
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2015

Maximizing the Effects of Passive Training on
Visuomotor Adaptation By Incorporating Other
Motor Learning Strategies
Yuming Lei
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Neuroscience and Neurobiology Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Lei, Yuming, "Maximizing the Effects of Passive Training on Visuomotor Adaptation By Incorporating Other Motor Learning
Strategies" (2015). Theses and Dissertations. 890.
https://dc.uwm.edu/etd/890

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=dc.uwm.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/890?utm_source=dc.uwm.edu%2Fetd%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 

 

MAXIMIZING THE EFFECTS OF PASSIVE TRAINING ON VISUOMOTOR 

ADAPTATION BY INCORPORATING OTHER MOTOR LEARNING 

STRATEGIES 

 

 

by 

Yuming Lei 

 

A Dissertation Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

 

Doctor of Philosophy 

in Health Sciences 

 

at 

University of Wisconsin-Milwaukee 

May 2015 

  



 

 

ii 

 

 
ABSTRACT 

 MAXIMIZING THE EFFECTS OF PASSIVE TRAINING ON 
VISUOMOTOR ADAPTATION BY INCORPORATING OTHER MOTOR 

LEARNING STRATEGIES 
 

by 

Yuming Lei 

 

The University of Wisconsin-Milwaukee, 2015  
Under the Supervision of Professor Jinsung Wang 

 
 

Passive training has been shown to be an effective rehabilitation approach for 

stroke survivors, especially for those who suffer from severe control loss or 

complete paralysis. However, the effectiveness of the treatments that utilize 

passive assist training is still low.  The goal of this dissertation was to develop a 

training condition that can maximize the effects of passive training on motor 

learning by combining its effect with other motor learning strategies. To achieve 

this goal, two specific aims were pursued: one aim was to determine the effects 

of passive training on learning a visuomotor adaptation task; and the other aim 

was to determine the effects of passive training in combination with other 

strategies on learning a visuomotor adaptation task. Experimental results 

indicated that passive training has a positive effect on visuomotor learning. 

Furthermore, it was confirmed that a training condition consisting of action 

observation and passive training leads to significant performance gains beyond 

what either intervention alone can do. This suggests that passive training could 
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elicit motor representational changes, inducing instance-reliant learning process 

(use-dependent plasticity) that encodes motor instances associated with specific 

effectors and task conditions. The findings from this study show great potential 

for developing specific rehabilitation protocols that utilize passive training and 

action observation together for severely impaired stroke patients in the future. 
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Chapter 1: Introduction 

Stroke (cerebral vascular disease) is a leading cause of permanent 

disability in the United States (Muntner et al. 2002; Roger et al. 2011). Every 

year, more than 780,000 people suffer a stroke, with about 500,000 of which 

being first-time cases (Muntner et al. 2002; Roger et al. 2011). Currently, a stroke 

is more likely to lead to a long-term disability rather than death because of 

modern medical advances, implying that there is a growing concern of the cost of 

the healthcare and assistance for stroke survivors (Roger et al. 2011). It is 

estimated that among stroke survivors who were 65 years or older, 50% reported 

some form of hemiparesis and 30% reported limitations in activities of daily living 

(ADLs) without assistance (Rosamond et al. 2008; Huang et al. 2009). Stroke not 

only strikes the elderly, it also occurs among children between infancy and 

toddler age. In fact, stroke is one of the leading causes of death for children 

(Lloyd-Jones et al. 2009). The rate of stroke occurrence from birth through the 

age of 18 is nearly 11 in every 100,000, with 50% to 80% having permanent 

neurological deficits, most commonly hemiparesis or hemiplegia (Roach et al. 

2008). With the progressive growth of the elderly (age 65 and over) population 

due to the aging baby boomers, and the increase in the rate of strokes among 

children, the concerns of stroke-related disability will increase over time.  

Although stroke can result in deficits in a number of neurologic functions 

based on the locations in the brain where the lesions occur resulting from a 

stroke, the most commonly affected is the motor functions (Duncan et al. 1992), 

which encompass motor control and learning abnormalities, muscle weakness, 
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and spasticity (Gresham et al. 1995; Rathore et al. 2002). Approximately 50% of 

the strokes are accompanied by hemiparesis (weakness on one side of the body) 

or hemiplegia (paralysis on one side of the body) (Kelley-Hayes et al. 2003). Only 

about 60% of stroke survivors with hemiparesis regain functional independence; 

and those suffering from hemiplegia have an even lower rate of recovery. 

Therefore, it is necessary to develop an effective treatment for stroke 

rehabilitation.  

Rehabilitation approaches that clinicians have typically implemented for 

stroke patients include impairment-oriented training (Platz et al. 2001), 

constraint-induced movement therapy (CIMT) (Taub et al. 1993; Dromerick et al. 

1999; Mark and Taub, 2004), interactive robotic therapy (Krebs et al., 1998), and 

virtual reality-based rehabilitation (Deutsch et al. 2004; Holden, 2005). These 

approaches improve motor function by forcing the repetitive exercise with the 

affected limb to reestablish muscle activity. As a result of the active engagement 

of the affected limb, the brain stimulates neural pathways and activates the motor 

cortex, thus inducing cortical reorganization and motor learning.  

There is an increasing interest in using interactive robotic devices for 

stroke rehabilitation (van Vliet and Wing, 1991; Hesse et al. 2003; Hogan et al. 

2004; Reinkensmeyer et al. 2004; Nef and Riener, 2005). Compared to other 

rehabilitation approaches, robotic therapy is attractive because of its 

programmable ability to alter task dynamics, its high measurement reliability, and 

its ability to deliver high-level intensity therapy than that with conventional 

therapy (Huang and Krakauer, 2009; Reinkensmeyer and Patton, 2009; Kitago 
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and Krakauer, 2013). Active assist exercise, which uses external assistance to 

aid patients to accomplish intended movements, is the primary paradigm that has 

been used in robotic therapy (Marchal-Crespo and Reinkensmeyer, 2009). Active 

assist exercise can be grouped into three modes in terms of the dose of robotic 

assistance (Takahashi et al., 2008): (1) active non-assist mode, in which patients 

do all work without the robot’s help, (2) active assist mode, in which patients 

actively exert effort to move and the robot supplements its effort, (3) passive 

assist mode, in which patients relax while the robot do all work. Interventional 

studies demonstrate that active assist mode can achieve greater behavioral 

gains for stroke patients who can exert efforts on their own to move (Lotze et al., 

2003; Perez et al., 2004), since robotic devices, in active assist mode, provide 

assistance for patients to move their paretic limb in desired patterns during 

reaching, grasping, or walking to provoke motor plasticity (Marchal-Crespo and 

Reinkensmeyer, 2009).   

While active assist training is certainly more beneficial than passive assist 

training for the majority of stroke patients, passive assist training may still be 

beneficial for those who can hardly move on their own, because passive 

repetitive movements can also lead to a change of cortical network (Lotze et al., 

2003). In addition, another intervention which may be beneficial for the severely 

impaired stroke patients involves an action observation. Evidence exists that the 

observation of action and the actual execution of the observed action involve the 

same cortical motor representation (Fadiga et al., 1995; Iacoboni et al., 1999; 

Mattar and Gribble, 2005).  Recently, action observation has been demonstrated 
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to have a positive effect on rehabilitation of motor deficits after stroke through 

reactivating motor representation relevant to the observed action (Pomeroy et al., 

2005; Buccino et al., 2006; Ertelt et al., 2007; Celnik et al., 2008). 

The content of stroke rehabilitation is built upon the principle of motor 

learning. In order to optimize stroke rehabilitation, it is important to understand 

how motor learning principle can be applied to functional recovery following a 

given intervention (Krakauer, 2006; Wolpert et al., 2011; Kitago and Krakauer, 

2013). The motor learning literature suggests that when an individual learns a 

motor task, more than one learning process is involved. For example, it has been 

suggested that motor learning involves two distinct, yet complementary 

processes: model-based learning and model-free learning (Huang et al., 2011; 

Haith and Krakauer, 2013). In the model-based learning system, an internal map 

or a model of the environment is built, which describes the relationship between 

the state of the body and environment. The model-free learning system, in 

contrast, learns action directly through trial and error. Unlike model-based 

learning, in the model-free learning system there is no intermediate internal 

model and no explicit error calculation required to correct for systematic biases 

(Haith and Krakauer, 2013). Instead, in the model-free learning system, 

improvements in performance are driven through exploring possible actions until 

an optimal solution is found. Manipulation of online visual feedback provided 

during motor learning has been shown to effectively differentiate the contribution 

of these two learning processes (Schmuelof et al., 2012). Another process that 

may be involved in motor learning, called instance-reliant learning, deals with 
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effector- or movement-specific instances that are accrued during repeated 

performances of a task (Wang and Sainburg, 2004; Lei and Wang, 2015). 

According to this idea, the motor instances are later retrieved from the memory to 

allow fast and automatized performances of the learned task. Collectively, a 

given learning condition may involve all these processes or only one of them 

depending on specific characteristics of the learning condition. 

It is, then, plausible that different stroke interventions may involve different 

motor learning processes. For example, active training is likely to involve multiple 

motor learning processes (model-based, model-free and instance-reliant learning 

process) (Figure 1), while passive training may only involve instance-reliant 

learning, which occurs through accruing motor instances of goal movement and 

build a template of expected sensory consequence (Kovacs et al., 2011). 

Similarly, observational learning may only be associated with model-based 

learning, which is driven by sensory prediction errors. Like the actor, the observer 

predicts the consequence of the movements, and updates the internal model by 

comparing prediction errors to actual outcomes. It is possible that the facilitative 

effects of these interventions for motor recovery may be associated with the 

underlying motor learning processes. If so, a proper understanding of their 

associations may enable us to maximize the potential benefits of these 

rehabilitation interventions, especially for severely impaired stroke patients who 

cannot move their paretic arm on their own.  

Therefore, this study attempts to determine how to maximize the effects of 

passive training on learning a visuomotor adaptation task by combining it with 
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other motor learning mechanisms (i.e., model-based, model-free, instance-reliant 

learning) in healthy young adults. Given that the current selection of stroke 

rehabilitation overlooks the significant population of stroke survivors suffering 

from severe control loss or complete paralysis, findings from this study may 

prove valuable for developing specific rehabilitation protocols targeted for 

severely impaired stroke patients in the future. 

 

                        

  

 

 

 

Figure 1: Motor learning mechanisms underlying active training, passive training 
and action observation.  
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Statement of Purpose 

 The main purpose of this dissertation is to develop a training condition that 

can maximize the effects of passive training on visuomotor adaptation by 

combining its effects with other motor learning strategies.  

Specific Aims and Hypotheses 

Aim 1: To determine the effects of passive training on learning a 

visuomotor adaptation task. 

In aim 1a: Determine the effects of passive training on generalization of 

visuomotor adaptation across the two limbs. 

Working hypothesis: There would be a complete generalization of visuomotor 

adaptation across limbs when inducing motor instances associated with motor 

effector by performing a motor task passively. 

In aim 1b: Determine the effects of passive training on generalization of 

visuomotor adaptation across movement directions within the same arm. 

Working hypothesis: There would be a complete generalization of visuomotor 

adaptation across movement directions within the same arm when inducing 

motor instances associated with specific directions by performing a motor task 

passively.               

Aim 2: To determine the effects of passive training in combination with 

other strategies on learning a visuomotor adaptation task.  

In aim 2a: Determine the effects of a training condition that combines passive 

training and action observation on visuomotor adaptation. 



8 

 

 

 

Working hypothesis: Action observation combined with passive assist training 

would enhance the effects of motor training relative to plain observational 

learning, as reflected by formation of motor memories.  

In aim 2b: Determine the effects of a training condition that incorporates the 

manipulation of visual feedback into passive training on visuomotor adaptation. 

Working hypothesis: The effects of passive training would be improved when 

robotic devices manipulate visual feedback in ways that provoke multiple motor 

learning mechanisms.  

The remainder of this dissertation is outlined as follows: Chapter 2 

describes experiments 1 and 2 (a and b) that were conducted to achieve Aims 1a 

and 1b, respectively. Chapter 3 describes experiment 3 that was conducted to 

achieve Aim 2a. Chapter 4 describes experiment 4 that was conducted to 

achieve Aim 2b. Finally, Chapter 5 describes summary and major conclusions. 

Delimitations of the Study 

1. Data were collected on young healthy adults and, therefore, any 

generalizations made from the findings will be limited to such a population. 

2. This study looks at the contributions of active assist training, passive assist 

training and action observation to visuomotor adaptation. Therefore, findings 

from the present study should be generalized to other types of motor learning 

tasks with caution. 

Assumptions of the Study 

1. Participants honestly answered the questions consent form. 

2. Participants do not have any known neurological damage. 
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3. Participants are right-handed. 

Significance of the Study 

Stroke is a leading cause of permanent disability to date. The rates of 

strokes in the United States are high, especially in the elderly (age 65 and over) 

population. Most stroke rehabilitative treatments that have been identified in the 

literature and clinical setting are only effective if the stroke survivor retains some 

residual motor ability in the affected limb. There are very few selections of stroke 

rehabilitative approaches that aim at the population of stroke survivors suffering 

from severe control loss or complete paralysis. 

Passive assist training and action observation therapy have been shown 

to be effective rehabilitation approaches, however the effectiveness of the 

treatments that utilize these interventions is still low. This study provided 

substantial insights into our understanding of the motor learning mechanisms that 

underlie passive training and action observation, which in turn would help us to 

understand why there is limited treatment effectiveness in passive assist training 

and action observation in rehabilitation settings, and how to develop a training 

condition that can maximize the potential benefits of these training methods. 

Given that passive training and action observation therapy could be a valuable 

rehabilitation strategy for the severely impaired stroke patients, findings from this 

research may prove valuable for the development of more efficient rehabilitation 

protocols in the future.  
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Chapter 2: Effects of Passive Training on Motor Generalization 

Introduction 

 Generalization of motor learning is an important aspect of motor learning, 

which refers to the extent to which the acquired learning transfers to novel 

situations not encountered during training. For example, can an individual apply 

what learned from table tennis to playing tennis? Studies on generalization have 

provided considerable insight into the specificity of learning and how learning is 

represented in the central nervous system (Imamizu et al. 1995; Krakauer et al. 

2000; Mattar and Ostry, 2010). Motor generalization is also thought as an 

important topic in rehabilitation, as therapy-induced changes should occur over 

time and settings, and sometimes spread to a variety of related behaviors 

(Stokes and Baer, 1977). A low degree of generalization might demonstrate the 

limitations of the impact of certain rehabilitation interventions (Stokes and Baer, 

1977; Page, 2003; Huxlin and Pasternak, 2004; Krakauer, 2006; Van Peppen et 

al., 2006).  

Patterns of generalization have been studied widely by examining transfer 

of learning across movement directions (Bedford 1993; Ghilardi et al. 1995; 

Gandolfo et al. 1996; Vetter et al. 1999; Sainburg et al. 1999; Krakauer et al. 

2000; Thoroughman and Shadmehr 2000; Thoroughman and Taylor 2005; 

Mattar and Ostry 2007), movement amplitudes (Goodbody and Wolpert 1998; 

Krakauer et al. 2000), movement speeds (Goodbody and Wolpert 1998), 

workspace locations ((Hwang et al. 2003; Malfait et al. 2002; Lei et al. 2013), and 

the effectors (Criscimagna-Hemminger et al. 2003; Dizio and Lackner 1995; 

Krakauer et al. 2006; Wang and Sainburg 2004a,b; Lei and Wang 2014).  
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Previous studies have shown that the extent of generalization varies in 

terms of task conditions. For example, adaptation to a novel visuomotor 

transformation in one part of the workspaces can generalize broadly to different 

parts of the workspaces that have not been experienced during training (Bedford 

1993; Krakauer et al. 2000; Vetter et al. 1999; Lei et al. 2013), whereas learning 

in one direction of movement results in the extent of generalization to other 

directions that decays with increased angular distance from the learned direction 

(Gandolfo et al. 1996; Sainberg et al. 1999; Krakauer et al., 2000), especially 

when the angular difference between the training and testing directions over 45 

degrees, the generalization could fall to zero (Krakauer et al., 2000).  Similarly, 

the extent of generalization across effectors is also limited, only ranging from 10 

to 60% (Morton et al., 2001; Sainburg and Wang, 2002; Taylor et al., 2011; Wang 

et al., 2011; Joiner et al., 2013). These findings suggest that the extent of 

generalization highly depends on the nature of the task, but it remains unclear 

why learning generalizes broadly in some tasks, but narrowly in others.  

Previous accounts of generalization of motor learning have focused on the 

idea that the internal model, a representation of how the central nervous system 

predicts the outcome of motor commands, generalizes between different tasks 

(Shadmehr and Mussa-Ivaldi 1994). A typical experiment demonstrates that 

generalization is consistent with the idea of internal model is that generalization 

no longer occurs if internal model is extinguished (washout). However, this idea 

could not account for why the acquired learning in movement direction broadly 

generalizes across limb configurations and workspaces, but partly generalizes 
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across directions and effectors. Internal models should have no option but to 

generalize under all circumstances using estimated changes in the limb (Berniker 

and Kording, 2008).  

The variation in the extent of generalization suggests that generalization 

might not be purely guided by an internal model of the environment that is 

updated based on prediction. Our lab recently introduced a second learning 

mechanism, which is independent of an internal model, leading to changes in the 

extent of generalization (Wang et al. 2015).  We refer to this mechanism as 

instance-reliant learning, in which effector-specific instances are accrued during 

repeated performances of a task and automatically retrieved later to allow fast 

and automatized performances of the task (Wang and Sainburg, 2003, 2004; Lei 

and Wang, 2014; Wang et al. 2015). In that study, we showed that in adaptation 

to visuomotor rotation, in which subjects adapt to a rotated display with the left 

arm while repeatedly performing the reaching task with the right arm without 

providing performance feedback, training with the left arm completely generalizes 

to the right arm (Wang et al., 2015). This suggests that the absence of motor 

instances associated with specific effectors and task conditions might be the 

major reason for limited generalization of motor learning.  

In the present study, we induced instance-reliant learning by passively 

guiding movements in a specific direction or with a specific effector, and 

investigated how instance-reliant learning mechanism could account for the 

phenomenon of limited generalization in motor adaptation across movement 

directions and effectors. We hypothesized that if limited generalization across 
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movement directions and effectors because of the absence of motor instances, a 

greater extent of generalization would occur in the condition in which subjects 

were provided motor instances passively.  

Experiment 1 

The purpose of experiment 1 was to investigate generalization of 

visuomotor adaptation during reaching movements across limbs when movement 

instances associated with one arm were provided while visuomotor adaptation 

occurred with the other arm. 

Materials and Methods 

Subjects 

16 neurologically intact right-handed individuals participated in this study. 

Handedness was assessed using the 10-item version of the Edinburgh inventory 

(Appendix C) (Oldfield, 1971). The participants were recruited on University of 

Wisconsin-Milwaukee’s campus through word of mouth and posted flyers 

(Appendix D). Participants are between the ages of 18-30 years old. The 

participants were paid for their participation. Informed consent approved by the 

Institutional Review Board of the University of Wisconsin – Milwaukee (Appendix 

B) was solicited prior to participation. The participants were randomly assigned to 

one of two groups (8 subjects per group). Sample size estimations were based 

on previous studies conducted in our lab. These analyses have established that 

8 subjects are sufficient to show significant differences. 

Exclusion criteria for this study were: 1) a major psychiatric diagnosis 

(e.g., schizophrenia), 2) hospital admission for substance abuse, 3) peripheral 
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disorders affecting sensation or movement of the upper extremities (e.g., 

peripheral neuropathy), or 4) if they are left-handed. Also, any participant who is 

pregnant was excluded from participation. 

Apparatus 

The BKIN Dexterit-E system (BKIN Technologies Ltd, Kingston, ON, 

Canada) was used to collect kinematic data in this study, which consists of two 

KINARM Exoskeleton robots for the upper limbs, a 2D virtual reality display and 

Dexterit-ETM experimental control and data acquisition software (Figure 2A). 

Each KINARM robot can be used as an exoskeleton for each arm; and the 2D 

virtual reality display is used to present visual stimuli in such a way that the 

stimuli (e.g., targets for reaching movements) appear at the same horizontal level 

as the hand (Figure 2B). Dexterit-ETM experimental control and data acquisition 

software are designed to run on a multi-computer system. Dexterit-E itself runs 

on a Windows-based computer, in which it effectively acts as a user-interface for 

choosing task protocols, providing visual feedback to the operator, and saving 

data. The chosen task protocol is associated with a real-time computer, which is 

used to control the task. The real-time computer runs an operating system from 

the Mathworks Corporation called xPC Target.  During the execution of a task, 

the communication from the real-time computer to the Windows-based computer 

allows the Windows-based computer to offer online feedback to the operator. 

The KINARM robot is a motorized exoskeleton for the arm that allows 

manipulation of the arm in the horizontal plane. The KINARM’s joints are aligned 

with the subject’s shoulder and elbow joints. Therefore, subject does not 
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experience the KINARM inertia adversely. Position feedback is acquired through 

incremental encoders that are integral to the motors, with a feedback resolution 

of 20,000 per revolution at the motor, which at the joint angles is equal to 80,000 

per revolution because of the 4x gear ratio in the KINARM robot.  
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Figure 2: Experimental device. A: KINARM Exoskeleton robots. B: 2D virtual 
reality 
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Experimental Design 

Subjects were seated on the KINARM chair with the arms supported by 

exoskeletons that provided full gravitational support of the entire arm; and the 

chair was moved to bring the arm under the horizontal display. The KINARM was 

incorporated with a virtual reality system that projected visual targets on the 

display to make them appear in the same plane as the arm. Direct vision of the 

subjects’ arm was blocked and a cursor representing their index finger tip was 

provided to guide reaching movement. This system was used to collect the 2D 

hand-position data, which was sampled at 1,000 Hz, low pass filtered at 15 Hz, 

and differentiated to yield resultant velocity and acceleration values. Movement 

onset and offset were defined by the last minimum (below 5% maximum 

tangential velocity) prior to and the first minimum (below 5% maximum tangential 

hand velocity) following the maximum in the tangential hand velocity profile, 

respectively (Figure 4C). Data were processed and analyzed using MATLAB.  

In general, subjects were asked to perform rapid reaching movement 

through a cursor indicating the location of the index finger tip from a start circle to 

a target (2 cm in diameter, 10 cm away from the start circle) repeatedly (Figure 

3A). They were instructed to move their index finger to the target rapidly and as 

straight as possible in response to the appearance of the target, and stop without 

correcting their movement. Subjects were tested with or without cursor feedback 

of hand position. The experiment consisted of four sessions: baseline with the left 

arm and with the right arm, visuomotor adaptation with the left arm (training) and 

with the right arm (generalization). In the baseline sessions, the subjects were 
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familiarized with the general reaching movement with each arm. In the training 

and generalization sessions, they adapted to visual display that was rotated 30 

degrees counterclockwise about the start circle with the left and the right arm 

(Figure 4A) (i.e., hand movement made in the “12 o’clock” direction resulted in 

cursor movement made in the “11 o’clock” direction). During the training session, 

subjects were divided into two groups.  The first group experienced passive 

movement with the right arm in the 30-degree clockwise direction relative to the 

training target for 10 trials after every 20 adaptation trials with the left arm (Figure 

3B). Visual feedback was provided for adaptation trials, but not for passive trials, 

during the training session. This allowed specific instances associated with the 

task to be performed later with the right arm in the generalization session to be 

accrued in advance, without generation of motor command. In the second group, 

subjects took a short break (1 min) each time the first group performed right arm 

passive movements for 10 trials. During the generalization session, all subjects 

received visual feedback. Each of the sessions consisted of 40 (20 for the left, 20 

for the right arm), 150 (100 for the adaptation trials, 50 for the passive trials) and 

80 trials, respectively (Figure 5). 
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Figure 3: A: Experimental setup. B: Subjects reached toward 30-deg clockwise 
target relative to the training target (where they reached toward following 

complete visuomotor adaptation) passively 
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Figure 4: A: Hand-path without visual rotation (left) and hand-path with visual 
rotation (right). B: Diagram of initial direction error. C: Diagram of velocity profile 
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Figure 5: Protocols for Experiment 1. Group 1 trained with passive movements. 
Group 2 trained without passive movements  
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Data analysis 

To examine performance accuracy, I calculated initial direction error (DE), 

which was the angular difference between a vector from the start circle to the 

target and another vector from the hand position at movement start to that at 

peak arm velocity. Using this measure, the extent of generalization was 

computed for each subject based on the following equation: [(DE at the first block 

of the training session –DE at the first block of the generalization session) / (DE 

at the first block of the training session –DE at the last block of the training 

session)] × 100 (%). A block represents the mean of 5 consecutive trials. 

Initial direction errors from the adaptation sessions were subjected to a 

repeated-measures ANOVA with group as a between-subject factor and block 

(the first and the last blocks of the training session, the first and the last blocks of 

the generalization session) as a within-subject factor to determine if there was 

any difference between the subject groups throughout the training and the 

generalization sessions.  
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Following this, two independent t-tests were conducted. The first t-test was 

conducted to determine if the extent of generalization was different between the 

subject groups. For the second t-test, a line of approximation was constructed for 

each subject in the groups by fitting a logarithmic regression line to the arm 

performance data in the generalization sessions; and the slope values were used 

to determine if the adaptation rates in the generalization sessions following initial 

training were different between the groups. Statistical power analysis has been 

performed based on our previous studies that employed the identical tasks and 

performance measures (Wang and Sainburg, 2004), and indicated that 6 subjects 

(for each experimental group) are needed to reach the conventional power level of 

80% and a medium effect size (d = .50). We tested 8 subjects for each group. This 

met the most stringent statistical requirements, and allowed room for possible 

attrition. The alpha level was set at 0.05. Post hoc comparisons, using dependent 

t-tests, were made between the first block of the training session and the first block 

of the generalization session, as well as between the last block of the training 

session and the first block of the generalization session, within each experimental 

condition.  

Results 

Figure 6A shows the hand tangential velocity obtained when the hand was 

moving without visual perturbation. The velocity profiles observed on the first trial 

and last trial when the visuomotor rotation was introduced were shown in Figure 

6B and Figure 6C. 
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Figure 6: Tangential hand velocities from representative subjects observed at the 
last trial during the baseline session (A), and those observed at the first trail (B) 

and last trial (C) during the training session.  
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Figure 7 illustrates the hand-paths of a representative subject from each of 

the two subject groups. The hand-paths during the training session were similar 

for both of the groups, in that they were largely deviated from the target lines 

during the initial phase of the training session (Figure 7, column 1), but became 

relatively straight and more accurate at the last cycle of the session (Figure 7, 

column 2). During the generalization session, the hand-paths upon initial 

exposure to the visual rotation appeared different across the groups, in that the 

subjects in group 1 who performed reaching movements toward the 30-degree 

target with the right arm passively during the initial training showed relatively 

straight hand-paths from the beginning of the generalization session (Figure 7, 

column 3, row 2), whereas the subjects’ hand-paths in group 2 were more 

curved. These hand-paths suggest that the extent of generalization across limbs 

following visuomotor adaptation may differ across the subject groups. 

We quantified the difference by subjecting direction error measures to a 

repeated-measures ANOVA, which revealed a significant interaction effect 

between group and block (p = 0.016; Figure 8). Our post hoc analyses indicated 

that the direction errors at the first block of the generalization session were 

significantly smaller than those at the first block of the training session in both 

subject groups. The errors at the first block of the generalization session were 

significantly lower in the group who performed reaching movements toward the 

30-degree target during initial training than that observed in the other group. 

Independent t-tests indicated that the extent of generalization observed in the 

group who performed reaching movements toward the 30-degree target 
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passively during the initial training was significantly higher than that observed in 

the other group (p=0.044); and the mean slope value obtained from the former 

group was significantly lower than that of the other group (p=0.031). This 

indicates that the extent of generalization across limbs can increase substantially 

when movement instances directly associated with the task to be learned (i.e., 

30-deg. target direction) can be accrued during the initial training.  
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Figure 7: Each column shows hand-paths of reaching movement. Column 1 
shows performance upon initial exposure to the visual rotation. Column 2 shows 

improved performance at the end of the training session. Column 3 shows 
performance at the beginning of the generalization session.  
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Figure 8: Mean performance measure. Every data point shown on X axis 
represents the average of 5 consecutive trials (block) across all subjects within 

each group (mean ± SE). 
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Figure 9: The extent of generalization from the training to generalization session 
(left panel), and slope values during the generalization session (right panel). 

Slope values obtained from nonlinear logarithmic regression equation were used 
to calculate the adaptation rate. 
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Experiment 2a 

The results from experiment 1 indicated substantial generalization across 

limbs when movement instances directly associated with the task to be leaned 

later can be accrued during the initial training. The purpose of experiment 2a was 

to investigate generalization of visuomotor adaptation during reaching 

movements across two different movement directions when movement instances 

directly associated with one direction (i.e., one to be experienced later during the 

generalization session) can be accrued during the initial training associated with 

the other direction. 

Materials and Methods  

Subjects 

16 healthy young adults (18-30 old, right-handed) volunteered to 

participate in this experiment. A questionnaire for handedness and an informed 

consent form were read and signed by all subjects prior to the beginning of the 

study. The protocol was approved by the University of Wisconsin-Milwaukee 

Institutional Review Board. Subjects were randomly assigned to one of two 

groups (8 subjects per group). No subject tested in this experiment participated in 

Experiment 1.  

Apparatus 

The same apparatus used in Experiment 1 was used in this experiment. 

Experimental Design  

Subjects were instructed to perform rapid reaching movement through a 

cursor indicating the location of the index finger tip from a start circle to a target 
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(2 cm in diameter, 10 cm away from the start circle) as straight as possible with 

the right arm (Figure 10A). The experiment consisted of three sessions: baseline, 

training, generalization. In the baseline session, the subjects were familiarized 

with the general reaching task. In the training and generalization sessions, they 

adapted to a visual display rotated 30 degrees counterclockwise about the start 

circle with the right hand (i.e., hand movement made in the “12 o’clock” direction 

resulted in cursor movement made in the “11 o’clock” direction). For the 

arrangement of the training and generalization targets, the generalization target 

was 180-degree relative to the training target (Figure 10B). During the training 

session, the subjects were divided into two groups. In one group, they 

experienced passive movement, with velocity and movement duration 

comparable with those in the active movement, in the 30-degree clockwise 

direction relative the generalization target for 10 trials after every 20 adaptation 

trials with the right hand. Visual feedback was provided for adaptation trials, but 

not for passive trials, during the training session. This allowed specific instances 

associated with the task to be performed later in the generalization session to be 

accrued in advance, without generation of motor command. In the other group, 

subjects took a short break (1 min) each time the first group performed passive 

movements for 10 trials. During the generalization session, all subjects received 

visual feedback. Each of the three sessions consisted of 40, 150 (100 for the 

adaptation trials, 50 for the passive trials) and 80 trials, respectively (Figure 11). 

 

 



32 

 

 

 

 

 

 

 

 

 

Figure 10: A: Experimental setup. B: Subjects reached toward 30-deg clockwise 
target relative to the generalization target passively (where they reached toward 

following complete visuomotor adaptation)  
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Figure 11: Protocols for Experiment 2a.  Group 1 trained with passive 
movements. Group 2 trained without passive movements  
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Data analysis 

As in Experiment 1, initial direction error (DE) was calculated. Using this measure, 

we also computed the extent of generalization for each subject. Initial direction 

errors from the adaptation sessions were subjected to a repeated-measures 

ANOVA with group as a between-subject factor and block (the first and the last 

blocks of the training session, the first and the last blocks of the generalization 

session) as a within-subject factor to determine if there was any difference 

between among the subject groups throughout the training and the generalization 

sessions. Following this, we conducted two independent t-tests. The first t-test was 

conducted to determine if the extent of generalization was different between the 

subject groups. For the second t-test, a line of approximation was constructed for 

each subject in the groups by fitting a logarithmic regression line to the arm 

performance data in the generalization sessions; and the slope values were used 

to determine if the adaptation rates in the generalization sessions following initial 

training were different between the groups. The alpha level was set at 0.05. Post 

hoc comparisons, using dependent t-tests, were made between the first block of 

the training session and the first block of the generalization session, as well as 

between the last block of the training session and the first block of the 

generalization session, within each experimental condition.  
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Results 

Figure 12 illustrates typical hand-paths of representative subjects during 

the initial and final phases of the training session, and during the initial phase of 

the generalization session for both of two groups. Two groups demonstrated 

largely curved hand-paths at the beginning of the training session (Figure 12, 

column 1), which became relatively straight by the end of the session (Figure 12, 

column 2). The hand-paths at the beginning of the generalization session (Figure 

12, column 3) were substantially straighter than those observed at the beginning 

of the training session, although not as straight as those shown at the end of the 

training session. These hand-paths suggest substantial, though incomplete, 

generalization of visuomotor adaptation from the training to the generalization 

session in both subject groups.  

With respect to DE, the repeated-measures ANOVA showed a significant 

main effect of block (p = 0.001). The post hoc analyses indicated that the 

direction errors at the first block of the generalization session were significantly 

smaller than those at the first block of the training session, and significantly 

greater than those at the last block of either the training or generalization session 

(Figure 13). Neither the main effect of group nor the interaction effect between 

group and block was significant (p = 0.346 and 0.212, respectively). This 

indicates that the extent of generalization following visuomotor adaptation across 

movement directions was not significantly different between the two subject 

groups. 
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The lack of difference between the two subject groups was further 

confirmed by calculating the extent of generalization from the training to 

generalization session (Figure 14, left panel), as well as the rate of the 

generalization session (i.e., slope value) (Figure 14 right panel), neither of which 

indicated a significant difference between the two groups (p = 0.957 and 0.171, 

respectively). Overall, these results suggest that the extent of generalization 

across movement direction cannot increase substantially when movement 

instances directly associated with the task to be leaned can be accrued during 

initial training. 
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Figure 12: Each column shows hand-paths of reaching movement. Column 1 
shows performance upon initial exposure to the visual rotation. Column 2 shows 

improved performance at the end of the training session. Column 3 shows 
performance at the beginning of the generalization session.  
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Figure 13: Mean performance measure. Every data point shown on X axis 
represents the average of 5 consecutive trials (block) across all subjects within 

each group (mean ± SE). 
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Figure 14: The extent of generalization from the training to generalization session 
(left panel), and slope values during the generalization session (right panel). 

Slope values obtained from nonlinear logarithmic regression equation were used 
to calculate the adaptation rate. 
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Experiment 2b 

The results from experiment 1 and 2a indicated substantial generalization 

across limbs, but limited generalization across movement directions within the 

same limb, when movement instances directly associated with the direction to be 

experienced later can be accrued during initial training. It seems plausible that 

the extent of generalization within the same arm was limited probably due to the 

fact that the amount of instances associated with the new task to the learned 

later was also limited. Thus, I added a new condition to test this idea in this part 

of experiment 2a. The purpose of experiment 2b was to investigate 

generalization of visuomotor adaptation across movement directions within the 

same limb when a substantially greater amount of movement instances were 

provided during initial training. 

Materials and Methods  

Subjects 

Subjects were 5 neurologically intact young adults (aged between 18 and 

30) who were right-handed. A questionnaire for handedness and an informed 

consent form were read and signed by all subjects prior to the beginning of the 

study. The protocol was approved by the University of Wisconsin-Milwaukee 

Institutional Review Board. No subject participated in the other experiment. 

Apparatus 

The same apparatus used in experiment 1 and 2a was used in this 

experiment. 
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Experimental Design  

This experiment employed the same reaching tasks described in 

experiment 2a, and also consisted of three sessions: baseline, training, 

generalization. In the baseline session, the subjects were familiarized with the 

general reaching task. In the training and generalization sessions, they adapted 

to a visual display rotated 30 degrees counterclockwise about the start circle (i.e., 

hand movement made in the “12 o’clock” direction resulted in cursor movement 

made in the “11 o’clock” direction). For the arrangement of the training and 

generalization targets, the generalization target was 180-degree relative to the 

training target (Figure 15A). During the training session, all subjects experienced 

passive movement, with velocity and movement duration comparable with those 

in the active movement, in the 30-degree clockwise direction relative the 

generalization target for 50 trials after every 20 adaptation trials with the right 

hand (Figure 15B). Visual feedback was provided for adaptation trials, but not for 

passive trials, during the training session. This allowed specific instances 

associated with the task to be performed later in the generalization session to be 

accrued in advance, without generation of motor command. During the 

generalization session, all subjects received visual feedback. Each of the three 

sessions consisted of 40, 350 (100 for the adaptation trials, 250 for the passive 

trials) and 80 trials, respectively (Figure 15C). 
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Figure 15: A: Experimental setup. B: subjects reached toward 30-deg clockwise 
target relative to the training target (where they reached toward following 

complete visuomotor adaptation) passively. C: Protocols for Experiment 2b 
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Data analysis 

For statistical analysis, direction errors from the aforementioned group were 

compared with those groups from experiment 2a. A 3×4 repeated-measures 

ANOVA with group as a between-subject factor and block (the first and the last 

blocks of the training session, the first and the last blocks of the generalization 

session) as a within-subject factor to determine if there was any difference among 

the subject groups throughout the training and the generalization sessions. 

Following this, two simple ANOVAs with group as a between-subject factor were 

conducted: one, using the percentage of transfer, to determine if the extent of 

generalization across movement directions was different among the subject 

groups: and the other, using the slope values from regression lines, to determine 

if the rate of visumotor adaptation during the generalization session was different 

among the groups. The alpha level was set at 0.05. Post hoc comparisons, using 

dependent t-tests, were made between the first block of the training session and 

the first block of the generalization session, as well as between the last block of 

the training session and the first block of the generalization session, within each 

experimental condition.  
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Figure 16: Each column shows hand-paths of reaching movement. Column 1 
shows performance upon initial exposure to the visual rotation. Column 2 shows 

improved performance at the end of the training session. Column 3 shows 
performance at the beginning of the generalization session.  
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Results 

Figure 16 illustrates the hand-paths of a representative subject from each 

of the three subject groups in experiment 2a and 2b. The hand-paths during the 

training session were similar across the subjects, in that they were largely curved 

at the beginning (Figure 16, column 1), but became relatively straight by the end 

of the session (Figure 16, column 2). During the generalization session, the 

hand-paths upon initial exposure to the visual rotation appeared different across 

the subjects, in that the subject who experienced more passive movements 

toward the 30-degree target during initial training showed relatively straight hand-

paths from the beginning of the generalization session (Figure 16, column 3, row 

3), whereas the other subjects’ hand-paths were noticeably more curved. These 

hand-paths suggest that the extent of generalization across movement directions 

following visuomotor adaptation may differ across the subject groups. 

We quantified the difference by subjecting direction error measures to a 

repeated-measures ANOVA, which revealed a significant interaction effect 

between group and block (p = 0.027; Figure 17). Our post hoc analyses indicated 

that the direction errors at the first block of the generalization session were 

significantly smaller than those at the first block of the training session in all 

subject groups. However, the errors at the last block of the training session and 

those at the first block of the generalization session were not significantly 

different in the group who experienced more passive movements toward the 30-

degree target during the initial training, whereas they were significantly different 
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in the other two groups. Simple ANOVAs also revealed a significant effect of 

group for the extent of generalization and the slope value (p = 0.031 and 0.012, 

respectively). Post hoc comparisons indicated that the extent of generalization 

observed in the group who experienced more passive movements toward the 30-

degree target with the right arm during initial training was significantly higher than 

that observed in the other two groups; and the mean slope value obtained from 

the former group was significantly lower than that of the other two groups. This 

indicates that the extent of generalization can increase substantially when more 

motor instances were applied on arm during the initial training.  
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Figure 17: Mean performance measure. Every data point shown on X axis 
represents the average of 5 consecutive trials (block) across all subjects within 

each group (mean ± SE). 
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Discussion 

In this study, we investigated how instance-reliant motor learning 

mechanism could explain the phenomenon of limited generalization in motor 

adaptation across movement directions and effectors.  For this aim, we executed 

three experiments. In experiment 1, we predicted based on the instance-reliant 

learning hypothesis that providing movement-specific instances (i.e., by 

experiencing passive training without providing performance feedback) would 

increase the extent of generalization across effectors. Here, we assumed that 

visuomotor adaptation would not occur with the right arm during the initial training 

with the left arm because visual feedback was not available when the subjects 

experienced passive movements with the right arm. Following the training 

session, our data revealed substantially greater extent of generalization in the 

subject group who reached toward the 30-degree target with the right arm 

passively during the training session, as compared with the other group. The 

extent of generalization in the former group was over 80%, while that in the other 

group was below 50%. This is consistent with the findings reported by Wang et 

al. (2015), who demonstrated ~90% of transfer from the left to the right arm 

following visuomotor adaptation when subjects performed reaching movements 

actively with the right arm, without visual feedback, during the left-arm training 

session.  

In experiment 2a, we focused on the effects of instance-reliant learning 

processes on motor generalization across movement directions. We expected 

that we would be able to confirm a greater extent of generalization from the 
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passive training group. As previously described, we observed no difference 

between the two groups in terms of motor generalization. This suggests that 

providing motor instances using passive training seems to have no benefit for 

generalization of visuomotor adaptation across movement directions. However, 

because instance retrieval occurs within the same arm, it is possible that 

movement-specific instances provided by active movements interfere with the 

retrieval of the motor memory for passive training. In fact, the extent of 

generalization is even worse in passive training group in which subjects only 

experienced passive movements for only 50 trials during the training session, 

rather subjects performed active movement for 100 trials.  

In experiment 2b, we investigated whether prolonged passive training 

would increase the extent of generalization across movement directions. We 

hypothesized that the instances accrued by active movements inhibits the 

expression of the recently acquired motor memory for passive movements, 

because the former instances are more than the instances accrued by passive 

movements. Instances from active movements would already be available while 

those from passive movements were being accrued; and a competition might 

occur between the two sets of instances in such a way that the instances 

associated with active movements would be automatically retrieved, thus causing 

inhibition of the expression of instances associated with passive movements, 

until the instances associated with passive movements were accrued sufficiently. 

This explanation is consistent with an idea that multiple motor memories, or 

instances can compete with each other for retrieval. For example, one study 
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(Billalta et al (2013)), in which researchers applied repetitive transcranial 

magnetic stimulation (rTMS) over the primary motor cortex following initial motor 

adaptation, and prior to washout trials to depress corticospinal excitability, 

demonstrated increased amount of savings by preventing a competition between 

motor memories at recall, one associated with the motor adaptation and the other 

associated with the washout trials. Therefore, it is possible that if a substantially 

greater amount of movement instances are provided in passive training, motor 

instances associated with passive training would prevail over that provided by 

active movements. Therefore, we prepared a group in which subjects performed 

passive movements for 250 trials. For the results, this group demonstrated a 

greater extent of generalization compared with the two groups in experiment 2a. 

These results suggest that prolonged passive training would consolidate the 

expression of the recently acquired motor memory.  

As an alternative explanation for these results, it is possible that the extent 

of generalization across the movement directions is limited for experiment 2a due 

to the uncertainty of the properties of the motor memory acquired during the 

passive training. Human subjects can preserve the motor memory after 

significant periods of time, but the act of another motor behavior could have 

adverse effects on recalling a previously acquired motor memory. A Bayesian 

analysis of motor adaptation has demonstrated that the nervous system 

combines multiple pieces of information to achieve optimal motor outcome, and 

the nervous system weights each pieces of information with respect to its 

likelihood (Kording and Wolpert, 2004; Ma et al. 2006). Thus, prolonged training 
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with a motor behavior may increase the certainty in its properties, so as to 

translate this certainty into strong priors, making the acquired motor memory 

relatively unsusceptible to expression.   

Our findings demonstrated that motor generalization can be improved by 

passive training. Previous studies suggested that passive training can improve 

motor learning by providing proprioceptive information of the desired movement. 

For example, subjects who were provided additional proprioceptive information of 

circular hand movement trajectories passively were better able to learn this new 

motor skill (Beets et al., 2010; Wong et al., 2012). We suggest that process 

leading to motor learning through passive training is considered as the instance-

reliant learning. Instance-reliant learning is thought to be associated with specific 

movement performed by specific effectors. Prescriptive proprioceptive 

information provided by passive practice helps accrue motor instances of the 

goal movement and build a template of expected sensory consequence (Kovacs 

et al., 2011).  

What are motor instances? The theory of instance was originally proposed 

by Logan (1988), a cognitive psychologist who suggests that instances are 

specific solutions to specific stimuli; and each solution is encoded and stored to, 

and retrieved from, memory separately. Here, instances are associated with 

repetition of physical movements, and that are associated with specific 

movement directions and effectors. Instance-reliant learning can also be thought 

as a form of use-dependent plasticity (Diedrichsen et al. 2010), being driven 

through encoding the specific kinematic aspects of the repetitive movement even 
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without any outcome information (Wolpert et al., 2011). The neural substrates of 

these instances may be similar with those suggested to underlie use-dependent 

plasticity, mainly involving the primary motor cortex (Classen et al., 1998; 

Diedrichsen et al., 2010; Sanes, 2000). 
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Chapter 3: Effects of a training condition that combines passive training and 

action observation on visuomotor adaptation 

Introduction 

Although it is commonly held that motor learning is acquired through 

physical practice, observation alone or passive practice alone have also been 

shown to be benefit to specific motor performance gains (Vogt, 1995; Black and 

Wright, 2000; Edwards et al. 2003; Petrosini et al. 2003; Mattar and Gribble, 

2005; Badets et al. 2006; Haith et al. 2008; Brown et al. 2009; Cressman and 

Henriques, 2009; Wong et al. 2012). As such, through action observation, 

participants can form physiological motor memories by learning high-level 

information about the form of movement such as the movement kinematics 

(Hayes et al., 2010), coordination pattern (Hodges et al., 2007), as well as 

spatial-temporal goals (Vogt, 1995). These motor memories are coded in a 

neural representation similar to that underlie motor execution. Whereas passive 

practice augments motor learning through delivering proprioceptive information of 

the goal movement, which helps build a template of expected sensory 

consequences (Schmidt RA 1975) or forward models (Kawato and Gomi, 1992; 

Wolpert et al. 1995; Wong et al. 2012; Beets et al. 2012).  

Compared to motor learning via physical practice, motor skills acquired 

through the mere observation of actions or passive practice alone often results in 

limited performance gains in motor training. For example, it has been recently 

shown that observers who watched an actor performing reaching movements in 

a novel dynamic environment performed better than non-observing control 
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subjects, but worse than those who actively experienced this environment, when 

later adapting to the same environment (Wanda et al. 2013).  Similarly, it has 

been reported that passive training activates cortical regions similar to those 

activated by active training (Weiller et al. 1996; Carel et al. 2000; Lotze et al. 

2003), but active training is more effective in eliciting performance gains and 

cortical reorganization than passive training (Lotze et al. 2003).  

Learning a motor task is associated with changes in sensory system 

(Bernardi et al. 2013), such that motor learning involving arm movements is 

accompanied with changes in sensed limb position (Cressman and Henriques, 

2009) and perceptual acuity (Wong et al. 2011). Given that repetitive passive 

movements elicit cortical motor representational changes, inducing use-

dependent plasticity that encodes the specific kinematic aspects of the practiced 

movement, and the mere observation of actions yields motor learning through 

enhancing the effect of visual perception on action, it is therefore possible that 

when action observation is combined with passive practice, the training effects 

would be quantitatively enhanced relative to mere action observation or passive 

practice alone.  

To investigate the effect of action observation in combined with passive 

practice on motor learning, we compared the learning performance of five 

different groups: action observation alone, passive practice alone, action 

observation combined with passive practice, the passage of time, and active 

practice. We hypothesized that these five different interventions would result in 

quantitatively different performance gains. 
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Experiment 3 

Materials and Methods 

Subjects 

Subjects were recruited via word of mouth and flyers posted on University 

of Wisconsin-Milwaukee’s campus. Upon arrival to the Neuromechanics 

laboratory subjects completed an informed consent form previously approved by 

the UWM Internal Review Board before participation in the study (Appendix A). 

Testing for this study was completed in one session and took no more than an 

hour to complete. A total of 40 neurologically intact right-handed individuals aged 

from 18 to 30 years old were recruited. They had normal or corrected-to-normal 

vision. Handedness was assessed using the 10-item version of the Edinburgh 

inventory (Oldfield, 1971). The participants were paid for their participation. 

Exclusion criteria for this study were: 1) a major psychiatric diagnosis (e.g., 

schizophrenia), 2) hospital admission for substance abuse, 3) peripheral 

disorders affecting sensation or movement of the upper extremities (e.g., 

peripheral neuropathy), or 4) if they are left-handed. Also, any participant who is 

pregnant was excluded from participation. All subjects were naïve to the purpose 

of the experiment. Each subject was randomly assigned to one of five groups. 

Apparatus 

KINARM was used as the experimental apparatus. Subjects sat on the 

KINARM chair with the right arm supported on the exoskeleton that provided full 

gravitational support of the entire arm (Figure 18A); and the chair was moved to 

bring the arm under a horizontal display. The KINARM was incorporated with a 
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virtual reality system that projected visual stimuli (starting and target circles) on 

the display to make them appear in the same plane as the arm. Direct vision of 

the subject’s hand was blocked by the horizontal display; and a cursor 

representing subjects’ index finger tip was provided to guide their reaching 

movement. The visual stimuli consisted of a central starting circle (2 cm in 

diameter) and four target circles (2 cm in diameter) positioned 10 cm away from 

the starting circle (Figure 18B). The 2-D position data of the hand, elbow and 

shoulder were sampled at 1000 Hz, low-pass filtered at 15 Hz, and differentiated 

to yield resultant velocity. Computer algorithms for data processing and analysis 

were written in MATLAB (The Mathworks Inc., Natick, MA, USA).   

Video Recording  

Video recording was made using Dexterit-E Explorer, which provided 

observers with a top-down view of an actor’s right arm movement, together with 

the visual targets and a cursor representing the position of the hand (Figure 

18C). Recording was approximately 8 min in duration and demonstrated a series 

of 120 movements. The recording depicted a representative subject moving to 

target in a novel visual rotated environment, which showed the progression from 

highly perturbed to relative straight movements associated with motor learning.  
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Figure 18: A: Experimental setup. B: An illustration of the targets presented on 
the display. C: Still frame taken from a video shown to observer. 
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Experimental Design 

Prior to movement, each of the four radial targets was presented in a 

pseudorandom manner during a cycle of four trials. Subjects were instructed to 

move their index finger rapidly from the start circle to the target as straight and 

accurately as possible in response to the appearance of the target. They were 

also told not to make corrections at the end of reaching movements within each 

trial. Subjects were assigned to one of five groups (8 subjects per group): 

passive practice only (PP), time delay (TD), action observation only (AO), active 

learning (AL), and action observation combined with passive practice (AO+PP). 

The experiment task was divided into three sessions: baseline, training, testing. 

In the baseline sessions, all subjects performed 60 reaching movements without 

manipulations of their visual feedback to be familiarized with the general reaching 

task. All movements were presented in a pseudorandom sequence across four 

target directions. During the training sessions, subjects underwent each of the 

following five interventions. The PP subjects group experienced passive 

movement in the 30-degree clockwise direction relative to the training targets for 

120 trials.  The TD subjects group sat on the robotic chair without moving their 

arm. The AO subjects group was instructed to remain motionless sitting on the 

robotic chair, and watch a movie of a naïve actor performing 120 reaching 

movements under the visual rotation environment described above. The AL 

subjects group performed 120 reaching movements under a novel visual rotation 

environment, in which a visual display about the start circle will be rotated 30 

degrees counterclockwise (i.e., hand movement made in the “12 o’clock” 
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direction resulted in cursor movement made in the “11 o’clock” direction). The 

AO+PP group experienced passive movement in the 30-degree clockwise 

direction relative to the training targets for 20 trials after every 30 observation 

trials. During the testing sessions, all subjects performed 60 reaching movements 

under the 30 degree counterclockwise visual rotation environment (Figure 19).  
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Figure 19: Protocols for Experiment  
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Data analysis 

The performance measure used in this study was initial direction error 

(DE), which was the angular difference between a vector from the start circle to 

the target and another vector from the hand position at movement start to that at 

peak arm velocity. A cycle represents the mean of 4 consecutive trials. 

For statistical analysis, two simple ANOVAs with group as a between-

subject factor were conducted: one, using initial direction errors from the first cycle 

of the testing session, to determine if there was any difference among the five 

groups during the testing session: and the other, using the slope values from 

regression lines, to determine if the rate of visumotor adaptation during the testing 

session was different among the groups. The alpha level was set at 0.025 (i.e., 

0.05/2) for the analyses after a Bonferroni correction was made, and at 0.05 for 

post hoc comparisons (Tukey’s tests for between-group comparisons). 
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Figure 20: Each row shows hand-path of reaching movement from each group at 
the first cycle of the testing session. 
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Results 

In this experiment, all subjects adapted to the rotated visual display with 

the right arm during the testing session. Figure 20 illustrates the hand-paths of a 

representative subject from each group during the initial phase of visuomotor 

adaptation in the testing session. In the TD group, the hand-path was largely 

curved to the target (Figure 20, row 1), whereas the AO and PP groups 

demonstrated relatively straight hand-paths at the beginning of the testing 

session (Figure 20, row 3, 4). The hand-path in the AO+PP group (Figure 19, row 

5) was substantially straighter than those observed from the aforementioned 

groups, although not as straight as the hand-path shown from the AP group 

(Figure 20, row 2). Figure 21 illustrates the changes in performance across the 

cycles in terms of initial direction error for all groups. 

The data regarding hand direction errors (DE) at the very first cycle of 

performance from the testing session were subjected to a one-way ANOVA, 

which showed a significant difference (p<0.01) among the five groups in terms of 

DE at the first cycle of the testing session. The difference among the five groups 

was further confirmed by calculating the rate of adaptation (i.e., slope value). All 

the fit slopes were significantly among the five groups (p<0.01). With regard to 

the post-doc tests, the comparisons for all groups were shown below.  

TD vs. PP vs. AP group 

Figure 21A illustrates the changes in performance across the cycles in 

terms of initial direction error for group TD, PP, and AP.  
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Figure 21: A: Mean performance measure for all groups. Every data point shown 
on X axis represents the average of 4 consecutive trials (cycle) across all 

subjects within each group (mean ± SE).  
 

Direction errors at the very first cycle of performance during the testing session 

were substantially larger in the TD and PP groups than in the AP group. The post 

hoc analyses indicated that the direction errors in group AP were significantly 

smaller than those at the first cycle during the testing session in group TD and 

PP (Figure 21B). The average slope values over eight subjects are shown in 

Figure 21B. The error bars represent the SE across subjects. A post hoc analysis 

revealed that the slopes in the PP group were significantly larger than that in the 

AP group, but smaller than that in the TD group. Overall, these results suggest 

that subjects performed substantially better in the PP group than those in the TD 

group, although not as good as those from the AP group. 
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Figure 21: A: Mean performance measure for group TD, PP, and AP. Every data 
point shown on X axis represents the average of 4 consecutive trials (cycle) 

across all subjects within each group (mean ± SE). B: Direction errors at the very 
first cycle (left panel), and slope values during the testing session (right panel). 
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TD vs. AO vs. AP group 

Figure 22A depicts the changes in performance across the cycles in terms 

of initial direction error for group TD, AO, and AP. The results show that direction 

errors decreased at a decelerating rate across the cycles regardless of the 

groups. Direction errors at the very first cycle of the performance in the AO group 

were substantially larger than that in the PP group, but smaller than that in the 

TD group. The average fit parameter (the rate of adaptation) over the eight 

subjects is shown in Figure 22B. The rate differed significantly among the three 

groups. Specifically, the rates in the TD group were significantly larger than for 

the AO and AP groups. Overall, these results suggest that subjects performed 

substantially better in the AO group than those in the TD group, although not as 

good as those from the AP group. 
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Figure 22: A: Mean performance measure for group TD, AO, and AP. Every data 
point shown on X axis represents the average of 4 consecutive trials (cycle) 

across all subjects within each group (mean ± SE). B: Direction errors at the very 
first cycle (left panel), and slope values during the testing session (right panel). 
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TD vs. AO+PP vs. AP group 

 Figure 23A shows direction errors as a function of the cycle for the group 

TD, AO+PP, and AP. Direction errors decreased across the cycles, indicating 

again that adaptation occurred regardless of groups. The direction errors at the 

very first cycle during the testing session and fit slopes are shown in Figure 23B. 

The post hoc analyses indicated that the direction errors in group AP were 

significantly smaller than those at the first cycle during the testing session in 

group TD and AO+PP. Similarly, the slopes in the AO+PP group were 

significantly larger than that in the AP group, but smaller than that in the TD 

group.  
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Figure 23: A: Mean performance measure for group TD, AO+PP, and AP. Every 
data point shown on X axis represents the average of 4 consecutive trials (cycle) 
across all subjects within each group (mean ± SE). B: Direction errors at the very 
first cycle (left panel), and slope values during the testing session (right panel). 
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AO vs. PP vs. AO+PP group 

Figure 24A shows direction errors as a function of the cycle for the group 

AO, PP, and AO+PP. Our post hoc analyses indicated that the direction errors at 

the first block of the testing session in group AO+PP were significantly smaller 

than those at the first block of the testing session in all subject groups. Post hoc 

comparisons also indicated that the mean slope value obtained from the AO+PP 

group was significantly lower than that of the other two groups (Figure 24B). This 

indicates that subjects performed substantially better in the AO+PP group than 

those in the other two groups during the testing session.  
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Figure 24: A: Mean performance measure for group PP, AO, and AO+PP. Every 
data point shown on X axis represents the average of 4 consecutive trials (cycle) 
across all subjects within each group (mean ± SE). B: Direction errors at the very 
first cycle (left panel), and slope values during the testing session (right panel). 
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Discussion 

In this study, we investigated how the mere observation of action, passive 

practice alone, and action observation combined with passive practice could 

contribute to the formation of specific memory trace for motor performance gains. 

We demonstrated a decrease in direction error following the mere observation of 

an actor learning to adapt in a novel, rotated environment. This suggests that 

subjects can acquire neural representation of visual rotated environment on the 

basis of visual information. This is consistent with the findings reported by 

Hodges et al (2007), who demonstrated that subjects who viewed videos that 

were congruent with subsequent visuomotor adaptation performed well on direct 

tests of learning in the same environment. Similarly, we indicated that the 

passive practice alone has a positive effect on motor learning. As previously 

described, we were able to confirm that the passive practice (PP) group exhibited 

a significant decrease in angular error compared with the control group (TD). 

This is well consistent with previous passive practice studies (Cressman and 

Henriques, 2009, 2010; Sakamotor and Kondo, 2012), which show that passive 

motor experience imparts a positive effect on visuomotor learning task. 

Furthermore, we tested hypothesis that action observation of movements 

in synchrony with passive practice would enhance training effects relative to the 

mere observation of action or passive training alone. We found that action 

observation combined with passive practice leads to significant improvements in 

motor performance relative to mere action observation or passive practice alone. 

This may suggest that subjects could form a specific motor memory depending 
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on the kinematic features of the observed movement; and passive training helps 

to consolidate this motor memory by delivering proprioceptive information of the 

observed movement.  

The motor learning literature suggests that when an individual learns a 

motor task, more than one learning process is involved, including model-based, 

model-free and instance-reliant learning (use-dependent plasticity). Learning 

mechanism underlying passive practice is considered as the instance-reliant 

mechanism or use-dependent plasticity (Classen et al. 1998; Butefisch et al. 

2004; Stefan et al. 2005, 2008; Celnik et al. 2006, 2008; Lei and Wang, 2014; 

Wang et al. 2015). This form of mechanism encodes the specific kinematic 

aspects of passive movement (Wolpert et al., 2011). Prescriptive proprioceptive 

information by means of passive practice can help accrue motor instances of the 

goal movement and build a template of expected sensory consequence (Kovacs 

et al., 2011). The benefits of proprioceptive experience are likely due to provision 

of a reference of correctness that can be used to guide motor output. Similarly, 

learning mechanism underlying observational learning may only be associated 

with model-based learning, which is driven by sensory prediction errors. Action 

observation combined with passive training can involve both of model-based and 

instance-reliant learning processes, thus resulting in significant improvements in 

motor performance relative to mere action observation or passive practice alone. 

An alternative view explaining the different intervention effects in terms of 

motor performance gains would be that each intervention induces its own motor 

memory in different sites of the nervous system. In this way, the mere 
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observation of action induces a movement memory associated with visual 

perception on action, whereas passive practice alone induces a movement 

memory associated with proprioceptive information.  The intervention combined 

with action observation and passive practice would result in two interacting 

simultaneous memory processes: one elicited by action observation and the 

other elicited by passive practice. This hypothesis is supported by a study 

showing action observation alone may generate a motor memory in M1, which is 

much smaller than that induced by physical practice (Stefan et al. 2005). Action 

observation facilitates accurate performance of motor task through the activity of 

the same neuronal substrate generated in the subsequence active movements. 

This idea is in line with previous studies showing that observation of congruent 

movements facilitates motor performance, while viewing non-congruent 

movements inhibits motor performance by competing neural activity (Kilner et al., 

2003; Dijkerman and Smit, 2007). This idea is further supported by evidence that 

shows action observation influences the excitability of connections between PMv 

and M1 (Koch et al. 2010; Lago et al. 2010). 

Our findings demonstrate, for the first time, that training periods consisting 

of action observation and passive practice lead to significant performance gains 

beyond what either intervention alone can do. Even though action observation in 

combined with passive training is effective in motor learning, the active training 

group is more successful in eliciting performance improvements, because the 

active training group involves error detection and correction processes, 

amplifying the perception-action interplay. 
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Chapter 4: Effects of a training condition that incorporates the manipulation of 

visual feedback into passive training on visuomotor adaptation 

Introduction 

Human subjects adapt rapidly to unfamiliar kinetic or kinematic 

transformations through an error-based learning (model-based) mechanism, in 

which the motor system builds an internal model of the state of body and/or 

environment that is used for planning of movements (Haith and Krakauer, 2013). 

If an expected perturbation is experienced, the motor system adapts the next 

motor command to minimize the prediction error, the difference between 

predicted and observed sensory consequence. This learning mechanism can be 

mathematically described with state-space model, which assumes that learning 

occurs through penalizing the deviations from the desired goal based on gradient 

descent on the squared movement errors (Thoroughman and Shadmehr, 2000; 

Donchin et al., 2003; Cheng and Sabes, 2006; Zarahn et al., 2008). Model-based 

learning is robust phenomenon that leads to fast improvements in performance in 

a changing environment.  

However, model-based learning mechanism cannot be instrumental in 

reducing the variability of the movement outcome, because it can only achieve 

zero performance error on average. In this case, a second learning mechanism 

that not only results in performance gains under a perturbation, but also leads to 

a lower variance is introduced. We refer to this mechanism as success-based 

learning mechanism or reinforcement learning rule, because it assesses actions 

on the basis of experiences to maximize rewards and minimize punishments 
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(Sutton and Barto, 1998). in success-based mechanism the learners don’t know 

a signed error signal regarding the movement, but an unsigned signal about the 

relative success and failure of the movement, so they don’t have any information 

about the direction required to correct the movement. Thus, they have to explore 

possible actions to gradually improve their movement until an optimal solution is 

found. 

Manipulation of online visual feedback provided during motor learning has 

been shown to effectively differentiate the contribution of these two learning 

processes (Izawa and Shadmehr, 2011; Schmuelof et al. 2012). In visuomotor 

adaptation paradigm, for example, learning from full vector error regarding 

movements involves primarily model-based mechanism. In contrast, learning 

from binary feedback about the success or failure of movements relies on model-

free mechanism (Izawa and Shadmehr, 2011). 

Recently, a similar but somewhat different view of motor learning 

mechanism has emerged, which suggests that motor learning also involves 

instance-reliant learning, in which effector- or movement-specific instances are 

accrued during repeated performances of a task to be learned and later retrieved 

to allow fast and automatized performances of the learned task (Wang and 

Sainburg, 2004; Lei and Wang, 2014). Instance-reliant learning can be thought 

as a form of use-dependent plasticity (Diedrichsen et al. 2010), being driven 

through encoding the specific kinematic aspects of the repetitive movement even 

without any outcome information (Wolpert et al., 2011).  
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The aforementioned learning mechanisms are associated with active 

motor experience. In terms of motor rehabilitation, training consisting of passive 

motor experience is believed to play a crucial role in rehabilitative medicine, 

particularly when patients are too weak to perform voluntary movements. It has 

been suggested that passive practice activates cortical regions akin to those 

activated by voluntary movements. We refer this phenomenon as use-dependent 

plasticity that encodes the specific kinematic aspects of the practiced movement, 

which has been interpreted as being indicative of a formation of a motor memory.   

Although it is known that passive training can contribute to motor learning, 

it often results in less improvement compared to active learning. According to the 

former view of motor learning mechanisms (model-based learning vs. model-free 

learning), it is possible that the absence of model-based and model-free learning 

processes is the major reason for the limited improvement. Therefore, we 

hypothesized that the learning effect of passive training would improve when 

provoking model-based learning by providing vector error feedback regarding 

spatial information such as movement direction and amplitude, or eliciting model-

free learning by providing binary error feedback regarding task success or failure 

(Shmuelof et al., 2012) during passive training.   
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Experiment 4 

Materials and Methods 

Subjects 

Subjects were recruited via word of mouth and flyers posted on University 

of Wisconsin-Milwaukee’s campus. Subjects were 24 healthy young adults (18-

30 old, right-handed). Handedness was assessed using the 10-item version of 

the Edinburgh inventory (Oldfield, 1971). Informed consent approved by the 

Institutional Review Board of the University of Wisconsin-Milwaukee was solicited 

prior to participation. The subjects were paid for their participation. Exclusion 

criteria for this study are: 1) a major psychiatric diagnosis (e.g., schizophrenia), 

2) hospital admission for substance abuse, 3) peripheral disorders affecting 

sensation or movement of the upper extremities (e.g., peripheral neuropathy), or 

4) if they are left-handed. Also, any participant who is pregnant was excluded 

from participation. All subjects were naïve to the purpose of the experiment. Each 

subject was randomly assigned to one of five groups. 

Apparatus 

We used experimental setup as shown in Figure 25A for experiments 

described in the study. Movement data were obtained with a bilateral robotic 

exoskeleton called KINARM (BKIN Technologies, Kingston, ON, Canada). 

Subjects sat on the KINARM chair with the right arm supported on the 

exoskeleton that provided full gravitational support of the entire arm; and the 

chair was moved to bring the arm under a horizontal display. The KINARM was 

incorporated with a virtual reality system that projected visual stimuli (starting and 
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target circles) on the display to make them appear in the same plane as the arm. 

Direct vision of the subject’s hand was blocked by the horizontal display; and a 

cursor representing subjects’ index finger tip was provided to guide their reaching 

movement. The visual stimuli consisted of a central starting circle (2 cm in 

diameter) and four target circles (2 cm in diameter) positioned 10 cm away from 

the starting circle (Figure 25B). The 2-D position data of the hand, elbow and 

shoulder were sampled at 1000 Hz, low-pass filtered at 15 Hz, and differentiated 

to yield resultant velocity. Computer algorithms for data processing and analysis 

were written in MATLAB (The Mathworks Inc., Natick, MA, USA).   
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Figure 25: A: Experimental setup. B: An illustration of the targets presented on 
the display. C: In VE group, a cursor representing fingertip location was shown 
throughout movement. In BE group, no cursor was shown; instead, target color 

changed to red (success) or blue (failure) upon completion of reaching 
movement. 
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Experimental Protocol  

In general, subjects were instructed to perform rapid targeted-reaching 

movements from a start circle to a target (2 cm in diameter, 10 cm away from the 

start circle) repeatedly with the right arm. They were instructed to move their 

index finger to the target rapidly and as straight as possible in response to a ‘go’ 

signal, and stop without correcting their movement. The experiment consisted of 

3 sessions: (1) 40 trials active movements with unperturbed visual feedback 

(baseline), (2) 100 trials passive movement in the 30-degree clockwise direction 

relative to the target (training), (3) 80 trials active movements with perturbed 

feedback in which visual feedback will be rotated 30 degree counterclockwise 

(testing). During the passive-training session, subjects were randomly divided 

into three groups based on types of visual feedback: no feedback (Null), vector 

error feedback (VE), binary error feedback (BE). In the Null group, subjects 

received no visual feedback about their passive movements. In the VE group, 

they received continuous vector error feedback that was rotated 30 degrees 

counterclockwise about the direction of passive movement. Visual feedback was 

provided in form of a cursor representing the fingertip location throughout the 

movement, which provided detailed spatial information such as movement 

direction and amplitude.  In the BE group, they received binary error feedback 

about task success or failure. This type of visual feedback was provided in such 

a way that the color of the target changed to red or blue upon completion of the 

movement depending on whether the subject hit the target successfully or not 

(Figure 25C) 
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Figure 26: Protocols for Experiment  
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Data analysis 

The performance measure used in this study was initial direction error 

(DE), which was the angular difference between a vector from the start circle to 

the target and another vector from the hand position at movement start to that at 

peak arm velocity. A block represents the mean of 5 consecutive trials. 

For statistical analysis, initial direction errors from the first cycle of the 

testing session from were subjected to a one-way ANOVA, with group as a 

between-subject factor, to determine if there was any difference among the three 

groups during the testing session. Following this, we fitted a logarithmic regression 

line to the arm performance data in the testing session; and the slope values were 

used to conduct another one-way ANOVA to determine if the rate of visumotor 

adaptation during the testing session was different among the groups. The alpha 

level was set at 0.025 (i.e., 0.05/2) for the analyses after a Bonferroni correction 

was made, and at 0.05 for post hoc comparisons (Tukey’s tests for between-group 

comparisons). 
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Figure 27: Hand-paths at the very first block of the testing session from the three 
groups.  
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Figure 28: Mean performance measure. Every data point shown on X axis 
represents the average of 5 consecutive trials (block) across all subjects within 

each group (mean ± SE) 
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Figure 29: Direction error at the very first cycle (left panel), and slope values 
during the testing session (right panel). 
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Results 

Figure 27 illustrates the hand-paths of a representative subject from the 

no feedback group, vector error feedback group, and the binary error feedback 

group, all of whom demonstrated a largely curved hand-path at the beginning of 

the testing session. Figure 28 depicts the changes in performance across the 

blocks in terms of initial direction error for the three groups. The one-way 

ANOVAs showed no significant main effect of group (p =0.759) for the direction 

error and the slope value (p=0.425) (Figure 29). Overall, these results suggest 

that neither providing binary error feedback nor vector error feedback has 

beneficial effects on motor learning. 
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Discussion 

In this study, we investigated whether the two motor learning hypotheses 

(one that involves model-based learning, the other that involves model-free 

learning) could lead to improvements in motor learning. In experiment, we 

predicted based on the hypothesis that reinforcement of successful actions would 

improve motor learning. To reinforce successful actions, we provided binary error 

feedback. Shmuelof et al. (2012) suggested that providing binary error feedback 

once visuomotor adaptation would promote reinforcement learning. Our subjects 

were provided with the vector error or binary error feedback, yet the performance 

gains were similar among the subject groups.  

In experiment, we focused on the effects of visual feedback on the 

formation of motor memories during a passive motor experience. It has been 

reported that manipulation of online visual feedback would induce different 

learning processes. For example, learning from full vector error regarding 

movements involves primarily model-based mechanism. In contrast, learning 

from binary feedback about the success or failure of movements is associated 

with model-free mechanism (Izawa and Shadmehr, 2011).  We hypothesized that 

forming a specific motor memory regarding a motor learning mechanism would 

be crucial for sensorimotor adaptation even in the passive motor learning. We 

designed a protocol in which the subjects were randomly divided into three 

groups based on types of visual feedback: no feedback (Null), vector error 

feedback (VE), binary error feedback (BE). For results, there was no significant 

difference among the groups. These results suggest that manipulation of visual 
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feedback during passive training has no additional benefit on visuomotor 

learning, and model-based and model-free learning processes are only elicited 

through active movement.  

Our data appears to suggest that passive movements accompanied with 

visual feedback cannot generate internal models, and the motor system cannot 

learn from error detection or correction without active execution. This finding is 

consistent with neurophysiological evidence that efference copies or internal 

models are required through active movements. However, the subjects 

experiencing passive training performed better than those who experienced no 

passive movement. It suggested that passive motor experience imparts a 

positive effect on visuomotor learning task. Passive practice leading to motor 

improvements is associated with instance-reliant learning mechanism or use-

dependent plasticity (Classen et al. 1998; Butefisch et al. 2004; Stefan et al. 

2005, 2008; Celnik et al. 2006, 2008; Lei and Wang, 2014; Wang et al. 2015). 

This form of mechanism encodes the specific kinematic aspects of passive 

movement (Wolpert et al., 2011).  

There is evidence to support the existence of two motor systems for 

guiding motor learning: (1) a model-based learning system and (2) a model-free 

learning system (Huang et al., 2011; Haith and Krakauer, 2013). In a model-

based learning system, motor improvements are driven by sensory prediction 

error, which reports discrepancies between the observations and the current 

internal model. In the mode-free learning system, by contrast, motor 

improvements are driven by the reward prediction error, which reports a 
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difference between an actual and expected reward in a given action (Glascher et 

al. 2010).  In other words, model-based system learns through building an 

internal model from actions to outcome and invert that model to map desired 

outcomes to action. By contrast, model-free learning is driven by a scalar 

measure of task success. An example of model-free learning can be provided by 

such “reaching under risk” studies, in which subjects reach for reward and 

penalty zones. It widely believed that two motor systems are conceived as acting 

in parallel, interacting at the motor planning stage (Haith and Krakauer, 2013), 

which provides the motor system with robustness and redundancy, such that one 

type of learning still enable the motor system to maintain the overall performance 

if the other type of learning fails for any reasons.  

 Our lab, recently, argued that visuomotor adaptation involves two types of 

motor learning processes, algorithmic learning process, which is effector 

independent, and instance-reliant learning process, which is effector dependent. 

The idea of algorithmic is analogous to the idea of model-based learning, in that 

algorithmic learning and model-based learning both occur through building an 

internal model. However, Instance-reliant learning is somewhat different from that 

of model-free learning, in which effector-specific instances are accrued during 

repeated performances of a motor task and automatically retrieved later to allow 

fast and automatized performances of the task (Wang and Sainburg, 2003; Lei 

and Wang, 2014; Wang et al. 2015). Here, the idea of instance-reliant learning is 

in line with the idea of use-dependent learning (Classen et al. 1998; Diedrichsen 

et al. 2010), which refers to a phenomenon that current movements are often 
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biased to become similar to previously experienced movements. The ideas of 

algorithmic and instance-reliant learning can account for the phenomenon of 

limited transfer across the effectors, in that learning can transfer across the 

effectors mainly by utilizing algorithmic learning, which is effector independent; 

but the extent of transfer across the effectors is limited because instance-reliant 

learning process cannot transfer across the effectors, which is effectors 

dependent. This argument has been supported by our recent study, in which 

subjects adapt to a rotated display with the left arm while repeatedly performing 

the reaching task with the right arm without providing performance feedback: 

training with the left arm completely generalizes to the right arm (Wang et al., 

2015). This suggests that the absence of instance-reliant learning process is the 

major reason for limited generalization of motor learning.  

A large amount of neural evidence supported the existence of different 

neural substrates identified for distinct learning systems. For example, the neural 

activity in the cerebellum only reflects the kinematics of movement rather than 

the motor commands required to achieve the kinematics, which indicates that the 

cerebellum is not clearly associated with motor output, instead it appears that the 

cerebellum implements an internal model that predicts the kinematic of motor 

commands before that information finally become available from the periphery 

(Haith and Krakauer, 2013). Furthermore, patients with cerebellar ataxia or 

lesions have consistently been demonstrated to have difficulties in motor 

adaptation that mainly involves model-based learning or algorithmic learning 

process (Lewis and Zee, 1993; Maschke et al., 2004; Mortan and Bastian, 2006; 
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Smith and Shadmehr, 2005; Rabe et al. 2009). In addition, motor adaptation can 

be sped up through transcranial magnetic stimulation of the cerebellar (Galea et 

al., 2011).  Together with the above-mentioned findings, these studies strongly 

suggest that model-based learning or algorithmic learning process is likely to be 

cerebellar-dependent. Surprisingly, patients with cerebellar ataxia can still learn 

in motor adaptation tasks in the condition that the perturbation is introduced 

sufficiently gradually (Criscimagna-Hemminger et al. 2010; Izawa et al. 2011). 

Learning in this case is not associated with model-based learning processes due 

to the inability to update an internal model. It is believed, instead, that cerebellar 

ataxia patients learn by engaging the model-free processes that rely solely on the 

degree of task success. The phasic firing of dopamine neurons has been 

consistently linked with reward prediction error (Montague et al. 1996; Schultz et 

al. 1997). Substantial work in degenerative diseases of the basal ganglia, in 

which there is widespread death of dopamine cells, shows that a decrease in 

dopamine release results in learning deficits in motor tasks that rely on reward 

prediction error signal. This finding clearly suggests that the basal ganglia may 

play a key role in model-free learning.   
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Chapter 5: Summary and Conclusions 

The goal of this investigation was to develop a training condition that can 

maximize the effects of passive training on visuomotor adaptation by combining 

its effect with other motor learning strategies. The motivation of this study 

stemmed from the need to address the population of stroke survivors who suffer 

from severe control loss or complete paralysis, and have few or no options for 

therapy. 

Stroke is a leading cause of long-term disability to date. Approximately 

half of stroke survivors suffer from some form of hemiparesis, and 30% of which 

reported limitations in activities of daily living (ADLs) without assistance 

(Rosamond et al., 2008; Huang et al., 2009). Most stroke rehabilitative 

treatments that clinicians have typically implemented are active training 

techniques, such as constraint induced movement therapy (CIMT). These 

treatments require stroke survivors retain some residual motor activity in the 

affected limb. There are very few selections of stroke rehabilitative approaches 

that aim at the population of stroke survivors suffering from severe control loss or 

complete paralysis. Passive assist training has been shown to be an effective 

rehabilitation approach; however the effectiveness of the treatments that utilize 

passive assist training is still low.  

A total of 104 neurologically intact right-handed individuals (18-30 years 

old) participated in this study. Participants were tested to pursue two specific 

aims: aim 1 to determine the effects of passive training on a visuomotor 
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adaptation task, and aim 2 to determine the effects of passive training in 

combination with other strategies on learning a visuomotor adaptation task. 

In aim 1, we tested whether a greater extent of generalization in motor 

adaptation across effectors and movement directions would occur by providing 

subjects with passive training. For this aim, we executed three experiments. The 

results from the experiment 1 and 2a indicated substantial generalization across 

effectors, but limited generalization across movement direction within the same 

effectors, when motor instances directly associated with the direction to be 

experienced later can be accrued during initial passive training. We suggested 

that the extent of generalization within the same effector was limited probably 

due to the fact that the amount of instances associated with the new task to be 

learned later was limited. Thus, we conducted experiment 2b to test whether 

motor generalization could be improved when a substantially greater amount of 

motor instances were provided during initial passive training. Results indicated 

substantial generalization across movement directions. These findings support 

the idea that passive training can augment motor learning by inducing instance-

reliant learning processes, and that this benefit is greater when prolonged 

passive training (i.e., sufficient instances) was provided. 

In aim 2a, we investigated the effects of action observation in association 

with passive training on motor learning, as reflected by formation of motor 

memories. We compared the learning performance of five different groups: action 

observation alone, passive practice alone, action observation combined with 

passive practice, the passage of time, and active practice. Results indicated that 
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action observation combined with passive training enhances training effects 

relative to the mere observation of action or passive training alone. In aim 2b, we 

tested whether the effects of a training condition could be improved by 

incorporating the manipulation of visual feedback into passive training. We 

compared with the learning performance of three different groups, which were 

divided based on types of visual feedback: no feedback, vector error feedback, 

and binary error feedback. For results, there was no significant difference among 

groups. This suggested that manipulation of visual feedback during passive 

training has no additional benefit on visuomotor learning.   

These findings are significant because they are the first to demonstrate 

that a training condition consisting of action observation and passive training 

together can lead to significant performance gains beyond what either 

intervention alone can do. The results of the study show great potential for 

developing specific rehabilitation protocols that utilize passive training and action 

observation together for severely impaired stroke patients in the future. 

We have contrasted three distinct, yet complementary processes 

regarding motor learning: (1) a model-based learning system, in which an internal 

model is updated via sensory prediction errors, (2) a model-free learning system, 

in which learning occurs directly through trial and error, and (3) a instance-reliant 

learning system, in which effector-specific instances are accrued during repeated 

performances of a motor task and automatically retrieved later to allow fast and 

automatized performances of the task. (Huang et al., 2011; Haith and Krakauer, 

2013; Wang et al. 2015). We have argued that different stroke interventions may 
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involve different motor learning processes. For example, active training is likely to 

involve multiple motor learning processes (model-based, model-free and 

instance-reliant learning process), while passive training may only involve 

instance-reliant learning, which occurs through accruing motor instances of goal 

movement and build a template of expected sensory consequence (Kovacs et 

al., 2011). Similarly, observational learning may only be associated with model-

based learning, which is driven by sensory prediction errors. It is possible that the 

facilitative effects of these interventions for motor recovery may be associated 

with the underlying motor learning processes. If so, a deeper understanding of 

their associations may enable us to advance the efficacy of rehabilitation 

following stroke patients, and to maximize the potential benefits of these 

rehabilitation interventions, especially for severely impaired stroke patients who 

cannot move their paretic arm on their own.  
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Appendix A:  Literature Review 

Stroke 

Stroke (cerebral vascular disease) is a leading cause of permanent 

disability in the United States and many other countries (Muntner et al., 2002; 

Ingall et al., 2004; Smith et al., 2004; Roger et al., 2011). From 2000 to 2010, 

trends in the United States have shown that the relative rate of stroke death fell 

by 35.8% and the actual number of stroke deaths declined by 22.8%, yet more 

than 790,000 people continue to suffer a new or recurrent stroke per year, with 

approximately 610,000 of these being first events and 180,000 being recurrent 

stroke events ((Muntner et al., 2002; Ingall et al., 2004; Smith et al., 2004; Roger 

et al., 2011; Go et al., 2014). Internationally, the rates of strokes are comparable 

to those of the United States (Ingall et al., 2004; Smith et al., 2004; Roger et al., 

2011; Go et al., 2014).  

Among stroke survivors who were 65 years or older, 50% reported some 

form of hemiparesis and 30% reported limitations in activities of daily living 

(ADLs) without assistance (Rosamond et al., 2008; Huang et al., 2009). The 

average yearly health care services, medication, and lost productivity that directly 

attributable to stroke vary greatly according to severity of injury. In 2011, it was 

estimated that the costs of stroke, not including any indirect costs such as losses 

in wages and fringe benefits, is approximately 38.5 billion in the United States 

(Heidenreich et al., 2011). Stroke not only strikes the elderly, it also occurs 

among children between infancy and toddler age. In fact, stroke is one of the 

leading causes of death for children (Lloyd-Jones et al., 2009). The rate of stroke 
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occurrence from birth through the age of 18 is nearly 11 in every 100,000, with 

50% to 80% having permanent neurological deficits, most commonly hemiparesis 

or hemiplegia (Roach et al., 2008). With the progressive growth of the elderly 

(age 65 and over) population due to the aging baby boomers, and the increase in 

the rate of strokes among children, the concerns of stroke-related disability will 

increase over time.  

A stroke happens due to a disturbance in the blood supply to the brain. 

This disturbance is due to either ischemia, which occurs as a result of an 

obstruction within a blood vessel, or hemorrhage occurring when a weakened 

blood vessel ruptures. A stroke results in partial destruction of cortical tissue. The 

symptoms of stroke depend on how severe the stroke is and which part of the 

brain is damaged, which may include numbness or weakness of face, arm or leg 

(especially on one side of the body), confusion, severe headache, or loss of 

balance or coordination. Although stroke can result in deficits in a number of 

neurologic functions, the most commonly affected is the motor functions, which 

encompass motor control and learning abnormalities, muscle weakness, and 

spasticity (Gresham et al., 1995; Rathore et al., 2002). 

Post-stroke neuroplasticity 

Neuroplasticity refers to physiological changes in neural pathways and 

synapses in response to new situation or to changes in environment. 

Neuroplasticity results in functional changes on a variety of levels, ranging from 

cellular changes due to learning to cortical reorganization in response to brain 

injury. Cortical reorganization occurs through mechanisms in which undamaged 
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axons grow new nerve endings to reconnect neurons whose links were injured, 

or sprout nerve endings to connect with other undamaged neurons to form new 

neuronal circuits. Neuroplasticity is the scientific basis for treatment of acquired 

brain injury, such as stroke. Rehabilitation studies involving neuroplasticity 

principles have shown that the brain following stroke demonstrates a capability to 

reorganize itself to counterbalance the effect of the lesion, however cortical 

plasticity can also result in an overcompensation of unaffected limb and a 

decreased cortical representation of affected limbs without professional 

interventions (Liepert et al., 1995; Rossini et al., 2003, 2004).  Such intervention 

requires limb-associated sensory input to influence cortical plasticity while using 

task specific practice to take advantage of post-stroke plasticity (Jenkins et al., 

1987; Kaas, 1991; Johansson, 2000).  

Rehabilitation approaches 

Rehabilitation approaches that target stroke patients across the spectrum 

from mild to severe hemiparesis include impairment-oriented training (Platz et al., 

2001), constraint-induced movement therapy (CIMT) (Taub et al., 1993; 

Dromerick et al., 1999; Mark and Taub, 2004), interactive robotic therapy (Krebs 

et al., 1998), and virtual reality-based rehabilitation (Deutsch et al., 2004; Holden, 

2005). These approaches improve motor function by limiting the use of the 

unaffected limbs and forcing the repetitive exercise with the affected limb to 

reestablish muscle activity. As a result of the active engagement of the affected 

limb, the brain stimulates neural pathways and activates the motor cortex, thus 

inducing cortical reorganization and motor learning. CIMT is the most common 
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approach for stroke rehabilitation, which increases activity in areas of motor 

cortex surrounding lesions to induce the plasticity of the brain and possibly 

reinstating the neural motor control. With CIMT therapy, the therapist constrains 

the patients’ unaffected arm with a sling or other means of inhibition. The patients 

are required to use their affected arm repetitively and intensively for a preset time 

period, ranging from 1 to 10 weeks. While most studies have reported that CIMT 

therapy results in improved function in stroke patients, CIMT therapy has its 

limitations. First of all, CIMT requires patients to have residual motor ability in the 

affected limb, which excludes patients with more severe stroke. Second, the lack 

of specific instruction in CIMT therapy leads to the patients developing 

compensating movement. In addition, the cost needed to conduct CIMT therapy 

is high. Because of these limitations, we are seeking to replace CIMT with other 

rehabilitative trainings.  

Robotic rehabilitation 

Robotic therapy has grown as a complement to CIMT, and hold promise 

for improving traditional stroke therapy. As we know, rehabilitation process is 

labor-intensive, requiring therapists to spend significant time working with a 

single patient. Unlike conventional rehabilitation therapy, robotic technology is 

attractive because of its ability to provide efficient therapies with less direct 

supervision, its ability to allow for safe interactions between robotic devices and 

patients, and its ability to deliver therapy at dosages higher than that with 

conventional therapy (Huang and Krakauer, 2009). Robotic devices not only 

provide measurement reliability and movement controllability to be programmed 
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to perform in multiple functional modes for a long time periods, but also can 

implement novel forms of mechanical manipulation, which help neurologists and 

therapist address the challenges that impossible for them due to limited speed, 

sensing, and strength (Kahn et al., 2006; Huang and Krakauer, 2009). In 

addition, robotic devices can provide insights in the recovery process, in terms of 

movement kinematics and dynamics, from initial impairment to impairment 

changes after treatment, such that through investigating stroke patients’ ability to 

apply novel force assistance patterns (Patton and Mussa-Ivaldi, 2004). To date, 

many studies have shown that robot-assisted technology is effective to restore 

locomotion and upper extremity function (Reinkensmeyer et al., 2004).  

There have been a few clinical studies that have investigated the effects of 

robotic-aided therapy on stroke rehabilitation in a clinical setting (van Vliet and 

Wing, 1991; Hesse et al. 2003; Hogan et al. 2004; Reinkensmeyer et al. 2004; 

Nef and Riener, 2005). In studies with a robot-trained group and a control group, 

for example, robot-aided therapy had more short-term effects, such as muscle 

activation patterns and speed of movement, than conventional therapy in stroke 

patients (Volpe et al., 2000; Krebs et al., 2000; Fasoli et al., 2003; Ferraro et al., 

2003). There also has been a study to support the long-term beneficial effects of 

robot on stroke rehabilitation. For example, Prange and colleagues reported that 

robotic rehabilitation lead to long-term improvement in motor functions (Prange et 

al., 2006).Given that only one study examined long-term effects, no firm 

conclusion can be draw. One interesting aspect regarding robotic rehabilitation is 

that moderately affected patients seem to be more responsive to robot-aided 
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therapy than severely affected patients (Ferraro et al., 2003). For example, 

stroke patients with the highest initial motor function achieved more behavioral 

gains after robot-aided therapy than the patients with the lowest initial motor 

function (Stein et al., 2004). Robotic technology has also been used extensively 

to study motor learning in healthy subjects, which allows researchers to 

investigate the mechanisms underlying motor learning so as to help us design 

more effective rehabilitation protocols. 

Robotic rehabilitation is multifold, including active assist training, passive 

assist training, and action observation therapy (Seitz et al., 2002; Ertelt et al., 

2007). Active assist exercise, which uses external assistance to aid patients to 

accomplish intended movements, is the primary paradigm that has been used in 

robotic therapy (Marchal-Crespo and Reinkensmeyer, 2009). Active assist 

exercise can be grouped into three modes in terms of the dose of robotic 

assistance (Takahashi et al., 2008): (1) active non-assist mode, in which patients 

do all work without the robot’s help, (2) active assist mode, in which patients 

actively exert effort to move and the robot supplements its effort, (3) passive 

assist mode, in which patients relax while the robot do all work. Interventional 

studies demonstrate that active assist mode can achieve greater behavioral 

gains for stroke patients who can exert efforts on their own to move (Lotze et al., 

2003; Perez et al., 2004), since robotic devices, in active assist mode, provide 

assistance for patients to move their paretic limb in desired patterns during 

reaching, grasping, or walking to provoke motor plasticity (Marchal-Crespo and 

Reinkensmeyer, 2009).   
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While active assist training is certainly more beneficial than passive assist 

training for the majority of stroke patients, passive assist training may still be 

beneficial for those who can hardly move on their own. Another intervention 

which may be beneficial for the severely impaired stroke patients involves an 

action observation. Evidence exists that the observation of action and the actual 

execution of the observed action involve the same cortical motor representation 

(Fadiga et al., 1995; Iacoboni et al., 1999; Mattar and Gribble, 2005).  Recently, 

action observation has been demonstrated to have a positive effect on 

rehabilitation of motor deficits after stroke through reactivating motor 

representation relevant to the observed action (Pomeroy et al., 2005; Buccino et 

al., 2006; Ertelt et al., 2007; Celnik et al., 2008).  

Most robotic treatment protocols implement active assist training. For 

example, Fasoli et al. and Stein et al.’s studies suggest that robot-aided therapy 

that incorporates active assist training is beneficial for upper-limb recovery 

(Fasoli et al., 2003; Stein et al., 2004). However, the effectiveness of the 

treatments that utilize passive assist training and action observation therapy is 

still unknown. This study will provide substantial insights into our understanding 

of treatment effectiveness in passive assist training and action observation in 

rehabilitation settings, and how to develop a training condition that can maximize 

the potential benefits of these training methods. Given that passive training could 

be a valuable rehabilitation strategy for the severely impaired stroke patients, 

findings from this research may prove valuable for the development of more 

efficient rehabilitation protocols in the future.  
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End-effector and exoskeletal robotic systems 

Current robotic devices that are being used in clinical trials can be 

grouped into two types: end-effector and exoskeleton. MIT-Manus is an end-

effector system, which is the first robotic device that undergoes clinical tests. 

With MIT-Manus, patients hold a two-joint manipulandum that experiences robot-

imposed force. An initial study involving MIT-Manus showed that robotic 

rehabilitation has a positive effect on cortical reorganization (Krebs et al., 1998). 

For exoskeletal system, patients’ limbs are enclosed in robotic suit, which 

provides full specification of limb configuration and allows for forces to be applied 

and measured at each joint independently (Huang and Krakauer, 2009). KINARM 

is exoskeletal robotic system, which has been used in the clinical trials to quantify 

impairments related stroke (Coderre et al., 2010; Dukelow et al., 2010). 

Robotic rehabilitation and motor learning principles 

The goal in rehabilitation, for patients, is to relearn motor skills that stroke 

may have taken away, indicating the fact that the content of rehabilitation rests 

on two basic assumptions: (1) practice can lead to improvement in motor 

functions after stroke; (2) motor learning principles can be applied to recovery 

(Krakauer, 2006; Wolpert et al., 2011; Kitago and Krakauer, 2013). Given that 

motor learning can occur at different level of the motor hierarchy, one key issue 

must be paid much attention in rehabilitation based on motor learning principles: 

whether and to what extent processes of motor learning may be impaired in 

stroke patients, and which type(s) of motor learning are most relevant to stroke 

patients (Kitago and Krakauer, 2013). In other words, there may be several types 
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of motor learning processes and representations through which learning is 

achieved, and they may be affected based on lesion location (Krakauer, 2006; 

Wolpert et al., 2011). The rehabilitation strategy for stroke must be planned 

based on a sound knowledge of what processes may be involved in motor 

learning, and what the effects of stroke on motor learning process would be. 

Unfortunately, we have not reached this point yet.  

Motor adaptation and after-effects 

Everyday usage of the term “motor learning” in the minds of most people 

is usually defined as skill learning, which refers to a relatively permanent change 

in the capability for responding due to practice or a novel experience (Schmidt, 

1988). It often involves the acquisition of new spatiotemporal muscle-activation 

patterns associated with complicated movements such as learning to play the 

piano, drive a car, or climb trees (Sanes and Donoghue, 2000; Shadmehr and 

Wise, 2005). In this kind of tasks, the progress of learning from initial 

incompetence to proficiency is often very slow, typically requiring days or even 

months of practice. This slow improvement is not only attributable to the 

unfamiliarity of the task, but also due to the redundancy inherent in the task and 

in human biomechanics (Manley et al. 2014).  For example, you play the game of 

darts. The outcome (the location where the dart hits the board) is determined by 

a large number of variables, such as the posture of the trunk, the orientation of 

the wrist, the distance between the dart and board, the position and velocity of 

the elbow and shoulder joints. The outcome can be achieved through multiple 

combinations of these variables.  
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Not all motor learning falls under the concept of motor skill learning. 

Another form of motor learning, called motor adaptation, involves the acquisition 

of associations between sensory cues and motor actions in an altered 

environment (Shadmehr and Wise, 2005). The key difference between motor 

adaptation and motor skill learning is that the former adjusts the motor system for 

only one context (Shadmehr and Wise, 2005). In general, there is no new 

capability to emerge after motor adaptation. To better understand motor 

adaptation, consider a scenario in which you need to reach for a coin that is in 

the water, the air-water interface results in a defection of the coin position falling 

on your retina. In order to reach for the coin accurately, the motor system needs 

to take into account for changes in the environment (i.e., the mismatch between 

the actual location of the coin and the coin position sensed through your eye) 

when planning the reaching movement. The process of correcting the reaching 

errors induced by this distortion is called motor adaptation.  Motor adaptation is 

viewed as a crucial capability of the nervous system as well as a prerequisite for 

skill learning (Shadmehr and Wise, 2005). Skill learning would be impossible 

without motor adaptation.  

In laboratory settings, motor learning has been studied extensively in the 

context of motor adaptation tasks, in which subjects adapt their movements to 

overcome a perturbation, either as a rotation of movement direction, or as a 

deflecting force on the arm (Bernier, 2007; Shadmehr and Mussa-Ivaldi, 1994; 

Wang and Sainburg, 2005). Here I will focus on the visuomotor adaptation 

paradigm. Visuomotor adaptation has served as a well-established paradigm for 
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studying the capability of the CNS adapting altered visual feedback (Abeele and 

Bock 2001a, 2001b, 2003; Imamizu and Shimojo 1995; Krakauer et al. 2000). 

Typically, the main paradigm is to distort visual information about initial hand 

position by the use of either optical prisms or virtual reality environments. For 

example, in a visuomotor adaptation study conducted in 1867 by Hermann von 

Helmholtz, subjects who made pointing movement toward targets while wearing 

prism lenses that displaced the visual field laterally initially experienced leftward 

direction errors during pointing movements, but could compensate for the errors 

after some practice. As soon as the prisms were removed, they made rightward 

direction errors (called ‘after-effect’).This motor after-effect demonstrates that 

subjects not only react to changes in environment but also predict the expected 

dynamics of the new environment. Therefore, after-effect is considered strong 

evidence that a new internal model has been developed as a result of motor 

adaptation. In motor adaptation paradigms, the performance of motor learning is 

measured on the time course of the kinematics and dynamics of motion that 

involves arm movement. Learning is thought to occur via incremental reduction in 

errors caused by a perturbation over successive movements. Improvements in 

performance are initially rapid, and then reach slowly to asymptote close to the 

baseline level of performance (Haith and Krakauer, 2013).   

Mechanisms underlying Motor Learning 

Motor adaptation was thought to involve two distinct, yet complementary 

processes: (1) a model-based learning system and (2) a model-free learning 

system (Huang et al., 2011; Haith and Krakauer, 2013). In a model-based 
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learning system, an internal map or a model of the environment is built, which 

describes the relationship between the state of the body and environment (Figure 

30). The driving force for model-based learning is the sensory prediction error, 

which reports discrepancies between the observations and the current model. If a 

prediction made by the internal model results in an accurate movement outcome, 

the internal model is maintained in a stable state. However, a movement results 

in a prediction error due to an unexpected perturbation, the internal model starts 

a calibration process based on currently available information until the prediction 

error is minimized.  
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Figure 30: Forward model receives a copy of motor command and generates a 
predicted sensory consequence at a short latency. The predicted sensory 

consequence is integrated with true sensory feedback to optimize state estimate. 
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The model-free learning system, in contrast, learns action directly through 

trial and error. Unlike model-based learning, in the model-free learning system 

there is no intermediate internal model and no explicit error calculation required 

to correct for systematic biases (Haith and Krakauer, 2013). Instead, in the 

mode-free learning system, improvements in performance are driven through 

exploring possible actions until an optimal solution is found.  The reward 

prediction error was thought of as the engine of model-free learning, which 

reports a difference between an actual and expected reward in a given action 

(Glascher et al. 2010). This error signal is used to learn the value of executing a 

given action on the basis of trial and error experience to update expectations in 

order to maximize future reward (Sutton and Barto, 1998) Thus, model-free 

learning system updates the control policy directly based on reward prediction 

errors. 

Recently, a similar but somewhat different view of motor learning 

mechanisms has emerged, which suggests that motor adaptation involves 

algorithmic learning, in which one successively improves a rule-based method of 

control, and instance-reliant learning, in which effector- or movement-specific 

instances are accrued during repeated performances of a task to be learned and 

later retrieved to allow fast and automatized performances of the learned task 

(Wang and Sainburg, 2004; Lei and Wang, 2014). Instance-reliant learning can 

be thought as a form of use-dependent plasticity, being driven through encoding 

the specific kinematic aspects of the repetitive movement even without any 

outcome information (Wolpert et al., 2011). While the ideas of model-based 
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learning and algorithmic learning are in line with each other, the ideas of model-

free learning and instance-reliant learning are different, in that reinforcement of 

successful actions is considered necessary only for the former idea, while 

effector-specific instances are thought to be necessary only for the latter idea. 

Model-based, model-free and instance-reliant learning processes provide 

the motor system with robustness and redundancy, such that if one type of 

learning fails for any reason (e.g., a cerebellar disease affecting model-based 

learning), the other type of learning still enables the motor system to improve 

overall performance (e.g., Izawa et al., 2011). A comprehensive understanding of 

the relative contribution of each mechanism to motor learning and the optimal 

balance between them is paramount to advance the efficacy of 

neurorehabilitation (Huang and Krakauer, 2009; Haith and Krakauer, 2013). 

Model-based and Model-free Learning 

The terminology of model-based and model-free learning comes from the 

field of reinforcement learning. Reinforcement learning agent learns by 

interacting with an environment, and assesses actions on the basis of 

experiences to maximize rewards and minimize punishments (Sutton and Barto, 

1998). Reinforcement learning is used to learn a value function for a given 

control policy, which reflects how much future reward can be expected when 

performing actions given the current state and time. Model-based and model-free 

learning are expressed as two different forms of reinforcement learning, and 

differ in how to use experience to update the value function. At root, the key 

distinction between model-based and model-free learning is the use of 
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information in building representation of the environment that involves the 

different computational processes and their substrates in the CNS (Khamassi 

and Humphries 2012).  

Model-based learning uses experience indirectly, building a model of the 

state of body and/or environment that is used for planning of movements (Haith 

and Krakauer, 2013).  Action in each state is assigned a value, and action 

selection depends on those values. The current state is the root, and the control 

policy with the highest value is determined by updating the model based on 

action errors, either forward from the root state to each next state or backward 

from each possible state to the root state to compare all possible actions and 

identify the best ones (Dolan and Dayan, 2013). In model-based learning, all 

value of all states and actions can be computed exactly, which imposes a huge 

burden on motor control. This learning process can be mathematically described 

with state-space model, which assumes that learning occurs through penalizing 

the deviations from the desired goal based on gradient descent on the squared 

movement errors (Thoroughman and Shadmehr, 2000; Donchin et al., 2003; 

Cheng and Sabes, 2006; Zarahn et al., 2008). A state-space model is defined 

below: 
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��+1 = � ∗ �� + � ∗ 	� +
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�� = �� + �� 

��: The state of the internal model on trial n  

��: The hand position on trial n  

	�: Error on trial n  

A: Trial-to-trial retention rate  

B: learning rate  


, �: Independent noise terms 

 

By contrast, model-free learning is computationally efficient, since 

experience directly leads to changes in a control policy in the form of a reward 

prediction error. No model is built and instead the value of an action of a given 

state is learned through a process of trial and error-explore possible actions that 

lead to success. Given that the model-free learning system simply relies on 

repetition of actions that lead to reward, irrespective of noisy computations each 

time a movement must be made, it tends to deliver superior performance. The 

major disadvantage of model-free learning is that although it replaces 

computation with memory, it can be statistically inefficient due to the forward-

looking nature of the prediction error (Daw et al., 2005).  
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In model-based learning system the learner senses the movement 

outcome and compares this to the predicted outcome. In this case, the learner 

not only knows whether s/he misses the goal but also identifies how s/he misses 

it. Thus model-based learning often leads to fast improvements in performance 

through calibrating and reducing the average performance error. Although model-

based learning can reduce the average performance error to zero, it cannot be 

instrumental in improving performance further. Take, for example, the game of 

darts, the location where the dart strikes to the board is determined by a large 

amount of variables, such as the orientation of the trunk, the position and velocity 

of the wrist or arm. This task is redundant because multiple combinations of 

these variables can achieve the goal. Model-based learning can achieve zero 

performance error on average, but cannot reduce the variability of the final 

outcome. However, unlike model-based learning, in model-free learning the 

learner does not know a signed error signal regarding his/her movement, but an 

unsigned signal about the relative success and failure of the movement, so s/he 

does not have any information about the direction required to correct his/her 

movement. Thus, s/he has to explore possible actions to gradually improve 

his/her movement until an optimal solution is found. A recent study (Izawa and 

Shadmehr, 2011), which showed that subjects can learn to adapt the 

perturbation when given only the success and failure of the movement, 

demonstrated that model-free learning system drives learning via task success 

feedback.    
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Manipulation of online visual feedback provided during motor learning has 

been shown to effectively differentiate the contribution of these two learning 

processes (Izawa and Shadmehr, 2011; Schmuelof et al. 2012). In visuomotor 

adaptation paradigm, for example, learning from full vector error regarding 

movements involves primarily model-based mechanism. In contrast, learning 

from binary feedback about the success or failure of movements relies on model-

free mechanism (Izawa and Shadmehr, 2011). 

Generalization of Motor Learning 

Generalization of motor learning is an important aspect of motor learning. 

Generalization of motor learning refers to the degree to which the acquired 

learning can be effectively used across motor tasks, workspaces, effectors, and 

limb configurations. For example, if one is an expert in the game of table tennis, 

and now s/he is going to learn tennis, can s/he apply what s/he has learned from 

table tennis to playing tennis?  In the rehabilitation domain, can rehabilitative 

training received under a specific physical therapy setting transfer to facilitate 

movement under an unconstrained environment?  These questions can be 

addressed by studying the generalization of motor learning. Generalization of 

motor learning is thought as an important topic in rehabilitation, as therapy-

induced changes should occur over time and settings, and sometimes spread to 

a variety of related behaviors (Stokes and Baer, 1977). A low degree of 

generalization might demonstrate the limitations of the impact of certain 

rehabilitation interventions (Stokes and Baer, 1977; Page, 2003; Huxlin and 

Pasternak, 2004; Krakauer, 2006; Van Peppen et al., 2006). For example, 
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therapy-induced changes in task A must lead to changes in performance not just 

for task A, but also generalize to other tasks (Huang and Krakauer, 2006).  

The amount of generalization could be used to infer whether the acquired 

learning is task specific, condition specific, effector specific, etc. A high degree of 

generalization indicates that components of learning are represented at abstract 

or task-level, while a low degree of generalization indicates that components of 

learning are represented at an effector or response-level (Imamizu and Shimojo, 

1995). Motor generalization studies have also been used to determine the extent 

to which model-based, model-free and instance-reliant learning systems control 

behavior by examining the extent to which learning system should transfer 

across tasks within the same workspace. Each learning mechanism is expected 

to exhibit some degree of generalization. However, it is widely accepted that 

model-based learning tends to generalize more broadly across tasks than model-

free learning (Izawa and Shadmehr 2011). For example, subjects trained to 

compensate for a rotation given vector error (engaging primarily model-based 

learning) generalize more broadly than those trained to compensate the same 

perturbation but only given binary feedback regarding the success or failure of 

task (engaging primarily model-free learning) (Izawa and Shadmehr 2011).    

Motor learning is not simply the memory of specific motor acts. Central to 

motor learning is the ability to generalize what has been learned in one 

movement condition to another movement condition (Poggio and Bizzi, 2005).  A 

large number of studies using sensorimotor adaptation paradigms are frequently 

used to study the mechanisms underlying generalization of motor learning, 
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indicating that adaptation can generalize, to varying degrees, across the limb 

configurations, the workspace, and effectors. To test whether generalization can 

occur across the workspaces, for example, we asked subjects to perform 

targeted-reaching tasks across different workspace locations under a novel 

visuomotor condition in which the visual display of the movement was rotated 30 

degrees counterclockwise (Lei et al., 2013). As we found, generalization across 

different workspaces could reach 100%. Some studies have also indicated that 

generalization is not restricted to the same arm configuration in which adaptation 

took place (Baraduc and Wolpert, 2002; Krakauer et al., 2000).  Adaptation to a 

novel visuomotor transformation in one initial arm configuration can completely 

generalize to different initial arm configurations that have not been experienced 

during training.   

However, the extent of generalization appears to be task dependent. 

Previous research examining generalization across movement directions, for 

example, showed that generalization fell to zero as the angular difference 

between the training direction and the testing directions over 45 degrees 

(Krakauer et al., 2000).  Some studies showed that generalization can also occur 

across effectors, but its extent is very limited, ranging from 10 to 60% (Morton et 

al., 2001; Sainburg and Wang, 2002; Taylor et al., 2011; Wang et al., 2011; 

Joiner et al., 2013). Although various neural mechanisms underlying 

generalization of motor learning have been suggested (Taylor and Heilman, 

1980; Anguera et al., 2007; Perez et al., 2007; Block and Celnik, 2013), it 

remains unknown why their extents are so limited. 
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Motor Learning by Observation 

The brain utilizes multiple forms of learning, not restricted to the learning 

mechanisms described above. The learning strategies that I have focused on are 

usually involved in executing motor tasks, whereas the mere observation of 

others performing the same motor tasks can also facilitate motor learning by 

conveying high-level information about the form of movement such as the 

movement kinematics (Hayes et al., 2010), coordination pattern (Hodges et al., 

2007), as well as spatial-temporal goals (Vogt, 1995).  There have been a 

number of studies to support that motor learning occurs by observation without 

actual execution. For instance, rats can learn a novel task by observing other rats 

engaged in the same task (Petrosini et al., 2003). Human subjects who observe 

an actor learning a motor task perform better when they subsequently learn the 

same task (Kelly et al., 2003; Brown et al., 2009; Mattar and Gribble, 2005; Ong 

and Hodges, 2010). These studies are further supported by several imaging 

studies that demonstrate the common neural areas are activated when 

performing a specific action and observing others performing a similar action 

(Rozzolatti and Craighero, 2004).  

It is widely accepted that motor skill can be learned through observing the 

actions of others. For example, naïve observers can learn finger-tapping 

sequences by watching others (Kelly et al., 2003). Similarly, naïve observers who 

watch an actor learning to adapt in a novel visuomotor or dynamic environment 

perform better when later adapting to the same environment themselves (Brown 

et al., 2009; Mattar and Gribble, 2005; Ong and Hodges, 2010). Moreover, there 
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is evidence that motor learning from observation is not based on explicit, 

conscious strategies but instead is mediated by implicit, motor-related processes 

(Mattar and Gribble, 2005). For example, a similar neural network is involved 

when executing a motor task and observing others performing the same task 

(Iacoboni et al., 1999). By watching an actor grasping an object, motor potentials 

evoked from the stimulation of the motor cortex is altered (Fadiga et al., 1995). In 

addition, the cerebellum seems to be involved in procedural learning as well as 

observational learning (Petrosini et al., 2003). Taken together, these findings 

suggest that observational and physical learning may involve similar learning 

processes.  

Motor learning by passive training 

Unlike active and observational learning, passive training can improve 

motor learning by providing proprioceptive information of the desired movement. 

Proprioception is the sense of the position and movement of the body. Muscle 

spindles which encode information on muscle length and its rate of change are 

believed to play a large role in proprioception. In passive training, improvements 

in performance are often associated with cortical reorganization (Nudo et al., 

1996; Shadmehr and Holcomb, 1997; Classen et al., 1998; Muellbacher et al., 

2001). Several imaging studies have demonstrated that passive training could be 

as effective as active learning in eliciting cortical reorganization so as to result in 

behavioral gains (Alary et al., 1998; Carel et al., 2000). In rehabilitation settings, 

patients with brain lesions, such as stroke patients, are too weak to perform 
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voluntary movements are often guided passively to acquire proprioceptive 

information associated with the correct movement.  

For motor learning to occur, the process in which information regarding 

the actual movement (what was done) can be compared to the goal movement 

(what should be done) is very important (Beets et al., 2012). It is generally 

agreed that visual and proprioceptive information are the critical inputs for this 

motor learning process. While it has been supported that visual information 

contributes to motor learning significantly, much less is known about the effect of 

provision of proprioceptive information for learning.  Previous studies have shown 

that passive training can improve motor learning by providing proprioceptive 

information of the goal movement. For example, subjects who were provided 

additional proprioceptive information of circular hand movement trajectories 

passively were better able to learn this new motor skill (Beets et al., 2010; Wong 

et al., 2012). Similarly, a study investigating the effect of passive arm movements 

on the motor learning showed that passive motor experience has a positive effect 

on the improvement of motor learning of visuomotor adaptation even without 

conscious motor intention (Cressman and Henriques, 2009, 2010; Sakamoto and 

Kondo, 2012). Taken together, these findings suggest that motor conscious, 

motor planning, and experience of proprioceptive sensation may influence the 

learning of a motor skill independently.  

Process leading to motor learning through passive movement is 

considered as the instance-reliant learning. Instance-reliant learning is thought to 

be associated with specific movement performed by specific effectors, and driven 
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through encoding the specific kinematic aspects of that specific movement 

without any outcome information (Wolpert et al., 2011). Prescriptive 

proprioceptive information provided by passive practice helps accrue motor 

instances of the goal movement and build a template of expected sensory 

consequence (Kovacs et al., 2011).  
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Appendix B:  Informed Consent Form 

UNIVERSITY OF WISCONSIN – MILWAUKEE 
CONSENT TO PARTICIPATE IN RESEARCH 

THIS CONSENT FORM HAS BEEN APPROVED BY THE IRB FOR A ONE 
YEAR PERIOD 

 

1. General Information 

 

Study title: Maximizing the effects of passive training on visuomotor 
adaptation by incorporating other motor learning strategies  

Person in Charge of Study (Principal Investigator):  

My name is Dr. Jinsung Wang. I am an associate professor in the Department of 
Kinesiology at University of Wisconsin -- Milwaukee.  

2. Study Description 

 

You are being asked to participate in a research study.  Your participation is 
completely voluntary.  You do not have to participate if you do not want to. 

Study description: 

The purpose of this study is to develop training conditions that can maximize the 
effects of passive training and action observation on motor learning. We know 
that passive training and action observation therapy are effective rehabilitation 
approaches, but the effectiveness of these trainings is still low. We are now 
investigating why there is limited treatment effectiveness in passive assist 
training and action observation in rehabilitation settings, and how to develop 
training conditions that can maximize the potential benefits of these training 
methods. 

This study will be conducted in the Neuromechanics Laboratories at UWM. 
Approximately 80 volunteers will participate in this study. Your participation in this 
study will take approximately one and a half hours, over the course of one day. 
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Eligibility: 

If you are a healthy individual, defined as a person who does not have any 
neurological damage, and are right handed and aged between 18 and 30, you 
are eligible to participate in this study. You will be excluded for following criteria: 
1) a major psychiatric diagnosis (e.g., schizophrenia), 2) hospital admission for 
substance abuse, 3) peripheral disorders affecting sensation or movement of the 
upper extremities (e.g., peripheral neuropathy), or 4) if they are left-handed. 

 

3. Study Procedures 

 

What will I be asked to do if I participate in the study? 

If you agree to participate you will be asked to come to the Neuromechanics 
Laboratories, located on the first floor of Enderis Hall at UWM. Upon your arrival, 
an experimenter will first describe the task to you. You will then sit at a table, and 
a computer game will be projected on a computer display in front of you. Though 
you may not see your hand, you will see the position of your hand as a cursor, 
projected on the screen. You will be asked to position this cursor in a start circle 
located in the middle of the screen. At computer-generated tones, you will be 
asked to move your hand toward targets presented on the screen. You may be 
asked to use your right arm, left arm, or both at the same time, depending on the 
condition you are assigned to. It will take approximately one and a half hours for 
you to complete an experiment. 

 

Your arm movements will be recorded using a non-invasive, 2-dimensional 
robotic system where you will rest your arms on robotic armrests. No 
audio/video/photographic recordings will be made. 

 

4. Risks and Minimizing Risks 

 

What risks will I face by participating in this study? 

This research involves minimal risk, that is, no risks to physical or mental health 
beyond those encountered in the normal course of everyday life. During the 
experiment, however, some minor discomfort associated with remaining seated 
for over an hour may be experienced. When that happens, you may request a 
break to stretch, move about the room, and visit the lavatory. 
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5. Benefits 

 

Will I receive any benefit from my participation in this study? 

Participation in this research has no direct benefit you, beyond that of an 
opportunity to participate in research that may prove valuable for the 
development of more efficient rehabilitation protocols for stroke patients. 

Are subjects paid or given anything for being in the study? 

In return for your participation, you may receive extra credit for your class (please 
confirm with your instructor who offers extra credit for participating in faculty 
research), after completing the experiment. If you are not a student of the PI, 
extra credit cannot be guaranteed.  

6. Study Costs 

 

Will I be charged anything for participating in this study? 

You will not be responsible for any of the costs from taking part in this research 
study.  

7. Confidentiality 

 

What happens to the information collected? 

All information collected about you during the course of this study will be kept 
confidential to the extent permitted by law. We may decide to present what we 
find to others, or publish our results in scientific journals or at scientific 
conferences. Information that identifies you personally will not be released 
without your written permission.  Only the PI, and other personnel assigned by 
the PI, will have access to the information.  However, the Institutional Review 
Board at UW-Milwaukee or appropriate federal agencies like the Office for 
Human Research Protections may review your records. 

 

The only records that maintain your identity will be this consent form; this form 
will be kept locked in the PI’s laboratory. The collected data will be saved with 
your initial (e.g., jw for Jinsung Wang) as part of the data file name (e.g., jw0001). 
This is necessary to process and analyze the data from each participant 
separately. These data cannot be associated with you without access to your 
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consent form that is kept locked in the PI’s laboratory. Only the PI and specific 
personnel assigned by the PI will have access. After the study is complete, the 
data will be kept in the PI’s password-protected computer for up to six years; it 
will be destroyed afterwards. 

8. Alternatives 

 

Are there alternatives to participating in the study? 

If you are currently a student of the PI, you may choose to complete an extra 
reading assignment, which requires approximately the same time to complete it; 
and the same extra credit will be given for that assignment. You are not allowed 
to participate in this study AND complete the reading assignment. If you are not a 
student of the PI, you should ask your instructor for alternative methods of earing 
extra credit.  

9. Voluntary Participation and Withdrawal 

 

What happens if I decide not to be in this study? 

Your participation in this study is entirely voluntary. You may choose not to take 
part in this study.  If you decide to take part, you can change your mind later and 
withdraw from the study. You are free to not answer any questions or withdraw at 
any time. Your decision will not change any present or future relationships with 
the University of Wisconsin Milwaukee. And we will destroy all information we 
collect about you. 

10. Questions 

 

Who do I contact for questions about this study? 

For more information about the study or the study procedures or treatments, or to 
withdraw from the study, contact: 

Dr. Jinsung Wang 

Department of Kinesiology 

College of Health Sciences 

University of Wisconsin -- Milwaukee 
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492 Enderis Hall 

Milwaukee, WI, 53201 

(414) 229-3226 

Who do I contact for questions about my rights or complaints towards my 
treatment as a research subject? 

The Institutional Review Board may ask your name, but all complaints are kept in 
confidence. 

 

 

 

Institutional Review Board 

Human Research Protection Program 

Department of University Safety and Assurances 

University of Wisconsin – Milwaukee 

P.O. Box 413 

Milwaukee, WI 53201 

(414) 229-3173 

11. Signatures 

 

Research Subject’s Consent to Participate in Research: 

To voluntarily agree to take part in this study, you must sign on the line below.  If 
you choose to take part in this study, you may withdraw at any time.  You are not 
giving up any of your legal rights by signing this form.  Your signature below 
indicates that you have read or had read to you this entire consent form, 
including the risks and benefits, and have had all of your questions answered, 
and that you are 18 years of age or older. 

 

 _______________________________________  

Printed Name of Subject/ Legally Authorized Representative  
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 _______________________________________   __________________  

Signature of Subject/Legally Authorized Representative Date 

 

Principal Investigator (or Designee) 

I have given this research subject information on the study that is accurate and 
sufficient for the subject to fully understand the nature, risks and benefits of the 
study. 

 

 _______________________________________   __________________  

Printed Name of Person Obtaining Consent Study Role 

 

 _______________________________________   __________________  

Signature of Person Obtaining Consent Date 
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Appendix C:  Handedness Questionnaire 

Handedness Questionnaire 

 

This questionnaire is designed to thoroughly evaluate one’s degree of handedness. 

Please place a check mark in the appropriate box for each task. If you use both hands, 

check both, but indicate the one used more often or that you feel is more controlled. If you 

have any questions, do not hesitate to ask. 

 

 R L  R L 

Signing   Throwing   

Writing   Broom (upper hand)   

Drawing   Striking Match   

Scissors   Opening Box   

Toothbrush   Foot to kick with   

Knife   Bat (swing)   

Spoon      

 

1. Do you consider yourself: 
 

Right-Handed  Left-Handed  Ambidextrous (Both Hands) 

 

2. Is there anyone in your family who is Left-handed? Yes or No 

 If yes, then who  

 

3. Did you ever change handedness?   Yes or No 



146 

 

 

 

 If yes, please explain 

 

4. Is there any activity not in this list that you do consistently with your Left Hand? 

 If yes, please explain 
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Appendix D:  Recruitment Flyer 

 

Subjects Needed 

 

The Neuromechanics Laboratory is seeking subjects for research to study the 

motor learning mechanisms underlying passive training. 

 

Subjects must be 18 to 30 years of age and must be right hand dominant. 

  

As a subject, your arm movements will be recorded while you play a computer 

game. The entire procedure is non-invasive and comfortable.  The session will 

last for approximately one hour. 

 

You may receive extra credit for participating in this research. (Please confirm 

with your course instructor(s)) 

 

 

Please send me an email at ylei@uwm.edu 

for more information or to schedule a time. 
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