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ABSTRACT 

I. PALLADIUM (0)-CATALYZED ASYMMETRIC REARRANGEMENT

OF ALLYL ENOL ETHER FOR THE SYNTHESIS OF α -ARYL

QUATERNARY CARBON CENTER. 

II. SYNTHESIS OF CHIRAL TRYPTOPHAN ANALOGS AND

STUDIES TOWARDS SYNTHESIS OF TRYPROSTATIN A AND B.

by 

Nazim Uddin 

The University of Wisconsin - Milwaukee, 2015 

Under the Supervision of Professor M. Mahmun Hossain 

The development of efficient catalytic enantioselective synthesis of all carbon 

quaternary centers is a significant challenge in chemical synthesis due to the 

difficulties of carbon-carbon bond formation at quaternary center.  Using phase 

transfer catalyst we attempted to create quaternary carbon center via direct C-

alkylation of hydroxyarylacrylates, instead we obtained O-alkylated acrylates. We 

succeeded in C-alkylation which involves an indirect method via the O-alkylation 

of 3-hydroxy aryl acrylates and a subsequent [3, 3] sigmatropic rearrangement 

(Claisen rearrangement). The O-alkylated products are obtained in yields ranging 

from 65-85%, and the corresponding Claisen rearrangement products in yields 

ranging from 55-90%. Typically Pd(II) catalysts are used for this type of 

transformation. But several attempts at accomplishing an asymmetric Claisen 

rearrangement using metal Lewis acid catalysis failed due to insufficient activation 

of the Claisen substrate. Herein, we report the creation of all carbon stereocenters 
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starting from 3-hydroxyarylacrylates modified allyl enol ether rearrangement 

reaction. We believe this is the first example of allyl enol ether rearrangement 

employing Pd(0) catalysts. The rearrangement reaction analogs takes place in 

excellent yields ranging from 80-95% and enantioselectivity ranging from 50-90% 

ee.  

Asymmetric synthesis of indole alkaloids is a major area in organic synthesis. 

Synthesis of chiral Tryptophans and its unnatural analogs has immense 

importance as they are building blocks for many natural products. Herein we 

describe the enantiospecific synthesis of ring-A substituted tryptophan derivatives 

from commercially available gramines using chiral phase transfer conditions. This 

one-pot reaction avoids protecting/de-protecting the indolylic nitrogen of gramine 

by choosing a chemoselective quaternization reagent, 4-(trifluoromethoxy)benzyl 

bromide  to produce an electrophilic salt intermediate, which is subsequently 

alkylated in good yield and high %ee. In an application of chiral tryptophans we 

attempted to synthesize tryprostatins. Tryprostatins are potent cancer drug, 

tryptostatin A reverses the resistance of cancer cells against antitumor drugs by 

arresting cell cycle progression at the G2/M phase. We have been able to make 

tryprostatin B using our proposed synthesis scheme, where one of the key 

intermediate is C-2 alkylated chiral tryptophan. Several challenges in the synthesis 

protocol and optimization of the chiral phase transfer catalyzed reaction are 

described.  
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I. PALLADIUM (0)-CATALYZED ASYMMETRIC REARRANGEMENT

OF ALLYL ENOL ETHER FOR THE SYNTHESIS OF α -ARYL 

QUATERNARY CARBON CENTER. 

CHAPTER 1. CLAISEN REARRANGEMENT AS A ROUTE TO 

QUATERNARY STEREOCENTERS. 

 1.1.1. Introduction 

The [3,3] sigmatropic rearrangement of allyl enol ethers for the formation γ,δ-

enones  is known as the Claisen rearrangement.1 This reaction was discovered 

over 100 years ago 2 and it has proven to be a powerful tool in the arsenal of the 

organic chemist. The Claisen reaction is mechanistically analogous to the Cope 

rearrangement. The Claisen Rearrangement may be viewed as the oxa-variant of 

the Cope Rearrangement. Both the Claisen and Cope rearrangements are known 

procedures to create defined tertiary and quaternary carbon centers as well as 

carbon-heteroatom bonds. Between these two reaction types, the Claisen 

rearrangement is the most used [3,3]-sigmatropic rearrangement because of the 

facile synthesis of the allyl enol ether system. Due to the smooth and frequently 

irreversible product formation this reaction is widely applicable for the synthesis of 

numerous organic intermediates. The [3,3] sigmatropic rearrangement is 

characterized by a highly ordered transition state where the repulsive interactions 

are minimized (Scheme 1). The reaction proceeds preferably via a chair transition 

state.  
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Scheme 1. Transition state for Claisen rearrangement. 

As a result of the highly ordered nature of the six membered transition state, 

predictions are possible on the stereochemical outcome of the reaction based on 

the stereochemistry at the double bond. In general, chiral, enantiomerically 

enriched starting materials give products of high optical purity. 

Over the years the usefulness of the Claisen rearrangement has been realized and 

the reaction has drawn the attention of several research groups, which has been 

reflected in the large numbers of papers published in the literature on this reaction.3 

Because the product is a carbonyl compound, the equilibrium is usually favorable 

for product formation. 

Most of the uncatalyzed Claisen Rearrangement reactions described to date 

require temperatures of > 100 °C. The observation that electron withdrawing 

groups at C-1 of the vinyl moiety exert a positive influence on the reaction rate and 

the yield has led to the development of the following variations: 

Ireland Claisen Rearrangement: This moderate variation of the Claisen 

rearrangement utilizes the allyl ester of a carboxylic acid instead of an allyl enol 

ether (Scheme 2). The ester is changed to its silyl-stabilized enolate, which 

rearranges at temperatures below 100 °C. The direct product of the 
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rearrangement, a carboxylic acid silyl ester, cannot be separated and is hydrolyzed 

during workup. The Ireland-Claisen Rearrangement thus presents ready access to 

chain-extended carboxylic acids.  

O

O

1. LDA, -78 oC

2. Me3SiCl

O

OSiMe3

O

OSiMe3

HO

O

Scheme 2. Ireland-Claisen rearrangement. 

The Eschenmoser–Claisen rearrangement : This reaction proceeds from an allylic 

alcohol to a γ,δ-unsaturated amide, and was developed by Albert Eschenmoser in 

1964 (Scheme 3). 

OH

OMe

NR2

OMe

-2 MeOH

O

NR2

R2N

O

Scheme 3. Eschenmoser–Claisen rearrangement. 

 Johnson–Claisen rearrangement:  is the reaction of an allylic alcohol with an 

orthoester containing a deprotonatable alpha carbon (e.g. triethyl orthoacetate) to 

give an γ,δ-unsaturated ester (Scheme 3). 



4 
 

 
 

OH

ORRO

OR

- 2 ROH

O

OR

RO

O

 

Scheme 4. Johnson-Claisen rearrangement. 

1.1.2. Synthesis of allyl enol ethers 

In the literature there have been several efficient procedures developed to 

synthesize the required allyl enol ethers have been developed such as the enol 

ether Claisen, the Johnson orthoester Claisen, and the Ireland silyl ketene acetal 

Claisen. The reactants for the Claisen rearrangement can be made from allylic 

alcohols by mercuric ion-catalyzed exchange with ethyl vinyl ether.4 The allyl vinyl 

ether does not necessarily have to be isolated but is usually prepared under 

conditions which lead to its rearrangement. The simplest of all Claisen 

rearrangements, the conversion of allyl enol ether to 4-pentenal, exemplifies this 

process (Scheme 5). 

 

 

Scheme 5. In situ formation of allyl enol ether followed by Claisen rearrangement. 
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Acid catalyzed cleavage can also be used to prepare the vinyl ethers (Scheme 6): 

 

 

Scheme 6. Preparation of allyl enol ethers through acid catalyzed cleavage. 

 

Allyl enol ethers can also be generated by thermal elimination reactions. For 

instance, base-catalyzed conjugate addition of allyl alcohols to phenyl vinyl sulfone 

generates 2-(phenylsulfinyl)ethyl ethers, which can undergo elimination at 200°C, 

and it is at this temperature that the [3,3] rearrangement proceeds. Allyl enol ethers 

have also been prepared by Wittig reactions using ylides generated from 

allyloxymethylphosphonium salts (Scheme 7). 

 

 

 

Scheme 7. Preparation of allyl enol ethers through the Wittig reaction. 
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1.1.3. Asymmetric Claisen rearrangement 

In order to make chiral Claisen rearrangement products using an asymmetric route 

there are several possibilities. If no external asymmetric induction is applied, the 

enantiomers can be separated via resolution but this method suffers from the 

disadvantage of losing half of the unwanted enantiomer, which is highly 

undesirable. The first option is to transfer chirality from either the allylic or vinylic 

fragment of the allyl enol ether to the chiral carbon through a complete [1,3]-

chirality transfer (remote stereocontrol), although other positions in the allyl enol 

ether substrate have also be used to transfer the chirality. Alternatively, more than 

one chiral center can be used to transfer the stereochemical information. The chiral 

allylic fragment can be obtained by such well known processes like the Sharpless 

asymmetric epoxidation5, enantioselective reduction of carbonyl compounds6and 

enzymatic processes.7 In the diastereoselective reaction proceeding through 

remote stereocontrol the chiral center is usually present present to position one 

and six (Scheme 8). 

 

Scheme 8. Diastereoselective reaction proceeding through remote stereocontrol. 
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Secondly, the asymmetric induction can be achieved through the use of a chiral 

auxiliary. A survey of literature reveals the prevalence of the chiral auxiliary in three 

main positions of the allyl enol ether (Scheme 9).  

 

Scheme 9. Use of chiral auxiliary for Asymmetric induction in Claisen 

rearrangement reaction. 

Thirdly, chiral catalyst can be used to achieve asymmetric induction. Although 

there are many reports in the literature for examples that use stoichiometric 

quantities of catalyst, the use of catalytic quantities has thus far not found 

extensive application and is limited to particular types of substrate class. In the 

former case, where stoichiometric amounts are needed has usually been used in 

the ester and amide enolate Claisen rearrangement. The ester or amide substrate 

is reacted with a strong base at low temperature, forming the allyl enol ether 

Claisen substrate in situ. Next, a Lewis acid together with the corresponding chiral 

ligand is added which coordinates with the oxygen of the in situ formed enolate 

(Scheme 10). One of the limitation of this reaction is an equimolar quantities of 

chiral Lewis acid complexes need to be added, which is necessary y because the 

metal complex binds more strongly to the carbonyl product than to the starting 
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material. Therefore, the reason for the scarcity of examples in the literature for 

reaction that employ catalytic quantities of Lewis acid.  

 

Scheme 10. Lewis acid catalyzed ester enolate Claisen rearrangement. 

 

1.1.4. Asymmetric catalytic Claisen rearrangement 

Overman et al.8 reported the first examples of a truly catalytic reaction of the 

conversion of allyl amidates into the corresponding carbamates employing chiral 

palladium catalysts. A series of chiral oxazoline substituted ligands were tested by 

Uozumi and Hayashi in the palladium (II)-catalyzed rearrangement of a N-(4-

(trifluoromethyl) phenyl)i substituted allyl imidate (Scheme11). 

 

Scheme11. First example of catalytic conversion of allyl amidates to carbamates. 
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Achiral Al (III) Lewis acids are able to accelerate the aliphatic Claisen 

rearrangement, however, their applicability as catalysts is prevented by product 

inhibition.10 Al (III), B (III), and Mg (II) chiral Lewis acid complexes have been 

efficient for the asymmetric reaction but have not found applicability for a catalytic 

version of the reaction.11 Interestingly, quinine was used in more than 

stoichiometric amounts as a chiral base to effect an asymmetric Ireland-Claisen 

rearrangement (Scheme 12).12 

A small number of catalytic achiral metal catalysts that speed up the Claisen 

rearrangement have been reported, for example Pd(II) complexes,13 lanthanide 

(III) complexes 14and TiCl415. In both metal promoted and metal catalyzed Claisen 

rearrangement reaction, substituents on allyl enol ether have a dramatic effect on 

the rate of rearrangement. Lewis acid catalysts are substrate specific, if one metal 

Lewis acid is found to catalyze the Claisen rearrangement of a specific allyl enol 

ether substrate, this does not make it suitable as a catalyst for a varied range of 

allyl enol ether substrates. Consequently, substrate structure, the nature of the 

Lewis acid and associated ligands along with the structure of the product have to 

be adjusted carefully to achieve effective metal catalysis and avoid side reactions 

such as ionization 16 and/or product inhibition of the catalyst. 
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Scheme 12. Asymmetric Claisen rearrangements by Al (III), Mg (II), quinine and 

Boron catalyst. 
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In 2001 Hiersemann et al. reported a catalytic version of the Claisen 

rearrangement of simple allyl enol ether, the findings that several metal triflates, 

such as Cu(OTf)2, Lanthanide(OTf)3 and Sc(OTf)3, catalyzed the Claisen 

rearrangement of 2-alkoxycarbonyl-substituted allyl enol ethers.17 The asymmetric 

version of the similar transformation catalyzed by Cu2+ complexes followed soon 

afterwards. 18 The recognition of Cu(OTf)2 as an capable catalyst led to the report 

of the very first asymmetric catalytic Claisen rearrangement using the well 

celebrated chiral copper(II) bis(oxazolines) (Figure13).  

N
Cu

N

OO

TfO OTfR R

R = Ph 1
R = t-Bu 2

R = Ph 3
R = t-Bu 4

N
Cu

N

OO

TfO OTfR R

2

2 SbF6

 

Figure 1 . Chiral copper (II) bis(oxazolines) catalysts for asymmetric Claisen 

rearrangement. 

By means of this method enantiomeric excess values were reported in the range 

80-90%. Additional studies into the substrate scope of the Claisen rearrangement 

with the aforesaid 2-alkoxycarbonyl-substituted allyl  enol ethers led to the 

discovery that the known bench stable [Cu{(S,S)-t-Bu-box}](H2O)(SbF6)2 (Figure 1) 

complex combines efficient enantioface-differentiating capacity and high Lewis 

acidity, proving to be a powerful catalyst for the asymmetric Claisen rearrangement 

(Scheme 13).  
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O

i-PrO O

TPSO

TPS = t-BuPh2Si

cat. 4 (10 mol%) 
4 A    MS, CH2Cl2, rt, 1.5 h

98%, 99% ee O

O

OiPr

TPSO

 

Scheme 13. Lewis acid catalyzed rearrangement with [Cu{(S,S)-t-Bu-

box}](H2O)(SbF6)2 complex . 

Further expansion of this work led to a report of the catalytic asymmetric Claisen 

rearrangement of 2-alkoxycarbonyl-substituted allyl enol ethers containing two 

stereogenic double bonds (Scheme 14).18b The results clearly demonstrated a 

remarkable influence of the configuration of the double bond of the allyl enol ether 

and the nature of the catalyst on the stereoselectivity of the rearrangement. 

Generally, use of an allyl enol ether containing an E-configured allylic double bond 

frequently provides decreased diastereoselectivities 18b.  

O

i-PrO O

R1

R6

cat. 4 (10 mol%)
4 A MS, CH2Cl2, rt

O

O

OiPr

R

O

O

OiPr

R

R

yield: 97-99%
ee: 74-99%

R1 = H, OBn, OTPS, CH2OBn

R6 = Et, OBn, OTPS  

Scheme 14. Catalytic asymmetric Claisen rearrangement with catalyst 4. 
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From the outcome of earlier studies on the thermal Claisen rearrangement, the 

authors propose the catalytic cycle for the Cu(box)-complex catalyzed reaction 

(Scheme 15) proceeds via a highly polarized pericyclic transition state of 

considerably lower activation energy (Figure 2). 

O

ORO

R

R

N

Cu

N

O

Ot-Bu

t-Bu

2+

Cu(box)2+

O

RO

R1

O

R

O

RO

R1

O

R

Cu(box)

2+

O

RO

R1

O

R

Cu(box)

2+

O

RO

R1

O

R

Cu(box)

2+

 

 

Scheme 15. Proposed catalytic cycle for the (S,S)-4-catalyzed Claisen 

rearrangement. 
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Figure 2. Transition state for the (S,S)-4 catalyzed Claisen rearrangement. 

 

In 2008 the Jacobsen group detailed the first catalytic asymmetric Claisen 

rearrangement with a hydrogen-bond donor catalyst. 19 Guanidinium catalysts 

were ineffective for asymmetric induction, while high enantioselectivities were 

attained in the reaction carried out between 20oC and 40°C over a period of several 

days with a guanidinium BArF catalyst 5 (Scheme 16).Despite the fact that the 

guanidinium BArF catalyst 5 is virtually insoluble in the solvent, use of 

dichloromethane or benzene resulted in slightly reduced enantioselection, while 

no catalytic effect was noticed with ethereal solvents such as TBME or Et2O. 

Optimal rates and enantioselectivities for the reaction were found in n-hexanes. 
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MeO

O

R1

O

R2

R4

R3

catalyst 5 (20 mol %)

22-40 oC, 5-14 d
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MeO

O
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R3 R4

R2

up to 92% yield, 96 % ee

N
H

N
H

NH2
+

N PhNPh

BArF

BArF =
B

CF3

CF3 4

5  

Scheme 16. Catalytic Claisen rearrangement with chiral guanidinium catalyst. 

Simultaneously with the report by Jacobsen, the Kozlowski group 20 reported that 

allyloxy-indoles are a new class of substrates that permit catalytic yield. By using 

palladium complexes, they reported on the first asymmetric catalytic Meerwein-

Eschenmoser Claisen rearrangement, which engages the transformation of 2-

amino allyl enol ethers to γ,δ-unsaturated amides. The formation of the 

intermediate hemiaminal usually requires forcing conditions, making the reaction 

incompatible for asymmetric catalysis in normal cases. Despite the high activation 

energy typically required for dearomatization accompanying the rearrangement, 

indole containing Claisen subtrates were used for the reaction.  The substrates 

were suitable to catalysis probably due to the nucleophilic nature of the C-3 carbon 

of the indole ring (Scheme 17). The reaction was suggested to continue via a chair-

like transition state, with both the oxygen of the allyl enol ether and the carbonyl 

oxygen of the ester group binding to the Pd(II) catalyst (Figure 3). 
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Scheme17. Catalytic Meerwein-Eschenmoser Claisen rearrangement. 

 

 

Figure 3. Proposed transition state for the Meerwein-Eschenmoser Claisen 

rearrangement. 
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In 2012 Marisa Kozlowski et al 21reported the first asymmetric synthesis of allenyl 

oxindoles and spirooxindoles by the catalytic enantioselective Saucy-Marbet 

Claisen rearrangement, specifically, the transformation of propargyl ethers to 

afford β-substituted allenyl carbonyls (Scheme18). The reaction generates two 

classes of chiral oxindoles containing newly formed quaternary centers: allenyl 

compounds and spirocyclic lactones through a tandem rearrangement (Scheme 

19). The tandem reactions of silyl-substituted substrates allow fast assemblage of 

complex spirooxindoles, an essential class of biologically active structures in one 

procedure. The findings offer a promise for the general use of alkynyl enol ethers 

in catalytic, asymmetric rearrangement reactions, providing an alternative route to 

valuable allenes. 

N
H

CO2R1

1) NCS

NN MeMe

2) Cl3CCO2H

HO

R2

N
H

R1O2C

O

R2

L*Pd(SbF6)2

N
H

R1O2C

OR3
R3R3

88-98% ee
20 examples

R1 = Me, Et, Bn, CH2CF3

R2 = H, tBu, MIDA, Ar, TMS, TES, TBS, TIPS

R3 = H, 5-OMe, 7-OMe, 5-Br, 7-Me

R2

 

Scheme 18. Catalytic Saucy–Marbet Claisen rearrangement.  
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Scheme19. Pd(II) catalyzed tandem formation of a spirocyclic oxindole. 

1.2.1. Hydroxyarylacrylate as a prochiral carbon center. 

In Professor Hossain’s lab we have access to a very interesting molecule, e.g., 

Hydroxyarylacrylate 6 which can be synthesized from simple aldehyde in one step 

(Scheme 20) 22. This molecule furnished with three different functional groups that 

can be transformed into valuable intermediate molecules such as Indole 3-

carbaldehyde 23, bezofuran 24 or Ibuprofen 25 in one or two steps (Figure 4).   

R

O

+ N2CHCO2Et

10 mol% Lewis acid

or Bronsted acid

(HBF4.OEt2)

R

CO2Et

OH

Fe

OC

CO

O

BF4

6  

Scheme 20: BrÖnsted acid catalyzed formation of hydroxylarylacrylate from 

substituted benzaldehydes. 
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Figure 4. New compounds that were constructed from hydroxylarylacrylates. 

 

 

 Because of its enolic double bond hydroxyarylacrylates seems to be an attractive 

prochiral center, hence allowing for the possibility of asymmetric synthesis under 

phase transfer catalysis conditions (Scheme 21). 
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Scheme 21. Hypothetical Phase Transfer catalyzed synthesis of Quaternary 

center. 

However our initial approach for the construction of an α-aryl quaternary carbon 

starting from arylhydroxyacrylates involved direct alkylation of the enolate of 3 with 

an alkyl halide. Alkylation with bases such as solid or aqueous KOH gives 

exclusive O-alkylation (Scheme 22), whilst the attempted alkylation with solid or 

aqueous NaOH only gave a small amount of C-alkylated product (ca 20% with allyl 

iodide). We believe that O-alkylation is much more favored since the high degree 

of conjugation present in the acrylate 3, preserved in O-alkylation, is however 

disrupted in C-alkylation. We have screened various electrophiles for the reaction 

[allyl iodide, allyl bromide, ethyl iodide, 4-(trifluoromethoxy)benzyl bromide] and 

solvents (toluene, dichloromethane, THF); all reactions with KOH under any 

conditions provided exclusively the O-alkylated product. In the case of using 

NaOH, increasing the polarity of the solvent by using THF resulted in even lower 

amounts of C-alkylated product. An electrophile with a softer leaving group (allyl 

iodide instead of allyl bromide) resulted only in a slightly greater yield (by 5%) of 

C-alkylated product. 
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The allyl enol ether Claisen substrates can be made through a practical one-pot 

protocol (Scheme 22) whereby the in situ formed 3-hydroxy aryl acrylate is reacted 

with allyl bromide to provide the O-alkylated products in mostly good yields. 

 

Scheme 22 . One-pot synthesis of O-alkylated allyl enol ethers. 

 

1.2.2. Thermal Claisen rearrangement of allyl enol ethers derived from 

3-hydroxy aryl acrylates 

In our attempt to make direct C-alkylation of hydroxyarylacrylate we obtained 

predominantly O-alkylated product. However, we realized that the O-allyl enol 

ethers were suitable candidates for a Claisen rearrangement that would afford an 

indirect C-alkylation leading to the desired α-aryl quaternary carbon. (Scheme 23, 

Table 1).The O-alkylation of acrylates 3 was carried out in dichloromethane using 

allyl bromide under phase transfer catalysis conditions (using either Bu4NI or 

Bu4NBr) and aqueous or solid KOH as base. Reactions carried out in the absence 
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of a phase transfer catalyst resulted in very low yields of product.  The yield of C-

allylated products seems to be hindered by the presence of electron withdrawing 

substituents (Entries 3 and 5, Table 1). 26 

 

Scheme 23. Thermal Claisen rearrangement of O-alkylated substrates. 

Table 1. Formation of O-alkylated and C-alkylated products. 

Entry Ar Yield 7 (%) Yield 8 (%) 

1a,b C6H5 71 89 

2a,b 4-MeC6H4 80 85 

3a,b 2,4-Cl2C6H3 82 69 

4a,b 4-MeOC6H4 66 88 

5a,b 4-FC6H4 65 55 

6a,b 
5-Br-2-

MeOC6H3 
72 90 

7a,b 4-t-BuC6H4 84 91 
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1.3.1. Synthesis of quaternary carbon center by Claisen 

rearrangement 

   With the knowledge that allyl enol ethers derived from 3-hydroxyarylacrylates are 

possible precursors for the thermal Claisen rearrangement, we set out to 

investigate whether the catalytic asymmetric Claisen rearrangement was a viable 

procedure (Scheme 24).  

 

 

 

Scheme 24. Hypothetical asymmetric Claisen rearrangement of allyl enol ethers.  

1.3.2. Significance of quaternary stereocenters and asymmetric 

catalysis 

The creation of all carbon quaternary centers with enantiocontrol remains one of 

the most challenging and demanding topics in the organic synthesis of natural 

products. In the chemical sense the biological world can be regarded as a chiral 

world. Usually it happens in nature that one enantiomer shows biological activity 

whereas the other enantiomer does not. A large number of biologically active 

natural products contain quaternary carbon centers (Figure 5). Interest in 

asymmetric synthesis of these natural products in an optically active form is 
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reflected in the articles published recently. Due to their importance in 

pharmaceutical applications several new methods were developed for the 

construction of quaternary carbons. Recent reviews have also highlighted 

significant contributions in this research area. 27 Asymmetric synthesis of 

quaternary carbon center can be classified into two types, enantioselective and 

diastereoselective synthesis. Enantioselective reaction is carried out on an achiral 

molecule using an enantioselective reagent or catalyst. On the other hand, in a 

diastereoselective synthesis, chirality is transferred to a prochiral center of the 

same substrate. 

 

Figure 5. Natural products containing chiral quaternary carbon center.  
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1.3.3. General considerations in the formation of quaternary 

stereocenters via asymmetric catalysis 

Non-catalytic formation of quaternary stereo centers involves harsh reaction 

conditions such as high temperatures and long reaction times. For this reason 

stereoselectivity of a reaction is adversely affected, but metal catalysis or 

organocatalysis allows for much milder reaction conditions, such as low 

temperature and thereby offers improved stereoselectivity of a reaction.  Most 

reactions have some limitations in their substrate scope, in the case of asymmetric 

reactions this problem is most relevant 28,29. 

Minor changes in the substrates structure can lead to significant changes in 

stereoselectivity, the worst case scenario is loss of stereocontrol with the change 

in substrate structure. It is common to most of the asymmetrically catalyzed 

reactions that they suffer from these limitations on the “partner combinations”. 

Subtle changes in the structure of the catalyst may led to unexpected changes in 

stereoselectivity. Other factors such as choice of solvent and temperature also 

have an important effect on the stereoselectivity of a reaction. Therefore, in order 

to find an optimum reaction condition for better stereoselectivity and improved 

yield, extensive screening of reaction conditions has to be carried out. 

Occasionally asymmetric catalysis will lead to suitable results for only a few 

substrates, and specific reaction conditions may need to be found in other cases. 
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1.3.4. General reaction classes for formation of quaternary 

stereocenters. 

There are  two main classes of catalytic processes for the generation of quaternary 

stereocenters: via metal and Lewis acid catalysis or by organocatalysis. Lewis acid 

catalyzed asymmetric quaternary center formation reaction has been successfully 

achieved for the following reaction types: 1,3-dipolar [3+2] cycloadditions, the 

synthesis of β-lactams via overall [2+2] cycloadditions, cyclopropanations, Diels-

Alder reactions, Michael additions, the alkylation of tributyl tin enolates, Michael 

additions with hard nucleophiles, copper catalyzed SN2’ allylation, reactions with 

carbonyl and imine electrophiles, metal catalyzed diene and enyne cyclizations, 

rhodium catalyzed C-H insertions and Claisen rearrangements 28.  The reactions 

that take place through organometallic protocols such as oxidative addition-

reductive elimination processes are intramolecular Heck reactions, vinylation and 

α-arylation reactions of ketones and lactones, and of course allylic alkylation via 

palladium π-allyl complex intermediates 28. 

Literature survey reveals that the majority of reactions involving the synthesis of 

quaternary stereocenters involve cyclic systems. For instance, in the review done 

by Marco Bella 29 on the organocatalytic formation of quaternary stereocenters out 

of a total of twenty-eight examples of Michael adducts containing quaternary 

carbon centers, only six different acyclic substrates were used. The use of acyclic 

substrates is much fewer in case of the asymmetric decarboxylative allylic 

alkylation (DAAA), and for some reaction classes there are none 30. Because of 
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the challenge of an increase in the number of degrees of freedom linked with 

acyclic structures there is a predominance of cyclic substrates in the literature. 

In 1971, an intramolecular aldol cyclization of the achiral triketone using an 

optically active amino acid as a catalyst was reported by Eder et.al. Treatment of 

substrate triketone with (S)-proline in acetonitrile afforded good yield and optical 

purity. Detailed studies on the dilution effect on (S)-proline indicated a three-

centered hydrogen bonded structure as transition state. This cyclization was 

extended to the acyclic ketone; although enantiomeric excess was moderate, 

interesting solvent effects were observed in this reaction(Scheme 25) 31. 

(CH2)n

O

O
O

(CH2)n

O

O

CH3CN

(S)-proline

n = 1,2 n = 1,2
 

Scheme 25: (S)-Proline catalyzed aldol cyclization of triketone. 

 

  Figure 6. Proposed transition state of proline catalyzed reactions. 
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Shiro et al 32 reported the Claisen rearrangement of the optically active secondary 

alcohol center to produce in 51 % yields with 100% intramolecular chirality transfer. 

They achieved this result by treating alcohol with N,N-dimethylacetamide dimethyl 

acetal in refluxing o-xylene proceeded via intermediate (Scheme 26). 

 

Scheme 26. Claisen rearrangement of optically active secondary alcohol. 

Carbon-carbon bond formation using chiral palladium catalysts has been a 

particularly active field in recent years.  Buchwald reported 33 the highly 

enantioselective Pd-catalyzed intermolecular coupling of oxindoles and aryl and 

vinyl bromides facilitated by a biaryl monophosphine ligand that contains two 

sources of asymmetry. They also found that KenPhos and (iPr)2MOP promoted 

the coupling of 1,3-dimthyloxindole with 3-bromoanisole in the presence of 

TMEDA.PdMe2 and NaOtBu in good yield and promising ee (Scheme 27). 
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Scheme 27. Pd-catalyzed enantioselective α-arylation of 1,3-dimethyloxindole 

with a biaryl monophospine ligand. 

Enantioselective synthesis of quaternary center also has been reported by using 

Michael addition reactions, phase transfer catalyst system and of course using 

different metal catalyst system. Most of these reactions are substrate specific and 

further developments are needed in catalyst preparation and selectivity. 
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CHAPTER II: ASYMMETRIC SYNTHESIS OF QUATERNARY 

CARBON CENTERS  

2.1. Catalytic asymmetric Claisen Rearrangement of allyl enol ether 

obtained from 3-hydroxyarylacrylates 

Because of our success in thermal Claisen rearrangement of O-allylated aryl 

acrylate 7, we decided to pursue the asymmetric version of the same reaction by 

using chiral Lewis-acid catalyst. Towards that end, first of all, screening of 

organometallic Lewis acids and solvents are needed for the activation of allyl enol 

ether at room temperature. 

Inspired by the report by Kozlowski of the Meerwein-Eschenmoser Claisen 

rearrangement we assumed that the transition state for the rearrangement of allyl 

enol ethers obtained from 3-hydroxy aryl acrylates should be extraordinarily similar 

to the one reported by Kozlowski. We decided to try the Pd2+ Lewis acid catalyzed 

Claisen rearrangement as reported by Kozlowski 28 b,c. 

The Pd2+ catalyst complex was prepared by displacing chloride from Pd(BINAP)Cl2 

complex via a displacement reaction with AgSbF6 to form the corresponding SbF6
- 

complex. Weakly coordinating counter ion (SbF6
-) was chosen to increase the 

Lewis acidity of the metal complex. The reaction precipitated out a white AgCl, 

which was then filtered off through a PTFE filter (Scheme 28). 
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Scheme 28. Synthesis of [Pd(BINAP)](SbF6)2 Lewis acid. 

 

H O
[Pd(BINAP)](SbF6)2 10(1 eq.)
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CO2Et

OH

CO2Et

 

Scheme 29. Attempted [Pd(BINAP)](SbF6)2 catalyzed Claisen rearrangement. 

Our experimental data suggests that asymmetric Claisen rearrangement with 

[Pd(BINAP)](SbF6)2 was ineffective, furthermore the metal was found to cleave the 

allyl-oxygen bond of the substrate forming 3-hydroxyarylacrylate (Scheme 29).  

Most probably, the oxygen of the allyl enol ether binds to the Pd2+ catalyst, and the 

bond between the oxygen and the allylic carbon is then cleaved with ease during 
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the work-up when the reaction mixture is passed through a silica plug (Scheme 

30). 

 

Scheme 30. Proposed mechanism for cleavage of oxygen-allylic carbon bond. 

Next we thought that other Lewis acids such as Cu2+ might avoid the problem of 

the enol oxygen-allylic carbon bond cleavage. The first use of chiral bis(oxazoline) 

ligands for the Lewis acid catalysed Claisen rearrangement resulting in excellent 

enantiomeric excesses was reported in 2004 by Hiersemann and coworkers. In 

our initial attempt, we used Cu(TfO)2 (1 eq) as a Lewis acid catalyst  in  DMF.  No 

product formation was observed even after 72 h, and we believe DMF deactivated 

the Cu2+ catalyst. 
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 We then synthesized a Cu(box)2+ complex, where Cu(box)Cl2 complex  is first 

formed, and the chlorides are then replaced with SbF6
- via a displacement reaction 

with AgSbF6 to form the desired Cu2+ catalyst (Scheme 31). 

N

O

N

O

CuCl2    + DCM, rt

24 h

N

O

N

O

Cu

Cl Cl

N

O

N

O

Cu

2

2 SbF6 + 2 AgCl (s)

2 AgSbF6

DCM, 3h

[Cu(box)](SbF6)2

11

12  

Scheme 31. Formation of [Cu(box)](SbF6)2 Lewis acid complex 12. 

With Cu2+ catalyst no product formation was observed via Claisen rearrangement 

at room temperature. We the removed the solvent under N2 and dry 1,2-

Dichloroethane was added to the reaction mixture. It was then heated to 60 oC and 

a small amount of C-alkylated product (29%) was observed in the NMR analysis 

of a crude product. Another catalyst [Cu(box)](OTf)2 was made by the addition of 

Cu(OTf)2 to 1 eq. of box ligand bearing the more strongly coordinating triflate 

counter ion. This counter ion may decrease the Lewis acidity of the catalyst and in 

turn decrease decrease the probability of enol oxygen-allylic carbon bond 

cleavage. Unfortunately, in this case also no product was formed at both room 
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temperature and under refluxing CHCl3 condition. However, this time the cleavage 

product (acrylate) was not formed which seems to point out that Cu2+ catalyst 13 

is a weaker Lewis acid (Scheme 32).  

CO2Et

H O
[Cu(box)](SbF6)2 12

DCM, rt
24 h

29% yield
C-alkylated
(NMR)

1,2-DCE

60°C
on

No Rxn

CO2Et

H O
[Cu(box)](OTf)2 13

CHCl3, rt
24 h

No Rxn
reflux

No Rxn

 

Scheme 32. Attempted Claisen rearrangements using Cu2+ complexes 12 and 13. 

Along with these catalyst in our group Eduardo tried other Lewis acid catalysts for 

asymmetric Claisen rearrangement of compound 7. In most cases no reaction was 

observed except for catalyst 12 (entry 11, Table 2). 
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Table 2. Attempted Claisen rearrangement with Lewis acids. 

 

Entry Metal Ligand Product Temp.( oC) 

1 Zn(OTf)2 
Box NR rt 

2 
Zn(SbF6)2 Box NR rt 

3 
Ni(SbF6)2 BINAP NR rt 

4 
PdCl2(CH3CN)2 - 6+7 rt 

5 
Pd(dppf)Cl2·CH2Cl2 - NR rt to 50 

6 
BF3·OEt2 - 6+7 rt 

7 
Fe(SbF6)2 PyBox NR rt 

8 
[Rh(COD)Cl]2 (R,R)-L3 NR 50 

9 (Cp*RhCl)2 - NR rt to 50 

10 Cu(SbF6)2 Box NR rt 

11 Cu(SbF6)2 Box 8 (29%) 60 

NR = No Reaction. 
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2.2. Metal catalyzed Asymmetric Allylic Alkylation for the synthesis of 

quaternary stereocenter. 

Asymmetric allylic alkylation has been known to be an alternative for Claisen 

rearrangement. After our initial attempt to convert allyl enol ether compound 7 to 

quaternary aldehyde 8 in an asymmetric fashion, we moved to a Pd(0)-catalyzed 

asymmetric allylic alkylation protocol. This reaction can be broadly classified into 

two categories, namely intermolecular and intramolecular asymmetric allylic 

alkylation. 

2.2.1 Intermolecular Pd-catalyzed asymmetric allylic alkylation 

reaction 

Recently we published the first example of the intermolecular palladium-catalyzed 

AAA of hydroxyacrylates 34 which enabled us to synthesize all-carbon α-aryl 

quaternary aldehydes in good yield and enantioselectivity. In this protocol we 

developed a new intermolecular Pd-AAA reaction, in which hydroxyarylacrylates 

are used as nucleophiles for the first time to produce acyclic all-carbon quaternary 

aldehydes. Substituted hydroxyarylacrylates were used as nucleophiles and 

provided α-allylated α-aryl all-carbon quaternary aldehydes in high yields with high 

enantioselectivities. We believe this methodology possesses potential to be 

investigated further and utilized for the synthesis of a vast number of natural 

products containing α-aryl quaternary stereocenters (Scheme 33). 
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Yield: 75 - 99%
 ee    : 75 -94%  

Scheme 33. Pd-catalyzed intermolecular AAA reactions of hydroxyarylacrylates 

with allyl acetate. 

 

Tanaka et al reported35 palladium-catalyzed asymmetric allylic alkylation using 

novel pyrrolidinyl-containing chiral aminophosphine ligands possessing hydroxyl 

groups in the terminal of the side chain. They have reported excellent yield and 

%ee for the asymmetric allylic alkylation reaction (Scheme 34). 
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Scheme 34. Pd-catalyzed intermolecular asymmetric allylic alkylation using chiral 

amino phosphine ligand. 

 

2.2.2. Intramolecular AAA reaction for the synthesis of quaternary 

stereocenter 

 

 Since the first example, reported by Trost in 1977, 36 intermolecular AAA has 

undergone a remarkable development, and is now a well established method. In 

contrast, to the best of our knowledge, successful carbanion based intramolecular 

AAA have been reported only by the groups of Yamamoto and Tsuji, Genet, 

Pfaltz,Trost and Ready, with only Genet being able to concurrently control two 

stereogenic centers in this step 37. The paucity of successful examples in this field 

may stem from the intrinsic complexity of the reaction mechanism. Indeed in a 
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classical benchmark intermolecular AAA, the enantiodiscriminating step is the C-

C bond formation, due to the Cg symmetry of the ƞ3-allyl moiety. On the other hand, 

the scenario is more complicated in an intramolecular AAA, wherein the oxidative 

addition or the C-C bond-formation step can be the enantiodiscriminating event, 

dependent on relative kinetics 38. 

In 2000, Trost reported 39 Pd-catalyzed asymmetric O-alkylation of 3-substituted 

cyclic 1,2-diketones. This O-alkylated product then undergoes further 

rearrangement to give C-alkylation product at 3 positions, thereby creating a 

quaternary stereocenter. The fact that 3-substituted cyclic 1,2-diketones exist as 

single tautomeric species raised the prospect of an asymmetric synthesis of  

cycloalkenones. This was achieved by decarbonylative intramolecular AAA-

Claisen rearrangement protocol. The chirality transfer in a Claisen rearrangement 

was examined in the case of the cyclic substrate, thermal process (>110 oC) was 

found to be ineffective with a great deal of ionization. Classical Lewis acids such 

as Hg(OAc)2 and Al(Me)2Cl as well as PdCl2.(CH3CN)2 gave no reaction or 

cleavage of the allylic ether bond. Lanthanide triflates such as lanthanum and 

europium triflate were  proved too reactive. Finally they found that the FOD ligand 

complexes of the lanthanides are effective and among the lanthanides Ho is the 

most effective catalyst. Therefore, use of 10 mol % Ho(fod)3 in a minimal amount 

of chloroform at 50-80 °C was adopted as the standard protocol for Claisen 

transformation( Scheme 35). 
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 Scheme 35. Asymmetric O-alkylation of 1,2-diketones followed by Ho(fod)3 

catalyzed Claisen rearrangement.  

In 2002 Trost reported intramolecular palladium-catalyzed allylic alkylation to give 

cyclized quinuclidinones 40, which is an important building block for the synthesis 

of quinolone Cinchona alkaloids. The mechanism of this reaction was elucidated 

and found to consist of ligand matched ionization of carbonate substrate, π-allyl 

equilibration, and then finally nucleophilic attack. They reported no solvent for the 

reaction but various additives were found to have a dramatic effect on the reaction 

and Eu(fod)3 had a profound impact on reactivity and reversed the 

diastereoselectivity.  Trost group presented an intra-molecular Pd-catalyzed AAA 

to generate [2,2,2] bicycles in good enantio- and diastereoselectivity. This could 

be a route for the asymmetric synthesis of quinine and quinidine from the 

cyclization of prochiral nucleophile β-keto esters (Scheme 36). 
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Scheme 36. Pd-catalyzed AAA reaction of β-keto esters in formation of 

bicycle[2,2,2] octan-2,3-diones and quiniclidin-2-ones reported by Trost. 

 

In 2006 Bandini M. reported 41  a highly enantioselective synthesis of tetrahydro-

β-carbolines and tetrahydro-γ-carbolines via Pd-catalyzed intramolecular allylic 

alkylation. Pictet-Spengler reaction still represents the primary route to the 

preparation of the biologically active β-carbolines, intramolecular AAA could be an 

alternative to that. This group also reported allylic alkylation as an substitute 

procedure for the conventional Friedel-Crafts reaction.  

Among the chiral promoters employed they found that the DPPBA-based Trost 

ligands furnished the highest level of regio- and stereoselectivity.  The excellent 

enantiomeric excess suggest this strategy as a valuable candidate for the 

preparation of stereochemically defined polycyclic aromatic compounds. 
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Scheme 37. Synthesis of 4-vinyl tetrahydro-β-carbolines via Pd-catalyzed 

intramolecular AAA reaction. 

 

Bantreil et. al. employed42 diphosphine MeoBIPHEP ligand with Pd(0) catalyst for 

the synthesis of optically active pyrrolidine system. The reaction proceeded 

through a basic phase transfer catalyst system that helped in enolization process, 

whereas Pd catalyst replace actetate leaving group easily formed π-allyl complex 

with the substrate (Scheme 38). 
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Scheme 38. Intramolecular allylic alkylation using R-MeOBIPHEP ligand. 

 

Recently Huo et. Al published 43 an enantioselective synthesis of 2,3-disubstituted 

indanones by an intramolecular Pd-catalyzed AAA with a  hard carbanion as a 

nucleophile (Scheme 39). They have experimented only on two P,N-ferrocene-

based SIOCPhox chiral ligands, ee was higher with (Sphos, Ra)-SIOCPhox than 

with (Rphos, Ra)-SIOCPhox. In their optimization study, it was found that O-

alkylation is a more favorable process to form 5-membered ether than 5-

membered cyclic ketone formation. They overcame this chemoselectivity issue by 

using tert-Butanol as a solvent and LiOH.H2O as a base. Both base and solvent 

were found to have an effect on selectivity.  Using diethyl phosphate as a more 

stable substrate under basic condition increased yield of the reaction to a great 

extent. In summary, using SIOCPhox chiral ligand Hou group has achieved a Pd-
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catalyzed intramolecular reaction with high diastereo- and enantioselectivity 

(Scheme 39). 

 

 

Scheme 39. A Pd-catalyzed intramolecular AAA reaction affording 2,3-

disubstituted indanones with high diastereo- and enantioselectivity. 

 

The intramolecular palladium-catalyzed cyclization of the β-keto ester with 

Ferrocenyl ligand provided moderate yield and ee. 44 Other chiral ligands such as 

chiraphos and (S)-BINAP, gave poorer results both in yield and %ee (Scheme 40) 
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Scheme 40. O-allylation and rearrangement towards C-alkylation. 

 

2.2.3. Decarboxylative asymmetric allylic alkylation 

In Pd-catalyzed decarboxylated allylation Stolz group reported 45 the formation of 

quaternary stereocenter using Phox type ligand (Scheme 41). 

 

Scheme 41. Decarboxylative asymmetric allylic alkylation using (S)-t-Bu-Phox 

ligand. 

In 2010 Stolz group published another article 46 in nature chemistry describing the 

synthesis of all-carbon quaternary stereocenter by asymmetric α-alkylation of 
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ketones (Scheme 42). Readily available β-ketoesters were used as starting 

material. They have shown the formation of palladium enolate as a key 

intermediate for this type transformation which can be intercepted by acidic proton 

or another electrophile. 

 

Scheme 42. Decarboxylative asymmetric allylic alkylation using modified (S)-t-Bu-

Phox ligand. 

Using a different prochiral electrophile enolate-trapping has been extended to the 

synthesis of vicinal stereocenters (Scheme 43).  
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Scheme 43. Formation of vicinal stereocenter using DAAA protocol. 

In our group after unsuccessful attempt to induce enatioselectivity in catalytic 

Claisen rearrangement, E. Alberch pursued DAAA method to synthesize 

quaternary aldehyde 8 from hydroxyarylarylacrylate 6.  Recently we published a 

decarboxylative protocol 47 to get an alternate route to make compound 8. In this 

method, a stereoselective synthesis of carbonates derived from 3-hydroxy-2-aryl 

acrylates was devised that can form the Z- or E-stereoisomer in very high Z/E 

ratios (50:1 and 1:99, respectively). The stereochemical outcome depends on the 

choice of base, addition of TMEDA and reaction temperature. The Z- and E-

stereoisomers have different reactivities towards the DAAA reaction, with the E-

stereoisomer displaying both greater reactivity and enantiodifferentiation with 

chiral ligands. The DAAA of E-stereoisomer analogues takes place in excellent 

yields ranging from 96–99% and enantioselectivities ranging from 42–78% ee 

(Scheme 44). 
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Scheme 44. Pd (0) catalyzed Decarboxylative asymmetric allylic alkylation of allyl 

enol carbonates modified from hydroxy-arylacrylate 6. 

 

2.3. RESULTS AND DISCUSSION 

Inspired by the example reported by Trost and our experience with intermolecular 

and decarboxylative AAA reaction, we envisioned similar reaction conditions using 

Pd(0) as a metal source for the rearrangement reaction. In a preliminary approach 

with Pd(0) catalyst we proceeded with a Pd(PPh3)4 catalyzed reaction of allyl enol 

ether derived from 3-hydroxyarylacrylate in dichloromethane at room temperature. 

We found that allyl enol ether 7 underwent a Pd (0)-catalyzed rearrangement to 

give α-aryl quaternary carbon compound. As a Pd (0) source we found that both 

Pd(PPh3)4 and Pd2(dba)3.CHCl3 were equally effective in the catalytic 

transformation of O-allylated compound to products.   
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We then attempted a catalytic intramolecular asymmetric allylic alkylation of 7 

using DACH-Naphthyl Trost ligand (R,R)-L3 and Pd2(dba)3.CHCl3 in 

dichloromethane at room temperature. The reaction gave quantitative yield and 

30% ee (Scheme 45). 

 

 

NH HN

O
O

PPh2 Ph2P

( R,R)-L3

H O

COOEt [Pd2(dba)3.CHCl3] (2.5 mol%)
         (R,R)-L3 (6 mol%)
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O

COOEt

H

7 8  

Scheme 45. Pd-catalyzed intramolecular AAA reactions of allyl enol ether. 
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2.3.1. Mechanistic investigation 

Having found our desired catalytic reaction we need to develop the reaction 

protocol.  To understand the mechanism of the reaction, we investigated the 

reaction by making crotyl vinyl ether 14 from the reaction of arylhydroxyacrylate 6 

and crotyl bromide under phase transfer catalysis (Scheme 46).  

 

CO2Et

H OH

Br

Bu4NI (20 mol %)

KOH (45% aq), DCM, rt

( 1.2 eq.)

CO2Et

H O

146

 

Scheme 46. Synthesis of O-crotylated acrylate 14. 

 

Reaction of this O-crotyl compound 14 with Pdo generated both product 15 and 16 

(Figure 7), whereas thermal Claisen rearrangement of crotyl phenylvinyl ether 

produced exclusively product 15 ( Scheme 47). 

 

O

COOEt

H

14 15

H O

COOEt

O-Crotylated hydroxyarylacrylate

Reflux

DMF , 6 h

100% Conversion

 

Scheme 47. Thermal Claisen rearrangement of O-crotylated substrate 14. 
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We believe formation of Pd-allyl complex is responsible for both products, where 

nucleophilic attack on π-allyl complex can occur in both ends.  Consequently the 

reaction formed product 16 ( 75% ) and  product 15 (15%) from the sterically more 

hindered site (Figure 7 ). 

PdCO2Et

H O

EtO2C

O H

CO2Et

OH

Pd

LL

LL

CO2Et

HO
O H

CO2Et

15
Deformylation

CO2Et

16

75%

15%

 

Figure 7. Pd(0) catalyzed reaction of O-crotylated substrate 14. 
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Based on this study we propose a reaction mechanism for intramolecular AAA 

reaction of allyl enol ether (Figure 8). In the first step the ligand substituted to form 

a chiral ligand bound active Pd(0) complex. Second is the oxidative addition and 

formation of metal allyl complex changing palladium oxidation state from Pd(0) to 

Pd (II). In the following step, enolate carbon nucleophile attacks onto the allyl 

complex forming C-alkylated product and lastly the incoming ligand approaches to 

the metal in elimination of quaternary carbon product and regeneration of active 

catalyst 

 

Figure 8. Proposed mechanism of intramolecular AAA reaction for allyl enol ether 

7 
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2.3.2. Optimization of catalytic rearrangement for the synthesis of 

quaternary aldehydes 

Ligand Screening: In order to optimize reaction conditions for better 

enantioselectivity we investigated different ligands and solvent at various 

temperatures. For our ligand screening we selected C2 symmetric Trost ligands 

and Phosphinooxazolines(PHOX) which are well-known for  Pd-catalyzed 

asymmetric allylic alkylation reactions. It was demonstrated from our studies that 

C2 symmetric Trost ligands (R,R)-L2, (R,R)-L3 (Figure 9) are more effective in 

enantiodiscrimination than the PHOX type ligands (S)-L2. Among the Trost ligands 

Dach-Napthyl Trost Ligand (R,R)-L3 is the most effective(Table 3, entry 8),  

Anden-phenyl Trost (R,R)-L4 gave only 30% ee, whereas with Dach-pyridyl ligand 

(R,R)-L4 there was no reaction at all(Table 3, entry 6,7 ).  

Table 3. Screening of Trost’s ligand 
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Entry Ligand Solvent Temp.(o

C) 

% Conversion %ee 

1. (R,R)-L2 Tol:Hex (1:1) rt 100 20 

2. (R,R)-L2 Tol:Hex (1:1) -20 100 30 

3. (R,R)-L1 Tol:Hex (1:1) rt 80 racemic 

4. (R,R)-L1 Tol:Hex (1:1) -20 80 20 

5. (R,R)-L4 Tol:Hex (1:1) rt No Reaction  

6. (R,R)-L4 Tol:Hex (1:1) -20 No Reaction  

7. (R,R)-L3 Tol:Hex (1:1) rt 95 35 

8. (R,R)-L3 Tol:Hex (1:1) -20 90 65 
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Figure 9 . C2 symmetric Trost ligands. 

Other ligands such as monophosphines, BINAP type (Figure 10) and Bis-

oxaziline(BOX) were also found to be less active in the transformation and in all 

cases they failed to induce  any enantioselectivity.  For BINAP and 

monophosphines ligands quantitative conversion is obsereved but they failed to 

induce enantioselectivity to the product. Results from the screening of chiral 

monophosphines and BINAP ligands are summarized in Table 4.  
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Table 4. Screening of ligands. 

H O

COOEt [Pd2(dba)3.CHCl3] (2.5 mol%)
                 L (6 mol%)

Solvent, Temp

O

COOEt

H

7 8  

 

 

 

 

Entry Ligand Temperature(oC) % Conversion %ee 

1. XPhos rt 100 racemic 

2. XPhos -20 100 racemic 

3. SPhos rt 100 racemic 

4. R-BINAP rt 100 racemic 

5. R-BINAP -20 100 racemic 

6. S-Tol-BINAP rt 100 racemic 

7. S-Tol-BINAP -20 100 racemic 
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Figure 10 . Monophosphine and BINAP ligands. 

Phox type ligands were reported to be an effective chirality inducing agent for 

asymmetric allylic alkylation and decarboxylative asymmetric allylic alkylation 

(DAAA) reactions. But in our reaction we found Phox ligands (S)-L2 (Figure 11) 

induce moderate enantioselectivity with high conversion (Table 5, entry 1,2). 

However, Box and other modified Phox ligand types were not effective at all in 

transfering chirality to the product. 
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Figure 11 . Methyl-BoPhoz and Oxazoline ligands.  

Table 5. Bis-oxazoline (Box) and Phox type Ligand screening. 

 

 

Entry Ligand Temperature(oC) % Conversion %ee 

1. t-Bu-Phox (S)-L2 rt 100 20 

2. t-Bu-Phox  (S)-L2 -20 100 30 

3. Methyl-BoPhoz rt 100 racemic 

4. Methyl-BoPhoz -20 100 racemic 

5. Ferrocenyl Phox rt No Reaction  

6. Methylene Box rt No Reaction  
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Solvent study: 

In our ligand screening we found that ligand (R,R)-L3 demonstrated a high level of 

enantiodiscriminative sensitivity towards polarity of solvents and temperature 

changes of the reaction. The use of hexane/toluene solvent mixtures was 

previously reported by Stoltz, and it is thought that this very low polarity system 

increases stereoinduction by helping to form tight ion pairs through the formation 

of “solvent cages”. We thus reasoned that the combined effect of the formation of 

“solvent cages” by using low-polarity hexane/toluene (1:1) solvent and tightening 

the ligand pocket by switching to naphtholinker, (R,R)- L3, from the phenyl linker, 

(R,R)-L1, was instrumental in this dramatic increase in enantioselectivity.  

Experimental results showed solvent polarity played a major role in the reaction 

rate and enantioselectivity, for instance under similar condition %ee for the 

reaction in THF was 33% whereas in mixed solvent toluene:hexane(1:1)  %ee 

jumped to 65% ( Table 3, entry 8). We believe the ideal solvent polarity which 

afforded us with maximum yield and enantioselectivity for our parent system 

comes from mixed solvent toluene:methanol (50:1) (Table 2, entry 9). We believe 

a plausible explanation for this lies in the solubility and complex formation of ligand 

and metal. Nonpolar solvents help dissolving the ligand slowly to form the metal 

complex; and it has better interaction with the substrate enolate in ‘tight ion pair’ 

formation for a longer period of time during the course of the reaction.   
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Table 6. Solvent effect on the reaction. 

H O

COOEt [Pd2(dba)3.CHCl3] (2.5 mol%)
                 L (6 mol%)

Solvent, Temp

O

COOEt

H

7 8  

 

Entry Solvent Temp.(oC) % Conv. % ee 

1. Toluene:Hexane (1:1) rt 100 10 

2. Toluene:Hexane (1:1) -78 to rt 80 53 

3. Toluene:Hexane (1:1) -20 95 65 

4. Dichloromethane rt 100 racemic 

5. DMSO rt 80 18 

6. Acetonitrile rt 90 racemic 

7. THF -20 100 33 

8. Toluene -20 100 50 

9. Toluene:Ethanol (50:1) -20 100 70 

10. Toluene:Methanol (50:1) -20 100 75 

11. Toluene:Methanol (50:1) rt 100 30 

12. Toluene:t-Butanol (50:1) -20 90 33 

13. Toluene: IPA (50:1) -20 85 35 

14. Toluene:H2O (50:1) -20 80 35 

15. Toluene:H2O (50:1) rt 85 52 
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Temperature effect 

After ligand screening we investigated the effect of temperature on reaction 

rate and enantioselectivity, our results showed Temperature also has a 

profound effect in both yield and %ee. The reaction is found to be working 

best at -10 oC to -20 oC. At lower temperature i.e.,-40oC or -78 oC there were 

no reaction at all (Table 7. entry 6 and 7) and at 0oC or room temperature 

reaction rate was faster but resulted with reduced enantioselectivity (Table 

7, entry 1-3). 

Table 7. Effect of temperature on the asymmetric quaternary carbon 

formation. 

H O

COOEt [Pd2(dba)3.CHCl3] (2.5 mol%)
                 L (6 mol%)

Solvent, Temp

O

COOEt

H

7 8  

Entry Temp. 
( oC) 

Solvent Ligand %Conv. %ee 

1 rt Tol:Hex (1:1) DACH-
Naphthyl 

100 30 

2 rt Dichloromethane DACH-
Naphthyl 

100 racemic 

3 0 Tol:Hex (1:1) Phox 25 20 
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4 -20 Tol:Hex (1:1) DACH-
Naphthyl 

100 60 

5 -40 Tol:Hex (1:1) DACH-
Naphthyl 

No 
Reaction 

 

6 -78 Tol:Hex (1:1) DACH-
Naphthyl 

No 
Reaction 

 

7 -78 Tol:Hex (1:1) Phox No 
reaction 

 

8 -78 to rt Tol:Hex (1:1) DACH-
Naphthyl 

80 53 

 

Additives:  

In order to get optimum solvent polarity and help tight ion pair formation 

during the reaction we employed several additives. Addition of base has 

been reported to promote Pd-catalyzed alkylation reaction. We have tried 

several base such as triethyl amine, di-isopropylethyl amine, KOtBu, none 

of them were capable of producing better result ( Table 8, entry 10-14). 

Among the additives best results were obtained for phase transfer agent 

such as tetrabutyl ammonium iodide which gave 52% ee at -20 oC, and RbF 

afforded 50% ee( Table 8, entry 6 and 9). 
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Table 8. Effects of additive on the enantioselectivity. 

H O

COOEt [Pd2(dba)3.CHCl3] (2.5 mol%)
        (R,R)-L3 (6 mol%)

Toluene:MeOH (50:1), Temp

O

COOEt

H

7 8  

Entry Additives Temp. ( oC) % Conv. % ee 

1. LiBF4 rt 100 10 

2. LiBF4 -78 No Rxn  

3. NaOAc rt No Reaction  

4. NaOAc -78 No Reaction  

5. NBu4I rt 100 15 

6. NBu4I -20 100 52 

7. NBu4I -78 No Reaction  

8. NaClO4 rt No Reaction  

9. RbF -20 25 50 

10. KOtBu rt No Reaction  

11. KF rt No Reaction  

12. Net3 -78 No Reaction  

13. Net3 -40 No Reaction  

14 Di-isopropyl 
ethyl amine 

-20 100 15 

 

Finally optimized reaction condition involves (R,R)-L3 catalyst in mixed toluene-

methanol (50:1) solvent at -20 oC for 72 hours. This condition provided us with 95% 

conversion and 75% ee for the parent sytem (Scheme 48). 
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7 8
 

Scheme 48. Optimized reaction condition for asymmetric rearrangement reaction. 

Although we were able to get optical rotation of the compound 8 { [α]D
27: = + 73.50 

(c = 0.082, EtOAc)} our attempt to crystallize it has been a failure. We tried to 

crystallize quaternary aldehydes by making it a solid hydrazone, but the reaction 

didn’t work, instead we observed deformylation of quaternary compound (Scheme 

49).  

 

Scheme 49. Attempted reaction for the formation of solid hydrazone. 

 

2.4. Scope of the reaction 

In order to determine the scope of this rearrangement reaction, a number of 

analogs were subjected to the newly optimized reaction conditions. Studies 
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showed that electron donating or electron withdrawing groups did not appreciably 

affect the yields of the products, but EWG favored enantioselectivity (8c, 8e Figure 

12). The reaction was also found to have steric effect; o-substituents have shown 

lower yield and enantioselectivity (8i, 8j Figure 12). Interestingly nitro variant of o-

allylated compound needed much polar solvent than our optimized solvent system, 

therefore THF was the solvent choice for compound 8j and 8m. Electron donating 

methoxy substituent was found to be notorious in the optimized reaction condition, 

they either deformylate or catalyst failed to induce enantioselectivity ( 8l, 8n, 8o, 

Figure 13).  However, our best result comes from the substrates with bulky 

substituent at the para position( 8f, Figure 12). Substituent with 5-Bromo, 2-

methoxy functional groups in the benzene ring provided best yield and %ee. 

Apparently the deleterious effect of methoxy groups  was minimized by the bromo 

functionality and made it a ideal substrate for the transformation (compare  8d and 

8l) . 
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Figure 12. Scope of Pd(0) catalyzed asymmetric rearrangement of allyl enol ether 

7. 
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Figure 13. Scope of Pd(0) catalyzed asymmetric rearrangement of allyl enol ether 

7. 

2.5. Summary and Future work:  

We have accomplished the first example of Pd(0) catalyzed Claisen type 

rearrangement with good % yield and enantioselectivity. We believe the reaction 

proceed through asymmetric allylic alkylation protocol. Further optimization is 

necessary for better enantioselectivity of important analogs which can be used for 

downstream synthesis. This method can utilized for the synthesis of α-aryl 

quaternary aldehydes.  These aldehydes have potential for the synthesis of 

quaternary carbon center bearing natural product, for instance, indole containing 

Horsefiline can be synthesized starting from o-nitroaldehydes (Scheme 50).. 
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Scheme 50. Synthesis of Horsfiline starting from substituted nitrobenzaldehyde. 
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CHAPTER 3.GENERAL METHODS AND EXPERIMENTAL  

3.1. Experimental Procedures 

a) General Considerations 

All reactions were performed under argon atmosphere in oven-dried glassware 

with magnetic stirring. Air and moisture-sensitive liquids and solutions were 

transferred via oven-dried, stainless steel syringe and were introduced into the 

reaction vessel through rubber septa. CH2Cl2 was distilled from calcium hydride.  

Other solvents used were distilled from sodium-benzophenone. Freshly distilled 

solvents were then degassed for Pd-catalyzed reactions by freeze-pump-thaw 

techniques under vacuum. Previously reported compounds were identified by 1H 

NMR (nuclear magnetic resonance) spectrum.  All new compounds were 

characterized by additional 13C NMR and high resolution mass spectroscopy. 

Analytic thin layer chromatography (TLC) was performed on silica gel plates 

(Merck 60F254) visualized either with a UV lamp (254 nm) or by using iodine 

chamber. Flash chromatography was performed using 40-60 µm silica gel 

(Silicycle). The eluent employed for flash chromatography is reported as 

volume/volume ratios. Organic extracts were dried over anhydrous Na2SO4. 1H 

and 13C NMR spectra were performed on a Bruker NMR at 300 and 75 MHz, 

respectively. 1H NMR data are reported as follows: chemical shift (δ) in parts per 

million (ppm) from tetramethylsilane as an internal standard (CDCl3 δ7.26 ppm), 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), 

integration. 13C data were reported as follows: chemical shifts (δ) are reported in 
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parts per million (ppm) from tetramethylsilane with the solvent as an internal 

indicator (CDCl3 δ77.16 ppm). Chiral HPCL analysis was performed using Waters 

1500 Series HPLC equipped with Regis Technologies Pirkle Covalent chiral 

stationary phase column. HPLC retention times of enantiomers were determined 

by comparison to racemic materials. Optical rotations were measured by Jasco 

DIP-370 digital polarimeter using 1 cm glass cells with a sodium 589 nm filter and 

are reported as [α]D27 , concentration (mol/L) and solvent.  High-resolution mass 

spectra were acquired by the University of Wisconsin Milwaukee Mass 

Spectrometry laboratory. 

b. Synthesis of (Z)-ethyl 2-aryl-3-hydroxyacrylates:  Compounds 6a-h was 

synthesized by using our published procedure.48 The identity of these compounds 

was confirmed by 1H and 13C NMR. 

c. Synthesis of (Z)-ethyl-3-(allyloxy)-2-arylacrylates (7): General Procedure. 

Ethyl 2-aryl-3-hydroxyacrylate3 (1.0–5.0 mmol) was dissolved in freshly distilled 

dichloromethane (5–10 mL) under nitrogen. Bu4NI (0.1 equiv.), allyl bromide (1.2 

equiv.), and potassium hydroxide (10 equiv.) were added, and the reaction mixture 

was stirred at room temperature until reaction completion was confirmed by NMR 

(Scheme 51). The reaction was quenched by adding saturated NH4Cl, and the 

aqueous layer was extracted with diethyl ether (2 × 25 mL). The organic extracts 

were combined and dried over Na2SO4. The organic layer was then passed 

through a silica plug and the solvent was removed by rotary evaporation. Pure 

product was isolated by column chromatography (5–10% ethyl acetate in pentane) 
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and identified by 1H NMR. 1H, 13C NMR and HRMS were applied to characterize 

the new compounds. 

CO2Et

H OH

10 eq KOH (s)

TBAI (10 mol%), 
allyl bromide

CO2Et

H O

R R

76
 

Scheme 51. Synthesis of O-allylated compound 7. 

(Z)-Ethyl 3-(allyloxy)-2-phenylacrylate (7a). Yellow oil. HRMS: 233.1169 [calcd. 

for C14H16O3 (M+H): 233.1177]. 1H NMR (300 MHz, CDCl3): δ 7.67 (s, 1H), 7.45-

7.30 (m, 5H), 5.92 (m, 1H), 5.4 (d, J = 17.4 Hz, 1H), 5.3 (d, J = 10.5 Hz, 1H), 4.53 

(d, J = 4.0 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (75 

MHz, CDCl3): δ 167.6, 157.6, 132.7, 132.4, 130.2, 127.6, 126.9, 119.3, 111.9, 

74.9, 60.2, 14.3. 

 (Z)-Ethyl 3-(allyloxy)-2-p-tolylacrylate (7b). Yellow oil. HRMS: 247.1358 [calcd. 

for C15H18O3 (M+H): 247.1363]. 1H NMR (300 MHz, CDCl3): δ 7.66 (s, 1H), 7.37-

7.22 (m, 4H), 5.95 (m, 1H), 5.4 (d, J = 18.8 Hz, 1H), 5.35 (d, J = 10.5 Hz, 1H), 4.53 

(d, J = 5.1 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3): δ 167.7, 157.5, 136.5, 132.6, 129.7, 129.3, 127.7, 

118.6, 111.9, 74.9, 60.2, 21.2, 14.4. 

(Z)-Ethyl 3-(allyloxy)-2-(4-fluorophenyl) acrylate (7c). Yellow oil. HRMS: 

253.1237 [calcd. for C14H15FO3 (M+H): 251.1083]. 1H NMR (300 MHz, CDCl3): δ 
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7.63 (d, J = 4.0 Hz, 1H), 7.36 (m, 2H), 7.05 (m, 2H), 5.90 (m, 1H), 5.35 (d, J = 14.7 

Hz, 1H), 5.3 (d, J = 5.4 Hz, 1H), 4.53 (d, J = 5.4 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H ), 

1.30 (t, J = 7.1 Hz, 3H) . 13C NMR (75 MHz, CDCl3): δ  167.4, 163.3, 158.2, 132.3, 

131.8, 128.5, 118.9, 114.7, 111.0, 75.0, 60.3, 14.3. 

(Z)-Ethyl 3-(allyloxy)-2-(5-bromo-2-methoxyphenyl)acrylate (7d). Yellow oil. 

HRMS: 341.0120 [calcd. for C15H17BrO4 (M+H): 341.0388]. 1H NMR (300 MHz, 

CDCl3): δ 7.59 (s, 1H), 7.39–7.28 (m, 2H), 6.77 (d, J = 8.7 Hz), 5.93 (m, 1H), 5.32 

(d, J = 17.1 Hz, 1H), 5.28 (d, J = 9.6 Hz, 1H), 4.48 (d, J = 5.4 Hz, 2H), 4.20 (q, J = 

7.1 Hz, 2H), 3.76 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 

167.2, 157.8, 156.4, 134.2, 132.4, 131.4, 124.2, 118.6, 112.4, 112.1, 108.0, 74.8, 

60.1, 55.6, 14.3. 

(Z)-Ethyl 3-(allyloxy)-2-(4-chlorophenyl) acrylate (7e). Yellow oil. HRMS: 

267.0788 [calcd. for C14H15ClO3 (M+H): 267.0782]. 1H NMR (300 MHz, CDCl3): δ 

7.63 (s,1H), 7.50-7.25 (m, 4H), 5.90 (m, 1H), 5.34 (m,1H), 4.53 (d,1H), 4.23 (q, J 

= 7.1 Hz, 2H ), 1.30 (t, J = 7.1 Hz, 3H) . 13C NMR (75 MHz, CDCl3): δ 167.4, 158.5, 

132.3, 131.8, 128.5, 120.8, 118.9, 110.9, 75.0, 60.3, 14.3. 

 (Z)-Ethyl 2-(4-t-butylphenyl)-3-(allyloxy) acrylate (7f). Yellow oil. HRMS: 

289.1797 [calcd. for C18H24O3 (M+H): 289.1803]. 1H NMR (300 MHz, CDCl3): δ 

7.92 (s, 1H), 7.41–7.35 (m, 4H), 5.93 (m, 1H), 5.38 (d, J = 18.9 Hz, 1H), 5.32 (d, J 

= 10.8 Hz, 1H), 4.54 (d, J = 5.4 Hz, 2H), 4.26 (q, J = 7.1 Hz, 2H), 1.36 (s, 9H), 1.36 

(t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 167.8, 157.8, 149.5, 132.5, 129.5, 

128.3, 124.5, 118.7, 111.6, 74.9, 60.2, 34.4, 31.2, 14.3. 
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(Z)-ethyl 3-(allyloxy)-2-naphthalen-2-yl) acrylate (7g). Yellow solid. HRMS: 

283.1329 [calcd. for C18H18O3 (M+H): 283.1329]. 1H NMR (300 MHz, CDCl3): δ 

7.88-7.46 (m, 8H), 5.97 (m, 1H), 5.41 (m, 1H), 4.55 (d, J = 6.0 Hz, 2H), 4.28 (q, J 

= 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 158.0, 133.1 

132.7, 132.4, 130.2, 129.3, 128.1, 127.6, 127.0, 125.8, 125.7, 118.9, 112.0, 75.0, 

60.4, 14.3. 

(Z)-Ethyl 3-(allyloxy)-2-(4-bromophenyl) acrylate (7h). Yellow oil. C14H15BrO3.  

1H NMR (300 MHz, CDCl3): δ 7.64-7.25 (m, 5H), 5.90 (m, 1H), 5.34 (m,1H), 4.53 

(d,1H), 4.23 (q, J = 7.1 Hz, 2H ), 1.30 (t, J = 7.1 Hz, 3H) . 13C NMR (75 MHz, 

CDCl3): δ 167.4, 158.5, 132.3, 131.8, 128.5, 120.8, 118.9, 110.9, 75.0, 60.3, 14.3. 

d. Synthesis of ethyl 2-formyl-2-arylpent-4-enoates (8) General procedure.  

In an oven dried and desiccator-cooled sealable test tube was added Pd2(dba)3 

CHCl3 (4.7-7.0 mg, 0.0045-0.00675 mmol, 0.025 equivalent) and (R,R)-L3 (8.5-

12.8 mg, 0.0108-0.0162 mmol, 0.06 equivalent). The test tube was then evacuated 

and backfilled with Ar three times. Previously degassed (50:1) Tol:MeOH (5 mL) 

was added to the flask and the mixture was stirred for 15 min until it was 

homogeneous and an orange color persisted. In the meantime, another test tube 

was charged with  (E)-ethyl-3-(allyloxy)-2-arylacrylate 7 (50.0 mg, 0.1844-0.2745 

mmol, 1.0 equivalent), evacuated and backfilled with Ar, and then degassed 

solvent Toluene:MeOH (5 mL: 100 µL) was introduced, unless otherwise 

mentioned and was stirred the mixture to dissolve. Both of the test tubes were then 

put into -200C cooling bath and stir for another 15 min before transferring the 
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substrate solution into the catalyst mixture via a cannula. The reaction was stirred 

for 72 h, unless otherwise mentioned. The reaction mixture was then passed 

through a thick pad of silica plug and the solvent was removed in vacuo. The pure 

product was isolated by column chromatography (5–10% ethyl acetate in Hexane) 

and identified by 1H NMR. 1H, 13C NMR and HRMS were applied to characterize 

the new compounds. 

H O

COOEt [Pd2(dba)3.CHCl3] (2.5 mol%)

     (R,R)-L3 (6 mol%)

Toluene: Methanol(50:1) 

         -20 oC, 72 h

O

COOEt

H

7 8
 

Scheme 52. Optimized reaction condition for the synthesis of compound 8. 

Ethyl 2-formyl-2-phenylpent-4-enoate (8a).  

Light yellow oil. HRMS: 233.1000 [calcd. for C14H16O3 

(M+H): 233.1177]. 1H NMR (300 MHz, CDCl3):  9.95 (s, 

1H), 7.44–7.23 (m, 5H), 5.76 (m, 1H), 5.13 (d, J = 18 Hz, 

1H), 5.07 (d, J = 9.9 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 3.14 (dd, J = 6.3, 13.8 Hz, 

1H), 2.88 (dd, J = 8.1, 13.8 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, 

CDCl3):  196.3, 170.6, 135.0, 132.6, 129.0, 128.5, 127.8, 119.1, 65.6, 61.6, 37.5, 

14.0. 

O

O

O
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Chiral HPLC: 75% ee, Regis Technologies Pirkle Covalent chiral stationary phase 

column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 15.99 min (minor), 18.04 min 

(major). 

[α]D
27: = + 73.50 (c = 0.082, EtOAc). 

Ethyl 2-formyl-2-p-tolylpent-4-enoate (8b).  

Yellow oil. HRMS: 247.1346 [calcd. for C15H18O3 (M+H): 

247.1334]. 1H NMR (300 MHz, CDCl3):  9.90 (s, 1H), 

7.28–7.12 (m, 4H), 5.75 (m, 1H), 5.15 (d, J = 18.3 Hz, 

1H), 5.08 (d, J = 10.5 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.12 (dd, J = 6.3, 13.8 Hz, 

1H), 2.88 (dd, J = 8.1, 13.8 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H). 13C NMR (75MHz, 

CDCl3):  196.3, 170.8, 137.9, 132.8, 130.0, 129.0, 127.4, 118.9, 65.3, 61.5, 36.5, 

20.8, 14.0. 

Chiral HPLC: 75% ee, Regis Technologies Pirkle Covalent chiral stationary phase 

column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 14.00 min (minor), 15.35 min 

(major). 

[α]D
27: = + 42.50 (c = 0.081, EtOAc). 

Ethyl 2-(4-fluorophenyl)-2-formylpent-4-enoate (8c).  

Yellow oil. HRMS: 251.1072 [calcd. for C14H15FO3 

(M+H): 251.1083]. 1H NMR (300MHz, CDCl3): δ 9.93 (s, 

1H), 7.28–7.07 (m, 4H), 5.73 (m, 1H), 5.20-5.05 (m, 2H), 

4.30 (q, J = 7.1 Hz, 2H), 3.11 (dd, J = 6.6, 14.1 Hz, 1H), 2.88 (dd, J = 7.8, 14.1 Hz, 

O

O

O
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1H), 1.30 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 196.0, 170.5, 160.5, 

132.3, 130.7, 129.2, 116.1, 115.8, 65.0, 61.8, 36.8, 14.0. 

Chiral HPLC: 70% ee, Regis Technologies Pirkle Covalent chiral stationary phase 

column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 16.00 min (minor), 17.48 min 

(major). 

[α]D
27: = + 40.60 (c = 0.072, EtOAc). 

Ethyl 2-(5-bromo-2-methoxyphenyl)-2-formylpent-4-enoate (8d).  

Yellow oil. HRMS: 347.0244 [calcd. for C15H17BrO4 

(M+Li): 346.9698]. 1H NMR δ: 10.1 (s, 1H), 7.42-7.31 

(m, 2H), 6.75 (d, J = 8.7 Hz, 1H), 5.77 (m, 1H), 5.15-

5.05 (m, 2H), 4.20 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.00 (dd, J = 6.6, 13.8 Hz, 1H), 

2.80 (dd, J = 7.8, 13.8 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H) . 13C NMR δ: 197.8, 170.6, 

155.5, 132.0, 130.8, 128.7, 128.0, 119.1, 113.4, 112.6, 68.0, 61.2, 55.7, 36.5, 14.0. 

Chiral HPLC: 90% ee, Regis Technologies Pirkle Covalent chiral stationary phase 

column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 13.57 min (minor), 15.99 min 

(major). 

Ethyl 2-(4-chlorophenyl)-2-formylpent-4-enoate (8e)  

yellow oil. HRMS: 267.0788 [calcd. for 

C14H15ClO3(M+H): 267.0782].1H NMR (300 MHz, 

CDCl3): δ 9.88 (s, 1H), 7.54 (d, j = 8.7, 2H), 7.13 (d, j 

= 8.7, 2H), 5.73 (m, 1H), 5.11 (m, 2H), 4.28 (q, J = 7.2 Hz, 2H), 3.10 (dd, J = 6.3, 
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13.8 Hz, 1H), 2.86 (dd, J = 7.8, 13.8 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). 13C NMR (75 

MHz, CDCl3): δ 195.9, 170.3, 134.1, 132.2, 129.1, 128.7, 128.535, 128.4, 122.5, 

119.7, 65.2, 61.9, 36.7, 14.1. 

 Chiral HPLC: 73% ee, Regis Technologies Pirkle Covalent chiral stationary 

phase column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 13.89 min (minor), 

14.81 min (major). 

Ethyl 2-(4-tert-butylphenyl)-2-formylpent-4-enoate (8f).  

Yellow oil. HRMS: 289.1809 [calcd. for C18H24O3 

(M+H): 289.1804]. 1H NMR (300 MHz, CDCl3): δ 9.93 

(s, 1H), 7.42 (d, J = 6.7 Hz, 2H), 7.18 (d, J = 6.7 Hz, 

2H), 5.90 (m, 1H), 5.15 (d, J = 18.9 Hz, 1H), 5.10 (d, J 

= 12.3 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.15 (dd, J = 6.3, 14.1 Hz, 1H), 2.86 (dd, 

J = 8.1, 13.8 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3): δ 196.2, 

170.8, 151.0, 132.8, 131.8, 126.8, 126.4, 119.3, 65.2, 61.5, 36.5, 34.4, 31.1, 14.0. 

Chiral HPLC: 79% ee, Regis Technologies Pirkle Covalent chiral stationary phase 

column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 11.59 min (minor), 12.33 min 

(major). 

[α]D
27: = + 83.00 (c = 0.035, EtOAc). 
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Ethyl 2-formyl-2-(naphthalen-2-yl)pent-4-enoate (8g).  

yellow solid. HRMS: 283.1360 [calcd. for C18H19O3 

(M+H)+ : 283.1328] 1H NMR (300 MHz, CDCl3): δ 

10.02 (s, 1H), 7.91–7.34 (m, 7H), 5.82 (m, 1H), 5.19 

(d, J = 18 Hz, 1H), 5.13 (d, J = 9.9 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 3.25 (dd, J = 

6.3, 13.8 Hz, 1H), 3.01 (dd, J = 8.1, 13.8 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H). 13C NMR 

(75 MHz, CDCl3): δ 196.4, 170.8, 133.3, 132.7, 132.4, 128.9, 128.4, 128.2, 127.6, 

126.8, 126.7, 126.6, 124.7, 119.3, 65.8, 61.8, 36.8, 14.1. 

Chiral HPLC: 75% ee, Regis Technologies Pirkle Covalent chiral stationary phase 

column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 28.17 min (minor), 32.92 min 

(major). 

[α]D
27: = + 48.50 (c = 0.067, EtOAc). 

HRMS (ESI): Calculated (m/z) for C18H19O3 (M+H)+ : 283.1328, Found 

283.1360.  

Ethyl 2-(4-bromophenyl)-2-formylpent-4-enoate (8h).   

Yellow oil. HRMS (M+H)+ : 311.0274 [calcd. for 

C14H16O3Br (M+H)+ : 311.0283].1H NMR (300 MHz, 

CDCl3): δ 9.88 (s, 1H), 7.54 (d, j = 8.7, 2H), 7.13 (d, j = 

8.7, 2H), 5.73 (m, 1H), 5.11 (m, 2H), 4.28 (q, J = 7.2 Hz, 2H), 3.10 (dd, J = 6.3, 

13.8 Hz, 1H), 2.86 (dd, J = 7.8, 13.8 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). 13C NMR (75 
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MHz, CDCl3): δ 195.9, 170.3, 134.1, 132.2, 129.1, 128.7, 128.535, 128.4, 122.5, 

119.7, 65.2, 61.9, 36.7, 14.1.  

Chiral HPLC: 71% ee, Regis Technologies Pirkle Covalent chiral stationary phase 

column, 98:02 hexane/ethanol, 0.5 mL/min, 220 nm, 14.57 min (minor), 15.57 min 

(major). 

[α]D
27: = + 78.30 (c = 0.058, EtOAc). 

HRMS (ESI): Calculated (m/z) for C14H16O3Br (M+H)+ : 311.0283, Found 

311.0274. 

3.2. Synthesis of (Z)-ethyl 3-((E)-but-2-en-1-yloxy)-2-phenylacrylate (14): 

General procedure:  

Ethyl 2-aryl-3-hydroxyacrylate 3 (1.0–5.0 mmol) was dissolved in freshly distilled 

dichloromethane (5–10 mL) under nitrogen. Bu4NI (0.1 equiv.), crotyl bromide (1.2 

equiv.), and potassium hydroxide (10 equiv.) were added, and the reaction mixture 

was stirred at room temperature until reaction completion was confirmed by NMR. 

The reaction was quenched by adding saturated NH4Cl, and the aqueous layer 

was extracted with diethyl ether (2 × 25 mL). The organic extracts were combined 

and dried over Na2SO4. The organic layer was then passed through a silica plug 

and the solvent was removed by rotary evaporation. Pure product was isolated by 

column chromatography (5–10% ethyl acetate in pentane) and identified by 1H 

NMR. 1H, 13C NMR and HRMS were applied to characterize the new compounds. 
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(Z)-ethyl 3-((E)-but-2-en-1-yloxy)-2-phenylacrylate (14):  

Yellow oil. HRMS: 247.1334 [calcd. for C15H18O3 (M+H): 

247.1329]. 1H NMR (300 MHz, CDCl3): δ 7.66 (s, 1H), 

7.45-7.30 (m, 5H), 5.85 (m, 1H), 5.63 (m, 1H), 4.47(d, J = 

4.0 Hz, 2H), 4.26 (q, J = 7.1 Hz, 2H), 1.77(d, J= 6Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3):δ 167.9, 157.8, 132.7, 132.4, 130.2, 127.6, 126.9, 

124.7, 111.7, 75.1, 60.2, 17.8, 14.3. HRMS (ESI): Calculated (m/z) for C15H18O3 

(M+H)+ : 247.1329, Found 247.1334. 

General procedure for the synthesis of compound 15 and 16: 

In an oven dried and desiccator-cooled sealable test tube was added Pd(PPh3)4 

(5.0 mg, 0.0045-0.01mmol, 0.050 equivalent) at room temperature under argon. 

Previously degassed dichloromethane (3 mL) was added to the flask and the 

mixture was stirred for 15 min until it was homogeneous and a golden yellow color 

persisted. (Z)-Ethyl 3-((E)-but-2-en-1-yloxy)-2-phenylacrylate 14 (50.0 mg, 0.203 

mmol, 1.0 equivalent) was then added via syringe.  The reaction was stirred for 

overnight, unless otherwise mentioned. The reaction mixture was then passed 

through a thick pad of silica plug and the solvent was removed in vacuo. The pure 

product 15 and deformylated product 16 was isolated by column chromatography 

(5–10% ethyl acetate in Hexane) and identified by 1H NMR. 1H, 13C NMR and 

HRMS were applied to characterize the new compounds. 
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Scheme 53. Synthesis of compound 15 and 16 from o-crotylated substrate 14.  

(E)-ethyl 2-formyl-3-methyl-2-phenylpent-3-enoate (15):   

Yellow oil. HRMS: 247.1334 [calcd. for C15H18O3 (M+H): 

247.1329]. 1H NMR (300 MHz, CDCl3): δ 9.87 (s, 1H), 7.40-

7.21 (m, 5H), 5.90 (m, 1H), 5.1 (m, 1H), 4.98(m, 2H), 4.36 (q, 

J = 7.1 Hz, 2H), 3.46 (m, 1H), 1.33(t, 3H), 1.1 (t, 3H). 13C NMR (75 MHz, CDCl3):δ 

196.2, 170.3, 139.1, 134.2, 128.8, 128.6, 127.9, 116.3, 69.4,61.6, 41.2, 16.5, 14.1. 

HRMS (ESI): Calculated (m/z) for C15H18O3 (M+H)+ : 247.1329, Found 247.1334. 

 (E)-ethyl 2-phenylhex-4-enoate (16):  

Yellow oil. HRMS: 219.1385 [calcd. for C14H18O2 (M+H): 

219.1380] 1H NMR (300 MHz, CDCl3): δ 7.35-7.30 (m, 

5H), 5.50 (m, 1H), 5.34 (m, 1H), 4.14 (m, 2H), 3.60 (m, 

1H), 2.78 (m, 1H), 2.45(m, 1H), 1.63(d, 3H), 1.24 (t, 3H). 13C NMR (75 MHz, 

CDCl3): δ 173.6, 138.9, 128.5, 127.9, 127.8, 127.6, 127.1, 60.6, 52.1, 36.7, 17.9, 

14.2. 

HRMS (ESI): Calculated (m/z) for C14H18O2 (M+H)+ : 215.1380, Found 215.1385. 
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 II. SYNTHESIS OF CHIRAL TRYPTOPHAN ANALOGS AND 

STUDIES TOWARDS SYNTHESIS OF TRYPROSTATIN A AND B. 

CHAPTER 4. SYNTHESIS OF ASYMMETRIC TRYPTOPHAN  

4.1.1. Introduction 

Optically active tryptophans have been regarded as important components in the 

areas of both synthetic and medicinal chemistry.49 Ring-A substituted tryptophans 

have been utilized in the design and synthesis of many biologically active 

compounds, including indole-based alkaloids, which have recently been receiving 

attention for their anti-cancer properties.50 Several methods are known to 

effectively synthesize enantiopure tryptophans, but most strategies are only 

suitable for a particular species of tryptophan. 51 Many of these methods use 

stoichiometric amounts of chiral auxiliaries and extensive multistep syntheses, and 

often involve problematic separation of isomers obtained in the alkylation and 

annulation steps.51 In recent years, asymmetric phase-transfer catalysis (PTC) has 

been established as a powerful tool in the synthesis of chiral mono- and di-

substituted α-amino acids.52, 53 To date, the only reported asymmetric substitution 

of this type utilizes a relatively unstable Boc-protected indole to synthesize α-

methyl tryptophan in 78% yield and 91% ee,53e but there has not been a general 

synthesis of chiral tryptophans via PTC reported. In this paper, we describe a 

simple, cost-effective, one-pot synthetic procedure that can be used to prepare 

chiral tryptophan derivatives via a phase-transfer-catalyzed (PTC) asymmetric 
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alkylation reaction. We believe that this approach is the most economical and 

versatile process for synthesizing these important chiral building blocks. 

4.1.2. Indole and Tryptophan  chemistry 

In our group we have a procedure 54 for the synthesis of substituted indole ethyl 

ester 19, starting from substituted o-nitro aldehyde 17 in two steps. In the first step 

Bronsted acid catalyzed formation of hydoxyarylacrylate 18 , which after 

hydrogenation fromed indole compound 19 in good yield (Scheme 54 ). 

CHO

NO2R

HBF4⋅⋅⋅⋅OEt2(10 mol%) 
N2CHCO2Et (1.2 eq.)

CH2Cl2,    
O or -78 °C

NO2R

COOEt

OH

H

Pd/C, H2

MeOH N
H

R

COOEt

17 18 19

R=H, 5-MeO, 

4,5-MeO,
4-OCH2O-5, 
5-Cl

50-86% yield 62-90% yield

 

Scheme 54. Synthesis of indole-3-ethyl ester 19, from substituted o-

nitrobenzaldehyde. 

A series of indole-based indole-3-carboxamides could be efficiently synthesized 55 

from various indole-3-carboxylates using an amidoaluminum-mediated strategy 

(Scheme 55). The treatment of ethyl indole-3-carboxylates bearing a range of 

substitution patterns on the indole ring with various amidoaluminum complexes, 

led to the corresponding 1H-indole-3-carboxamides in yields up to 75%. Reduction 

by diisobutylaluminum hydride afforded the corresponding gramines in 63-85% 

yield. This is the first reported example of amidoaluminum complexes of type 
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Al2(CH3)4(NR2)2 promoting facile amidation of relatively inert indole esters. 

1) PhMe, 100 °C

2) H2O

N

CO2Et

SO2Ph
R1

AlMe2(NMe2)2
Amidoaluminum

N

SO2Ph
R1

O

N(Me)2

1) DIBAL-H
diisobutylaluminum
hydride
PhMe, 50 °C

2) H3O+ N

SO2Ph
R1

N(Me)2

21 22
indole-3-carboxamide

20

R1 Yield 21 Yield 22

H 77 94

5-MeO 73 87

6-MeO 64 90

5-Br 61 65
 

Scheme 55. Synthesis of gramine analogs from indole ethyl ester. 

Since first report by Snyder 56, gramine and its methiodide salts has been used for 

the synthesis of tryptophan. The quaternary ammonium salt was condensed with 

compounds having active methylene groups such as acetylaminomalonic ester to 

give aminodiester compound. After subsequent hydrolysis racemic tryptophan was 

synthesized in moderate yield (Scheme 56). 
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H
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H
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NH2

dl-tryptophan
45%yield

1,4 dioxane
63-70%yield

∆∆∆∆

-2CH2CH3

H2O
reflux

acetyltryptophan

∆∆∆∆

Alkaline Hydrolysis

Saponification

 

Scheme 56. Synthesis of racemic tryptophan from gramine. 

In 2007 Cook group reported 51e the synthesis of 4-methoxytryptophan in good 

yield and optical purity. Before that it was made via a kinetic resolution of 

tryptophan produced by the use of immobilized penicillin G acylase reported by 

Ley et al. In previous studes they found that the Larock heteroannulation 

concomitant with Schollkopf chiral auxiliary is a powerful method for the synthesis 

of ring-A substituted indole derivatives and has been utilized for the regiospecific 

synthesis of both 11- and 12-methoxy-substituted indole alkaloids. Hydrolysis of 

the Schollkopf chiral auxiliary along with the loss indole 2-silyl group provided with 

a high yielding synthesis of 4-methoxy tryptophan (Scheme 57).  Better selectivity 

was achieved when a bulky silyl-substituted internal alkyne is used as a substrate 

also from the steric interactions between the ortho substituent and the substituent 

on the alkyne.  
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Scheme 57. Synthesis of chiral 4-methoxytryptophan using Larock hetero 
annulations and chiral Schollkopf auxiliary. 

 

Reisman group in 2012 reported 57 the tandem Friedel−Crafts conjugate addition/ 

asymmetric protonation reaction between 2-substituted indoles and methyl 2-

acetamidoacrylate. The reaction is catalyzed by (R)-3,3′-dibromo-BINOL in the 

presence of stoichiometric amount of SnCl4.  BINOL·SnCl4 complex  acts as a 

catalyst for this  tandem conjugate addition /asymmetric  protonation reaction. 

They have reported a range of indoles furnished synthetic tryptophan derivatives 

in good yields and high levels of enantioselectivity (Scheme 58). 
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CO2Me
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Scheme 58. Enantioselective Synthesis of Tryptophan Derivatives by a 

TandemFriedel−Crafts Conjugate Addition/Asymmetric Protonation Reaction. 

 

4.1.3.  Phase transfer catalysis: general concepts and mechanisms of 

action  

In 1946, the first example of a phase transfer catalyzed reaction was reported on 

the alkylation reaction of a sodium carboxylate salt. During the reaction the phase 

transfer catalyst, benzyltriethylammonium chloride is formed in situ by the attack 

of trimethylamine base to benzyl chloride (Scheme 59).58 

 

 

Scheme 59. First report of phase transfer catalysis . 

Starks established the fact that there is a significant increase in the reaction rate 

for the tetralkyammonium or tetralkylphosphonium catalyzed reaction between an 



88 
 

 
 

aqueous solution of sodium cyanide and organic solution of an alkyl halide 

(Scheme 60). It was in 1971 that Starks for the first time reported the term ‘phase 

transfer catalysis’59. 

 

 

Scheme 60. Phase transfer catalyzed reactions reported by Starks. 

 

 

Figure 14. Mechanism for halide displacement by cyanide ion catalyzed by PTC. 

 

Because of the insolubility of NaCN in the organic phase the reaction is incapable 

to proceed without the help of a PTC. Therefore, electrophile and nucleophile are 

unable to meet and react. By using ion exchange at the interface of organic and 

aqueous phase PTC “shuttle” the cyanide ion into the organic phase. From the 

interface, the new ion pair (Q+CN-) then travels to the organic phase where it is 
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permitted to readily react with the electrophile (Figure 14). This mechanism is 

known as the extraction mechanism, when the organic phase reaction is rate 

determining step, like the reaction between cyanide and octyl bromide in the above 

example. On the other hand, when the transfer of the ion from aqueous solution to 

the organic phase (the transfer step) is rate determining step, the mechanism is 

known as the interfacial mechanism.  

Factors affecting the rate at which the transfer of ions into the organic phase takes 

place include: 

a) Interfacial tension: An increase in the interfacial tension resulted from the decrease 

of the interfacial area, which resulted in lowering the transfer rate from the aqueous 

into the organic phases. Due to an increased interfacial tension, highly 

concentrated solutions and non-polar solvents result in a decrease of the interfacial 

area. 

b) Stirring: Formation of tiny droplets present in emulsions can greatly increase the 

interfacial area leading to enhanced reaction rates. High stirring speeds can help 

to form these tiny droplets thereby generate larger surface area.. 

c) The cation bulkiness of PTC: Typically, unsymmetrical cations allow closer 

approach of the cation to the interface, boosting the transfer step. Bulkier alkyl 

groups lower the rate in the transfer step by a decrease of the effective 

concentration of the cations at the interface. 

d) Nature of the anion in the PTC: Larger anions that are weakly hydrated for example 

iodide and perchlorate allow easier access to the interface from the organic phase. 

The reverse is true for small anions such as hydroxide or fluoride that are hydrated 

with much greater ease. 
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Phase transfer catalyzed reaction are affected by the following variables: 

 

a) Catalyst:  There are some factors such as catalysts ability to promote the 

transfer of the substrate anion into the organic phase, the surfactant property 

of the catalyst, transfer rates depends on the shape and size of the catalyst. 

Moreover, in the activation of the anion for reaction towards reactant in the 

organic phase, the catalyst may perhaps be a major factor. Under the 

commonly used basic conditions, many phase transfer catalysts are capable 

to go through a Hoffmann elimination. For that reason a catalyst should be 

selected that will be practically stable under the strong basic conditions 

employed. 

b) Concentration: Concentration plays an important role in phase transfer 

catalysis. The use of more concentrated solutions leads to an increased 

interfacial tension and a decreased transfer rate. The transfer of anions into 

the organic phase will be promoted by using more concentrated solutions, 

provided that this is not the limiting factor, thereby promoting formation of the 

catalyst substrate complex.  

 

c) Solvent: Choice of solvent plays important role because it can affect both the 

rate of the reaction taking place in the organic solvent and the interfacial 

tension, which can affect the transfer rate. Commonly dichloromethane is used 

as a solvent because of its capacity to readily dissolve most phase transfer 

catalysts. 

d) Temperature: Generally, in the presence of base and at high temperature 

phase transfer catalyst decomposes, therefore a temperature should be 
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selected for optimal rate of reaction while circumventing decomposition of the 

catalyst. 

 

The use of phase transfer catalysis also presents severak practical advantages: 

1) Expensive and stronger, moisture sensitive organic soluble bases such as 

MHMDS bases (M= Li, Na, K etc.), NaH, t-BuOK etc can be replaceded by 

inexpensive inorganic bases e.g., K2CO3, NaOH, KOH. The work-up process is 

also simplified and reaction can be done in ambient condition it does not require 

special conditions such as an inert atmosphere. 

2) There are many reactions that have been reported with High % yields, 

enantioselectivity and purity. 

3) The reactions are generally cost effective and be likely to decrease 

industrial waste. 

4) The reactions are low maintenance and have the potential for scale-up, which is 

advantageous for industrial processes. 

There are many different reactions that have been successfully accomplished 

using phase transfer catalysis. To mention just a few of the reactions that have 

found application in asymmetric catalysis via phase transfer catalysis include: 

alkylations, Michael additions, aldol reactions, cyclopropanations, epoxidations, 

Darzens reactions, oxidations  and aziridinations.60 To illustrate the mechanism of 

the asymmetric phase transfer catalyzed reaction,the asymmetric alkylation of t-

butyl glycinate esters is described (Figure 25). 

 



92 
 

 
 

 

Figure 15. Mechanism for phase transfer catalyzed alkylation of Schiff bases. 

 

Active methylene or methine hydrogens alkylation happens via the interfacial 

mechanism. Specifically, the exchange of ions taking place at the interface 

between the conjugate base of the substrate and the quaternary ammonium salt 

is the rate determining step (RDS). Therefore organic soluble enolate comes in 

contact with a quaternary ammonium ion as the counter ion. At the interface, when 

the glycinate Schiff base comes in contact with water soluble base, the glycinate 

becomes deprotonated, resulting the related enolate ion (Figure 25). At this point 

it is critical for the phase transfer catalyst to quickly exchange ions with the enolate, 

or else the enolate will directly react with the electrophile at the interface, forming 

racemic product. At the interface, after the ion exchanges between enolate and the 

PTC, it become organic soluble and goes into the organic phase, where it will react 
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with the electrophile in an asymmetric fashion with the help of the close-fitting ion 

pair formed between the chiral quaternary ammonium ion and prochiral enolate. 

 

 

4.2. Results and discussion 

4.2.1 Procedure for the synthesis of Tryptophan 

In this study, a cinchona-derived phase-transfer catalyst was employed in the first 

reported PTC synthesis of chiral tryptophans, with varying substitution patterns, 

using a protected glycine Schiff base and various gramine derivatives. The first 

experiment, using substrate, glycine Schiff base , catalyst , and 50% aqueous 

NaOH/CH2Cl2 resulted in a disappointing racemic mixture of product with a 

chemical yield of 15% and reaction time of 50 h ( Scheme 61). Such alkylation 

using gramine has been thoroughly studied in achiral systems with an intermediate 

3-methylene- indolenine (Scheme 61) being identified.[6] Low chemical yield was 

attributed to the arduous task of eliminating (CH3)2NH to generate the product. To 

offset this matter, gramine was converted to a quaternary salt using CH3I, which 

resulted in a much improved chemical yield of 75% ( Scheme 62), albeit no 

asymmetric induction. This may be due to the fact that gramine salt is very soluble 

in water, and very insoluble in dichloromethane, which is not an ideal condition for 

an asymmetric PTC reaction. 
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Scheme 61. Reaction of gramine 23  with glycinate Schiff base  26 in the presence 

of the phase transfer catalyst 27 and an external base. 
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4.2. 2. Optimization study for the synthesis of chiral Tryptophan 
analogs. 

N

R1

CH3I
N

R1 N

R1

NC(Ph)2

O
Ot-Bu

23 R1=H, 

29 R1=TIPS,

C6H6, 24h, rt

28 R1=H, 

30 R1=TIPS,

NaOH/H2O  (20eq)

Schiff base, 
PTC(1 eq)

CH2Cl2, rt

24 R1=H,  75%, 0% ee

31 R1=TIPS, 63%, 84% ee

NMe2
N(Me)3 I

 

Scheme 62. Synthesis of quaternary salt  by reaction of gramine  with CH3I, 

followed by alkylation with glycinate  under phase-transfer conditions using phase 

transfer catalyst  and external base. 

In order to improve the asymmetric induction, we attempted to change the polarity 

of the quaternary salt, so it became very soluble in dichloromethane and partially 

soluble in water. By introducing a bulky hydrophobic triisopropylsilyl (TIPS) 

protecting group on the indolylic nitrogen of the substrate ( Scheme 62), we 

managed to improve the optical yield (84 %ee) of the PTC alkylation reaction using 

1 eq of catalyst ( Scheme 62). In addition, the TIPS group was removed during the 

alkylation process. We screened some other commercially available catalysts to 

determine if there are any other catalysts that would be more effective than O-Allyl-

N-(9-anthracenylmethyl)-cinchonidinium bromide catalyst (scheme 61)  for this 

alkylation reaction. From our results as summarized in Scheme 63 it was revealed 

that  9-anthracenyl catalyst was the catalyst of choice for best optical yields. 
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Scheme 63. Results from some commercially available phase-transfer catalysts 

in the alkylation reaction. 

Further studies revealed that changing the quaternization reagent from CH3I to 4-

(trifluoromethoxy) benzyl bromide (Scheme 63) eliminated the protection/de-

protection steps, allowing for the quaternization and chiral alkylation steps to be 
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carried out in one-pot (Scheme 64). The one-pot asymmetric alkylation was a 

success due to fact that the salt formed from 4-(trifluoromethoxy) benzyl bromide 

and gramine was found to be insoluble in water. Changing quaternization reagents 

from CH3I to 4-(trifluoromethoxy) benzyl bromide ( Scheme 64), not only rendered 

a one-pot transformation feasible, but also resulted in both an increase in overall 

percent yield and a shorter reaction time (<1h) (Figure 16). The 1H NMR studies 

showed no evidence of indolenine formation in the one-pot process using 4-

(trifluoromethoxy) benzyl bromide  at 25 °C, which suggests that alkylation might 

be occurring via nucleophilic substitution rather than elimination-addition. This was 

further supported by methylating the indolylic nitrogen  and observing minimal loss 

in yield and induction (Scheme 64).  

 

Figure 16. Screening of quaternization reagents using gramine under ambient 

conditions 
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Scheme 64. One-pot synthesis of chiral tryptophanate  by reaction of gramines 

with glycinate and 9-anthracenyl chinchonindin catalyst respectively using 

quaternization reagent 7 under ambient conditions. 

 

In order to further improve the chemical and optical yields some variables were 

studied for the alkylation reaction in dichloromethane. Increasing the concentration 

of aqueous NaOH from 10% to 50% resulted in increase of optical yield. Changing 

base from 50% aqueous NaOH to 45% aqueous KOH resulted an increase in 

optical yield from 65% ee to 80% ee. Other common bases such as CsOH and 

Ba(OH)2 did not improve the chemical or optical yields of the product. Further 

screening of solvents like THF (6% ee), dioxane (84% ee) and toluene (71% ee) 

showed that similar results were obtained with CH2Cl2 and dioxane, leading to 

slightly higher enantioselectivity. Lowering the reaction temperature from 25 °C to 

–30 °C resulted in a further increase in optical yield; temp (% ee, time): 25 °C (80%, 

2h), -30 °C (84%, 8h). However, further cooling (-78 °C) increase the reaction time 

to 15h but gave no additional improvement in optical yield. The low temperature 
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reactions were run in dichloromethane as the dioxane freezes at subzero 

temperature. Although we had determined that increased reaction rates and 

selectivity is achieved with higher base concentrations, the effect of water on 

enantioselectivity was also studied (Table 9). We discovered that a minimum of 6 

equivalents of water is needed to achieve an excellent optical yield of the product 

(entry 2, Table 9). In these reactions, a minimum 20 mol% of catalyst is required 

for best chemical and optical yields.  
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Table 9. Effects of base and substrate concentration on asymmetric PTC of 

gramine. 

1) 4-(CF3O)BnBr (1 equiv), 25 °C, 0.5 h

2) base (20 eq), glycinate(1 equiv)

cat (20 mol%), CH2Cl2, 25 °C
N
H

NMe2

N
H

NC(Ph)2

Ot-Bu
O

23 24  

Run Conc(gramin
e)[c] 

Base 

(% aq) 

Time (h) % Yield[d] % ee[e] 

1 0.10 10% NaOH > 24 18 50 

2 0.10 50% NaOH 8 47 75 

3[b] 0.01 50% NaOH 16 42 71 

4 0.10 10% KOH 5 65 65 

5 0.10 45% KOH 2 >95 84 

6 0.10 10% KOH 2 97 80 

7 0.10 10% CsOH 3 18 59 

8 0.10 10% Ba(OH)2 13 16 46 

9 0.10 25% K2CO3 N.R.[f] 0 0 

[a] 0.10 M gramine in CH2Cl2/aq base (20 equiv), 25 °C. [b] 0.01 M gramine in 

CH2Cl2. [c] Molar. [d] Yield determined by HPLC. [e] Determined by chiral HPLC 

using: Chiralcel-OD column, 5% IPA in heptane, 254 nm DAD, 1 mL/min flow rate, 

40 °C column temperature. [f] No reaction. 
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Table 10. Results of PTC reaction in varying amount of water. 

N
H

NMe2

2) glycinate (1eq), 

cat (20mol%)

solid KOH (20eq), -30°C

1)  benzyl bromide (1eq), 
CH2Cl2, 25°C, 30min

N
H

NC(Ph)2

Ot-Bu
O

23 24
 

 

Entry Water (eq) Time (h) % Yield[a] % ee[b] 

1 100 8 80 85 

2 6 18 80 92 

3 3 19 >95 83 

[a] Yield determined by HPLC. [b] Determined by chiral HPLC using: Chiralcel-OD 

column, 5% IPA in heptane, 254 nm DAD, 1 mL/min flow rate, 40 °C column 

temperature. 

Once the alkylation variables were optimized, we began structure-activity-

relationship studies of catalyst  (Scheme 64) in the asymmetric one-pot alkylation 

of gramine and glycinate schiff’s base in CH2Cl2 at –30°C using solid KOH with 6 

eq of water. The study revealed that both the bromide counter-anion and the N-

anthracenyl group play an intimate role in the ability of catalyst to induce high 
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optical yield. Changing the counter-anion from bromide to chloride resulted in a 

decrease in optical yield to 60% (Scheme 64), which may be due to increased 

solubility of the catalyst in water. Substituting the anthracenyl group with a less 

bulky 3,4,5-trifluorobenzyl group also resulted in a decrease in optical yield to 70% 

(Scheme 65). Steric influences were believed to be the contributing factor toward 

increasing enantiodifferentiation. 

N

O N

H2C

Cl

H2C

Counter-ion effect

N

O N

H2C

Br

H2C

N-benzyl group effect

(ee% < 60%) (ee% < 70%)

N
H

NMe2

2) (R,R)-cat (0.2eq), KOH (20eq)

     H2O (6eq), -30°C, 18 h

NPh

Ph

CO2t-Bu

1eq

1) 4-(CF3O)BnBr, 25°C
30 min, CH2Cl2

N
H

NC(Ph)2

Ot-Bu
O

F

F
F

Gramine Tryptophan derivative

23 24

27
38

 

 Scheme 65. Structure-activity-relationship (SAR) studies in the asymmetric 

alkylation of gramine with glycinate with external base in a one-pot reaction. 

 

4.3. Scope of chiral phase transfer catalyzed reaction for the synthesis 

of Tryptophan analogs. 
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After optimizing our reaction with gramine, which resulted in a good yield and 

excellent %ee, we expanded the scope of our study to other gramine-type 

substrates, specifically ring-A substituted gramines such as 5-methoxy, 6-

methoxy, and 5-bromogramine (Scheme 66).  All the gramines tested are 

commercially available and provided good yields with excellent optical purity. In 

conclusion, a systematic study of substrate, catalyst, reagents, and reaction 

conditions has led to a simple, enantioselective synthesis of L-tryptophan 

derivatives using chiral phase-transfer catalysis in a three-component/one-pot 

fashion 61. The configuration of compounds was determined by converting them to 

the known L-tryptophans and by measuring their optical rotations. 
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Scheme 66. Optimal asymmetric alkylation conditions of various gramines. 

CHAPTER  5.  APPLICATION OF TRYPTOPHAN CHEMISTRY 

TOWARDS THE TOTAL SYNTHESIS OF TRYPROSTATINS. 

5.1. Synthesis of Tryprostatins 

Tryprostatins are diketopiperazine, tryprostatin A reverses the resistance of cancer 

cells against antitumor drugs  by arresting cell cycle progression at the G2/M phase 

and also known to inhibits the ABC-transporter breast cancer resistance protein. 

Early synthesis of Tryprostatin was done by Danishefsky’s group in 1996 using the 

following scheme 61. This goal was achieved by cleavage of the N-phthaloyl group 

42, followed by coupling of the resultant amino ester with N-Boc-L-proline acid 

fluoride to afford first amide linkage 44. Deprotection of Boc-group led to the next 
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intermediate 45 and then, by diketopiperazine formation, to Tryprostatin B 

46(Scheme 67).  
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Tryprostatin B

42 43

44 45

46  

Scheme 67. Total synthesis of Tryprostatin B starting from chiral tryptophan. 

Professor Cook’s group synthesized Tryprostatins in 2002 and 2008 using slightly 

different procedures 62.  They achieved this using the reaction scheme shown 

below (Scheme 68). The synthesis began with indoles 47,  which were then 

coupled with the anion of the Scho¨llkopf chiral auxiliary, to afford the trans 

diastereomer 49  with 100% diastereoselectivity. The 2-isoprenylpyrazine 

derivatives of Indoles 50 were obtained by treating with LDA at  -78 oC, followed 

by addition of isoprenyl bromide. The pyrazine group was removed  under acidic 

conditions  in 94% yield to afford the 2-isoprenyl tryptophan 51. The coupling of 2-

isoprenyl tryptophan with Fmoc -D-proline using triethylamine as the base was 
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followed by formation of the diketopiperazine ring. The Boc protecting group was 

removed from the indole N(H) function in refluxing xylene to afford Tryprostatin A 

and B 46. 
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N
H
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N
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H
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Scheme 68. Total synthesis of Tryprostatin A and B starting from 3-methyl indoles. 

In Professor Cook’s synthesis the Schöllkopf Chiral Auxiliary 52 is made from 

triphosgene  and L-valine (Scheme 69). 

H2N
OH

O triphosgene
(0.35eq)

HN

OO

O Glycine

HN

NH
O

O

Fresh

Et3O+BF4
-,

N

N
EtO

OEt

O O

O

Cl

Cl
Cl

Cl

Cl
Cl

CHCl3, Et3N
THF, 0°C CH2Cl2, rtTHF, 40-45°C

52  

Scheme 69. Synthesis of  Schöllkopf chiral auxiliary. 

In the synthesis they also have to Boc protected skatole 47 shown below which is 

not reported as a step in the synthesis (Scheme 70).  There are very few 

substituted skatoles commercially available to make derivatives with. 
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N
H

CH3

Boc2O 
DMAP

N

CH3

Boc

THF

47  

Scheme 70. Boc protection of indole amino group. 

One of the more current syntheses 63 from 2010 is shown in the synthetic scheme 

shown below (Scheme 71).  This synthesis has 11 steps a 30% yield and utilizes 

a toxic tin coupling reagent and triphosgene.  In this radical-mediated cyclization  

they focused on the synthesis of the isocyanide compound as a radical-cyclization 

precursor.  After the Sonogashira coupling between terminal alkyne and 2-

iodoformanilide 54 the resultant compound was selectively reduced to cis alkene 

56. Subsequent dehydration with triphosgene afforded the ortho-alkenyl 

isocyanide 57 and thus ready for a radical-mediated cyclization. Isocyanide 

compound was then subjected to established radical-cyclization conditions to give 

the 2-stannylindole followed by Pd mediated isoprenyl coupling at C-2 position to 

get compound 58. It  was then transformed into the corresponding amino acid  in 

a three-step sequence consisting of protection of the indole with a Boc group, 

hydrolysis of the acetonide, and oxidation of the resulting alcohol  to the carboxylic 

acid  withTEMPO. After condensation with l-proline methyl ester, the removal of 

the two Boc groups and cyclization completed the construction of diketopiperazine 

61. 
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Scheme 71. Total synthesis of Tryprostatin A from 2-iodo,5-methoxy aniline. 

5.2. RESULTS AND DISCUSSIONS 

In our attempt to synthesize tryprostatins, Huisman  proceeded with our proposed 

scheme which is complementary to the Cook group synthesis (Scheme 72).   After 

synthesis of asymmetric tryptophan 24 via phase transfer catalyzed reaction Indole 

will be protected with Boc-group 62. The compound will then undergo a C-2 

alkylation reaction to get compound 63 with isoprenyl bromide in presence of LDA 

at -78 oC. Subsequent hydrolysis and coupling of Fmoc-proline will afford 

tryprostatin B 46 (Scheme 72). 
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Scheme 72. Proposed total synthesis of Tryprostatins. 

This procedure was working well up until the synthesis of Boc-protected tryptophan 

62.  C-2 alkylation of 62 seems to be a problematic reaction in chiral tryptophan, 

after alkylation reaction Huisman isolated compound 65 that had the isoprenylation 

on the amino acids α-carbon. Alkylation happen at the most acidic proton at chiral 

center instead of C-2 position of indole structure for compound 63 (Scheme 73).  
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Scheme 73. Synthesis of indole C2-isoprenylated tryptophan. 

The problem was circumvented by making quaternary gramine salt 67 necessary 

for the PTC reaction and  C2-alkylation at the same step using 2.5 equivalent of 

isoprenyl bromide (Scheme 74). Then we proceeded with our proposed scheme.  

N

N

OO

N

N

OO

Br

n-BuLi

Br

-70°Cto rt, THF

Boc-gramine
Boc-protected 

Indole 2-isoprenyl salt

67
66

 

Scheme 74. Procedure for quaternary di-isoprenyl bromide salt 67 of gramine. 
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The next step is phase transfer catalyzed tryptophan synthesis, and we found that 

C-2 alkylation of gramine quaternary ammonium salt 67 is a totally different 

substrate than unsubstituted  regular tryptophan. Our established procedure for 

chirality induction via PTC reaction is ineffective for this new substrate, after 

optimization Huisman reported only 42% ee in 1,4-Dioxane solvent at room 

temperature (Scheme 75). 

N

N

Boc

n-BuLi 2.0 eq

Br CH3

CH32.5 eq

N

N

Boc N
H

N
Ph

Ph

O

O
Glycinate 45% KOH
R,R cat 0.2eq

1,4 Dioxane, rt 
95% yield
12 hr 42%ee

THF, -78 °C
80% yield
12 hr

66 67 68

 

Scheme 75. Preparation of tryptophan using gramine  isoprenyl salt. 

At this point of synthesis we avoided the alkylation at chiral center 65, but we are 

in need of a protocol to improve the enantioselectivity of phase transfer catalyzed 

reaction of C-2 alkylated substrate 67. In order to optimize the reaction for new 

substrate we again screened phase transfer catalysts (Figure 17) with our 

established protocol. Alkylation at C-2 position with bulky isoprenyl group might 

interfere with the chiral catalyst, so we tried different catalyst which is more open 

in their ammonium core such as catalyst 32. We found that catalyst 32  is 

moderately effective to induce higher enantioselectivity (50% ee) for the phase 

transfer catalysis reactions( Table 11, entry 4). 
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Figure 17 . Chiral phase transfer catalysts. 

Table 11. Catalyst screening for the synthesis of 68. 

N

N

OO

Br

O
N

O

N
H

N

O
O

PTC (20 mol%)
Base

Solvent

6867
 

Entry Catalyst Solvent Base %ee 

1. 27 1,4-Dioxane CsOH 39 

2. 34 1,4-Dioxane CsOH 39 

3. 33 1,4-Dioxane CsOH racemic 

4. 32 1,4-Dioxane CsOH 50% 
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5. 27 Tol:Dioxane(1:1) CsOH 65% 

6. 27 Tol:CHCl3(4:1) CsOH 49% 

 

Among the chiral catalysts screened for the transformation of 67, we found catalyst 

27 is the most effective one (Table 11, entry 5) which has previously been used 

for the synthesis of unsubstituted chiral protected tryptophan (Scheme 76). 

N

N

OO

Br

O
N

O

N
H

N

O
O

PTC (20 mol%)
45% KOH

Acetonitrile

N

O N

H2C

Br

H2C

27

6867

Scheme 76. Synthesis of 2-isoprenyl-N-diphenylmethylene-t-butyl ester 

tryptophan 68. 

 For further optimization we then screened different solvent system, base, and 

concentration of reactions using catalyst 27. Solvent polarity plays an important 

role in dissolving phase transfer catalyst and in maintaining the concentration of 

catalyst in organic phase and above all in the transfer process. Polar solvent can 

dissolve catalysts easily, but were found to be ineffective to induce chirality to the 

product ( Table 12, entry 5,8,9). Toluene and Dioxane were observed to be the 

most promising solvent for optimal catalyst solubility thereby found to afford more 

%ee than other solvents. So far equal mixture of toluene and dioxane provided the 
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highest enantioselectivity (Table 11, entry 7) .Surprisingly in the case of 1,4-

dioxane:hexane (1:1) lowering the polarity for dioxane, resulted in lower 

enantioselectivity( Table 12, entry 14) 

Table 12. Optimization of C-2 alkylated asymmetric Tryptophan synthesis. 

N

N

OO

Br

O
N

O

N
H

N

O
O

PTC, Base

Solvent

N

O N

H2C

Br

H2C

27

67
68

 

Entry Base Solvent 
Temp. 
(oC) 

Time in 
hours % Conv. % ee 

1. 45% KOH THF rt 18 95 racemic 

2. 45% KOH Ether rt 18 7 30 

3. 45% KOH Toluene rt 18 80 50 

4. 45% KOH EtOAc rt 18 10 37 

5. 45% KOH CH2Cl2  18 90 racemic 

6. 45% KOH 1,4 Dioxane  18 95 42 

7. 45% KOH Acetonitrile  18 80 20 

8. Anhyd.KOH THF rt 18 85 racemic 

9. Anhyd.KOH DMSO rt 12 80 15 

10. Anhyd.KOH Toluene rt 12 85 50 

11. KOH (solid) Toluene 0 12 50 30 
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12. KOH (solid) 
Toluene: 
Methanol (5:1) 

rt 
12 85 45 

13. LiOH 
Toluene:MeOH 
(5:1) 

rt 
12 

No 
reaction  

14. KOH Dioxane:Hexane rt 12  25 

 

In the mean time, Huisman completed the synthesis of achiral tryprostatin B.  After 

asymmetric synthesis of tryptophan, deprotection of amino group proceeded 

smoothly under 1M HCl in THF at room temperature( Scheme 77) 

N
H

N

O
O

N
H

NH2

O
O

1 N HCl 
THF, rt

6968
 

Scheme 77. Deprotection of tryptophan amino group. 

In the next step Fmoc-proline coupling of compound 69 was also achieved in 66% 

yield (Scheme 78), but the last step of the synthesis i.e., ring closing was found to 

be a difficult reaction. The bulky tert-butile group of tryptophan ester made amide 

cyclization an unfavored choice in the diketopiperizine 46 formation. Refluxing 

compound 70 in xylene didn’t work as reported by professor cook’s group. Our 

attempts to tranesterfication reaction with methanol and ethanol to make it into 

methyl and ethyl ester were found to be unsuccessful. This is due to the stability 

of the compound rendered by t-butyl ester, primary and secondary alcohol couldn’t 



116 
 

 
 

replace t-butyl group. This problem was avoided by running the cyclization reaction 

under microwave condition for just 10 min . 
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Scheme 78. Total synthesis of Tryprostatin B from gramine. 
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5.3. Future work: 

Synthesis of Tryprostatin A is in progress, corresponding tryptophan analogs has 

already been made. Once we have tryprostatin B made, our group can focus on 

making tryprostatin A.  Several other tryprostatin analogs could be made by 

varying R1  for Ring A substitution variation, R2 N alkylation, R3 C 2-position 

functionalization, R4 Different amino acid condensation (Figure 18 and 19).  Some 

derivatives at all positions have been tested by Professor Cook’s group.   
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Figure 18 . Substitution at different position of tryprostatin. 
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Figure 19. Potential targets for tryprostatin analogs by varying ring A substitution. 
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5.3.  General methods and Experimental 

General procedure: All procedures were performed under a dry nitrogen 

atmosphere using standard Schlenk techniques unless otherwise noted, all 

reaction vessels were flame dried under vacuum and filled with nitrogen prior to 

use.  Reagents were purchased from Aldrich Chemicals and used as is.  Flash 

chromatography was performed using EM Science F254 silica gel 60.  N-

(diphenylmethylene) glycine tert-butyl ester, sodium hydroxide, phase transfer 

catalysts and anhydrous sodium sulfate were purchased from Aldrich.  The 

chemical shifts (δ) are expressed in ppm relative to tetramethylsilane. CDCl3 was 

used as the solvent.  Previously 1H NMR or GC identified reported compounds.  All 

new compounds were additionally characterized by 1H NMR, 13C NMR and GCMS. 

 Instrumentation: 

All 1H (300 MHz), and 13C (75.5 MHz) NMRs were performed with a Burker 300 

and samples dissolve ni CDCl3 unless otherwise noted.  Enantioselectivity was 

obtained via chiral HPLC using a Waters setup including an Inline Degasser AF, 

2998 Photodiode Array Detector, 1525 Binary HPLC Pump equipped with Breeze 

Software.  This was equipped with a Chiralcel OD (column no. OD00CE-FF071) 

column using hexane and isopropanol at 254nm and a broad range channel from 

200-600nm column temperature was room temperature flow rate was 1 mL/min 

unless otherwise stated.   HPLC grade solvents were used in all HPLC analysis.   
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General Procedure for the Synthesis of tert-butyl 2-

(diphenylmethyleneamino)-3-(1H-indol-3-yl)propanoate: 

For each experiment, 1.0-5.0 mmol of the substituted gramine dissolved in 5-25 

mL of freshly distilled dichloromethane under nitrogen. 1 equivalent of 4-

(trifluoromethoxy) benzyl bromide was added and allowed to react. A tan slurry 

immediately resulted. After 1 hour N (diphenylmethylene) glycine-tertbutyl ester, 1 

equivalent, O-allyl-N-(9-anthracenylmethyl)-cinchoninium bromide, 0.2 

equivalents, were charged to solution through open air at ambient temperature. 

The reaction mixture was then cooled to –30 °C. While stirring, solid KOH 20 

equivalents were charged to the reaction mixture along with deionized water 6 

equivalents. Stirring was maintained at –30 °C for 8 hours. The crude reaction 

mixture was directly charged onto silica gel and subjected to flash 

chromatography, using 10% ethyl acetate pentane mixture. Product was then 

confirmed by NMR spectroscopy by comparing spectra to known 1H NMR. 1H, 13C 

NMR, High Resolution Mass spectra and elemental analysis were used to 

characterize the new compounds. %ee determined by HPLC. All HPLC 

chromatograms were run using Chiralcel OD column number OD00CE-FFO71.  

tert-butyl 2-(diphenylmethyleneamino)-3-(1H-indol-3-yl)propanoate(Scheme 

65; Compound 24); 

The general procedure was followed (10-20 hrs). Gramine (300 mg, 1.7 mmol), 

CH2Cl2 (10 mL) 4-(trifluoromethoxy) benzyl bromide (0.43 g, 1.7 mmol), N-

(diphenylmethylene) glycine-tert-butyl ester (0.502 g, 1.7 mmol), O-allyl-N-(9-
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anthracenylmethyl)-cinchoninium bromide (0.209 g, 0.3 mmol), solid KOH (2.0 g, 

36 mmol) and de-ionized water (0.2 mL, 11.1 mmol) were used to obtain the 

product (578 mg, 80% yield) as yellow oil. 1H NMR 

spectra matched.65 

1H 1.5 (s, 9H); 3.2-3.35(m, 2H); 4.1-4.4 (m, 1H; 6.6-7.7 

(m, 15H); 8.0(br. S 1H) 

 

tert-Butyl 2-(Diphenylmethyleneamino)-3-(5-methoxy- 1H-indol-3-

yl)propanoate (Scheme 65; Compound 39): 

 1H NMR (300 MHz, CDCl3): δ = 8.19 (s, 1 H), 7.59 

(d, J = 7.9 Hz, 2 H), 7.27–7.43 (m, 4 H), 7.15–7.20 

(m, 3 H), 6.93 (s, 1 H), 6.78–6.83 (m, 2 H), 6.61 (d, 

J = 7.5 Hz, 2 H), 4.33 (dd, J = 8.7, 4.5 Hz, 1 H), 3.69 

(s, 3 H), 3.44 (dd, J = 14.1, 4.5 Hz, 1 H), 3.30 (dd, J = 14.1, 8.7 Hz, 1 H), 1.47 (s, 

9 H). 13C NMR (75 MHz, CDCl3): δ = 171.4, 170.1, 153.6, 139.6, 136.1, 131.1, 

130.0, 128.7, 128.3, 128.0, 127.9, 127.6, 124.0, 112.0, 111.8, 111.6, 100.5, 81.0, 

66.6, 55.7, 45.2, 29.3, 28.0. HRMS: m/z [M + H]+ calcd. for C29H30N2O3: 455.2335; 

found: 455.2353. 

 

tert-Butyl 2-(Diphenylmethyleneamino)-3-(6-methoxy-1H-indol-3-

yl)propanoate (Scheme 65; Compound 40): 
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 1H NMR (300 MHz, CDCl3): δ = 8.39 (s, 1 H), 7.63–

7.71 (d, J = 7.9 Hz, 2 H), 7.28–7.41 (m, 4 H), 7.18–

7.25 (m, 3 H), 6.84 (d, J = 2.4 Hz, 2 H), 6.67–6.80 

(m, 3 H), 4.36 (dd, J = 8.4, 4.8 Hz, 1 H), 3.82 (s 3 

H), 3.46 (dd, J = 14.1, 4.8 Hz, 1 H), 3.27 (dd, J = 14.1, 8.4 Hz, 1 H), 1.48 (s, 9 H). 

13C NMR (75 MHz, CDCl3): δ = 171.5, 170.2, 156.1, 139.6, 136.7, 136.2, 130.1, 

128.7, 128.1, 128.0, 127.9, 127.6, 122.0, 119.4, 111.7, 109.0, 94.4, 80.9, 66.8, 

55.6, 45.2, 29.4, 28.0. HRMS: m/z [M + H]+ calcd. for C29H30N2O3: 455.2335; 

found: 455.2349. 

 

tert-Butyl 3-(5-Bromo-1H-indol-3-yl)-2-(diphenylmethyleneamino) 

propanoate (Scheme 65; Compound 41): 

 1H NMR (300 MHz, CDCl3): δ = 8.09 (s, 1 H), 7.80–

7.90 (d,J = 7.9 Hz, 2 H), 7.60–7.70 (m, 3 H), 7.18–

7.41 (m, 9 H), 7.00 (s, 1 H), 6.65 (d, J = 3.32 Hz, 2 

H), 4.24 (dd, J = 8.4, 4.8 Hz, 1 H), 3.36 (dd, J = 14.1, 

4.8 Hz, 1 H), 3.21 (dd, J = 14.1, 8.4 Hz, 1 H), 1.45 (s, 9 H). 13C NMR (75 MHz, 

CDCl3): δ = 171.0, 170.2, 135.9, 134.5, 130.0, 129.9, 128.6, 128.3, 128.2, 128.0, 

127.9, 127.4, 124.4, 124.3, 121.6, 112.4, 112.2, 112.0, 81.0, 66.4, 28.9, 28.0. 

HRMS: m/z [M +H]+ calcd. for C28H27BrN2O2: 503.1334; found: 503.1297. 
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Synthetic procedure for N Boc Gramine: 

 

Scheme 79. Preparation of Boc-protected gramine. 

This reaction was modeled after a very similar reaction discussed in Tetrahedron 

55 (1999) 10989-11000, compound 8 to 9.  A solution of gramine (3.7 g 0.021 mol 

1 eq.) in THF (90 mL) was made.  This solution was put into an addition funnel on 

a 250 mL three necked reaction vessel in an ice water cooling bath and added 

dropwise to a stirred solution of di-t-butyl dicarbonate (5.50 g 0.025 mol 1.2 eq.), 

4-(dimethylamino)pyridine (257 mg, 0.0021 mol 0.1 eq.), triethylamine (3.5 mL, 

0.0025 mol, 0.12 eq.) in THF (50 mL).  After stirring for 1.5 hours at room 

temperature, water was added to the reaction mixture.  The organic layer was 

separated and the aqueous layer was extracted twice with ether.  The combined 

extract was washed three times with water and then with brine solution and dried 

over sodium sulfate, and evaporated.  The residue was chromatographed over 

silica gel using hexane:ethyl acetate (5:1) as an eluent to give 5.18 g of Boc 

Gramine product in 90.0% yield.   

 

 

 



123 
 

 
 

Synthetic procedure for N+ diisoprenyl bromide salt of gramine 

N

N

OO

N

N

OO

Br

n-BuLi

Br

-70°Cto rt, THF
C16H22N2O2

Mol. Wt.: 274.36
C26H39BrN2O2
Mol. Wt.: 491.5  

Scheme 80. Synthesis of gramine quaternary salt 68. 

5.0 g (0.0182 mol, 1 eq.) Boc Gramine was weighed out in a beaker.  500 mL 

three-neck with thermometer adapter round bottom flask was oven dried for 3 

hours with stir bar inside.  It was removed from the oven and clamped.  On one 

neck rubber septum was inserted, in the other nitrogen outlet was inserted, at this 

point the boc gramine was charged to the flask via a powder funnel, and in the last 

neck nitrogen inlet was inserted,  as quickly as possible.  To the reaction vessel 

blue distilled THF (245) mL was charged via syringe.   The reaction mixture was 

allowed to stir for 1 hour to insure that all of the starting material was dissolved in 

the solution.  At this point solution is orange/peach in color.  Reaction vessel was 

cooled in a dry ice/acetone bath until reaction was -70 °C.  At this time n-butyl 

lithium (14.58 mL 2.5 M 0.03644 mol 2.0 eq.) was added dropwise to the reaction 

vessel via a syringe over 1 hour, maintaining a temperature range between -65 

and -70 °C.  At this point the reaction is bright red/orange.  After addition of n-butyl 

lithium reaction was let stir undisturbed for 1 hour and 30 minutes at -70 °C.  

Isoprenyl bromide (9.4 mL 0.08199 mol 4.5 eq.) was added to the reaction 
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dropwise.  After addition of isoprenyl bromide the color of the reaction mixture is 

orange.  At this point the reaction was left to warm overnight.  When returning the 

next day color of the reaction mixture was clear orange.  Deionized water (5 mL) 

was added to the reaction vessel, no reaction indicated that the n-butyl lithium was 

quenched.  At this point the solvent was removed using the roto vap.  After organic 

solvent was removed the water and residue was poured into a separatory funnel 

and extracted with dichloromethane three times (50 mL).   Organic layer was dried 

over sodium sulfate.  Solvent was removed via roto vap and high vac with cold 

finger.  Residue was purified using flash chromatography (10 x 6 cm silica gel) 

eluent was 5% methanol: 95% dichloromethane to provide a light brown solid 6.14 

g in 69% yield. See TLC plate developed in 9:1 Dichloromethane:Methanol 

observed with short range UV lamp and stained with ninhydrin stain and heated 

on a hot plate until colored.  Spot with Rf of 0.5 is product and has a purple/violet 

color when the TLC plate is developed in the ninhydrin stain. 

N

N

OO

Br

O
N

O

N
H

N

O
O

PTC
45% KOH

Acetonitrile
C26H39BrN2O2
Mol. Wt.: 491.5

C19H21NO2
Mol. Wt.: 295.38

C33H36N2O2
Mol. Wt.: 492.65

N

O N

H2C

Br

H2C

C37H37BrN2O
Mol. Wt.: 605.61

 

Scheme 81. Synthesis of protected C-2 alkylated tryptophan. 
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N-isoprenyl-2-isoprenylbocgramine (2 g, 0.004069 mol, 1 eq.) N-

(diphenylmethylene) glycine tert-butyl ester (0.004069 mol, 1.202 g) and O-allyl-

N-(9-anthracenylmethyl) cinchonidinium bromide (0.8192 mmol, 0.4961 g 0.2 eq) 

dissolved in acetonitrile (30 mL) in a 250 mL round bottom flask with a stir bar.  

Reaction mixture was allowed to stir for 30 minutes.  At this point the reaction 

mixture is a dark brown color with a light yellow precipitate that appears to be the 

phase transfer catalyst.  At this point 20 mL 45% KOH solution was added to the 

reaction mixture and allowed to stir, the aqueous layer was on the bottom and was 

clear and light yellow and the organic layer was dark brown and on the top.  

Reaction was allowed to stir for 20 hours; at this point the reaction has a dark layer 

on top and a clear orange layer on bottom.   A small sample was pulled from the 

reaction vessel, dissolved in CDCl3 and taken to the 300 NMR where I looked for 

the singlet at 4.1 representing the CH2 peak from the glycinate, disappearance of 

this peak indicates that the reaction has gone to completion.  From previous 

attempts at this experiment if the singlet at 4.1 remains add more KOH and let the 

reaction continue.  After confirmation that the reaction has gone to completion, 

solvent was removed from the reaction by rotovap leaving water and an orange 

residue on top of the water.  Dichloromethane (3x 50 mL) was added to the reaction 

vessel this solution was put into a separatory funnel with 50 mL deionized water 

diluting the water layer enough that the density becomes less than the 

dichloromethane.  Organic layer was collected and dried over sodium sulfate.  

Solvent was removed weight of this portion is 2.9158 g.  Thin layer 

chromatography (TLC) was used to identify a solvent system for column 
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chromatography, TLC indicated that mobile phase for the column should be 9:1 

Hexane:Ethyl Acetate.  Column used was 9 cm tall by 6 cm wide, isolating 1.21 g 

of product in 60.5 % yield.   
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                      APPENDIX A : PART I: Analytical Data  

a) Copies of 1H, 13C, HRMS, and HPLC Spectral Data   

Portrait 1, Compound 7a 
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Portrait 2 
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Portrait 3, Compound 7b 
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Portrait 4 
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Portrait 5, Compound 7c 
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Portrait 6 
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Portrait 7, Compound 7d 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

1
4

2
 

 

Portrait 8 
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Portrait 9, Compound 7e 
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Portrait 10 
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Portrait 11, HRMS 
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Portrait 12, Compound 7f 
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Portrait 13 
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Portrait 14, Compound 7g 
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Portrait 15 
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Portrait 16, HRMS 
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Portrait 17, Table 3, Compound 7h 
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Portrait 18 
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Portrait 19, Compound 8a 
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Portrait 20 
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Portrait 21, HPLC Data(Racemic) 
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Portrait 22, HPLC Data(chiral)   
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Portrait 23, Compound 8b 
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Portrait 24 
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Portrait 25, HPLC Data( racemic)  
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Portrait 26, HPLC Data( chiral) 
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Portrait 27, Compound 8c 
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Portrait 28 
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Portrait 29, HPLC Data(racemic)  
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Portrait 30, HPLC Data (chiral)     
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Portrait 31, Compound 8d 
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Portrait 32 
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Portrait 33, HPLC Data (racemic)  
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Portrait 34, HPLC Data (chiral)  
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Portrait 35, Compound 8e 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

1
7

0
 

Portrait 36 
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Portrait 37, HPLC Data( racemic) 
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Portrait 38, HPLC Data( chiral)     
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Portrait 39, Compound 8f 
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Portrait 40 
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Portrait 41, HPLC Data (racemic)    

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

1
7

6
 

Portrait 42, HPLC Data (chiral)    
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Portrait 43, Compound 8g 
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Portrait 44 
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Portrait 45, HRMS, Compound 8g 
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Portrait 46, HPLC Data(racemic)  
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Portrait 47, HPLC Data (chiral)  
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Portrait 48, Compound 8h 
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Portrait 49 
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Portrait 50, HPLC Data (racemic)    
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Portrait 51, HPLC Data (chiral)     
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Portrait 52, Compound 14 
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Portrait 53 
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Portrait 53, HRMS, Compound 14 
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Portrait 54, Compound 15 
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Portrait 55 
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Portrait 56, HRMS, Compound 15 
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Portrait 57, Compound 16 
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Portrait 58 
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Portrait 59, HRMS, Compound 16 
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APPENDIX B: PART II, Analytical Data         Portrait 60 

          tert-butyl 2-(diphenylmethyleneamino)-3-(1H-indol-3-yl)propanoate(Scheme 65; Compound 24); 
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Portrait 61 
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Portrait 62, HPLC traces for racemic tryptophan: 
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Portrait 63, HPLC traces for Chiral Tryptophan: 

 

 

 

 

 

 

P
e
a
k
1
0
 -

 1
5
.8

6
9

P
e
a
k
1
1
 -

 1
7
.5

1
5

A
U

-0.010

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

Minutes

14.80 15.00 15.20 15.40 15.60 15.80 16.00 16.20 16.40 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00 18.20 18.40 18.60

 Name Retention 

Time 

Area % 

Area 

Height Int 

Type 

Amou

nt 

Units Peak 

Type 

Peak 

Codes 

1

0 

Peak1

0 

15.869 3585

419 

7.33 77144 VV   Found Q20  

1

1 

Peak1

1 

17.515 1076

641 

2.20 19864 VB   Found Q20  



 
 

 
 

1
9

9
 

Portrait 64 

tert-Butyl 2-(Diphenylmethyleneamino)-3-(5-methoxy- 1H-indol-3-yl)propanoate (Scheme 65; Compound 39): 
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Portrait 65 
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Portrait 66 

tert-Butyl 2-(Diphenylmethyleneamino)-3-(6-methoxy-1H-indol-3-yl)propanoate (Scheme 65; Compound 40): 
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Portrait 67 
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Portrait 68 

tert-Butyl 3-(5-Bromo-1H-indol-3-yl)-2-(diphenylmethyleneamino) propanoate (Schem 65; Compound 41): 
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Portrait 69 
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Portrait 70 

tert-butyl2-((diphenylmethylene)amino)-3-(2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)propanoate (Compound 68): 
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Portrait 71 
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Portrait 72, HPLC Traces for racemic compound 68: 

 

 



 
 

 
 

2
0

8
 

Portrait 73, HPLC Traces for chiral compound 68: 
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