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ABSTRACT

On the Dimension of Group Boundaries

by

Molly A. Moran

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Craig Guilbault

The goal of this dissertation is to find connections between the small-scale dimen-

sion (i.e. covering dimension and linearly controlled dimension) of group boundaries

and the large scale dimension (i.e. asymptotic dimension and macroscopic dimen-

sion) of the group. We first show that generalized group boundaries must have

finite covering dimension by using finite large-scale dimension of the space. We

then restrict our attention to CAT(0) group boundaries and develop metrics on the

boundary that allow us to study the linearly controlled dimension. We then obtain

results relating the linearly controlled dimension of CAT(0) boundaries to the large

scale dimension of the CAT(0) space.
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Chapter 1

Overview

One of the goals of Geometric Group Theory is to better understand algebraic

properties of finitely generated groups by studying the geometry of metric spaces

that the group acts on in a nice way. Two types of groups that are often studied

are CAT(0) and δ-hyperbolic groups, which act geometrically on CAT(0) and δ-

hyperbolic spaces. These geodesic metric spaces may be defined completely in terms

of thinness of triangles and thus have very interesting geometry. In particular,

analyzing the large-scale geometry of these metric spaces has proven to be very

fruitful and enlightening. Much of this large-scale geometry is captured in the space

at infinity, or boundary, of these spaces.

Hyperbolic and CAT(0) group boundaries may both be defined in terms of equiv-

alence classes of geodesic rays, where two rays are equivalent if they fellow travel

(for more details, see Section 3.2.1). However, for groups that are neither hyper-

bolic nor CAT(0), this definition of a group boundary cannot be applied. Thus,

Bestvina [Bes96] defined Z-boundaries in an attempt to bring the existing theories

together and create an axiomatized method of approaching group boundaries for

larger classes of groups (see Section 2.2).

Z-boundaries, being closed subsets of a compact metric space, are compact.

Thus, if we wish to study their geometry, it does not make sense to approach it

from a large-scale point of view. Instead, we must focus more on the small-scale

geometry of the boundary. Therefore, there are two approaches in studying the
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geometry of these metric spaces: large-scale properties of the space or small-scale

properties of the boundary attached to the space.

The particular large and small-scale properties that we will discuss here are

different notions of dimension. Large-scale dimension theories include macroscopic

dimension and asymptotic dimension, while small-scale dimension theories include

covering dimension and linearly controlled dimension. These are explained in greater

detail in Section 3.2.3. A natural question to ask is if the large-scale dimension of the

space affects the small-scale dimension of the boundary, or vice-versa. In particular,

in what follows, we aim to answer (or partially answer) the following two questions:

1. Does knowing finiteness of large-scale dimension of a metric space allow us to

conclude anything about the small-scale dimension of the boundary?

2. Does knowing finiteness of the small-scale dimension of the boundary allow us

to conclude the space has finite large-scale dimension?

Before discussing our contributions to these questions, we first discuss what is

known. For a hyperbolic group, G, asdimG = dim∂G + 1 = `-dim∂G + 1 < ∞
[BS07,BL07]. Within this seemingly simple equation are many deep and important

results about hyperbolic groups:

• The covering dimension of hyperbolic group boundaries is finite (first shown

by [Gro87,Swe95]).

• The linearly controlled dimension of hyperbolic group boundaries is finite.

• The linearly controlled dimension of the boundary of a hyperbolic group is

equal to its covering dimension.

• Hyperbolic groups have finite asymptotic dimension (first shown by [Gro87]).

• There is a clear relationship between the large scale dimension a group and

the small scale dimension of its boundary.
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With these results as motivation, we outline this paper and detail the results that

provide some answers to these two questions for groups that may not be hyperbolic.

In Chapter Two, we discuss Z-boundaries and generalize the definition given by

Bestvina. We then use the existence of a single open cover of the space with finite

order to prove that generalized Z-boundaries must have finite covering dimension.

Theorem 2.3.7. If a proper metric ANR (X, d) admits a metric Z-structure (X̂, Z),

then Z is finite-dimensional.

Thus, knowing something finite macroscopic dimension of the space allows us

to conclude finite small-scale dimension of the boundary. We then use finite-

dimensionality of Z-boundaries to unify the theory of group boundaries.

In Chapter Three, we focus our attention on CAT(0) boundaries so that we may

study their linearly controlled dimension. Since linearly controlled dimension is a

metric invariant, we first develop two families of metrics on the boundary. One of

the families was discussed in [Kap07], where B. Kleiner asked whether the induced

action on ∂X of a geometric action on a proper CAT(0) space X is “nice”. We give

one answer to his question with the following:

Theorem 3.3.6. Suppose G acts geometrically on a proper CAT(0) space X, x0 ∈
X and A > 0. Then the induced action of G on (∂X, dA,x0) is by quasi-symmetries.

We also use this family to show finiteness of the linearly controlled dimension of

the boundary, thereby providing a positive answer to the first question.

Theorem 3.3.7. If G is a CAT(0) group, then (∂G, dA,x0) has finite linearly-

controlled dimension.

Using the second family of metrics, we obtain a partial answer to question two:

Theorem 3.4.3. Suppose X is a geodesically complete CAT(0) space and, when

endowed with the dx0 metric for x0 ∈ X, `-dim ∂X ≤ n. Then the macroscopic

dimension of X is at most 2n+ 1.

We hope that the framework we have built will lead to a more complete answer

to the second question in the future.
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Chapter 2

Finite-Dimensionality of
Z-boundaries

2.1 Introduction

It is easy to construct a proper CAT(0) space with infinite-dimensional boundary,

but a result by Swenson [Swe99] shows that such a space cannot admit a cocompact

action by isometries. Thus, every boundary of a CAT(0) group must be finite-

dimensional. This observation mirrors an earlier theorem by Gromov [Gro87,Swe95]

which asserts that boundaries of hyperbolic groups are finite-dimensional.

The rich study of CAT(0) and hyperbolic group boundaries led Bestvina to

formalize the concept of group boundaries for wider classes of groups [Bes96]. In-

cluded in his definition is a hypothesis which forces these boundaries, known as Z-

boundaries, to be finite-dimensional. Later, when Dranishnikov generalized Bestv-

ina’s work to allow for groups with torsion [Dra06], he omitted the requirement in

Bestvina’s original definition that forced the boundaries to be finite-dimensional. As

a result, some of the results in [Dra06] are, a priori, not as strong as their analogs

in [Bes96]. In particular, Dranishnikov related the cohomological dimension of a

group to the cohomological dimension of its Z-boundary, but not to the Lebesgue

covering dimension of that boundary.

In this chapter, we prove a generalization of Swenson’s theorem that applies to

a more general class of spaces. One of the consequences of this result is a more
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unified treatment of group boundaries put forth by Bestvina and Dranishnikov. We

show that there is no advantage in restricting our attention to finite-dimensional

spaces as in [Bes96]. In particular, we may weaken the requirement that the group

act on an ER to an analogous action on an AR, without losing any applications.

In regards to [Dra06], all conclusions about the cohomological dimension of group

boundaries can be extended to results about the Lebesgue covering dimension of

these boundaries.

We close with statements of some of our main results that may be found in this

chapter.

Theorem 2.3.7. [Mor14] If a proper metric ANR (X, d) admits a metric Z-structure

(X̂, Z), then Z is finite-dimensional.

Theorem 2.4.1. [Mor14] If a torsion-free group G admits an AR Z-structure, then

G admits a Z-structure, as defined in [Bes96].

Due to its relevance to our work, at the end of this chapter, we provide the details

for an alternative proof of Bestvina’s Boundary Swapping Theorem as suggested by

Ferry [Fer00].

2.2 Preliminaries

We begin with a few preliminary definitions, leading to Bestvina’s original definition

of a Z-structure. We then present various generalizations of this definition with

explanations, justifications, and consequences of the changes.

We suppose that our spaces are locally compact, separable, and metrizable. We

will focus our attention on special types of separable metric spaces: AR, ANR, ER,

and ENR’s. Recall that a separable metric space X is an absolute retract (or AR)

if, whenever X is embedded as a closed subset of another separable metric space Y ,

its image is a retract of Y . X is an absolute neighborhood retract (or ANR)

if, whenever X is embedded as a closed subset of another separable metric space

Y , some neighborhood of X in Y retracts onto X. A Euclidean retract (or ER)
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and a Euclidean neighborhood retract (or ENR) are finite-dimensional AR’s or

ANR’s, respectively.

Definition 2.2.1. A closed subset, A, of an ANR, X, is a Z-set if either of the

following equivalent conditions hold:

• There exists a homotopy H : X × [0, 1]→ X such that H0 = idX and

Ht(X) ⊂ X − A for every t > 0.

• For every open subset U of X, the inclusion U − A ↪→ U is a homotopy

equivalence.

The standard example of a Z-set is the boundary of an n-manifold, Mn. We can

use a collared neighborhood of the boundary in Mn to define a homotopy, which

instantly pushes the boundary off itself.

Definition 2.2.2. A Z-compactification of a space Y is a compactification Ŷ

such that Ŷ − Y is a Z-set in Ŷ . We call Ŷ − Y a Z-boundary for Y .

Implicitly in this definition, we are assuming that Ŷ is an ANR. Because open

subsets of an ANR are ANRs, we require a space Y to be an ANR before be-

ginning to ask whether or not Y is Z-compactifiable. Once we do know Ŷ is a

Z-compactification of Y , then Ŷ and Y will have the same homotopy type. In the

realm of compactifications, Z-compactifications are particularly nice as they are sen-

sitive to the overall geometry of the original space. This preservation of geometry

explains the choice to use Z-compactifications in the theory of group boundaries as

we now see with Bestvina’s original definition of a Z-structure on a group G.

Definition 2.2.3. [Bes96] A Z-structure on a group G is a pair of spaces (X̂, Z)

satisfying the following four conditions:

1. X̂ is a compact ER,

2. X̂ is a Z-compactification of X = X̂ − Z,

3. G acts properly, cocompactly, and freely on X, and
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4. X̂ satisfies a nullity condition with respect to the action of G on X. That is,

for every compactum C of X and any open cover U of X̂, all but finitely many

G translates of C lie in some element of U.

There are a few things to notice about this definition. First, since an ER is

a finite-dimensional AR and an AR is a contractible ANR, X̂ is a compact, con-

tractible, finite-dimensional ANR. The requirement that X̂ be finite-dimensional

is what forces Z ⊆ X̂ to be finite-dimensional. In fact, a simple argument using

ε-maps in the next section will show that dimZ ≤dimX <∞.

Secondly, our spaces are metrizable, but we must take care to distinguish between

the metric on X and the metric on the compactification X̂. These two metrics will

look very different and are not necessarily related. In fact, in the next chapter, we

will develop a family of metrics, dx0 on the compactification X̂ in the case that X

is a CAT(0) space. Providing the explicit metrics will emphasize the importance

of distinguishing these two metrics. Having a metric on X̂ does allow us to restate

the nullity condition as follows: for every ε > 0, all but finitely many G-translates

of any compact subset C of X have diameter less than ε (in the metric from the

compactification). Thus, if we look at the translates using the metric on X, they

may stay the same size (in particular if G acts by isometries), but with the metric

on X̂, the nullity condition forces the translates of every compact set to become

arbitrarily small when pushed towards the boundary.

Lastly, we say that Z is a boundary (or Z-boundary) of G if there is a Z-

structure (X̂, Z) on G. This boundary is not unique; there can be multiple Z-

structures for a given group G. However, any two boundaries of G will have the

same shape [Bes96].

Example 2.2.4.

1. SupposeG acts properly, freely and cocompactly on a finite-dimensional CAT(0)

space, X. Then X̂ = X ∪ ∂X is a Z-structure on G, where ∂X denotes the

visual boundary. (More details about CAT(0) spaces and the visual boundary

may be found in Section 3.2.1). We take care here to not say that all torsion-

free CAT(0) groups admit Z-structures as it is still an open question whether
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or not a group acting geometrically on an infinite-dimensional CAT(0) space

also acts geometrically on a finite-dimensional CAT(0) space.

2. [BM91] If G is a torsion-free δ-hyperbolic group, G admits a Z-structure. Let

Pρ(G) be an appropriately chosen Rips complex of G and ∂G the Gromov

boundary. Then, with an appropriate topology, P̂ρ(G) = Pρ(G) ∪ ∂G is a

Z-structure for G.

3. In [Bes96], Bestvina outlines a method of placing a Z-structure on the Baumslag-

Solitar group BS(1, 2) by modifying the traditional universal cover of the pre-

sentation 2-complex. As BS(1, 2) is neither CAT(0) nor δ-hyperbolic, this

example illustrates how Z-structures allow us to approach the study of group

boundaries for different classes of groups.

4. Osajda and Przytycki in [OP09] prove that all torsion-free systolic groups

admit Z-structures.

5. Tirel [Tir11] showed that if two groups G and H admit Z-structures, so do

G×H and G ? H.

6. Dahmani [Dah03] showed that if a group G is hyperbolic relative to a collection

of subgroups, and each of these subgroups admit a Z-structure, then G admits

a Z-structure.

7. Martin [Mar14] provides conditions for building a Z-structure for the funda-

mental group of a complex of groups over a finite simplicial complex.

As each of the above examples illustrates, groups must be torsion-free if they are

to admit a Z-structure. In [Dra06], Dranishnikov generalized Bestvina’s definition

to allow for groups with torsion. In particular, he omitted the requirement that

G act freely on X and replaced it with the requirement that the action of G is

geometric (that is, proper, cocompact, and by isometries). He also loosened the

restriction that X̂ be an ER to being an AR. This change permits X̂ to be infinite-

dimensional. Using Dranishnikov’s definition then, we need not be as restrictive in
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our above example for CAT(0) spaces. We may now say that CAT(0) groups admit

Z-structures (in the sense of Dranishnikov). There is one immediate drawback in

permitting infinite-dimensionality of X̂: Z could potentially be infinite-dimensional.

We will show in the next section that this is not the case, but the proof is not

immediate as in the case of Bestvina’s original definition. Because it was unknown

if Z-boundaries had finite covering dimension, Dranishnikov used cohomological

dimension of the boundary to state and prove many of his results, unlike Bestvina’s

results which used Lebesgue covering dimension. After proving Theorem 2.3.7,

one can then easily go back and restate Dranishnikov’s results from [Dra06] by

replacing the cohomological dimension of the boundary with the Lebesgue covering

dimension of the boundary. (We note that this replacement is valid as it is a standard

fact that in a space with finite Lebesgue covering dimension, covering dimension

and cohomological dimension coincide. See for example [Wal81, Theorem 3.2(b)].

Thus, Theorem 2.3.7 provides a connection between the results on Z-boundaries as

presented by Bestvina and Dranishnikov.

Since we will be working with many of deviations from Bestvina’s original def-

inition of a Z-structure, we introduce some notation in hopes of highlighting what

conditions have been changed or removed. We will always use the notation Z-

structure to denote Bestvina’s original definition. If we remove the requirement

that the action be free, we say G admits a Zn.f.-structure. If X̂ is an AR, rather

than an ER, we say G admits a ZAR-structure. Thus, a Z
n.f
AR-structure on a group

is a Z-structure in which X̂ is an AR and the group need not be torsion-free.

As mentioned above, we show in the next section that the dimension of Z-

boundaries (in the sense of Dranishnikov) is finite. This fact was already known in

the case of CAT(0) and hyperbolic group boundaries (see [Swe99], [Gro87]). Because

these two special cases served as models for the definition of Z-boundaries, proving

finite-dimensionality of Dranishnikov’s Z-boundaries seemed promising. In fact, our

main result was motivated by attempting to generalize the following theorem of

Swenson on boundaries of CAT(0) spaces:

Theorem 2.2.5. [Swe99] If X is a CAT(0) space which admits a cocompact action
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by isometries, then ∂X is finite-dimensional.

In the statement of Swenson’s theorem, the action of the group on X is not

required to be proper. Thus, to obtain a full generalization of Swenson’s theorem,

we must also omit the properness condition that is contained in both Bestvina and

Dranishnikov’s definition of a Z-structure. Simply removing properness from either

definition will not suffice because the statement of the nullity condition is dependent

on having a proper group action. In particular, it would be possible for infinitely

many translates of any compact set C to intersect C. Therefore, we present one

final generalized definition of a Z-structure which will be used in Theorem 2.3.7 in

the next section.

Definition 2.2.6. Let (X, d) be a metric space. A metric Z-structure on X,

denoted MZ-structure, is a pair of spaces (X̂, Z) satisfying the following conditions:

1. X̂ is a compact AR,

2. X̂ is a Z-compactification of X = X̂ − Z,

3. X admits a cocompact action by isometries by some group G, and

4. X̂ satisfies a nullity condition with respect to the action of G: for every ε > 0

and for each bounded subset U of X (bounded in the d metric), there exists a

compact subset C of X such that any G-translate of U that does not intersect

C has diameter less than ε (in the metric on the compactification).

2.3 Finite-Dimensionality Results

Recall that with Bestvina’s original definition of a Z-structure, the boundary must

be finite-dimensional. In fact, if (X̂, Z) is a Z-structure on a group G, the dimension

of X = X̂ − Z serves as an upper bound for the dimension of Z. This argument

is rather simple and we present it now for completeness and to highlight why such

a simple argument cannot be used in the case of MZ-structures. The rest of the

section is dedicated to obtaining finite-dimensionality in the more general case.
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We first recall the definition of Lebesgue covering dimension.

Definition 2.3.1. The Lebesgue covering dimension , or covering dimen-

sion , of a topological space X is the minimal integer n such that for every open

cover U of X, there exists a refinement V of U where the order of V is at most

n + 1. In this case, we write dimX = n. If no such integer exists, X is said to be

infinite-dimensional.

When we say that the order of an open covering U of a space X is at most n,

we mean that each x ∈ X is in at most n + 1 elements of U. If (X, d) is a metric

space, we define the mesh of a cover U as mesh(U) = sup{diam(U)|U ∈ U}. One

can easily check that an equivalent definition of the covering dimension of a compact

metric space can be formulated as follows:

Lemma 2.3.2. For a compact metric space X, dimX ≤ n if, for every ε > 0, there

is an open cover U of X with meshU < ε and orderU ≤ n+ 1.

There is another method to determine if dimX < ∞ for X a compact metric

space using ε-maps. This method provides a quick proof that the dimension of

Z-boundaries is bounded above by the dimension of the space X.

Definition 2.3.3. Let ε > 0, (X, d) a metric space, and Y a topological space.

A continuous map f : X → Y is an ε-mapping if diam(f−1({y})) < ε for every

y ∈ Y .

Theorem 2.3.4. (See [Eng78, Theorem 1.10.12]) If X is a compact metric space

and for every ε > 0 there exists an ε-mapping f : X → Y where Y is a compact

metric space with dimY ≤ n, then dimX ≤ n.

Proposition 2.3.5. If a group G admits a Z-structure (X̂, Z), then dimZ ≤dimX.

Proof. Let ε > 0 and H : X̂ × [0, 1] → X̂ be a homotopy associated to the Z-

compactification. Since H is uniformly continuous and H0 = idX̂ , there is some

tε ∈ (0, 1] such that Htε|
Htε
Z : Z → Htε(Z) is an ε-map. Z is compact, being a

closed subset of X̂, and thus, by continuity, Htε(Z) is also compact. Since tε > 0,



12

Htε(Z) ⊆ X and dimX < ∞, then dimHtε(Z) ≤ dimX < ∞. Applying Theorem

2.3.4, dimZ ≤dimX.

Remark 2.3.6. The above statement is true in the case that X̂ is a Z-compactification

and Z is a Z-set, as we only made use of the existence of a homotopy. Furthermore,

the inequality in Proposition 2.3.5 is strict. Bestvina proves this in [Bes96] using

a cohomological approach and Guilbault and Tirel prove this in [GT13] using tools

from standard dimension theory.

The goal of the remainder of this section is to prove:

Theorem 2.3.7. [Mor14] Let (X, d) be a metric space which admits a MZ-structure

(X̂, Z). Then dimZ <∞.

Notice that we cannot use Theorem 2.3.4 to prove the main result as it requires

the range space of the ε-mapping to be finite-dimensional. Our proof relies on the

existence of a particular uniformly bounded open cover, U, with finite order. Once

such a cover exists, because of the nullity condition, elements of the cover near

infinity become arbitrarily small. Thus, we can think of small neighborhoods of

infinity of the boundary as being like finite-dimensional sets. Using these covers of

neighborhoods of infinity, we define covers of the boundary with arbitrarily small

mesh and order bounded above by the order of U.

With the sketch of the proof in mind, we are now ready to provide the details,

beginning with the existence of such a cover. We will use the notation that B(x, r)

is the open ball of radius r centered at x and B(x, r) is the closed ball of radius r

centered at x.

Lemma 2.3.8. [Mor14] Suppose G acts cocompactly by isometries on a proper met-

ric space X. Then there exists a uniformly bounded open cover U of X with finite

order.

Proof. As the action of G on X is cocompact, there exists a compact subset C

of X such that GC = X. Choose r > 0 large enough so that C ⊂ B(x0, r) for
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some x0 ∈ X. Let Gx = {gx0|g ∈ G} be the orbit of x0 and let A ⊂ Gx be a

maximal r-separated subset of Gx. That is for all x, y ∈ A with x 6= y, d(x, y) ≥
r and A is maximal with respect to this property. Let U = {B(x, 2r)|x ∈ A}.
Clearly, U consists of uniformly bounded open sets, which are just translates of

B(x0, 2r). To show that U is a cover, let y ∈ X. There is some isometry g ∈ G

so that gy ∈ C. As C ⊆ B(x0, r), then d(gy, x0) < r. Since g is an isometry,

d(y, g−1x0) < r. The element g−1x0 ∈ Gx, so by maximality of A, there is some

x ∈ A such that d(x, g−1x0) < r. Applying the triangle inequality: d(x, y) ≤
d(x, g−1x0) + d(g−1x0, y) < r + r = 2r. Hence, y ∈ B(x, 2r) for some x ∈ A. To

see that U has finite order, first observe that the number of r-separated points in

B(x0, 4r) must be finite (by compactness). If we let n be this maximal number of

r-separated points, then orderU ≤ n. Otherwise, there are points x1, x2, ...xn+1 ∈ A
with ∩n+1

i=1 B(xi, 2r) 6= ∅. Thus, r ≤ d(xi, xj) < 4r for i 6= j and i, j ∈ {1, 2, ..., n+1}.
Choosing an isometry g ∈ G with gx1 = x0, the points gx1, gx2, ..., gxn+1 are r-

separated and contained in B(x0, 4r), a contradiction. Hence, orderU ≤ n.

We will call a cover as described in the proof of Lemma 2.3.8 an r-separated

covering of order n.

Proof of Theorem 2.3.7. LetH : X̂×[0, 1]→ X̂ be a Z-set homotopy with H0 = idX̂

and Ht(X̂) ∩ Z = ∅ for every t > 0. Let ε > 0 and fix a metric d̂ on X̂.

Using Lemma 2.3.8, choose an r-separated covering U. Let k < ∞ be the order of

U and choose U ∈ U. Recall that all remaining elements in the cover are certain

G-translates of U . Thus, by the nullity condition, we may choose a compact set

K ⊆ X such that diamd̂V < ε/2 for every V ∈ U with V ∩K = ∅.

Choose δ1 ∈ (0, 1] small enough such that Hδ(Z) is covered by open sets V ∈ U

with diamd̂V < ε/2 for all δ ≤ δ1. This may be accomplished because of the nullity

condition. As U is a bounded open cover of X, there are open sets in U that do not

intersect K and cover a neighborhood of infinity X −K ′ where K ′ is a compact set

containing K. Thus, we can choose δ1 so that for every δ ≤ δ1, Hδ(Z) ⊆ X −K ′.
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Moreover, H : X̂×[0, 1]→ X̂ is uniformly continuous, so we may choose a δ2 ∈ (0, 1]

so that for every δ ≤ δ2 and for each z ∈ Z, d̂(z,Hδ(z)) < ε/4.

Take tε =min{δ1, δ2}. Note then that:

1. Htε(Z) is covered by open sets V ∈ U having diameters less than ε/2 because

tε ≤ δ1 and

2. d̂(z,Htε(z)) < ε/4 for every z ∈ Z, since tε ≤ δ2.

Consider Vε = {V ∈ U|V ∩ Htε(Z) 6= ∅ and V ∩ K = ∅}. That is, Vε is an open

cover of Htε(Z) with mesh bounded by ε/2 and order bounded by k.

Define Wε = {Htε|−1
Z (V )|V ∈ Vε}.

Clearly, Wε forms a cover of Z since Vε forms a cover of Htε(Z). Each W ∈ Wε is

also open as it is the pre-image of an open set under a continuous map.

We now show that diamW < ε for every W ∈Wε. Let z1, z2 ∈ W . Then

d̂(z1, z2) ≤ d̂(z1, Htε(z1)) + d̂(Htε(z1), Htε(z2)) + d̂(Htε(z2), z2) < ε/4 + ε/2 + ε/4 = ε

The last inequality is due to (1) and (2) from above. Every pair of points in Vg is

within a distance of ε from one another, so diamW < ε for all W ∈Wε.

Lastly, the order of the cover Vε of Htε(Z) is at most k. Since Wε is the set of

pre-images of Vε under the continuous map Htε |Z , then Wε also has order at most

k.

Remark 2.3.9. Theorem 2.2.5 now follows directly from Theorem 2.3.7.

Remark 2.3.10. If desired, we could give an upper bound on the dimension of Z

by letting m be the minimum over all orders of r-separated coverings of X. Then

dimZ ≤ m− 1.

In practice, we do not need the complete generality of Theorem 2.3.7. In particu-

lar, we usually require our group actions to be proper, cocompact, and by isometries
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(i.e. geometric). Adding properness eliminates the need to use Lemma 2.3.8 to ob-

tain a single uniformly bounded cover with finite order. We conclude this section

with a few words about this particular case and what it means for the dimension of

Z-boundaries in Dranishnikov’s definition of a Z-structure.

Suppose G admits a Z
n.f.
AR -structure. Since G acts cocompactly on X, there is an

open subset U of X such that U is compact and the set of all G-translates of U cover

X, that is ∪g∈GgU = X. Furthermore, since the action of G on X is proper, the set

{g ∈ G|gU ∩ U 6= ∅} is finite. Let k ∈ Z+ be this finite number of G-translates of

U that intersect U . Since the cover of X was formed in a “nice” way by the group

action, the cover looks the same everywhere. That is, any translate of U can also

intersect only k other translates. Thus, the order of a cover constructed in this way

is at most k. We will call this type of cover a covering by translations of order

at most k.

Theorem 2.3.11. Let G be a group which admits a Z
n.f.
AR -structure (X̂, Z). Then

the dimension of Z is bounded above by k − 1, where k is the minimum over orders

of covering by translations of X.

Proof. Repeat the proof of Theorem 2.3.7 choosing the cover U to be a covering by

translations of order at most k.

Remark 2.3.12. We could in fact lower the bound in Theorem 2.3.11 to k − 2 by

combining the strategy used here with a technique found in [GT13].

Corollary 2.3.13. If G admits a Z-structure (X̂, Z) in the sense of [Dra06], then

dimZ <∞.

2.4 Consequences of Finite-Dimensionality of Z-

Boundaries

The goal of this section is to demonstrate how knowing the covering dimension of

the various formulations of Z-boundaries can serve to unify the theories of group

boundaries presented by Bestvina and Dranishnikov. First, any result about the
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cohomological dimension of the boundary may now be replaced with a statement

concerning the Lebesgue covering dimension (or vice-versa). This fact allows us to

see the results from [Bes96] and [Dra06] within the context of a consistent dimension

theory. Secondly, we show that there is no advantage in restricting ourselves to

working with an ER rather than an AR by proving the following:

Theorem 2.4.1. [Mor14] Suppose a group G admits a ZAR-structure. Then G

admits a Z-structure.

The proof of Theorem 2.4.1 relies on a more general version of Bestvina’s bound-

ary swapping theorem. Given that G admits a Z-structure, the original version of

boundary swapping [Bes96, Lemma 1.4] provides a method to take the Z-boundary

from the Z-structure and place it on another finite-dimensional space admitting an

action by G to obtain a new Z-structure on G. Since Bestvina only worked in the

ER setting, if we are to prove Theorem 2.4.1, we need a more general version of

boundary swapping that allows one of the spaces to be infinite-dimensional. We

can easily obtain this more general version by knowing finite-dimensionality of ZAR-

boundaries. We should note here that in the next section, we present an alternative

approach to boundary swapping suggested by Ferry [Fer00] that does not rely on

finite-dimensionality of the boundary. This second version could also be used to

prove Theorem 2.4.1.

Theorem 2.4.2 (Boundary Swapping: Version 1). Let G be a group acting properly,

cocompactly, and freely on an ER X1 and an AR X2. Assume that X1 and X2 are

G-homotopy equivalent and X̂2 = X2 ∪Z is a ZAR-structure on G. Then (X̂1, Z) is

a Z-structure on G.

Proof. Since G admits a ZAR-structure, by Theorem 2.3.11, dimZ < ∞. A key

component in Lemma 1.4 of [Bes96] is proving that X̂1 is an ANR. This is ac-

complished by showing that X̂1 is locally-contractible. The equivalence of local-

contractibility and being an ANR requires finite-dimensionality (see [Hu65, Page

168, Theorem 7.1]). Since we know Z is finite-dimensional, even if (X̂2, Z) in an
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infinite-dimensional ZAR-structure, X̂1 is finite-dimensional, so Bestvina’s original

proof is still valid in this more general setting.

The last ingredient in the proof of Theorem 2.4.1 is the following deep result

by West from ANR theory which will provide the ER onto which we may add the

desired boundary:

Theorem 2.4.3. [Wes77] Every compact ANR is homotopy equivalent to a finite

complex.

Proof of Theorem 2.4.1. Let (X̂, Z) be a ZAR-structure for G. The map p : X →
X/G is a covering projection, so X/G is a compact ANR. Theorem 2.4.3 says that

X/G is homotopy equivalent to a finite complex Y . Lifting the homotopies to the

universal cover Ỹ , an ER, we obtain a G-equivariant homotopy equivalence between

X and Ỹ . Applying Theorem 2.4.2, Ỹ ∪ Z is a Z-structure for G.

The proof of Theorem 2.4.1 provides a different upper bound for the dimension

of the boundary. Recall that a group G has finite geometric dimension if there

exists a finite-dimensional K(G, 1) space. In that case,

gdG = min{dimK|K is a K(G, 1)}. Thus, we obtain the following:

Corollary 2.4.4. Suppose a group G admits a ZAR-structure (X̂, Z), then

dimZ ≤gdG

Proof. Suppose that (X̂, Z) is a ZAR-structure on G. The finite complex Y in the

proof of Theorem 2.4.1 is a finite K(G, 1) space for G. Since Ỹ ∪Z is a Z-structure

for G, Proposition 2.3.5 ensures dimZ ≤dimY , and therefore the dimension of Z is

bounded above by the geometric dimension of G.

Remark 2.4.5. Again, we can get the inequality in Corollary 2.4.4 to be strict

using the result that dimZ <dimY [Bes96,GT13].

While Theorem 2.4.1 shows that there is no reason to limit our attention to

ER’s, and is therefore one step closer towards bridging Bestvina and Dranishnikov’s

definitions, it does not completely bridge the gap. One would hope to generalize
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Theorem 2.4.1 as follows: If a group G, not necessarily torsion-free, admits a Z-

structure in the sense of [Dra06], then G admits a Z-structure in the sense of [Bes96]

(modulo the freeness requirement found therein.)

However, notice that the proof of Theorem 2.4.1 relies heavily on the use of

covering space theory. In particular, once we permit groups with torsion, we cannot

obtain the required equivariant homotopies using lifting theorems. One idea to fix

this complication is to use the theory of EG complexes. Here, a group may have

torsion, but stabilizers of all finite subgroups must be contractible subcomplexes.

When EG complexes exist, they are well-defined up to G-equivariant homotopy

equivalence. Thus, we leave the reader with an important open question that, if

answered in the affirmative, would further serve to unify the theory of Z-boundaries

found in [Bes96] and [Dra06].

Question 2.4.6. If G admits a Z
n.f
AR-structure (X̂, Z), does there exists a cocompact

EG complex? Furthermore, must X be G-equivariantly homotopic to that complex?

2.5 An Alternative Approach to Boundary Swap-

ping

In [Fer00, Remark 1.7(ii)], Ferry suggests an alternative approach to boundary swap-

ping. In that remark, he restricts attention to Z-compactifications of universal covers

of finite K(G, 1) complexes. However, we will show that the suggested proof applies

more generally. Furthermore, since Hanner’s Criterion [Han51], rather than local-

contractibility, is used to detect the ANR property, the hypothesis that the boundary

be finite-dimensionality is not required. As a corollary, one may obtain an alterna-

tive proof of Theorem 2.4.1 and also a new approach to proving finite-dimensionality

of ZAR-boundaries. Because of its relevance to this paper, we dedicate this section

to filling in the details of Ferry’s approach to boundary swapping and discuss its

connections to finite-dimensionality of boundaries.

We begin with the statement of the second version of boundary swapping and

then introduce a few results that are needed for the proof.
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Theorem 2.5.1 (Boundary Swapping: Version 2). Let G be a group acting properly

and cocompactly on ARs X and Y . Suppose that f : X → Y is a G-equivariant

homotopy equivalence. If Ŷ = Y ∪Z is a ZAR-structure on G, then we may topologize

X̂ = X ∪ Z so that (X̂, Z) is also a ZAR-structure on G.

We first describe the topology on X̂ = X ∪ Z:

Definition 2.5.2. Let f : X → Y be a proper map between ANRs. If Ŷ = Y ∪ Z
is a Z-compactification of Y , define f : X̂ = X ∪ Z → Ŷ to be the identity on Z

and f on X. The topology on X̂ is generated by the open subsets of X and sets of

the form f
−1

(U) where U ⊂ Ŷ is open.

The foundation of the proof of the second version of boundary swapping is the

following theorem from Ferry which describes when we know a closed subset of a

space is a Z-set. We point out here that Ferry’s definition of a Z-set is not restricted

to ANR’s, but allows for any metric space. We use the same terminology for both

cases, but will take care to distinguish between the two in the proof of Theorem

2.5.1 as we ultimately need to work in the ANR setting.

Theorem 2.5.3. [Fer00] Let (X̂, Z) and (Ŷ , Z) be compact metric spaces that are

homotopy equivalent relZ by maps and homotopies which are the identity on Z and

which take the complement of Z to the complement of Z. Then Z is a Z-set in X̂

if and only if Z is a Z-set in Ŷ .

Now we are ready to give the proof of Theorem 2.5.1.

Proof of Theorem 2.5.1. By assumption we have G-equivariant maps and homo-

topies

f : X → Y

h : Y → X

H : Y × [0, 1]→ Y , H0 = f ◦ h , H1 = idY

F : X × [0, 1]→ X , F0 = h ◦ f , F1 = idX
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We claim that f = f ∪ idZ is a homotopy equivalence relZ.

Define maps:

h : Ŷ → X̂ , by h = h ∪ idZ

H : Ŷ × [0, 1]→ Ŷ , by H(y, t) = H(y, t) for y /∈ Z and identity else.

F : X̂ × [0, 1]→ X̂ , by F (x, t) = F (x, t) forx /∈ Z and identity else.

Since the maps are the identity on Z, send complements of Z to complements of

Z, and H0 = f ◦ h, H1 = idŶ , F 0 = H ◦ f , and F 1 = idX̂ , all we must check is the

continuity of the maps at points of Z. Then, applying Theorem 2.5.3, we will have a

homotopy H : X̂ × [0, 1]→ X̂ such that H0 = idX̂ and Ht(X̂)∩Z = ∅ for all t > 0.

As mentioned above, Theorem 2.5.3 only requires X̂ to be a metric space, but the

existence of such a homotopy together with an application of Hannner’s Criterion for

ANRs [Han51] proves that X̂ is indeed an ANR and thus X̂ is a Z-compactification

of X.

First, note that any open set containing z ∈ Z ∩ X̂ must be of the form f
−1

(U)

where U is an open set in Ŷ containing z. So, rather than picking arbitrary open

sets in X̂ for continuity arguments on Z, we can pick arbitrary open sets in Ŷ .

Let z ∈ Z and U any open neighborhood of z in Ŷ . Choose ε > 0 such that

B(z, ε) ⊆ U . By cocompactness, choose compact sets KY ⊂ Y and KX ⊂ X with

GKY = Y and GKX = X. Let L = f ◦ F (KX × [0, 1]) ∪H(KY × [0, 1]), a compact

subset of Y . Since U = {U, Ŷ − B(z, ε)} forms an open cover of Ŷ , by the nullity

condition, there exists a finite subset Γ ⊂ G such that ∀g ∈ G − Γ, gL ⊂ U or

gL ∩B(z, ε) = ∅. Set

V = B(z, ε)−

(⋃
g∈Γ

gL

)

Claim 1: h(V ) ⊆ f
−1

(U), so h is continuous at z ∈ Z.

If y ∈ V ∩ Y , choose g ∈ G such that y ∈ gKY . Then

f ◦ h(y) ∈ f ◦ h(gKY )

= gf ◦ h(KY )
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⊆ gL

⊆ U

Claim 2: H(V × [0, 1]) ⊆ U , so H is continuous at z × [0, 1] for all z ∈ Z.

If y ∈ V ∩ Y , choose g ∈ G such that y ∈ gKY . Then

H(y × [0, 1]) ⊆ h(gKY × [0, 1])

= gH(KY × [0, 1])

⊆ gL

⊆ U

Claim 3: F (f
−1

(V )× [0, 1]) ⊆ f
−1

(U), so F is continuous at z × [0, 1] for z ∈ Z.

If x ∈ f−1
(V ) ∩X, choose g ∈ G such that x ∈ gKX . Then

f ◦ F (x× [0, 1]) ⊆ f ◦ F (gKX × [0, 1])

= gf ◦ F (KX × [0, 1])

⊆ gL

⊆ U

All that remains to be shown is the nullity condition. Let K be a compact subset

of X and U any open cover of X̂. Let

V = {U ∈ U|U = f
−1

(W ) , W open in Ŷ , U ∩ Z 6= ∅}

W = {W |f−1
(W ) ∈ V}

V and W are open covers of Z in X̂ and Ŷ , respectively.

A = X̂ −
⋃
V ∈V

V

is a compact subset of X, so by properness of the action, there exists a finite subset

Γ1 ⊆ G such that gK ∩ A = ∅ for all g ∈ G− Γ1.

Now we must fill out the open cover in Ŷ . Let

B = Ŷ −
⋃
W∈W

W
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B = {B(y, ry)|y ∈ B , ry =
1

2
d(y, Z)}

Set W′ = W ∪ B, an open cover of Ŷ . Since B is compact and B is an open cover

of B, there exists a finite subcover B′ ⊆ B. Set

C =
⋃
B′

B(y, ry)

By properness, there exists a finite subset Γ2 ⊆ G such that for all g ∈ G− Γ2,

gf(K) ∩ C = ∅. Furthermore, by the nullity condition, there exists a finite subset

Γ3 ⊆ G such that for all g ∈ G− Γ3, gf(K) ⊆ W for W ∈W′.

Thus, let Γ = Γ1 ∪ Γ2 ∪ Γ3, a finite subset of G. Then ∀g ∈ G− Γ, gf(K) ⊆ W for

W ∈W. By equivariance of the action, gK ⊆ f
−1

(W ) ∈ V ⊆ U.

Using the second version of Boundary Swapping, we recover finite-dimensionality

of the boundary, but in a much less generalized form than is found in the statement

of Theorem 2.3.7. In particular, the second version of Boundary Swapping proves

that a ZAR-boundary must be finite-dimensional. The proof is essentially the same

as the proof of Corollary 2.4.4. Suppose that (X̂, Z) is a ZAR-structure on G. Then

X/G is homotopy equivalent to a finite K(G, 1) space for G. Lifting the homotopies

gives a proper G-equivariant homotopy equivalence between X and K̃, the universal

cover of K. By Theorem 2.5.1, (K̃ ∪ Z,Z) is a Z-structure on G. Proposition 2.3.5

ensures dimZ ≤dimK <∞.
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Chapter 3

Metrics on Visual Boundaries of
CAT(0) Spaces

3.1 Introduction

In the previous chapter, we showed that coarse (large-scale) dimension properties

of a space X can impose restrictions on the classical (small-scale) dimension of

boundaries attached to X. A natural question to ask is if the converse is true.

For example, one might hope to use the finite-dimensionality of ∂G, proved first

in [Swe99] and following as a corollary of Theorem 2.3.7, to attack the following

well-known open question:

Question 3.1.1. Does every CAT(0) group have finite asymptotic dimension?

This question provides motivation for much of the work in this chapter. Although

we do not answer Question 3.1.1, a framework is developed that we hope will lead

to future progress. Along the way, we prove some results that we hope are of

independent interest; one such result is a weak solution to Question 3.1.1 that

captures the spirit of our approach.

As is often the case with questions about CAT(0) groups, Question 3.1.1 is

rooted in known facts about hyperbolic groups. Gromov observed that all hyperbolic

groups have finite asymptotic dimension. A more precise bound on the asymptotic

dimension, which helps to establish our point of view, is the following:
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Theorem 3.1.2. [BS07, BL07] For a hyperbolic group, asdimG ≤ dim∂G + 1 =

`-dim∂G+ 1 <∞.

In this theorem ‘asdim’ denotes asymptotic dimension, ‘dim’ denotes covering

dimension, and ‘`-dim’ denotes linearly controlled dimension. All of these terms will

be explained in Section 3.2.3. For now, we note that linearly controlled dimension

is similar to, but stronger than, covering dimension; both are small-scale invariants

defined using fine open covers. The difference is that `-dim is a metric invariant,

requiring a linear relationship between the mesh and the Lebesgue numbers of the

covers used.

Implicit in the statement of Theorem 3.1.2 is that ∂G be endowed with a visual

metric. There is a family of naturally occurring visual metrics on ∂G, but all are

quasi-symmetric to one-another. That is enough to make `-dim ∂G well-defined.

This also will be explained shortly.

We can now summarize the content of this chapter. We begin by reviewing a

number of key definitions and properties from CAT(0) geometry. Next, we recall

definitions of quasi-isometry and quasi-symmetry, and then we discuss variations,

both small- and large-scale, on the notion of dimension. To bring the utility of

linearly controlled dimension to CAT(0) spaces, it is necessary to have specific

metrics on their visual boundaries. Although CAT(0) boundaries are important,

well-understood, and metrizable, specific metrics have seldom been used in a sig-

nificant way. In Sections 3 and 4, we develop two natural families of metrics for

CAT(0) boundaries and verify a number of their basic properties. One of these

families {dA,x0}
A>0
x0∈X was discussed in [Kap07], where B. Kleiner asked whether the

induced action on ∂X of a geometric action on a proper CAT(0) space X is “nice” in

some sense. After first showing that all metrics in the family {dA,x0}
A>0
x0∈X are quasi-

symmetric in Section 3.3.1, we provide an affirmative answer to Kleiner’s question

with the following:

Theorem 3.3.6. Suppose G acts geometrically on a proper CAT(0) space X, x0 ∈
X and A > 0. Then the induced action of G on (∂X, dA,x0) is by quasi-symmetries.
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In Section 3.3.2, we look to prove analogs of Theorem 3.1.2 for CAT(0) spaces.

The question of whether `-dimension of a CAT(0) group boundary agrees with its

covering dimension (under either of our metrics) is still open, but we can prove.

Theorem 3.3.7. If G is a CAT(0) group, then (∂G, dA,x0) has finite `-dimension.

As for the inequality in Theorem 3.1.2, we are thus far unable to use the `-

dimension of (∂X, dA,x0) to make conclusions about the asymptotic dimension of X.

Instead we turn to our other family of metrics
{
dx0
}

. In some sense, these boundary

metrics retain more information about the interior space X. That additional infor-

mation allows us to prove the following theorem, which we view as a weak solution

to Question 3.1.1. It is our primary application of the dx0 metrics.

Theorem 3.4.3. Suppose X is a geodesically complete CAT(0) space and, when

endowed with the dx0 metric for x0 ∈ X, `-dim ∂X ≤ n. Then the macroscopic

dimension of X is at most 2n+ 1.

In Section 5, we compare the dA,x0 and dx0 metrics to each other by applying

them to some simple examples. We also compare them to the established visual

metrics when we have a space that is both CAT(0) and hyperbolic.

Much work remain in this area. We conclude the chapter with a list of open

questions.

3.2 Preliminaries

Before discussing the possible metrics and their properties, we first review CAT(0)

spaces and the visual boundary, quasi-symmetries, and the various dimension theo-

ries that will be discussed. The study of metrics on the boundary begins in Section

3.3.

3.2.1 CAT(0) Spaces and their Geometry

In this section, we review the definition of CAT(0) spaces, some basic properties of

these spaces, and the visual boundary. For a more thorough treatment of CAT(0)

spaces, see [BH99].
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Definition 3.2.1. A geodesic metric space (X, d) is a CAT(0) space if all of

its geodesic triangles are no fatter than their corresponding Euclidean comparison

triangles. That is, if ∆(p, q, r) is any geodesic triangle in X and ∆(p, q, r) is its

comparison triangle in E2, then for any x, y ∈ ∆ and the comparison points x, y,

then d(x, y) ≤ dE(x, y).

A few important properties worth mentioning are that proper CAT(0) spaces

are contractible, uniquely geodesic, balls in the space are convex, and the distance

function is convex. Furthermore, we now record a very simple geometric property

that will be used repeatedly throughout the rest of the paper.

Lemma 3.2.2. Let (X, d) be a proper CAT(0) space and suppose α, β : [0,∞)→ X

are two geodesic rays based at the same point x0 ∈ X. Then for 0 < s ≤ t < ∞,

d(α(s), β(s)) ≤ s
t
d(α(s), β(t)).

Proof. Let p = α(t), q = β(t), x = α(s), and y = β(s). Consider the geodesic

triangle ∆(x0, p, q) in X and its comparison triangle ∆(x0, p, q) in E2. Let x, y be

the corresponding points to x, y on ∆. (See picture below.)

x0

p q

x y

α
β

X R2

x0

____

__ __

x y

p q

__

__

s
t t

s

Figure 3.1: Comparison Triangle

By similar triangles in E2,

dE(p, q)

dE(x, y)
=
dE(x0, p)

dE(x0, x)
=
t

s
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Thus, dE(x, y) = s
t
dE(p, q) = s

t
d(p, q)

Applying the CAT(0)-inequality, we obtain the desired inequality:

d(x, y) ≤
(s
t

)
d(p, q)

We now review the definition of the boundary of CAT(0) spaces:

Definition 3.2.3. The boundary of a proper CAT(0) space X, denoted ∂X, is the

set of equivalence classes of rays, where two rays are equivalent if and only if they

are asymptotic. We say that two geodesic rays α, α′ : [0,∞)→ X are asymptotic

if there is some constant k such that d(α(t), α′(t)) ≤ k for every t ≥ 0.

Once a base point is fixed, there is a a unique representative geodesic ray from

each equivalence class by the following:

Proposition 3.2.4 (See [BH99] Proposition 8.2). If X is a complete CAT(0) space

and γ : [0,∞)→ X is a geodesic ray with γ(0) = x, then for every x′ ∈ X, there is

a unique geodesic ray γ′ : [0,∞)→ X asymptotic to γ and with γ′(0) = x′.

Remark 3.2.5. In the construction of the asymptotic ray for Proposition 3.2.4, it

is easy to verify that d(γ(t), γ′(t)) ≤ d(x, x′) for all t ≥ 0.

We may endow X = X ∪ ∂X, with the cone topology, described below, which

makes ∂X a closed subspace of X and X compact (as long as X is proper). With

the topology on ∂X induced by the cone topology on X, the boundary is often

called the visual boundary. In what follows, the term ‘boundary’ will always

mean ‘visual boundary’. Furthermore, we will slightly abuse terminology and call

the cone topology restricted to ∂X simply the cone topology if it is clear that we

are only interested in the topology on ∂X.

One way in which to describe the cone topology on X, denoted T(x0) for x0 ∈ X,

is by giving a basis. A basic neighborhood of a point at infinity has the following

form: given a geodesic ray c and positive numbers r > 0, ε > 0, let

U(c, r, ε) = {x ∈ X|d(x, c(0)) > r, d(pr(x), c(r)) < ε}



28

where pr is the natural projection ofX onto B(c(0), r). Then a basis for the topology,

T(x0), on X consists of the set of all open balls B(x, r) ⊂ X, together with the

collection of all sets of the form U(c, r, ε), where c is a geodesic ray with c(0) = x0.

Remark 3.2.6. For all x0, x
′
0 ∈ X, T(x0) and T(x′0) are equivalent [BH99, Propo-

sition 8.8].

3.2.2 Quasi-Symmetries

As we are interested in both large-scale and small-scale properties of metric spaces,

we briefly discuss two different types of maps that may be used to capture the

particular scale we care about. The first type of map is a quasi-isometry.

Definition 3.2.7. A map f : (X, dX)→ (Y, dY ) between metric spaces is a quasi-

isometric embedding if there exists constants A,B > 0 such that for every x, y ∈
X, 1

A
dX(x, y) − B ≤ dY (f(x), f(y)) ≤ AdX(x, y) + B. Moreover, if there exists a

C > 0 such that for every z ∈ Y , there is some x ∈ X such that dY (f(x), z) ≤ C,

then we call f a quasi-isometry.

Quasi-isometries capture the large-scale geometry of a metric space, but ignore

the small scale-behavior. Thus, they are ideal when studying large scale notions of

dimension, which we will discuss briefly in the next section. Since small-scale behav-

ior is ignored, all compact metric spaces turn out to be quasi-isometric because they

are all quasi-isometric to a point. Thus, quasi-isometries are not particularly useful

when studying compact metric spaces. When interested in compact metric spaces

and small-scale behavior, we can turn to a second type of map: quasi-symmetry.

Quasi-symmetric maps were defined to extend the notion of quasi-conformality.

Since these maps care about local behavior, they are ideal when studying small scale

notions of dimension, in particular, linearly controlled dimension. Quasi-symmetric

maps have also played a large role in the the study of hyperbolic group boundaries.

For example, it has been shown that all visual metrics on the boundary are quasi-

symmetric.
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We review the definition and properties that will be needed in later sections. For

more information, see [TV80] or [Hei01].

Definition 3.2.8. A map f : X → Y between metric spaces is said to be quasi-

symmetric if it is not constant and there is a homeomorphism η : [0,∞)→ [0,∞)

such that for any three points x, y, z ∈ X satisfying d(x, z) ≤ td(y, z), it follows that

d(f(x), f(z)) ≤ η(t)d(f(y), f(z)) for all t ≥ 0. The function η is often called a con-

trol function of f . A quasi-symmetry is a quasi-symmetric homeomorphism.

Theorem 3.2.9. [Hei01, Proposition 10.6] If f : X → Y is η-quasi-symmetric,

then f−1 : f(X) → X is η′-quasi-symmetric where η′(t) = 1/η−1(t−1) for t > 0.

Moreover, if f : X → Y and g : Y → Z are ηf and ηg quasi-symmetric, respectively,

then g ◦ f : X → Z is ηg ◦ ηf quasi-symmetric.

Theorem 3.2.10. [Hei01, Theorem 11.3]A quasi-symmetric embedding f of a uni-

formly perfect space X is η-quasi-symmetric with η of the form η(t) = c∗max{tδ, t1/δ}
where c ≥ 1 and δ ∈ (0, 1] depends only on f and X.

We say that a metric space X is uniformly perfect if there exists a c > 1

such that for all x ∈ X and for all r > 0, the set B(x, r) − B(x, r
c
) 6= ∅ whenever

X − B(x, r) 6= ∅. Some examples of uniformly perfect spaces include connected

spaces and the Cantor ternary set. Being uniformly perfect is a quasi-symmetry

invariant [Hei01].

3.2.3 A Review of Various Dimension Theories

Recall that the covering dimension of a space X is at most n, denoted dimX ≤ n,

if every open cover of X has an open refinement of order at most n+1. The covering

dimension can be studied for any topological space, in particular, spaces need not

be metrizable. However, if X is a compact metric space, we may use the Lemma

2.3.2 which says that dimX ≤ n if, for every ε > 0, there is an open cover of X with

mesh smaller than ε and order at most n+ 1.

We now review some terminology associated to covers of a metric space. Given

a cover U of a metric space X, we define mesh(U) = sup{diam(U)|U ∈ U}. We
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say that the cover U is uniformly bounded if there exists some D > 0 such that

mesh(U) ≤ D. The order of U is the smallest integer n for which each element x ∈
X is contained in at most n elements of U. The Lebesgue number of U, denoted

L(U), is defined as L(U) = infx∈XL(U, x), where L(U, x) = sup{d(x,X−U)|U ∈ U}
for each x ∈ X.

One reason for pointing out the alternate characterization of covering dimension

for compact metric spaces is that the other dimension theories that we discuss

here are restricted to metric spaces. These restrictions are due to the need for

control of Lebesgue numbers as well as the mesh of covers. In particular, we record

two properties for covers that will be used to characterize the different notions of

dimension.

Let U be a uniformly bounded open cover of a metric space X. We say that U

has

• Property Pnλ if L(U) ≥ λ and order(U) ≤ n+ 1.

• Property Pnλ,c if L(U) ≥ λ, mesh(U) ≤ cλ, and order(U) ≤ n+ 1

This second property requires not only a given Lebesgue number, but also a linear

relationship between the mesh of the cover and the Lebesgue number. We now

provide definitions for the remaining dimension theories, which are grouped in terms

of large-scale and small-scale properties.

Definition 3.2.11. Let X be a metric space.

1. The macroscopic dimension of X is at most n, denoted mdimX ≤ n, if

there exists a single uniformly bounded open cover of X with order n+ 1.

2. The asymptotic dimension of X is at most n, denoted asdimX ≤ n, if for

every λ > 0, there exists a cover U with Property Pλ
n.

3. The linearly-controlled asymptotic dimension of X is at most n, de-

noted `-asdimX ≤ n, if there exists c ≥ 1 and λ0 > 0 such that for all λ ≥ λ0,

there is a cover U with Property Pnλ,c.
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4. The Assouad-Nagata dimension of X is at most n, denoted

ANdimX ≤ n, if there exists c ≥ 1, such that for all λ > 0, there is a cover U

with Property Pnλ,c.

5. The linearly-controlled dimension of X is at most n, denoted

`-dimX ≤ n, if there exists c ≥ 1 and λ0 > 0 such that for all 0 < λ ≤ λ0,

there is a cover U with Property Pnλ,c.

We wish to record a few facts about the various dimension theories, as well as

some relationships between them:

1. Asymptotic dimension and linearly-controlled asymptotic dimension are quasi-

isometry invariants of a metric space. For a nice survey of asymptotic dimen-

sion, see [BD11]. It has become widely studied due in part to its relationship

to the Novikov Conjecture.

2. Assouad-Nagata dimension is a quasi-symmetry invariant [LS05]. Linearly-

controlled metric dimension is a quasi-symmetry invariant for bounded metric

spaces since, in this case, `-dimX = ANdimX (see proof below).

3. In fact, linearly-controlled metric dimension is a quasi-symmetry invariant of

a larger class of metric spaces: uniformly perfect metric spaces [BS07].

4. For a metric space X, we have the following comparisons:

mdimX ≤ dimX ≤ `-dimX ≤ ANdimX

mdimX ≤ asdimX ≤ `-asdimX ≤ ANdimX

Lemma 3.2.12. Let X be a bounded metric space with `-dimX = n. Then

ANdimX = n.

Proof. We need only prove that ANdimX ≤ n. Let λ > 0 and set D =diamX.

Since `-dimx ≤ n, there exists constants b ≥ 1 and λ0 > 0 such that for all τ ≤ λ0,

there is an open cover U of X with orderU ≤ n + 1, L(U) ≥ τ and mesh(U) ≤ bτ .

Set c = max{b, D
λ0
}.
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By above, if λ ≤ λ0, there is an open cover U of X with orderU ≤ n+1, L(U) ≥ λ

and mesh(U) ≤ cλ. Thus, we need only verify this condition for λ > λ0. To do so,

let U = X. Since the cover consists of the entire space only, the order is 1, which is

clearly less than n+ 1. Trivially, L(U) =∞ > λ. Lastly, mesh(U) =diamX = D =
D
λ0
λ0 ≤ cλ0 ≤ cλ.

Thus, there is a c ≥ 1 such that for every λ > 0, there is an open cover U of X

with order at most n+ 1, mesh bounded above by cλ and Lebesgue number at least

λ, proving ANdimX ≤ n.

For more on the above dimension theories, see [BS07]

3.3 The dA,x0 metrics

We are now ready to define the first family of metrics on the visual boundary of a

CAT(0) space: the dA,x0 metrics.

Fix a base point x0 ∈ X and choose A > 0. For [α], [β] ∈ ∂X, let α : [0,∞)→ X

and β : [0,∞)→ X be the geodesic rays based at x0 and asymptotic to [α] and [β],

respectively. Let a ∈ (0,∞) be such that d(α(a), β(a)) = A. If such an a does not

exist, set a =∞. Then, define dA,x0 : ∂X × ∂X → R by

dA,x0([α], [β]) =
1

a

3.3.1 Basic Properties of the dA,x0
metrics

Before discussing any properties of the dA,x0 metrics, we must first show that each

member of the family is indeed a metric and induces the cone topology on ∂X.

Lemma 3.3.1. If (X, d) is a CAT(0) space and x0 ∈ X, then dA,x0 for any A > 0

is a metric on ∂X.

Proof. Fix a base point x0 ∈ X and choose A > 0. Let [α], [β], [γ] ∈ ∂X and

α, β, γ : [0,∞)→ X be the geodesic rays based at x0 and asymptotic to [α], [β], [γ],

respectively.
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Clearly, dA,x0([α], [α]) = 0 since d(α(t), α(t)) = 0 for every t ≥ 0 and hence

a =∞. If dA,x0([α], [β]) = 0, then there is no a ∈ (0,∞) such that d(α(a), β(a)) = A.

By convexity of CAT(0) metric, this means d(α(t), β(t)) = 0 for every t ≥ 0. Hence,

α = β, which means [α] = [β]. Also, dA([α], [β]) = dA([β], [α]) since d(α(t), β(t)) =

d(β(t), α(t)). Finally, to verify the triangle inequality, suppose a, b, c ∈ (0,∞] satisfy

dA,x0([α], [β]) =
1

a
, dA,x0([β], [γ]) =

1

b
, dA,x0([α], [γ]) =

1

c

If c ≥ a or c ≥ b, then

dA,x0([α], [γ]) =
1

c
≤ 1

a
≤ 1

a
+

1

b
= dA,x0([α], [β]) + dA,x0([β], [γ])

or

dA,x0([α], [γ]) =
1

c
≤ 1

b
≤ 1

a
+

1

b
= dA,x0([α], [β]) + dA,x0([β], [γ])

Thus, the only interesting case is if c < a and c < b. By Lemma 3.2.2

d(α(c), β(c)) ≤ c

a
A

and

d(β(c), γ(c)) ≤ c

b
A

Then,

A = d(α(c), γ(c)) ≤ d(α(c), β(c)) + d(β(c), γ(c)) ≤ c

a
A+

c

b
A = Ac

(
a+ b

ab

)
Thus,

c ≥ ab

a+ b

which proves:

dA,x0([α], [γ]) =
1

c
≤ a+ b

ab
=

1

a
+

1

b
= dA,x0([α], [β]) + dA,x0([β], [γ])

Lemma 3.3.2. The topology induced by the dA,x0 metric on ∂X is equivalent to the

cone topology on ∂X.
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Proof. Fix A > 0 and x0 ∈ X. Since the base point is fixed, we will simplify dA,x0

to dA. Consider the basic open set BdA([α], ε) for [α] ∈ ∂X and ε > 0 and let

[β] ∈ BdA([α], ε). Let α, β : [0,∞) → X be the unique geodesic rays based at x0

corresponding to [α] and [β], respectively. Choose δ > 0 such that BdA([β], δ) ⊂
BdA([α], ε) and consider the basic open set in the cone topology U(β, 1

δ
, A) ∩ ∂X.

Let [γ] ∈ U(β, 1
δ
, A) ∩ ∂X. Then d(β(1

δ
), γ(1

δ
)) < A. If a > 0 is the point such that

d(β(a), γ(a)) = A, then a > 1
δ
. Thus, dA([β], [γ]) = 1

a
< δ. Thus, [γ] ∈ BdA([β], δ) ⊂

BdA([α], ε), proving [β] ∈ U(β, r, A) ∩ ∂X ⊂ BdA([α], ε).

Now consider a basic open set U(α, r, ε)∩ ∂X in the cone topology where r > 0,

A > ε > 0 and α : [0,∞)→ X is a geodesic ray based at x0 . Let [β] ∈ U(α, r, ε) ∩
∂X. Choose δ > 0 such that Bd(β(r), δ)∩S(x0, r) ⊂ Bd(α(r), ε)∩S(x0, r) and con-

sider the basic open set in the metric topology BdA([β], δ
Ar

). Let [γ] ∈ BdA([β], δ
Ar

).

Then dA([β], [γ]) = 1
a
< δ

Ar
where a > 0 is such that d(β(a), γ(a)) = A, which means

a > r since A > ε ≥ δ. By Lemma 3.2.2, d(γ(r), β(r)) ≤ r
a
A < r δ

Ar
A = δ. Thus,

γ(r) ∈ Bd(β(r), δ) ∩ S(x0, r) ⊂ Bd(α(r), ε) ∩ S(x0, r), proving [γ] ∈ U(α, r, ε). Thus

[β] ∈ BdA([β], δ
Ar

) ⊂ U(α, r, ε).

Remark 3.3.3. Recall that the cone topology is defined on X = X∪∂X. However,

the preceding lemma restricts the cone topology to the boundary since there is not

a natural extension of dA,x0 to X.

We now answer two important questions: what happens if we change A and

what happens if we move the base point? It turns out that in both cases, the

metrics are quasi-symmetric. Thus, by transitivity, all members of the dA,x0 family

are quasi-symmetric.

Lemma 3.3.4. Let X be a proper CAT(0)-space. For all A,A′ > 0,

id∂X : (∂X, dA,x0)→ (∂X, dA′,x0) is a quasi-symmetry.

Proof. Fix a base point x0 ∈ X and suppose, without loss of generality, that A < A′.

Clearly the identity map is a homeomorphism, so we need only verify that id∂X is a

quasi-symmetric map. Let η(t) = A′

A
t; we will show this a control function for id∂X .

Suppose that [α], [β], [γ] ∈ ∂X with dA,x0([α], [γ]) ≤ dA,x0([β], [γ]) for t > 0. Let
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α, β, γ : [0,∞)→ X be geodesic rays based at x0 that are asymptotic to [α], [β], [γ],

respectively. Let a, b, a′, b′ > 0 be such that

dA,x0([α], [γ]) =
1

a
, dA,x0([β], [γ]) =

1

b

dA′,x0([α], [γ]) =
1

a′
, dA′,x0([β], [γ]) =

1

b′

By convexity of CAT(0) metric and since A′ > A, then a ≤ a′ and b ≤ b′.

Furthermore, applying Lemma 3.2.2,

A = d(β(b), γ(b)) ≤ dE(β(b), γ(b)) =
A′b

b′

Thus, Ab′

A′
≤ b. Applying the above, we obtain the following inequalities:

dA′,x0([α], [γ]) =
1

a′
≤ 1

a
= dA,x0([α], [γ])

≤ tdA,x0([β], [γ]) = t
1

b
≤ t

A′

A

1

b′
= η(t)dA′,x0([β], [γ])

Lemma 3.3.5. Suppose X is a complete CAT(0) space. For all x0, x
′
0 ∈ X,

id∂X : (∂X, dA,x0)→ (∂X, dA,x′0) is a quasi-symmetry.

Proof. Let x0, x
′
0 ∈ X with x0 6= x′0. We begin by assuming A > 2d(x0, x

′
0). We show

that η(t) =
(

A
A−2d(x0,x′0)

)2

t is a control function for id∂X . Suppose that [α], [β], [γ] ∈
∂X and satisfy the inequality dA,x0([α], [γ]) ≤ tdA,x0([β], [γ]) for t > 0. Let α, β, γ :

[0,∞)→ X be geodesic rays based at x0 and asymptotic to the corresponding points

in ∂X. Let a, b ∈ (0,∞) be such that dA,x0(α(a), γ(a)) = A and dA,x0(β(b), γ(b)) =

A.

Since X is a complete CAT(0) space, there exists unique geodesic rays α′, β′, γ′

in X based at x′0 and asymptotic to α, β, γ, respectively. Let a′, b′ ∈ (0,∞) be such

that dA,x′0(α
′(a′), γ′(a′)) = A and dA,x′0(β

′(b′), γ′(b′)) = A. There are four cases to

consider:

Case 1: a′ ≥ a and b ≥ b′. Then

dA,x′0([α], [γ]) =
1

a′
≤ 1

a
= dA,x0([α], [γ]) ≤ tdA,x0([β], [γ]) = t

1

b
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≤ t
1

b′
= tdA,x′0([β], [γ]) ≤ η(t)dA,x′0([β], [γ])

Case 2: a′ ≥ a and b < b′. Applying Lemma 3.2.2, d(β′(b), γ′(b)) ≤ Ab
b′

. Thus,
b′

A
d(β′(b), γ′(b)) ≤ b. Furthermore, by Remark 3.2.5,

A = d(β(b), γ(b)) ≤ d(β(b), β′(b)) + d(β′(b), γ′(b)) + d(γ′(b), γ(b))

≤ 2d(x0, x
′
0) + d(β′(b), γ′(b))

Thus, A− 2d(x0, x
′
0) ≤ d(β′(b), γ′(b))

Applying all of the above,

dA,x′0([α], [γ]) =
1

a′
≤ 1

a
= dA,x0([α], [γ]) ≤ tdA,x0([β], [γ]) = t

1

b

≤ t
A

d(β′(b), γ′(b))

1

b′
≤ t

A

A− 2d(x0, x′0)
dA,x′0([β], [γ]) ≤ η(t)dA,x′0([β], [γ])

Case 3: a′ < a and b ≥ b′ Using Lemma 3.2.2, d(α(a′), γ(a′)) ≤ Aa′

a
. Furthermore,

by Remark 3.2.5,

A = d(α′(a′), γ′(a′)) ≤ d(α′(a′), α(a′)) + d(α(a′), γ(a′)) + d(γ(a′), γ′(a′))

≤ 2d(x0, x
′
0) + d(α(a′), γ(a′))

Applying the above,

dA,x′0([α], [γ]) =
1

a′
≤ A

d(α(a′), γ(a′))

1

a
≤ A

A− 2d(x0, x′0)

1

a
=

A

A− 2d(x0, x′0)
dA,x0([α], [γ])

≤ A

A− 2d(x0, x′0)
tdA,x0([β], [γ]) =

A

A− 2d(x0, x′0)
t
1

b
≤ A

A− 2d(x0, x′0)
t
1

b′

=
A

A− 2d(x0, x′0)
tdA,x′0([β], [γ]) ≤ η(t)dA,x′0([β], [γ])

Case 4: a′ < a and b < b′. Using the computations in Cases 2 and 3:

dA,x′0([α], [γ]) =
1

a′
≤ A

A− 2d(x0, x′0)
dA,x0([α], [γ])
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≤ A

A− 2d(x0, x′0)
tdA,x0([β], [γ]) =

A

A− 2d(x0, x′0)
t
1

b
≤ t

(
A

A− 2d(x0, x′0)

)2
1

b′

= t

(
A

A− 2d(x0, x′0)

)2

dA,x′0([β], [γ]) = η(t)dA,x′0([β], [γ])

Thus, η(t) =
(

A
A−2d(x0,x′0)

)2

t is a control function for id∂X for A > 2d(x0, x
′
0).

Now, suppose we are given any A > 0. Since X is a CAT(0) space, it is path

connected. Let γ : [0, d(x0, x
′
0)] → X be a geodesic segment connecting x0 to x′0.

Let {y0, y1, ..., yn−1, yn} be a partition of [0, d(x0, x
′
0)] where |xk − xk−1| < A

2
for

k = 1, 2, ...n and set xk = γ(yk) for k = 0, 1, ..., n − 1 and x′0 = γ(yn). From

above, we know idk∂X : (∂X, dA,xk) → (∂X, dA,xk−1
) is a quasi-symmetry for each k.

Theorem 3.2.9 guarantees that id∂X = idn∂X ◦ ... ◦ id1
∂X : (∂X, dA,x0) → (∂X, dA,x′0)

is a quasi-symmetry.

In the future, we will use dA to denote an arbitrary representative of the family

of metrics {dA,x0}. When specific calculations are to be done, A > 0 should be fixed

and a base point x0 should be chosen.

In problem 46 of [Kap07], B. Kleiner asked whether the group of isometries of a

CAT(0) space acts in a “nice” way on the boundary. The following theorem provides

one answer.

Theorem 3.3.6. Suppose G is a finitely generated group that acts by isometries

on a complete CAT(0) space X. Then the induced action of G on (∂X, dA,x0) is a

quasi-symmetry. In other words, G acts by quasi-symmetries on ∂X.

Proof. Fix a base point x0 ∈ X and A > 0. Notice that proving this theorem relies

on knowing that changing base point is a quasi-symmetry, since if α, β, γ : [0,∞)→
X are geodesic rays based at x0, then

dA,x0([α], [γ]) = dA,gx0([gα], [gγ])

dA,x0([β], [γ]) = dA,gx0([gβ], [gγ]).

This is a simple consequence of the action being by isometries. Hence, to obtain the

desired inequality for a quasi-symmetric map, all we need to do is find the distances
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of the translated rays with respect to the base point x0 rather than gx0. A simple

application of Theorem 3.3.5 proves g is a quasi-symmetry.

3.3.2 Dimension Results Using the dA metrics

In [BL07], it is shown that the linearly controlled dimension of every compact lo-

cally self-similar metric space X is finite and `-dimX =dimX. Since hyperbolic

group boundaries are compact and locally self-similar, we obtain the equality of lin-

early controlled dimension and covering dimension of hyperbolic group boundaries

in Theorem 3.1.2. Swenson shows in [Swe99] that the boundary of a proper CAT(0)

space admitting a cocompact action by isometries has finite topological dimension.

Since topological dimension can be defined for arbitrary topological spaces, there

was no need for a metric on the boundary to prove this fact. Now that we have the

dA family of metrics on the boundary, we can examine the linearly controlled metric

dimension. We have been unable to show equality of the two dimensions, but we

do show that linearly controlled dimension of a CAT(0) group boundary must be

finite. This proof was motivated by the proof of Theorem 2.3.7.

Theorem 3.3.7. Suppose G acts geometrically on a proper CAT(0)-space X. Then

`-dim(∂X, dA) <∞.

This proof relies on the existence of a single cover with Property PnR,4R for some

R, n > 0.

Lemma 3.3.8. Suppose a group G acts geometrically on a proper CAT(0) space

(X, d). Then for all sufficiently large R, there exists a finite order open cover V of

X with mesh(V) ≤ 4R and L(V) ≥ R.

Proof. Let C ⊆ X be a compact set with GC = X and choose R large enough so

that C ⊆ B(x0, R) for some x0 ∈ X. Then V = ∪g∈GB(gx0, 2R) is a finite order

open cover of X with mesh bounded above by 4R. Notice that the order of V is

finite since the action of G is proper, that is only finitely many G-translates of any
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compact set C can intersect C. Since the cover is obtained by this nice geometric

action, it must look the same everywhere. Thus, the order of V is bounded above by

the finite number of translates of gB(x0, 2R) intersecting B(x0, 2R). Furthermore,

the Lebesgue number of V is at least R. For if we take x ∈ X and let g ∈ G such

that gx ∈ C ⊆ B(x0, R). Then d(gx,X − B(x0, 2R)) ≥ R. As the action is by

isometries:

R ≤ d(gx,X −B(x0, 2r)) = d(x, g−1(X −B(x0, 2R))) = d(x,X − g−1(B(x0, 2R)))

= d(x,X −B(g−1x0, 2R))

Since B(g−1x0, 2R) ∈ V, and d(x,B(g−1x0, 2R)) ≥ R, then L(V) ≥ R.

Remark 3.3.9. Lemma 3.3.8 proves that mdimX <∞ for a CAT(0) space admit-

ting a geometric action.

Proof of Theorem 3.3.7. Fix A > 0. By Lemma 3.3.8, we may choose a sufficiently

large R > A so that there is a finite order open cover V of X with mesh(V) ≤ 4R

and L(V) ≥ R. Set n =order(V).

Set tλ = 1
λ

for each λ ∈ (0,∞), and for each V ∈ V, define

UV = {[γ]|γ is a geodesic ray based at x0 with γ(tλ) ∈ V }

We will show that U = ∪V ∈VUV is an open cover of ∂X with order bounded

above by n, Lebesgue number at least λ and mesh at most 4R
A
λ.

Clearly U is an open cover since V is an open cover of X. Furthermore, since

γ(tλ) can be in at most n-elements of V, then [γ] can be in at most n elements of U.

We now show the Lebesgue number must be at least λ. Let [γ] ∈ ∂X and γ

a geodesic ray in X based at x0 and asymptotic to [γ]. Since L(V) ≥ R, there is

some V ∈ V such that d(γ(tλ), X − V ) ≥ R. Consider then dA([γ], ∂X − UV ). If

[β] ∈ ∂X − UV , then β(tλ) /∈ V and hence d(γ(tλ), β(tλ)) ≥ R. Letting a ∈ (0,∞)

be such that d(γ(a), β(a)) = A, then a ≤ tλ since R ≥ A. Hence,

dA([γ], [β]) =
1

a
≥ 1

tλ
= λ
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Hence, dA([γ], ∂X − UV ) ≥ λ, so L(V) ≥ λ.

Lastly, we show mesh(U) ≤ 4R
A
λ. Let [α], [β] ∈ UV for some UV ∈ U. Let

α, β be geodesic rays in X based at x0 and asymptotic to [α] and [β], respectively.

Let a ∈ (0,∞) be such that d(α(a), β(a)) = A. Since α(tλ), β(tλ) ∈ V , then

d(α(tλ), β(tλ)) ≤ 4R. There are then two cases to consider:

Case 1: d(α(tλ), β(tλ)) ≤ A. Then a ≥ tλ, so

dA([α], [β]) =
1

a
≤ 1

tλ
= λ ≤ 4R

A
λ

Case 2: A ≤ d(α(tλ), β(tλ)) ≤ 4R. Then a ≤ tλ, and by Lemma 3.2.2,

d(α(a), β(a)) ≤ a
tλ
d(α(tλ), β(tλ)). Thus,

A = d(α(a), β(a)) ≤ a

tλ
d(α(tλ), β(tλ)) ≤

a

tλ
(4R)

Rearranging, we obtain that a ≥ Atλ
4R

, and thus:

dA([α], [β]) =
1

a
≤ 4R

Atλ
=

4R

A
λ

Thus, there exists a c ≥ 1 such that for every λ > 0, there is an open cover U of

∂X with order(U) ≤ n, L(U) ≥ λ and mesh(U) ≤ cλ, proving `-dim(∂X, dA) <∞.

The above proof really only required the existence of a single finite order uni-

formly bounded open cover with large Lebesgue number. Thus, if we know a proper

CAT(0) space has finite asymptotic dimension, we do not need a group action to

provide such a cover. We point out that there are some CAT(0) spaces that are

known to have finite asymptotic dimension: Rn for all n ≥ 0, Gromov hyperbolic

CAT(0) spaces, and CAT(0) cube complexes [Wri12]. Thus, there are spaces for

which the following proposition will apply.

Proposition 3.3.10. Suppose (X, d) is a proper CAT(0) space with finite asymp-

totic dimension. Then `-dim(∂X, dA) ≤ asdimX.
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Proof. Fix A > 0. Since asdimX ≤ n for some n > 0, there exists a uniformly

bounded cover V with order V ≤ n + 1 and L(V) ≥ R for some R ≥ A. We may

assume that this cover is also open, because if it is not, we can simply choose a

larger R, “push in” the cover V using the Lebesgue number, and obtain a smaller

open cover with the desired properties. Repeat the same argument as in the proof of

Theorem 3.3.7 to obtain an open cover U of ∂X with order at most n+ 1, L(U) ≥ λ

and meshU ≤ meshV
A

λ.

3.4 The dx0-metrics

To define the second family of metrics on ∂X, fix a base point x0 ∈ X. For [α], [β] ∈
∂X, let α : [0,∞) → X and β : [0,∞) → X be the unique representatives of [α]

and [β] based at x0. Define dx0 : ∂X × ∂X → R by

dx0([α], [β]) =

∫ ∞
0

d(α(r), β(r))

er
dr

This family of metrics, unlike the dA metrics, takes into account the entire

timespan of the geodesic rays. Due to this fact, it can naturally be extended to

X = X ∪ ∂X. To do so, consider x, y ∈ X. Let cx : [0, d(x0, x)] → X be the

geodesic from x0 to x and cy : [0, d(x0, y)] → X the geodesic segment from x0 to

y. Extend cx to c′x : [0,∞) → X by letting c′x(r) = x for all r > d(x0, x) and

c′(r) = c(r) otherwise. Extend cy to c′y : [0,∞)→ X in a similar fashion. Then

dx0(x, y) =

∫ ∞
0

d(c′x(r), c
′
y(r))

er
dr

3.4.1 Basic Properties of the dx0
metrics

The following lemma that dx0 is a metric is trivial.

Lemma 3.4.1. If (X, d) is a proper CAT(0) space and x0 ∈ X, then dx0 is a metric

on ∂X.

Lemma 3.4.2. The topology induced on X = X∪∂X by the dx0 metric is equivalent

to the cone topology on X.
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Proof. Fix x0 ∈ X. We will denote dx0 by d. We first show the cone topology is

finer than the metric topology by considering points in X and ∂X, respectively.

Let y ∈ X and Bd(x, ε) be a basic open set in X containing y for some ε > 0

and x ∈ X. Choose δ > 0 such that Bd(y, δ) ⊂ Bd(x, ε) and Bd(y, δ) ∩ ∂X = ∅.
Consider the basic open set Bd(y, δ) in the cone topology. Clearly, y ∈ Bd(y, δ) and

if z ∈ Bd(y, δ), then z ∈ Bd(y, δ) since d(y, z) < d(y, z). Thus,

y ∈ Bd(y, δ) ⊂ Bd(y, δ) ⊂ Bd(x, ε)

Now, let [β] ∈ ∂X, and consider the basic open set Bd(x, ε) for ε > 0 and x ∈ X.

Choose δ > 0 such that Bd([β], δ) ⊂ Bd(x, ε). Let t > 0 be such that e−t < δ/4 and

consider the basic open set U(β, t, δ
2
) in the cone topology. Clearly [β] ∈ U(β, t, δ

2
),

so if [γ] ∈ U(β, t, δ
2
) ∩ ∂X, then

d([β], [γ]) =

∫ t

0

d(β(r), γ(r))

er
dr +

∫ ∞
t

d(β(r), γ(r))

er
dr

≤
∫ t

0

d(γ(t), β(t))

er
dr +

∫ ∞
t

2(r − t) + d(γ(t), β(t))

er
dr

= d(γ(t), β(t)) +
2

et

<
δ

2
+
δ

2
= δ

Moreover, if y ∈ U(β, t, δ
2
) ∩X and cy : [0, d(x0, y)]→ X is the geodesic from x0 to

y, then

d([β], x) =

∫ t

0

d(cy(r), β(r))

er
dr +

∫ ∞
t

d(cy(r), β(r))

er
dr

<

∫ t

0

d(cy(t), β(t))

er
dr +

∫ ∞
t

(r − t) + d(cy(t), β(t))

er
dr

<
3δ

4
< δ

These two calculations show U(β, t, δ
2
) ⊂ Bd([β, δ]) and thus,

[β] ∈ U(β, t,
δ

2
) ⊂ Bd([β, δ]) ⊂ Bd(x, ε)
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Now, we show the metric topology is finer than the cone topology, again by

considering points in X and ∂X.

Let y ∈ X and B a basic open set in the cone topology. Choose δ > 0 such

that Bd(y, δ) ⊂ B ∩X. Consider the basic open set Bd(y,R) where R = δ
ed(x0,y)

(if

necessary, choose R smaller so that Bd(y,R) ⊂ X). Let z ∈ Bd(y,R) and cy and cz

the geodesics connecting x0 to y and z, respectively. Set t = max{d(x0, y), d(x0, z)}.
Then

d(y, z) >

∫ ∞
t

d(cz(r), cy(r))

er
dr

=

∫ ∞
t

d(y, z)

er
dr

=
d(y, z)

et

≥ d(y, z)

ed(x0,y)

Since d(y, z) < δ
ed(x0,y)

, by the above calculation, z ∈ Bd(y, δ) proving

y ∈ Bd(y,R) ⊂ Bd(y, δ) ⊂ B

For a boundary point [β] ∈ ∂X, let U(α, t, ε) be a basic open set containing [β]

for t, ε > 0 and α a geodesic ray based at x0. Choose 1 > δ > 0 so that

Bd(β(t), δ)∩S(x0, t) ⊂ Bd(α(t), ε)∩S(x0, t). Consider the basic open set Bd([β], δ
et

).

If [γ] ∈ Bd([β], δ
et

) ∩ ∂X, then d(β(t), γ(t)) < δ. Otherwise,

d([γ], [β]) ≥
∫ ∞
t

δ

er
dr =

δ

et

Thus, d(γ(t), β(t)) < δ < ε, so [γ] ∈ U([α], t, ε). If x ∈ Bd([β], δ
et

) ∩ X, we first

notice that d(x, [β]) ≥ d([β], β(d(x0, x))) = e−d(x0,x). Thus, d(x0, x) ≥ t, otherwise

x /∈ Bd([β], δ
et

). By the same argument just given for a boundary point, we see that

d(cx(t), β(t)) < δ proving x ∈ U([α], t, ε). Thus,

[β] ∈ Bd

(
[β],

δ

et

)
⊂ U([α], t, ε)
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Thus far, we have been unable to prove analogs of Lemma 3.3.5 and Theorem

3.3.6 for this family of metrics. However, we will see that there are some significant

advantages in using dx0 for comparing dimension properties of ∂X and X. In par-

ticular, we use the dx0 metric to obtain a weak solution to Question 3.1.1 (which we

have been unable to accomplish using the dA metrics).

3.4.2 Dimension Results Using the dx0
Metrics

Theorem 3.4.3. Suppose X is a geodesically complete CAT(0) space and `-dim∂X ≤
n, where ∂X is endowed with the dx0 metric. Then the macroscopic dimension of

X is bounded above by 2n+ 1.

The proof “pushes in” covers of the boundary obtained by knowing finite linearly

controlled metric dimension of the boundary to create covers of the entire space.

Proof of Theorem 3.4.3. We will show that there exists a uniformly bounded cover

V of X with orderV ≤ 2n + 1. Fix a base point x0 ∈ X. Since `-dim∂X ≤ n,

there exists constants λ0 ∈ (0, 1) and c ≥ 1 and n+ 1-colored coverings (by a single

coloring set A) Uk of ∂X with

• meshUk ≤ cλk

• L(Uk) ≥ λk/2

• Ua
k is λk/2-disjoint for each a ∈ A.

where λk ≤ λ0. Such a cover is guaranteed by [BS07, Lemma 11.1.3].

Choose R > 0 so that 4
eR
< λ0 and set λk = 4

ekR
.

Let Bk = {x ∈ X|(k+ 1
2
)R ≤ d(x, x0) ≤ (k+ 3

2
)R be an the annulus centered at

x0 for each k = 1, 2, 3, .... We will cover each of these Bk by “pushing in” the cover

Uk of the boundary. To do so, let

VUk = {γ(kR, (k + 2)R)|γ is a geodesic ray with [γ] ∈ Uk}

and V = ∪Uk∈UkVUk . Clearly Vk is a cover of Bk.
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x0

(k+1/2)R

(k+3/2)R
kR

(k+2)R
∂X

( )
Uk

VUk

Bk

Figure 3.2: Creating Covers

Claim 1: Vk is (n + 1)-colored by the same set A. That is, Vak is a disjoint

collection of sets for each a ∈ A.

Suppose otherwise. That is, that there exists VU , VU ′ ∈ Vak with VU ∩ VU ′ 6= ∅. If

x ∈ VU ∩VU ′ then there exists geodesic rays α and β passing through x with [α] ∈ U
and [β] ∈ U ′. Since U,U ′ ∈ Ua

k, then d([α], [β]) ≥ λk/2. Thus,

λk
2
≤ d([α], [β]) =

∫ ∞
0

d(α(r), β(r))

er
dr

=

∫ ∞
d(x,x0

d(α(r), β(r))

er
dr

≤
∫ ∞
d(x,x0

2(r − d(x, x0)

er
dr

=
2

ed(x,x0)
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<
2

ekR
=
λk
2

The last line provides the required contradiction. Thus, order(Vk) ≤ n for each k.

Claim 2: For every x, y ∈ VUk ∈ Vk with d(x0, x) = (k + 2)R = d(x0, y), then

d(x, y) ≤ 4ce2R. To show this, suppose otherwise. Choose x, y ∈ Vk with d(x0, x) =

(k+ 2)R = d(x0, y) and d(x, y) > 4ce2R. Let γx and γy be geodesic rays based at x0

with [γx], [γy] ∈ Uk and such that γx((k + 2)R) = x and γy((k + 2)R) = y. Thus,

d([γx], [γy]) ≥
∫ ∞

(k+2)R

d(γx(r), γy(r))

er
dr

>

∫ ∞
(k+2)R

4ce2R

er
dr

=
4c

ekR
= cλk

Since [γx], [γy] ∈ Uk and meshUk ≤ cλk, we obtain the desired contradiction.

Claim 3: meshVk ≤ 4ce2R + 2R. Let x, y ∈ VUk ∈ Vk. Let γx and γy be geodesic

rays based at x0 passing through x and y, respectively. Suppose γx(t) = x and

γy(s) = y for t, s ∈ (kR, (k + 2)R). Without loss of generality, suppose s ≤ t. Then

d(x, y) ≤ d(x, γx(s)) + d(γx(s), γy(s))

= (t− s) + d(γx(s), γy(s))

≤ 2R + d(γx((k + 2)R), γy((k + 2)R))

≤ 2R + 4ce2R

Thus, we have shown that meshVk ≤ 4ce2R + 2R and orderVk ≤ n for every k.

Since Vk ∩Vk−1 = ∅, then ∪Vk is a uniformly bounded cover of X −B(x0,
3
2
R) with

order bounded above by 2n. Letting V = ∪Vk ∪ B(x0, 2R) we obtain our desired

cover.

The missing piece in the above argument that would prove finite asymptotic

dimension is having arbitrarily large Lebesgue numbers for the cover. Thus, this

argument is a potential step in finally answering the open asymptotic dimension

question.
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3.5 Examples

The previous sections highlight important properties and results that can be ob-

tained using the dA and d metrics. Many of the results we obtained with the given

techniques worked for one metric, but not the other. That is of course not to say

that the same results cannot be obtained using different methods with the other

metric. However, the different results do provide interesting comparisons between

the two metrics and some insight into each ones strengths or weaknesses. In this

section, we highlight some other differences by showing calculations done on T4, the

four valent tree.

Example 3.5.1. In this example, we show that dx0 is a visual metric on ∂T4, but

dA is not a visual metric on T4.

Recall that a metric d on the boundary of a hyperbolic space is called a visual

metric with parameter a > 1 if there exists constants k1, k2 > 0 such that

k1a
−(ζ,ζ′)p ≤ d(ζ, ζ ′) ≤ k2a

−(ζ,ζ′)p

for all ζ, ζ ′ ∈ ∂X. [Here (ζ, ζ ′)p is the extended Gromov product based at p ∈ X.

See [BH99] for more information on visual metrics.]

Fix a base point x0 ∈ X and A > 0. Let [α], [β] ∈ ∂T4 and let α, β : [0,∞)→ T4

be the corresponding geodesic rays based at x0. Set t = max{r|d(α(r), β(r)) = 0}.
Then d(α(r), β(r)) = 2(r − t) for all r ≥ t. A simple computation shows:

dx0([α], [β]) =

∫ ∞
t

2(r − t)
er

dr =
2

et

Furthermore, since ([α], [β])x0 = t, we see that dx0 is a visual metric on T4 with

parameter e.

Now, suppose, by way of contradiction, that dA is visual with parameter a > 1.

Then there exists k1, k2 > 0 such that k1a
−(ζ,ζ′)x0 ≤ dA(ζ, ζ ′) ≤ k2a

−(ζ,ζ′)x0 for all

ζ, ζ ′ ∈ ∂X.

Choose n ∈ Z+ large enough such that an

n+1
> k2a

A/2, which is possible since

limn→∞
an

n+1
=∞. Let α, β : [0,∞)→ X be any two proper geodesic rays based at



48

x0 with the property that α(t) = β(t) for all t ≤
⌈
n− A

2

⌉
and α(t) 6= β(t) for all

t >
⌈
n− A

2

⌉
(that is, α and β are two rays that branch at time t =

⌈
n− A

2

⌉
. Notice

then that

dA([α], [β]) =
1⌈

n− A
2

⌉
+ A

2

and ([α], [β])x0 =

⌈
n− A

2

⌉
By the visibility assumption,

dA([α], [β]) ≤ k2a
−([α],[β])x0

and thus,
1⌈

n− A
2

⌉
+ A

2

≤ k2a
−([α],[β])x0

Since
⌈
n− A

2

⌉
≥ n − A

2
and

⌈
n− A

2

⌉
≤ n − A

2
+ 1, we obtain the following

inequality:

1

n+ 1
≤ 1⌈

n− A
2

⌉
+ A

2

≤ k2a
−([α],[β])x0 = k2a

−dn−A2 e ≤ k2a
−(n−A

2
)

Rearranging, we see that
an

n+ 1
≤ k2a

A/2,

a contradiction to the choice of n.

Proposition 3.5.2. id∂X : (∂X, dA)→ (∂X, d) is not a quasi-symmetry.

We prove this proposition by showing it in the case that X = T4. For this, we

need the following lemma.

Lemma 3.5.3. (∂T4, dA) is uniformly perfect.

Proof. Fix a base point x0 ∈ T4. It suffices to show (∂T4, d1) is uniformly perfect

since (∂T4, dA) is quasi-symmetric to (∂T4, d1) for every A > 0 by Lemma 3.3.4.

Let [α] ∈ ∂T4 and α : [0,∞) → T4 the ray asymptotic to [α] based at x0. Since

diam(T4, d1) = 2, we show that B([α], r)−B([α], r
4
) 6= ∅ for all 0 < r < 2. Consider

the geodesic ray β : [0,∞) → T4 based at x0 with α(t) = β(t) for all t ≤ d1
r
e and

α(t) 6= β(t) for all t > d1
r
e. Then, d1([α], [β]) = 1

d1/re+1/2
and thus, d1([α], [β]) < r.

Moreover, d1
r
e+ 1

2
≤ 1

r
+ 1 + 1

2
< 1

r
+ 3

r
, so d1([α], [β]) > r

4
, proving [β] ∈ B([α], r)−

B([α], r
4
).
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Proof of Proposition 3.5.2. Let X = T4. We will show that id : (∂T4, dA)→ (∂T4, d)

is not a quasi-symmetry for A = 1 and then refer to Lemma 3.3.4 for the full claim.

Fix a base point x0 ∈ T4 and suppose, by way of contradiction, that id : (∂T4, d1)→
(∂T4, d) is a quasi-symmetry. By Theorem 3.2.10 and Lemma 3.5.3, η must be of

the form η(t) = cmax{tδ, t1/δ} where c ≥ 1 and δ ∈ (0, 1] depends only on f and

X. Let α, γ : [0,∞)→ T4 be two proper geodesic rays such that α(t) 6= γ(t) for all

t > 0. Then

d1([α], [γ]) =
1

1/2
= 2

d([α], [γ]) =

∫ ∞
0

2r

er
dr = 2

Choose n ∈ Z+ large enough such that n− 1
δ

ln(2n+1) > ln(c), which is possible

since limn→∞ n− 1
δ

ln(2n+ 1) =∞.

Let β : [0,∞)→ T4 be a proper geodesic ray with the property that β(t) = γ(t)

for all t ≤ n and β(t) 6= γ(t) for all t > n. Then

d1([β], [γ]) =
1

n+ 1/2
=

2

2n+ 1

d([β], [γ]) =

∫ ∞
n

2(r − n)

er
dr =

2

en

Set t = d1([α],[γ])
d1([β],[γ])

= 2n+ 1.

By the quasi-symmetry assumption,

d([α], [γ]) ≤ η(t)d([β], [γ])

and thus,

2 ≤ η(2n+ 1)
2

en

⇒ en ≤ η(2n+ 1) = cmax{(2n+ 1)δ, (2n+ 1)1/δ}

⇒ en ≤ c(2n+ 1)1/δ

⇒ n ≤ ln(c) +
1

δ
ln(2n+ 1)

This last inequality contradicts the choice of n, proving our claim.
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3.6 Open Questions

Since metrics on visual boundaries of CAT(0) spaces have not been widely studied,

there is still much work to be done in this area. We hope that the results here

show the development of these metrics is worthwhile and provides the opportunity

to study CAT(0) boundaries from a different point of view, which may of course

lead to answering interesting unanswered questions about these boundaries. We

end with a list of open questions.

Question 3.6.1. Is there an extension of dA to X that is equivalent to the cone

topology on X?

Question 3.6.2. In the proof of Theorem 3.3.6, a different control function is used

for each g ∈ G. Is there a single control function for the entire group?

Question 3.6.3. Are all of the members of the dx0 family of metrics quasi-symmetric?

The answer to this question is yes in the extreme cases that X is R2 or the

four-valent tree by simple calculations. If it can be shown that the answer is yes for

any CAT(0) space X, then we could easily show that the group of isometries of a

CAT(0) space acts by quasi-symmetries on the boundary as in Theorem 3.3.6.

Question 3.6.4. Is the linearly controlled dimension of CAT(0) group boundaries

finite when the boundary is endowed with the dx0 metric? Furthermore, if the

answer to Question 3.6.3 is no, can a CAT(0) boundary with two different metrics

from the same family {dx0} have different linearly controlled dimension?

Question 3.6.5. For a hyperbolic group G, `-dim∂X = dim∂X. Can the same be

said for CAT(0) group boundaries? In particular, can it be shown for a CAT(0)

group G, `-dim∂X ≤ dim∂X with respect to either the dA metric or d metric?

Question 3.6.6. In Example 3.5.1, we showed that dx0 is a visual metric on ∂T4.

Is dx0 a visual metric on the boundary of any δ-hyperbolic space?
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