1

2σ4 [yij − f(φij)]
T [yij − f(φij)].
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Thus,

∂p(yi·)

∂σ2 =

∫ { J∑
j=1

[
∂p(yij|eij,αi)

∂σ2

∏
j′ 6=j

p(yij′ |eij′ ,αi)

]}{
J∏
j=1

p(eij)

}

× p(αi) d(ei1, · · · , eiJ ,αi)

=

∫ { J∑
j=1

[
∂ log p(yij|eij,αi)

∂σ2 p(yij|eij,αi)
∏
j′ 6=j

p(yij′|eij′ ,αi)

]}

×

{
J∏
j=1

p(eij)

}
p(αi) d(ei1, · · · , eiJ ,αi)

=

∫ { J∑
j=1

∂ log p(yij|eij,αi)
∂σ2

}{
J∏
j=1

p(yij|eij,αi)

}{
J∏
j=1

p(eij)

}

× p(αi) d(ei1, · · · , eiJ ,αi).

Then,

∂ log p(yi·)

∂σ2 =
1

p(yi·)

∂p(yi·)

∂σ2

=
1

p(yi·)

∫ { J∑
j=1

∂ log p(yij|eij,αi)
∂σ2

}{
J∏
j=1

p(yij|eij,αi)

}{
J∏
j=1

p(eij)

}

× p(αi) d(ei1, · · · , eiJ ,αi)

=E

{
J∑
j=1

∂ log p(yij|eij,αi)
∂σ2

∣∣∣yi·
}

=E

{
J∑
j=1

(
− m

2σ2 +
1

2σ4 [yij − f(φij)]
T [yij − f(φij)]

) ∣∣∣yi·
}

=− Jm

2σ2 +
1

2σ4E

{
J∑
j=1

[yij − f(φij)]
T [yij − f(φij)]

∣∣yi·
}
.

With the formulae of these partial derivatives, we obtain the estimate of F ,

F̂ =
1

I

I∑
i=1

{
∂

∂θ
log p̂(yi·)

}{
∂

∂θ
log p̂(yi·)

}T
,
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where p̂ means that θ is replaced by θ̂ everywhere.

4.3 Asymptotics for the general model

In this section, we derive the asymptotic properties for the balanced one-factor model

of the general shape-invariant model. We first present the model specification. Then,

we show the consistency and the asymptotic normality of the maximum likelihood

estimators.

Suppose that we have I fathers and each father i, i = 1, · · · , I, has J descendants.

Assume that the observations of all subjects are obtained at the same time grids

(t1, · · · , tm). Thus, a total of N = I × J ×m data values available. Let yijk denote

the kth observation for the jth descendant of father i and assume it follows

yijk = aijf(vij(tijk)) + εijk, (4.5)

where aij is the amplitude parameter, {vij} are the inverse functions of the warping

functions {wi}, {εijk} are i.i.d.N(0, σ2) random errors, and f(t) is the B-spline shape

function

f(t) = dTB(t), (4.6)

where d is a vector of the B-spline coefficients and B(t) represents the B-spline basis.

Note that vij(t) is a function of the Jupp-transformed knot sequence θij, we denote

vij(t) as vθij(t). Assume that the subject-specific parameters φij = (aij,θij)
T ∈

R(p+1), we propose the following one-factor design

φij = αi + eij, (4.7)

where {αi} are i.i.d. N(µ,Σg) representing the father effects, {eij} are i.i.d. N(0,Σe)

indicating the environment effects and the genetic contribution of the random chosen
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mother. We also assume {αi} are independent of {eij}. Then

yij|(αi, eij) ∼ N(f̃(φij), σ
2Im), (4.8)

where

yij =



yij1

yij2
...

yijm


, f̃(φij) =



aijf(vθij(tij1))

aijf(vθij(tij2))

...

aijf(vθij(tijm))}


.

Denote p(yi·) = p(yi1, · · · ,yiJ). Since subjects from different families are indepen-

dent, the log-likelihood function is

l =
I∑
i=1

log p(yi·).

Under all assumptions, {yij} are identically distributed and they are conditionally

independent given (αi, eij). Therefore, the component p(yi·) in l is

p(yi·) =

∫ { J∏
j=1

p(yij|αi, eij)

}{
J∏
j=1

p(eij)

}
p(αi) d(αi, ei1, · · · , eiJ). (4.9)

Similar to Section 4.2, the maximum likelihood estimators of µ, Σg, Σe, σ
2 and d

can be obtained by taking the partial derivatives of l with respect to the parameters

and setting them equal to zero, from which we obtain:

µ̂ =
1

I

I∑
i=1

E{αi|yi·},

Σ̂g =
1

I

I∑
i=1

E{(αi − µ)(αi − µ)T
∣∣yi·},

Σ̂e =
1

n

I∑
i=1

E

{
J∑
j=1

eije
T
ij

∣∣∣yi·
}
,
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σ̂2 =
1

N

I∑
i=1

E

{
J∑
j=1

[yij − f̃(φij)]
T [yij − f̃(φij)]

∣∣yi·
}
,

d̂ =

[
I∑
i=1

E

{
J∑
j=1

a2ij

m∑
k=1

B(tijk,θij)B
T (tijk,θij)

∣∣yi·
}]−1

×

[
I∑
i=1

E

{
J∑
j=1

aij

m∑
k=1

B(tijk,θij)yijk
∣∣yi·
}]

.

Based on the model assumptions, {yi·} are independently and identically dis-

tributed from the following distribution

p(yi·) =

∫
p(yi·|αi, ei·)p(αi)p(ei·) d(αi, ei·)

=

∫
(2πσ2)−Jm/2 exp

{
− 1

2σ2

[
yi· − f̃(αi, ei·)

]T [
yi· − f̃(αi, ei·)

]}
× (2π)−1/2|Σg|−1/2 exp

{
−1

2
(αi − µ)TΣ−1g (αi − µ)

}
× (2π)−J(p+1)/2|Σe|−J/2 exp

{
−1

2
eTi· (IJ ⊗Σe)

−1ei·

}
d(αi, ei·),

where ei· = (ei1, · · · , eiJ) and f̃(αi, ei·) is the column vector containing the responses

observed at all time grids of subjects in family i. Let γ and λ be the row vectors

containing the unique elements of the covariance matrices Σg and Σe, respectively.

Then, define

η = (µT ,γ,λ, σ2)

as the unknown parameter vector of the model. Similar to Section 4.1, the consistency

of the maximum likelihood estimator η̂ can be shown by verifying the assumptions

in Wald (1949), which are the same for the one-factor four-parameter model and the

one-factor general model except for the model identifiability. Thus, it suffices to prove

the Assumption 7 for the one-factor general model.

Assumption 7. If θ1 is a parameter point different from the true parameter point

θ0, then F (x, θ1) 6= F (x, θ0) for at least one value of x.
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Proof. Again, we show the identifiability directly on the models, which implies the

identifiability of the distribution. Recall that, for the jth subject of father i, the

one-factor general model is

yij(t) = aijf(vij(t)) + εij(t), (4.10)

where f is the common shape function, {vij(t)} are the inverse functions of the

warping functions {wij(t)}. For identifiability, we assume that aij 6= 0, ā = 1, w̄(t) = t

for all t, and f is piece-wise monotone without flat parts. Since E{εij(t)} = 0, we

have that εij(t) = yij(t) − E{yij(t)}, so there is no ambiguity about the error term.

Suppose that E{yij(t)} = aijf{vij(t)} = a∗ijf
∗{v∗ij(t)} for all i, j. Then we have

f(t) =
a∗ij
aij
f ∗[v∗ij{wij(t)}],

for all t and for all i, j. Since the left hand side does not depend on i, j, we have that

a∗ij/aij = c for all i, j and some constant c, and that v∗ij{wij(t)} = g(t) for all i, j and

some function g because of the piece-wise monotonicity of f ∗. Then wij(t) = w∗ij{g(t)}

for all i, j, and by assumption we have w̄(t) = w̄∗(t) = t, thus g(t) = t. Therefore,

vij = v∗ij for all i, j and the warping functions are identifiable. We also have a∗ij = caij

for all i, j, and the assumption ā∗ = ā = 1 implies that c = 1; then aij = a∗ij for all

i, j, so the scaling parameters are also identifiable. The identifiability of the scaling

parameters and the warping functions implies that f = f ∗, thus model (4.10) is

identifiable.

The proof of the asymptotic normality of η̂ for I → ∞ and J fixed is exactly

the same as that of the four-parameter model by verifying the sufficient conditions of

Huber (1967). Thus, we have

√
I(η̂ − η)

D→ N(0,F−1),
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where F = E[{ ∂
∂η

log p(yi·)}{ ∂∂η log p(yi·)}T ] is the Fisher Information Matrix for

the parameter vector η. We can calculate the estimates of F by

F̂ =
1

I

I∑
i=1

{
∂

∂η
log p̂(yi·)

}{
∂

∂η
log p̂(yi·)

}T
,

where p̂ means that η is replaced by η̂ everywhere.
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Chapter 5

Simulations

In this chapter we study the finite-sample behavior of the estimators in both the

one-factor and the two-factor four-parameter models via simulations. The one-factor

model given by (3.8) ignores the mother factor from the genetic effects; while the

two-factor model given by (3.4) and (3.5) accounts for both the father and mother

effects using the additive genetic relationship matrix. In this dissertation, we only

considered the relationship of half- and full-siblings in the simulated data. More

complex relationship structure can be easily captured by the corresponding additive

genetic relationship matrix.

5.1 One-factor four-parameter model

We generated balanced data for the one-factor four-parameter model given by (3.8)

with various number of fathers I = 20, 50, 100 and a fixed number of descendants

J = 10 per father. The shape function was f(t) = [16 + 2(t − 7)]1(t ≤ 7) + [16 −

0.2(t − 7)]1(t > 7). The curve increases with a slope equal to 2 in the early phase,

and then decreases with speed 0.2 in the late phase. The father effects αi’s were i.i.d.

from N(µ,Σg) with µ = (2, 16,−0.2, 7)T and Σg = diag(0.53, 1.5, 0.12, 0.5). The eij’s

were i.i.d. from N(0,Σe) with Σe = diag(0.33, 0.33, 0.33, 0.33). The variance of the
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random errors σ2 was set to be 0.12.

For each descendant j of the ith father, we computed its responses with the

simulated parameter vector φij = αi + eij on equally spaced time grid of m = 6

and m = 15 points in [2, 12] respectively. Each scenario was replicated 300 times.

For each simulated data set, we computed the maximum likelihood estimators of the

proposed four-parameter model derived in Section 3.3. In the estimation procedure,

we used c = 2 in the transition function trn(x) = ecx/(1 + ecx). As measures of

performance we used the bias, the standard deviation and the root mean square error,

defined as follows: for ξ ∈ Rp, and ξ̂ is the estimator, then bias(ξ̂) = ‖E(ξ̂) − ξ‖,

sd(ξ̂) = E{‖ξ̂ − E(ξ̂)‖2}1/2, and rmse(ξ̂) = {bias2(ξ̂) + sd2(ξ̂)}1/2. The estimation

errors for each scenario are reported in Table 5.1.

Table 5.1: Simulation Results. Bias, standard deviation and root mean square error for
estimators of one-factor four-parameter model.

m=6
I=20 I=50 I=100

bias sd rmse bias sd rmse bias sd rmse
µ̂ 0.0090 0.3349 0.3439 0.0157 0.2066 0.2223 0.0147 0.1514 0.1661

Σ̂g 0.0594 0.5036 0.5630 0.0266 0.3296 0.3562 0.0317 0.2176 0.2493

Σ̂e 0.0063 0.0078 0.0141 0.0051 0.0046 0.0097 0.0050 0.0023 0.0072
m=15

I=20 I=50 I=100
bias sd rmse bias sd rmse bias sd rmse

µ̂ 0.0064 0.3359 0.3422 0.0058 0.2142 0.2200 0.0043 0.1556 0.1599

Σ̂g 0.0676 0.4766 0.5441 0.0594 0.3065 0.3659 0.0307 0.2208 0.2515

Σ̂e 0.0047 0.0058 0.0104 0.0049 0.0033 0.0082 0.0050 0.0023 0.0074

As we see from Table 5.1, the standard deviation and the root mean square error

decrease as I becomes larger, which is to be expected. Besides, the estimation errors

from data sampled on 6 points are almost identical as those from 15 time points. This

implies, the proposed model can provide good estimation even with few observations

on each subject.
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5.2 Two-factor four-parameter model

In this section, we study the finite-sample behavior of the estimators in the two-factor

four-parameter model defined by (3.4) and (3.5). The structure of each pedigree

was designed as follows: there were J different mothers nested within each father

i (i = 1, · · · , I), and for each pair of father and mother they had K descendants.

Moreover, all mothers associated with one father were different from those of another.

Therefore, there were n = I×J×K individuals in each simulated data set, and three

types of relationship exist between subjects: independent individuals, half-siblings,

and full-siblings. We then generated balanced data with various combinations of I,

J , and K.

The shape function was the same as that in the one-factor four-parameter model,

f(t) = [16+2(t−7)]1(t ≤ 7)+[16−0.2(t−7)]1(t > 7). In the two-factor model, both

the father and mother factors contribute to the genetic effects. The genetic effects

{gi} were normally distributed from N(µ,Σg) with µ = (2, 16,−0.2, 7)T and Σg =

diag(0.53, 1.5, 0.12, 0.5). Since {gi} were genetically correlated, they were generated

from g ∼ N(µ̃,A ⊗ Σg) with g = (gT1 , · · · , gTn )T and µ̃ = (µT , · · · ,µT )T . The

additive genetic relationship matrix A was calculated by the method discussed in

Section 2.5 using the identity information of all subjects. The environmental effects

{ei} were i.i.d. from N(0,Σe) with Σe = diag(0.33, 0.33, 0.33, 0.33). The variance of

the random errors σ2 was set to be 0.12.

We used I = 5, 10, J = 3, 5 and K = 5, 10, which produced eight possible com-

binations of I, J and K in total. Each scenario was replicated 300 times. For each

subject i, we computed its responses with the simulated parameter vector φi = gi+ei

on an equally spaced time grid of 6 points in [2, 12]. For each simulated data set,

we calculated the maximum likelihood estimators derived in Section 3.2, and the

estimation errors for each scenario are given in Table 5.2.

We observe from Table 5.2 that the standard deviation and root mean square error
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Table 5.2: Simulation Results. Bias, standard deviation and root mean square error for
estimators of two-factor four-parameter model.

I=5, J=3, K=5 I=5, J=3, K=10
bias sd rmse bias sd rmse

µ̂ 0.0078 0.4060 0.4137 0.0184 0.3850 0.4034

Σ̂g 0.0445 0.1315 0.1760 0.0421 0.0438 0.0859

Σ̂e 0.3061 0.4386 0.7447 0.2677 0.4203 0.6880

I=5, J=5, K=5 I=5, J=5, K=10
µ̂ 0.0240 0.3701 0.3941 0.0141 0.3575 0.3716

Σ̂g 0.0324 0.0863 0.1187 0.0434 0.0428 0.0862

Σ̂e 0.2395 0.4095 0.6490 0.2568 0.3710 0.6279

I=10, J=3, K=5 I=10, J=3, K=10
µ̂ 0.0065 0.2797 0.2862 0.0248 0.2688 0.2936

Σ̂g 0.0349 0.0710 0.1059 0.0455 0.0370 0.0825

Σ̂e 0.1923 0.3687 0.5609 0.2077 0.3555 0.5632

I=10, J=5, K=5 I=10, J=5, K=10
µ̂ 0.0090 0.2518 0.2608 0.0109 0.2656 0.2765

Σ̂g 0.0410 0.0491 0.0901 0.0493 0.0253 0.0746

Σ̂e 0.1595 0.3303 0.4898 0.1031 0.2919 0.3950

decrease as I, J and K increase. For the estimates of µ, the contribution of I to the

improvement is relatively larger than those of J and K. This is sensible because the

overall mean is largely driven by the genetic factor of different families. For relatively

small values of I and J (I = 5, J = 3), the improvement of the root mean square

error of the estimates of Σg is more from the increase of K; while the improvement of

using large K is getting smaller when I and J become larger. This implies it would

be better to have more information that can reflect the genetic correlation between

subjects by using more fathers and more mothers. For the estimates of Σe, increasing

the number of I has more effects in the improvement of the standard error and the

root mean square error than those given by increasing J and K. Therefore, taking

all into account, we would recommend to use a relatively large number of families I

to obtain better estimates of the parameters.
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Chapter 6

Example: Flour-beetle growth data

In this chapter we apply the two-factor four-parameter model to the flour-beetle

growth data. The whole data set consists of 1124 insects, representing 134 full-sib

families nested with 29 half-sib families. The number of mother nested within each

father is between 3 and 6. The number of descendants of each pair of father and

mother varies between 1 and 10, with a median of 8. The data structure is illustrated

in Table 6.1.

Father ID Mother ID # of Descendants
1 1 5
1 2 3
1 3 5
1 4 9
1 5 9
1 6 8
2 7 3
2 8 7
2 9 5
2 10 1
...

...
...

Table 6.1: Beetle-growth data structure.

In general, there are four phases in the life cycle of flour-beetles: egg, larva, pupa,

and adult. The flour-beetle growth data are collected from the day of egg hatching
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up to the day of eclosion from pupa phase. For each flour-beetle, its body mass

was measured about every 3 days in the early phase of the growth curve and more

frequently, usually every day, in the late phase. Thus, there are 5 to 13 measurements

per beetle. For better visualization, we only plotted part of the raw data and the

log-transformed data and they are displayed in Figure 6.1.

Figure 6.1: Beetle-growth curves. (a) Raw mass trajectories; (b) log-mass trajectories.

As we can see from Figure 6.1, both the starting and end points of curves are

irregular and the timing of beetles reaching pupation period varies from one to an-

other. The loss of body mass from larva to pupa is because the beetle stops eating

and starts searching for a place to pupate. In addition, different beetles have different

birth masses and growth rates. All these physical traits have a high impact on the

individual fitness, including mating probability, mating success, ovariole number and

fecundity (Irwin and Carter, 2013), and the genetic factor contained in these physical

traits represents plenty of useful information in the development and evolution of the

flour-beetles. Figure 6.2 exhibits the variation of these traits between different fam-

ilies: the main difference is on the birth mass, the maximum mass, and the turning

point; while the growth rates before and after the turning points seem to vary less.

We apply the four-parameter shape-invariant model (3.3) to the flour-beetle growth
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Figure 6.2: Beetle-growth trajectories (log-mass) from two different families.

data. The approximate maximum likelihood estimates are:

µ̂ = (0.3569, 5.6444,−0.0465, 14.2167),

Σ̂g =



0.0001 0.0009 −0.0004 −0.0048

0.0135 −0.0048 −0.0513

0.0024 0.0247

0.2756


,

Σ̂e =



0.0000 0.0000 0.0001 −0.0020

0.0001 0.0001 −0.0030

0.0002 −0.0046

0.1349


,

σ̂2 = 0.0161,

All the parameters in φi are highly correlated, this is because they uniquely define



63

the piece-wise linear structure of the two growth modes. As expected, the genetic

effect accounts more in the variances of the four parameters than the environmental

effect. The location of the turning point has much larger variance than the peck body

mass and the growth rates before and after the turning point, which is consistent as

we saw from Figures 6.1 (b). It implies that the starting time of the pupation period

is affected more by the genetic effect, and the larvae tend to have a target peak

body mass before starting to pupate. This result may help the biologists perform

selection for further investigation. The fitted curves f̂ij(t) of the random chosen

Figure 6.3: Fitted flour-beetle growth trajectories. (a) Fitted curves using time grids of
the raw data; (b) Fitted curves using common and finer time grids.

sample are shown in Figure 6.3 which demonstrates the overall performance of this

model. Moreover, as illustrated in Figure 6.4, the estimate of the turning point by our

four-parameter model is relatively smaller than what the curves present. The reason

is that we use a piece-wise linear shape function and the nature of the piece-wise

linear functions tend to locate a earlier time of the turning point.

For comparison purpose, we also applied the four-parameter model using c = 4 in

the transition function. Compared to the results from c = 2, the changes of estimates

for parameters in µ and σ2 is relatively small with the most relative change 8.53%

given by φ̂i3 (the estimates of the growth rate after the turning point). However, the
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Figure 6.4: Fitted trajectories of beetles of two different families: fitted growth trajectories
(solid line), growth trajectories of raw data (circle and star).

relative changes in the estimates of Σg and Σe is larger with the largest change of

23%. The reason is that, for the parameters that are not significantly different from

zero, using different values of c in the transition function always causes larger change

in the estimates (Morrell et al., 1995).
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Chapter 7

Conclusion

In this dissertation, we proposed shape-invariant models that can fit various kinds of

nonlinear relationship. They explicitly address the amplitude and phase variation and

make the unobservable genetic and environmental effects estimable. These models

are very flexible especially when the data structure is complex and the knowledge

of modeling building is limited. The four-parameter shape-invariant model is based

on the flour-beetle growth data, but it can be generalized to other curve patterns.

For the transition function, it is helpful to plot the sample data to see if the change

around the turning points is sharp or relative slow to adjust the value of c. From

our experience, c = 2 is usually a good choice. The general self modeling regression

provides a more sophisticated way for the common shape function. To overcome

the differentiability problem, one can use differentiable families for the time-warping

functions. In the simulation, we studied the correlation of full and half siblings. One

can simply modify the additive genetic relationship matrix to accommodate other

complex correlation structures.

Estimation of these shape-invariant models can be conducted using Laplace’s ap-

proximation. We only implemented the four-parameter model in Matlab, and the

implementation of the general model is of future interest. One issue of this procedure
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is the long computational time when the sample size becomes large. Possible solutions

are using the basic programming languages, like C/C++ or Fortran, or developing

other efficient approximation techniques. For the model diagnostics, one can perform

the residual plots for the random errors and the environmental random effects. As

mentioned in Lindstrom (1995), to check the assumption that all the individuals are

generated from the common shape function, one can plot the shifted/scaled response

variable versus the shifted/scaled covariates. If the model fits the data, the plot for

all individuals will lie approximately along a single curve indicative of the common

shape function.
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Appendix

This appendix covers the MATLAB routines used in simulations and case study of

the four-parameter shape invariant model of this dissertation.

Main function:

function out = FourParaModel(indivID, t, y, invA, para0, rd0)

% indivID (N X 1) vector of IDs of all subjects

% t (N X 1) vector of time grids of all subjects

% y (N X 1) vector of masses of all subjects

% invA (n X n) inverse of the genetic relationship matrix

% para0 struct a struct consists of the initial values of the

% parameters

% rd0 (8n X 1) initial values of genetic and environment effects

ID = unique(indivID);

n = length(ID);

N = length(indivID);

cmu = 1/(ones(1,n)*invA*ones(n,1));

cnt = 1;itermax = 20;

err = 1;tol = 1e-3;

convflag = 0;

while err>=tol && cnt<=itermax

invGam = inv(para0.Gam);
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invLam = inv(para0.Lam);

[rd,exitflag,fv] = minObj(invA, invGam, invLam, para0.mu,...

para0.s2, indivID, t, y, rd0);

G = reshape(rd(1:4*n),4,n);

V = bsxfun(@minus,G,para0.mu);

E = reshape(rd(4*n+1:end),4,n);

para.Lam = zeros(4);

para.s2 = 0;

for k = 1:n

idx1 = 4*(k-1)+1:4*k;

idx2 = 4*(n+k-1)+1:4*(n+k);

difmass = y(indivID==ID(k))-h(t(indivID==ID(k)),...

rd(idx1)+rd(idx2));

para.s2 = para.s2 + (difmass’*difmass);

end

para.s2 = para.s2/N;

para.Lam = (E*E’)/n;

para.Gam = (V*invA*V’)/n;

para.mu = cmu*(G*invA*ones(n,1));

erro.s2 = para.s2-para0.s2;

erro.mu = para.mu-para0.mu;

erro.Gam = para.Gam-para0.Gam;

erro.Lam = para.Lam-para0.Lam;

para0 = para;

rd0 = rd;

err = max([max(abs(erro.mu)./abs(para.mu)),...

abs(erro.s2)/abs(para.s2),...
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max(abs(erro.Gam)./abs(para.Gam)),...

max(abs(erro.Lam)./abs(para.Lam))]);

fprintf(’\nLaplace Iteration %f with Error %f ’, cnt, err);

cnt = cnt + 1;

end

if err<tol

convflag = 1;

end

out.para = para0;

out.rd = rd0;

out.convflag = convflag;

end

Auxiliary functions:

function [para,exitflag,fval] = minObj(invA, invGam, invLam, mu,...

s2, indivID, t, y, para0)

% find the minimum point of the objective function

maxI = 1000*length(para0);

options = optimoptions(@fminunc,’Algorithm’,’quasi-newton’,’GradObj’,...

’on’,’TolFun’,0.01,’MaxIter’,maxI,’display’,’off’);

[para,fval,exitflag] = fminunc(@(para)gradObj(invA, invGam, invLam,...

mu, s2, indivID, t, y, para),para0,options);

end

function [fval,grad,hess] = gradObj(invA, invGam, invLam, mu, s2,...

indivID, t, y, rd)

% find the gradient of the objective function

% D (4n x 8n) Design matrix
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% t (N x 1) Vector of time grids

% rd (8n x 1) Vector of random effects

ID = unique(indivID);

n = length(ID);

N = length(t);

D = [eye(4*n),eye(4*n)];

rdnew = D*rd;

bm = zeros(size(rd));

bm(1:4*n) = kron(ones(n,1),mu);

invSig = [kron(invA,invGam), zeros(4*n);

zeros(4*n),kron(eye(n),invLam)];

hy = zeros(size(y));

grdh = zeros(8*n,N);

cnt = 0;

for k = 1:n

tk = t(indivID==ID(k));

m = length(tk);

idx1 = 4*(k-1)+1:4*k;

idx2 = cnt+1:cnt+m;

grdh(idx1,idx2) = parh(tk,rdnew(idx1));

hy(idx2) = h(tk,rdnew(idx1));

cnt = cnt + m;

end

grdh(4*n+1:end,:) = grdh(1:4*n,:);

grad = -2*(grdh*(y-hy))/s2 + 2*invSig*(rd-bm);

hess = 2*(grad*grad’)/s2 + 2*invSig;

fval = (y-hy)’*(y-hy)/s2 + (rd-bm)’*invSig*(rd-bm);
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end

function ph = parh(t,p)

% calculate the partial derivative of h

% t is a scalar or vector

% p is a parameter vector

ph = zeros(4,length(t));

ph(1,:) = (t-p(4)).*trn(p(4)-t);

ph(2,:) = trn(p(4)-t)+trn(t-p(4));

ph(3,:) = (t-p(4)).*trn(t-p(4));

ph(4,:) = -p(1)*trn(p(4)-t)+ptrn(p(4)-t).*h1(t,p)-...

p(3)*trn(t-p(4))-ptrn(t-p(4)).*h2(t,p);

end

function y = h(t,p)

% calculate the response of the curve

% t is a scalar or vector

% p is a parameter vector

y = h1(t,p).*trn(p(4)-t) + h2(t,p).*trn(t-p(4));

end

function y = h1(t,p)

% the first piece of the curve

% t is a scalar or vector

% p is a parameter vector

y = p(2) + p(1)*(t-p(4));

end
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function y = h2(t,p)

% the second piece of the curve

% t is a scalar or vector

% p is a parameter vector

y = p(2) + p(3)*(t-p(4));

end

function y = trn(x)

% calculate the transition function

% x is a scalar or vector

c = 2;

y = exp(c*x)./(1+exp(c*x));

end

function py = ptrn(x)

% find the partial derivative of the transition function

% x is a scalar or vector

c = 2;

py = c*exp(c*x)./(1+exp(c*x)).^2;

end
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