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ABSTRACT
AN INVESTIGATION INTO VACCINATION BEHAVIOR:
PARAMETRIZATION OF A SAMOAN VACCINE SCARE

by

Amanda Spink

The University of Wisconsin-Milwaukee, 2015
Under the Supervision of Professor Gabriella Pinter

Vaccination behavior can be influenced by many factors. Some examples are vaccine

scares, evolutionary game theory, social learning such as media coverage, feedback

in the form of infectious cases, and herd immunity. We investigated a previously

published model that attempts to explain vaccination behavior based on a game

theoretic point of view. The model was applied to a large vaccine scare in the

country of Samoa, and a parameter estimation problem was solved for different risk

perception scenarios. It was found that the model fit best in the case of no social

learning and no feedback. However, adding in these factors did not compromise the

models’ accuracy. These results confirm that while social learning and feedback may

not completely describe vaccinating behavior they are important factors in

individuals’ decisions to vaccinate or not.
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1 Introduction

Disease has plagued the world since the dawn of time. Age old remedies and medicine

have been combating disease ever since. Vaccines, although a newer defense, have

helped manage the spread of disease. Still, not all people can or do take advantage

of vaccinations. Let us take an investigatory look into vaccinating behavior to help

understand this phenomenon. We shall specifically focus on the vaccinating behavior

with respect to the measles vaccine.

The measles is an RNA virus from the genus Morbillivirus of the family Paramyx-

oviridae. The virus is spread from skin to skin contact and through the air. The

virus can also remain in the air for hours. Measles has a contact rate of nine out of

ten, meaning for every ten people an infected person comes into contact with, nine

will contract the disease, making the disease highly contagious. Symptoms of measles

include fever, cough, and rash. It may take anywhere from seven to twenty-one days

to develop the traditional rash. Therefore, an individual can have the measles and

not show signs, which also leads to high infectious rates. Severe complications include

permanent brain damage, seizures, or death [7]. The seriousness of the disease led

John Enders to invent a vaccine and license it in 1963. Shortly after, in 1968, Maurice

Hilleman created an improved vaccine that is still used today [8].

Hilleman’s measles vaccine is usually given in combination with the mumps and

rubella vaccines, or more recently with the varicella vaccine. The abbreviation for the

measles, mumps, and rubella vaccine is MMR and MMRV when the varicella vaccine

is included. The vaccine works best in two doses. The first dose is 93% effective and

having two doses is approximately 97% effective. It is recommended to receive the

first dose at one year of age and the second dose at ages four to six. This leaves

children under one year of age susceptible. Also, those who have certain allergies,

are pregnant, or have diseases such as HIV/AIDS or cancer that weaken the immune
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system may not be able to get the MMR vaccine [9]. Those who are not able to get

the vaccine depend on herd immunity to stay protected from the disease [13].

Herd immunity is the concept that if enough of the population is immune, a

disease cannot spread, hence an epidemic cannot occur. The immunities may be from

vaccination or contraction of the disease and recovery [13]. To better understand

herd immunity, the traditional SIR model (susceptible-infected-recovered) may be

used. The model is given by

ds

dt
= −βsi, (1.1)

di

dt
= βsi− γi, (1.2)

dr

dt
= γi, (1.3)

where β =
6205

13
[1] is the infection rate, and γ =

365

13
[1] is the recovery rate.

Furthermore, to prevent an epidemic, the epidemiological threshold, R0, must be less

that one [13], i.e.,

R0 =
βs(0)

γ + δ
< 1, (1.4)

where δ = 0.02 [1] is the mortality rate per year and s(0) is the fraction of the

population that is initially susceptible. Solving for s(0) yields

s(0) <
γ + δ

β
. (1.5)

Since

s(0) + i(0) + r(0) = 1, (1.6)

where i(0) = 0.0001 [1] is the fraction of the population that is initially infected and

r(0) is the fraction of the population that is vaccinated or immune, we can obtain how
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much of the population needs to be vaccinated to avoid the spread of the disease given

the vaccine’s effectiveness. With one dose of the MMR vaccine, the whole population

would need to be vaccinated and the disease would still spread. However with two

doses, approximately 97% of the population would need to be vaccinated to obtain

herd immunity and prevent an epidemic.

Reaching the herd immunity threshold of 97% is a difficult task. There are some

risks when getting the MMR vaccine, which may deter potential vaccinators. Risks

include: fever, rash, swelling, seizure, joint pain, low platelet count, allergic reactions,

deafness, or brain damage. The more severe side effects are quite rare. For example,

only one out of 30,000 doses experience low platelet count [9]. Some individuals may

view the risks of vaccination to be greater than the risks of contracting the disease.

These views determine vaccinating behavior.

2 Previous Research

Previous research shows how fragile vaccinating behavior can be. Parents want the

best for their children and choosing to vaccinate them or not is an important decision

that has become a controversial matter. Media coverage, the severity of the disease,

vaccine efficiencies, side effects, known infectious cases, herd immunity, and health

influence one’s vaccinating behavior [15], [1], [2].

2.1 Autism Vaccine Scare

In 1998, Andrew Wakefield et al. published a paper called “Ileal-lymphoid-nodular

hyperplasia, non-specific colitis, and pervasive developmental disorder in children.” In

this paper, Wakefield et al. claimed to have found a link between autism in children

and the MMR vaccine [15]. Upon further investigation, it was found that Wakefield

et al. had falsified data to get this result [3]. Brian Deer uncovered the truth and
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said

“Wakefield ’chiseled’ the data before him, falsifying medical histories of
children and essentially concocting a picture, which was the picture he
was contracted to find by lawyers hoping to sue vaccine manufacturers
and to create a vaccine scare.” [3].

As a result of this fraudulent paper, Wakefield lost his medical license in 2010 [3]

and the paper has been retracted [3],[4].

Unfortunately, the damage has been done. Wakefield’s false study has influenced

parents to boycott vaccinations, specifically MMR. To them, the risk of autism exceeds

the risk of getting the measles. This resulting vaccine scare has been going on for

more than a decade from Wakefield’s fraudulent research. I believe media coverage is

partially to blame. Most people have heard of the supposed link between MMR and

autism, however, they do not know that this study has been retracted, discredited,

and Wakefield has lost his medical license. The effects of this scare can be traced in

Table 2.1.

2.2 Vaccination Dilemma

In 2013, Cardillo et al. studied vaccination behavior in complex networks. They

used an SEIR (susceptible-exposed-infected-recovered) model with evolutionary game

theory components to model disease spreading. They wanted to examine the vaccine

behavior from flu season to flu season. The choice to get vaccinated depended on

the previous flu season. They found that when a flu vaccine was 100% effective,

individuals were more likely to vaccinate in the next flu season. However, if the

vaccine was not perfect, individuals were less likely to vaccinate and the number of

infected individuals therefore increased [2].
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Year MMR Coverage
1996 91.5 %
1997 90.8 %
1998 88.3 %
1999 87.6%
2000 87.4 %
2001 84.1 %
2002 81.8 %
2003 79.9%
2004 80.9%
2005 84.1 %
2006 85.2%
2007 84.6 %
2008 84.9 %
2009 88.2 %
2010 89.1%
2011 91.2 %
2012 92.3%

Table 2.1: Vaccination coverage in England [12] after the Wakefield vaccine scare.

2.3 England and Wales Vaccine Scare

In 2012, Chris Bauch and Samit Bhattacharyya wrote a paper called Evolutionary

Game Theory and Social Learning Can Determine How Vaccine Scares Unfold. They

analyzed the MMR coverage data produced from the aftermath of Wakefield’s vaccine

scare (see Table 2.1) and created a model using social learning and feedback. They

found that the model which does not consider either social learning or feedback is the

best fit if a particular risk evolution curve is assumed. Running the model includ-

ing social learning and feedback fits the data under all vaccine risk evolution curves.

Therefore, adding social learning and feedback improves the model. Predictive capa-

bilities of the model are also increased in the social learning and feedback case [1].
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3 The Model

Bauch and Bhattacharyya’s model [1] is the main focus of this thesis. In the next

sections, the model is developed in detail, and we describe our efforts in recovering

their results. In Chapter 4 the model is applied to vaccinating behavior in Samoa

during a vaccine scare.

3.1 Evolutionary Game Theory

The model determined the evolutionary game theory component by considering indi-

viduals in the population and their strategies of being for vaccination or opposed to

vaccination. The model assumes that each individual samples others in the popula-

tion at some constant rate, s, and individuals will change strategies if they sample an

individual who is playing a strategy that is different than theirs and they are having

a higher payoff. The proportionality constant managing the changing of strategies

according to expected payoffs is θ. The payoff for vaccination is given by

Ev(t) = B(t) − cv(t), (3.1)

where cv represents the penalty to vaccinate and B represents having ideal health.

The payoff for opposing vaccination is given by

En(t) = B(t) − cimL(t), (3.2)

where ci is the penalty of getting infected, m is a proportionality constant character-

izing the chances of becoming infected, and L(t) is the number of known cases in the

population at some given time t. The difference of the payoffs in 3.1 and 3.2 is given
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by

∆Evn(t) = Ev(t)−En(t) = B(t)−cv(t)−(B(t)−cimL(t)) = −cv(t)+cimL(t). (3.3)

The proportion of individuals for vaccination, x(t), will switch their strategy to

become part of the proportion of non-vaccinators, 1 − x(t), if the payoff of opposing

vaccination is greater than the payoff of being for vaccination, En(t) > Ev(t). Another

way to say this is if the penalty of vaccination is greater than the penalty of infection

times the number of cases times the chances of becoming infected, then vaccinators

will switch their strategy to being opposed to vaccination. Mathematically we can

represent the rate individuals for vaccination become opposed to vaccination by

 sθx(1 − x)(cv − cimL) when ∆Env = cv − cimL > 0

0 when ∆Env = cv − cimL ≤ 0.
(3.4)

(Note the t dependence is suppressed in the notation of equations 3.4 and 3.5.)

Similarly, the proportion of individuals opposed to vaccination will switch the

strategy they are playing to become part of the proportion of those individuals who

are for vaccinating when the payoff for vaccinating is greater than the payoff for

opposing vaccination, Ev(t) > En(t). In other words, if the penalty of infection

times the number of cases times the chances of becoming infected is greater than the

penalty of vaccination, non-vaccinators will switch their strategy of play to being for

vaccination. The rate that individuals opposed to vaccination become for vaccination

can be represented by

 sθx(1 − x)(−cv + cimL) when ∆Evn = −cv + cimL > 0

0 when ∆Evn = −cv + cimL ≤ 0.
(3.5)

Using these evolutionary game theory components the equations used to determine
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the proportion of vaccinators in the population can be generated [1].

3.2 Behavioral Modeling Equations

Four different equations were considered for the behavioral model in [1]. The full

behavioral model was obtained by subtracting 3.4 and 3.5 to yield the proportion of

those for vaccination, and is given by the equation

dx

dt
= sθx(1 − x)(−cv(t) + cimL(t)), (3.6)

for t ≥ 0. The authors simplified this equation by using the substitution κ = sθcim

and ω = cv
mci

yielding the equation

dx

dt
= κx(1 − x)(−ω(t) + L(t)). (3.7)

Thus, the full behavioral model factors in social learning, i.e., the proportion of

vaccinators depend on what portion plays this strategy in the group, and feedback,

i.e., the proportion of vaccinators depends on disease prevalence.

A similar model considered social learning in the absence of feedback. This model

was given by the equation

dx

dt
= x(1 − x)(−ω(t)). (3.8)

Another model looked at feedback and no social learning, and is given by the

equation

x(t) = ρL(t) − ω(t). (3.9)

The last model determined the proportion of vaccinators without the presence of
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social learning or feedback. This equation is given by

x(t) = 1 − ω(t). (3.10)

The models were run using five different risk evolution curves, ω(t). These risk

evolution curves were introduced because the ω term is comprised of cv(t), the per-

ceived penalty to vaccinate, which can change over time during a vaccine scare [1].

3.3 Risk Evolution Curves

The model equations use the function ω = ω(t) to represent how cv(t), the perceived

penalty to vaccinate, is changing over time. They assumed that ω(t) is constant until

a point in time where a vaccine scare occurs. Then, ω(t) increases linearly, plateaus

at a constant for some period of time, decreases linearly, and finally returns to the

original constant. Prior to the vaccine scare, ω(t) = ωpre. The length of the time

interval where ω(t) increases is denoted by Dincrease. The function ω(t) plateaus at a

level given by σωpre, where σ > 1, and Dmax denotes the length of the time interval

where ω(t) = σωpre. Finally, the function ω(t) decreases on the time interval of

Ddecrease [1].

The authors examined five risk evolution curves by manipulating the various pa-

rameters Dincrease, Dmax, and Ddecrease, which are listed below. Let ts denote the

starting time of the vaccine scare, Dinc = Dincrease, and Ddec = Ddecrease. The first

curve, ω1(t), sets both Dinc and Dmax equal to zero and is given by

ω1(t) =


ωpre if t < ts or t ≥ ts +Ddec

σωpre − ωpre

−Ddec

(t− (ts +Ddec)) + ωpre if ts ≤ t < ts +Ddec.
(3.11)
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Figure 3.1: Graph of the first risk evolution curve ω1.

The second curve, ω2(t), sets both Dinc and Ddec equal to zero and has the piece-

wise function of

ω2(t) =

 ωpre if t < ts or t ≥ ts +Dmax

σωpre if ts ≤ t < ts +Dmax.
(3.12)

Figure 3.2: Graph of the second risk evolution curve ω2.

The third curve, ω3(t), sets Dinc equal to zero and is given by,
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ω3(t) =


ωpre if t < ts or t ≥ b

σωpre if ts ≤ t < ts +Dmax

σωpre − ωpre

−Ddec

(t− b) + ωpre if ts +Dmax ≤ t < b

(3.13)

where b = ts +Dmax +Ddec.

Figure 3.3: Graph of the third risk evolution curve ω3.

The fourth curve, ω4(t), sets Ddec equal to zero, and has the piecewise function

ω4(t) =


ωpre if t < ts or t ≥ ts +Dinc +Dmax

σωpre − ωpre

Dinc

(t− ts) + ωpre if ts ≤ t < ts +Dinc

σωpre if ts +Dinc ≤ t < ts +Dinc +Dmax.

(3.14)

Figure 3.4: Graph of the fourth risk evolution curve ω4.

The fifth curve, ω5(t), follows the general form of ω(t), where it begins as a

constant, increases linearly, plateaus, decreases linearly, and returns to the starting
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constant. No time intervals are equal to zero in ω5(t) and it is given by the following

piecewise function,

ω5(t) =



ωpre if t < ts or t ≥ c

σωpre − ωpre

Dinc

(t− ts) + ωpre if ts ≤ t < ts +Dinc

σωpre if ts +Dinc ≤ t < ts +Dinc +Dmax

σωpre − ωpre

−Ddec

(t− c) + ωpre if ts +Dinc +Dmax ≤ t < c.

(3.15)

where c = ts +Dinc +Dmax +Ddec.

Figure 3.5: Graph of the fifth risk evolution curve ω5.

3.4 Model Replication

Bauch and Bhattacharyya’s model was replicated using their given parameters for

each of the risk evolution curves under three cases of social learning and feedback.

The case that included feedback but no social learning could not be replicated using

the given parameters due to issues that will be discussed in Section 5.2. Therefore

this case was omitted. Bauch’s parameters for each of the remaining cases are listed

in Tables 3.2, 3.3, and 3.4. For the case involving feedback, the disease incidence

data, L(t), is listed in Table 3.1 and the vaccine data coverage is listed in Table 2.1.

The solutions can be seen in Figures 3.6, 3.7, and 3.8.
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Year Cases
1996 112
1997 177
1998 56
1999 92
2000 100
2001 70
2002 319
2003 437
2004 188
2005 78
2006 740
2007 990
2008 1370
2009 1144
2010 380
2011 1087
2012 2030
2013 1843

Table 3.1: Known infectious cases of the measles in England and Wales [6].

Curve ωpre σ Dincrease Dmax Ddecrease κ
ω1 20 125.3202 0 0 8 9.18*10−5

ω2 13.9864 100.3957 0 6.5 0 1.15*10−4

ω3 16 100.608 0 4.9597 2.0389 1.05*10−4

ω4 11 100.0988 3 4 0 1.94*10−4

ω5 19.7 99.9456 3.4374 1.3556 1.6089 1.11*10−4

Table 3.2: Bauch parameter values for social learning and feedback under the five
risk evolution curves [1].

Curve ωpre σ Dincrease Dmax Ddecrease

ω1 1.02*10−3 200.0474 0 0 6.7691
ω2 5.95*10−4 199.9999 0 6.1842 0
ω3 7.52*10−4 200.0022 0 4.3253 1.0205
ω4 5.95*10−4 200.0811 1 5 0
ω5 8.79*10−4 199.9777 2.3671 1 2.4731

Table 3.3: Bauch parameter values for social learning and no feedback under the five
risk evolution curves [1].
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Curve ωpre σ Dincrease Dmax Ddecrease

ω1 0.1131 1.633 0 0 10
ω2 0.1197 1.4918 0 4.5 0
ω3 0.1 1.6674 0 6.6058 3.6602
ω4 0.0999 1.7289 6.6458 4.3542 0
ω5 0.0871 2.1803 5.6049 1 8.4948

Table 3.4: Bauch parameter values for no social learning and no feedback under the
five risk evolution curves [1].

Figure 3.6: Graph of social learning and feedback using Bauch’s parameters [1].

Figure 3.7: Graph of social learning and no feedback using Bauch’s parameters [1].
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Figure 3.8: Graph of no social learning and no feedback using Bauch’s parameters
[1].

4 Parametrization

To determine whether Bauch’s model for social learning and feedback could fit vac-

cination behavior in other cases, we investigated another vaccine scare under each of

the risk evolution curves for the different models.

4.1 Data Collection

To parametrize the model, various vaccine coverage data from around the world

was examined. The vaccinator equations model the number of vaccinators in the

population after a vaccine scare [1], hence a country whose vaccine coverage data

exemplified a large vaccine scare was sought after. The country of Samoa was chosen

as the coverage data showed a large vaccine scare in the population. See Table 4.1,

and Figure 4.1. Note that effects of the vaccine scare began in 2003, so it was assumed

to have started in 2002 [16]. It is unknown what caused the vaccine scare. Although,

it could be speculated that the lack of infectious cases, L(t), see Table 4.2, caused
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the decrease of vaccinations as there were no cases of measles from 2000 to 2009 [5].

This data was interpolated from a graph from GIDEON Informatics Inc. [5].

Figure 4.1: Graph of the Samoan MMR vaccine coverage data.

4.2 Error

An ordinary differential equation solver (ode solver) from MATLAB R2014A was used

to solve each of the differential equations for the cases of social learning and feedback

and social learning with no feedback. The error of the model was calculated by taking

the sums of the squares of the difference between the fit of the model and the vaccine

coverage data divided by the data squared, with the requirement that all parameters

should be positive.

For the case of no social learning or feedback, the error was calculated by taking

the sums of the squares of the difference of the fit of the model and the data, with

the restriction that all parameters needed to be positive.

The error is used to determine the best fit model. The error for each curve can

be seen in Tables 5.1, 5.2, and 5.3 as the RSSvac values.
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Year MMR Vaccine Coverage
1995 96%
1996 96%
1997 99%
1998 99%
1999 91%
2000 93%
2001 92%
2002 99%
2003 62%
2004 25%
2005 57%
2006 54%
2007 63%
2008 45%
2009 49%
2010 61%
2011 67%
2012 85%

Table 4.1: Samoan measles vaccine coverage data [16].

Year Measles Cases
1995 0
1996 100
1997 0
1998 10
1999 5
2000 0
2001 0
2002 0
2003 0
2004 0
2005 0
2006 0
2007 0
2008 0
2009 0
2010 8
2011 0
2012 1

Table 4.2: Number of infectious cases of the measles in Samoa [5].
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4.3 Parameter Search and Solutions

An optimization routine, fminsearch, was run in MATLAB R2014a to determine the

values of ωpre, σ, Dincrease, Dmax, Ddecrease, in all cases, and κ in the case with both

social learning and feedback, that minimizes the error. The differential equations

were then solved using an ode solver in MATLAB with the newly found parameters

and their solutions were graphed. The results can be seen below.

Curve ωpre σ Dincrease Dmax Ddecrease κ
ω1 37.155 258.771 0 0 1.779 4.23*10−4

ω2 33.361 818.736 0 1.301 0 7.915*10−5

ω3 19.277 421.051 0 0.764 1.028 3.054*10−4

ω4 142.481 153.876 0.017 1.091 0 1.114*10−4

ω5 143.703 302.783 0.354 0.002 1.233 8.011*10−5

Table 4.3: Samoan parameter values for social learning and feedback under the five
risk evolution curves.

Figure 4.2: Graph of the Samoan social learning and feedback models.
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Curve ωpre σ Dincrease Dmax Ddecrease

ω1 0.002 1303.837 0 0 1.798
ω2 0.004 541.807 0 1.314 0
ω3 0.004 560.490 0 1.307 0.008
ω4 5.361*10−4 946.684 2.504*10−6 4.892 0
ω5 0.028 85.005 0.046 0.431 1.208

Table 4.4: Samoan parameter values for social learning and no feedback under the
five risk evolution curves.

Figure 4.3: Graph of the Samoan social learning and no feedback models.

Curve ωpre σ Dincrease Dmax Ddecrease

ω1 0.049 8.413 0 0 120.022
ω2 0.061 6.825 0 9.438 0
ω3 0.049 8.807 0 8.457 2.107
ω4 0.144 3.399 0.810 5.308 0
ω5 0.041 12.400 1.387 5.739 3.949

Table 4.5: Samoan parameter values for no social learning and no feedback under the
five risk evolution curves.
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Figure 4.4: Graph of the Samoan no social learning and no feedback models.

5 Results

The resulting best fit model for each case of the Samoan vaccine scare was not con-

sistent with previous research in all facets. Under no social learning or feedback the

findings were consistent, however it appears that social learning in the absence of

feedback is a better model than social learning and feedback for most ω risk evolu-

tion curves. Disease incidence data shows no increase after the substantial drop of

vaccinations in 2003 so it is no surprise that including feedback in the model does

not improve the fit. The reason vaccinations picked up again after 2003 must have

an alternate explanation.

To account for no disease incidence data, another parametrization was done to

see if we could better capture the data by incorporating another parameter, R. This

parameter is a regulation term or a compliance term, as individuals feel better when

they follow the rules or comply. Incorporating this term will imitate feedback since

for a period of nine years, no infectious cases were present in the population. The

resulting parameters and graph of solutions can be seen in Table 5.1 and Figure 5.1.
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Curve ωpre σ Dincrease Dmax Ddecrease κ R
ω1 38.135 278.981 0 0 1.665 4.228*10−4 223.163
ω2 30.349 225.295 0 1.091 0 4.181*10−4 105.125
ω3 10.973 402.969 0 0.675 1.046 6.283*10−4 60.357
ω4 17.692 644.306 6.403*10−9 1.571 0 1.640*10−4 50.699
ω5 55.290 323.846 0.326 0.452 0.515 1.872*10−4 38.441

Table 5.1: Samoan parameter values for social learning and feedback with regulation
under the five risk evolution curves.

Figure 5.1: Graph of the Samoan social learning and feedback with regulation models.
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5.1 Akaike Information Criterion

To ensure that the Samoan models were a good fit and parsimonious, I evaluated the

Akaike Information Criterion (AIC). The AIC numbers take into account the model’s

fit and the number of parameters used. While it may be possible to achieve a better

fit with more parameters the AIC ’penalizes’ the use of too many parameters and

aims at finding the most parsimonious model that is still a good fit [1].

The AIC value factors in the number of data points N and the number of param-

eters l. It is given by

AIC = −2ln(M) + 2l + (2l(l + 1))/(N − l − 1), (5.1)

where ln(M) is the natural logarithm and M is the likelihood estimator,

M = e−N/2/(2πRSSvac/N)N/2. (5.2)

The RSSvac term is the error. In all of these calculations, the number of data points,

N, was 18.

The best model with the social learning and feedback was under the ω1 curve

having an AIC value of −22.526858704651655. The ω2 curve AIC value was quite

close having an AIC score of −22.439183905732566. See Table 5.2.

Curve l RSSvac AIC
ω1 4 0.162938561236933 -22.526858704651655
ω2 4 0.163734141985326 -22.439183905732566
ω3 5 0.163676074463980 -18.522491727802098
ω4 5 0.161893555800294 -18.719596454847469
ω5 6 0.162464325641427 -14.019883855300751

Table 5.2: The RSSvac, l, and resulting AIC values under the five risk evolution
curves for both social learning and feedback.
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Under the social learning no feedback equation, the best model was the ω2 risk

evolution curve which had an AIC score of −25.848763435691843. The ω1 risk evolu-

tion curve was a close second with an AIC value of −25.822419181596707. See Table

5.3.

Curve l RSSvac AIC
ω1 3 0.163546883501212 -25.822419181596707
ω2 3 0.163307696318826 -25.848763435691843
ω3 4 0.163291668154259 -22.487892806207217
ω4 4 0.163674371657626 -22.445755915107529
ω5 5 0.159596319589236 -18.976842226865251

Table 5.3: The RSSvac, l, and resulting AIC values under the five risk evolution
curves for social learning and no feedback.

The best model for no social learning or feedback was ω5 with an AIC score of

−27.810271405563945. This model was also the best of all the cases. As seen in

Table 5.4, the rest of the models using the other ω curves were not very good. ω1 was

the worst model under no social learning or feedback having a positive AIC score of

10.299974236643381.

Curve l RSSvac AIC
ω1 3 0.3874 10.299974236643381
ω2 3 0.3320 -13.077784313658706
ω3 4 0.3144 -10.695587301527208
ω4 4 0.4193 -5.513016616337229
ω5 5 0.0977 -27.810271405563945

Table 5.4: The RSSvac, l, and resulting AIC values under the five risk evolution
curves for no social learning and no feedback.

The best model for social learning and feedback with regulation was under the ω2

risk evolution curve having an AIC value of −17.9699. Since this AIC value is larger

than the best AIC values from the other cases, it shows that adding in this regulation

term does not necessarily improve the model as we get penalized for having excess

parameters.
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Curve l RSSvac AIC
ω1 5 0.1742 -17.4035
ω2 5 0.1688 -17.9699
ω3 6 0.1694 -13.2726
ω4 6 0.1648 -13.7626
ω5 7 0.1640 -8.2889

Table 5.5: The RSSvac, l, and resulting AIC values under the five risk evolution
curves for social learning and feedback with regulation.

5.2 Limitations and Complications

The model has some limitations. This model only seems to apply to vaccine coverage

data that has a true vaccine scare. The model was not a good fit when applied to the

United States MMR vaccine coverage data so this route was quickly abandoned. The

U.S. data only fluctuates between 90% - 93% from 1996 to 2013 [11], hence there is

no vaccine scare present in the data.

When simulating the Bauch model complications arose. I was not able to repro-

duce Bauch and Bhattacharyya’s results from their parameters in the social learning

and feedback case. The model still appears to be a good fit, but it does not yield

the same results they got using the given values. In effort to correct this, I ran a

parametrization on that case. The resulting parameters were close to what they had

found. These results can be seen below in Table 5.6 and Figure 5.2. The social learn-

ing and no feedback case and no social learning and no feedback case were duplicated

without any difficulties. However, the feedback without social learning case was not

replicable from the given parameters. The parameters given in the supplemental in-

formation were inconsistent with the claims of the paper. For example, σ > 1 is a

condition, however, in the table of parameters, all of the σ values were 0.001, which

is clearly less than 1. Finally, when recreating the model, tables in the original paper

were mislabeled which made it challenging to decipher parameter values.
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Curve ωpre σ Dincrease Dmax Ddecrease κ
ω1 19.1469 123.0163 0 0 7.7963 9.64*10−5

ω2 13.7971 95.8915 0 5.6103 0 1.30*10−4

ω3 18.5281 107.0292 0 2.6977 2.2378 1.25*10−4

ω4 17.4493 128.9044 0.5688 2.8721 0 1.41*10−4

ω5 19.4281 121.3795 0.5636 1.6462 1.8429 1.46*10−4

Table 5.6: Parameter estimation values for social learning and feedback under the
five risk evolution curves [1].

Figure 5.2: Graph of social learning and feedback under new parameters.



26

5.3 Further Research

Further research should be done to examine vaccinating behavior. It would be of in-

terest to develop a model that could determine vaccinating behavior without needing

a true vaccine scare. Investigating vaccinating behavior of other preventable diseases,

such as the varicella vaccine or the human papillomavirus (HPV) vaccine, may be of

interest. The varicella vaccine is relatively new, 1995 [14], and in 2012 approximately

74.9% of those who have not had the chickenpox had two doses of the vaccine [10].

Also in 2012, only 53.8% of females and 20.8% of males had just one dose of the HPV

vaccine. Similarly, only 33.4% of females and 6.8% of males have had three or more

doses of the HPV vaccine [10]. Investigating why these percentages are so low would

be worthy of some research.

6 Concluding Remarks

The vaccinating behavior of individuals is a pertinent, controversial issue in our so-

ciety. I believe that vaccinating for preventable diseases should be an avid practice

for all of those who are able to vaccinate. It is our duty to maintain the threshold of

herd immunity to ensure that those who are not able to vaccinate are protected from

these preventable diseases.
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APPENDIX

SAMPLE CODES

Parameter estimation of social learning and feedback:

ω5

clear all

global X wcp

X=[1995 0 1996 100 1997 0 1998 10 1999 5 2000 0 2001 0 2002 0 2003 0

2004 0 2005 0 2006 0 2007 0 2008 0 2009 0 2010 8 2011 0 2012 1];

X=reshape(X,2,length(X)/2);

tspand=1998:2013;

wcp=[.96 .96 .99 .99 .91 .93 .92 .99 .62 .25 .57 .54 .63 .45 .49 .61

.67 .85];

t0=1995;

tf=2012;

x0=0.96;

%p0=[0.0001 80 200 1 2 1];

p0=[0.0001 75 200 1 2 1];

p=fminsearch(@errorSAMOA_SLF5,p0)

[t,v]=ode45(@vac_SAMOA_SLF5,[t0 tf],x0,[],p);

figure(1)

subplot(2,1,1)

plot(1995:2012,wcp,’r’)

axis([1995 2012 0 1])

hold on

plot(t,v,’b’)

legend(’vaccine coverage’, ’model5’)

MSLF5=sum((v(1:1+17)-wcp’).^2)/sum(wcp.^2)

p =

1.0e+02 *

Columns 1 through 3

0.000000801146833 1.437027625499285 3.027831138888646

Columns 4 through 6

0.003535918948115 0.000019157816402 0.012328834179898
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Error code of social learning and feedback:

ω5

function err=errorSAMOA_SLF5(p);

global X wcp

t0=1995;

tf=2012;

x0=0.96;

tspan=[t0:1:tf];

[t,v]=ode23s(@vac_SAMOA_SLF5,tspan,x0,[],p);

err=sum((v(1:1+17)-wcp’).^2)/sum(wcp.^2)+1000*(p(1)<0)+1000*(p(2)<0)+

1000*(p(3)<0)+1000*(p(4)<0)+1000*(p(5)<0)+1000*(p(6)<0);

Vaccinator code of social learning and feedback:

ω5

function vprime=vac_SAMOA_SLF5(t,v,p)

global X wcp

dx=p(1)*v*(1-v)*(-SAMOA_GENERIC1piecewiseSLF5(t,p(2:end))+interp1(X

(1,:),X(2,:),t));

vprime=dx;

Piecewise function:

ω5

function omega5=SAMOA_GENERIC1piecewiseSLF5(t,p);

global X wcp

wpre=p(1);

sigma=p(2);

Dinc=p(3);

Dmax=p(4);

Ddec=p(5);

if t<2002 | t>=2002+Dinc+Dmax+Ddec

omega5=wpre;

elseif 2002<=t & t<2002+Dinc

omega5=((((sigma*wpre)-wpre)/(Dinc))*(t-2002))+wpre;

elseif 2002+Dinc<=t & t<2002+Dinc+Dmax

omega5=sigma*wpre;

elseif 2002+Dinc+Dmax<=t & t<2002+Dinc+Dmax+Ddec

omega5=((((sigma*wpre)-wpre)/(-Ddec))*(t-(2002+Dinc+Dmax+Ddec)))+wpre;

end
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