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ABSTRACT  
THREE ESSAYS ON EXTREMELY COMPETITIVE MARKETS:  

INSIGHTS FROM MOBILE APPS MARKET   

by 

Ruijiao Guo 

The University of Wisconsin-Milwaukee, 2015 
Under the Supervision of Professor Purushottam Papatla 

 

Some products and services today compete against hundreds or thousands of 

competitors. Faced with so much competition, developers offer their products and 

services for free, or at a very low price, to those who are interested in the hope of 

attracting a large group of users. We label such markets where producers give products 

away for free or charge a nominal price as extremely competitive markets. Businesses 

competing in extremely competitive markets need insights regarding how they can 

increase the interest in, and use of, their products by potential customers. Unfortunately, 

the literature provides few such insights. This is the gap that I address in this dissertation 

research using the mobile app category with a specific focus on three questions: (1) what 

factors affect the number of users who download an app (2) why do some apps generate 

more interest among their users in terms of the word of mouth that they generate than 

other apps and (3) why do some apps acquire users faster than other apps?  
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In the first essay, I propose and empirically verify an implicit assumption to explain 

why businesses in extremely competitive market charge a zero or a very low price.   The 

assumption is that a product with a large group of users will generate profits in the future 

through one or more mechanisms.   For instance, the large user group could attract 

advertisers interested in targeting the users with promotions for their products. 

Alternatively, it may create network effects which could, in turn, increase the willingness 

of users to buy the product. Finally, a free product with a large user group may increase 

the developer’s ability to target the users with improved versions of that product, or other 

related new products, at a positive price.   Findings from our investigation for essay I on 

the factors that affect the number of users who download an app suggest that the extent 

of interest of users in other apps offered by the developer has a significant positive effect 

on the ability of a currently offered app to attract users. Not surprisingly, charging a price 

rather than giving it away reduces the number of users and so does an increase in the 

app’s physical size, i.e., the memory that it requires on the phone. In terms of the app’s 

rating, interestingly, we find that apps that either have a low-maturity rating – meaning 

that they are approved for children as well – or have a high-maturity rating – meaning 

that their use by kids is not advised – do well in terms of the number of users they attract.   

Our findings also suggest that apps from some genres such as brain teasers, arcade games 

and sports gain more users than others.   Competition-wise, we find that conversations 

among users who installed competing apps attract more users for the app while an 

increase in the price of competing apps that were installed reduces the number of users 

that an app attracts.   Overall, therefore, our results suggest that developers with more 
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experience and awareness among users can attract users more easily for new apps than 

those with no prior experience thus providing empirical support for one of the three 

mechanisms that the app industry seems to assume. While they are from one category 

that involves extreme competition, our results may also apply to other categories such as 

video channels and blogs in similar markets. 

From the first essay, we find that users’ discussion of apps developed by a certain 

developer will help in acquiring users for their future products.   In the second essay, 

therefore, we investigate the issue of the factors that affect consumers’ word-of- mouth 

for apps.   Our analysis of the word of mouth for apps also provides some surprising 

insights into why users discuss some apps more than others.   Specifically, we find that 

users are more likely to post comments, reviews, and discuss apps that they paid for 

rather than those that they obtained for free. This is clearly a finding with significant 

implications for the pricing and promotion of apps: apps that are given away are less likely 

to attract users who are advocates that are willing to promote them to potential users.   

Developers of apps therefore need to take this into account in their pricing decisions.  In 

addition to this immediate implication for the app category, our finding also raises the 

possibility that, in general, consumers are more likely to discuss products that they 

purchased than those that they received as promotional items. Other findings and 

managerial implications are discussed.  

In the third essay, I aim to jointly analyze the customer acquisition reached and the time 

to get there using a joint ordinal-survival analysis model. The focus in this research is on 

why, in the face of such extreme competition, some apps acquire customers faster than 



 
 

iv 
 

others.   I investigate this question using data on the number of users acquired, and the 

acquisition growth, for about 2455 Apps from Google Play. I categorize the number of 

users acquired into ordered tiers and formulate a joint model of growth and customer 

acquisition using a survival model for the former and an ordinal logit model for the later.  

The explanatory variables include price, valence of customer rating, and other product 

attributes. Additionally, effects of competitive contexts and frames are considered.  I also 

consider the role of information cascades on customer acquisition and growth in 

extremely competitive markets.  The model is calibrated within a Bayesian framework 

using MCMC methods.  Findings for the app category as well as generalizable implications 

for extremely competitive markets are discussed.    
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I. Introduction 

Some products and services today compete against hundreds or thousands of 

competitors. Faced with so much competition, developers offer their products and 

services for free, or at a very low price, to those who are interested, in the hope of 

attracting a large group of users. We label such markets where producers give products 

away for free or charge a nominal price as extremely competitive markets. Businesses 

competing in extremely competitive markets need insights regarding how they can 

increase the interest in, and use of, their products by potential customers. Unfortunately, 

the literature provides few such insights. This is the gap that I address in this dissertation 

research using the mobile app category with a specific focus on three questions: (1) what 

factors affect the number of users who download an app (2) why do some apps generate 

more interest among their users in terms of the word of mouth that they generate than 

other apps and (3) why do some apps acquire users faster than other apps?  

In the first essay, I propose and empirically verify an implicit assumption to explain 

why businesses in extremely competitive markets charge a zero or a very low price.   The 

assumption is that a product with a large group of users will generate profits in the future 

through one or more mechanisms.   For instance, the large user group could attract 

advertisers interested in targeting the users with promotions for their products. 

Alternatively, it may create network effects which could, in turn, increase the willingness 

of users to buy the product. Finally, a free product with a large user group may increase 

the developer’s ability to target the users with improved versions of that product, or other 

related new products, at a positive price.   Findings from our investigation for essay I on 
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the factors that affect the number of users who download an app, suggest that the extent 

of interest of users in other apps offered by the developer has a significant positive effect 

on the ability of a currently offered app to attract users. Not surprisingly, charging a price 

rather than giving it away reduces the number of users and so does an increase in the 

app’s physical size, i.e., the memory that it requires on the phone. In terms of the app’s 

rating, interestingly, we find that apps that either have a low-maturity rating – meaning 

that they are approved for children as well – or have a high-maturity rating – meaning 

that their use by kids is not advised – do well in terms of the number of users they attract.   

Our findings also suggest that apps from some genres such as brain teasers, arcade games 

and sports gain more users than others.   Competition-wise, we find that conversations 

among users who installed competing apps attract more users for the app while an 

increase in the price of competing apps that were installed reduces the number of users 

that an app attracts.   Overall, therefore, our results suggest that developers with more 

experience and awareness among users can attract users more easily for new apps than 

those with no prior experience thus providing empirical support for one of the three 

mechanisms that the app industry seems to assume. While they are from one category 

that involves extreme competition, our results may also apply to other categories such as 

video channels and blogs in similar markets. 

From the first essay, we find that users’ discussion of apps developed by a certain 

developer will help in acquiring users for their future products.   In the second essay, 

therefore, we investigate the factors that affect consumers’ word-of- mouth for apps.   

This analysis as well provides some surprising insights into why users discuss some apps 



3 
 

 
 

more than others.   Specifically, we find that users are more likely to post comments, 

reviews, and discuss apps that they paid for rather than those that they obtained for free. 

This is clearly a finding with significant implications for the pricing and promotion of apps: 

apps that are given away are less likely to attract users who are advocates that are willing 

to promote them to potential users.   Producers of apps therefore need to take this into 

account in their pricing decisions.  In addition to this immediate implication for the app 

category, our finding also raises the possibility that, in general, consumers are more likely 

to discuss products that they purchased than those that they received as promotional 

items. Other findings and managerial implications are discussed.  

In the third essay, I aim to jointly analyze the customer acquisition reached and the time 

to get there using a joint ordinal-survival analysis model. The focus in this research is on 

why, in the face of such extreme competition, some apps acquire customers faster than 

others.   I investigate this question using data on the number of users acquired, and the 

acquisition duration, for about 2455 Apps from Google Play. I categorize the number of 

users acquired into ordered tiers and formulate a joint model of growth and customer 

acquisition using a survival model for the former and an ordinal logit model for the later.  

The explanatory variables include price, valence of customer rating, and other product 

attributes. Additionally, effects of competitive contexts and frames are considered.  I also 

consider the role of information cascades on customer acquisition and growth in 

extremely competitive markets.  The model is calibrated within a Bayesian framework 

using MCMC methods.  Findings for the app category as well as generalizable implications 

for extremely competitive markets are discussed.    
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II. Modeling the Installation Base of Mobile Applications in the 

Context of Extreme Competition 

 

Abstract 

In a marketplace characterized by myriad choices and intense competition, such as the 

mobile app market, getting consumers to discover and purchase products are probably 

the biggest challenges facing marketers today.  The present study labels such markets as 

“extremely competitive markets” and aims to uncover the implicit assumptions of the 

business strategies adopted by marketers in such markets.   To achieve the goal, I collect 

a large dataset from the highly popular mobile app store, googleplay.com, and empirically 

test the assumptions.   Given the nature of the response variable in my data, I rely on the 

Ordinal Logit Model for my analysis but, to capture the effects of unobserved 

heterogeneity of developers, I use a hierarchical specification and calibrate the model in 

the Bayesian Paradigm.   My findings suggest that the extent of interest of users in other 

apps offered by the same developer has a significant positive effect on the ability of a 

currently offered app to attract users.  My empirical results also provide additional 

insights regarding the marketing of apps in particular and about extremely competitive 

markets in general.  I therefore discuss the managerial implications of my findings and 

also provide directions for future research.  

Key Words:   Mobile Apps;   Extreme Competition;   Hierarchical Ordinal Logit Model; 
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2.1 Introduction 

Some products and services today compete against hundreds or thousands of 

competitors.  For instance, there are more than 1 million apps for products running on 

the Android platform1, 900,000 apps are available for Apple’s operating system iOS2, and 

millions of video channels on YouTube compete for viewers3.   The competition in other 

similar markets, such as online Blogs and online radio services, is also intense.   Faced with 

so much competition, marketers usually offer their products and services for free, or at a 

very low price (for instance, many apps are sold for 99 cents), to those who are interested 

in the hope of attracting a large group of users.   

Markets such as those above would typically be labeled as perfectly competitive 

markets.   The literature in economics has a long and rich history of research on perfectly 

competitive markets (Chamberlain 1933; Robinson 1934; Coase 1937; Stigler 1957; Fama 

1972; Wilson 1977; Allen and Hellwig 1986).   Robinson (1934) defined perfect 

competition as “a state of affairs in which the demand for the output of an individual 

seller is perfectly elastic”.  Such markets are characterized by low or no barriers to entry 

of competitors.   Many other conditions must be fulfilled for a market to be viewed as 

perfectly competitive.    First, identical products by different competitors must be sold 

simultaneously at the same price across all segments of the market.   Second, the number 

of firms must be large enough such that when any one firm alters its price there is no 

                                                           
1 On July 24th, 2013, Google Play store officially reached over 1 million apps.  
2 On June, 2013, Apple CEO Tim Cook revealed that there is now 900,0000 apps available in the iOS Apple 
Store, and that 375,000 of those apps are tailored made to support the iPad.  
3 According to YouTube Statistics, 100 hours of video are uploaded to YouTube every minutes: 
http://www.youtube.com/yt/press/statistics.html 

http://www.youtube.com/yt/press/statistics.html
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consequent alteration of the prices charged by the others.   Third, the number of buyers 

should be large enough and have similar preferences.   Thus, consumers in perfectly 

competitive markets would be able to get the product from any of the many competitors 

at the price set by the market.    

Given the emergence of online markets, which are viewed as mirroring perfect 

competition, marketing scholars have also extensively investigated  whether online 

markets are highly competitive (Lal and Sarvary 1999; Brynjolfsson and Smith 2000; Pan, 

Shankar and Ratchford 2002; Pan, Ratchford and Shankar 2004; Ratchford 2009).   Most 

of this literature can be organized into two streams: analytical work focusing on 

characterizing and, analytically predicting, the behavior of competitors and empirical 

research investigating whether the behavior of prices in perfectly competitive markets is 

consistent with theoretical predictions, i.e., being uniform across all competitors.    

Results from the analytical studies suggest that the unique characteristics of the Internet 

will bring about a nearly perfect market because: (1) Consumers are fully informed of 

prices and product offerings and (2) The physical location of the Internet marketers is 

irrelevant.   Interestingly, some analytical models suggest that the emergence of perfect 

markets may, in fact, lead to counter-intuitive behavior.  For instance, Lal and Sarvary 

(1999) find that online price sensitivity could be lower in the online market4 when some 

of conditions are met.     

                                                           
4 Conditions include: (1) there is large enough pool of Internet shoppers; (2) Non-digital attributes are 
important but not overwhelming; (3) Consumers have a more favorable prior about the brand they 
currently own; (4) The fixed cost of a shopping trip is higher than the cost of visiting an additional store.  
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The findings of empirical studies on perfect competition are mixed.  For instance, 

Brynjolfsson and Smith (2000) find that online prices are lower than those products sold 

in conventional channels, providing some evidence of competition in the Internet market.    

However, a number of other studies suggest that prices even in perfectly competitive 

markets are dispersed and do not exhibit uniformity across players in the market 

(Ratchford et al 2002; Pan et al 2004).  It appears that greater information flow and easier 

entry facilitated by the Internet has not made online markets more competitive and 

“frictionless” as predicted by theory.   Their explanation is that the Internet market is 

immature and lacks a stable equilibrium in market prices.    

The present research makes three contributions to the literature.    The first is that 

we go beyond the conventional notion of perfection competition and propose the new 

concept of extreme competition.  We believe this is an important distinction since, 

according to conventional wisdom, marketers in a perfectly competitive markets will at 

least earn normal profits, i.e., the profits which can cover the marginal cost (Robinson 

1934).  An extremely competitive market, however, is one that meets the aforementioned 

typical characteristics of a market with perfect competition, such as a large number of 

competitors, low entry barriers, and nearly uniform prices, but is characterized by 

competitor behavior that is atypical of markets regardless of whether they are perfectly 

competitive or not.   Specifically, while competitors in perfectly competitive markets exit 

when their marginal revenues fall below marginal costs, those in extremely competitive 

markets continue to operate.   Recent examples of such markets include online music 

services (such as Pandora.com and last.fm), online news services (e.g., oldreader.com) 
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and content providers to video services such as Youtube.com (e.g., content provider 

allthatglitters21 for Youtube.com) and mobile applications (e.g., the app Spotify 5  on 

Apple’s App Store).     

Our second contribution is that we examine a competitive strategy followed by 

most players in extremely competitive markets and provide empirical insights into 

whether it is meaningful.    Specifically, an implicit assumption of businesses in extremely 

competitive markets seems to be that continuing to provide the product to customers, 

even when the marginal costs are higher than marginal revenue, will eventually lead to 

positive profits through one or more processes.  For example, a product that acquires 

more customers will benefit from network effects leading to greater value of the product 

and, attract even more users.  Thus, for instance, all users of Pandora.com may benefit as 

more users use the service and rate the music they are listening to thus making it easier 

for all users to identify music that is liked by more users and, hence, is likely to be of better 

quality.  Another example is that a product that acquires more users is likely to help other 

products offered by the firm gain those customers as well due to their familiarity with the 

firm6.  Interestingly, however, there are few empirical investigations of whether these 

processes do occur.  Our research fills this gap.   

                                                           
5 Spotify’s lost $57 million in 2011 based on their report, despite a big increase in revenue, to $236 
million. Because they pay a majority of their revenue to music companies. The New York Times, “Pandora 
and Spotify Rake in the Money and then Send it Off in Royalties”, August 24th, 2014: 
http://mediadecoder.blogs.nytimes.com/2012/08/24/pandora-and-spotify-rake-in-the-money-and-then-
send-it-off-in-royalties/  
6 In the case of both routes above, the likelihood of firms eventually realizing profits is likely to increase 
with the increase in the number of users of their products.   

http://mediadecoder.blogs.nytimes.com/2012/08/23/digital-notes-spotify-revenue-grew-fast-in-2011-but-losses-mounted-too/
http://mediadecoder.blogs.nytimes.com/2012/08/24/pandora-and-spotify-rake-in-the-money-and-then-send-it-off-in-royalties/
http://mediadecoder.blogs.nytimes.com/2012/08/24/pandora-and-spotify-rake-in-the-money-and-then-send-it-off-in-royalties/
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Another noticeable gap both in the economics and marketing literatures is that 

most research on electronic retailing (Mathwick, Malhotra, and Rigdon 2002; Menon and 

Kahn 2002; Wallace, Giese, and Johnson 2004; Laroche et al 2005; Yadav and Varadarajan 

2005) is limited to cases where the markets mimic the competitive characteristics of 

traditional brick-and-mortar markets while operating in the online channel.  The 

competition in such markets, therefore, is neither perfect nor extreme. There are 

therefore no normative insights on how competitors can compete and/or grow in 

extremely competitive markets.  Beginning to address this gap is the third contribution of 

this research. 

Our investigation is based on an analysis of data from 2422 apps for the Android 

platform using a Hierarchical Bayesian ordinal model. The factors that we consider 

include: (1) characteristics of the app such as its price, how much space it requires on a 

user’s phone, its genre and rating, (2) extent of interest of users in other apps offered by 

the developer, (3) experience of the developer with apps (4) promotional support for the 

app if any, and (5) extent and type of competition for the app in terms of the availability 

of similar apps and their performance in the market.   Findings from our investigation 

suggest that developers with more experience and awareness among users can attract 

users more easily for new apps than those with no other experience thus providing 

empirical support for the second process assumed behind the practice of giving products 

away for free or at a very low price by firms.  

In the next section, I present and discuss a number of streams of previous 

literatures related to our research. Following this, I describe the data. I then present the 
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empirical approach and results and conclude with a section where I discuss the 

managerial and research implications of my empirical findings.  

2.2 Literature Review 

The objective of my research is to empirically investigate the factors that affect success 

in extremely competitive markets with the mobile app category as my empirical context. 

I therefore present some findings in the literature on competition and, where relevant, 

on the mobile app category.  

Perfect Competition 

From the perspectives of classical and neoclassical economists, markets with perfect 

competition are basically viewed as transaction arenas in which the sellers are not only 

numerous but interchangeable entities (Remond 2013).    In such markets, firms cannot 

exert any influence on other players, since: (1) the influence of the product of any one 

firm upon the price is negligible; (2) The output of any one firm is negligible as compared 

with the total output; (3) Each firm decides the quantity of production without regard to 

the effect of its decision on the conduct of its competitors (Stigler 1957).   

The mobile app market has many of the above characteristics of perfect 

competition.  The market is characterized by myriad choices offering at very low prices 

(Racherla, Furner, and Babb, 2012).   Additionally, developers may release similar apps in 

the market at almost the same time and thus compete for users intensely. Some 

applications may even share the same title and have exactly the same functionalities and 

benefits while other similar applications may include some additional feature to gain a 
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competitive advantage.   For instance, the application, Temple Run, which was originally 

developed by IMANGI STUDIOS, has gained much popularity among users. Consequently, 

similar applications of Temple Run developed by other developers, such as Disney, are 

burgeoning. Developers in this market, therefore, take their strategic decisions without 

concern about the effects of their actions on how competitors may react.  However, a set 

of similar options offered at very low prices by competitors may take the shares away 

from the firm, whom then have difficulties to monetize its products.  

Thus, although competition in the mobile app category has many of the 

characteristics of perfect competition, it has its own characteristics which make it even 

more competitive.  First, a myriad of options without brand reputation leads to low 

customer loyalty although loyalty is key to success for online businesses (Reichheld and 

Schefter 2000; Urban et al 2000).  Second, given the experiential nature of the category, 

and the similarity of competitive offerings, consumers may have difficulties to assess the 

differences before, or even after, they actually experience the products (Dev and Lahiri 

2012).  This means that firms cannot rely on product differentiation as a competitive 

advantage as in traditional markets.   Third, since information search is facilitated by the 

digital nature of the products, consumers have very low search costs and can easily 

compare prices and attributes of different offerings (Pitt et al 2001).  Thus, advertising 

ceases to play the informative role that it typically does (Nelson 1970) and, hence, firms 

cannot use it to compete.  Fourth, customers face very low switching costs since 

competitors are generally only a “click away”(Fabio Ancarani 2002).  It is these four 
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characteristics that force marketers to offer their product at a very low price or even give 

their product for free.   

Another important characteristic of the mobile app market is that due to their 

digital nature, product attributes can be easily communicated online (Lal and Sarvary 

1999).   This, combined with the fact that there are a myriad of options for every type of 

app, results in an information overload for consumers leading them to rely on the 

opinions of other consumers to understand different offerings and select one that is most 

appropriate for them.  One of our objectives, therefore, is to examine whether the 

presence of competitors and word of mouth for them affects the acquisition of customers 

by an app.   

Effects of Other Apps   

Another objective of the present study is to verify an implicit assumption of businesses in 

extremely competitive markets, i.e., that other apps offered by the same developer would 

result in network effects and eventually help the business in acquiring more users for  new 

products that they introduce.  The network effects may be realized through one or more 

routes: (1) the users of other products may possibly became the users of the new product 

directly (2) the business may gain more experience and skills by developing multiple 

products and thus increase the user base for their future product (3) current users of the 

business may spread word-of-mouth which may help other products offered by the firm 

gain customers.   In the case of the three routes above, the network effects may 

eventually help the firms in acquiring more users for their new products.  



13 
 

 
 

Some literature in marketing has indeed investigated the influence of consumer 

networks on the adoption of products (Bass 1969; Robinson and Lakhani 1975, Kalish 

1983   However, the markets they explore are typically oligopolistic (Mahajan, Muller, and 

Bass 1990).   In addition, few studies have explored how firms should manage and 

strategically influence their customer networks to benefit from them (Godes et al. 2005).   

Recent studies began to opening this path, focusing primarily on firm’s strategies and 

opportunities to tap into online WOM effects.   Dellarocas (2006) inspects how strategic 

manipulation of online forums can shift the information value of online reviews for 

customers.   Chen and Xie (2009) explore how firms can benefit from establishing an 

online community where consumers can post reviews.   Similarly, Forman et al. (2008) 

empirically demonstrate that encouraging reviewers to disclose their identity can 

increase consumer trust in the reviews and, in turn, increase product sales.    Some of the 

other studies in this stream are: (1) Godes and Mayzlin (2009) empirically study how firms 

should strategically recruit customers for WOM campaigns to increase sales (2) Aral and 

Walker (2011) who highlight the effectiveness of viral product features in generating 

social contagion (3) Dou, Niculescu, and Wu (2012) who demonstrate analytically that 

increasing the strength of network effects can impact the adoption software products.    

Based on previous literature, we, therefore, expect that, in extremely competitive 

markets, the number of customers acquired by a product has a significant effect not only 

on its success but on that of other related products by the same manufacture due to 

network effects.   Specifically, we extend the literature by considering how the firm can 

strategically engineer the strength of network effects and to empirically verify the implicit 
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assumption of the business strategy of sparking adoption by giving its product away.   

First, if the product is susceptible to network effects, a larger network may boost the value 

of the product to each user and implicitly increase the willingness-to-pay of potential 

adopters.  Second, it may induce word-of-mouth effect, leading to faster or more efficient 

propagation of information about the product thus helping consumers in the valuation 

learning process.  Yet, the extant literature is yet to provide an empirical study to test the 

above two sub-assumptions. 

Effects of Product, Price, and Promotion Cues  

Besides two key sets of variables, we aim to provide some normative insights with regard 

to three of the traditional four Ps for the developers in the markets of extreme 

competition, i.e., product, price, and promotional tools.   Product features include 

“content rating”, “app category”, and “file size”.  The “content rating” resembles MPAA 

rating in movie industry.  Based on the literature on motion pictures, the influence of 

MPAA rating on box office is mixed (Basuroy, Chatterjee, and Ravid 2003; Boatwright, 

Basuroy, and Kamakura 2007; and Dellaroacs, Zhang, and Awad 2007).  Therefore, the 

effect of content rating in mobile app industry is unclear.  The “File size” resembles the 

runtime of movies.  Moon, Bergy and Iabucci(2010) found a significant positive influence 

of runtime on box office revenues in the opening week.   Guo and Papatla(2012) also find 

positive effect of runtime on number of user reviews.   The possible explanation is that 

the runtime of the movie is a proxy of quality of motion pictures, since it requires more 

resources.   Although a number of studies explore the effects of product attributes of 
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motion pictures, books, TVs, CDs, etc, no one has yet investigate the influence of app 

attributes on user adoption.  

Pricing is another key aspect of the marketing mix.  In extremely competitive 

markets, a prominent fear among businesses if the likely loss of customers to the many 

still-free competitors (Pauwels and Weiss 2008).  Therefore, products in such markets are 

generally offered for free or at a very low price.   Free products may help the businesses 

boost product adoptions because, beyond the absence of monetary costs, a free product 

will reduce consumers’ search costs and psychological costs (Ariely and Shampan’er 

2004).  Therefore, offering products for free may stimulate trial among consumers, which 

is an important implicit assumption underlie the business strategies currently adopted by 

companies in extremely competitive markets.  However, no one has yet empirically tested 

the assumption.  

Prior work suggests that promotional cues can signal quality of the product, which 

may ultimately influence consumers’ purchase decision. For instance, in Erdem and 

Keane(1996) and Anand and Shachar(2002), advertising content and user experience 

provide noisy signals about brand attributes. Ackerbery(2003) also suggests that 

advertising intensity and use experience signal product quality.  In present study, we also 

aim to test the influence of promotional cues of products on user base.  

In summary, the user base of a certain app may be influenced by the 

aforementioned three major factors: competitive products, firms’ previous products, and 

some of the intrinsic attributes of the product. I next describe the data on which I 

empirically investigate whether those effects do occur.  
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2.3 Overview of Data  

Our primary interest in this research is what factors expand user base. We, therefore, 

collected data on mobile apps from a major App Store on Oct. 28, 2012. There are two 

main features of our data: (1) the dataset has a hierarchical structure. The first level is the 

application-level. The second level is developer-level. The 2,422 apps are developed by 

248 developers. There are 11 Application-level factors and 3 Developer-level factors; (2) 

the website of data source requires that all the reviewers download the applications 

before they rate the applications. Therefore, the data avoid the situation of fake reviews. 

The variable definitions and summary statistics are displayed in Table II-1 to Table II-6.  

2.3.1 Dependent Variable  

The number of downloads we collected is the range of downloads. For instance, the 

number of downloads of “Slot Machine” is 5,000,000-10,000,000 as of Oct. 28, 2012. 

There are 12 categories in total.  

Table II-1: Distribution of Downloads 

Category Range of Downloads Number of Apps Percentage 

1 <100 102 4.21% 

2 100 - 500 148 6.11% 

3 500 - 1,000 78 3.22% 

4 1,000 - 5,000 250 10.32% 

5 5,000 - 10,000 160 6.61% 

6 10,000 - 50,000 409 16.89% 

7 50,000 - 100,000 185 7.64% 

8 100,000 - 500,000 440 18.17% 

9 500,000 - 1,000,000 174 7.18% 

10 1,000,000 - 5,000,000 342 14.12% 

11 5,000,000 - 10,000,000 76 3.14% 

12 >10,000,000 58 2.39% 

Note: This table shows the number of downloads of applications. Originally, there are 
seventeen categories. We grouped 1-5, 5-10, 10-50, 50-100 as category of “<100”. 
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Table II-1 demonstrates the distributions of downloads. From the table, we can see that 

there are 440 apps whose downloads ranged from 100,000-500,000. The second largest 

number of downloads falls into the range of 10,000-50,000. About 86.56% applications 

have at least 1,000 downloads.  The download of all apps in my dataset is roughly normally 

distributed.  

2.3.2 Independent Variables   

Product Attributes, Price, and Promotional cues 

The present study includes three major sets of app attributes: (1) Product attributes; (2) 

Price; (3) Promotional cues.  

Product Attributes 

The product attributes can be represented by three variables: “Content rating”, 

“Category”, and “file size”.    

Table II-2 Summary Statistics of Product Attributes 

Category Variable name Number of Apps Percentage 

1 Arcade 386 15.94% 

2 Brain 280 11.56% 

3 Cards 33 1.36% 

4 Casual 373 15.40% 

5 Racing 228 9.41% 

6 Sport 336 13.87% 

7 Wallpaper  360 14.86% 

8 Widget 126 5.20% 

1 Video-yes 772 31.87% 

2 Video-no 1650 68.13% 

1 Everyone  1235 50.99% 

2 High maturity  223 9.21% 

3 Low maturity  523 21.59% 

4 Medium maturity 441 18.21% 
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“File Size” measures the installation space that the application needs on the mobile 

device. The range of file size is 1484 MB. It is right-skewed. The largest file size is more 

than 1G.  File size in this market can be a proxy of the quality of each app: the larger the 

file size, the more content contained in the app.  “Content Rating” measures the maturity 

level of the application content. There are four different levels, everyone, low maturity 

(lm), medium maturity (mm), and high maturity (hm). 1,235 applications are made for 

everyone (50.99%). “Category” indicates the type of the applications. There are eight 

types of applications: arcade, brain, cards, casual, racing, sport, wallpaper, and widget. 

Arcade and wallpaper are the largest two types of applications. “video” means whether 

there’s YouTube Video on the embedded on the webpage of the Apps.  

Price 

The price of applications is different from other continuous variable. 1487(61.40%) 

applications are free and therefore the price is “0”. The rest of them (935 applications) 

are paid applications and the range of price for paid ones is $7.99. Since the price 

dispersion of paid apps is very small, it is more meaningful to treat it as dummy variable. 

We then recode the free apps as “1s” and paid apps as “0s”.   With regard to effect of  

price, we expect that free apps will be more likely to gain larger user base, based on the 

opinions of conventional economist that lower price will stimulate demand in the 

marketplace.   

Promotional Cues 

The third element – promotional cues – is measured by three variables: “if there’s 

promotional video”, “how many screenshots”, and “if it has high average rating”.   
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Providing promotional video and screenshots may assist users in choosing apps and, in 

return, get satisfaction for its product from users.   Besides, the promotional video may 

create awareness of products among YouTube viewers.  “Numscrn” measures the number 

of Screenshots of each application displayed on the website of the app. These screenshots 

can act as advertising by illustrating the app’s characteristics to users. “Average rating” 

may reflect users’ knowledge of the product and service based on their experience with 

it and his consequent discovery of its unique features and benefits or drawbacks (Feng 

and Papatla 2011).  Therefore, a higher user rating may help the apps acquire more 

downloads in the future.  The average rating is overwhelmingly positive.   Most 

applications receive an average rating of 4 or above.  

Table II-3 Summary Statistics of Other Product Attributes 

 Min. 1st Qu Median Mean 3rd Qu Max. 

rating 0.000 3.900 4.200 4.001 4.500 5.000 

price 0.000 0.000 0.000 0.818 0.990 7.990 

numscrn 0.000 3.000 5.000 4.617 5.000 8.000 

filesize 0.006 1.900 5.700 16.890 14.000 1843.000 

 

Effects of Competition 

Competitive apps in the markets influence the download level of a similar app in terms of 

price and total number of user reviews.   To account for the effects of competition, we 

include four variables to examine the influence of competitive apps in terms of price and 

total number user reviews.   Due to the large number of competitive applications, we do 

not include the price and number of user reviews of each competitor separately 

(Neelamegham and Chintagunta 2004; Gopinath, Chintagunta, and Venkataraman 2010).   

Similar to Gopinath et al.(2010) and Chintagunta et al.(2010), we create four covariates 
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of competition based on the applications featured on the website of the focal application 

or online recommendation system of the App Store.  The first two variables are average 

price and number of user reviews of applications featured as “viewed by the same user”.    

Another two variables are average price and review counts of applications featured as 

“installed by the same user”.    All apps featured on the webpage can be viewed as 

competitors of the focal app.   And the set of four variables represents the competitive 

influence on the focal apps.   Our expectation is that the higher price of the competitive 

apps, the more likely that the user downloads the focal app.   The number of user reviews, 

however, represent the past installation base since a user can post a review on the store 

only after she actually downloads the product.  The past installation base may create a 

network effects among users – the more people use it, the more likely that the app 

attracts more users (Dube, Hitsch, and Chintagunta 2008).  Therefore, we expect that the 

user reviews of the competitive app will have a negative effect on the download of the 

focal app.   

Table II-4 Description and Summary Statistics of four Competition Variables 

Description of Variables 

vvc Average Counts of the Apps Viewed by similar Users 

vvp Average price of the Apps Viewed by similar Users 

ivc Average Counts of the Apps Installed by similar Users 

ivp Average Price of the Apps Installed by similar Users 

Summary Statistics 

 Min. 1st Qu Median Mean 3rd Qu Max. 

vvc 0.000 3833 14364 35814 44295 754480 

vvp 0.000 0.000 0.740 0.955 1.480 8.310 

ivc 0.000 54 121 1256 430 131171 

ivp 0.000 0.000 0.000 0.832 1.590 8.070 
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Table II-4 reports the description of each competition measure.   From the summary 

statistics, we can see the average review counts of apps viewed by the same user are 

much higher than average review counts installed by the same user.  Therefore, the apps 

featured as “viewed by the same user” are highly popular in the market.  However, the 

average price of the apps viewed by the same user is a little bit higher than the average 

price installed by the same user, which indicates that users may be interested in popular 

apps but still want to install those apps with lower price. We, therefore, expect price to 

play a significant role in generating downloads.    

Effects of Other Apps  

To examine the above influence of network effects created by other apps developed by 

the same developer, we create three variables: (1) Total number of apps developed; (2) 

The average number of user reviews; (3) The average price.    

Table II-5 Summary Statistics of Developer-Level Attributes 

Variable Description 

dac the total number of the applications display on Google Play  

dvp the average review counts of applications developed by the same developer 

dvp the average price of applications developed by the same developer 

Correlation Matrix Summary Statistics 

 dac dvc dvp Min.    1st Qu. Median  Mean    3rd Qu. Max.    

dac 1.000 -0.425 -0.046 5.00 12.00 28.00 31.970 49.00 72.00 

dvc  1.000 -0.092 1 127 988 11460 8908 294800 

dvp   1.000 0.00 0.00 0.37 0.60 0.93 5.37 

Table II-5 displays the descriptions and summary statistics of each variable and also 

presents the correlations between the three variables. “dac” measures the total number 

of the applications developed by the developer before. Therefore, this variable measures, 

to some extent, the size of each developer. The variable has a range of 67. The distribution 
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of developer size is right-skewed. Most of developers have 28 or less applications.  This 

reflects that the market is dominated by small developers. No one, then, has the power 

to exert influence on others with regard to price.  “dvc” measure the average review 

counts of applications developed by the same developer previous. The range of the 

average review counts is 294,800. And again, the distribution of it is roughly normally 

distributed but a little bit right-skewed.  Developers with higher average review counts 

have higher downloads.   “dvp” measures the average price of applications developed by 

the same developer. The range of it is 5.37 and it is also roughly normally distributed.  

The correlations between the three developer-level variables are relatively low.  

However, the correlations among the three variables are all negative.  Though the 

correlations are weak, it indicates that more experienced developers are less likely to gain 

higher average counts and have higher price.   In addition, price and review count are 

negatively correlated.  

Correlations Between App-level Attributes.  

In Table II-6, correlations among variables are displayed. All correlations lie between -0.5 

to 0.5. Therefore, multicollinearity problem would not be a problem in our analysis.   

Table II-6 Correlation Matrix of Application-Level Attributes 

 dnlds count rating price nums video filesiz vvc vvp ivc ivp 

1 1.000           

2 0.352 1.000          

3 0.362 0.132 1.000         

4 -0.427 -0.127 -0.091 1.000        

5 0.088 0.058 0.155 0.167 1.000       

6 0.141 0.149 0.117 0.130 0.209 1.000      

7 0.043 0.038 0.010 0.193 0.074 0.133 1.000     
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8 0.171 0.112 0.085 -0.134 0.031 0.043 0.008 1.000    

9 0.081 0.102 0.022 0.321 0.130 0.192 0.146 -0.147 1.000   

10 0.214 0.280 0.091 -0.089 0.060 0.125 0.069 0.062 0.052 1.000  

11 -0.486 -0.112 -0.150 0.709 0.125 0.107 0.106 -0.144 0.350 -0.094 1.000 

Note:  
1. “dnlds” represents total number of downloads(dependent variable) 
2. “nums” represents number of screen shots 
3. We only include application-level covariates in this correlation matrix. 

From the correlation table, we found that price and downloads are negatively correlated. 

Therefore, free apps, have larger user bases compared to paid apps.   In addition, the 

average price of the apps installed by the same users is negatively correlated with 

downloads.  Therefore, it seems users have a budget on expenditures of apps.   Price is 

also negatively correlated with average rating, which indicates that users seem to give 

lower ratings for free apps.     

2.4 Model Specification 

Considering the characteristics of our dependent variable, we use the Ordinal Logit Model 

to investigate the behavior of product adoption in mobile app market. There are several 

reasons that Ordinal Logit Model is adopted. First, downloads is categorical and ordered; 

second, the interval is not equal. The adjacent two categories are 10 times difference; 

third, downloads occur in category j before it can occur in category j+1. However, 12 

categories are too many for the model to converge and it’s computationally demanding. 

We, therefore, reduce the 12 categories to 6 categories by combining the adjacent two 

categories and code each category as “1”, “2”, “3”, “4”, “5”, and “6”, correspondingly, and 

implement Ordinal Logit model in Bayesian Paradigm.  
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Table II-7 Recoded Dependent Variable - Downloads 
Ordinal 

Responses 
Range of Downloads # of Apps Percentage 

“1” <100; 100 - 500 250 10.32% 

“2” 500 - 1,000; 1,000 - 5,000 328 13.54% 

“3” 5,000 - 10,000; 10,000 - 50,000 569 23.50% 

“4” 50,000 - 100,000; 100,000 - 500,000 625 25.91% 

“5” 
500,000 - 1,000,000; 1,000,000 - 

5,000,000 
516 21.30% 

“6” 5,000,000 - 10,000,000; >10,000,000 134 5.51% 

Basic setting of Ordinal Logit Model: 

Assume that the utility of application 𝑖 is represented by an unobservable latent variable 

𝑈𝑖. The downloads of application 𝑖 will jump to a certain level on the basis of 𝑈𝑖.  

𝑈𝑖 = 𝜇𝑖 + 휀 

The threshold parameters obey the ordering constraint: 𝜃1 < 𝜃2 < 𝜃3 < 𝜃4 < 𝜃5 

𝑦𝑖 = 1 
𝑦𝑖𝑒𝑙𝑑
→   𝑈𝑖 < 𝜃1 

𝑦𝑖 = 2 
𝑦𝑖𝑒𝑙𝑑
→   𝜃1 < 𝑈𝑖 < 𝜃2 

𝑦𝑖 = 3 
𝑦𝑖𝑒𝑙𝑑
→   𝜃2 < 𝑈𝑖 < 𝜃3 

𝑦𝑖 = 4 
𝑦𝑖𝑒𝑙𝑑
→   𝜃3 < 𝑈𝑖 < 𝜃4 

𝑦𝑖 = 5 
𝑦𝑖𝑒𝑙𝑑
→   𝜃4 < 𝑈𝑖 < 𝜃5 

𝑦𝑖 = 6 
𝑦𝑖𝑒𝑙𝑑
→   𝑈𝑖 > 𝜃5 

Assume that 휀  follows a logistic distribution, which means the cumulative 

distribution of 휀 is 𝐹(휀) = exp (휀) (1 + exp(휀))⁄ . Therefore, 

 𝑃𝑟𝑜𝑏("1") = 𝑃𝑟𝑜𝑏(𝑈𝑖 < 𝜃1) = 𝑃𝑟𝑜𝑏(𝜇𝑖 + 휀 < 𝜃1) = 𝑃𝑟𝑜𝑏(휀 < 𝜃1 − 𝜇𝑖) 

𝑃𝑟𝑜𝑏("2") = 𝑃𝑟𝑜𝑏(𝜃1 < 𝑈𝑖 < 𝜃2) = 𝑃𝑟𝑜𝑏(𝜃1 < 𝜇𝑖 + 휀 < 𝜃2) = 𝑃𝑟𝑜𝑏(𝜃1 − 𝜇𝑖 < 휀 < 𝜃2 − 𝜇𝑖) 

𝑃𝑟𝑜𝑏("3") = 𝑃𝑟𝑜𝑏(𝜃2 < 𝑈𝑖 < 𝜃3) = 𝑃𝑟𝑜𝑏(𝜃2 < 𝜇𝑖 + 휀 < 𝜃3) = 𝑃𝑟𝑜𝑏(𝜃2 − 𝜇𝑖 < 휀 < 𝜃3 − 𝜇𝑖) 

𝑃𝑟𝑜𝑏("4") = 𝑃𝑟𝑜𝑏(𝜃3 < 𝑈𝑖 < 𝜃4) = 𝑃𝑟𝑜𝑏(𝜃3 < 𝜇𝑖 + 휀 < 𝜃4) = 𝑃𝑟𝑜𝑏(𝜃3 − 𝜇𝑖 < 휀 < 𝜃4 − 𝜇𝑖) 

𝑃𝑟𝑜𝑏("5") = 𝑃𝑟𝑜𝑏(𝜃4 < 𝑈𝑖 < 𝜃5) = 𝑃𝑟𝑜𝑏(𝜃4 < 𝜇𝑖 + 휀 < 𝜃5) = 𝑃𝑟𝑜𝑏(𝜃4 − 𝜇𝑖 < 휀 < 𝜃5 − 𝜇𝑖) 

             𝑃𝑟𝑜𝑏("6") = 𝑃𝑟𝑜𝑏(𝑈𝑖 > 𝜃5) = 𝑃𝑟𝑜𝑏(𝜇𝑖 + 휀 > 𝜃5) = 𝑃𝑟𝑜𝑏(휀 > 𝜃5 − 𝜇𝑖)            
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The Utility of application 𝑖 can be related to two groups of observable variables: 

the application-level variables and the developer-level variables. For instance, the higher 

the review counts of an application the more will be the number of downloads. On the 

other hand, the higher the price of an application the fewer will be the number of users 

who download it. Therefore, we have our Baseline Model below: 

Model 1 (Baseline Model): Ordinal Logit Model    

Both application-level variables and developer-level variables were simply included in the 

basic model. By implementing this model, we’ll ignore the hierarchical structure inherent 

in our data and just fit an ordinary ordinal logit model. The results of this model are 

displayed in table II-10. 

𝜇𝑖𝑗 = 𝛽1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽5lm𝑖𝑗

+ 𝛽6ℎ𝑚𝑖𝑗 + 𝛽7𝑚𝑚𝑖𝑗 + 𝛽8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽10𝑐𝑎𝑟𝑑𝑠𝑖𝑗 + 𝛽11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗

+ 𝛽12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗 + 𝛽15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗) 

+𝛽16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽19 log(𝑖𝑣𝑝𝑖𝑗) 

+𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2 log(𝑑𝑣𝑐𝑗) + 𝛼3 log(𝑑𝑣𝑝𝑗) 

 

However, some unobserved factors will affect downloads of the application. For 

instance, the duration since the application was released or the requirement of an 

android system, could affect downloads? In the previous analysis, we pooled all 

applications together and made the assumption that one application is independent from 

another. However, our data structure suggests that applications developed by the same 

developer may have some common characteristics. To accounts for the multilevel data 
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structure, we introduce a developer-specific parameter 𝜂𝑗  to the utility function. Our 

second model, therefore, is:  

Model 2: Ordinal Logit Model with Random Intercepts 

In the random intercept model, the intercepts are defined in the developer-level. In the 

Bayesian approach, each intercept is given an informative prior, or, put another way, the 

intercepts become modeled parameters. Therefore, random intercept model can capture 

part of heterogeneity caused by developers. The results of this model are displayed in 

table II-11.  

Level 1:  

𝜇𝑖𝑗 = 𝛽1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽5lm𝑖𝑗

+ 𝛽6ℎ𝑚𝑖𝑗 + 𝛽7𝑚𝑚𝑖𝑗 + 𝛽8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽10𝑐𝑎𝑟𝑑𝑠𝑖𝑗 + 𝛽11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗

+ 𝛽12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗 + 𝛽15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗) 

+𝛽16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽19 log(𝑖𝑣𝑝𝑖𝑗) + 𝜂𝑗  

 

Level 2:  

𝜂𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇. 𝜂𝑗 , 𝜎. 𝜂) 

𝜇. 𝜂𝑗 = 𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2log (𝑑𝑣𝑐𝑗) + 𝛼3log (𝑑𝑣𝑝𝑗) 

To further account for developer heterogeneity, we allow random effects in both 

intercepts and application-level slopes. Therefore, we have our third model:  

Model 3: Ordinal Logit Model with Random Coefficients 

In the Random Coefficient Model, we assume there are j separate slopes for each variable 

and each estimate follows a normal distribution, where j represent a developer. By 

allowing each estimate to vary across different developers, we can control the influence 
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of unobserved heterogeneity of developers on each variable. Besides, we add a random 

component 𝛿𝑖𝑗, which can capture unobserved heterogeneity among applications.  The 

results of this model are displayed in the table II-12.  

𝜇𝑖𝑗 = 𝛽𝑗,1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽𝑗,2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽𝑗,3log (𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽𝑗,4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽𝑗,5lm𝑖𝑗

+ 𝛽𝑗,6ℎ𝑚𝑖𝑗 + 𝛽𝑗,7𝑚𝑚𝑖𝑗 + 𝛽𝑗,8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽𝑗,9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽𝑗,10𝑐𝑎𝑟𝑑𝑠𝑖𝑗

+ 𝛽𝑗,11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗 + 𝛽𝑗,12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽𝑗,13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽𝑗,14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗

+ 𝛽𝑗,15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗) + 𝛽𝑗,16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽𝑗,17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽𝑗,18 log(𝑖𝑣𝑐𝑖𝑗)

+ 𝛽𝑗,19 log(𝑖𝑣𝑝𝑖𝑗) + 𝜂𝑗  

𝛽𝑗𝑘~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇. 𝛽𝑘 , 𝜏. 𝛽𝑘), 𝑘 = 1,2,…19 

𝜇. 𝛽𝑘~𝑛𝑜𝑟𝑚𝑎𝑙(0, 0.001) 

𝜏. 𝛽𝑘~𝑔𝑎𝑚𝑚𝑎(0.001,0.001) 

 

𝜂𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇. 𝜂𝑗 , 𝜎. 𝜂) 

𝜇. 𝜂𝑗 = 𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2log (𝑑𝑣𝑐𝑗) + 𝛼3log (𝑑𝑣𝑝𝑗) 

𝛼𝑚~𝑛𝑜𝑟𝑚𝑎𝑙(0,0.001) 

𝜎. 𝜂~𝑔𝑎𝑚𝑚𝑎(0.001,0.001) 

To fit the proposed models, we take a Bayesian Approach to estimate parameters 

and the four cutoff points. For all models, we assume diffuse priors and run a Markov 

Chain Monte Carlo sampler for 5,000 iteration which serves as a burn-in period. We then 

obtain inferences from posterior samples from the next 20,000 iterations.  

2.5 Empirical Results 

2.5.1 Model Comparison and Unobserved heterogeneity 

Table II-8 illustrates the DIC scores, the random error, and the cutoffs of the three models.    

Table II-8 Results of random effects, model fit, and Cutoffs 

 Ordinal Logit Model Random Intercepts Random Coefficients 

 mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% 

𝜎𝜂   1.570 0.153 1.300 1.790 1.397 2.260 
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𝜎         0.452 0.098 0.278 

 Dbar Dhat DIC Dbar Dhat DIC Dbar Dhat DIC 

 5308 5282 5333 4618 4393 4842 3786 3081 4490 

 mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% 

cutoff1 0.009 0.000 0.032 0.016 0.001 0.058 0.019 0.001 0.073 

cutoff2 1.565 1.419 1.720 2.061 1.856 2.296 2.631 2.364 2.958 

cutoff3 3.859 3.654 4.073 4.861 4.561 5.184 6.120 5.707 6.608 

cutoff4 6.546 6.251 6.840 8.075 7.638 8.517 10.020 9.446 10.720 

cutoff5 9.796 9.386 10.230 11.820 11.260 12.420 14.770 13.980 15.770 

 

We can see that the DIC score of random coefficient model is much lower than the other 

two models, thus provides clear evidence that it is critical to account for heterogeneity 

among developers in an analysis of the effects of app attributes on downloads.   

Moreover, the error itself is significantly positive, which indicates that there’s substantial 

unobserved heterogeneity among developers (𝜎𝜂 = 1.79).  The random error represents 

unobserved heterogeneity among apps (𝜎 = 0.452) which is also significantly positive.    

Table II-9 illustrates the impact of unobserved developer heterogeneity on each 

variable.   From the table, we can see the unobserved variance of average rating, price, 

and racing, are the largest three, which indicates that the app difference on rating, price, 

and Racing are mostly attributed to unknown heterogeneity among developers. The 

unobserved heterogeneity of developer plays an important role on the effects of each 

factor.   

Table II-9 Radom effects of each factor 

Unobserved Variance  mean val2.5pc val97.5pc 

rating 1.107 0.490 2.109 

video 0.944 0.555 1.414 

price 1.246 0.753 1.746 

numscrn 0.851 0.539 1.240 

filesize 0.479 0.313 0.687 

arcade 0.989 0.516 1.526 
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brain 0.742 0.385 1.266 

cards 0.875 0.379 1.645 

casual 0.706 0.357 1.181 

racing 1.623 0.921 2.393 

sport 0.788 0.389 1.347 

wallpaper 0.974 0.409 1.766 

lm 0.690 0.386 1.093 

hm 0.811 0.390 1.526 

mm 0.738 0.365 1.278 

vvc 0.459 0.302 0.656 

vvp 0.573 0.391 0.767 

ivp 0.575 0.367 0.819 

ivc 0.484 0.317 0.674 

2.5.2 Effects of App Attributes  

Table 11-10 demonstrates the posterior means of intrinsic app attributes by 

implementing the three different models.   

Table II-10 Results of Model with App-Level Attributes 

 Ordinal Logit Model Random Intercepts Random Coefficients 

 mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% 

𝛽1 -2.166** -2.509 -1.825 -3.586** -4.040 -3.126 -4.163** -4.737 -3.545 

𝛽2 0.180** 0.000 0.371 0.801** 0.532 1.088 1.010** 0.611 1.394 

𝛽3 -0.005 -0.100 0.095 0.052 -0.077 0.189 0.113 -0.120 0.357 

𝛽4 -0.166** -0.249 -0.083 -0.186** -0.300 -0.077 -0.220** -0.423 -0.027 

𝛽5 0.366** 0.161 0.561 0.492** 0.213 0.778 0.591** 0.209 0.984 

𝛽6 0.852** 0.543 1.171 0.776** 0.264 1.308 0.822** 0.113 1.505 

𝛽7 0.236 -0.023 0.491 0.487** 0.140 0.852 0.599** 0.162 1.107 

𝛽8 4.703** 4.350 5.098 4.985** 4.443 5.494 5.834** 4.727 6.823 

𝛽9 4.732** 4.375 5.124 5.271** 4.701 5.798 6.100** 5.069 7.109 

𝛽10 3.950** 3.573 4.360 4.080** 3.443 4.677 4.495** 3.374 5.443 

𝛽11 4.305** 3.969 4.667 4.722** 4.193 5.235 5.450** 4.434 6.449 

𝛽12 4.290** 3.938 4.677 4.461** 3.905 4.989 4.695** 3.711 5.614 

𝛽13 4.211** 3.883 4.576 4.513** 3.940 4.998 4.972** 4.018 5.834 

𝛽14 2.948** 2.586 3.318 1.952** 1.453 2.427 1.624** 0.921 2.345 

𝛽15 0.932** 0.559 1.447 0.916** 0.505 1.481 1.987** 1.067 3.346 

 “Price”, as we expected, has significantly negative influence on the number of 

downloads (𝛽1 = −2.166). The magnitude of the mean estimates on price is increasing 
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as the model accounting for more unobserved heterogeneity among developers.  The 

absolute magnitude of price estimates using random intercepts model (𝛽1 = −3.586) 

and random coefficient model (𝛽1 = −4.163) becomes greater.   “Youtube Video” has 

significantly positive influence on the number of downloads across the three models.  It 

indicates that providing video may help to generate more downloads for the app (𝛽2 =

1.010).  “File size", as a proxy of App quality, surprisingly, has significantly negative 

influence on the number of downloads (𝛽4 = −0.220).  Thus, smaller apps are more likely 

to be downloaded by users.  “Number of Screenshots”, however, do not have any 

significant an effect on number of downloads.      

 The estimates of 𝛽5−7 represent the effects of content rating on the number of 

downloads. The base level is “Everyone”, which means the application is appropriate for 

everyone to use. Compared to base level “Everyone”, all the other three levels, low 

maturity (𝛽5 = 0.5907 ), high maturity (𝛽6 = 0.8218 ), and medium maturity (𝛽7 =

0.5990), have significantly positive influence on number of downloads.  Apps of high 

maturity level are among the most popular ones.  

 The estimates of 𝛽8−14  represent effects of the category of applications. 

Compared to base level “widget”, all the other seven levels, arcade, brain,  cards, casual, 

racing, sports, and wallpaper, have significantly positive influence on number of 

downloads. The category of “brain” exert largest influence on the number of downloads. 
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2.5.3 Effects of Other Apps  

The estimates of 𝛼1−3  represent the influence of other apps developed by each 

developer.  The set of variables are the key findings of present research.    

Table II-11 Results of Effects of Other Products of the Developer 

 Ordinal Logit Model Random Intercepts Random Coefficients 

 mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% 

𝛼1 0.006 -0.132 0.144 0.989** 0.562 1.496 1.505** 0.958 2.253 

𝛼2 1.274** 1.147 1.392 1.781** 1.501 2.110 2.404** 2.009 2.857 

𝛼3 0.058 -0.062 0.173 -0.064 -0.306 0.181 -0.234 -0.559 0.090 

From table II-11, we can see the total number of applications developed by the 

developer positively influence the number of downloads. As the unobserved 

heterogeneity among developers is controlled, the influence becomes significantly 

positive (𝛼1 = 1.505), which provides support to the industry’s assumption that acquiring 

users for one application will create network effects among current users and help in 

acquiring users for future applications.   

The average number of user reviews of the applications developed by the 

developer, as we expected, has a significant positive effect on the number of downloads 

as well (𝛼2 = 2.404), thus supporting the industry’s second assumption that enhancing 

word of mouth among current users will lead to even larger user base. Further, as 

developers’ unobserved heterogeneity is controlled, the positive influence becomes more 

salient.  

The average price of the applications developed by the developer, interestingly, 

does not have any significant effect on the number of downloads.   However, we do find 

that average price has negative effects on the number of downloads once a new 
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application is released into the market.    The reason might be the price of the new app is 

also relatively high compared to the similar apps in the marketplace.  

2.5.4 Effects of Competition   

The estimates of 𝛽16−19 indicate the influence of competition in the market.  The set of 

variables again reflects the key findings of present research.    

Table II-12 Results of Competition Effects 

 Ordinal Logit Model Random Intercepts Random Coefficients 

 mean 2.5% 97.5% mean 2.5% 97.5% mean 2.5% 97.5% 

𝛽16 -0.027 -0.110 0.054 0.037 -0.059 0.139 0.068 -0.083 0.216 

𝛽17 0.241** 0.153 0.325 0.297** 0.197 0.395 0.348** 0.196 0.499 

𝛽18 0.632** 0.525 0.741 0.776** 0.651 0.906 1.013** 0.818 1.211 

𝛽19 -0.905** -1.061 -0.748 -0.751** -0.926 -0.555 -0.991** -1.274 -0.728 

First, we found that the average price of the apps viewed by the same user is 

positive and significant ( β17 = 0.348 ).  Therefore, the higher the price of those 

competitive apps, the more likely is that the users download this app.  The estimate 

provides some evidence of the existence of extreme competition in such markets.   If the 

developers expect to acquire a large number of users, they must offer their products at a 

lower price compared to competitive apps.  

Second, the average review counts of the applications installed by the same user 

again have significantly positive effects on the number of downloads (β18 = 1.013) of 

similar apps.   Since, as what we observed from our data, the apps featured as “installed 

by the same users” includes both competitive and complementary apps.  The implication 

is that users tend to install apps similar/complement to the apps which are currently 

popular in the market.     
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Third, the average price of the applications installed by the same user has 

significantly negative effects on the number of downloads (β19 = −0.991).  Therefore, if 

the users installed many higher priced apps on their device, it is less likely for them to 

download a similar or complementary app.    The explanation could be that the users have 

a budget constraint on the apps installed on their device.    

Finally, we do not find any significant effects of the average number of user 

reviews of the apps featured as “also viewed by the same user”.   

2.6 Conclusion 

2.6.1 A Summary of Results 

In the present research, we propose and empirically test many assumptions to explain 

what drives businesses to succeed in extremely competitive markets.   Currently, many 

new markets develop rapidly even though they operate their businesses even when the 

marginal revenue is lower than the marginal cost.   In the present research, we label such 

markets as extremely competitive.  The issues examined in this research aim to answer 

the question of why firms continue in market with extreme competition while struggling 

to be profitable.  There could be two explanations. The first explanation is that by offering 

their products for free or at a very low price, marketers expect to acquire a large group of 

users in a relatively short time span, in the hope of making profits from those advertisers 

who are interested in the use groups.   The second explanation is that the marketers 

expect the users will eventually purchase their premium products after they try their 

product for free.    However, the key assumption underlying both outcomes is that the 
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marketers need to obtain a large group of user base.   A further question that this brings 

up is: what factors contribute to the acquisition of a large user group by businesses?  We 

propose and test two explanations.  Specifically, our first explanation is that acquiring 

users for a product will help in acquiring users for other products since the user base 

already obtained by the firm will create network effects.  To be specific, an app that 

acquired users may become the source of users for the products that follow.  Once the 

developer releases another product into the market, therefore, the user base of its other 

products may start using those products as well.   The second assumption is that multiple 

products with acquired users should help even more in acquiring users for new product, 

or conversely, we can say that firms can enhance WOM for their current products, which 

may help them attract more users once they release a new product into the market.   

However, few academic studies have formally tested the two assumptions so far.  The 

objective, therefore, of the present research is to explicitly verify the two assumptions 

and provide some normative insights for the businesses in the markets of extreme 

competition.    

To empirically examine the effects of those factors on installation base, we collect 

2,422 observations across 248 developers from a large App Store.  Three set of variables 

were included in our research: (1) The characteristics of apps; (2) The competition of the 

market; (3) The proxies of the influence of other apps.  The success of each app is 

measured by the number of downloads.  We develop a hierarchical ordinal logit model 

and calibrate it using Bayesian methods.  Empirical results support the two assumptions 

proposed in our research.  Specifically, we find that apps developed by the same 
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developer help in acquiring users for new products thus providing empirical evidence for 

our two assumptions.  In other words, developers with a product released into the 

marketplace are more likely to acquire users once they release another product.   There 

are many explanations of the mechanism.   The first explanation could be that the users 

of other products will directly become users of their new product.   Furthermore, the 

users of the developer will spread word of mouth, which may indirectly help the 

developers acquiring users for their new products.   The third explanation is that 

developers with more products will have more exposures among the users which may 

lead to liking and ultimate behavior of install.       

We found evidence of the existence of extreme competition in such markets.   

First, we found that users, facing a myriad of similar choices, are more likely to choose 

the product with the lowest price, which explain the source of extreme competition.  

Developers are keen to offer products with lower price in the hope of expanding their 

user base at the sacrifice of profits.   Second, our research revealed that apps installed on 

users’ device are widely discussed among consumers.  In addition, users are more likely 

to install a similar of a complementary app on their device.   Third, users seem to have a 

budget constraint on the apps installed on their device.   If they already installed a number 

of apps with a relatively high average price, they are less likely to install a similar one.    

In addition to the two set of variables mentioned above, our research provides 

many normative insights into the industry.  First, we find that free apps indeed have larger 

user bases thus confirming extreme competition in the market.  The efforts that 

marketers put on advertising their products by providing YouTube video do help in 
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acquiring users.  Higher user rating is an important indicator of larger user base.   

However, the pictures displayed on their website make no difference in expanding user 

group.   In addition, apps requiring larger storage space will reduce the number of 

downloads.   Originally, we believe that the larger the file size, the more content included 

in the apps. However, we did not consider other two issues in our conceptual framework. 

First, the capacity of mobile device may limit downloads of applications with large file 

size. Second, some other psychological considerations of consumers may also influence 

consumers’ decision to download applications of large size.  Apps with higher content 

rating will have more people to download compared to those apps made for “Everyone”.   

Some of app categories are more popular in the market than others, for instance, “Brain”, 

“Arcade”, and “Casual”. Specifically, free applications are more likely to gain downloads 

than paid applications. However, since users can download free applications without any 

cost, downloads for the applications can not represent the quality of it. And thus, price 

cannot serve as indicator of quality for this special product. Another search attribute, file 

size, also negatively influence downloads, which is on the contrary of our expectation.  

2.6.2 Contributions 

The research makes three contributions to the academic research. First, our present study 

focuses on the markets where firms face such intense competition that the marginal 

revenue they earn cannot even compensate the marginal cost.  We then label such 

markets as extremely competitive and found some evidence of “extreme competition”.   

Second, our present study investigates the business strategies of the marketers used in 

such market and try to verify the implicit assumptions behind the different business 
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strategies.   Third, our present study aims to provide some normative insights for such 

market, which has never been examined empirically by previous studies.  Fourth, given 

the hierarchical nature of our data, unobserved developer heterogeneity is considered in 

our framework. Results demonstrate that the unobserved developer heterogeneities do 

play a very important role in generating downloads.  

2.6.3 Managerial Implications 

Marketers and application developers may find some important managerial implications 

from our findings.   First, free applications with smaller file size may generate more 

downloads in the marketplace. However, displaying more screenshots does not help app 

developers acquiring more users. Applications of higher content rating have more 

download rates, comparing to applications made for everyone. Brain, arcade, and casual 

applications have significantly more downloads than widgets.   Second, competition from 

similar applications is significant. Our research suggests that a good strategy for 

developers is to create similar apps which are very popular in the marketplace, since those 

apps are more likely to acquire user base.  Third,   developers play a very important role 

in generating large number of downloads. After controlling for the unobserved 

heterogeneity of developers,   we found that the more apps that the developers released 

into the market, the more likely that they acquire a large user base for their future 

products. In addition, users’ discussion of their application will increase user base for their 

future products.  
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2.6.4 Limitations and Future directions 

While our research provides some instructions for the apps market, there are some 

limitations. First, the apps data we collected are more game-like applications. Another 

type of applications, more informational and utilitarian applications, exists in the 

marketplace. The influence of attributes of this type of applications may be quite different 

from game-like applications.  

Second, many other important factors such as the duration that the application 

has been in the marketplace for, may have significant influence on the number of 

downloads. Therefore, we expect that the longer the applications in the marketplace, the 

more customer reviews they can get.  

Third, an important mechanism which is probably a bigger driver of app discovery 

is offline WOM and this face-to-face mechanism is not easily understood nor can easily 

be influenced. Many consumers instantly download applications that their 

friends/acquaintances are using when this discovery happens face-to-face as a friend can 

convey why he or she likes the applications and uses it. Knowing what friends or family 

members are using has a greater influence on the eventual choice. For example, if most 

friends of a consumer are using a particular location-sharing, photo-sharing, social 

networking, or other apps, know that can and probably will influence that consumer’s 

choice of an app. An important area for future research is to not only understand the 

varying effects of reviews on apps sales but also the review generation process that can 

determine how many reviews an app gets.  
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III. Price acts as a Proxy of Advertising? Explore the Role of Freemium 

Business Strategy in the Context of Extreme Competition 

Abstract 

Many prior studies show that online Word-Of-Mouth (WOM) affects sales, but the issue 

that why consumers would like to discuss the product online receives relatively less 

attention from marketers and researchers. The objective of the present study is to 

examine the drivers of online WOM of a category of unique products, mobile apps, under 

the context of extreme competition. We are especially interested in the role of Freemium 

business strategy adopted in such markets where products are mostly offered for free.  

The implicit assumption behind the strategy is that free products will create more WOM 

and thus increase user base.  However, the role of price in generating online WOM is 

mixed according to previous studies.  The present study aims to examine the question 

and provide some insights into the industry.  Results show that, contrary to the intuitive 

assumption of the markets that free apps will increase online WOM, premium products 

are more likely to generate discussion among users.  Effects of other factors on online 

WOM are found.   Conclusions and managerial implications are discussed.   

Key Words: Online WOM; Freemium Business Strategy; Extreme Competition, Mobile 

Applications 
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3.1 Introduction 

Give your service away for free, possibly ad supported but maybe not, acquire a lot of 

customers very efficiently through WOM, referral networks, organic search marketing, 

etc., then offer premium priced value added services or an enhanced version of your 

service to your customer base.  

------ Fred Wilson7 

In recently years, “Freemium” become a highly popular business model by which a 

product or service, such as software, media, games, web services, and so on, is provided 

free of charge, but a premium is charged for advanced features, functionality, or virtual 

goods8.   The business model has notably been in use for markets, such as mobile app 

market, online radio services, online blogs, etc.   Businesses in those markets are mostly 

operated based on their intuition, as Fred Wilson suggested that most marketers today 

adopt the Freemium business strategy under which they give their products or services 

for free, in the hope of acquiring a lot of customers very efficiently through WOM, referral 

networks, organic search marketing, etc.   The strategy indicates that businesses expect 

that online WOM will help in generating larger user base wherein Freemium is the driving 

force of online WOM.  However, the freemium business strategy is questionable in two 

aspects (a) whether online WOM will help in generating larger user bases (b) Whether 

Freemiums will generate more online WOM.    

                                                           
7 http://www.avc.com/a_vc/2006/03/my_favorite_bus.html 
8 http://link.springer.com/content/pdf/10.1007/978-0-387-85895-1_6 

http://www.avc.com/a_vc/2006/03/my_favorite_bus.html
http://link.springer.com/content/pdf/10.1007/978-0-387-85895-1_6
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Prior studies investigated the question from several perspectives.  First, the 

products sold in those markets, such as mobile apps, blogs, videos, radios, news, etc, are 

almost purely digital products. Lal and Sarvary (1999) suggest that products and services 

with primarily digital attributes can be easily communicated online and a number of 

empirical studies suggested that online WOM has positive influence on sales revenues in 

markets such as motion picture, books, CDs, and so on(Godes and Mayzlin, 2004; 

Chevalier and Mayzlin, 2006; Feng and Papatla, 2011; Moe and Trusov, 2011; Godes and 

Silva, 2012).  Second, digital products are a special type of experiential products. Studies 

show that a consumer tends to rely more on others’ recommendations and product 

experience, when he considers and experiences product than a search product (Bearden 

and Etzel 1982; Childers and Rao 1992; King and Balasubramanian 1994; Klein 1998; Park 

and Lee 2009; Senecal and Nantel 2004). Compared to other physical experience goods, 

digital attributes are much more difficult to evaluate before or even after they actually 

experience the product. Online WOM, therefore, is critical for the products to succeed in 

the market, rather than product differentiation.  Third, markets of pure digital products 

are characterized by myriad choices and intense competition (Racherla, Furner, and Babb, 

2012). In these markets, hundreds of thousands of individual and small developers 

compete with others at a very low price and none is sufficiently large so as to exercise any 

influence whatsoever on prices. Therefore, price competition is not enough to help the 

businesses to stand out.  This again explains why businesses strive to enhance online 

WOM for their products and services.   Fourth, from the previous study, we do find that 

a larger user base not only contributes users to new products, but also spreads WOM 
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which may ultimately lead to more users.  The above characteristics of markets of 

extreme competition indicate the importance of creating online WOM for products and 

services if businesses want to succeed in such markets.   

The second question, i.e., what factors help in generating WOM in such markets, 

however, is yet to be addressed.   Although prior studies suggest that free applications 

will indeed acquire more downloads than paid ones, getting consumers to discover and 

download an app does not mean that consumers will stick to the app and ultimately post 

reviews online or share the product with their friends.  By using Freemium business 

model, consumers generally can acquire the products or services for free or at a very low 

price and easily get rid of them. Freemium strategy, therefore, may help businesses to 

expand user base, but not necessarily help them generate interests in products and 

services.  If consumers demonstrate no interest in the product, there are no opportunities 

for them to purchase premium products, refer the products to others, or click the ads 

embedded in the products.  Eventually, businesses adopting Freemium strategy will still 

have difficulties in monetizing their products.  Therefore, a major concern to these 

marketers is whether the Freemium business model will stimulate users to express their 

opinions online in this hyper-competitive landscape with a wide range of choices.  The 

present study aims to address this question.   

By empirically examining the data collected from a major Mobile Apps Store, the 

present study found that paid apps generate significantly more WOM than free 

applications when original user base considered.   Specifically, we first explore the role of 

free apps on the volume of WOM without considering the influence of user base.   Results 
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show that free applications will significantly boost the volume of online WOM, which is 

consistent with the results of Berger and Schwartz (2011).   We then, add the size of user 

base as an explanatory variable in our model. Since product diffusion theory suggests that 

internal influence is mainly determined by the number of consumers who have 

experienced the products (Mahajan, Muller, and Wind 2000), we expect that the user 

base acquired by the product would be interested in discussing it.  Results still indicate 

that free apps will boost the volume of online WOM but with a smaller magnitude.   

Subsequently, rather than relying on the size of the user base as an explanatory variable, 

we examine the effect of free apps on the likelihood that users spread WOM online after 

they download the applications.  This investigation reveals that the effects of Freemium 

indicated by the previous two models are spurious.   Paid applications, rather than free 

apps, will significantly boost volume of online WOM.   Effects of other factors are also 

found.  

We organize the remainder of this article as follows: in the next section, we 

provide an overview of previous literature on the relationship between price and online 

WOM. We then describe the data and estimation method and present the empirical 

results. Finally, we discuss the contribution of this research and the managerial 

implications of the results. 

3.2 Literature Review 

The predominant research focus of online WOM has been on the effects on sales of paid 

goods (Chevalier and Mayzlin 2006; Dellarocas et al. 2004; Duan et al. 2008; Godes and 
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Mayzlin 2004). Few studies, however, examine how to stimulate consumers to spread 

WOM online.   In particular, as a key element of market strategy, the effect of price on 

WOM has received very little attention from scholars.  The conventional wisdom of 

practitioners, however, suggests that consumers like getting products and services for 

free.  Interestingly, willingness to try free products does not mean that consumers like to 

discuss the products and ultimately buy premium products.   

3.2.1 Freemium and Online WOM 

Does the Freemium Strategy Increase Online WOM? 

Most WOM campaigns involve sending consumer promotional giveaways to encourage 

them to talk about the product.  Several previous studies suggest that giveaways will 

indeed generate positive effects on online WOM.  Holmes and Lett (1977) suggest that 

product sampling may stimulate WOM among users.   A recent study by Berger and 

Schwartz (2011) find that users who receive giveaways talk more than those who doesn’t.  

Specifically, they find that giving away the product itself or nonproduct extras (e.g., logo 

hats, recipes) are positively linked to more overall WOM. However, neither samples nor 

coupons and rebates were linked to an increase of WOM, though they may be useful for 

increasing other outcomes, such as sales, and quality of conversations.  They then suggest 

that businesses, that aim to generate more WOM, may send consumers the full product 

or related extras to try (Berger and Schwartz 2011).  Their explanation is that giveaways 

provide product experience which may boost information and reduce uncertainty (Hoch 

and Ha, 1986) thus making it easier for people to learn about the product and have an 

opinion to share.  Other studies examine the effects of free sample promotions on 
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measures such as belief strength and attitude (Marks and Kamins 1988), perceptions of 

the brand (Hamm et al, 1969), purchase event feedback, i.e., brand loyalty (Gedenk and 

Neslin 1999), and reciprocity (Cialdini 2001).  The results of these studies may give further 

support to the positive effects of free giveaways on online WOM found by Berger and 

Schwartz(2011).    However, these studies neither examine the effects on online WOM 

directly nor measure any long-term effects, they only suggest that free samples could 

generate positive brand attitudes towards brand.   Although Berger and Schwartz (2011) 

find that free giveaways do help in generating more discussions among the users, the 

findings may not be applied in pure digital markets due to the extreme competition and 

other uniqueness of the products.    

Does charging a price for products increase online WOM? 

The above literature suggests that free giveaways will stimulate online WOM, but some 

other studies suggest that premium products are more likely to generate online WOM, 

though the effects hasn’t verified directly so far.   A stream of research suggests that price 

can be interpreted as a cue for product quality (Gerstner 1985; Tao and Monroe 1989).   

The research indicates that, when faced with quality uncertainty, consumers are likely to 

use price as a signal of quality before they make purchase (Dodds et al, 1991; Grewal 

1995; Kirmani and Rao 2000; Mitra 1995; Rao and Monroe 1988, 1989).    A high customer 

satisfaction will be generated if the product performance is consistent with the premium 

price.  Several studies are found in this area. One notable study by Voss et al(1998) 

suggests that performance expectations will have a positive effect on satisfaction when 

there is price-performance consistency and will have no effect when price-performance 



50 
 

 
 

are inconsistent. Grewal, Krishnan, Baker, and Borin (1998) indicates that the influence of 

price discount on a brand’s perceived quality was minimal but exerted significant positive 

influence on perceived value since prices paid less than an individual’s reference price 

enhance buyers’ value perceptions (Grewal et al 1998).  Based on the aforementioned 

literature, a premium price may signal a high product performance. If users perceive that 

the price-performance is consistent, their expectations are met and satisfaction 

increased. Consumers, therefore, are likely to spread WOM, since consumer satisfaction 

or dissatisfaction is an important determinant of WOM (Yi 1990).  Some of the quality 

expectation may be disconfirmed by actual experience, and ultimately lead to 

dissatisfaction (Cadotte et al. 1987; Churchill and Surprenant 1982; Spreng et al. 1996; 

Rust et al. 1999).  Consumers may therefore engage in complaint behavior and spread 

negative WOM online.  Hence, higher product price will generate more WOM regardless 

consumers’ level of satisfaction.    

However, previous literature on the relationship of price premium and WOM is 

scarce, though these are a few exceptions.  Richins (1983b) examined negative WOM by 

dissatisfied consumers (telling others about their unsatisfactory experience) and 

indicated that negative WOM occurred when the problem was severe9.   In addition, 

consumers seem to give more weight to negative information than to positive 

information (Lutz 1975).  Curren and Folkes(1987) expanded on Richins’(1983b) work by 

examining whether communications for product performance influenced consumers’ 

positive as well as negative communications about products.    Li and Hitt(2010) suggests 

                                                           
9 High price is one of indicators of problem severity (Richins 1983b).  
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that price has positive effects on consumer ratings since it not only reflects the perceived 

product quality but also demonstrates the perceived value, i.e., the difference between 

price and perceived quality.  However, they did not examine the influence of price on 

WOM volume.    

In the present study, we aim to examine the influence of price on WOM volume 

in the markets of pure digital products, where others’ opinions are especially important. 

In the markets of pure digital products, although most of products are offered for free, a 

group of consumers who are seeking for high quality products believe that high price 

signal high quality, facing a myriad of options and a difficulty to differentiate product 

attributes.  These consumers may put more cognitive effort on high-priced items 

(Wathieu and Bertini 2007), and seek for product information before they purchase the 

product and examine the benefits of the product during the process of experiencing the 

product.  Thus they have a need to share their knowledge of the product based on their 

experience with it and their consequent discovery of its unique features and benefits or 

drawbacks (Feng and Papatla 2011).  Therefore, premium price can be considered as 

another vehicle of advertising demonstrating the product quality which helps the 

businesses attract more less-price sensitive users and, hence, share their opinions online. 

Along these lines, the present paper proposes that products sold at a premium price are 

more likely to spread their WOM online.   

Premium and Positive/Negative WOM   

Based on aforementioned literature, products sold at a premium price will generate 

online WOM because of (1) satisfaction due to price-performance consistency (2) 
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dissatisfaction due to price-performance inconsistency. Specifically, if the consumers 

perceived the price is confirmed by the high performance, they will have a need to share 

the good experience with others. However, if the product performance does not meet 

their expectations, they will vent their dissatisfaction by spreading negative WOM.  In this 

sense, premium price will help in generating either positive WOM when consumers are 

satisfied with the product or negative WOM when consumers are dissatisfied with the 

product.    

3.2.2 Effects of Other product attributes on online WOM 

Average rating 

The average rating is another indicator of product quality, perhaps a more accurate 

quality indicator than price, since average rating reflects the actual experience and 

evaluation of a group of users.  A number of studies indicate that higher average rating 

will lead to increased sales revenues (Forman et al. 2008; Chen et al. 2007; Dellarocas et 

al 2008; Clemons et al. 2006).  However, few studies examine the influence of WOM 

valence on WOM volume. A notable exception is that Dellarocas, Awad, and Zhang (2008) 

considers the interplay between WOM valence and WOM volume. They find a positive 

influence of WOM valence on WOM volume, which in turn influences retail sales. The 

explanation is that higher average rating indicates more of the community members 

agree with the consumer’s assessment of the product, which encourages him or her to 

distribute WOM to enhance self-esteem (Sundaram et al. 1998; Wangenheim et al.2003).   

However, Dellarocas et al. (2008) did not consider the effect of valence on positive WOM 

volume and negative WOM volume separately.  Previous studies suggest that consumers’ 
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online WOM are overwhelmingly positive (Chevalier and Mayzlin 2004).  Therefore, we 

expect that a higher average rating will lead to more positive and overall WOM volume 

and less negative WOM volume.  However, a consumer adopt a product with low average 

rating will be less likely to post review online due to self-esteem.  

Promotion cues: video and screenshots 

Consumers who search and shop for products are generally exposed to a number of 

promotional cues. In the case of mobile apps store, most of developers will provide some 

screenshots or a YouTube video or both to show the content of their applications. These 

promotional cues can activate associated concepts in consumers’ memory and making 

them more accessible (Higgins, Rholes, and Jones 1977; Lynch and Scrull 1982; Brakus, 

Bernd and Zarantonello, 2009) during the process of making purchase decision or 

spreading WOM. In other words, these cues are designed to increase the likelihood of 

retrieval of contents of the ad memory trace during brand decisions. If positive, these 

cues should result in more favorable brand evaluations and an increased likelihood of 

purchase (Keller, 2009) and eventually lead to more online WOM volume.  In addition, a 

product with more promotional cues may indicate that the marketers are more devoted 

to their products and have more resources to create a better product.  Therefore, the 

promotional cues, to some extent, can also act as cues of product quality.  More 

promotional cues may thus result in high customer satisfaction, which, hence, encourages 

the discussion among users.  
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3.2.3 Effects of Other Apps  

In choosing among competing products, consumers are faced with uncertainty of product 

performance. Although price and average rating can serve as important proxies of 

product quality, brand reputation could also signal the quality of products (Dawar and 

Parker 1994; Rao and Monroe 1989; Grewal, Krishnan, Baker, and Borin 1998). A mobile 

developer with more products is more likely to develop a better product in the future, 

since they may gain lots of experience and skills from the process of developing other 

products.  In addition, the more products the developer release into the market, the 

larger user base they have.  Current user base may spread WOM, which may increase 

brand awareness, and eventually encourage more people to discuss it.  Moreover, 

consumers may perceive a product to have higher performance if the developers’ 

products are generally sold at a premium price.  

3.2.4 User Base and online WOM   

A salient characteristic of the data used by our study is that the reviews and ratings are 

provided by actual users of applications. In other words, if users want to express their 

opinions in the app store, they must first download the applications. Duan, Gu, and 

Whinston (2008) suggests that the larger the pool of consumers who have experienced a 

movie, the more WOM will be generated, which is, to some extent, consistent with 

studies of product diffusion, which indicate that internal influence is mainly determined 

by the number of consumers who have experienced the products (Mahajan, Muller, and 

Wind, 2000). In the study of Duan et al. (2008), movie sales are used as a proxy for the 

number of consumers. The results suggest that the number of consumers has positive 
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influence on the volume of online WOM. We, therefore, expect that use base will have 

significant positive influence on the volume of online WOM. 

To empirically test the effect of price on online WOM in pure digital markets under 

the context of extreme competition, we collect a dataset from a famous App Store and a 

log-normal regression model was implemented in Bayesian paradigm. A number of other 

factors, such as the categories of apps, app content rating, brand reputation, and 

competition from other similar applications were controlled. To control unobserved 

heterogeneity of developers, random intercept and random coefficient model were 

implemented in Bayesian paradigm. Results indicate that the negative effect of price on 

online WOM is spurious without considering the influence of user base.  Contrary to 

intuition apparent among practitioners, free apps are less likely to generate interest 

among users. Users are more interested in discuss the products that they actually paid 

for.  Effects of other factors are found.  

3.3 Data description 

2,422 applications were collected from Google Play Store on Oct. 28, 2012. There are two 

main features of our data: (1) The data has a hierarchical structure. The first level is the 

application-level. The second level is developer-level. The total 2,422 apps are nested 

under 248 developers. There are 11 Application-level factors and 3 Developer-level 

factors. (2) The website of data source requires that all the reviewers download the 

applications before they rate the applications. The variable definitions and summary 

statistics were displayed in Table III-1 to Table III-3.  
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3.3.1 Dependent Variable 

Review Counts  

“Total Review Counts” measures the total review counts of each application. From Table 

III-2, we can see that the range of review counts is very large – 1,429,000, and it is heavily 

right-skewed.    “Positive Review Counts” measures the volume of positive total WOM, 

including all the ratings of “star 5”.  The positive review counts are also strongly right-

skewed. The range is 1,131,000.  “Negative Review Counts” measures the volume of 

negative total WOM, including all the ratings of “star 1” and “star 2”. The negative counts 

are strongly right skewed as well. However, the range is smaller than that of “positive 

review counts” and “total review counts” – 89,640.  We are more conservative in the 

designation of a review as positive because empirical evidence (Chevalier and Mayzlin, 

2006) suggests that consumer reviews tend to be overwhelmingly positive. We, therefore, 

designate a review as positive only if the reviewer gives the highest possible rating to an 

application. On the other hand, ratings that are extremely negative (for example, a rating 

of “star 1”), or close to being extremely negative (e.g., a rating of “star 2”), are designate 

as negative since there is little empirical evidence of consumers being overly negative. 

Hence, extremely negative, or close to being so, are both designate as negative ratings.  

Downloads 

The number of downloads is obtained as the range of downloads rather than the absolute 

number. For instance, the number of downloads in last 30 days of “Slot Machine” is 

5,000,000-10,000,000 up to Oct. 28, 2012. There are 12 categories in total. From lower 

right corner of Table III-2, we can see the distributions of downloads. There are 440 apps 
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whose downloads ranged from 100,000-500,000. And the second largest number of 

installs falls into the range of 10,000-50,000 – 409 apps. The distribution of installs is close 

to a normal distribution. 

3.3.2 Independent Variables 

Price 

The price of application is different from other continuous variable. 1487(61.40%) 

applications are free and therefore the price is “0”. The rest of it (935 applications) are 

paid applications and the range of price for paid ones is $7.99. The distribution of price 

for paid applications is roughly normally distributed. Given the intrinsic attributes of price, 

we recode the measures of price as dummy variable. The free apps are coded as “zeroes” 

and paid applications as “ones”.   

Average rating:    

“Average Rating” measures the valence of online review for each application. The average 

rating is overwhelmingly positive. Most applications receive an average rating of 4 or 

above.   

Promotional cues: Number of Screenshots and Video 

“numscrn” measures the number of Screenshots of each application. If you go the 

webpage of a certain application, it usually will display several screenshots to 

demonstrate the content of the product. The range of the number of screenshots is 8 and 

it is roughly normal distributed. “video” means whether there’s YouTube Video 

embedded on the webpage of the App, acting as a promotional cue for it. There are 772 

applications YouTube video on their website.  
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Other attributes of product 

“Content Rating” measures the maturity level of the application content. There are four 

different levels, everyone, low maturity (lm), medium maturity (mm), and high maturity 

(hm). 1,235 applications are made for everyone (50.99%). “Category” indicates the type 

of the applications. There are eight types of applications: arcade, brain, cards, casual, 

racing, sport, wallpaper, and widget. Arcade and wallpaper are the largest two types of 

applications.  “File Size” measures the installation space needed by the applications. 

Applications of larger file size usually contain more features and functionalities.  

Effects of Competition 

On the webpage of each application, Google Play will feature some other applications on 

the left-hand side. It usually lists four applications viewed by the same users and four 

other applications installed by the same users. Those applications are competing users 

with the focal app. Therefore, we create four variables based on the information of the 

above two types of products. Specifically, we calculate the average counts and price for 

both groups of applications and lead to the following four variables.  

Table III-1 Description of four Competition Measures 

Variable Name Description  

vvc Average Counts of the Apps Viewed by similar Users 

vvp Average price of the Apps Viewed by similar Users 

ivc Average Counts of the Apps Installed by similar Users 

ivp Average Price of the Apps Installed by similar Users 

 

Table III-2 Summary Statistics of Application-Level Attributes 

 Min. 1st Qu Median Mean 3rd Qu Max. 

Total review counts 1 54 450 14217 4243 1429241 

Positive review  0 32 263 10110 2506 1131000 

Negative review  0 7 60 868 469 89640 
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rating 0.000 3.900 4.200 4.001 4.500 5.000 

price 0.000 0.000 0.000 0.818 0.990 7.990 

numscrn 0 3 5 4.617 5 8 

filesize 0.006 1.900 5.700 16.890 14.000 1843.000 

vvc 0 3833 14364 35814 44295 754480 

vvp 0.000 0.000 0.740 0.955 1.480 8.310 

ivc 0 54 121 1256 430 131171 

ivp 0.000 0.000 0.000 0.832 1.590 8.070 

Categorical Variables Downloads (Dependent Variable) 

Variable name 
# of 

Apps Percentage Range of Downloads 
# of Apps Percentage 

Arcade 386 15.94% <100 102 4.21% 

Brain 280 11.56% 100 - 500 148 6.11% 

Cards 33 1.36% 500 - 1,000 78 3.22% 

Casual 373 15.40% 1,000 - 5,000 250 10.32% 

Racing 228 9.41% 5,000 - 10,000 160 6.61% 

Sport 336 13.87% 10,000 - 50,000 409 16.89% 

Wallpaper  360 14.86% 50,000 - 100,000 185 7.64% 

Widget 126 5.20% 100,000 - 500,000 440 18.17% 

Video-yes 772 31.87% 500,000 - 1,000,000 174 7.18% 

Video-no 1650 68.13% 1,000,000 - 5,000,000 342 14.12% 

Everyone  1235 50.99% 5,000,000 - 10,000,000 76 3.14% 

High maturity  223 9.21% >10,000,000 58 2.39% 

Low maturity  523 21.59%     

Medium maturity 441 18.21%     

Note: “nums” represents number of screen shots 

 
Effects of Other Apps 

To account for the heterogeneity of developers, we create three developer-level 

attributes: 

“dac” is the total number of the applications display on Google Play and installed 

by the same this developer. Therefore, this variable measures, to some extent, the size of 

each developer. We can see the range is 67. The distribution of developer size is right-

skewed. Most of developers has 28 or less applications.  
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“dvc” is the average number of review counts of those applications developed by 

the same developer. The range of the average review counts is 294,800. And again, the 

distribution of it is roughly normally distributed but a little bit right-skewed.    

“dvp” is the average price of applications developed by the same developer. The 

range of it is 5.37 and it is also roughly normally distributed.  

The correlations between the three developer-level variables are relatively low so 

we don’t have to worry about multicollinearity problem.   

Table III-3 Summary Statistics of Developer-Level Attributes 

Correlation Matrix Summary Statistics 

 dac dvc dvp Min.    1st Qu. Median  Mean    3rd Qu. Max.    

dac 1.000 -0.425 -0.046 5.00 12.00 28.00 31.970 49.00 72.00 

dvc  1.000 -0.092 1 127 988 11460 8908 294800 

dvp   1.000 0.00 0.00 0.37 0.60 0.93 5.37 

3.4 Model Specification 

Our dependent variable is the number of online reviews. Since the variability of counts is 

huge, the ordinary count models, such as Poisson regression, Binomial regression, and 

Negative Binomial regression are not appropriate. In addition, the dependent variable is 

strongly right-skewed. Therefore, we adopt a log-normal regression to empirically test 

the issue:  

Model 11: Log-Normal regression  

The dependent variable in this model is the total number of online reviews. Since the 

measures are positive and strongly right-skewed, we use the log-transformed version of 
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the variable. Both application-level variables and developer-level variables were simply 

included in the basic model.  The results of this model were displayed in table III-4.  

Log(𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑗) 

= 𝛽1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽5lm𝑖𝑗 +

𝛽6ℎ𝑚𝑖𝑗 + 𝛽7𝑚𝑚𝑖𝑗 + 𝛽8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽10𝑐𝑎𝑟𝑑𝑠𝑖𝑗 + 𝛽11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗 +

𝛽12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗 + 𝛽15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗)                

+𝛽16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽19 log(𝑖𝑣𝑝𝑖𝑗)                                          

+𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2 log(𝑑𝑣𝑐𝑗) + 𝛼3 log(𝑑𝑣𝑝𝑗)                     

         

Where, 

𝑖 represents application 1 to application 2422; 

𝑗 represents developer 1 to develop 248;                     

In the above equation, the log of the total review counts is related to an 

applications intrinsic attributes, average rating, competition, and developers’ experience 

and skills. Note that our data has a hierarchical structure (i.e., applications are nested 

under developers). However, this model did not consider the heterogeneity of 

developers. We assumed independence of applications and pooled all the applications 

together.   

Model 12: Log-Normal regression with User base 

In the above model, we ignore the influence of user base on the number of online reviews.  

According to previous studies, a larger use base would generate more sales revenues and 

online WOM volume for the marketers in the future. To account for the effect of user 

base, we add the number of downloads to the model as a continuous explanatory 

variable.  The results of this model were displayed in table III-5.  



62 
 

 
 

Log(𝑐𝑜𝑢𝑛𝑡𝑠𝑖𝑗) 

= 𝛽1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽5lm𝑖𝑗 +

𝛽6ℎ𝑚𝑖𝑗 + 𝛽7𝑚𝑚𝑖𝑗 + 𝛽8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽10𝑐𝑎𝑟𝑑𝑠𝑖𝑗 + 𝛽11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗 +

𝛽12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗 + 𝛽15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗)                

+𝛽16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽19 log(𝑖𝑣𝑝𝑖𝑗) +

𝛽20 log(𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖𝑗)                                          

+𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2 log(𝑑𝑣𝑐𝑗) + 𝛼3 log(𝑑𝑣𝑝𝑗)                     

         

Where, 

𝑖 represents application 1 to application 2422; 

𝑗 represents developer 1 to develop 248;                     

Model 13:  Log-Normal Regression on Rates 

There is an important characteristic of online reviews for applications posted by users. 

Users have to first download the application if they want to express their opinions online. 

In this regard, it is different from movies or other entertainment goods, where some 

people may post reviews based on their impressions about the movie trailers or 

commercials before they actually experience the product. In mobile app market, online 

WOM is generated by the actual user of the application.  Therefore, a relevant question 

is: what is the probability that a user posts a review for the product after using it? 

Therefore, instead of modeling total number of reviews directly, we regress on the ratio 

of the total number of reviews posted for the product to the number of downloads. The 

model can describe how the ratio depends on the explanatory variables, such as price, 

competition, and developers’ experience and skills. We then specify the following model, 

where the dependent variable is the ratio of total review counts and total downloads of 

applications.  The results of this model are displayed in table III-6.  
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Log(
𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖𝑗
) 

= 𝛽1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽5lm𝑖𝑗 +

𝛽6ℎ𝑚𝑖𝑗 + 𝛽7𝑚𝑚𝑖𝑗 + 𝛽8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽10𝑐𝑎𝑟𝑑𝑠𝑖𝑗 + 𝛽11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗 +

𝛽12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗 + 𝛽15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗)                

+𝛽16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽19 log(𝑖𝑣𝑝𝑖𝑗)                                          

+𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2 log(𝑑𝑣𝑐𝑗) + 𝛼3 log(𝑑𝑣𝑝𝑗)                             

 

Where, 

𝑖 represents application 1 to application 2422; 

𝑗 represents developer 1 to develop 248;                     

Model 22: Log-Normal Regression Model with Random Intercepts 

In the previous analysis, we pooled all applications together, and made the assumption 

that one application is independent from another. However, our data structure suggests 

that applications developed by the same developer may have some common 

characteristics. To account for the hierarchical data structure, we introduce a developer-

specific parameter 𝜂𝑗 to the utility function. Therefore, we have our second model:  

Level 1:  

Log(
𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖𝑗
) 

= 𝛽1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽5lm𝑖𝑗 +

𝛽6ℎ𝑚𝑖𝑗 + 𝛽7𝑚𝑚𝑖𝑗 + 𝛽8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽10𝑐𝑎𝑟𝑑𝑠𝑖𝑗 + 𝛽11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗 +

𝛽12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗 + 𝛽15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗)                

+𝛽16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽19 log(𝑖𝑣𝑝𝑖𝑗)                                          

+𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2 log(𝑑𝑣𝑐𝑗) + 𝛼3 log(𝑑𝑣𝑝𝑗)        

+𝜂𝑗         

Level 2:  

𝜂𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇. 𝜂𝑗 , 𝜎. 𝜂) 
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𝜇. 𝜂𝑗 = 𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2log (𝑑𝑣𝑐𝑗) + 𝛼3log (𝑑𝑣𝑝𝑗) 

To further account for developer heterogeneity, we allow random effects in both 

intercepts and application-level slopes. Therefore, we have our third model:  

Model 32: Log-Normal Regression Model with Random Coefficients (without 

correlation) 

In the Random Coefficient Model, we assume there are J separate slopes for each variable 

which follow a normal distribution. Therefore, random coefficient model can capture 

heterogeneity among developers as well. We also add a random component  𝛿𝑖𝑗, which 

can capture unobserved heterogeneity among applications.  The results of this model are 

displayed in table III-7.  

Level 1: 

𝐿𝑜𝑔(
𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖𝑗
)

= 𝛽𝑗,1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽𝑗,2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽𝑗,3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽𝑗,4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗)

+ 𝛽𝑗,5lm𝑖𝑗 + 𝛽𝑗,6ℎ𝑚𝑖𝑗 + 𝛽𝑗,7𝑚𝑚𝑖𝑗 + 𝛽𝑗,8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽𝑗,9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽𝑗,10𝑐𝑎𝑟𝑑𝑠𝑖𝑗

+ 𝛽𝑗,11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗 + 𝛽𝑗,12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽𝑗,13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽𝑗,14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗

+ 𝛽𝑗,15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗) 

+𝛽𝑗,16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽𝑗,17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽𝑗,18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽𝑗,19 log(𝑖𝑣𝑝𝑖𝑗) 

+𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2log (𝑑𝑣𝑐𝑗) + 𝛼3log (𝑑𝑣𝑝𝑗) 

+𝜂𝑗  

Level 2:  

𝛽𝑗𝑘~𝑑𝑛𝑜𝑟𝑚(𝜇. 𝛽𝑘, 𝜏. 𝛽𝑘), 𝑘 = 1,2, …20 

𝜂𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇. 𝜂𝑗 , 𝜎. 𝜂) 

𝜇. 𝜂𝑗 = 𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2log (𝑑𝑣𝑐𝑗) + 𝛼3log (𝑑𝑣𝑝𝑗) 
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Model 42: Log-Normal Regression Model with Random Coefficients (with correlation) 

In the above specification, although we assume random coefficients, we allow the 

coefficients to be independent, thus ignoring the correlation between variables. In the 

next specification, we assume that the coefficients are correlated. Therefore, the model 

can not only capture part of heterogeneity among developers, but also the correlation 

between variables. 

Level 1: 

Log(
𝑣𝑜𝑙𝑢𝑚𝑒𝑖𝑗

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖𝑗
) 

= 𝛽𝑗,1 log(𝑝𝑟𝑖𝑐𝑒𝑖𝑗) + 𝛽𝑗,2𝑣𝑖𝑑𝑒𝑜𝑖𝑗 + 𝛽𝑗,3 log(𝑛𝑢𝑚𝑠𝑐𝑟𝑛𝑖𝑗) + 𝛽𝑗,4 log(𝑓𝑖𝑙𝑒𝑠𝑖𝑧𝑒𝑖𝑗) + 𝛽𝑗,5lm𝑖𝑗

+ 𝛽𝑗,6ℎ𝑚𝑖𝑗 + 𝛽𝑗,7𝑚𝑚𝑖𝑗 + 𝛽𝑗,8𝑎𝑟𝑐𝑎𝑑𝑒𝑖𝑗 + 𝛽𝑗,9𝑏𝑟𝑎𝑖𝑛𝑖𝑗 + 𝛽𝑗,10𝑐𝑎𝑟𝑑𝑠𝑖𝑗

+ 𝛽𝑗,11𝑐𝑎𝑠𝑢𝑎𝑙𝑖𝑗 + 𝛽𝑗,12𝑟𝑎𝑐𝑖𝑛𝑔𝑖𝑗 + 𝛽𝑗,13𝑠𝑝𝑜𝑟𝑡𝑖𝑗 + 𝛽𝑗,14𝑤𝑎𝑙𝑙𝑝𝑎𝑝𝑒𝑟𝑖𝑗

+ 𝛽𝑗,15 log(𝑟𝑎𝑡𝑖𝑛𝑔𝑖𝑗) 

+𝛽𝑗,16 log(𝑣𝑣𝑐𝑖𝑗) + 𝛽𝑗,17 log(𝑣𝑣𝑝𝑖𝑗) + 𝛽𝑗,18 log(𝑖𝑣𝑐𝑖𝑗) + 𝛽𝑗,19 log(𝑖𝑣𝑝𝑖𝑗) 

+𝜂𝑗 + 𝛿𝑖𝑗  

  

𝛽𝑗𝑘⃑⃑⃑⃑⃑⃑ 
⃐⃑ ⃑⃑⃑⃑⃑
~𝑑𝑚𝑛𝑜𝑟𝑚(𝜇. 𝛽𝑘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑, 𝑇), 𝑘 = 1,2, …19 

𝑇~𝑤𝑖𝑠ℎ𝑎𝑟𝑡(𝑅, 𝜐) 

𝜇. 𝛽𝑘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑~𝑑𝑚𝑛𝑜𝑟𝑚(𝑚𝑛. 𝛽𝑘⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑, 𝐵) 

 

𝜂𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(𝜇. 𝜂𝑗 , 𝜏𝜂) 

𝜇. 𝜂𝑗 = 𝛼1 log(𝑑𝑎𝑐𝑗) + 𝛼2log (𝑑𝑣𝑐𝑗) + 𝛼3log (𝑑𝑣𝑝𝑗) 

𝛼𝑚~𝑛𝑜𝑟𝑚𝑎𝑙(0,0.001) 

𝜏𝜂~𝑔𝑎𝑚𝑚𝑎(0.001,0.001) 

𝛿𝑖𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎) 

𝜎~𝑔𝑎𝑚𝑚𝑎(0.001,0.001) 
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To fit the proposed models, we take a Bayesian Approach to estimate parameters. 

For all models, we assume diffuse priors and run a Markov Chain Monte Carlo sampler for 

5,000 iteration which serves as a burn-in period. We then obtain inferences from 

posterior samples from the next 20,000 iterations.  

3.5 Empirical Results 

Table III-4 reports posterior mean estimates of implementing model on total number of 

reviews. There are many findings.  First, without considering the influence of user base, 

price (𝛽1 = −0.3243) and file size (𝛽4 = −0.1126) have significantly negative influence 

on total number of reviews. In other words, consumers are more likely to post reviews 

for free applications and applications of smaller size.  Second, having YouTube video (𝛽2 =

0.3994) and number of screenshots (𝛽3 = 0.1592) will significantly boost volume of 

online WOM.  Third, number of applications developed by the developer (𝛼1 = 0.1528), 

average review counts (𝛼2 = 1.5970) of the applications developed by the developer, 

average rating counts (𝛽15 = 0.3534), and having higher maturity content (𝛽5 = 0.8174; 

𝛽6 = 1.3460; 𝛽7 = 0.7749), will significantly increase total number of reviews. However, 

applications with high maturity content turn to be not significant after controlling for 

developer heterogeneity.  Fourth, after controlling for developer heterogeneity, average 

rating (𝛽16 = 0.0821) and price (𝛽17 = 0.1885) of the applications featured as “viewed 

by other users”, average counts (𝛽18 = 0.5375) featured as “installed by other users”, 

have significantly positive influence on total review counts. However, average price 

(𝛽19 = −0.8873) of applications featured as “installed by other users” has significantly 

negative influence on total review counts.  
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Table III-5 reports posterior mean estimates of implementing the model on total 

number of reviews. However, in this model, the number of downloads was included as an 

explanatory variable.  According to DIC score, we know the second model fits better than 

the first one. By simply adding the variable of user base, we can see many of our findings 

of model 1 are spurious. 
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Table III-4 Posterior means of the Lognormal Regression  

 Lognormal regression random intercept random coefficient - uncorrelated random coefficient - correlated 

 mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% 

𝛼1 0.1528** 0.0308 0.2784 4.0320** 3.3950 4.672 3.1450** 2.5070 3.8400 3.8960** 3.2220 4.5470 

𝛼2 1.5970** 1.4970 1.6950 3.0930** 2.6340 3.556 2.7300** 2.3130 3.1870 3.1060** 2.6340 3.5800 

𝛼3 0.0248 -0.0806 0.1303 0.4520 -0.0135 0.9299 0.1477 -0.2486 0.5517 0.3324 -0.1098 0.7645 

𝛽1 -0.3243** -0.6109 -0.0354 -2.1400** -2.3740 -1.894 -1.9800** -2.2880 -1.6700 -2.0300** -2.3160 -1.7260 

𝛽2 0.3994** 0.2280 0.5716 0.6624** 0.4918 0.8425 0.6986** 0.4541 0.9593 0.6689** 0.4388 0.8969 

𝛽3 0.0840 -0.0035 0.1710 0.1592** 0.0732 0.2528 0.1770** 0.0348 0.3249 0.1789** 0.0458 0.3116 

𝛽4 -0.1126** -0.1866 -0.0378 -0.0840** -0.1544 -0.01054 -0.0426 -0.1531 0.0775 -0.0434 -0.1596 0.0660 

𝛽5 0.8174** 0.6350 1.0010 0.2866** 0.1075 0.4723 0.3260** 0.1053 0.5471 0.3238** 0.1309 0.5117 

𝛽6 1.3460** 1.0680 1.6230 0.3642 -0.0175 0.7385 0.3266 -0.1443 0.8229 0.3183 -0.1267 0.7550 

𝛽7 0.7749** 0.5384 1.0100 0.3827** 0.1461 0.6102 0.4281** 0.1329 0.7140 0.4145** 0.1456 0.6857 

𝛽8 5.4820** 5.1890 5.7720 1.8810** 1.4520 2.307 3.0000** 2.3590 3.6320 1.9650** 1.5390 2.4380 

𝛽9 5.5310** 5.2510 5.8090 1.8750** 1.4060 2.336 2.9490** 2.2700 3.6040 1.9410** 1.4710 2.4410 

𝛽10 4.6430** 4.3560 4.9400 1.0660** 0.5863 1.542 2.1440** 1.4130 2.8200 1.2180** 0.7452 1.8970 

𝛽11 5.2440** 4.9850 5.5080 1.6130** 1.1740 2.055 2.7530** 2.0590 3.3990 1.6860** 1.2500 2.2370 

𝛽12 4.8890** 4.6030 5.1780 1.2190** 0.7631 1.664 2.0630** 1.4360 2.7120 1.1660** 0.7546 1.6180 

𝛽13 4.7450** 4.4860 5.0030 1.2220** 0.7606 1.66 2.2390** 1.6160 2.8630 1.2890** 0.8521 1.7750 

𝛽14 3.9170** 3.6460 4.1920 0.3399 -0.0134 0.7106 0.7623** 0.2296 1.3440 0.3282 -0.0513 0.7482 

𝛽15 0.3534** 0.2861 0.4217 0.2035** 0.1438 0.2593 0.3555** 0.1851 0.5983 0.3346** 0.1699 0.5272 

𝛽16 0.0294 -0.0446 0.1030 0.0821** 0.0203 0.1423 0.1028** 0.0224 0.1854 0.1107** 0.0319 0.1922 

𝛽17 0.1459** 0.0673 0.2236 0.1885** 0.1267 0.2479 0.1817** 0.0954 0.2671 0.1917** 0.1082 0.2744 

𝛽18 0.5982** 0.5157 0.6817 0.5375** 0.4677 0.6078 0.5817** 0.4776 0.6890 0.5805** 0.4800 0.6807 

𝛽19 -0.8837** -1.0150 -0.7523 -0.3172** -0.4294 -0.2115 -0.3203** -0.4458 -0.1832 -0.2986** -0.4270 -0.1720 

𝜎 1.7840 1.7330 1.8340 1.2450 1.2070 1.284 1.0180 0.9762 1.0630 1.0240 0.9839 1.0690 

𝜎𝜂       3.4840 3.1000 3.916 2.7250 2.2540 3.2330 3.3400 2.9160 3.7910 

DIC   39220   37730   37320   37280 
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First, the user base (𝛽20 = 0.6312) obviously has significantly positive influence 

on the volume of online WOM, which is consistent with the results of Duan, Gu, and 

Whinston(2008), i.e., the larger the pool of user base, the more WOM will be generated.    

Second, the negative influence of price on volume of online WOM became smaller. 

Additionally, after controlling for both observed and unobserved heterogeneity of 

developers, price (𝛽1 = 0.0979) does not have significant negative impact on online 

WOM anymore. In this sense, free applications may attract many people to install but not 

necessarily generate more online WOM.    Third, the influence of file size (𝛽4 = 0.1791) 

became positive in this model, which is consistent with our expectation. The larger the 

file size, the more interesting it is. Based on previous research, consumers are more likely 

express their opinions for interesting products.    Fourth, the influence of number of 

applications (𝛼1 = −0.1538) developed by the developer turns out to significantly reduce 

volume of online WOM. In this sense, developers’ reputation and experience suppress 

users’ intention to spread their WOM online.   However, users are more likely to talk 

about those applications developed by developers with less reputation or public visibility.   

The finding that the more users the application has, the more posts it will receive, 

seems to be supported at this point. However, it cannot fully account for the unique 

attribute of our dataset, i.e., the volume of online WOM comes from the actual user of 

the applications. Therefore, we are more interesting the probability that the user post 

their opinions online after they experience the product. We therefore, take the 

probability of posting opinions online as outcome and implement the lognormal 

regression in Bayesian paradigm.    
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Table III-5 Posterior means of the Lognormal Model with downloads included as an IV 

 Lognormal Regression With Random Intercept With Random Coefficient 

 mean val2.5pc val97.5pc mean val2.5pc val97.5pc mean val2.5pc val97.5pc 𝜎𝛽 

𝛼1 -0.1538** -0.2075 -0.1009 -0.2041** -0.3066 -0.1051 -0.7231** -0.9423 -0.4960  

𝛼2 0.7168** 0.6709 0.7630 0.6657** 0.5901 0.7366 0.3116** 0.1526 0.4658  

𝛼3 0.2242** 0.1790 0.2702 0.2613** 0.1953 0.3273 0.2880** 0.1245 0.4526  

𝛽1 -0.2136** -0.3335 -0.0897 -0.1790** -0.2999 -0.0559 -0.0657 -0.2316 0.0979 0.3957 

𝛽2 0.1203** 0.0905 0.1496 0.0740** 0.0447 0.1033 0.2787** 0.1050 0.6112 0.3761 

𝛽3 0.0439** 0.0075 0.0805 0.0789** 0.0363 0.1216 0.0955** 0.0195 0.1673 0.2888 

𝛽4 0.1791** 0.1053 0.2527 0.1666** 0.0853 0.2508 0.1020 -0.0203 0.2330 0.3529 

𝛽5 0.0166 -0.0148 0.0479 0.0120 -0.0226 0.0472 0.0596 -0.0093 0.1336 0.2421 

𝛽6 0.0601** 0.0288 0.0910 0.0498** 0.0188 0.0813 0.0469 -0.0003 0.0913 0.1966 

𝛽7 0.0699** 0.0372 0.1033 0.0618** 0.0303 0.0936 0.0514** 0.0071 0.0979 0.1936 

𝛽8 0.2786** 0.2433 0.3146 0.2215** 0.1851 0.2578 0.1704** 0.1112 0.2263 0.2092 

𝛽9 0.0865** 0.0274 0.1448 0.0650** 0.0067 0.1226 0.0598 -0.0115 0.1379 0.2258 

𝛽10 0.0614 -0.0189 0.1405 0.0040 -0.0857 0.0912 0.0011 -0.1260 0.1194 0.2956 

𝛽11 0.1206** 0.0189 0.2201 0.0534 -0.0563 0.1648 0.0355 -0.1219 0.1945 0.3650 

𝛽12 0.1907** 0.0699 0.3099 0.0065 -0.1639 0.1772 -0.0476 -0.3189 0.2180 0.4422 

𝛽13 -0.1857** -0.3440 -0.0246 -0.4139** -0.5805 -0.2380 -0.5066** -0.7519 -0.2561 0.3493 

𝛽14 -0.3025** -0.4667 -0.1426 -0.5213** -0.6933 -0.3418 -0.6775** -0.9358 -0.4046 0.3986 

𝛽15 -0.3187** -0.4706 -0.1723 -0.5413** -0.7051 -0.3703 -0.6671** -0.9251 -0.4198 0.3641 

𝛽16 -0.5344** -0.6919 -0.3755 -0.7327** -0.9188 -0.5458 -0.8719** -1.1550 -0.5773 0.4865 

𝛽17 -0.6706** -0.8281 -0.5115 -0.8340** -1.0060 -0.6598 -0.8559** -1.0870 -0.6115 0.3758 

𝛽18 -0.7406** -0.8883 -0.5937 -0.8925** -1.0550 -0.7260 -0.9267** -1.1520 -0.6913 0.3919 

𝛽19 -0.6153** -0.7571 -0.4753 -0.5446** -0.6937 -0.3947 -0.5144** -0.7589 -0.2955 0.4318 

𝛽20 0.6312** 0.6194 0.6426 0.6612** 0.6483 0.6743 0.6950** 0.6720 0.7168 0.0922 

𝜎 0.7557 0.7346 0.7770 0.6741 0.6540 0.6946 0.5419 0.5190 0.5640  

𝜎𝜂    0.3815 0.3309 0.4371 0.3262 0.2396 0.4431  

𝐷𝐼𝐶 35060 34290 33430 
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Table III-6 reports the posterior mean estimates of this model. By considering the 

effect of total downloads in this way, the results turn out to be of much difference from 

that of simply implementing on the total number of review counts(table III-4) and adding 

user base as an explanatory  variable (table III-5). The DIC score has been largely reduced 

for this model. Many important findings were demonstrated in table III-6. 

First, after controlling for developer heterogeneity, price (𝛽1,2 = 1.0140 ) has 

significant positive influence on total review counts, holding downloads constant. 

Compared to the effect of price of simply implementing on total review counts, we can 

see the effect of price has been totally reversed. Price in this model, on the contrary of 

model 1, will significantly increase the probability of users posting their reviews online. In 

other words, users are more likely to talk about those applications that they actually 

bought from the store instead of free applications. Although applications having larger 

installation base will have more volume of online WOM based on results of model 2, in 

this sense, we argue that the freemium business model will not boost installation base 

through online WOM, but on the contrary, it boosts volume of online WOM through 

installation base. Results of model 3 further confirm this proposition. From the results of 

table III-6, we can see that users who download the applications are more likely to talk 

about paid applications instead of free ones. The result supports the idea that price 

determines the evaluation effort invested by consumers. A price premium can stimulate 

consumers to revisit their perception of benefit relevance, and thus, spread their opinions 

online (Wathieu and Bertini, 2007). Effects of other factors also are found different from 

that of model 1.  
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Table III-6 Posterior means of the Lognormal density regression 

 
Lognormal 
regression  random intercept  

random coefficient - 
uncorrelated random coefficient - correlated 

 mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% 

𝛼1 -0.3287** -0.4115 -0.2434 -3.4640** -3.9520 -2.9820 -3.1450** -3.6300 -2.6800 -3.3550** -3.8370 -2.8890 

𝛼2 0.2053** 0.1377 0.2719 -1.0790** -1.4500 -0.7067 -0.9476** -1.3050 -0.6028 -1.0460** -1.4040 -0.6954 

𝛼3 0.3400** 0.2685 0.4116 -0.0109 -0.3784 0.3558 0.0946 -0.2425 0.4357 0.0342 -0.3259 0.3902 

𝛽1 -0.1508 -0.3454 0.0452 1.0140** 0.8830 1.1420 0.9487** 0.7669 1.1240 0.9318** 0.7602 1.1130 

𝛽2 0.0468 -0.0696 0.1636 0.0643 -0.0324 0.1595 -0.0234 -0.1515 0.0980 -0.0009 -0.1214 0.1208 

𝛽3 0.0217 -0.0378 0.0807 0.0744** 0.0240 0.1250 0.0828** 0.0013 0.1627 0.0826** 0.0060 0.1592 

𝛽4 0.0925** 0.0422 0.1432 0.0672** 0.0285 0.1072 0.1105** 0.0282 0.1973 0.1112** 0.0317 0.1937 

𝛽5 -0.3738** -0.4976 -0.2490 0.0239 -0.0760 0.1277 -0.0490 -0.1874 0.0865 -0.0214 -0.1481 0.1025 

𝛽6 -0.4832** -0.6720 -0.2955 0.0007 -0.2173 0.2132 -0.1058 -0.4186 0.2082 -0.0475 -0.3165 0.2336 

𝛽7 -0.2589** -0.4194 -0.0997 0.0654 -0.0666 0.1958 0.0092 -0.1691 0.1795 0.0477 -0.1144 0.2162 

𝛽8 -3.5040** -3.7030 -3.3070 -0.4824** -0.7126 -0.2506 -0.8751** -1.1810 -0.5663 -0.6047** -0.8657 -0.3429 

𝛽9 -3.7140** -3.9040 -3.5250 -0.5623** -0.8030 -0.3274 -1.0270** -1.3640 -0.6897 -0.7419** -1.0340 -0.4710 

𝛽10 -3.5630** -3.7580 -3.3620 -0.6023** -0.8723 -0.3204 -1.0160** -1.4450 -0.6191 -0.7024** -1.0270 -0.3717 

𝛽11 -3.5740** -3.7500 -3.3950 -0.4715** -0.7063 -0.2405 -0.9240** -1.2460 -0.5993 -0.6378** -0.9234 -0.3671 

𝛽12 -3.9240** -4.1170 -3.7270 -0.7480** -0.9830 -0.5122 -1.0500** -1.3550 -0.7340 -0.8121** -1.0760 -0.5493 

𝛽13 -3.9490** -4.1240 -3.7740 -0.7134** -0.9452 -0.4847 -1.0780** -1.3820 -0.7618 -0.8118** -1.0740 -0.5426 

𝛽14 -3.2640** -3.4480 -3.0770 -0.2083** -0.3966 -0.0257 -0.3847** -0.6489 -0.1235 -0.2654** -0.4927 -0.0547 

𝛽15 -0.0151 -0.0608 0.0313 0.0036 -0.0270 0.0352 0.1937** 0.0462 0.4325 0.1563** 0.0268 0.3072 

𝛽16 0.0775** 0.0273 0.1274 0.0391** 0.0056 0.0724 0.0366 -0.0112 0.0850 0.0373 -0.0102 0.0854 

𝛽17 0.0261 -0.0272 0.0789 -0.0172 -0.0509 0.0170 -0.0098 -0.0605 0.0395 -0.0107 -0.0577 0.0366 

𝛽18 0.0919** 0.0359 0.1485 0.0417** 0.0036 0.0789 -0.0125 -0.0722 0.0461 -0.0045 -0.0617 0.0521 

𝛽19 0.6564** 0.5675 0.7455 0.1569** 0.0972 0.2175 0.1582** 0.0811 0.2439 0.1727** 0.0927 0.2562 

𝜏 0.6830 0.6452 0.7228 2.1110 1.9830 2.2420 2.9490 2.7320 3.1850 2.9110 2.7000 3.1320 

𝜏𝜂     0.1230 0.0996 0.1490 0.1572 0.1232 0.1955 0.1369 0.1097 0.1688 

DIC   -11860   -14350   -14560   -14590 
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Second, the number of screenshot (𝛽32 = 0.0744 ), average rating (𝛽15,3 =

0.1937 ), and file size(𝛽42 = 0.0672 )  have significantly POSITIVE influence on the 

probability of users posting their reviews, which are consistent with our expectation.    

Third, after controlling for developer heterogeneity, number of applications 

developed by the developer ( 𝛼11 = −0.3287 ) will significantly decrease users’ 

probability of posting their reviews online. The average review counts(𝛼21 = 0.2053)   of 

the applications developed by the developer will significantly increase users’ probability 

of posting their reviews online.  

Fourth, applications with high maturity content will not help to significantly boost 

users’ probability of expressing their opinions online after controlling for developer 

heterogeneity.  

             Fifth, after controlling for developer heterogeneity, average price of applications 

featured as “installed by other users” ( 𝛽19,3 = 0.1582 ) has significantly POSITIVE 

influence on total review counts.  However, the effect of three competition variables, i.e., 

average counts and price of applications featured as “viewed by other users” and average 

counts of applications featured as “installed by other users” become not significant.  

Sixth, the effect of average rating remains positive and significant after controlling 

for developers’ heterogeneity. In this sense, applications with higher average rating are 

more likely to be talked by users. Therefore, it is of much importance for us to explore 

why users will give positive ratings. Since the more positive ratings the application 

receives, the higher the average rating. In addition, based on previous research, negative 
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WOM has more impact than that of positive WOM. Therefore, examining the influence of 

negative volume of online WOM is even more important. Table III-7 and table III-8 report 

the results of the effects of factors on both negative and positive volume of online WOM. 
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Table III-7 Posterior means of the model on log(negative counts/downloads) 

 Lognormal regression random intercept random coefficient - uncorrelated 
random coefficient - 

correlated 

 mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% 

𝛼1 -0.3298** -0.4350 -0.2214 -5.1370** -5.8330 -4.4470 -4.5940** -5.2370 -3.9570 -4.7530** -5.4210 -4.1080 

𝛼2 -0.1403** -0.2262 -0.0554 -2.1040** -2.6510 -1.5800 -1.7470** -2.2510 -1.2580 -1.8360** -2.3510 -1.3380 

𝛼3 0.4248** 0.3336 0.5159 -0.1648 -0.7072 0.3777 -0.0642 -0.5491 0.4222 -0.0737 -0.5678 0.4136 

𝛽1 -0.3569** -0.6039 -0.1078 1.3900** 1.2500 1.5300 1.2610** 1.0670 1.4520 1.2280** 1.0430 1.4130 

𝛽2 -0.1999** -0.3478 -0.0513 -0.1440** -0.2464 -0.0384 -0.1262** -0.2520 -0.0025 -0.1160 -0.2337 0.0049 

𝛽3 -0.1060** -0.1816 -0.0309 0.0143 -0.0381 0.0689 0.0173 -0.0604 0.0976 0.0150 -0.0605 0.0865 

𝛽4 0.1242** 0.0603 0.1887 0.0515** 0.0078 0.0943 0.1096** 0.0271 0.1979 0.1087** 0.0272 0.1893 

𝛽5 -0.5250** -0.6822 -0.3664 0.0494 -0.0565 0.1574 -0.0353 -0.1695 0.1005 -0.0165 -0.1476 0.1104 

𝛽6 -1.0470** -1.2870 -0.8079 0.0508 -0.1787 0.2776 -0.0441 -0.3499 0.2598 -0.0127 -0.2859 0.2897 

𝛽7 -0.4323** -0.6363 -0.2297 0.1315 -0.0027 0.2688 0.0486 -0.1300 0.2297 0.0722 -0.1035 0.2450 

𝛽8 -5.1380** -5.3900 -4.8870 -0.5530** -0.7877 -0.3131 -0.7396** -1.0220 -0.4475 -0.5919** -0.9166 -0.2998 

𝛽9 -5.7060** -5.9480 -5.4660 -0.7985** -1.0600 -0.5486 -1.0120** -1.3190 -0.7077 -0.8595** -1.2060 -0.5659 

𝛽10 -5.1340** -5.3820 -4.8780 -0.6252** -0.8939 -0.3625 -0.7869** -1.1840 -0.4103 -0.6362** -1.0060 -0.2914 

𝛽11 -5.1660** -5.3900 -4.9380 -0.4812** -0.7225 -0.2427 -0.7336** -1.0310 -0.4251 -0.5790** -0.9115 -0.2753 

𝛽12 -5.2280** -5.4740 -4.9790 -0.5630** -0.8108 -0.3244 -0.7456** -1.0250 -0.4523 -0.6362** -0.9422 -0.3355 

𝛽13 -5.2850** -5.5080 -5.0630 -0.5830** -0.8361 -0.3474 -0.7937** -1.0630 -0.4982 -0.6508** -0.9568 -0.3403 

𝛽14 -4.7230** -4.9570 -4.4860 -0.1783 -0.3764 0.0261 -0.1820 -0.4335 0.0760 -0.1691 -0.4844 0.0813 

𝛽15 -0.2511** -0.3092 -0.1921 -0.1601** -0.1937 -0.1267 -3.0760** -3.7540 -2.4280 -2.5280** -3.1370 -1.9420 

𝛽16 0.0741** 0.0103 0.1376 0.0126 -0.0243 0.0494 0.0089 -0.0393 0.0580 0.0085 -0.0392 0.0579 

𝛽17 0.0208 -0.0470 0.0878 -0.0252 -0.0614 0.0104 -0.0072 -0.0580 0.0415 -0.0080 -0.0549 0.0370 

𝛽18 0.0760** 0.0048 0.1480 -0.0018 -0.0426 0.0392 -0.0390 -0.0996 0.0223 -0.0307 -0.0880 0.0289 

𝛽19 0.9174** 0.8044 1.0310 0.1891** 0.1241 0.2516 0.1506** 0.0730 0.2365 0.1632** 0.0833 0.2492 

𝜎 1.5390 1.4950 1.5830 0.7324 0.7107 0.7549 0.5717 0.5491 0.5938 0.5782 0.5565 0.6021 

𝜎𝜂       4.2370 3.8660 4.6630 3.6920 3.3460 4.0780 3.8690 3.4840 4.2780 

DIC   -20120   -23470   -24020   -24030 
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Table III-7 reports the posterior mean estimates of implementing the models on 

ratio of total NEGATIVE review counts over lower bound of downloads.  

First, average rating (𝛽15 = −0.2511) will significantly decrease the total number 

of negative review counts, even after controlling developer heterogeneity. Number of 

applications developed by the developer (𝛼1 = −0.3289), average counts of applications 

developed by the developer ( 𝛼2 = −0.1403 ), and having YouTube video ( 𝛽2 =

−0.1999), will also significantly decrease negative review counts.  

Second, after controlling for developer heterogeneity, price (𝛽1,2 = 1.3900), file 

size (𝛽4,2 = 0.0515), and average price of applications featured as “installed by other 

users” (𝛽19,2 = 0.1891), will significantly increase the number of negative review counts.   

Table III-8 reports the posterior mean estimates of implementing the models on 

ratio of total POSITIVE review counts over lower bound of downloads.  

First, price ( 𝛽1 = 1.0420 ), average rating ( 𝛽15,3 = 2.7900 ), number of 

screenshots (𝛽3 = 0.0834), and file size (𝛽4 = 0.0898), and average price of applications 

featured as “installed by other users”(𝛽19,3 = 0.1431), will significantly increase the total 

number of positive review counts, after controlling developer heterogeneity.  

Second, the number of applications developed by the developer (𝛼1 = −3.8470) 

and average counts of applications developed by the developer (𝛼2 = −1.2740) will 

significantly decrease positive review counts, even after controlling for developer 

heterogeneity.   

 



 
 

 
 

7
7 

Table III-8 Posterior means of the model on log(positive counts/downloads) 

 Lognormal regression random intercept 
random coefficient - 

uncorrelated random coefficient - correlated 

 mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% mean 2.50% 97.50% 

𝛼1 -0.3616** -0.4536 -0.2669 -3.8470** -4.4010 -3.3370 -4.1380** -4.7260 -3.5590 -4.1740** -4.7670 -3.6110 

𝛼2 0.1500** 0.0749 0.2241 -1.2740** -1.6750 -0.8842 -1.4850** -1.9360 -1.0520 -1.4900** -1.9500 -1.0470 

𝛼3 0.3280** 0.2482 0.4076 -0.0702 -0.4938 0.3508 -0.0018 -0.4340 0.4279 -0.0307 -0.4680 0.3908 

𝛽1 -0.2540** -0.4699 -0.0363 1.0420** 0.9008 1.1890 1.1130** 0.9241 1.2980 1.1240** 0.9270 1.3170 

𝛽2 0.1081 -0.0211 0.2379 0.0963 -0.0087 0.2060 -0.0350 -0.1579 0.0914 -0.0251 -0.1538 0.1177 

𝛽3 0.0649 -0.0012 0.1305 0.0834** 0.0299 0.1409 0.0595 -0.0197 0.1407 0.0665 -0.0152 0.1410 

𝛽4 0.1107** 0.0549 0.1671 0.0898** 0.0465 0.1347 0.1347** 0.0483 0.2289 0.1382** 0.0485 0.2270 

𝛽5 -0.4185** -0.5559 -0.2799 0.0088 -0.1013 0.1227 -0.0248 -0.1623 0.1133 -0.0092 -0.1392 0.1184 

𝛽6 -0.6169** -0.8268 -0.4084 -0.0753 -0.3097 0.1546 -0.0722 -0.3775 0.2436 -0.0166 -0.3237 0.2855 

𝛽7 -0.3365** -0.5148 -0.1595 0.0203 -0.1235 0.1621 0.0481 -0.1242 0.2198 0.0680 -0.0980 0.2331 

𝛽8 -3.8380** -4.0580 -3.6190 -0.4835** -0.7367 -0.2307 -0.7306** -1.0260 -0.4386 -0.5674** -0.9110 -0.2465 

𝛽9 -4.1390** -4.3500 -3.9290 -0.5965** -0.8699 -0.3302 -0.8991** -1.2210 -0.5882 -0.7563** -1.1310 -0.4130 

𝛽10 -3.8300** -4.0460 -3.6060 -0.5880** -0.8715 -0.3139 -0.8224** -1.2240 -0.4421 -0.6502** -1.1030 -0.2705 

𝛽11 -3.9400** -4.1360 -3.7410 -0.4858** -0.7409 -0.2354 -0.7501** -1.0540 -0.4454 -0.6354** -0.9726 -0.3119 

𝛽12 -4.3570** -4.5730 -4.1400 -0.8015** -1.0690 -0.5507 -0.8796** -1.1630 -0.5880 -0.7780** -1.1170 -0.4581 

𝛽13 -4.3320** -4.5270 -4.1380 -0.7409** -1.0090 -0.4942 -0.8931** -1.1780 -0.5962 -0.7741** -1.1280 -0.4478 

𝛽14 -3.5190** -3.7230 -3.3110 -0.2174 -0.4267 0.0011 -0.2647** -0.5121 -0.0175 -0.2441 -0.5052 0.0010 

𝛽15 -0.0647** -0.1155 -0.0132 -0.0124 -0.0489 0.0220 2.7900** 2.1770 3.4340 2.3460** 1.8090 2.9100 

𝛽16 0.0830** 0.0273 0.1385 0.0437** 0.0058 0.0804 0.0263 -0.0227 0.0759 0.0286 -0.0191 0.0798 

𝛽17 0.0095 -0.0498 0.0680 -0.0272 -0.0645 0.0093 -0.0145 -0.0647 0.0333 -0.0160 -0.0636 0.0304 

𝛽18 0.1108** 0.0486 0.1737 0.0621** 0.0197 0.1052 -0.0148 -0.0754 0.0468 -0.0024 -0.0619 0.0564 

𝛽19 0.7242** 0.6255 0.8233 0.1844** 0.1167 0.2491 0.1431** 0.0636 0.2291 0.1535** 0.0710 0.2453 

𝜎 1.3450 1.3070 1.3830 0.7598 0.7371 0.7831 0.5741 0.5519 0.5961 0.5874 0.5651 0.6103 

𝜎𝜂       3.1710 2.8730 3.4960 3.2570 2.9360 3.6110 3.3210 2.9490 3.7070 

DIC   -13510   -16030   -16740   -16700 
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3.6 Conclusion 

3.6.1 A Summary of Results 

In this study, we developed models to test the effects of price on the volume of online 

consumer reviews for mobile applications. We first implement the model on the total 

volume of online WOM (model 1). Results show that free applications will significantly 

increase the volume of online WOM, which, to some extent, confirms the practitioner 

assumption that the Freemium business model will help marketers gain online WOM. 

However, our further exploration proved that this effect is spurious after considering the 

influence of the size of the user base.  

More than half of the mobile applications in the marketplace are free giveaways. 

In some cases, developers may release both free and paid versions with different 

features. Marketers of mobile applications offer free giveaways in the hope of increasing 

sales through boosting online WOM. The assumption here is that the more user bases 

that a product acquires, the more value that users perceive. This should increase the 

volume of online WOM and therefore increase acquisition of new customers. We test this 

idea in our second model by adding the variable of user base as an explanatory variable.  

However, simply treating user base as an explanatory variable cannot exclude the 

possibility that current users may attract more future users. Given the unique attributes 

of our dataset that the ratings and reviews of each application were posted by actual 

users, we empirically implement a third model. In this model, the outcome is not the 

absolute volume of online WOM. Instead, we explore what factors influence the 

probability of users posting their reviews after they actually experience the product. Our 
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results suggest that Freemium business model does not help to boost online WOM at all. 

Instead, users who adopt paid applications are most likely to express their opinions 

online. The explanation is that users downloading paid applications may put more effort 

on evaluating the potential usage value of the benefit (Wathieu and Bertini, 2007) and 

thus are more engaged in behaviors such as spreading WOM online.   

In addition to this important finding, this study reveals the influence of many other 

factors on users’ probability of posting their WOM online. First, mobile applications of 

larger file size will be more likely to be talked about. Second, number of screenshots, as 

an advertising cue, helps to boost users’ probability of posting their ratings and reviews 

online after accounting for unobserved heterogeneity of developers. Third, mobile 

applications with more mature content will less likely to stimulate users to spread their 

WOM online. Fourth, users will be more likely to talk about mobile applications with 

higher average rating after accounting for unobserved heterogeneity of developers. Fifth, 

competition from similar applications actually seems not so important after accounting 

for unobserved heterogeneity of developers. Finally, however, developers’ experience is 

important. An interesting point found in our research is that the more applications 

developed by the developer, the less likely that the focal applications to be talked about. 

In other words, public visibility in this sense does not help to simulate online WOM. But 

on the contrary, users like to talk about the applications developed by unknown 

developers, which is consistent with the idea of Hughes (2005) that unusual, outrageous, 

or remarkable things generate conversation. People love to talk about things that are 

different and surprising (Rosen, 2009; Knox 2010; Nulman, 2009).  
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Moreover, given the positive influence of average rating on volume, it is important 

to examine the key factors to generate both positive and negative volume of online WOM. 

There are many important findings. First, low average rating stimulates negative online 

WOM. On the positive side, however, higher average rating will simulate more positive 

volume of online WOM. Second, having YouTube Video will decrease the number of 

negative WOM.  

3.6.2 Managerial Implications 

The findings of the present study have important managerial implications for mobile 

applications and other digital products, such as online blogs, online videos, etc. In the 

marketplace of digital products, since online WOM has dominant influence on boosting 

user bases, it is important for marketers to stimulate users spreading their WOM in order 

to acquire more users. However, an intuitive assumption in the marketplace is that free 

giveaways may attract more users to install the applications and therefore increase online 

WOM. Our empirical results support this assumption. However, a further question faced 

by current developers is that of how to monetize their products. The findings suggest that 

free mobile applications are double-edged swords. On the one hand, they may help the 

developers gain users and increase online WOM. On the other hand, free mobile 

applications may cannibalize the market share of paid application and thus hurt the 

profitability of this product. Our research, however, shows that among those users who 

download the applications, users who actually spend money to buy the application will 

be more likely to spread WOM. To this point, although free giveaways may help to boost 

installation base, it may not necessarily create interests among users.  Users are more 
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likely to discuss apps that they actually paid for. To generate more online WOM, 

developers have to make their applications more interesting. In addition, applications 

with less mature content will help to boost online WOM. High average ratings will 

definitely increase the volume of online WOM. But the influence of average rating is 

extreme. Higher average rating will increase later on positive volume of online WOM, but 

lower average rating will increase later on negative volume of online WOM.   

3.6.3 Limitations and Future Directions 

As a new industry, in just 4 years, mobile apps have overtaken the web and are beginning 

to challenge television, the top media channel. Yet, academic research hasn’t caught up 

with this domain. In this hyper-competitive landscape with a wide range of choices, 

mobile apps consumption of mobile apps gives rise to a whole host of research areas that 

straddle both marketing and technologies. In our study, we explore the issue that what 

factors generate online WOM. However, an important mechanism which is probably a 

bigger driver of app discovery and usage is offline WOM. To understand what factors 

influence these face-to-face mechanisms are important because many consumers 

instantly download applications that their friends/acquaintances are using when this 

discovery happens face-to-face as a friend can convey why he or she likes the application 

and uses it. In addition, for apps with strong network effects, knowing what friends and 

family members are using has a greater influence on the eventual choices. Therefore, an 

important area for future research is to not only understand the varying effects of reviews 

on apps sales but also the review generation process that can determine how may reviews 

an app gets.  
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In our current study, we only account for both observed and unobserved 

heterogeneity of mobile application developers. Another type of heterogeneity may be 

even more important in terms of online WOM – the user characteristics. Users differ in 

their ability and motivations to use applications in the ways they are intended, and as a 

consequence, have varying perceptions of app features. Mobile apps developers, 

therefore, must understand the characteristics of users to improve the design and other 

features of their products.  
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IV. Customer Acquisition and Growth in Extremely Competitive 

Markets: Insights from the Mobile App Category 

 

Abstract 

In essay III, I aim to jointly analyze the customer acquisition reached and the time to get 

there using a joint ordinal-survival analysis model. The focus in this research is on why, in 

the face of such extreme competition, some apps acquire customers faster than others.   

I investigate this question using data on the number of users acquired, and the acquisition 

growth, for about 2455 Apps from Google Play. I categorize the number of users acquired 

into ordered tiers and formulate a joint model of growth and customer acquisition using 

a survival model for the former and an ordinal logit model for the later.  The explanatory 

variables include price, valence of customer rating, and other product attributes. 

Additionally, effects of competitive contexts and frames are considered.  I also consider 

the role of information cascades on customer acquisition and growth in extremely 

competitive markets.  The model is calibrated within a Bayesian framework using MCMC 

methods.  Findings for the app category as well as generalizable implications for 

extremely competitive markets are discussed.    

Key Words: Customer Acquisition; Growth; Extremely Competitive Markets; Mobile App; 

Joint Ordinal-Survival Analysis Model 
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4.1  Introduction 

Many categories today are extremely competitive due to a plethora of similar products 

being continuously offered in the markets.  For instance, mobile app users have more 

than 1.3 million available apps to choose from Google Play and 1.2 million apps on Apple’s 

app store as of July 201410.  Similarly, more than a billion subscriptions were spread across 

250, 000 unique podcasts in more than 100 languages on Apple’s iTunes Store as of July 

201311.  Individuals can also write and self-publish eBook or articles through e-book 

publishing platforms such as Amazon Kindle Direct Publishing12.  Additional examples of 

extremely competitive categories include, online microblog subscriptions (e.g., Twitter), 

online video subscriptions (e.g., YouTube), online question-and-answer services (e.g., 

Quora), and so on. The format that platforms allows anybody to launch products 

exaggerates the competition in these categories.  

Firms typically rely on three revenue models to monetize their products under the 

extreme competition.   First, a majority of firms in the markets adopt a freemium business 

strategy, offering products in the hope of expanding customer acquisition. Thus, 

advertisers may seek to promote their products through built-in advertisements in 

products in extremely competitive markets.   Second, some firms may also provide a 

version of the product with more features offered at a price while a free version can be 

                                                           
10 http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/ 
11 Trevor Mogg (July, 2013), “Apple Hits One Billion Podcast Subscriptions Via iTunes Store”, 
http://www.digitaltrends.com/mobile/apple-hits-one-billion-podcast-subscriptions/ 
12 David Carnoy(2012), “How to self-publish an ebook”, http://www.cnet.com/how-to/how-to-self-
publish-an-ebook/ 

http://www.digitaltrends.com/mobile/apple-hits-one-billion-podcast-subscriptions/
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acquired, which may bring some revenue to the company.   Third, other companies may 

adopt a base and add-on pricing strategy (Bertini, Ofek and Ariely 2009; Erat and 

Bhaskaran 2012), offering a basic version of the product for free or at a very low price, 

but charging fees for additional product features, which are referred as in-app products.  

Despite the widespread use of the three revenue models, a vast majority of businesses 

make little profits, which is especially true in mobile application market (Forbes 2013). An 

average iOS developer may earn a dime for every one of the 40,000 potential app 

downloads13. An Android developer, however, makes substantially lower revenue, with 

the average app download bringing in around 2 cents to its developer (Forbes 2013).  

Therefore, there is much work to be done to increase monetization of products in 

extremely competitive markets.  One way is to increase the unit revenue per purchase. In 

other words, businesses should either increase unit prices of the base product and add-

ons or provide a paid-version of the product for customers, i.e., by utilizing the last two 

revenue models mentioned above.   

Another way to increase revenue, giving the universally low margin in these categories, is 

to increase the customer acquisition and growth rate. The developers may, thus, make 

decent profits based on a large user base through the first revenue model, though the 

unit margin is relatively low.  The businesses, however, vary substantially in the customer 

base acquired and the time taken to reach the level of customer acquisition.    For 

                                                           
13 In the article of “How Much Do Average Apps Make?” (Forbes 2013), Tristan Louis computed the 
revenue per download based on the total downloads and thus the revenue earned in the two platforms.  
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instance, in the mobile app market, based on a sample I collected, when Rovio Mobile 

Ltd. launched a new app, “Angry Birds Star War”, on Nov 8, 2012, it quickly became a hit 

- acquired more than 10 million users in less than six months (161 days).  However, 

another product in the sample, “Neon Smoke”, which was released on Mar 6, 2012, only 

acquired more than 10 thousand users over 14 months (408 days).   

The substantial variation in customer acquisition and growth rate permits us to explore 

the question of what factors help to attract more users rapidly. The issue has not yet been 

investigated in previous literature. This is the focus of the research.   Specifically, the study 

aims to provide insights into why some apps grow faster than others regardless of what 

level they grow to.   For instance, there would be two apps which both grow to the 5000-

10,000 level but one gets there within 20 days while the other take 200 days. Likewise, in 

another case where two apps both reached the million download mark, one app would 

have reached there in 60 days while the other took 100 days.   By jointly analyzing both 

the level reached, and the time taken to get there, across these very different pairs, one 

can get overall insights regarding when apps grow rapidly.  To investigate the issue, I 

developed a conceptual framework in which both customer acquisition and growth rate 

are affected by context effects, framing effects, and information cascade effects. The data 

of 2454 mobile apps were collected for the study and a simultaneous equation model 

with joint random effects is implemented in Bayesian Paradigm by using MCMC methods.  

The research setting is the mobile app category. This is a relevant category to investigate 

for multiple reasons.  First, this is a typical market with extreme competition. As of 
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October 18, 2014, the total number of mobile apps in Android market is 1,376,761.  When 

users search for a certain type of product, the distributor will present a choice set with 

many competitive options. Therefore, businesses in the market compete for customers 

fiercely.   Second, the market grew rapidly in recent years.  According to Gartner (2013)14, 

the total number of downloads in 2012 was 63 billion, and it is projected to reach 269 

billion in 2017 – about 4.3 times.   Third, developers vary substantially in customer 

acquisition and growth rate. In the sample of over two thousand apps that I investigate, 

for instance, the customer base varied from 0 to more than 10 million and the time taken 

to reach a certain customer acquisition level varies substantially across different products.  

Finally, the product attributes, competitive context, and developers’ abilities and 

experiences vary substantially as well.  For instance, the file size, representing product 

complexity, varied from 0.001 MB to 1024 MB. The average volume of customer ratings 

for competitive products varied from 0 to 697185. The product assortment size varied 

from 5 to 67.  Such substantial variations in the product attributes, competitive context, 

and developers’ abilities and experiences and corresponding customer acquisition and 

growth rate permit us to investigate the effects of those factors on the two.  

Next I review the literature and develop the conceptual framework.   I then describe the 

data and the empirical model for the investigation.   Following this, I present the empirical 

results for the empirical investigation.  Finally, I discuss the implications of the findings 

                                                           
14 Mobile App Store Downloads, Worldwide, 2010-2016 (Millions of Downloads). Source: Gartner 
(September 2013) 
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for the customer acquisition and growth rate in extremely competitive categories and 

provide directions for additional research.  

4.2 Conceptual Framework 

In extremely competitive markets, customers start making purchase decisions by 

searching for product information through big platforms.   For instance, customers 

acquire mobile apps primarily through the five largest platforms, Google Play Store, 

Apple’s App Store, Amazon’s App Store, and Windows App Store.  The platforms provide 

information of a large number of products in a certain similar format.  Taking Google Play 

Store as an example, a search of products on the platform results in icons of hundreds of 

similar options.  An icon displays the app name, the developer’s name, and the price.   By 

clicking the icon, customers can obtain more information of the product, including 

screenshots, valence and volume of customer ratings, product description, file size in 

megabytes, content rating, customer acquisition in the form of ranges, etc.  

Additionally, distributors will display a set of competitive products on the same page in 

which four of them are apps viewed by similar users and another set of four apps are apps 

installed by the users who also installed the app being evaluated.  The app name, 

developer name, price, and volume of customer ratings used to be displayed on each icon.  

Distributors thus define the competitive context (Tversky and Simonson 1993) of each 

item in the choice set.   

Moreover, an assortment of products created by the same developer would also be 

displayed on the website. By clicking the link of “more from developer”, customers can 
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find icons of all other products created by the developer on the platform. A click on an 

icon would reveal its price, valence and volume of customer ratings, etc. The set of 

products created by the same developer, therefore, provides a frame (Kahneman and 

Tversky 1986) for each product presented in the choice set.  

In extremely competitive markets such as mobile apps, customers may rely on price to 

evaluate the alternatives and select the best option. However, faced a large number of 

similar options, customers may be susceptible to choice overload (Iyengar and Lepper 

2003) and desire to simplify the choice decisions (Dhar, Nowlis and Sherman 2000).  Thus, 

we suggest that the customer acquisition and growth rate are also subject to context 

effects (Prelec, Wernerfelt and Zettelmeyer 1997; Bertini, Wathieu and Iyengar 2012) and 

framing effects (Tversky and Kahneman 1981; Kahneman and Tversky 1986; Levin, 

Schneider and Gaeth 1998) which can help simplify the choice.   

Additionally, an increase in the number of customers may also lead to informational 

cascades (Anderson, 2001; Bikhchandani, et al., 1992; Bikhchandani, et al., 1998; Walden 

and Browne, 2002) and thus increase the growth rate.   The theoretical framework, thus, 

is based on the above four components.  

Weighted Additive Utility Model 

Facing a wide selection of similar products in extremely competitive markets, consumers 

may need to take considerable cognitive effort on evaluating the product attributes to 

find an optimal choice. To achieve the goal, we suggest that customers may rely on the 
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weighted additive utility model (Bettman, Luce and Payne 1998) to assess the utility of a 

specific product.  

There is evidence in the literature that consumers use the weighted additive-utility model 

where they evaluate the attributes of an alternative in detail in order to select the best 

option. For instance, Bettman, Luce and Payne (1998) suggest task complexity can 

influence information processing.  Specifically, as the complexity of the product increases, 

consumers are likely to resort to simpler heuristics. Swaminathan (2003) suggests 

customers are more likely to rely on recommendation agents to select the “best” option 

while product complexity is low.  In the case of products in mobile application market, a 

product with larger file size may contain more features and provides more in-app 

products for customers, and thus increase the product complexity, which may require 

more cognitive efforts.  Therefore, I suggest that a product with a high level of complexity 

may discourage customers to select it due to information overload (Jacoby 1977), and 

thus, attract less customers and decreases growth rate.  

Previous literature also suggest that product category may affect customers’ choice 

decision. For instance, Park and Lessig (1981) suggest that consumers with greater 

knowledge are better able to distinguish between attribute levels than those with lower 

levels of knowledge.  In addition, consumers with higher knowledge levels are able to 

make trade-offs between various attribute levels more easily than consumers with less 

knowledge.  Swaminathan (2003) indicates that when consumers have less category 

knowledge, to increase decision quality, consumers are more likely to rely on 
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recommendation agents.   When it comes to products in extremely competitive markets, 

knowledge of product categories becomes even more important, since the themes of 

each category vary substantively. Therefore, I also expect that knowledge of the product 

category of a product can help to attract more customers and thus increase growth rate. 

However, whether customers are familiar with a certain product category is an empirical 

results.  

Additionally, on the one hand, previous studies suggest the product price can affect the 

perceived quality of products (Gabor and Granger 1966; Dodds, Kent and Grewal 1991; 

Wathieu and Bertini 2007; Bertini, Wathieu and Iyengar 2012; Lalwani and Shavitt 2013). 

The reliance on price to assess a product’s quality or performance is particularly likely in 

extremely competitive categories (Bertini, Wathieu and Iyengar 2012). In these 

categories, most firms give their products away for free or sell at very low prices. Thus, a 

higher price may signal better product quality.  Wathieu and Bertini (2007) suggests 

higher prices in such categories could be “thought provoking and enhance the perception 

of relevance” thus increasing the likelihood of choice.  On the other hand, price also plays 

an allocative role due to budget constraints (Becker 1965, Friedman 1957) faced by 

consumers who need to allocate available monetary resources across multiple products. 

Thus, as the price of a product increases, less would be available to allocate to other 

products (Erickson and Johansson 1986) if the product is purchased. In extremely 

competitive markets, we suggest that the allocative role of app price is stronger than its 

informative role since the price is too low to signal product quality. Thus, a high product 

price is expected to decrease customer acquisition and growth rate.  
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Advertising can also affect the sales and shares of the products they sell (Tellis 1988; 

Erdem, Keane and Sun 2008).  For instance, Tellis (1998) suggests advertising exposures 

will reinforce preference for brands. Erdem, Keane and Sun (2008) also imply that both 

advertising frequency and content can signal product quality.  In extremely competitive 

categories, some developers will provide promotional videos for customers to increase 

the visibility of the product, and/or to signal better product quality (Erdem, Keane and 

Sun 2008) and reinforce preference (Tellis 1988), which would eventually increase 

customer acquisition and growth rate.  

Finally, previous studies suggest that the valence of customer ratings can affect product 

sales (Liu 2006; Dellarocas, Awad and Zhang 2005; Duan, Gu and Whinston; Hao, Li, Tan 

and Xu 2011). For instance, Liu (2006) suggests positive WOM enhances perceived value 

and thus has either a direct or an indirect recommendation for product purchase. In 

extremely competitive markets, products are a type of experience goods. It is difficult for 

customers to evaluate the true quality before actually using the product. Additionally, a 

considerable heterogeneity exists among a mixture of individual and organizational 

businesses which make it even more difficult for users to distinguish the quality of 

products ex ante (Hao, Li, Tan, and Xu 2011). Thus, the valence of customer ratings, i.e., 

average ratings, displayed by distributors, provides good source for customers to form 

initial evaluations for products and thus helps them to make final decisions. Specifically, 

we expect that the positive valence of customer ratings would encourage future users to 

purchase it and thus increase the growth rate.  
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Therefore, we suggest customers may evaluate the above attributes based on the 

weighted additive-utility model.  However, although a reliance on weighted additive 

utility model may lead to relatively better decisions, the proliferation of choice may 

demotivate the shoppers (Iyengar and Lepper 2000), who thus may desire to simply their 

choices (Dhar, Nowlis and Sherman 2000) by examining contexts and frames of the 

products.  Specifically, in extremely competitive markets, customers are expected to 

utilize the information in the context of the alternatives provided by other firms (Prelec, 

Wernerfelt and Zettelmeyer 1997; Bertini, Wathieu and Iyengar 2012). Additionally, they 

may evaluate the frames (Tversky and Kahneman 1981; Kahneman and Tversky 1986; 

Levin, Schneider and Gaeth 1998) to further assess the evaluated alternative based on 

the product assortment of a firm.  

Context Effects  

There is extensive evidence in the literature (Tversky and Simonson 1993 15 ; Prelec, 

Wernerfelt and Zettelmeyer 1997; Kivetz, Netzer and Srinivasan 2004; Sela, Berger and 

Liu 2009; Simonson 200816; Bertini, Wathieu and Iyengar 2012) that customers rely partly 

on context to evaluate alternatives. Context effects are likely to occur when consumers 

face uncertain decision environments either due to product proliferation and clutter 

(Bertini, Wathieu and Iyengar 2012) or uncertainty of product attributes (Prelec, 

Wernerfelt and Zettlrmeyer 1997; Simonson 2008).   Both conditions are likely to occur in 

                                                           
15 Tversky and Simonson (1993) define the context as “the set of options under consideration” (p.1181).  
16 Simonson (2008) refer to the preference that are context-dependent as “constructed preferences” in 
contrast to “inherent preferences”. 
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extremely competitive markets.  First, in extremely competitive markets, products being 

offered for customers have increased rapidly over the past several years. For a single 

product category, customers may find hundreds of competitive options in the markets 

when making a purchase decision.  Second, since products in these markets are 

experiential, customers lack of the knowledge to distinguish the quality of product 

attributes until they actually use them (Hao, Li, Tan, and Xu 2011). When customers face 

options that can provide very limited or no experience (Kivetz, Netzer and Srinivasan 

2004), the constructed preference based on context effects should dominate the overall 

evaluation (Simonson 2008).  I, therefore, expect context effects would play a big role in 

customer acquisition and growth in extremely competitive markets since products in 

these markets are displayed with a set of competitive options selected by the platforms 

which forms a competitive context for the product being evaluated.  

To construct the context for products in extremely competitive categories, we rely on 

average price of the competitive products to capture the influence of price in the context 

and the average volume of customer ratings to represent the popularity of products in 

the context. Two types of context effects have been widely discussed in previous 

literature. One type of context effect is the attraction effect – adding an inferior product 

to the choice set may increase the attraction of the current options.  Another 

consequence of the context is the compromise effect which leads customers to select a 

middle of the road product to avoid extremes. Both effects suggest that price and quality 

of other products can serve as important components of context for the one being 

evaluated but which effect should dominate is an empirical result. If attraction effect 
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dominates, we expect that a product with a context of lower-priced items is more likely 

to attract customer acquisitions and increase the growth rate. In addition, a product 

displayed within a context of widely discussed items are less attractive and thus decrease 

the customer acquisitions and growth rate. However, if compromise effect dominates, 

adding a high-priced and more popular item to the context will increase the acquisition 

of the product and its growth rate. 

Framing Effects 

Although context effects arise from the relative differences between an option being 

considered and other competing options available in the choice set, the past and present 

context of experience may serve as frames during a decision making process. Individuals 

tend to choose alternatives framed as gains to avoid any risks based on previous economic 

literature (Tversky and Kahneman 1981; Kahneman and Tversky 1986). The behavioral 

literature identified three types of framing effects (Levin, Schneider and Gaeth 1998): (1) 

risky choice framing based on levels of risk described; (2) Attribute framing based on some 

characteristics of an object or event; (3) Goal framing based on how is the goal of an 

action or behavior is framed.  Additionally, they find that consumers respond more 

favorably to positive frames than negative frames, since positive frames evoke favorable 

associations in memory and encourage the retrieval of positive information (Levin, 

Schneider and Gaeth 1998; Janiszewski, Silk and Cooke 2003). Similar evidence can be 

found in literature. For instance, Berger, Draganska and Simonson (2007) suggests the 

assortment demonstrates variety and indicates experience in developing similar products 
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may increase the valuation of its alternative.  Additionally, adding more options to existing 

product lines will increase the valuation of the alternative being evaluated (Bertini, Ofek 

and Ariely 2007).  

Therefore, we expect a product’s frames based on other products created by the firm may 

affect the acquisition decision and growth rate in extremely competitive categories. To 

operationalize the framing effects, we construct three variables (1) the average price of 

the products created by the developer; (2) the average volume created by the developer; 

(3) the total number of products created by the developer. First, higher average price is 

expected to provide a favorable frame due to an association of better product quality and 

thus increase customer acquisition and growth rate.  Second, higher volume of positive 

customer ratings17  can also result in associations with positive information and thus 

provide favorable frames for customers. Additionally, firms with more products may 

indicates that more resources can be provided to improve product design and implement 

effective marketing strategies, hence, serving as favorable frames.  

Information Cascades 

An informational cascade occurs when it is optimal for an individual, having observed the 

actions of those ahead of him, to follow the behavior of those individuals without regard 

to the private information (Bikhchandani, Hirshleifer and Welch 1992).  The potential for 

observational learning and herding behavior arising from informational cascades has 

been discussed widely in the economic literature (Bikhchandani, Hirshleifer and Welch 

                                                           
17 On Google Play Store, the competitive apps displayed have high volume of positive ratings.  
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1992; Anderson and Holt 1997; Hung and Holt 2001; Celen and Kariv 2004; Alevy, Haigh 

and List 2006; Bowden 2013). 

The effect of information cascades has also studied in two streams of marketing literature 

(Golder and Tellis 2004; Godes and Mayzlin 2004; Watts and Dodds 2007; Zhang 2009; 

Lee, Tan, and Hosanagar 2009; Zhu and Zhang 2010; Chen, Wang and Xie 2011; Godes 

and Silva 2012).  One stream of literature explored the effect of information cascades is 

consumers’ product adoption behavior (Golder and Tellis 2004; Zhang 2009). Another 

stream of marketing literature exploring the Word-of-Mouth behavior has both 

empirically and experimentally tested the influence of information cascades (Godes and 

Mayzlin 2004; Watts and Dodds 2007; Zhu and Zhang 2010; Chen, Wang and Xie 2011; 

Godes and Silva 2012).  

According to Bikhchandani, Hirshleifer and Welch (1998), an informational cascade are 

likely to arise because individuals obtain similar information, face similar alternatives, and 

face similar payoffs, and as a result, individuals tend to make similar choices. Thus, the 

behavior resulted from information cascade is especially likely to occur in extremely 

competitive markets due to following reasons: (1) Distributors in mobile application 

market, such as Google Play Store, provide similar information of products for customers, 

including product attributes, information of other similar products, and information of 

other products created by the same developer; (2) The competitive products existed in 

the market can be viewed as similar due to uncertainties of the product attributes and 

difficulties of evaluate all possible options; (3) Customers do not have explicit preferences 
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towards the options, the payoffs obtained from the products they bought, thus, can be 

viewed as homogeneous. Therefore, in extremely competitive markets, I expect the 

information cascade would increase growth rate. 

Additionally, in the early stage of customer acquisition, the effect of product attributes 

may outweigh information cascades effect. For instance, Golder and Tellis (2004) suggest 

that the effect of early sales of a new product could be suppressed (Golder and Tellis 1997; 

Tellis et al. 2003), only a small number of customers adopts a new product based on its 

product quality.   However, as the number of new adopters increases, it provides 

increasingly strong signal to the non-adopters, who then adopt in increasing numbers.  

Therefore, I expect that the same pattern of customer acquisition would follow in 

extremely competitive markets.  In its initial stage, a small group of customers acquire the 

products based on private information (Bikhchandani, Hirshleifer and Welch 1998), i.e., 

the information of product attributes.  As the number of customer acquisition increases, 

the information derived from the decisions of others begins to outweigh an individual’s 

private evaluation. The informational cascades effects tend be more salient due to the 

convergence in actions as acquiring more customers.   

However, the cascade of customers to acquire a new product is likely to end in a certain 

stage which usually happens at the onset of maturity due to a decline of marginal benefits 

from current product and the announcement of new competitors. Thus, the growth rate 

may suffer. Therefore, in the present study, I include the categories of customer 

acquisition as indicators in the growth rate equation. I expect that a higher category of 
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customer acquisition would increase the growth rate in the early and growth stage.  

However, as the customer acquisition reaches a certain level, the growth rate would 

decline.  

4.3 Research Setting and Data Description 

I use data from the mobile app category for the empirical investigation. Most apps in the 

market are developed to be used with Google’s Android operation system, Apple’s iOS, 

or both, and are distributed through large distributors like Google Play and Apple’s App 

Store. Further, the number of apps carried by each store is very high. The Google Play 

store, for instance, had more than 30,000 apps offered for users across different product 

categories. The mobile app category is therefore extremely competitive and serves as an 

appropriate setting for this research.  

I collected the data on February 12, 2014, on all the apps available in the six categories of 

games, such as Arcade, Brain, and Cards for Google Play Store. Of the 2937 mobile 

applications that were available on that date, 483 apps were deleted either due to 

replicates or missing values. Therefore, the data of 2454 mobile apps were used for 

analysis. The mobile apps in the dataset were created by 272 developers. Hence, the data 

has a hierarchical structure. Further, a variable of primary interest in this research is the 

growth of the apps. I, therefore, identified the release date of each app in the dataset 

based on the information provided by App Annie18.  

                                                           
18 App Annie is a business intelligence company which tracks over 6,400,000 mobile applications across 
the iOS, Mac, Google Play, Amazon App Store, Windows Phone Store, and Windows 8 Store: 
http://www.appannie.com/   

http://www.appannie.com/
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Dependent Variables: 

The two dependent variables are the customer acquisition and growth rate. For each app, 

Google Play Store provides a measure of customer acquisition in terms of the tier of total 

downloads reached. A total of twelve tiers was collected from the store. However, the 

customer acquisition is grouped into six different categories, because it would be 

computationally demanding if we implement the issue using Ordinal Logit Model with 

twelve categories, especially when there is a hierarchical structure in the model. I proxy 

the growth rate as the number of days since the launch date to the date on which I 

collected the data.  Table IV-1 provides descriptive statistics of measures of both 

customer acquisition and growth rate.  

Table IV-1 Descriptive Statistics of Customer Acquisition and Growth 

Level Number of Users 
Number of 

Apps 
% of Sample 

Average Number of Days 
to Reach the Tier 

1 0 - 500 225 9.20% 279 

2 501 - 5,000 347 14.10% 308 

3 5,001 - 50,000 589 24.00% 347 

4 50,0001 - 500,000 573 23.30% 317 

5 500,001 - 5,000,000 520 21.20% 352 

6 5,000,001 - 10,000,000+ 200 8.10% 399 

Interestingly, the tiers are not equal in size. Lower tiers have a much smaller size than the 

higher ones. This, perhaps, reflects the realization in the industry as well that early growth 

is much slower than later growth.   Second, the distribution of the number of apps at each 

level of customer acquisition follows a normal distribution. Fewer mobile apps in the store 

have extremely low or high levels of customer acquisition, i.e., downloads of 0 to 500 and 

downloads of more than 5 million. The number of users of sixty eight percent of mobile 

apps in the sample lies between 5 thousand and 5 million.     
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Third, the number of days indicates the growth rate of customer acquisition. In the initial 

release stage, an app may gain a small user group, i.e., from 0 to 500, in a relatively short 

time period. However, the growth rate of user base decreases after the initial stage. It 

takes longer time for an app to reach a higher level of customer acquisition. Interestingly, 

after the customer reached the third level, i.e., from 5,001 to 50,000, the growth 

increased. After this stage, however, the growth rate decreased again. Both the last 

column of Table IV-1 and the Figure 1 illustrate the pattern.  

Figure 1: Growth across Different Levels of Customer Acquisition 

 

Independent Variables: 

Mobile apps are heterogeneous in terms of their themes (e.g., arcade, brain, etc.), and 

the number and complexity of attributes (Wall Street Journal 2013). Such differences can 

affect how consumers choose, use, and assess products (Bettaman, Luce and Payne 1998) 

based on weighted additive-utility model. I, therefore, use multiple variables to capture 

the effects of product attributes in customer acquisition and growth rate. Specifically, I 

include the following variables: (1) App price (PRICE) – the app price ranges from $0 to 
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$17.41. I recode the price variable into a dummy variable with 0 represents “free apps” 

and 1 represents “paid apps”. There are two reasons. First, the price dispersion of 

application is small. The most expensive applications in the dataset is $17.41. Second, 

more than half of applications are offered for free (63.74%). Therefore, it’s not 

appropriate to treat the variable as continuous variable (2) The promotional video 

(VIDEO) – about one third of mobile apps in the sample has promotional video – may 

increase visibility of products and thus serving as an advertising vehicle (3) The Product 

Category - include Arcade, Brain, Cards, Casual, Sports, and Racing.  I recode it to six 

dummy variables with Sports serving as the reference category and include the dummies 

into model to control for the differences in product categories (4) Average Rating 

(USR_RATING) – represents the perceived quality from users who actually installed the 

products. The average rating is very positive with mean average rating of 4.005. 

Therefore, the perceived quality of most mobile apps in the store is very high (5) the File 

Size in megabytes (FSIZE) – represent product complexity and therefore affect customer 

acquisition and growth rate. Table IV-2 provide the descriptive statistics of products 

attributes illustrated above.  

Table IV-2 Descriptive Statistics of Product Attributes 

Variables Categories Number of Apps in the Category Percentages 

PRICE 

Free 1872 63.74% 

Paid 1065 36.26% 

VIDEO 

No  1975 67.25% 

Yes  962 32.75% 

CATEGORY 

arcade 589 20.05% 

brain 407 13.86% 

cards 455 15.49% 

casual 805 27.41% 

sports 340 11.58% 
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racing 341 11.61% 

 Minimum    1st Quartile Median   Mean    3rd Quartile Maximum    

USR_RATING 0 3.8 4.2 4.005 4.5 5 

FSIZE 0.001 2.6 7 21.175 17 1024 

For every app, Google Play also presents information on the other apps “viewed” or 

“installed” by the user. I constructed four variables from this information to 

operationalize context effects: (1) I compute the average price (VIEW_PRICE) and average 

volume of ratings (VIEW_NUSERS) of mobile apps featured as “viewed by the same user” 

on the website. (2) I also compute the average price (INSTL_PRICE) and average volume 

of ratings (INSTL_NUSERS) of mobile apps featured as “installed by the same user” on the 

website.  Table IV-3 provides descriptive statistics of the four variables representing 

context effects. The mean average price of the apps “viewed by the same user” (1.078) is 

higher than that of the apps “installed by the same user”(0.775).  In addition, the mean 

average volume of the apps “installed by the same user” (30146) is much higher than that 

of the apps “installed by the same user” (808).  

Table IV-3 Descriptive Statistics of Variables Representing Context Effects 
 Minimum    1st Quartile Median   Mean    3rd Quartile Maximum    

VIEW_PRICE 0 0.248 0.743 1.078 1.495 12.598 
VIEW_NUSERS 0 1924 7364 30146 30905 697185 
INSTL_PRICE 0 0 0 0.775 1.490 9.168 
INSTL_NUSERS 0 31 70 808 230 107572 

Finally, Google Play also gives users the opportunity to learn more about the app 

developers’ features. For every app in the sample, Google Play provides a product 

assortment created by the developer and a hyperlink to a more detailed summary screen 

which includes all apps created by the developer. I use the information to construct three 

variables to represent the influence of framing effects: (1) The total number of mobile 
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apps created by the developer (NAPPS) – represents the size of product assortment; (2) 

The average volume of ratings of mobile apps created by the developer (NUSERS) – 

represent the general popularity of the products created by the developer; (3) The 

average price of mobile apps created by the developer (AVEPRICE), which may signal the 

average product quality of the products created by the developer.  Table IV-4 provides 

descriptive statistics of the three variables representing framing effects. The developers 

exhibit substantial heterogeneity in the size of the product assortments, the average 

volume of ratings, and the average price of product assortments. I relied on these three 

variables to control developers’ fixed effects in the empirical investigation. The control of 

heterogeneity reduces the likelihood of systematic correlation between app attributes 

and developers’ experience.  

Table IV-4 Descriptive Statistics of Variables Representing Framing Effects 

 Minimum    1st Quartile Median   Mean    3rd Quartile Maximum    

NAPPS 5 7 12 17.9 22 67 

NUSERS 1 95 1037 16791 14880 381976 

AVEPRICE 0 0 0.398 0.830 1.273 10.928 

 

4.4 Modeling Approach 

Since the goal is to investigate the factors that affect the time taken by app 𝑖 (𝑡𝑖𝑘,) to 

reach category 𝑘 (𝑘𝑖) since its launch, I decide to implement the issue using a joint model 

(Henderson, Diggle, and Dobson 2000) with survival model on growth rate and ordinal 

logit model on levels of customer acquisition. The probability for each app 𝑖 taking time 𝑡 

to reach level 𝑘 of customer acquisition, therefore, is: 

𝐿𝑖𝑘 = 𝑝(𝑘𝑖)𝑝(𝑡𝑖𝑘) 
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Where, 

p(𝑘𝑖) is the density function of the ordinal logit model; 

p(𝑡𝑖𝑘) is the density function of the survival model;  

Model for Growth: Survival Model  

Since the number of days in release is the proxy for growth rate, I take a survival analysis 

approach to investigate growth rate. For each app 𝑖, I assume that the baseline density of 

the event time follow a Weibull distribution, where 𝜇1𝑖 is the scale parameter and 𝜆 is the 

shape parameter.  

𝑡𝑖𝑘|𝜆, 𝜇1𝑖~𝑤𝑒𝑖𝑏𝑢𝑙𝑙(𝜆, 𝜇1𝑖) 

𝑓(𝑡𝑖𝑘|𝜆, 𝜇1𝑖) = 𝜇1𝑖𝜆𝑡𝑖𝑘
𝜆−1𝑒−𝜇1𝑖𝑡𝑖𝑘

𝜆
 

ℎ(𝑡𝑖𝑘|𝜆, 𝜇1𝑖) = 𝜇1𝑖𝜆𝑡𝑖𝑘
𝜆−1 

The hazard rate ℎ(𝑡𝑖𝑘|𝜆, 𝜇1𝑖) indicates the probability of app 𝑖 will reach a higher level of 

customer acquisition given that they have reached the current level.    

The likelihood function of reaching a higher level given the current acquired customer 

base, therefore, is: 

p(𝑡𝑖𝑘|β, λ) =∏{𝜇1𝑖𝜆𝑡𝑖𝑘
𝜆−1𝑒−𝜇1𝑖𝑡𝑖𝑘

𝜆
}

𝑛

𝑖=1

, 𝑖 = 1,2, … ,2542 

The proportional term is: 𝜇1𝑖𝑘 = exp (𝑥1
′̅̅̅. 𝛽1̅̅ ̅ + ∑ 𝛾𝑘𝑑𝑘 

𝑘−1
ℎ=1,ℎ≠𝑘 ) . The covariates 𝑥1

′  

includes product attributes, variables representing context effects, and variables 

representing framing effects. Additionally, figure 1 suggests that growth rate is affected 

by level of the customer acquisition reached. It is likely that, in turn, mobile apps that are 

growing at a faster rate attract more users in later stages. I, therefore, allow for potential 
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simultaneity between the two outcomes. Operationally, I includes the tiers reached as 

indicators (𝑑𝑘𝑖𝑗) in the growth model. Therefore, in survival model, 𝛾𝑘captures the effect 

of passing the levels lower than 𝑘 on the time taken to reach 𝑘.   

𝑙𝑜𝑔(𝜇1,𝑖𝑘) = 𝛽1,1 × 𝑈𝑆𝑅_𝑅𝐴𝑇𝐼𝑁𝐺𝑖𝑗 + 𝛽1,2 × 𝑉𝐼𝐷𝐸𝑂𝑖𝑗 + 𝛽1,3 × 𝑃𝑅𝐼𝐶𝐸𝑖𝑗 + 𝛽1,4 × 𝐹𝑆𝐼𝑍𝐸𝑖𝑗

+ 𝛽1,5 × 𝑉𝐼𝐸𝑊_𝑁𝑈𝑆𝐸𝑅𝑆𝑖𝑗 + 𝛽1,6 × 𝑉𝐼𝐸𝑊_𝑃𝑅𝐼𝐶𝐸𝑖𝑗 + 𝛽1,7

× 𝐼𝑁𝑆𝑇𝐿_𝑁𝑈𝑆𝐸𝑅𝑆𝑖𝑗 + 𝛽1,8 × 𝐼𝑁𝑆𝑇𝐿_𝑃𝑅𝐼𝐶𝐸𝑖𝑗 + 𝛽1,9 × 𝐴𝑅𝐶𝐴𝐷𝐸𝑖𝑗 + 𝛽1,10

× 𝐵𝑅𝐴𝐼𝑁𝑖𝑗 + 𝛽1,11 × 𝐶𝐴𝑅𝐷𝑆𝑖𝑗 + 𝛽1,12 × 𝐶𝐴𝑆𝑈𝐴𝐿𝑖𝑗 + 𝛽1,13 × 𝑅𝐴𝐶𝐼𝑁𝐺𝑖𝑗 + 𝛾1

× 𝑑1𝑖𝑗𝑘 + 𝛾2 × 𝑑2𝑖𝑗𝑘 + 𝛾3 × 𝑑3𝑖𝑗𝑘 + 𝛾4 × 𝑑4𝑖𝑗𝑘 + 𝛾5 × 𝑑5𝑖𝑗𝑘 + 𝑢1,𝑗 

𝑑𝑘: 𝑑𝑢𝑚𝑚𝑖𝑒𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑝𝑝 𝑗𝑢𝑚𝑝𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑟 𝑙𝑒𝑣𝑒𝑙. 𝑘

= 1,2,3,4,5 

Table IV-5 Dummy Coding of Indicators d_k,k=1,2,3,4,5 
Indicator 𝑑𝑘  Dummy Coding 

𝑑1 “1” if reached level 2 of customer acquisition, “0” otherwise. 
𝑑2 “1” if reached level 3 of customer acquisition, “0” otherwise. 
𝑑3 “1” if reached level 4 of customer acquisition, “0” otherwise. 
𝑑4 “1” if reached level 5 of customer acquisition, “0” otherwise. 
𝑑5 “1” if reached level 6 of customer acquisition, “0” otherwise. 

We assume non-informative priors on all the parameters: 

𝛽1~𝑑𝑛𝑜𝑟𝑚(0,0.001) 

𝜆~𝑑𝑔𝑎𝑚𝑚𝑎(0.001,0.001) 

𝑑𝑘~𝑑𝑛𝑜𝑟𝑚(0,0.001) 

𝛾~𝑑𝑛𝑜𝑟𝑚(0,0.001) 

Model of Customer Acquisition: Ordinal Logit Model 

In the model of customer acquisition, I assume that the utility of application 𝑖  is 

represented by an unobservable latent variable 𝑈𝑖. The downloads of application 𝑖 will 

jump to a certain level on the basis of 𝑈𝑖.  
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𝑈𝑖 = 𝜇2,𝑖 + 휀 

The threshold parameters obey the ordering constraint: 𝜃1 < 𝜃2 < 𝜃3 < 𝜃4 < 𝜃5  

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖 = 1 
𝑦𝑖𝑒𝑙𝑑
→   𝑈𝑖 < 𝜃1 

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖 = 2 
𝑦𝑖𝑒𝑙𝑑
→   𝜃1 < 𝑈𝑖 < 𝜃2 

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖 = 3 
𝑦𝑖𝑒𝑙𝑑
→   𝜃2 < 𝑈𝑖 < 𝜃3 

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖 = 4 
𝑦𝑖𝑒𝑙𝑑
→   𝜃3 < 𝑈𝑖 < 𝜃4 

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖 = 5 
𝑦𝑖𝑒𝑙𝑑
→   𝜃4 < 𝑈𝑖 < 𝜃5 

𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑠𝑖 = 6 
𝑦𝑖𝑒𝑙𝑑
→   𝑈𝑖 > 𝜃5 

Assume that 휀 follows a logistic distribution, which means the cumulative distribution of 

휀 is 𝐹(휀) = exp (휀) (1 + exp(휀))⁄ .  

Specifically, 

      𝑝𝑖1 = 𝑃𝑟𝑜𝑏(𝑈𝑖 < 𝜃1) = 𝑃𝑟𝑜𝑏(𝜇2,𝑖 + 휀 < 𝜃1) = 𝑃𝑟𝑜𝑏(휀 < 𝜃1 − 𝜇2,𝑖) 

𝑝𝑖2 = 𝑃𝑟𝑜𝑏(𝜃1 < 𝑈𝑖 < 𝜃2) = 𝑃𝑟𝑜𝑏(𝜃1 < 𝜇2,𝑖 + 휀 < 𝜃2) = 𝑃𝑟𝑜𝑏(𝜃1 − 𝜇2,𝑖 < 휀 < 𝜃2 − 𝜇2,𝑖) 

𝑝𝑖3 = 𝑃𝑟𝑜𝑏(𝜃2 < 𝑈𝑖 < 𝜃3) = 𝑃𝑟𝑜𝑏(𝜃2 < 𝜇2,𝑖 + 휀 < 𝜃3) = 𝑃𝑟𝑜𝑏(𝜃2 − 𝜇2,𝑖 < 휀 < 𝜃3 − 𝜇2,𝑖) 

𝑝𝑖4 = 𝑃𝑟𝑜𝑏(𝜃3 < 𝑈𝑖 < 𝜃4) = 𝑃𝑟𝑜𝑏(𝜃3 < 𝜇2,𝑖 + 휀 < 𝜃4) = 𝑃𝑟𝑜𝑏(𝜃3 − 𝜇2,𝑖 < 휀 < 𝜃4 − 𝜇2,𝑖) 

𝑝𝑖5 = 𝑃𝑟𝑜𝑏(𝜃4 < 𝑈𝑖 < 𝜃5) = 𝑃𝑟𝑜𝑏(𝜃4 < 𝜇2,𝑖 + 휀 < 𝜃5) = 𝑃𝑟𝑜𝑏(𝜃4 − 𝜇2,𝑖 < 휀 < 𝜃5 − 𝜇2,𝑖) 

       𝑝𝑖6 = 𝑃𝑟𝑜𝑏(𝑈𝑖 > 𝜃5) = 𝑃𝑟𝑜𝑏(𝜇2,𝑖 + 휀 > 𝜃5) = 𝑃𝑟𝑜𝑏(휀 > 𝜃5 − 𝜇2,𝑖)       

In the ordinal logit model, similarly, the three sets of covariates representing the product 

attributes, context effects, and framing effects were included in the regression function. 

Additionally, the number of days since launch is included as a predictor in the customer 

acquisition in the model to control for simultaneity between growth rate and customer 

acquisition.  

𝜇2,𝑖 = 𝛽2,1 × 𝑈𝑆𝑅_𝑅𝐴𝑇𝐼𝑁𝐺𝑖𝑗 + 𝛽2,2 ×  𝑉𝐼𝐷𝐸𝑂𝑖𝑗 + 𝛽2,3 × 𝑃𝑅𝐼𝐶𝐸𝑖𝑗 + 𝛽2,4 × 𝐹𝑆𝐼𝑍𝐸𝑖𝑗 + 𝛽2,5

× 𝑉𝐼𝐸𝑊_𝑃𝑅𝐼𝐶𝐸𝑖𝑗 + 𝛽2,6 × 𝑉𝐼𝐸𝑊_𝑁𝑈𝑆𝐸𝑅𝑆𝑖𝑗 + 𝛽2,7 × 𝐼𝑁𝑆𝑇𝐿_𝑁𝑈𝑆𝐸𝑅𝑆𝑖𝑗

+ 𝛽2,8 × 𝐼𝑁𝑆𝑇𝐿_𝑃𝑅𝐼𝐶𝐸𝑖𝑗 + 𝛽2,9 × 𝐴𝑅𝐶𝐴𝐷𝐸𝑖𝑗 + 𝛽2,10 × 𝐵𝑅𝐴𝐼𝑁𝑖𝑗 + 𝛽2,11

× 𝐶𝐴𝑅𝐷𝑆𝑖𝑗 + 𝛽2,12 × 𝐶𝐴𝑆𝑈𝐴𝐿𝑖𝑗 + 𝛽2,13 × 𝑅𝐴𝐶𝐼𝑁𝐺𝑖𝑗 + 𝛽2,14 × 𝑑𝑎𝑦𝑠𝑖𝑗 + 𝑢2,𝑗 
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I again assume non-informative priors on all parameters: 

𝛽2~𝑁𝑜𝑟𝑚𝑎𝑙(0,0.001) 

The sample also suggests that the growth rate and customer acquisition can be related to 

two groups of observable variables: the application-level variables and the developer-

level variables.  For instance, a lower price of a mobile app may attract more users. 

However, products created by developers with good reputation and more resources 

might be more popular in the market. Therefore, I allow for a frailty in survival model and 

the random effects in the ordinal logit model to control for the heterogeneity of 

developers in the market. Operationally, I assume that they follow a bivariate normal 

distribution. 𝜇𝑢𝑗 capture the fixed effects of developers by regressing on three variables 

representing framing effects created by developers: (1) the total number of products (2) 

the average volume of ratings (3) and the average price.  𝛴𝑢 captures both the variances 

and covariance of growth rate and customer acquisition. Specifically, the variance of 𝑢1𝑗 

captures the random effects of developers on growth rate, whereas the variance of 𝑢2𝑗 

captures the random effects of developers on customer acquisition. Finally, the 

covariance captures the random effects of simultaneity between growth rate and 

customer acquisition. I assume non-informative priors and hyper priors on all the 

parameters.  

(
𝑢1𝑗
𝑢2𝑗
)~𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑢𝑗, 𝛴𝑢) 

Priors:  

𝜇𝑢𝑗~𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑛𝑢𝑗, 𝐵) 

Σ𝑢~𝑤𝑖𝑠ℎ𝑎𝑟𝑡(𝑅, 𝑛𝑢) 
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𝑚𝑛1,𝑗 = 𝛼1,1 × 𝑁𝐴𝑃𝑃𝑆𝑗 + 𝛼1,2 × 𝑁𝑈𝑆𝐸𝑅𝑆𝑗 + 𝛼1,3 × 𝐴𝑉𝐸𝑃𝑅𝐼𝐶𝐸𝑗 

𝑚𝑛2,𝑗 = 𝛼2,1 × 𝑁𝐴𝑃𝑃𝑆𝑗 + 𝛼2,2 × 𝑁𝑈𝑆𝐸𝑅𝑆𝑗 + 𝛼2,3 × 𝐴𝑉𝐸𝑃𝑅𝐼𝐶𝐸𝑗 

Hyper priors: 

𝛼𝑞,𝑟~𝑁𝑜𝑟𝑚𝑎𝑙(0,0.001) 

I calibrate the model using MCMC methods in Bayesian framework. Prior to model 

calibration, I log-transform and standardize all continuous variables in the sample due to 

skewness.   

4.5 Empirical Results 

4.5.1 Empirical Results of Growth Model 

Estimates of the parameters of the survival model are presented in Table IV-5 to Table IV-

8. The research question is on what factors affect the growth rate.  

Effects of the Weighted Additive Utility Model: 

First, as what we expected, price has a significant negative effect on hazard rate due to 

its allocative role (𝛽1,3 = −1.18). Thus, in the mobile app market, high price of products 

will reduce growth rate.  In other words, it takes longer time for a high-priced item to 

reach a higher level.  More importantly, however, product complexity has a positive effect 

thus increases hazard rate (𝛽1,4 = 0.151). Thus, a product with bigger file size will take 

shorter time to reach a higher level. Interestingly, both promotional videos and valence 

of customer ratings do not have any significantly effect on growth rate. As for the product 

categories, compared with Sports mobile apps, Arcade, Racing, and Casual mobile apps 

can increase hazard rate, whereas Cards will decrease hazard rate. Therefore, a card game 
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will take a longer time to reach a higher customer acquisition level compared to games of 

other categories.  

Table IV-6 Empirical Results of Price, Promotion and Product Attributes on Growth  

  Posterior Mean 2.5% 97.5% 

USR_RATING 𝛽1,1 -0.0411         -0.0949 0.0124 

VIDEO 𝛽1,2 0.1201 -0.0105 0.2479 

PRICE 𝛽1,3   -1.1800**  -1.4910 -0.8604 

FILE SIZE 𝛽1,4 0.1510** 0.0797 0.2259 

ARCADE 𝛽1,9 0.4115** 0.2412 0.5819 

BRAIN 𝛽1,10 0.1368 -0.0581 0.3354 

CARDS 𝛽1,11 -0.3422** -0.5957 -0.0977 

CASUAL 𝛽1,12 0.2751** 0.0965 0.4516 

RACING 𝛽1,13 0.3675** 0.1790 0.5569 

Empirical Results of Context Effects: 

Interestingly, two of the variables representing part of the effect of the context of mobile 

apps “viewed by similar users” do not have any significant effects on hazard rate.  Mobile 

apps “installed by similar users”, however, do have significantly negative effects on 

hazard rate.  Specifically, as the price of mobile apps “installed by similar users” increases, 

hazard rate decreases and thus the product being acquired will take longer time to reach 

a higher customer acquisition level, which is opposite to our expectation. The possible 

explanation is that customers may have a budget constraints on the apps that one can 

consume. Therefore, as the price the apps installed on their device increases, they are 

less likely to acquire a similar one.   Similarly, as the number of users who installed similar 

apps increases, hazard rate decreases and thus it takes longer time for the product to 

reach a higher customer acquisition level.  The possible explanation is that the 

competitive apps may have taken a considerable shares and thus decrease the rate to 



115 
 

 
 

acquire the product. Therefore, adding a high-priced and widely-discussed similar product 

to the context may hurt the growth rate, providing negative contexts for the product. 

Table IV-7 Empirical Results of Context Effects on Growth  

  Posterior mean 2.5% 97.5% 

VIEW_PRICE  𝛽1,5 0.0231    -0.0286 0.0765 

VIEW_NUSERS 𝛽1,6 0.0202 -0.0333 0.0752 

INSTL_PRICE 𝛽1,7 -0.1359** -0.2612 -0.0081 

INSTL_NUSERS 𝛽1,8 -0.2304** -0.3022 -0.1584 

Empirical Results of Framing Effects: 

Finally, the framing effects represented by the three variables of developer’s own context 

do not have any significant effects on growth rate.  Specifically, increasing the size of 

product assortment will reduce the growth rate but the effect is not significant. 

Interestingly, knowing that the other apps having more users would increase the growth 

rate and thus decrease the duration, this can probably attributed to the enhanced 

reputation of the developer. With more users using other products, a develop is more 

likely to be recognized by customers in the market and thus the reputation would be 

enhanced.  Additionally, adding a high-priced item into the product assortment will 

reduce the hazard rate and thus increase the duration, which is opposite to our 

expectation. Other products with high prices may require more resources and thus reduce 

the growth rate of the product being evaluated. 

Table IV-8 Empirical Results of Framing Effects on Growth  

  Posterior mean 2.5% 97.5% 

NAPPS 𝛼1,1 -0.0031 -0.8303 0.7680 

NUSERS 𝛼1,2 0.1336 -0.7651 1.0550 

AVEPRICE 𝛼1,3 -0.1655 -1.0630 0.6663 

Empirical Results of Information Cascade Effects: 
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We included five indicators in the survival model to represent the tiers crossed by the app 

with the first tier serving as the base.  Since each higher tier does take more days to be 

reached, hazard rate decreases as it proceeds through the tiers.  But, consistent with the 

information cascade theory, the estimates suggest that the reduction in hazard rate slows 

down, i.e., the growth rate picks up, as the customer acquisition of the product moves 

towards the higher tiers. Additionally, as we expected, the growth rate slows down after 

reaching the third level of customer acquisition, perhaps because the customer 

acquisition reached its early mature stage, which is also consistent with our expectation.  

Table IV-9 Empirical Results of Cascade Effects on Growth  

  Posterior mean 2.5% 97.5% 

d1 𝛾1 -0.8743**  -1.1150 -0.6243 

d2 𝛾2 -0.5469** -0.7056 -0.3721 

d3 𝛾3 -0.2575** -0.4182 -0.0863 

d4 𝛾4 -0.4927** -0.6691 -0.3091 

d5 𝛾5 -0.2025** -0.3925 -0.0149 

 

4.5.2 Empirical Results of Customer Acquisition Model 

Estimates of the parameters of the ordinal logit model are presented in Table IV-9 to Table 

IV-12. The research question was on what factors affect the customer acquisition.  

Effects of the Weighted Additive Utility Model 

First, as expected, increasing product visibility by providing promotional videos can 

significantly increase customer acquisition (𝛽2,2 = 0.6436). Second, increases in product 

complexity suppresses acquisition due to information overload (𝛽2,4 = −0.1205), which 

is also consistent with our expectation. Lastly, price has a significantly negative effect 

suggesting that apps have to be priced competitively to attract more users (𝛽2,3 =
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−6.195 ) since it plays a strong allocative role in extremely competitive markets.  

Additionally, the decision to allow for simultaneity is also supported – the number of days 

since launch has a significant positive effect on acquisitions (𝛽2,14 = 0.7795).  However, 

a display of product category wouldn’t help to increase customer acquisition in the case 

of extremely competitive markets. 

Table IV-10 Empirical Results of Effects of Price, Promotion, and Product Attributes on 
Customer Acquisition 

  Posterior mean val2.5pc val97.5pc 

USR_RATING 𝛽2,1 0.5369**  0.3699 0.7180 

VIDEO 𝛽2,2 0.6436**  0.4033 0.8873 

PRICE 𝛽2,3 -6.1950**  -6.8120 -5.6440 

FSIZE 𝛽2,4 -0.1205** -0.2327 -0.0072 

ARCADE 𝛽2,9 -0.0054 -1.5070 1.4720 

BRAIN 𝛽2,10 0.0075 -1.5210 1.5740 

CARDS 𝛽2,11 -0.0095 -1.5620 1.4960 

CASUAL 𝛽2,12 -0.0016 -1.5000 1.4660 

RACING 𝛽2,13 -0.0038 -1.5020 1.5080 

  DAYS 𝛽2,14 0.7795**  0.6308 0.9322 

 

Empirical Results of Context Effects: 

The average volume of customer ratings for the mobile apps “viewed by the similar users” 

has a significantly positive effect on customer acquisition (𝛽2,6 = 0.1293) and so does the 

average price of the mobile apps “viewed by similar users” (𝛽2,5 = 0.2372).   This is a 

positive context effect. Therefore, the competitive products with high price will drive 

customers away, compromise effect occurs in extremely competitive markets. In other 

words, customers are more likely to select a middle of the road product rather than a 

product with high price.  The significantly positive effect of the average volume of 

customer ratings for the competitive products indicates that customers tend to choose 
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product which are similar to the ones popular in the market but not the most popular 

ones.  

On the other hand, as the average price of similar products installed by others increases, 

the number of customer acquisitions comes down (𝛽2,7 = −0.3796), which serves as a 

negative context.  This, again, suggests that customers have a budget constraints on the 

consumptions of mobile apps. As they installed one or more mobile apps on the device 

with relatively high price, they are less likely to install a similar one. As the average volume 

of customer ratings of the similar products installed by others increase, however, the 

number of customer acquisition goes up (𝛽2,8 = 0.8319), providing a positive context. 

Therefore, users tend to download a mobile app when the similar ones installed on their 

device have higher average volume of customer ratings.  

Table IV-11 Empirical Results of Context Effects on Customer Acquisition 

  Posterior mean 2.5% 97.5% 

VIEW_PRICE  𝛽2,5 0.2372** 0.1330 0.3420 

VIEW_NUSERS 𝛽2,6 0.1293** 0.0188 0.2382 

INSTL_PRICE 𝛽2,7 -0.3796** -0.6372 -0.1131 

INSTL_NUSERS 𝛽2,8 0.8319** 0.6832 0.9833 

Empirical Results of Framing Effects: 

Turning to the framing effects, the average volume of customer ratings of other apps from 

the same developer has a significantly positive effect on customer acquisition (𝛼2,2 =

1.5480), which is consistent with our expectation.  Therefore, improving the reputation 

of other products created by the developer can provide a positive frame for the product 

being evaluated and thus help to attract more users. Additionally, adding high-priced 
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items to the product assortment will increase the attractiveness of the product being 

evaluated and thus form a positive frame as we expected, though the effect is not 

significant. Interestingly, increase the size of the product assortment will decrease the 

customer acquisition of the product and thus form a negative frame. A possible 

explanation is that providing more products for customers may reduce the resources 

allocated to each product and thus lower the product quality, which leads to less 

customer acquisitions.  

Table IV-12 Empirical Results of Framing Effects on Customer Acquisition 

  Posterior mean val2.5pc val97.5pc 

NAPPS 𝛼2,1 -0.1096 -0.6693 0.5034 

NUSERS 𝛼2,2 1.5480** 0.8543 2.2200 

AVEPRICE 𝛼2,3 0.1543 -0.4601 0.8025 

Empirical Results of Frailty and Random Effects: 

Finally, the elements in the precision matrix are significantly positive. Therefore, the 

variance across different developers affects both growth rate and customer acquisition. 

Additionally, the significant covariance between growth rate and customer acquisition 

indicates the two are conditional dependent. In other words, the growth rate is related 

to customer acquisition. The result was also confirmed by the estimates of indicators in 

the survival model and the growth rate in the ordinal logit model. Specifically, the growth 

rate will be accelerated as it gained more customers. In the meanwhile, the increased 

growth rate helps to gain more users.  

Table IV-13 Empirical Results of Frailty and Random Effects 

Precision Posterior mean val2.5pc val97.5pc 

𝜏11 0.5288 0.2842 1.0350 

𝜏12 0.7259 0.3839 1.4440 

𝜏21 0.7259 0.3839 1.4440 
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𝜏22 1.0120 0.5322 2.0350 

 

4.6 Discussion and Future Research Directions 

In extremely competitive markets, some products can attract a large number of 

customers in a very short time period but others are struggling to win customers over for 

a very long time. However, there is little research that provides insights regarding how 

firms can succeed in these categories in this regard. This is the issue that I address in this 

research. Specifically, I investigate the factors that affect the time taken by an app to 

reach a certain download category since its launch.  

I draw on an extensive research on decision making  in economics and marketing and 

develop a conceptual model based on four components in consumers’ evaluation of 

products: a weighted additive utility component (Bettman et al 1998), a component based 

on context effects (Iyengar et al 2010), a component based on framing effects (Tversky 

and Kahneman 1981; Kahneman and Tversky 1986; Levin et al 1998) component, and a 

component of information cascades (Bikhchandani, Hirshleifer and Welch 1992, 1998).  

To empirically test the proposed model, I collect a sample of mobile app data from Google 

Play Store and the website of App Annie. I reply on a simultaneous equation model with 

joint random effects to explore the effects of weighted additive utility model, contexts, 

frames, and information cascades on customer acquisition and growth rate. Specifically, 

on customer acquisition, I use an ordinal logit model with duration added as a control 

variable. On growth rate, I utilize a survival model with indicators of download ranges 

included serving as the proxy of the effect of information cascades.  
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The empirical results provide important managerial implications for the marketers in 

extremely competitive categories.   First, since customers may rely on weighted additive 

utility model to evaluate products, to acquire more customers and increase growth rate, 

developers should create less complex products offering at lower price. It is also 

necessary to provide promotional video to increase visibility of the products. Maintaining 

higher valence of customer ratings will help to increase customer acquisition as well.  

Second, developers should carefully position its product against competitors in the 

market to provide a positive context for their products. Specifically, adding a group of 

high-priced and widely discussed competitive products will increase the chances of the 

product being selected and thus provides a positive frame for the product. However, 

marketers should be aware that customers have a budget constraints on the consumption 

of mobile app products. Adding a high-priced similar product may decrease the customer 

acquisition and thus growth rate. But adding a more popular product may increase 

customer acquisition but decrease the growth rate of product being evaluated.  

Overall, to increase customer acquisition and growth rate, the empirical results suggest 

that marketers should (1) provide a product line (2) encourage users to spread word of 

mouth (3) offer lower prices and (4) carefully select competitors to position against.  

One limitation of the investigation is that our data is not longitudinal and thus we 

cannot explore the effects of previous downloads on subsequent customer acquisitions 

directly, though we believe the information cascade effect on the growth rate reflects 

that a “snowball effect” would occur in an indirect way, i.e., more customers would 
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acquire the product if it has already had a large group of user base.  Another limitation is 

that our data prevent us from exploring the effects of developers’ reputation and ability 

on customer acquisition and growth rate, such as the ability of developing outstanding 

products and implement effective promotional or advertising strategies. The effects of 

average price, average volume of customer ratings, and total number of products do not 

have significantly effects on the growth rate indicates that providing low-priced items, 

gaining more word of mouth, or expand the product assortment won’t help to increase 

the growth rate. It will therefore be useful for future research to empirically investigate 

the issue.  
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