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ABSTRACT 

THREE ESSAYS ON CONSUMERS’ ACTIVITIES IN THE ONLINE DOMAIN 

 

by 

Shaoqiong Zhao 

 

The University of Wisconsin-Milwaukee, 2014 

Under the Supervision of Dr. Sanjoy Ghose 

 

Nowadays, with the explosive growth in the usage of the Internet, consumers are 

performing all kinds of activities over the Internet like searching or buying. We want to 

study the different activities of consumers in the online domain. 

In our daily lives, people are often making various kinds of product purchases. When 

making such purchases, a lot of factors can affect consumers’ decisions. This includes the 

nature of the product category, and especially in the online domain, the nature of their 

search activities. In the first essay/chapter, we develop an econometric model to 

understand the relationships between different dimensions of on-line search and purchase 

behavior. Our approach uses endogeneity corrections to develop a model that is more 

correct than the typical non-endogeneity corrected model. Thus we believe our results to 

be truly reflective of what is happening in the search-buying domain. We use extensive 

empirical data to test several hypotheses that we developed. Parameters from our model 
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estimations reveal that there are interesting variations in the search-purchase behavior 

relationships across types of product categories. This difference is especially evident 

between utilitarian and hedonic goods. Our findings have important theoretical and 

managerial implications. 

The amount of information in text reviews is tremendously greater than that in typical 

numerical data. A major challenge for marketers is how to extract the most relevant 

information from this big data source. In our second essay/chapter, we do this by using a 

text mining methodology that draws on machine learning algorithms. We collect data 

using a Java WebCrawler type programming approach. We use a word-based model to 

predict consumers’ recommendations. Model prediction accuracy was high. In the 

marketing literature there has been almost no work where such a methodology has been 

used to make predictions of recommendations based on big data stemming from textual 

information. An interesting finding from our research is that as the number of textual 

features increases, the predictive accuracy of the model increases only up to a point. 

Beyond that, inclusion of more words in the model leads to a decrease in predictive 

accuracy. We also use a diagnostic approach to identify key words that are determinants 

of user recommendations. Since our model deals with big data, we address in details the 

issue of scalability; our computations show that our approach is very scalable. Potential 

for marketing implications seems considerable. 

Marketers are always interested in predicting market sales so that they can arrange the 

firm activities accordingly. In the meantime, this market sales information can also help 

the consumers to make right buying decisions. However the high cost and long period of 
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collecting the available data with a lag makes it very inconvenient and out of date. With 

the rise of multi-social media sharing websites such as YouTube, Flickr, and various 

blogs, consumers can search and learn various types of information from these websites. 

The availability of large amounts of data on the Internet enables us to use large scale data 

mining algorithms for solving complex problems. The users’ online searching activities 

can be captured for predicting the market sales. In the third essay/chapter, we focus on 

the impacts of different search behavior and marketing outcomes like product sales. We 

examined the three major online search areas including text, image, and video from 

search engines like Google to help us accurately and easily predict the sales of 

automobiles. We believe that our work here opens a brand new arena for using 

multimedia search activities and will have a big impact on marketing sciences. 
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Chapter/Essay 1 

Identifying Relationships between Online Buying and Online Search Behaviors 

1.1. Introduction 

For the past few decades, researchers and marketing managers have been interested in 

understanding what can affect consumer purchase habits. Just like Dhar and Wertenbroch 

in their 2000 paper said that, consumer choices are driven by utilitarian and hedonic 

considerations. Consumer attitudes have distinct hedonic and utilitarian components and 

products differ in the extent to which their overall attitudes are derived from the two 

components. These different perspectives of consideration let people distinguish goods 

between hedonic and utilitarian nature and make decisions according to their preference 

(Batra & Ahtola, 1990; Mano & Oliver, 1993). Broadly speaking, the term hedonic refers 

to aesthetic, experiential, and fun benefits (Dhar & Wertenbroch, 2000; Strahilevitz & 

Myers, 1998), and the utilitarian term refers to the functional, instrumental and practical 

benefits (Hirschman & Holbrook, 1982). However, hedonic and utilitarian components 

are not two ends of a one-dimensional scale (Okada, 2005); products vary in the 

perceived level of hedonic or utilitarian components (Batra & Ahtola, 1990). We can 

classify a product as a mainly hedonic one if the hedonic components make up the major 

part of the product as in say, movies. A movie review by Holden in 2005 from The New 

York Times demonstrated movie possesses a strong hedonic feature. Some other products 

like tools will be viewed as a utilitarian good since it is primarily more utilitarian and its 

main benefits to the consumers are the functions associated with the consumption. There 

are still other products, which cannot be simply classified as a hedonic or utilitarian one 
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due to the co-occurrence of both aspects. Both hedonic and utilitarian components 

express an equal weight in the benefits offered by the products. In apparels for instance, 

people try to get their basic needs fulfilled—the need to be covered. That is a totally 

utilitarian aspect. At the same time, people would like to express a certain self-image by 

dressing in a certain style of clothes, and this is a hedonic aspect. When facing different 

purchase situations, whether it is a hedonic, or utilitarian, or mixed product, the behavior 

will be quite different. 

With the explosive growth of e-commerce activities, people nowadays are making more 

and more purchases online. The Internet and the World Wide Web (WWW or the Web) 

in particular, represents a recent technological innovation that has had a profound impact 

on all facets of people’s lives‖ (Lin & Yu, 2006). When consumers are making purchases 

they get to put effort into this activity. According to Andreasen (1968) there are five 

major types of information sources including Impersonal Advocate, Impersonal 

Independent, Personal advocate, Personal Independent, and direct observation. It is not 

easy to measure consumers’ search efforts for these five types of information, and most 

of the time this was done by taking survives of the customers. However when we put this 

into the online domain it becomes quite simple and we can easily record consumer search 

behavior directly using technology. Also the idea that consumers differ in the amount and 

type of effort they put into shopping like searching effort is not new to marketing (Katona 

& Mueller, 1955, Newman & Staelin, 1972). Especially when it comes to the search of 

information at e-commerce context, it is different from traditional search in various ways 

like information source, type, etc. Such differences are important to marketers because 
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they influence consumers’ reactions to marketing strategies. And these different 

perspectives of consideration also let people fall into different purchasing/searching 

patterns based on their own individual characteristics like demographic characteristics 

and the external product characteristics like product categories.  

Most of the previous research of consumers’ buying behavior had focused on simply the 

choice across different brands made by the consumers. There is a great need to look at 

how search effort and other factors could impact the more detailed purchase behavior like 

how much consumers are willing to pay for each item. At the same time, we would also 

want to explore how by nature the willingness to pay could impact the consumers search 

behavior also. To fill this gap and explore the truth, the current research proposes a 

simultaneous model by digging into the interdependence of the search effort and 

willingness to pay across two distinct product categories: hedonic and utilitarian goods. 

The main contribution of this study is to quantitatively and comprehensively analyze the 

relationships between search effort and willingness to pay under the online domain and 

empirically aggregate and generalize the results across the hedonic and utilitarian product 

categories. By using simultaneous modeling, we investigate the inter-impact of the two 

major online consumer activities: search behaviors and purchase behaviors, and also how 

the impacts vary across the product categories of hedonic and utilitarian. We consider the 

context of E-commerce and provide quantitative generalizations on 4 product categories 

(2 of hedonic, 2 of utilitarian) over 10,000 consumers through the whole 2004 calendar 

year. Using the three-stage-least-square estimation methods, we systematically integrate 

and uncover: 1) the interdependence between search effort and willingness to pay of 
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consumers made online and 2) the moderating effect of product categories on the 

interdependence.  

The remainder of the article is organized as follows. We next provide the theoretical 

background from detailed literature review for our research. We then discuss the 

methodology that we use for the study. Then we present the data as well as the empirical 

approaches and results. We conclude with summarizing our findings, a discussion of the 

theoretical and managerial implications and future research directions. 

1.2. Theoretical Framework and Hypotheses 

In previous empirical studies, researchers examined the impact of search effort on 

purchase choice (Chaney, 2000). This search effort refers to the traditional search effort 

but it is somewhat similar to search effort under the online domain. So we first review 

how search effort impact the consumers purchase behavior and how the willingness to 

pay would in turn impact the search effort. Then we will review how demographics 

impact consumers search effort and purchase behavior. After this we would like to define 

the terms of ―hedonic‖, ―utilitarian‖ and provide a brief review of the prior research 

relevant to our study.  

1.2.1. Search Effort and Purchase Behavior 

Involvement is a psychological construct, which was pioneered by Sherif and Cantril 

(1947), who described involvement as the state of an organism when presented with any 

stimulus, which is ego central, or when any stimulus is either consciously or 
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subconsciously related to the ego. Involvement with something ordinarily influences 

attitudes and behaviors relating to it. Thus involvement with purchasing would influence 

attitudes and behavior relating to it. In real life, consumers perform online search before 

they actually conduct the purchase online. However, in the mental process of this whole 

buying behavior, searching and purchasing happen simultaneously and initiating of either 

one behavior gets the consumers involved in the big buying decision process. We argue 

that when a consumer starts a search on the Internet, he/she gets involved in this online 

shopping activity; so his/her following purchasing behavior like purchase choice or 

expenditure will be impacted by the search activity. Vice versa, when the consumer has 

considered spending certain amount of money, he/she gets involved with this intending 

purchase, and this will impact how he/she will perform the online search activity to help 

him/her make the final purchase decisions. The searching and buying are happening 

simultaneously in the consumers’ mental process and impact each other. In our study, we 

inspected how the willingness to pay and search effort interacts with each other. So we 

come up our first hypothesis. 

Hypothesis 1: There is interdependence between online search effort and willingness to 

pay.   

 

 

Kassarjian (1981) has recently related search effort to the notion of consumer 

involvement and proposed that consumers’ involvement with purchasing influences their 

Search 

Effort 

Willingness 

to pay 
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purchase behavior. From the consumers’ purchasing behavior perspective, information 

plays an important role in it. But where do the consumers get the information? In the 

traditional offline situation, consumers can look for the information from five types of 

information source (Andreansen, 1968). These are the impersonal advocate, like mass 

media advertising; impersonal independent, like consumers reports; personal advocate, 

like sales people’s advice; personal independent, like opinions of co-workers; and the last 

direct observation, like a trail or demonstration.  

The Internet is a useful tool for information search (Hammond, Mcwilliams & Diaz, 

1998). Internet makes a large volume and variety of information available so that 

consumers can easily acquire information from web sites that is similar to the information 

available from traditional mass-media advertising (Peterson& Merino, 2003). So when it 

comes to the e-commerce context, the search effort mainly reflects the impersonal 

advocate, which is a public information source where consumers can identify the relevant 

information, just like reading a magazine, or watch television commercials. Information 

search involves both cognitive and physical effort (Johnson, Bellman, & Lohse, 2003). 

For these researchers, the extent of information search, often measured by the number of 

acquisitions or the number of products viewed, occurs within, not just across, retailers 

and other providers of information (Diehl, 2005; Häubl & Trifts, 2000; Payne, Bettman, 

& Johnson, 1988). This research stream also argues that different types of information 

(i.e., context variables) and different types of information structures (i.e., task variables) 

require different levels of effort to process, often measured by the ―time per acquisition‖ 

(Bettman et al., 1993; Ha & Hoch, 1989; Lurie, 2004; Lynch & Ariely, 2000; Shugan, 
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1980).  

1.2.2. Individual Differences—Demographic Characteristic 

Kassarjian (1981) also stated that it is undeniable that there are differences between 

individuals who, regardless of the product or situation, make some people more 

interested, concerned or involved in the consumer decision process. Large individual 

differences in external search intensity have been found to be related to demographic 

characteristics (Newman, 1977).  

1.2.2.1. Education Level 

Shim and Drake (1990) reported that, regardless of product category, online shoppers 

tend to be characterized as having higher educational levels. Previous research has found 

education to be related positively to search behavior (Claxton, Fry, & Portis, 1974; 

Newman & Staelin, 1972; Westbrook & Fornell, 1979). According to Wikipedia, an 

encyclopedia, higher education is the education provided by universities, vocational 

universities and other collegial institutions that award degree. Consumers who receive 

higher education usually have more chance to know about the Internet and use the 

Internet to search for information. According to Eastman and Lyer (2004), consumers 

with higher levels of education are willing to use the Internet and make online purchases. 

Education increases the buyer's ability to use information wisely and therefore his/ her 

need for information. Or as Westbrook and Fornell (1979) have stated: Education was 

assumed to increase the buyer's need for information related to the purchase decision and 

thereby to increase the value of search and the likelihood of reliance on high value, high 
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cost sources such as Consumer Reports and related buying guides, as well as extensive 

visits to retail outlets. 

1.2.2.2. Age 

Ratchford, Talukdar & Lee (2001) reported that online purchasers were generally 

younger; more educated and had higher incomes. Dholakia and Uusitalo (2002) found 

that younger consumers reported more hedonic (for fun) and utilitarian (with a goal in 

mind) benefits of online shopping than older consumers. All these five researchers did 

not study online information search or online purchase behavior but studied the benefits 

of online shopping only. To fill this gap, in our study we include age as an explanatory 

variable of search effort and willingness to pay.  

1.2.2.3. Income  

Research also indicated relationships between search effort and social class, deteriorating 

economic condition, age, income and mobility (Bucklin, 1969; Katona & Mueller, 1955; 

Newman & Staelin, 1972; Kiel, 1977). It is difficult to separate the influence of income 

from general socioeconomic status. Kassarjian (1981) has implied a positive relationship 

between socioeconomic status and purchasing involvement, and in fact describes his "low 

involvement" consumer as being a member of the lower socioeconomic class. This would 

lead to the assumption that higher income might be associated with higher purchasing 

involvement. The positive relationship found between income and search effort (Claxton, 

Fry & Portis, 1974; Newman & Staelin, 1972) would provide some indirect support for 

this notion. However, it would seem that the marginal utility of purchasing involvement 
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would be low for high income groups; this is because they can purchase almost anything 

they want and value their free time more than the money that they could save by wise 

purchasing. Thus it seems that a curvilinear relationship could be expected between 

purchasing involvement and income, with moderate levels of income producing the 

highest levels of purchasing involvement and low and high-income groups being 

relatively less involved. 

1.2.2.4. Family structure  

Relationship between family structure (i.e., presence of children) and purchasing 

involvement is apparent. The presence of children is expected to lead to the greatest 

purchasing involvement. The purchasing involvement conceptualized here is expressed 

by the search activity. This is true partially because discretionary income is low in these 

stages (Wells & Gubar, 1966) and the act of purchasing becomes more personally 

relevant since wise (value oriented) buying is necessary to achieve the family's expected 

standard of living. At this point it should be noted that education, income, and stage of 

family life cycle are all related. 

Furthermore, multivariate analysis reveals that income, education, age and family 

structure are important social determinants of online access and that Internet use is the 

lowest among single mothers, members of lower socioeconomic groups (Bucy, 2000). 

Pastore (2001) claimed, ―Initially the Web audience was populated by the young, affluent 

and well educated.‖ 
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Overall, we can see the various demographic characteristics impact the search effort of 

the consumers. Previous studies have also looked at demographics as predictors, and 

purchase intention as the outcome variable (Kim et al., 2004; Lin &Yu, 2006; Kwak et 

al., 2001).  

1.2.3. Hedonic and Utilitarian Attributes 

As Dhar and Wertenbroch (2000) documented, consumer choices are driven by hedonic 

and utilitarian considerations. When consumers are facing a choice of new cell phones, 

they may care about hedonic features like color and shape, or they may also care about 

utilitarian attributes such as battery life and sound volume. Research suggests that these 

different considerations of attributes of products can affect consumers’ evaluation and 

attitudes, and can also enable people to distinguish between goods according to their 

hedonic or utilitarian nature (Batra & Ahtola, 1990; Mano & Oliver, 1993).  To be 

consistent with the previous research, we use the term hedonic to refer to the aesthetic, 

experiential, and fun benefits (Dhar & Wertenbroch, 2000; Strahilevitz & Myers, 1998), 

and the term utilitarian to refer to the functional, instrumental and practical benefits 

(Hirschman & Holbrook, 1982).  In our study we include movies and console games as 

hedonic goods and tools and health products as utilitarian goods.  

Although the consumption of many goods involves the varying of both dimensions (Batra 

& Ahtola, 1990), usually consumers consider some products as primarily hedonic while 

others as primarily utilitarian. Hedonic and utilitarian goods can be differentiated on 

various dimensions 
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-------------------Insert Table 1 about here------------------- 

Hedonic goods are really hard for the consumers to judge the quality of the goods prior to 

the purchase (Sawhney & Eliashberg, 1996). Search of information will not significantly 

reduce the uncertainty. In comparison, utilitarian goods may be judged on the basis of 

objective attributes (for the consumption of cellphone, we can easily judge the battery 

life, price). Thus, utilitarian goods depend on functional and objective attributes, which 

can be easily evaluated using the information while hedonic goods possess more 

intangible, symbolic attributes, which are harder to compare even with information 

(Addis & Holbrook, 2001; Kahnx et al., 1997). 

Also there is high consumption risk associated with hedonic products resulting from the 

uncertainty of quality, subjective attributes and social risks consumers face due to the 

high emotional involvement and symbolic value behind the hedonic goods (Miller & 

McIntyre, 1993). In contrast, utilitarian goods bear very low social risks. The purchase 

motive of hedonic goods depends on variety, emotions and symbolic characters while 

utilitarian goods can justify the choice on the basis of objective product features (Kahnx 

et al., 1997).  

Hedonism and utilitarianism can also be constructed as a similar but different pair of 

constructs: wants and shoulds (Bazeman, Tenbrunsel & Wade, 1998). The wants are 

affectively appealing than the shoulds. So it is more difficult to justify spending on 

hedonic goods than the utilitarian goods (Prelec & Lowewenstein, 1998; Thaler 1980). 

Hedonic goods offer benefits in the form of experiential enjoyment while the utilitarian 
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goods offer benefits in practical functionality (Batra & Ahtola, 1990; Hirschman & 

Holbrook, 1982; Mano & Oliver, 1993).  

Information on hedonic products will naturally tend to focus more on the fun aspects of 

the products. For example, a search for console games over the Internet will highlight 

many ads that focus on the enjoyable experience, the fantastic visual effects and so on.  

Past research clearly indicates that hedonic consumption evokes a sense of guilt (Khan, 

Dhar & Wertenbroch, 2004; Kivetz & Simonson, 2002; Prelec & Loewenstein, 1998; 

Strahilevitz & Mayers, 1998). It is logical to expect that as consumers search more on the 

Internet, the more they will get to know about the fun that the hedonic products can bring 

to them; this is likely to make them feel even guiltier. Previous research indicates that the 

guiltier individuals feel, the less they are willing to pay (Yi & Muhn, 2013). While for 

utilitarian goods, the more searches the consumers perform, the more solid information 

consumers can use to construct reasons for justifications of the consumptions (Shafir, 

Simonson & Tversky, 1993); it is logical to expect that they will thus spend after they 

thoroughly search the webpage information. Similar logic for the impact of purchase 

behavior on search behavior happens here. For hedonic goods, the more consumers are 

considering to spend, the less they are likely search to avoid the information to trigger the 

sense of guilty. While again for the utilitarian goods, the more consumers are considering 

to spend, the more information they want to gain to help them justify the purchase 

decision. 

Then we come up our second hypothesis, which are also the main points of focus of this 

paper.  
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H2: The product category moderates the interdependence of the search effort and 

willingness to pay. 

H2a: For the hedonic products, there is a negative relationship between search effort and 

willingness to pay. 

H2b: For the utilitarian products, there is a positive relationship between search effort and 

willingness to pay 

 

 

 

 

1.3. Modeling Framework 

Our objective is to propose a model to estimate the interdependence between search 

effort and willingness to pay. Interdependence in our context is defined as the direct 

impact of search effort on consumers’ willingness to pay, and the direct impact of 

consumers’ willingness to pay on search effort. Under this situation, the explanatory 

variables are jointly determined with the dependent variable, typically through an 

equilibrium mechanism. The best way to model this is using a system of two 

simultaneous equations. 

Search 

Effort 

Search 

Effort 

Willingness 

to pay 

- 

+ 

Willingness 

to pay 

 

Hedonic 

Utilitarian 

- 

+ 
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Based on the theories and common knowledge, we define that search effort as 

duration/page and willingness to pay as (actual total spending for product 

category)/quantity. The impact between these two factors is direct and happening 

simultaneously. They are both endogenous variables because of the correlation with the 

error terms. All the demographic variables are used as the instrument variables for these 

two endogenous variables.   

Consider a model where we observe search effort of the consumers (Sij), and willingness 

to pay (Pij) of product j on personal i. We can model the interdependence between these 

two variables by the following simultaneous equations: 

Sij= Xij*β1 + Pij*Z1 + ε1 

Pij= Yij*β2 + Sij*Z2 + ε2 

The explanatory variable that is determined simultaneously with the dependent variable is 

generally correlated with the error term, which leads to bias and inconsistency in OLS. 

We consider the two-equation structural model and focus on estimating the first equation. 

To show that Pij is generally correlated with ε1, we solve the two equations for Pij in terms 

of exogenous variables and the error term. If we plug the right-hand side of the first 

equation in for Sij in the second equation, we can get: 

Pij = Yij*β2 + (Xij*β1 + Pij*Z1 + ε1)*Z2 + ε2 

Or we can put it in this way:  
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(1-Z1Z2)* Pij = Yij*β2+ Xij*β1Z2 + ε1*Z2 + ε2 

Then we can rewrite above equation as: 

Pij = Yij*2+ Xij* + v2 

In this equation, Pij is expressed in terms of the exogenous variables and the error terms. 

This is the reduced form equation for Pij. The reduced error term v2 is a linear function of 

the structure error terms, ε1 and ε2. Since ε1 and ε2 are each uncorrelated with Xij and Yij, 

v2 is also uncorrelated with Xij and Yij. Therefore, we can consistently estimate by OLS.  

A reduced form for Sij also exists and the algebra is similar.  

From the reduced form equation, we can tell that v2 is a linear function of ε1 and ε2, so it 

is correlated with ε1. Then we can say Pij and ε1 are correlated because of simultaneity, so 

OLS estimation of simultaneous equations will produce biased and inconsistent 

estimators of β1 and β2.  

The leading method for estimating simultaneous equation models is the method of using 

instrumental variables (book chapter). Therefore, we proposed using three-stage-least-

square method to estimate the models. The three stage least square estimations can give a 

better and more efficient estimation than the two-stage-least-square estimation methods 

proved by Peter Schmidt (1977). It has been proved that the correlations between the 

error terms and the endogenous variables lead to bias and inconsistency in using OLS 

estimations and this violates the assumption of OLS that every explanatory variable is 

uncorrelated with the error term.  However we can identify the instrumental variables to 
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consistently estimate the parameters in the simultaneous equations. The instrumental 

variables are uncorrelated with the error terms but can explain the endogenous variables 

very well to replace them in the estimation of the simultaneous equations.  

These two equations constitute a Simultaneous Equation Model (SEM). For these types 

of equations, there are several important features. First, given Xij, Yij, ε1, ε2, these two 

equations determine Sij, Pij. For this reason, Sij and Pij are the endogenous variables. Xij 

and Yij are vectors of explanatory variables that are specific to the search effort and 

willingness to pay and they are both uncorrelated with the two error terms. The usual 

identification condition, that there is at least one variable in each of other vector, holds. 

The Z1 measures the direct effect of search effort on willingness to pay and the Z2 

measures the direct effect of willingness to pay on search effort. ε1 and ε2 are two 

correlated error terms assumed to follow a bivariate normal distribution; that is [ε1, ε2] ~ 

BVN(0,∑).  

The key parameters in the model are z and β. Specifically, the z parameters capture the 

interdependence between search effort and willingness to pay. β captures the effect of the 

demographics on both dependent variables. 

Vectors Xij, and Yij contain two types of predictors for Sij and Yij respectively. Most of the 

predictors are common in both vectors but each vector includes at least one variable that 

is not in the other, as is necessary for identification of the two equations. In addition to 

the demographic information like education, family size, age, income, children presence, 

the data set in this study also include the Internet connection.  
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1.4. Data and Empirical Analysis 

1.4.1. Data 

The dataset used in this study was collected from comScore 2004 disaggregate dataset 

which captures detailed browsing and buying behavior for 50,000 Internet users across 

the United States. A device installed in each household with permission from the 

consumers records the consumer behavior of online buying and searing activities. The 

dataset is a random sample from a massive cross-section of more than 2 million global 

consumers who have given comScore explicit permission to confidentially capture their 

Web-wide browsing and transaction behavior. This panelist-level data is gathered by 

comScore Networks using a proprietary data collection methodology that enables 

comScore to passively observe the full details of panelists’ Internet activity, including 

every Web site visited and item purchased. Panelists include purchasers and non-

purchasers who were active online during each month of the 2004 calendar year. The 

unique panelist identifier in this dataset is Machine ID. All demographic information is 

based upon the associated household. All sessions are aggregated by machine ID in the 

household, so that individual breakdowns are not available and a particular individual 

could use more than one machine.  

We propose several different summary statistics to examine potential associations across 

sites. In order to show the comparisons between the hedonic and utilitarian categories 

more clearly, we only included the purely hedonic category, which includes movies and 

gaming consoles; the purely utilitarian category, which includes health goods and tools. 
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We aggregated the purchase variables like product quantity and total cost by site session 

id. For search behavior variables like duration and pages viewed, I just averaged them by 

the site session id to get the site session level data to match with our purchase behavior 

variables.  

Overall, we consider eleven variables: search effort, willingness to pay, connection, age, 

education, income, children, household size, racial, census and origins. Table 2 and Table 

3 describe the variables. 

-------------------Insert Table 2 and Table 3 about here------------------- 

As mentioned earlier, the model specification makes controlling for the potential 

endogeneity of the two dependent variables Sij and Pij necessary. The instrumental 

variables are all exogenous variables in Xij and Yij relevant to them plus other 

demographic variables inside the dataset. Specifically, the instrumental variables Iij 

contain connection, age, education, income, children, household size, racial, census and 

origins.  

1.4.2. Empirical Analysis 

Our analysis shows the significant asymmetric interdependence between the two major 

variables Search Effort (Sij) and Willingness to Pay (Pij), which also vary statistically 

across different product types. In addition, some of the demographic characteristics are 

also significant factors on the two dependent variables. However these are not the focus 

of the study.  
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Table 4 and Table 5 summarize the estimation results for our model applied on the four 

product categories.  

Model fit: Over all, the model fits well. The system weighted R
2
 for all four product 

categories are 0.0377 (movie), 0.0302 (game consoles), 0.0389 (health) and 0.0594 

(tools) separately. The low R
2
 value is quite typical for this type of regression estimation.  

Significant interdependence: Across the four product categories, the impact of search 

effort on willingness to pay and the impact of willingness to pay on the search effort are 

all statistically significant. This is consistent with our first hypothesis that there is 

significant interdependence between the online consumers search effort and buying 

behavior.  

Asymmetric interdependence: The estimates in table 3 also show the impact of search 

effort Sij on consumers’ willingness to pay Pij is significantly less than the impact of Pij on 

Sij. In other words, the dependence of willingness to pay on the search effort is less than 

the dependence of the search effort on the willingness to pay. This provides evidence that 

how much money consumers are going to spend can impact their search effort more than 

the reverse situation.  

Differences in interdependence across product categories:  When we look at the 

detailed value of each parameter, we can see there is a negative relationship between 

search effort Sij and willingness to pay for the two hedonic products movies and console 

games; while the relationship of willingness to pay and the search effort is positive for 
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the two utilitarian products health goods and tools. This is consistent with our second 

hypothesis. 

Since the interdependence is the study focus we will not discuss the coefficients of the 

demographics. They worked well as the instrument variables. 

-------------------Insert Table 4 and Table 5 about here------------------- 

1.5. Discussions and Future Research 

There has been lots of research on different aspect of hedonic and utilitarian goods. 

However examining the effect of the nature of the good on the interdependence of 

willingness to pay and search effort has never been done. In this article, we present a 

simultaneous equation model incorporating the major research focus of search effort and 

willingness to pay together with the demographics of the household. Our theoretical 

framework includes the impact of search behavior and purchase behavior in the online 

domain as well as the impact of product categories between hedonic and utilitarian goods.  

We derive two sets of hypotheses from our theory. Specifically, the first hypothesis is 

regarding the interdependence between search effort and willingness to pay. From the 

empirical study, we find significant evidence to support this hypothesis, indicating that 

under the online environment, the consumers’ online search effort would impact their 

purchase behavior. More importantly, the willingness to pay will impact how consumers 

are going to search on the websites. The empirical results also supported our hypothesis 
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that when people start a purchase session online, they mentally initiate the searching and 

purchasing process simultaneously.  

The second group of hypotheses is regarding the moderating effect of the product types 

between hedonic and utilitarian goods. We find significant evidence to support our 

expectations that for the hedonic products, consumers express a negative relationship 

between the search effort and the willingness to pay while for the utilitarian product 

categories, the relationship becomes positive.  

The research findings in this article could have significant implications for decision 

makers in website designing associated with the nature of their products. First, because 

our findings suggest that for hedonic products, there is a negative interdependence 

between search effort and willingness to pay, the website should be designed with less 

text content which is time consuming to read but more creative pictures to avoid the 

guilty feelings. Second, our findings also suggest that for utilitarian goods, there is 

positive interdependence between search effort and willingness to pay. The website 

should be designed to provide enough information for the consumers to read about and 

stay longer on the webpage.  

While providing support to our theoretical framework, our results are subject to 

limitations, which also suggest opportunities for further research. Because we have panel 

data for a year so we didn’t examine the dynamic aspects of the interdependence between 

search effort and willingness to pay. It would be interesting to further explore how 
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consumers learn from the previous experience and change their buying and searching 

behavior accordingly.  
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Table 1 Hedonic Versus Utilitarian Goods 

Variable                               Hedonic Goods
a 
                               Utilitarian Goods

b
 

Quality uncertainty              Relatively high                                   Relatively low            

Attributes                             Subjective, symbolic, intangible        Objective, Functional, tangible 

Consumer Risk          Relatively high                                   Relatively low 

Purchase motives                 Emotional, variety seeking,               Rational, practical functionality 

Type of purchase                 Wants                                                 Shoulds 
a
For example, movies, console games. 

b
For example, health products, tools. 

Table 2 Demographics 

Most Educated Head of the Household                            Household Income 
0  Less than a high school diploma   1 Less than 15k 

1   High School diploma or equivalent   2 15k-24.999k 

2  Some college but no degree     3 25k-34.999k 

3   Associate degree      4 35k-49.999k 

4   Bachelor's degree      5 50k-74.999k 

5   Graduate degree      6 75k-99.999k 

99  Missing      7 100k+ 

 

Age of Eldest Head of Household and Age of User         Household size 
1  18-20                             1 1 

2   21-24                                                                               2 2 

3  25-29                                                        3 3 

4   30-34                                            4 4 

5   35-39                                                    5 5 

6   40-44                                            6 6+ 

7  45-49                                      Racial Background 

8 50-54                                                       1 white 

9   55-59                                           2 Black 

10   60-64                                                   3 Asian 

11   65 and over                               5 other 

 

Connection Speed     Census Region of Residence 
0 Not broadband        1 north east 

1 Broadband        2 north central 

          3 south 

          4 west 

 

Country of origin     Child presence 
0 Hispanic                    0 no 

1 Not Hispanic        1 yes 
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Table 3 Definitions of Data Variables 

Variable  Operationalization 

Endogenous Variables 

Search Effort Sij Duration of web-view divided by pages viewed 

Willingness to Pay Pij Money spending divided by quantity purchased 

Exogenous Variables (Predictors Xij, Yij) 

Education Most educated person in the household are 

recoded into 2 groups (before college, college 

and higher) 

Family size Size of the family are regrouped into 2 groups 

(1-3 small family; 4 and over big family) 

Age Eldest head of household are regrouped into 

three groups (young family below 30, middle 

aged family between 30 and 54; old family 

above 54) 

Income Household income are regrouped into three 

groups (low income family below 24.999k, 

medium income family between 25k to 

49.999k, high income family above 75k) 

Children presence Two groups (with children or not) 

Connection Two groups (broadband or not) 

Exogenous Variables (Instrumental Variables Iij) 

Racial 4 groups (White, Black, Asian, other) 

Origin 2 groups (Hispanic or not) 

Census 4 groups (north east, north central, south, west) 
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Table 4 Three-stage least-square estimation results of willingness to pay as DV 

                                             Movie            Console Games            Health                Tools 

System weighted R
2
            0.0377                 0.0302                    0.0389                 0.0594 

Endogenous variable    

Sij                                       -0.166
a
                 -0.775

a
                     0.333

a
                 0.665

a
 

Education            Ed1        -0.016                  -0.091
a 
                     0.0179               -0.074 

                            Ed2          0.018                 -0.093
a 
                     0.0461

a                        
0.045 

Family size                          0.007                   0.115
a
                     0.013                   0.031 

Age                     Age1       -0.033
a
                 0.021                       0.029                 -0.105

a
 

                            Age2       -0.005                  0.045                      -0.001                -0.072 

Income                In1          -0.030                  0.028                      -0.082
a
                -0.116 

                            In2          -0.016                 -0.096                      -0.040                 -0.085 

Children                             -0.009                   0.02                       -0.030                    0.109
a
 

a
 significant at 0.05 level 

 

Table 5 Three-stage least-square estimation results of Search effort as DV 

                                              Movie        Consoles Games              Health               Tools 

System weighted R
2
            0.0377               0.0302                        0.0389              0.0594 

Endogenous variable    

Pij                                        -1.082
a
              -0.457

a
                         1.454

a
               1.11

a
 

Education            Ed1         -0.012               -0.084
a
                        -0.011                0.123

a
  

                            Ed2         -0.026               -0.086
a
                        -0.061

a                     
-0.051 

Family size                         -0.008                0.082
a 
                        -0.03                 -0.04 

Age                     Age1       -0.061
a
              -0.01                           -0.073

a
                0.127

a
 

                            Age2       -0.027                0.017                         -0.044                 0.091 

Income                In1            0.051
a
              0.085                           0.166

a
                0.116 

                            In2            0.048
a
             -0.029                           0.096

a
                0.072 

Children                              -0.011                0.008
 
                          0.059

a
              -0.142

a
 

Connection                          -0.181
a
             -0.063

a
                        -0.125

a
              -0.048

a
 

a
 significant at 0.05 level 
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Chapter/Essay 2 

Analyzing Online User Comments: A Text Mining Approach 

2.1. Introduction 

It is widely known that user recommendations play a role in affecting potential 

purchasers of products and services. This is one reason why user reviews are prominent 

in numerous web sites (e.g., at Amazon.com). Kumar and Benbasat (2006) for example, 

use empirical evidence to demonstrate the influence of recommendations and online 

reviews on consumers’ perceptions of the usefulness and social presence of such 

websites. Reichheld (2003) in fact essentially argues that recommendations are the single 

biggest predictors of company growth. Senecal and Nantel (2004) found that individuals 

who consulted online product recommendations selected recommended products twice as 

often as individuals who did not consult recommendations. On the whole it seems quite 

clear that recommendations should be of very high value for marketers. 

Since recommendations are so crucial for firms, it is also important for marketers to 

identify what might be some of the drivers of recommendations. There have been many 

studies that have tried to identify variables that affect the decisions of individuals to make 

recommendations of product or not. Some examples of such research are Lowenstein 

(1995), Brown et al. (2005), and Shabbir et al. (2007). However, almost all such previous 

research has used potential determinants’ data that was numeric in nature. As a 

consequence only a limited number of determinants could be studied in any particular 
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study (e.g., Ladhari et al. 2011 identified three drivers of recommendations– perceived 

service quality, emotional satisfaction and image).  

There is an abundance of consumer reviews in the online domain. Among these plentiful 

online reviews there are also recommendations made by consumers. The reviews 

themselves are typically in text form. This also means that such reviews can contain a 

large number of potential determinants of recommendations. The wide availability of 

lengthy and numerous text-based online reviews provides a treasure trove of information 

that can potentially reveal a much wider set of variables that determine whether a 

recommendation is made or not. This is certainly a largely unexamined issue in the 

marketing literature. In order to extract such rich information, there is a need to use text-

mining models. This is a goal of our study--to investigate in detail how a study of such 

online reviews can reveal determinants of user recommendations. 

In the marketing literature, researchers have studied online reviews. Several research 

papers have looked at the impacts of reviews on variables such as sales and preferences 

using only numerical data as independent variables. For example Chevalier and Mayzlin 

(2006) have looked at volume (number of ratings) and valence (average numerical ratings) 

of reviews across online book retailers to see their effect on sales. The valence of reviews 

is an important concept and the authors have used numerical data related to the product 

(books in this case) to capture valence. Dellarocas et al. (2007) in the marketing literature 

also found a similar relationship between volume of ratings and box office revenues. 

Almost all such papers in the traditional marketing literature include analysis of 



32 

 

 

 

numerical information such as those derived from rating scale responses, and almost no 

work on text mining models exists in the marketing literature.  

Potential consumers search online for information and for evaluating choice alternatives. 

These individuals have access to a large number of sentence based product reviews from 

previous consumers. The data content of these reviews is very different from traditional 

structured numerical data; an entirely different modeling approach therefore needs to be 

utilized to extract relevant information from these reviews. 

With the help of text mining, which mainly handles unstructured data/text, we can 

actually investigate online content more deeply than done previously in the marketing 

literature. Machine-learning algorithms can be used for categorizing text material (Apte 

& Damerau, 1994; Lewis et al., 1996; Dagan et al., 1997; Sebastiani, 1999). These 

algorithms can be employed to classify texts—the huge heterogeneous, unstructured data 

available especially on the web --- like reviews and blogs into fixed categories such as 

that reflecting sentiment polarity based on the content of the text messages.  

In the present research we use a machine language algorithm to extract information from 

text-based online reviews to reflect consumer perceptions that drive user 

recommendations. The amount of information contained in text-based comments is 

tremendously greater than that contained in typical numerical rating type data. There are 

such a large number of types of permutations and combinations of words that are 

possible. Hence a major challenge is how to extract the most relevant information from 
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this very big data source. In this paper we attempt to extract the essence of the 

information present in consumer reviews by using a text mining methodology.  

One needs to be aware that extraction of valid information from such online reviews is 

associated with examining many words and also large numbers of combinations of words. 

Overall the amount of text that one has to wade through is very high, and therefore, the 

issue of scalability becomes very important in such an investigation. In our research, we 

investigated scalability by doing the following steps. First we compared the time needed 

for data preprocessing with how it is related to the number of reviews considered and the 

number of words evaluated. We do a similar analysis with respect to the time needed for 

classification also. We found that the time of computation is not at all large even for the 

very large dataset that we used; this indicates good scalability for our methodology. 

Additionally we compare running our models using a serial algorithm (which uses a 

single core on a processor) vs. using a multi-threading parallel algorithm (which can use 

multiple cores on a processor to shorten the processing time). We find that utilizations of 

the parallel algorithm reduce computation time tremendously; this means that our 

methodology will become even more scalable. 

In our research, we extracted a large amount of data from the Internet; this extraction 

itself is very computing-intensive, and we wrote specific Java programs to do this. After 

we extracted the data from the web site, we wrote and used another series of Java 

programs to conduct pre-processing, indexing, feature selections etc. in order to get the 

data formatted for doing classification analysis. The algorithms were implemented in 

Eclipse of version Juno Service Release 2. Eclipse is an open-source Integrated 
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Development Environment (IDE) for Java. The dependent variable is whether users 

recommended the product or not while the independent variables in our predictive model 

were different combinations of words from online reviews. We used a specific structured 

process to identify the most relevant key words and key word combinations out of the 

many possible ones. Predictive accuracies of this text-based model were high across a 

variety of examined situations.  

A new finding from our empirical modeling is that as the number of textual features 

increases, the predictive accuracy of the model also increases but only up to a point. 

Beyond that, inclusion of more features in the model leads to a decrease in predictive 

accuracy. In essence, we found an inverted-U shape of relationship between the number 

of features and model accuracy. This finding also has positive implications from the 

perspective of scalability in the analysis of big data of this kind. 

Text based data has the potential to provide valuable diagnostic information about what 

individuals are thinking; focus on developing such diagnostics is not common in the 

marketing literature. We develop an approach, which lends structure to such diagnostics. 

This is based upon identifying groups of common and unique word features. We used 

two different types of processes to identify which word combinations are most important. 

One process relies on the weighted frequency of words. The other approach identifies 

determinant words by computing their discriminating ability using Chi-square value 

calculations. This second approach provides very good insights with respect to 

understanding whether consumers make recommendations or not; this kind of approach 

has not been used previously in the business literature for such diagnostic purposes. We 
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empirically compare the nature of this diagnostic information across product types (hotel 

types in our case) and across consumer segments (business or personal trip). 

Identification of such keyword based diagnostic information is of substantial value for 

search engine marketing like Google AdWords. 

Identification of attributes affecting recommendations via usage of text mining models 

together with a detailed investigation of the importance of the scalability of this text-

based problem analysis, we believe, has not been studied in the marketing literature. We 

also believe that there is a tremendous potential for usage of the methodology of this 

study for many future areas of study in the academic marketing discipline.  

The rest of the paper is organized as follows: in section 2.2 we discuss the fundamentals 

of our text modeling methodology. In section 2.3 we discuss the details how we 

implement this for online reviews and recommendations. Section 2.4 provides a summary 

of our findings and suggests future directions for research in marketing. 

2.2. Methodology 

In this section we describe the overall approach that we use for analysis of text content. 

In section 3 we give more specifics of how this approach was used with our online 

database of text. 

Text classification will use a machine-learning algorithm to classify the sentence based 

text documents into one of previous defined categories. Suppose we have a set of 

documents which could be the reviews posted on the websites by consumers. Each 
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document can be expressed as a vector of attributes              . All documents 

belong to one of several predefined categories              . The attributes are 

usually term weights from indexing which will be discussed in detail in the following sub 

sections. We will use a model to predict the class of the document      . In our 

research, we focus on two classes: recommend or not recommend. 

In the following sections, we will explain the complete process of how we used text 

mining.  

2.2.1. Preprocessing  

Before a learning method can be applied, a number of preprocessing steps are required to 

get the data in ready format for further analysis. The preprocessing of raw data includes: 

raw text tokenization, case conversion, stop-words removal and stemming. 

First, the raw text is divided into tokens (single word, special symbols, etc.) using 

whitespaces (space, tab, new line character, etc.) as separators to break the entire review 

document into tokens. For example, suppose we have a document stating “I like iPhone. 

It is the first phone I got and I really like the appearance.” The tokenization step will 

break this sentence into tokens like “I”, “like”, “iPhone”, “got” etc.  

The second step is case conversion where the words are modified to be all in lower 

cases—all the capitalized letters will be converted into lower cases. In the above example, 

the letter “P” is converted to “p” and the word “iPhone” is converted to “iphone”. The 
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purpose of case conversion is to reduce the number of redundant words by converting 

them all into lower cases.  

The third step is removal of stop-words. The purpose of stop-words removal is to reduce 

the size of the classification matrix by reducing the number of irrelevant terms. Lots of 

very commonly used words like “the”, “I”, “to”, etc., are of little use in classifying 

documents into predefined categories. The efficiency and accuracy of the classifications 

can be improved by removing these words. In our study a general stop-word list, which 

contains standard stop words, was used along with some manual adaptations.  

The next preprocessing step is called stemming. Different variations of a word are 

converted into a single common form that is termed stem. For example, ―connect” is the 

stem for ―connected”, “connection”, “connecting”, etc. Usage of stemming significantly 

reduces the number of features and increases retrieval performance (Kraaij & Pohlmann, 

1996). We use a dictionary-based stemmer to do stemming with our data. When a term is 

unrecognizable, we use logic to give the word a correct stem. 

2.2.2. Indexing 

The result so far is a term-by-document matrix with each cell representing the raw 

frequencies of occurrence for each term in each document. The rows of the matrix 

represent terms (words), and the columns represent documents (reviews for example). 

Jones (1972) showed that there is a significant improvement in retrieval performance by 

using weighted terms vectors. The term weight is generated by multiplying Term 
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Frequency (TF) and the Inverse Document Frequency (IDF) (Jones, 1973; Coussement & 

Van Den Poel, 2008b). 

TF measures the frequency of the occurrence of an indexed term in the document (Salton 

& Buckley, 1988; Coussement & Van Den Poel, 2008a). The higher the frequency of a 

term, the more important this term is in characterizing the document. Such frequency of 

occurrence of an indexed word is used to indicate term importance for content 

representation (Baxendale, 1958; Luhn, 1957; Salton & McGill, 1983).  

In our study, the TF was obtained from the raw term frequency. Not every word appears 

equally across the whole set of review documents. Some words appear more frequently 

than others by nature. Given other things constant, the more seldom a term occurs in a 

document collection, the more distinguishing strength that term is likely to have. Hence 

the weight of a term is inversely proportional to the number of documents in which it 

appears (Coussement & Van Den Poel, 2008a). So IDF is used to take into account of this 

effect. The logarithm of the IDF will decrease the effect of the raw IDF-factor 

(Coussement & Van Den Poel, 2008a).   

Finally the total weight of a term   in document   is given by               

Here,      is equal to the term frequency of term   in document ;      is equal to the 

inverse document frequency of term . 

Mathematically,           with     being equal to the frequency of term   in document 

  and          (
 

   
)   , with   being equal to the total number of documents in the 
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entire collection of reviews and     equals to the number of review documents where 

term   was present (Coussement, 2008). 

2.2.3. Multi-word Phrases 

Tokenization gives the term-by-document matrix. Each term in the matrix is a single 

word. In most cases, multi-word phrases are also important because phrases have more 

complete context information than the individual word. So the most popular class of 

features used for text classification is n-grams (Pang et al., 2002; Wiebe et al., 2004). 

Word n-grams include the single word (unigram), and higher order n-grams like bi-grams 

and tri-grams. Word n-grams have been used effectively in various studies (Pang et al., 

2002). Unigram to tri-grams have typically been used in text mining and large n-gram 

phrase sets require the use of attribute selection to reduce the dimensionalities (Abbasi et 

al., 2008; Ng et al., 2006). For instance, if we have a sentence “I like iPhone”. We have 

three unigrams “I”, “like”, “iPhone”, two bi-grams “I like”, “like iPhone”, and one tri-

gram “I like iPhone”.  

2.2.4. Dimensionality Reduction  

So far this weighted term-by-document matrix is a high dimensional matrix since there 

are many unique terms. Moreover, it is very sparse with many zeros since not all 

documents contain all terms (Coussement, 2008). It is worth noting that large attribute 

dimensionality incurs high computational costs and can cause over-fitting problems in the 

classification process. So we need to reduce the dimensionality. The number of terms can 

be reduced through feature selection, which selects a subset of the top-ranked features 

based on various algorithms. Information-theoretic measures such as chi-squares, 
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information gain and gain ratios are commonly used in text classification (Sebastiani, 

2005) for feature selection. These measures are designed to measure the dependency 

between the class and the term (Chou et al., 2010). Yang and Pedersen (1997) reported 

that information gain and chi-squares outperform other functions such as mutual 

information etc. Debole and Sebastiani (2004) reported that gain ratio and Chi-squares 

are more effective than information gain. So we choose Chi-squares as the method for 

attribute selection in our present research. 

Chi-square is a common statistical test that measures the lack of independence of two 

variables (Liu & Setiono, 1995), which are class of document and a feature in the case of 

text classification. As is well known in traditional statistics, the chi-square test can check 

the independence of two events A and B. A and B are independent if             

    . For selecting terms/words, the two events are occurrence of the term and the 

occurrence of the class. In order to get the chi-square values, we need to first build a 

      contingency matrix per class-term pair. Suppose we have only two classes: 0 

(negative) and 1 (positive). For each term the observed frequency value is: 

Observed Class = 1 Class = 0 

Term t appears t = 1 N11 N10 

Term t not appear t = 0 N01 N00 

Then we need to get the expected frequency value by the equation: 
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Expected Class = 1 Class = 0 

Term t appears t = 1 E11 E10 

Term t not appear t = 0 E01 E00 

The chi-square value of each term can be obtained by the equation:  

   ∑
         

 

   
   
   

 

We then rank the terms with respect to the chi-square values. A high value leads to 

rejection of the independence hypothesis. If the two events are dependent, existence of 

the term makes the existence of the class more probable. Thus this term will help to 

discriminate the class of the document.  

2.2.5. Classification Technique 

We use the Support Vector Machine (SVM) approach for classification purposes. The 

following discussion draws from Turney and Pantel (2010). SVM was developed by 

Salton (1971) and Salton, Wong, and Yang (1975). SVM represents each document in a 

collection as a point in a space. Points in close proximity in the space are grouped into the 

same categories while points that are far from each other are grouped in to a different 

class. SVMs are linear classifiers that find a hyperplane to separate two classes of data, 

positive and negative. Intuitively, a good separation is achieved by the hyperplane that 

has the largest distance to the nearest training data point of any class.  

Let   be a term-document matrix. Suppose the document collection contains   

documents (in our study, it is the number of reviews) and   unique terms (obtained after 
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data preprocessing and feature selection). Let    be term i in the vocabulary and let    be 

document j in the collection. The row i in   is the row vector     , and the column j in   is 

the column vector    . The row vector      contains   elements, one element for each 

document, and the column vector      contains   elements, one element for each term. 

The element     in   is the TF-IDF of the i-th item    in the j-th document. The pattern of 

numbers in      is a kind of signature of the i-th term  ; likewise, the pattern of numbers 

in      is a signature of the j-th document. The notations and descriptions in this paragraph 

follow from the work by Turney and Pantel (2010). 

A simple case (Cristianini & Shawe-Taylor, 2000) of using SVM for classification is 

shown in Figure 1 for illustrative purposes only: 

----------------------Insert Figure 1 about here------------------- 

Even for the SVM classification method, there are various algorithms and the most 

popular one is the Sequential Minimal Optimization (SMO), which is conceptually 

simple, easy to implement and fast to compute. Since computational theory is not the 

focus of our study and has already been developed by previous researchers, here we only 

present the idea conceptually; for further details, Cristianini and Shawe-Taylor (2000) is 

a good reference. 
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2.2.6. Evaluation Criteria 

For assessing the performance of different classification models, we use three criteria: the 

percentage accuracy, F-measure and the Area Under the receiving operating Curve (AUC) 

(Coussement and Van Den Poel, 2008a) 

Accuracy: This essentially refers to the percentage correctly classified. If TP, FP, TN, 

FN are respectively the number of correctly predicted positive reviews, the number of 

negative reviews predicted as positive, the number of correctly predicted negative 

reviews, and the number of positive reviews predicted as negative, accuracy is defined as 

                    ⁄ . The accuracy can be compared to the proportional 

chance criteria (percentagepositive
2 

+ (1-percentagepositive)
 2

) in order to confirm the 

predictive capabilities of a classifier (Morrison, 1969).  

F-measure (Powers, 2007): Another way to evaluate the performance of the prediction 

model is the F-measure. When we look at the performance of the models, we can get the 

Precision p, which is the number of correctly classified positive examples divided by the 

total number of examples that are classified as positive and the Recall r, which is the 

number of correctly classified positive examples divided by the total number of actual 

positive examples in the test set separately (Liu, 2008). In order to look at them together, 

the F-measure is used to combine the precision and recall as the harmonic mean of 

precision and recall.  
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A higher F-value indicates better model performance. 

AUC (Metz, 1978): In order the get the AUC, we need to first draw the Receiver 

Operating Characteristics (ROC) curve. This considers the sensitivity TP / (TP+FN) and 

1 minus the specificity (1-TN / (TN+FP)) in a two-dimensional graph (Coussement and 

Van Den Poel, 2008a). The sensitivity is the likelihood of identifying a positive case 

when presented with one while the specificity is the likelihood of identifying a negative 

case when presented with one (Gopal et al., 2007). The area under this ROC curve is 

calculated to compare the performance of a binary classifier (Hanley & McNeil, 1982). A 

classifier can produce a single ROC point. If a learning algorithm produces the classifier, 

changing the class ratio in the training set can generate a series of ROC points. Then we 

can connect all the different ROC points in a figure. In turn, the AUC can be calculated. 

When classifying randomly, the ROC curve is a line joining points (0, 0) and (1, 1) with 

the area under the curve equals 0.5. In general, any classification performance should be 

better than a randomly made classification. A general example (Metz, 1978) of the ROC 

curve is shown in Figure 2 for illustrative purposes only.  

-------------------Insert Figure 2 about here------------------- 
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2.3. Empirical Analysis 

In order to test if consumer recommendations can be predicted using only text data, we 

gathered data from the hotel industry and conducted an empirical evaluation.  

2.3.1. Data Collection  

In our study, we use data obtained from orbitz.com, which is a leading website in the 

travel industry. We focus on the hotel domain. On the websites, consumers need to 

register to leave their reviews, ratings, and recommendation choices after they stayed in 

the hotel. We collect the data using our own Java program of four levels of hotels in Las 

Vegas: a 2-star hotel ―American Best Value Inn‖, a 3-star hotel ―Bally‖, a 4-star hotel 

―Treasure Island‖ and a 5-star hotel ―Venetian‖. For each hotel, we further segment the 

reviews into business and personal based on the reviewers’ choice of trip purpose. We 

choose Las Vegas among the various cities across the whole nation because it is one of 

the most popular tourist cities in the U.S., and attracts a large number of hotel users. 

Table 6, Table 7, Table 8 and Table 9 represent the summary of the review data of the 

four hotels. 

-------------------Insert Table 6, Table 7, Table 8 and Table 9 about here------------------- 

Reviews from the first available one to all those posted on the website till April 1
st
, 2013 

were collected. For each review, the reviewer gave the choice of recommend or not-

recommend; we use this as the dependent variable (class) in the prediction models. The 

various sets of words/features are used as the predictive variables. 
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2.3.2. Empirical Analysis 

The first part of the analysis is the prediction of the sentiment polarity of the reviews. We 

use recommend or not-recommend given by the reviewers as our dependent variable and 

form this binary text classification problem. We perform data preprocessing to get a high 

dimensional tri-grams term-by-review matrix. We use TF-IDF to do the term weighting. 

We then perform feature selection to reduce the dimensions. For the feature selections, 

we use the selection criteria chi-square as stated previously to help us form a series of 

different sized feature sets. For the purpose of classification we use the SVM algorithm. 

We use a common 10-folds cross validation for classification testing and prediction. The 

classification model confirms our expectation that there is information content in the 

reviews that can help predict consumers’ overall attitude toward the hotel: whether the 

consumers recommend it or not. 

The second part of the analysis is a key focus of our analysis: diagnostics of the key 

features. We used two different types of processes to identify which word combinations 

are most relevant. One process relies on the weighted frequency of words. In previous 

research the frequency of occurrence of an indexed word has been used to indicate term 

importance for content representation (Baxendale, 1958; Luhn, 1957; Salton & McGill, 

1983). Here we combine the term frequency with the inverse document frequency to 

incorporate the nature of the reality of the term and so we use TF-IDF of the term to 

represent the importance of the features. The other approach identifies determinant words 

by computing their ability to discriminate between the existence of a recommendation or 

not, using Chi-square value calculations. 
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In the last part of the analysis, we did the scalability test. While automated classification 

techniques are at the core of analyzing sentence-based reviews, computational 

requirements are a challenge in the analysis of very large data sets with tens or even 

hundreds of millions of records. To evaluate scalability we compared the computing time 

for indexing (a very time-intensive preprocessing step) and for the classification task, at 

different numbers of reviews and features. Three hotel datasets, Bally, Treasure Island 

and Venetian are analyzed. We also compared indexing computation time when either a 

parallel algorithm or a serial algorithm was used.  

2.3.3. Results and Discussions 

In this section, we report the performance results of online reviews’ classification models. 

We also present the diagnostics from the text analysis. The scalability issue is also 

discussed here. 

2.3.3.1. Classification Performance 

Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17 and Table 

18 report the predictive performances of different numbers of features as input for the 

three levels of hotels: 3-star Bally, 4-star Treasure Island and 5-star Venetian. We report 

the feature size along with the overall accuracy, F-measure and ROC for the three levels 

of hotels, and for each hotel we also report the prediction performance across the four 

consumer segments: business, couple, family and friend.  

With the very large amount of text in the reviews on the website, we get a huge term-by-

review matrix for each hotel with over tens of thousands of features/words. It is very 
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necessary to choose a subset of features to perform the prediction classification. We 

apply the chi-square feature selection to rank the number of features and for further 

dimension reduction. We rank the features by chi-square value and select a number of top 

features. For each set of ranked features, we evaluate several different numbers of top 

ranked features (words), from as small as 10 to as large as 5,000 to get a comprehensive 

idea of how feature size may affect predictive performance of the model.  

Table 10 shows how predictive accuracy changes as the size of features increase- for the 

entire dataset and for the different segments separately. We can see that all the predictive 

accuracies are good and also greater than the benchmark proportional chance criteria 

(Morrison, 1969). Table 11 shows that F-measure values are very high for the whole 

dataset as well as for the different segments indicating accurate predictions as well. Table 

12 shows that ROC is generally greater than what one would get by random chance alone 

(0.5). Similar patterns can be found in Table 13, Table 14, Table 15, Table 16, Table 17, 

and Table 18. Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 

10, and Figure 11 are plots of accuracy percentage vs. the number of features (words). 

Overall we can see an interesting inverted U-shaped prediction performance. Addition of 

words increases accuracy but further addition leads to a decline in accuracy. This pattern 

is generally consistent across the three hotels and across the four consumer segments. 

-------------------Insert Table 10, Table 11, Table 12, Table 13, Table 14,  

Table 15, Table 16, Table 17 and Table 18 about here------------------- 
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-------------------Insert Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, 

Figure 10, and Figure 11 about here------------------- 

2.3.3.2. Diagnostics 

The second part of the results focuses on the diagnostic use of the text mining 

methodology. In the previous section, we empirically show that the text mining models 

can classify the users’ recommendations for the hotels very well. What the consumers put 

on websites can represent their real thoughts about their experience with the hotels. So 

additionally what is important for us is to discover and identify those text features, which 

are really important from the viewpoint of providing diagnostic information to the 

companies. Next we describe two ways by which we identify the limited number of more 

relevant text features from the reviews.  

The TF-IDF value reflecting the frequency of occurrences of the word features indicates 

the importance of the features for representation of the content of the reviews. Therefore, 

we can rank the features based on TF-IDF values to indicate the importance of the 

features and help us identify the top important features. We believe that importance is 

only one aspect of the features for being determinant attributes of consumers’ 

recommendations. Another aspect of the determinant attributes is their discriminating 

ability in terms of identifying yes or no consumer recommendations; we use chi-square 

values to identify the features that provide a high ability to discriminate. We list a limited 

number of words that are very highly ranked. 
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First we compare a 2-star and a 5-star hotel to see the differences in relevant features. 

Table 19 and Table 20 summarize the comparisons. We can see from Table 19, by 

looking at the TF-IDF value ranked features, 2-star and 5-star hotels have several 

important features in common, like ―locations‖, ―room‖, ―service‖ etc. There are also 

important features unique to each hotel type. For the 2-star hotel, ―value/price/cheap‖ 

were important. This finding has face validity since common sense would also indicate 

that consumers who choose to stay at a 2-star hotel are looking for cheap hotels. For 

consumers staying at a 5-star hotel, some additional services like ―shop‖, ―get-away‖, 

―show‖, ―dining‖, ―casino‖ and ―luxury‖ rank high in our generated list. Again this is 

consistent with common sense that consumers who choose to stay at 5-star hotels are 

looking for a luxury experience and a high level of service.  

When looking at the discriminating ability of the features on the basis of chi-square value, 

Table 20 shows that there are some common features across 2-star and 5-star hotels and 

some of these are consistent with what we found by using the frequency based TF-IDF 

approach; these words include ―location‖, ―room‖, and ―service‖. There are also some 

other features like ―rude‖, ―carpet‖, ―furniture‖ which were less frequently used but were 

much more effective in their ability to make a difference between recommendations and 

no recommendations. 

-------------------Insert Table 19 and Table 20 about here------------------- 

Table 21, Table 22, Table 23, Table 24, Table 25 and Table 26 show the commonalities 

and differences in word importance and discriminating power across segments for the 
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various quality level hotels. Even for the same level of hotels, across different segments, 

there might be similar and different features, which are important for the consumers and 

in discriminating the consumers’ attitudes toward the hotels. Table 21 of Bally hotel 

shows that based on the ranking of TF-IDF value, ―location‖, ―room‖, ―service‖, ―value‖, 

and ―comfort‖ etc. are important to consumers across the business and personal segments 

(including couple, family, friend). When it comes to the unique features, ―conference‖ 

and ―internet‖ stand out for the business segment while additional enjoyable vacation 

related services like ―parking‖, ―show‖, ―shop‖ become important for the personal visits. 

When it comes to the discriminating feature based ranking methodology, like in Table 22 

there are some common features that appear in both business and personal segments like 

―rude‖, ―staff‖. There are also unique features appear in business segments like 

―bathroom‖, ―wall paper‖, ―value‖ and etc. and in personal segments like ―location‖, 

―anniversary‖, ―casino‖ and etc. Similar patterns can be found in Table 23, Table 24, 

Table 25 and Table 26. 

-------------------Insert Table 21, Table 22, Table 23, Table 24, Table 25 and Table 26 

about here------------------- 

Identifications of these key features will help advertisers choose the right words or 

combinations of words for advertising and especially for search engine based advertising 

messages.  
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2.3.3.3. Scalability Tests 

First, on the platform of Intel Core i5 1.7 GHz with 8 GB memory, on OS X 10.8.5 

operating system, we examined how the time of the major preprocessing step—building 

the index of each term in the matrix -- varied with the number of reviews or the number 

of features. The results are shown in Table 27, Table 28 and Table 29 and Figure 12, 

Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, 

Figure 21, Figure 22, and Figure 23. Figure 12, Figure 13 and Table 27 show that for 

2000 reviews or 61568 features the computation time of indexing is about 740 seconds. 

Figure 14, Figure 15 and Table 27 show that for 2000 reviews or 61568 features the 

computation time for classification is only about 0.71 second. In other words, our 

preprocessing methodology or classification can be applied to very big data sets without 

too much penalty in computation time, thus indicating good scalability for our 

methodology. 

Table 30 shows the comparison of indexing computation time of the 4 hotels when we 

use a serial algorithm (utilizing a single core) vs. a parallel algorithm (utilizing 8 cores). 

All the experiments are performed on Intel Xeon X5472 3.0 GHz with 16 GB memories. 

As seen in Table 30, taking advantage of multi-cores can greatly reduce the execution 

time and makes our approach even more powerful and scalable when dealing with big 

data. 

-------------------Insert Table 27, Table 28 and Table 29 about here------------------- 
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-------------------Insert Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, 

Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, and Figure 23 about here---------- 

-------------------Insert Table 30 about here------------------- 

2.4. Summary and Conclusions 

Online reviews of products and services are present all over the Internet. Potential 

consumers value these greatly. Marketers can also get valuable information from reading 

these reviews. These reviews predominantly contain text-based information. In our 

present research we utilize text-mining methodology to develop models where factors 

related to words are independent variables and the dependent variable is whether a 

consumer recommends a hotel or does not. We find that our word-based model can very 

accurately predict whether a recommendation is made or not. In the marketing literature, 

online reviews have been analyzed in the past but text based modeling of this kind does 

not seem to exist in the marketing literature. In addition the impacts of words and word 

combinations on user recommendation patterns have not been studied in the marketing 

literature. 

One of the interesting new findings from our empirical analysis is that as the number of 

words increases, the predictive accuracy of the above models initially increases. The 

accuracy peaks at a certain number of words and then decreases; an inverted U-shaped 

relationship exists. The implication is that one does not need to utilize larger and larger 

number of words in our text mining model to get high accuracy of prediction; this is a 

favorable thing from the scalability perspective when handling big data. 
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In addition to making predictions of recommendations, marketers would benefit 

tremendously if they can identify key words from many thousands of reviews; we suggest 

a framework by which companies can get this important diagnostic information. This 

framework consists of reliance on the importance of words based on frequency of 

occurrence and a new way to look at how certain words have greater power to 

discriminate/distinguish between existence and non-existence of recommendations. 

Words identified by this diagnostic approach will be of use to advertising managers when 

they plan on designing messages appropriate for search engine advertising as in Google 

Adwords; a single ad here can use only a small number of words, and the choice of the 

keywords could become crucial from the viewpoint of revenue generation. Identification 

of a few key words using a discriminatory power based approach has seen almost no 

application in the marketing research literature, and as just stated has clear managerial 

implications for the ever growing field of search engine advertising. For a perspective on 

the size of this field, and how the methodology in this paper can be potentially useful to 

industry, one may note that the finance and insurance industry spent $4 billion on 

AdWords in 2011, and Amazon alone spent an estimated $55.2 million on AdWords 

advertising in 2011 (Gabbert, 2012). 

Our empirical analysis that includes predictive models and diagnostics is applied for 

multiple subcategories (different star levels) within a product category (Hotels), and for 

four different consumer segments. The general pattern of results with respect to good 

predictive accuracy and the inverted U shaped relationship was generally consistent 

across all these different scenarios. The diagnostic information identifying key words or 
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word combinations with respect to different hotel categories and consumer segments was 

of course not always the same as is to be expected logically. The identified key words 

seemed to follow good logic, and thus lend face validity to our analysis and findings. 

These words would be good determinants of online recommendations. 

As is obvious, text data is very large in size. Scalability of models and methodologies is 

an issue that absolutely needs to be addressed when one is dealing with big data. We do a 

detailed analysis of this and show (see Tables 9a-9c, 10 and Figures 6a-6d, 7a-7d, 8a-8d) 

that our methodology is very scalable with the big data that we analyze.  

The potential future directions for this research stream are numerous. The overall 

methodology designed in this paper is a foundation that can be applied to a variety of 

marketing situations. In this paper we apply the text mining technique for the hotel 

industry. In the future, this can be applied to any other industry. In today’s digital era 

consumers freely express their opinions about products and services on many websites. 

This provides numerous information sources that can help academicians and practitioners 

in analyzing consumer attitudes. Even for the hotel industry, due to time limitations, we 

have only explored reviews of some hotels in Las Vegas; future research can explore 

more locations. Besides, we can extend this methodology to study a tremendous variety 

of research questions that would benefit from the analysis of text content posted by web 

users all over the Internet. Advertisers and marketers would be among the prime 

beneficiaries once they can glean the appropriate information from text based reviews. 
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Figure 1 SVM Classification 

 

Figure 2 ROC Curves 
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Figure 3 Prediction Results of Bally (Accuracy) 

 

Figure 4 Prediction Results of Bally (F-measure) 
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Figure 5 Prediction Results of Bally (ROC) 

 

Figure 6 Prediction Results of Treasure Island (Accuracy) 
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Figure 7 Prediction Results of Treasure Island (F-measure) 

 

Figure 8 Prediction Results of Treasure Island (ROC) 
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Figure 9 Prediction Results of Venetian (Accuracy) 

 

Figure 10 Prediction Results of Venetian (F-measure) 
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Figure 11 Prediction Results of Venetian (ROC) 

 

Figure 12 Indexing Computation Time vs. # of Reviews of Bally 
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Figure 13 Indexing Computation Time vs. # of Features of Bally 

 

Figure 14 Classification Computation Time vs. # of Reviews of Bally 

 

 

 



67 

 

 

 

Figure 15 Classification Computation Time vs. # of Features of Bally 

 

Figure 16 Indexing Computation Time vs. # of Reviews of Treasure Island 
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Figure 17 Indexing Computation Time vs. # of Features of Treasure Island 

 

Figure 18 Classification Computation Time vs. # of Reviews of Treasure Island 
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Figure 19 Classification Computation Time vs. # of Features of Treasure Island 

 

Figure 20 Indexing Computation Time vs. # of Reviews of Venetian 
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Figure 21 Indexing Computation Time vs. # of Features of Venetian 

 

Figure 22 Classification Computation Time vs. # of Reviews of Venetian 

 

 



71 

 

 

 

Figure 23 Classification Computation Time vs. # of Features of Venetian 
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Table 6 2-star Americas Best Value Inn Descriptive Statistics 

 All Business Couple Family Friend 

Recommendation 

(actual) 

59% 59% 74% 45% 53% 

# of reviews 170 17 46 31 36 

 
Table 7 3-star Bally Descriptive Statistics 

 All Business Couple Family Friend 

Recommendation 

(actual) 

85% 79% 86% 81% 86% 

# of reviews 2004 226 831 350 390 

 
Table 8 4-star Treasure Island Descriptive Statistics 

 All Business Couple Family Friend 

Recommendation 

(actual) 

85% 83% 86% 82% 85% 

# of reviews 2858 251 1332 519 569 

 

Table 9 5-star Venetian Descriptive Statistics 

 All Business Couple Family Friend 

Recommendation 

(actual) 

92% 92% 92% 87% 92% 

# of reviews 2025 188 1109 296 342 
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Table 10 Prediction Results of Bally (Accuracy) 

Number of 

Features 

All Business Couple Family Friend 

10 85.97% 82.47% 87.61% 83.71% 88.69% 

25 87.12% 86.73% 88.69% 85.71% 89.46% 

50 88.72% 88.94% 90.25% 85.71% 90.49% 

75 88.97% 87.17% 90.49% 87.14% 90.23% 

100 89.57% 88.05% 90.37% 87.71% 91.00% 

150 89.72% 88.05% 91.10% 87.71% 90.75% 

200 90.16% 88.05% 90.73% 87.71% 90.23% 

250 90.02% 87.17% 90.85% 87.14% 88.95% 

300 90.41% 88.05% 90.97% 86.57% 88.69% 

350 90.61% 88.05% 90.73% 87.14% 88.43% 

400 90.61% 88.05% 90.85% 86.29% 87.40% 

1000 90.56% 87.17% 89.77% 84.57% 85.86% 

5000 90.26% 82.74% 86.16% 82.57% 86.12% 

Chance 

criteria 

74.5% 66.82% 75.92% 69.22% 75.92% 

 
Table 11 Prediction Results of Bally (F-measure) 

Number of 

Features 

All Business Couple Family Friend 

10 0.807 0.797 0.837 0.789 0.858 

25 0.838 0.842 0.862 0.827 0.873 

50 0.868 0.874 0.889 0.827 0.887 

75 0.873 0.849 0.894 0.847 0.879 

100 0.881 0.861 0.892 0.857 0.891 

150 0.884 0.861 0.9 0.857 0.887 

200 0.889 0.861 0.896 0.859 0.879 

250 0.889 0.849 0.896 0.852 0.857 

300 0.893 0.861 0.897 0.844 0.853 

350 0.895 0.861 0.893 0.849 0.848 

400 0.895 0.863 0.893 0.839 0.828 

1000 0.895 0.853 0.872 0.823 0.793 

5000 0.893 0.786 0.799 0.781 0.799 
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Table 12 Prediction Results of Bally (ROC) 

Number of 

Features 

All Business Couple Family Friend 

10 0.545 0.632 0.57 0.58 0.615 

25 0.602 0.688 0.627 0.639 0.65 

50 0.667 0.74 0.698 0.639 0.679 

75 0.681 0.698 0.714 0.671 0.655 

100 0.7 0.719 0.709 0.692 0.682 

150 0.71 0.719 0.724 0.692 0.673 

200 0.718 0.719 0.715 0.698 0.655 

250 0.722 0.698 0.709 0.688 0.609 

300 0.729 0.719 0.709 0.673 0.6 

350 0.728 0.719 0.701 0.677 0.591 

400 0.728 0.726 0.694 0.665 0.555 

1000 0.731 0.713 0.637 0.649 0.5 

5000 0.733 0.609 0.504 0.573 0.509 

 

Table 13 Prediction Results of Treasure Island (Accuracy) 

Number of 

Features 

All Business Couple Family Friend 

10 86.07% 85.66% 86.38% 85.66% 87.35% 

25 86.88% 89.64% 87.44% 86.82% 88.75% 

50 87.86% 90.84% 88.20% 87.60% 90.16% 

75 88.03% 90.44% 88.88% 86.24% 89.81% 

100 88.52% 90.44% 90.09% 86.63% 90.16% 

150 89.54% 90.04% 90.32% 87.21% 91.21% 

200 89.96% 90.84% 91.45% 87.21% 91.21% 

250 90.31% 90.44% 91.75% 87.21% 91.39% 

300 90.27% 89.24% 91.60% 87.40% 91.56% 

350 90.41% 89.24% 91.30% 87.40% 91.56% 

400 90.69% 88.45% 91.38% 87.21% 91.56% 

1000 90.87% 88.05% 89.79% 87.21% 91.04% 

5000 89.89% 84.86% 86.54% 85.85% 88.75% 

Chance 

criteria 

74.5% 71.78% 75.92% 70.48% 74.52% 
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Table 14 Prediction Results of Treasure Island (F-measure) 

Number of 

Features 

All Business Couple Family Friend 

10 0.813 0.826 0.805 0.823 0.843 

25 0.837 0.883 0.839 0.844 0.868 

50 0.856 0.897 0.856 0.86 0.885 

75 0.861 0.894 0.863 0.842 0.883 

100 0.867 0.894 0.885 0.844 0.886 

150 0.884 0.888 0.891 0.851 0.902 

200 0.888 0.896 0.903 0.852 0.903 

250 0.892 0.892 0.908 0.851 0.905 

300 0.892 0.878 0.905 0.854 0.907 

350 0.895 0.878 0.9 0.855 0.908 

400 0.898 0.866 0.9 0.852 0.908 

1000 0.898 0.861 0.873 0.856 0.9 

5000 0.889 0.813 0.806 0.835 0.87 

 
Table 15 Prediction Results of Treasure Island (ROC) 

Number of 

Features 

All Business Couple Family Friend 

10 0.547 0.618 0.51 0.623 0.606 

25 0.596 0.725 0.574 0.663 0.662 

50 0.637 0.751 0.613 0.701 0.69 

75 0.653 0.749 0.622 0.668 0.698 

100 0.664 0.749 0.679 0.666 0.695 

150 0.708 0.737 0.701 0.678 0.74 

200 0.717 0.742 0.724 0.682 0.75 

250 0.721 0.739 0.74 0.678 0.705 

300 0.722 0.714 0.727 0.683 0.756 

350 0.736 0.714 0.709 0.687 0.761 

400 0.739 0.69 0.708 0.682 0.761 

1000 0.732 0.679 0.638 0.694 0.739 

5000 0.722 0.595 0.511 0.653 0.672 
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Table 16 Prediction Results of Venetian (Accuracy) 

Number of 

Features 

All Business Couple Family Friend 

10 91.60% 93.09% 92.70% 87.50% 91.98% 

25 92.30% 93.09% 93.24% 89.53% 92.69% 

50 93.19% 94.15% 94.23% 92.91% 94.15% 

75 93.33% 93.09% 94.05% 92.23% 93.86% 

100 93.18% 92.55% 93.42% 91.55% 93.57% 

150 93.53% 92.55% 94.59% 90.54% 92.98% 

200 94.07% 92.55% 94.77% 88.85% 93.27% 

250 94.33% 92.55% 94.86% 88.85% 92.69% 

300 94.37% 92.02% 94.59% 88.85% 92.40% 

350 94.37% 92.02% 94.23% 88.18% 92.40% 

400 94.42% 92.02% 94.41% 87.50% 92.11% 

1000 92.94% 92.02% 92.88% 87.16% 91.81% 

5000 91.70% 92.02% 92.36% 87.16% 91.81% 

Chance 

criteria 

85.28% 85.28% 85.28% 77.38% 85.28% 

 

Table 17 Prediction Results of Venetian (F-measure) 

Number of 

Features 

All Business Couple Family Friend 

10 0.876 0.906 0.895 0.84 0.911 

25 0.895 0.917 0.91 0.869 0.906 

50 0.916 0.925 0.931 0.917 0.928 

75 0.918 0.906 0.931 0.907 0.924 

100 0.917 0.894 0.921 0.897 0.919 

150 0.925 0.894 0.936 0.88 0.908 

200 0.931 0.894 0.939 0.849 0.911 

250 0.935 0.894 0.939 0.849 0.899 

300 0.956 0.882 0.936 0.849 0.893 

350 0.936 0.882 0.931 0.855 0.893 

400 0.936 0.882 0.932 0.82 0.886 

1000 0.911 0.882 0.901 0.812 0.879 

5000 0.878 0.882 0.887 0.818 0.879 
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Table 18 Prediction Results of Venetian (ROC) 

Number of 

Features 

All Business Couple Family Friend 

10 0.5 0.567 0.524 0.558 0.604 

25 0.552 0.628 0.575 0.615 0.586 

50 0.626 0.633 0.656 0.724 0.659 

75 0.632 0.567 0.676 0.697 0.641 

100 0.634 0.533 0.63 0.671 0.623 

150 0.671 0.533 0.679 0.632 0.588 

200 0.69 0.533 0.697 0.566 0.589 

250 0.705 0.533 0.692 0.566 0.684 

300 0.715 0.5 0.679 0.566 0.554 

350 0.71 0.5 0.661 0.539 0.536 

400 0.71 0.5 0.657 0.513 0.536 

1000 0.606 0.5 0.541 0.5 0.518 

5000 0.506 0.5 0.5 0.511 0.5 

 

Table 19 Comparisons of 2-star vs. 5-star (importance) 

TF-IDF Common features Unique features 

2-star location, room, friend, restaurant, 

service, pool, comfort 

basic room conditions (bed, towel, 

clean, door, shower), value, price, 

cheap 

5-star room, service, location, friend, 

restaurant (higher), comfort 

(higher), help (higher), pool(higher) 

additional service (shop, getaway, 

show, dining, casino), luxury 

 

Table 20 Comparisons of 2-star vs. 5-star (discriminating) 

Chi-square 

value 

Common features Unique features 

2-star location (higher), rude(higher), 

room, manager(higher), 

furniture(higher), carpet(higher), 

internet(higher), sheet(higher) 

door, value, toilet, carpet, mold, 

staff-very--helpful 

5-star room (higher), service (higher), 

rude, carpet, manager, furniture 

internet, location, sheet 

Getaway, stain 
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Table 21 Comparison across Segments of Bally (importance) 

TF-IDF Common features Unique features 

Business location, room, service, value, coffee, staff, 

clean, comfort(higher), friend, pool, 

restaurant, casino, help, buffet 

Conference, internet 

 

Personal location, room, service, value, coffee, staff, 

clean, friend (higher), comfort , restaurant, 

help (higher), casino(higher), pool(higher) 

additional service 

( parking, show, shop, 

getaway, view) 

 

Table 22 Comparison across Segments of Bally (discriminating) 

Chi-square 

value 

Common features Unique features 

Business rude, staff bathroom, dirty, tv, wall paper, worn, 

noise, towel, price, value, wall, mold  

Personal rude(higher), staff(higher) room, location, manager, unfriendly, 

furniture, clean, floor, year-wedding-

anniversary, couch, casino, 

microwave, getaway 

 

Table 23 Comparison across Segments of Treasure Island (importance) 

TF-IDF Common features Unique features 

Business location, room, service, value, 

coffee ,staff, clean, comfort, friend , 

pool, restaurant, casino, help 

conference, internet, center, 

fitness 

Personal location, room, service, value, coffee, 

staff, clean, friend (higher),  comfort , 

restaurant (higher), help (higher), 

casino(higher), pool(higher), 

buffet(higher) 

additional service ( show, 

getaway, view, siren, shop, 

drink, birthday, anniversary, 

weekend, gamble ) 

 

Table 24 Comparison across Segments of Treasure Island (discriminating) 

Chi-square 

value 

Common features Unique features 

Business Staff-friendly, comfort, rude noise, friend, service, price, poor 

customer-service, spa, fitness-center 

Personal Staff- very- unfriendly (higher), 

comfort(higher), rude(higher) 

occasion, manager, staff, fountain, 

staff- not- helpful, pillow, service, 

lobby, buffet, getaway 
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Table 25 Comparison across Segments of Venetian (importance) 

TF-IDF Common features Unique features 

Business room, service, location, restaurant, 

friend, comfort, staff, security, help, 

shop, casino, pool, view, show 

conference, internet 

Personal rooms, service, location, restaurant, 

friend(higher),  comfort(higher), staff, 

security, help(higher), shop(higher), 

casino(higher), pool(higher), 

view(higher), show(higher), 

additional service (getaway, 

weekend, gamble, 

anniversary, romantic,          

birthday, atmosphere, lobby, 

breakfast ), luxury 

 

Table 26 Comparison across Segments of Venetian (discriminating) 

Chi-square 

value 

Common features Unique features 

Business room door, hallway, closet, restaurant, 

newspaper, service, rate 

Personal room service, rude, carpet, getaway, stains 

 

Table 27 Computing Times of Indexing and Classification for Bally 

# of reviews # of features 

Indexing time 

(seconds) 

Classification time 

(seconds) 

100 3663 4.135 0.01 

200 8219 11.485 0.03 

300 10324 17.028 0.04 

400 12541 25.463 0.05 

500 16917 43.278 0.07 

600 19871 59.991 0.08 

700 22698 75.989 0.08 

800 25203 97.003 0.13 

900 28474 122.071 0.15 

1000 32097 153.097 0.19 

1100 34080 180.335 0.23 

1200 37624 227.832 0.24 

1300 39888 258.586 0.3 

1400 42719 301.9 0.31 

1500 46267 365.205 0.33 

1600 48571 379.345 0.45 

1700 51638 465.237 0.49 

1800 54068 539.049 0.56 

1900 56468 629.5 0.62 

2000 61568 739.902 0.71 
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Table 28 Computing Times of Indexing and Classification for Treasure Island 

# of reviews # of features 

Indexing time 

(seconds) 

Classification time 

(seconds) 

100 4563 4.693 0.01 

200 7504 10.253 0.02 

300 12160 22.993 0.04 

400 15920 38.172 0.04 

500 18207 49.84 0.05 

600 21485 67.808 0.08 

700 25862 94.314 0.1 

800 29284 136.592 0.16 

900 31618 164.375 0.13 

1000 35468 209.664 0.13 

1100 37937 241.075 0.22 

1200 41139 298.131 0.25 

1300 43737 350.787 0.29 

1400 47338 415.293 0.31 

1500 50489 462.153 0.35 

1600 54378 510.092 0.39 

1700 57945 679.583 0.47 

1800 60242 787.943 0.44 

1900 63090 900.307 0.58 

2000 65692 1028.843 0.63 
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Table 29 Computing Times of Indexing and Classification for Venetian 

# of reviews # of features 

Indexing time 

(seconds) 

Classification time 

(seconds) 

100 5341 6.188 0.01 

200 7654 10.953 0.02 

300 11353 21.819 0.03 

400 15497 40.317 0.04 

500 17711 51.797 0.06 

600 22107 78.462 0.08 

700 26224 106.884 0.08 

800 29815 139.602 0.11 

900 32399 165.214 0.12 

1000 35200 200.307 0.14 

1100 38838 257.283 0.18 

1200 43356 313.543 0.21 

1300 44919 364.888 0.26 

1400 48594 414.205 0.28 

1500 51675 477.706 0.34 

1600 54859 599.866 0.32 

1700 58649 684.569 0.4 

1800 60918 785.483 0.42 

1900 64467 934.292 0.44 

2000 67429 1033.645 0.53 

 

Table 30 Indexing Computation Times Comparison between Serial Algorithm 

(Single Core) and Parallel Algorithm (Eight Cores) 

 Serial Algorithm Single Core 

(Seconds) 

Parallel Algorithm Eight Core 

(Seconds) 

America Inn 3.107 0.600 

Bally 411.486 70.908 

Treasure Island 880.649 162.636 

Venetian 428.526 89.218 
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Chapter/Essay 3 

How to Use Multimedia Search Trends to Predict Auto Sales 

3.1. Introduction 

Marketers are always interested in predicting market sales so that they can arrange firm 

activities accordingly. With this knowledge of predicted sales, marketing managers can 

make strategic decisions concerning various marketing activities such as whether to 

increase or decrease production levels, whether to change size of the sales force and 

whether to initiate a price change to react to sales change trends and so on. 

Traditional business or economic forecasting has relied on statistics collected by various 

agencies including government (like US Census Bureau) and business firms (like 

Automotive News Data center). However, there are always certain periods of delay of 

associated with such published data, which limited use of the forecasting especially for 

time-sensitive issues. These reports are usually available about half way through the next 

month and revised even several months later. There has also been very rich research in 

the marketing area on predicting market sales using marketing variables. One of the 

major areas is the use of purchase intention data to predict market sales (Morwitz, Steckel 

& Gupta, 2007; Kumar, Nagpal & Venkatesan, 2002; Amstrong, Morwitz & Kumar, 

2000). Again there are issues regarding this predicting method. Traditionally intention 

data was collected through surveys and survey methods often suffer from bias (Podsakoff 

et al., 2003). In addition, surveying itself is often associated with limited number of 

observations obtained at a relatively high cost. Also in the past several decades, much of 
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the forecasting research has focused on complex mathematical models.  

It would help marketers if they could find an easy and time efficient way to predict 

market sales. With the widespread adoption of search engines, people perform all kinds 

of search over the search engines such as Google all the time. Using the United States as 

an example, we can note that Americans performed 14.3 billion Internet searches in 

March 2009, which is an annualized rate of over 170 billion searches per year. 

Worldwide searches grew by 41% between 2008 and 2009. The large scale of online 

search activities helps us to gain an understanding of consumers’ potential purchase 

intentions more accurately and timely. For example, Google trends provide daily, weekly 

and monthly search volume reports on various industries. With the help of related 

information technologies, near-real-time collection of search data can be obtained and at 

nearly zero cost. Each time a consumer performs a search of a product via the Internet, 

that individual’s potential intention to purchase in the near future is revealed. In turn, 

these intentions can be used to predict future market sales like the old literature but on a 

larger scale, with higher accuracy (Choi and Varian, 2009; Shimshoni, Efron & Yossi, 

2009; Wu & Brynjolfsson, 2014).  

In this paper we attempt to predict automobile sales with Internet query data. Since text, 

image and video are the three major ways of information search, we included all these 

three types of search data as our predictors. We use the automobile market for our 

empirical analysis. We started making automobile market sales predictions from January 

of 2008 to January of 2013 and showed a very high accuracy. The rest of the paper is 

organized as follows: first we reviewed the related literature on sales prediction and using 
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search trends to predict sales. In section 3.3 we developed our methodology and applied it 

with empirical evaluations. We then reported the results and discussions in section 3.4. 

Finally we conclude the article with potential managerial applications and future research 

directions.  

3.2. Literature Review 

In the past decades, lots of social science work focused on applying complicated models 

to predict economic and social trends such as market sales. Nowadays, with the wide 

availability of the Internet and advanced information technology like online search and 

multimedia usage, the game has changed remarkably. Recently, a published book by 

James Surowiecki ―The Wisdom of Crowds‖ pointed out the idea that a crowd of 

ordinary people can lead to the right decisions. A large scale of non-experts together, is 

even smarter than the experts. With the development of Internet and Information 

technology, lots of people are performing online search all the time and this real time data 

can be collected almost instantaneously and used to predict macro trends. Kuruzovich et 

al. (2008) showed that online behaviors could be used to reveal consumers’ intentions 

and make predictions of purchases. Ginsberg et al. (2009) further showed how the use of 

Google trends and data from Centers for Disease Control (CDC) together find 45 specific 

search terms related to flu outbreaks and monitored influenza rates 1-2 weeks ahead of 

CDC reports.  

Our work follows a similar stream in utilizing free and publicly available data from the 

Internet particularly from Google, to predict market sales. Choi and Varian (2009) 
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forecasted auto trends in the US using search queries from Google. Later Scott and 

Varian (2013) predicted some current economic trends like current gun sales using 

Bayesian variable selection techniques with search frequencies. Du and Kamakura (2012) 

demonstrated how to use a structural dynamic factor-analytic model to do quantitative 

trend spotting applied on Google trends data of automobiles. Wu and Brynjolfsson (2014) 

predicted future economic trends such as future sales in the housing market using trends 

data and government reports. However they have all looked at search queries of text 

information.   

To the best of our knowledge, we are the first to combine the search of multimedia 

including web (mainly text), image and video (from YouTube) all together to predict 

future economic trends such as automobile sales. As we pointed out in the previous 

paragraphs, more search volume means more interested consumers are searching. So 

more search volume activity should lead to a higher level of sales. Text information can 

provide the richest information regarding every aspect of the product and is the most 

popular type of search. Image search can mainly provide the appearance of the searched 

product while a YouTube search of video can give a more in-depth experience of the car 

by looking at moving pictures with sound. Obviously the amount of search on image and 

video will be much less compared to the web search of text. We standardized the search 

volume index between 0-100 for comparisons (see data part for details). Later we 

normalized the search volume data of the three types to get the standardized estimation.  

Text information over the web contains all the detailed information regarding the product 

from various websites like the official website and various dealer websites. This is the 
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most effective search method since people can get all different types of information with 

just one search. Image search can only list out the image of the product and lots of time 

the search is done for fun to look at but maybe less not for serious buying purposes. The 

impact of image on sales should be quite small compared to the other two types of search. 

Information search of video requires more effort than searching text or image like 

additional waiting time to load the video. People must have serious interest in the product 

to initiate a search. And most of the videos are commercial videos which are very 

persuasive to help lead to a sale or at least build a good brand impression. Based on the 

above, we come up with our Hypotheses regarding the relationship between the three 

types of search and market sales. 

H1: There is a positive relationship between search volume of text and market sales 

H2: There is a positive relationship between search volume of image and market sales 

H3: There is a positive relationship between search volume of video and market sales 

H4: The relationships between search and sales are moderated by origin of the car and 

type of the car.  
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3.3. Data and Model 

3.3.1. Data 

3.3.1.1. Google Trends Data 

AC Nielsen NetRatings consistently placed Google as the top search engine across the 

world. Google processed more than 66.7% of all the online search queries in the world in 

December 2012 (comScore 2012). Especially in America, the search queries submitted in 

Google can reflect a large portion of Americans’ intentions and interests. That is why we 

choose to use Google Trends to obtain the search data. We collected the search volume 

index related to the automobile category from the Google trends. The search volume 

index of each key search term (for example ―Honda‖) is a relative share instead of the 

absolute number of queries submitted in Google trends by people. The search volume 

index for each query is defined as following: the total query search volume in a given 

geographic region at a given point of time divided by the total number of queries 

searched in that region at a given point of time. The query index is usually calculated at a 

weekly or monthly level depends on how popular the search is. So the search trends data 

is always between 0 and 100. 

Google trends has also categorized the submitted queries into several predefined 

categories such as auto and vehicle (used in our study), home and appliance, computer 

and electronics and so on. When you perform the query search, Google trends also allows 

you to choose geographic regions such as United States, Canada, worldwide or other 

countries. You can also choose the period of time the query is submitted and the type of 
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the query submitted, whether it is text search on the web, image search or video search by 

YouTube. In today’s multimedia era, people typically perform online search from text, 

image and/or video aspects and that’s why we choose theses three as the predictors. We 

have extracted the time range of (2008/01-2013/01) and this consists of 61 data periods. 

Figure 24, Figure 25 and Figure 26 show examples of the search query index of ―Honda‖ 

by text from the web, image and video of YouTube in United States from 2008/01 to 

2013/01 under auto and vehicles category.  

-------------------------Insert Figure 24, Figure 25 and Figure 26 here------------------------- 

3.3.1.2. Automobile Sales Data 

We collected automobile sales data from Auto news data center for 36 make sold in the 

U.S. from 2008/01 to 2013/01. 

Figure 27 shows an example of auto sales for Honda in the U.S. from 2008/01 to 2013/01. 

----------------------------------Insert Figure 27 here------------------------------------------ 

3.3.2. Model 

Forecasting is widely used in marketing and economics. Traditionally, researchers 

assume the time series data to follow either a stationary stochastic process such as 

reflected in autoregressive (AR) model and autoregressive moving average process 

(ARMA) model or non-stationary process such as Fuller tests. In our study, we have a 

panel of auto sales data across different makes of automobiles and over a period of time. 
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Since we have reasonable sized T (time period) and not very large N (number of 

observation), the data falls into the TSCS data category (Beck & Katz, 1995). TSCS data 

has become popular more recently especially in the study of politic science; studies have 

considered for example, situation where the number of democratic countries is limited to 

15 observed over a long period of time (Stimson, 1985; Alvarez et al., 1991; Maoz & 

Russett, 1993). This is very similar to our data with limited 36 makes and 61 periods. 

Terefore we applied the estimation methods for TSCS data.  

The Generic model we consider has the form: 

 

with the specification of uit dependent on the particular model. The total number of 

observations . The M × M covariance matrix of uit is denoted by V. Let 

X and y be the independent and dependent variables arranged by cross section and by 

time within each cross section. Let Xs be the X matrix without the intercept.  

For TSCS data estimation, there are several common estimation methods including 

random effects, fixed effects and parks methods. In our case, we have a small number of 

cross sectional data over a long period of 61 months for all units. Parks method best fits 

our need since it deals with error complications by specifying respectively the error 

structure for heteroskedasticity, contemporaneous and serial correlations.  
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Parks Method (Autoregressive Model)  

Parks (1967) considered the first-order autoregressive model in which the random errors 

uit , i = 1, 2, ... , N, t = 1, 2, ... , T, have the structure  

 

 

The model assumed is first-order autoregressive with contemporaneous correlation 

between cross sections.  is then estimated by generalized least squares.  

3.3.3. Model Evaluations 

The conventional R-squared measure is inappropriate for all models that the TSCS 

procedure estimates since a number outside the 0-to-1 range may be produced. Hence, a 

generalization of the R-squared measure is reported by Buse 1973 and this adjust R-

square is used in our study for model evaluation. 

3.4. Empirical Evaluations 

In our study, we focused on using three major types of search including text, image and 

video over the biggest search engine – Google to predict the market sales of automobiles. 

Since we have multiple make of automobiles over the same period of time, we applied 

TSCS estimation methods.  

The general model to predict market sales is like following: 
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Salesit = Intercept + TextSearchit + ImageSearchit + VideoSearchit + uit 

We applied the Parks estimation method to predict the sales of automobiles. Table 31, 

Table 32, Table 33 and Table 34 show the estimation results. 

We can see generally, the model fits very well with R square falls in the range of 0.12 – 

0.42. Now let’s looks at the detailed estimation results of coefficients.  

First in the Table 31 and Table 32, estimation of the overall data including all makes and 

segmented data of makes from US, Europe and Asia are listed. Overall, it fits our 

hypotheses. The search of video over YouTube has the biggest explanatory power of 

market sales with coefficient 0.13 over text (0.05) and Image (0.03) for the whole dataset. 

The origin of the make moderated the effect. Video search has the biggest impact on 

explaining car sales for car makes from the U.S. with a coefficient of 0.11. This is 

consistent with the major characteristics associated with the marketing of the US cars: 

they highly rely on video commercials for their advertising and best represented by 

videos. Search of text over the web has the biggest impact on prediction of car sales for 

car makes from Europe with a coefficient of 0.16. This is consistent with the major 

characteristics of the European cars: high quality with superior benefits, which can be 

best explained with text. People who search for European cars would love to get more 

detailed information of the car from the text information. For cars originating from Asia, 

all three types of search have similar impact on predictions of sales with coefficient 0.03, 

0.07 and 0.05. There is no particular preference among the three search types. 

----------------------------------Insert Table 31 and Table 32 here--------------------------------- 
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Next we compare luxury car and non-premium cars.  

Next we compare luxury cars and normal cars. For luxury cars (including makes like 

Acura, Audi, BMW…) consumers tend to use image and video to explore the information 

regarding the car and enjoy the hedonic feelings brought by the luxury cars; so search of 

image and video should best explain the sales of luxury cars with coefficients of 0.42 and 

0.57. For non-premium cars (including makes like Honda, Toyota, Chevrolet…), people 

try to find specification details of the car from various channels to get a full 

understanding before they make purchase. Search of text over web (coefficient of 0.1) 

with search of image (coefficient of 0.04) and video (coefficient of 0.05) together can 

explain market sales since no particular type of search is preferred. 

----------------------------------Insert Table 33 and Table 34 here-------------------------------- 

3.5. Conclusions and Future Research 

With the development of technology, Internet search has become more and more popular. 

Consumers search over the Internet to get information with the purchase intention in 

heart before purchase. With the help of Google trends, we can literally get over billions 

of consumers’ search data at near zero cost immediately. With the help of online search 

data, we can predict market sales more timely and accurately.  

This is an exploratory research. We successfully use three types of search data: text, 

image and video to predict market sales of automobiles. This can benefit the auto 

industries significantly. Buying an automobile is one of the major expenditures for most 
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people. With accurate and timely predictions of sales, automobile companies can make 

better make managerial decisions. They can prepare well for future production scheduling, 

marketing, sales, and inventory planning activities. Depending on the origin of the car, 

marketers can focus on the most appropriate way to present information to potential 

consumers. For example, for US car makes, the most important way to communicate with 

potential consumers will be through videos and they should monitor the trends of videos 

timely to discover new trends. For Europe originated cars, website construction with 

ample text information is necessary and they should pay special attention to the search 

trends on text. For Asian car makes, no particular emphasis is there so they should pay 

attention to all of the three equally. We also found that for luxury cars, videos and images 

are definitely the best way to present the features of the cars. In the future, we can also 

consider the hedonic and utilitarian aspects of the various cars to see if the impact of 

different search types on explaining sales is different. 

This method of prediction can be used not only for automobile industries but also in 

various other industries to predict future sales using Google trends data. Instead of paying 

a premium for industry reports or waiting for delayed government reports, Google trends 

can help us. Search data can also be combined with other types of data like text reviews 

on websites, for predicting not only sales but also word of mouth patterns. 

However, this method also has certain limitations. For example, as the popularities of 

online search query become more and more, there might be manipulations of the search 

volume index due to usage of false or misleading search queries; such wrongly generated 

search volume index values could lead biased results affecting the market in many 
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adverse ways. Research on how to detect manipulated search queries may become a new 

research direction in the future. 
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Figure 24 Search Index of text for “Honda” 

 

Figure 25 Search Index of image for “Honda” 
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Figure 26 Search Index of video for “Honda” 

 

Figure 27 Auto sales for Honda in US 
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Table 31 Model Comparisons for Total Make and Different Origins 

 Total Make US Europe Asia 

R-square 0.4211 0.1229 0.1358 0.2057 

 

Table 32 Coefficient Estimations for Total Make and Different Origins 

 Total Make US Europe Asia 

 -0.15 

(<0.0001)* 

-0.33 

(<0.0001)* 

-0.29 

(<0.0001)* 

-0.27 

(<0.0001)* 

Text 0.05 

(<0.0001)* 

-0.02 

(0.1900) 

0.16 

(<0.0001)* 

0.03 

(0.0039)* 

Image 0.03 

(<0.0001)* 

-0.007 

(0.6486) 

-0.04 

(<0.0011)* 

0.07 

(<0.0001)* 

Video 0.13 

(<0.0001)* 

0.11 

(<0.0001)* 

0.001 

(0.8211) 

0.05 

(<0.0001)* 

 

Table 33 Model Comparisons for Luxury VS. Non-premium Car 

 Luxury Non-premium 

R-square 0.1852 0.3660 

 

Table 34 Coefficient Estimates for Luxury VS. Non-premium Car 

 Luxury Non-premium 

Intercept   

Text -0.02 

(0.5225) 

0.04 

(<0.0001)* 

Image 0.42 

(<0.0001)* 

0.05 

(<0.0001)* 

Video 0.57 

(<0.0001)* 

0.10 

(<0.0001)* 
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