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ABSTRACT 

THE SHIFTING IMPORTANCE OF COMPETITION AND FACILITATION ALONG 
DIVERSITY, ENVIRONMENTAL SEVERITY, AND PLANT ONTOGENETIC 

GRADIENTS 
 

by 

Alexandra Wright 

 

The University of Wisconsin-Milwaukee, 2013 
Under the Supervision of Professor Stefan A. Schnitzer 

 
 
Ecological theory and empirical studies have focused heavily on the importance of 

competition in plant communities.  Competition can help explain species coexistence, the 

maintenance of species diversity, and biological invasions.  Competition for resources 

appears to be ubiquitous among coexisting organisms.  This overwhelming focus on 

competition over the past one hundred years may have overshadowed the importance of 

positive interactions (facilitation).  Growing near your neighbors involves competition for 

resources, but it also involves alteration of a shared microclimate.  Neighboring plants have 

the capacity to increase shade, decrease air temperatures, increase humidity, and increase 

shallow soil moisture in their local environment.  In severe environments – tundra, deserts, 

salt marshes – facilitation can outweigh the effects of competition.  In periods of 

environmental severity, these benefits can prove essential. In this dissertation, I explore the 

importance of both competitive and facilitative interactions across gradients of 

environment severity, plant ontogeny, and productivity.  I use an experimental 

manipulation of herbaceous plant diversity to manipulate the magnitude of competition 

and facilitation in a series of experiments in central Minnesota.  I show that woody 
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encroachment into grasslands is influenced by both competitive and facilitative 

interactions related to decreasing local species diversity and increasing atmospheric CO2 

(Chapter 1).  I show that diversity can ameliorate the microclimate to create local 

conditions that are cooler and more humid, and these effects can facilitate seedling 

growth and survival.  I show that competition appears to increase as seedlings grow in 

size, but this size-structured change may be due more to decreasing facilitation rather 

than increasing competition (Chapter 2).  Finally, plants may compete strongly for 

resources much of the time, but this can be outweighed by strong facilitation, and the 

interaction between the two processes can change on a day-to-day basis (Chapter 3).  

Finally, I use a modified Lotka-Volterra model to show how competition and facilitation 

may change as a function of environmental severity and productivity, and the 

implications of these relationships on individual plant performance and long-term 

community dynamics (Chapter 4).  Nutrient availability, CO2 concentrations, seasonal 

temperatures and precipitation will likely change independently in future climate change 

scenarios.  It is therefore essential that we have a comprehensive understanding of the 

positive and negative components that underlie plant interactions, to better predict how 

plant communities will change in the future. 
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CHAPTER 1 

 
Complex facilitation and competition in a temperate grassland: loss of plant 

diversity and elevated CO2 have divergent and opposite effects on oak establishment 

 

Published as: Wright, A.J., Schnitzer, S.A., Dickie, I.A., Gunderson, A.R., Pinter, G.A., 

Mangan, S.A., & P.B. Reich. 2012.  Complex facilitation and competition in a temperate 

grassland: loss of plant diversity and elevated CO2 have divergent and opposite effects 

on oak establishment.  Oecologia, doi:10.1007/s00442-012-2420-y. 

Abstract 

Encroachment of woody vegetation into grasslands is a widespread phenomenon that 

alters plant community composition and ecosystem function.  Woody encroachment is 

often the result of fire suppression, but may also be related to changes in resource 

availability associated with global environmental change.  We tested the relative strength 

of three important global change factors (CO2 enrichment, nitrogen deposition, and loss 

of herbaceous plant diversity) on the first three years of Bur Oak (Quercus macrocarpa) 

seedling performance in a field experiment in central Minnesota, USA.  We found that 

loss of plant diversity decreased initial oak survival but increased overall oak growth. 

Conversely, elevated CO2 increased initial oak seedling survival and reduced overall 

growth, especially at low levels of diversity.  Nitrogen deposition surprisingly had no net 

effect on survival or growth.  The magnitude of these effects indicates that long-term 

woody encroachment trends may be most strongly associated with those few individuals 

that survive, but grow much larger in lower diversity patches.  Further, while the CO2 



2 

 

results and the species richness results appear to describe opposing trends, this is due 

only to the fact that the natural drivers are moving in opposite directions (decreasing 

species richness and increasing CO2).  Interestingly, the mechanisms that underlie both 

patterns are very similar, increased CO2 and increased species richness both increase 

herbaceous biomass which (1) increases belowground competition for resources and (2) 

increases facilitation of early plant survival under a more diverse plant canopy; in other 

words, both competition and facilitation help determine community composition in these 

grasslands. 
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Introduction 

 Encroachment of woody vegetation into grassland communities and the resultant 

conversion of these communities into closed canopy forests is an increasingly common 

phenomenon (Archer 1989) and grassland-dominated landscapes are increasingly rare 

globally (Hoekstra et al. 2004).  Species compositional shifts caused by woody 

encroachment into grasslands have important implications for community dynamics and 

ecosystem properties, such as carbon storage and nitrogen cycling (Post et al. 1982, Reich 

et al. 2001a, Jackson et al. 2002, McCulley et al. 2004, Knapp et al. 2008, Barger et al. 

2011).  While regional distributions of woody plants appear to be co-constrained by 

large-scale differences in precipitation and fire regimes (Staver et al. 2011), local success 

of woody plants in grasslands is strongly associated with a change in disturbance regime 

that favors woody plants over herbaceous species, such as fire suppression (Van Auken 

2000, Roques et al. 2001, Silva et al. 2001) or increased grazing pressures by cattle 

(Archer et al. 1995, Brown and Archer 1999).  However, recent evidence suggests that 

altered resource availability associated with global environmental changes (e.g. 

decreasing biodiversity and increasing atmospheric CO2, and nitrogen deposition) may 

also drive woody encroachment into grasslands, but the role of these factors and their 

interactions remain poorly understood (Archer et al. 1995, Van Auken and Bush 1997, 

Davis et al. 1999, Polley et al. 2003, Dickie et al. 2007, Classen et al. 2010). 

 Increased global extinction rates and loss of biodiversity (e.g. Vitousek et al. 

1997) may substantially alter grassland community composition.  Specifically, loss of 

plant diversity at the patch scale may affect how plant species interact in positive (e.g. 

facilitation) and negative (e.g. competitive) ways; we outline these changes below.   
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Competition: The relationship between diversity and productivity is complex and feeds 

back on itself at different spatial scales (Naeem 2002). For example, macro-scale plant 

species richness patterns are a function of regional productivity gradients (Abrams 1995, 

Chase and Ryberg 2004, but see Adler et al. 2011).  Conversely, at local scales, 

increasing levels of plant diversity drive increased production of biomass (Zhang et al. 

2012).  This is because higher diversity communities contain a larger number of species 

with unique traits (Reich et al. 2012) and competition strategies. As increasing numbers 

of species co-occur in an assemblage, their complementary resource acquisition strategies 

use overall resource pools more completely.  This complementary resource use results in 

greater community-level biomass (Tilman et al. 1997a) and consequently, the community 

itself becomes less susceptible to colonization (Kennedy et al. 2002).   

 For the purposes of this study, we focus on the well-established positive 

relationship between local species richness and biomass production (Reich et al. 2001c, 

Tilman et al. 2001, Van Ruijven and Berendse 2003, Roscher et al. 2005, Isbell et al. 

2011, Zhang et al. 2012).  We predict, that when applied to woody encroachment into 

grasslands, declining levels of herbaceous species diversity associated with global 

change, can drive lower levels of biomass production (Schnitzer et al. 2011) and 

decreased competition for resources (Tilman et al. 1997a, 1997b).  Decreased plant 

diversity may therefore lead to increased susceptibility to woody encroachment (Naeem 

et al. 2000, Kennedy et al. 2002, Fargione and Tilman 2005). 
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Facilitation: Loss of herbaceous species diversity may also alter facilitative interactions 

between plants.  Survival rates of young plants tend to increase with increasing canopy 

cover, particularly in ecosystems that experience extreme abiotic conditions (Bertness 

and Callaway 1994, Miriti 2006, Cuesta et al. 2010, Farrer and Goldberg 2010, 

Bustamente-Sanchez et al. 2010).  This facilitation effect is due to amelioration of the 

microclimate under higher density canopies (Callaway 1995, Callaway and Walker 1997, 

Cuesta et al. 2010, Bustamente-Sanchez et al. 2010). The strength of facilitation likely 

increases with increasing species diversity because higher-diversity assemblages usually 

have increased canopy cover (Tilman et al. 2001); although there is little empirical 

evidence to support a direct relationship between plant diversity and facilitation (but see 

(Bruno et al. 2003 and Bulleri et al. 2008 for theoretical discussion). 

 Other global change factors, such as increased CO2 and N deposition also alter 

resource availability and can have interactive effects on woody encroachment into 

grasslands.  For example, elevated atmospheric CO2 appears to benefit woody seedlings 

grown alone in water-limited environments (Davis et al. 2007) and may help explain past 

woody range expansions (Kgope et al. 2009), particularly in the presence of fire (Bond 

and Midgley 2000).  Elevated CO2 increases plant water use efficiency (WUE), which 

should increase soil water availability (Polley et al. 2003, Adair et al. 2009, Reich 2009).  

Because woody plant establishment is often restricted by low soil water availability 

(Staver et al. 2011), an increase in soil moisture due to increased WUE may stimulate 

woody encroachment into grasslands.  However, when soil water is limiting, increased 

soil water availability should also influence the growth of herbaceous species; but to our 

knowledge no study has assessed how CO2 and herbaceous species richness 
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simultaneously affect woody-herbaceous plant interactions.  Finally, recent research has 

shown that past increases in atmospheric CO2 concentrations may have strongly 

controlled woody encroachment into grasslands when atmospheric CO2 was relatively 

low (180 ppm), but CO2 may not be such a strong driver of woody success under current 

conditions (Kgope et al. 2009). 

 Nitrogen deposition often increases aboveground herbaceous productivity (Reich 

et al. 2001b, 2001c), and reduces both light and soil water availability in herbaceous 

vegetation (Tilman 1987).  The effect of N deposition may limit oak establishment due to 

increased competition for light and/or water.  Indeed, these indirect effects of nitrogen 

addition reduce woody plant growth and survival in grasslands in central Minnesota 

(Davis et al. 1998, 1999) and this effect depends on herbaceous productivity (Dickie et al. 

2007).  To date, most studies have examined woody encroachment into grasslands by 

manipulating only one or two factors in isolation, and the interacting effects of these 

global change factors, while potentially substantial, are largely unknown.  

 We examined the simultaneous roles of herbaceous species richness, elevated 

CO2, and nitrogen enrichment on bur oak seedling survival and growth in Minnesota, 

USA.  Bur oaks (Quercus macrocarpa) and pin oaks (Quercus ellipsoidalis) are common 

woody colonizers in grasslands in this region, and are therefore appropriate candidates to 

address general trends in woody encroachment. We tested the following four hypotheses: 

(1) Decreasing herbaceous species diversity decreases oak survival rates due to loss of 

the facilitative effects of a more diverse, higher canopy cover plant community; (2) 

Decreasing herbaceous diversity increases resource availability and therefore promotes 

oak growth due to lack of competition from neighboring plants; (3) CO2 enrichment 



7 

 

increases oak performance (both survival and growth) due to increased soil water 

availability; and (4) nitrogen deposition decreases oak performance by increasing 

herbaceous productivity and thus increasing competition for other limiting resources. 

 

Materials and methods 

Study Site and Experimental Design 

 We conducted this study in the biodiversity, CO2, and nitrogen (BioCON) 

experiment at the Cedar Creek Ecosystem Science Reserve, located in central Minnesota.  

Soils at this site consist of nutrient-poor glacial outwash sand plain with low water- and 

nutrient-holding capacity (Reich et al. 2001c).  Species richness levels in natural prairie 

communities at this field site range from approximately four species to sixteen species 

per 0.5 sq. m plot, and aboveground biomass ranges from approximately 50 g/m2 to 150 

g/m2 (Knops 2006).  Natural communities are dominated by Schizachyrium (C4 grass, 

accounts for 69-76% of all aboveground biomass in prairies).  Several other species of C3 

grasses are also common (Poa pratensis, Panicum oligosanthes, and Agrostis scabra); 

and Rumex acetosella (forb) and Andropogon gerardii (C4 grass) can be found in high 

abundances (Knops 2006).  Mean annual precipitation at Cedar Creek is 78 ± 7.5 cm 

(95% confidence intervals, 1982-2009), while mean annual precipitation over the course 

of our study (2001-2004) was 79.9 ± 12.9 cm (95% confidence intervals, no significant 

difference in rainfall from long-term average).   

 The BioCON experiment utilized six, circular, 20 m diameter plots; three are 

enriched to 560 µmol mol-1 of CO2, which is pumped from a ring of PVC tubes using a 

free air CO2 enrichment system (FACE), while three control plots (hereafter referred to as 
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“rings”) received approximately 370 µmol mol-1 of CO2, which was the ambient 

atmospheric CO2 level at the time of the experiment.  The level of 560 µmol mol-1 of CO2 

was based on IPCC models for projected CO2 concentrations by the year 2100.  Nested 

within the rings are herbaceous species diversity and nitrogen treatments that subdivide 

the plots into 359 2 x 2 m square subplots.  To manipulate species diversity, these plots 

were planted with 12 g m-2 of seed of 1, 4, 9, or 16 species in 1997.  Herbaceous species 

composition in each of these diversity treatments was randomly assigned from a pool of 

16 species, representing four species from each of four functional groups (four C3 

grasses, four C4 grasses, four legumes, and four non-nitrogen fixing herbaceous plants).  

Species mixes were maintained with planted species only (although not re-seeded) using 

hand weeding.  Within each ring, 21-22 subplots were planted using 1 species, 20-21 

with 4 species, 10 subplots with 9 species, and 8 subplots with 16 species (total of 59-61 

subplots per ring x 6 rings).  For each diversity level, half of the plots had either nitrogen 

added in dry granules annually (4 g N m-1yr-1 as NH4NO3) or no nitrogen added. 

 In each of the 359 plots, we sampled herbaceous biomass (above and 

belowground) each June and August from 2001-2004.  Aboveground biomass was 

clipped in 10 x 100 cm strips at the soil surface and never sampled less than 15 cm. from 

plot boundaries (to avoid edge effects).  Belowground biomass was sampled to 100 cm 

using three 5-cm cores in the same area as the vegetation clip strips (see Reich et al. 

2001b) for more details).  Biomass sampling was conducted in different areas of plots for 

every sampling date of this study.  We recorded soil volumetric water content monthly 

between May and October 2001-2004 using time domain reflectometry (TDR).  We 

recorded percent light transmission below the canopy monthly between May and October 
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2001-2004 using a 1m integrated photosynthetically active radiation (PAR) sensor (Li-

Cor Biosciences, Lincoln, Nebraska).   In June and August of 2001 and 2002 we 

measured available soil nitrogen (in the forms of nitrate and ammonium) in each plot by 

collecting four soil cores at 0-20 cm depth, extracting nitrogen using 1 M KCl, and 

analyzing the nitrogen content using a Costech 4050 Element Analyzer (Dijkstra et al. 

2005).  All measurements taken over the course of this experiment (above- and 

belowground biomass, soil moisture, percent light transmission, and soil N) were 

averaged across all sampling dates in order to obtain a single plot-level average over 

time.  

Oak performance 

 In October 2001, we collected and germinated recently fallen acorns from 

multiple local adult Bur Oak trees at the Cedar Creek Ecosystem Science Reserve.  We 

combined and homogenized the acorns and planted three germinated seeds in each of the 

359 2x2 m subplots.  In June 2002, we recorded oak survival and the number of leaves 

per plant. In August 2002, we recorded plant survival, height, and the number of leaves 

per plant.  In August 2004 we recorded survival, height, diameter, and the number of 

leaves per plant, and then harvested all surviving individuals.  We estimated aboveground 

oak biomass over the course of the study using an allometric relationship that we derived 

using the field measurements and aboveground dry mass from the final harvest (June 

2002 AGB in grams = -0.277 + (0.338 × leaves), r2 = 0.805, P<2.2e-16, n=227, August 

2002 AGB in grams = -0.837+ (0.112 × height) + (0.281 × leaves), r2=0.835, P<2.2e-16, 

n=227).   

Statistical Analysis 
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 Base models: We analyzed oak survival using a generalized linear mixed-effects 

model (GLMM) for repeated measures with a multinomial distribution (SAS PROC 

GLIMMIX).  In this model, each 4-m2 plot was the experimental unit, and the probability 

of survival was based on the number of oak seedlings surviving in each plot (0-3 possible 

survivors). This base model included nitrogen addition, species richness, CO2 

enrichment, and all first order interactions as fixed effects, and ring nested within CO2 as 

a random effect (follows (Reich et al. 2001c). The three sampling dates were treated as 

repeated measures, and each 4-m2 plot was included as the subject.  We analyzed growth 

(aboveground biomass of surviving seedlings per 4-m2 plot) over time using a similarly 

structured mixed-effects model with a normal distribution (SAS PROC MIXED).  

Biomass was log-transformed to normalize residuals.   

 Covariate models: We evaluated the explanatory power of herbaceous biomass, 

percent light transmission below the herbaceous vegetation, soil moisture, and soil N 

concentrations on oak performance by including these measures as covariates.  For both 

growth and survival, we constructed separate models including all covariates in isolation 

as well as all combinations of covariates.  We compared these covariate models to the 

base models described above using Akaike Information Criteria (AIC). 

 We present AIC scores for all GLMM’s in the online supplemental materials and 

only further report on the best-fit model throughout the results and discussion.  We use 

frequentist statistical tools (p-values) to better interpret the contribution of each 

experimental main effect (N, CO2, and species richness), as well as interactions between 

main effects and covariates in this best-fit GLMM.  We use this mixed statistical 
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approach as it best utilizes the statistical tools available while still making the results 

interpretable to the broadest possible audience (Bolker et al. 2009). 

Results  

There was only one significant pair-wise interaction between main effects in our analyses 

(CO2 x species richness effect on oak growth).  Hence we present results separately by 

treatments and discuss the CO2 x species richness interaction at the end of the CO2 

results.  There were no significant effects of N treatment on either survival (Table 1.1) or 

growth (Table 1.2), so no further results regarding this treatment are presented 

Species Richness 

The best main-effect predictor of both oak survival and growth was herbaceous 

species richness (Tables 1.1 and 1.2, respectively).  Oak survival was lowest (34%) in the 

monoculture plots and highest (54% and 49%) in the most species rich plots (9- and 16- 

species, respectively) (Fig. 1.1; Table 1.1).  These responses were evident within 8 

months of planting the oaks (by June 2002) and did not change significantly between 

June 2002 and the harvest date in August 2004.   

The surviving oak seedlings grew equally well across species richness levels 

during the first 8 months of the experiment; at which point seedlings in higher diversity 

treatments nearly stopped growing, while seedlings in single-species plots continued to 

grow (Table 1.2).  By the final sampling date, oak growth (measured as total 

aboveground biomass per plant) was over four-times greater in herbaceous monoculture 

plots than in high species richness plots (averaged across CO2 treatments; Fig. 1.2). 

Elevated CO2 
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Atmospheric CO2 enrichment had an initial positive effect on oak survival in June 

2002, but the strength of the effect was weak by August 2004, resulting in a significant 

CO2 enrichment by time interaction on oak survival (F2, 342 = 8.56, P = 0.0002) (Table 

1.1, Fig. 1.3). There were no interactions between CO2 and any of the other main effects 

on oak survival. 

CO2 enrichment had no effect on oak growth rates averaged across sampling dates 

(Table 1.2).  However, there was a significant CO2 enrichment by time interaction (F2, 

205=3.24, P=0.0412) because seedlings grown in CO2 enriched plots grew less than in 

ambient plots in the latter part of the study (Table 1.2).  There was also a significant 

species richness x CO2 enrichment interaction, driven mostly by the significantly greater 

growth of oaks in herbaceous monoculture plots under ambient CO2 conditions (Table 

1.2, Fig. 1.2).  Further, the two-way interactions between species richness and time, CO2 

and time, and species richness and CO2 indicate that the significantly greater growth in 

the monoculture plots (1-species) by August 2004 was almost exclusively due to older 

oaks growing in ambient CO2 conditions (Fig. 1.2).  

Covariate Models 

Oak survival- the best-fit and most parsimonious model for oak survival was the base 

model that included only the manipulated factors, with no covariates included 

(AIC=18723.08, Appendix A).  This finding indicates that none of the variables 

measured in the experiment added additional explanatory power beyond that already 

included by species richness and CO2 enrichment, or better explain survival responses if 

these measures co-vary with treatments.   
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Oak growth- the best-fit and most parsimonious model for oak growth included soil 

moisture and extractable soil nitrate as covariates (AIC=-742.6; Appendix A).   Soil 

nitrate explained the largest amount of growth variance, and the combination of reduced 

soil moisture and reduced soil nitrate explained the reduced oak growth found in high 

diversity plots, enriched CO2 plots, and the CO2 x time interaction (Table 1.2).  

 

Discussion 

Our results support the hypotheses that loss of plant diversity and atmospheric CO2 

enrichment influence woody encroachment into grassland ecosystems.  Importantly, the 

CO2 results and species richness results appear to describe opposing trends because the 

drivers are moving in opposite directions in the natural world (decreasing species 

richness and increasing CO2); in fact the mechanisms that underlie both patterns are very 

similar, increased CO2 and increased species richness both increase herbaceous biomass 

which (1) increases belowground competition for resources and (2) increases facilitation 

of early plant survival under a more diverse plant canopy.  

Hypotheses 1 and 2: Decreased herbaceous species diversity limits early oak survival but 

promotes oak growth later in development 

Our findings demonstrate that herbaceous species diversity facilitates early oak seedling 

survival. We suggest that this diversity effect is due to amelioration of plant stress under 

more diverse herbaceous canopies where temperature, humidity, and shallow soil 

moisture may be buffered by increased herbaceous cover.  For the purposes of our 

experiment, we measured herbaceous biomass, and found that it did not directly explain a 

significant proportion of the growth response or the survival response (Appendix A).  
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Although we did not measure the micro-climate variables directly related to facilitation in 

2001-2004, we measured some of them in 2010 in these same plots, to better understand 

these results.  This more recent work demonstrated that increasing herbaceous diversity 

slightly increased surface soil moisture (0-6 cm) in 16-species plots compared with 1-

species plots; and higher diversity plots were, on average, 1.7 C cooler than 1-sp plots. 

This interpretation (of amelioration of surface stress by higher diversity communities) is 

further corroborated by results from 2006 in BioCON, where during a dry summer, soil 

moisture at 0-17 cm was slightly higher in diverse plots than monocultures, whereas in 

deeper horizons, increasing diversity reduced soil moisture (Adair et al. 2011).  Further 

work should be conducted in this area to show a direct causal relationship between micro-

climate variables and plant facilitation at this site. 

Positive facilitative relationships between aboveground cover and seedling 

survival have been documented in grasslands (Dickie et al. 2005, 2007), shrublands 

(Cuesta et al. 2010), and temperate forest gaps (Montgomery et al. 2010), although 

evidence for a relationship between herbaceous cover and shrub invasion in southwestern 

arid grasslands of the United States is varied (Van Auken and Bush 1997, Brown and 

Archer 1999, Van Auken 2000).  In those examples where herbaceous biomass increases 

seedling survival, aboveground cover protects small seedlings from some type of 

environmental severity (e.g. extreme temperatures, increased surface soil drying, and 

increased rates of evapotranspiration).  Aboveground cover may be particularly important 

for smaller/ younger seedlings, which tend to have less well-developed root systems, and 

less non-structural carbon reserves to survive short periods of stress (Niinemets 2010).  

As plants grow in size, their root systems become more developed, and they become less 
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susceptible to short periods of extreme abiotic conditions. Indeed, we found a facilitative 

effect of herbaceous diversity for small oak survival, but following initial establishment, 

loss of plant diversity did not further decrease the survival of larger oak seedlings.  We 

predict that this was likely because larger seedlings were less susceptible to 

environmental stressors.  

Surviving oaks in low diversity plots grew rapidly after the first year, which was 

due to greater availability of soil nitrogen and soil moisture in the absence of strong 

competition from neighbors (Table 1.2).  Indeed, soil moisture is one of the most 

important factors determining regional range limits for woody species (Staver et al. 2011, 

but see Brown and Archer 1999).  In contrast, oaks in higher diversity plots grew very 

little after the first eight months because of intense competition for soil resources from 

herbaceous plants (Table 1.2).  We propose that the increase in competition intensity with 

oak age is due to greater absolute resource requirements as oaks grow (and decreasing 

influence of resources from acorns, Ovington and MacRae 1960).  Increased resource 

requirements as plants grow should result in increased growth limitations, which was 

evident for the oldest plants growing in the highest diversity plots.  Soil nitrogen is the 

most limiting resource in grasslands at this field site (Tilman 1987) and limited 

availability of extractable soil nitrogen (nitrate) was the best covariate predictor of oak 

growth at each individual time point (Table 1.2).  This resulted in little difference in oak 

growth between diversity levels at the beginning of the study, due to little need for 

nitrogen, but significantly less growth of oaks in high diversity plots over time. 

This fits well with evidence that herbaceous species richness is positively related 

to biomass production in grasslands (Reich et al. 2001b, 2001c, Tilman et al. 2001, Van 
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Ruijven and Berendse 2003, Roscher et al. 2005, Isbell et al. 2011), and that this often 

leads to decreased availability of resources at higher levels of plant diversity (Tilman et al. 

1996, Dijkstra et al. 2005, Reich 2009).  Further, work on woody encroachment patterns 

in the semi-arid southwestern United States demonstrates a similar pattern between 

woody growth limitation and belowground competition for resources.  While woody 

growth does not appear to be significantly affected by aboveground or overall 

competition in these systems (usually attributed to grazing, not diversity, Brown and 

Archer 1989, Van Auken and Bush 1997, Brown and Archer 1999), there is strong 

evidence that woody seedlings compete heavily with herbaceous species for belowground 

resources (Van Auken and Bush 1997) and that this may affect woody encroachment 

patterns. 

 

Hypotheses 3 and 4: CO2 enrichment increases oak performance due to increased soil 

water availability and N deposition decreases oak performance due to increased 

herbaceous productivity and competition for other limiting resources  

Contrary to our original hypothesis, our data demonstrate that the effect of CO2 

enrichment on woody encroachment is not consistently positive, but instead also depends 

on oak ontogenetic stage.  Atmospheric CO2 enrichment had a positive effect on oak 

survival at the beginning of the study and a negative effect on growth of surviving oaks, 

especially at low levels of plant diversity. The positive effect of CO2 enrichment on early 

oak survival may have been the result of higher herbaceous biomass in high CO2 plots 

(12% higher than in ambient CO2 plots, (Reich et al. 2001c) and amelioration of surface 

soil moisture in high CO2 plots (Adair et al 2011).  Although there was no direct effect of 
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herbaceous biomass on oak survival or growth (Appendix A), increased herbaceous cover 

in elevated CO2 plots may have reduced abiotic stress for the germinating oak acorns 

under the denser herbaceous canopy.  This pattern also emerged early on in oak 

development when oaks were smaller and likely more vulnerable to abiotic stressors such 

as heat and drought (Niinemets 2010). 

Subsequently, the positive CO2 effect for survival transitioned to competition for 

resources as the oaks grew.  CO2 enrichment decreased longer-term oak growth rates 

because older seedlings in CO2 enriched plots experienced more intense competition for 

resources, which limited oak growth over time.  The enhanced oak growth effect was 

most evident in ambient CO2 – monoculture plots, where competition intensity was 

lowest due to low competition from both low herbaceous diversity and lack of CO2 

fertilization (which in combination resulted in lower herbaceous biomass than in plots 

with higher diversity or elevated CO2).   

The negative effect of CO2 enrichment on oak growth is surprising and important 

in the context of recent work on the singular effect of CO2 enrichment on woody 

encroachment (Bond and Midgley 2000, Polley et al. 2003, Davis et al. 2007, Staver et al. 

2011).   This recent work suggests that CO2 enrichment should have positive effects on 

overall trends in woody encroachment (Davis et al 2007) due to enhanced water use 

efficiency (Polley et al. 2003) and subsequent access to limiting soil moisture (Staver et 

al. 2011), and increased total carbon availability for woody species that need to invest 

large amounts of energy towards re-sprouting after fire (Bond and Midgley 2000).  Our 

results suggest, that as oaks encroach into grasslands, herbaceous species may respond 

quickly to increased CO2 enrichment and grow more due to the CO2 fertilization effect.  
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When oaks arrive into higher biomass grasslands following increases in levels of 

atmospheric CO2, they may be more limited by competition from greater herbaceous 

biomass than they are facilitated by CO2 enrichment (e.g. Davis et al. 2007).  We predict 

that while this has strong implications for how we interpret future trends of woody 

encroachment in grasslands, past trends in woody encroachment may have been more 

strongly controlled by increasing levels of atmospheric CO2 due to greater response 

potential at lower levels of CO2 (Kgope et al. 2009). 

Also contrary to our original hypothesis, nitrogen addition had no detectable 

effect on oak survival or growth over time.  The reason for this is unclear, but may be in 

part due to lower concentrations of nitrogen applied, compared with similar studies at this 

site (Davis et al. 1999), and the impact of these on the multiple resource factors that are 

important (light, water, and N). For example, the BioCON N addition strongly increased 

soil N pools, but also increased competition for those pools (Reich et al. 2001c, Reich 

2009), while also slightly decreasing soil water supply (Reich 2009, Adair et al 2011) and 

increasing light transmission (through a compositional shift towards vertical grasses, 

Reich 2009). It is possible that increased root competition (Davis et al 1998, 1999; Reich 

2009) and lower soil water content (Reich 2009, Adair et al 2011) offset possible positive 

impacts of greater soil N pools and higher light availability (Reich 2009), in terms of 

impacts on oak performance. 

Synthesis 

Woody encroachment into grassland communities is a widespread phenomenon that 

drives changes in community and ecosystem-level processes. Our findings demonstrate 

that the simultaneous loss of herbaceous plant diversity and increasing atmospheric CO2 
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concentrations associated with global environmental change will affect oak encroachment 

into grasslands.  Due to the divergent trajectories of species richness and atmospheric 

CO2 concentrations (decreasing species richness and increasing CO2concentrations) these 

results indicate that woody encroachment will be affected in divergent ways; and those 

divergent effects will themselves vary depending upon the oak life stage and process in 

question.  

In this experiment, survival was 15-20% lower in herbaceous monoculture than in 

high diversity plots. Thus, if local plant diversity is driven to a low level, oak 

establishment may become increasingly rare.  However, atmospheric CO2 enrichment 

may counteract this trend; in our experiment a CO2 doubling buffered the survival 

reduction in low diversity plots, and increased initial oak survival by ~14%. The 

magnitude of species loss paired with the degree of atmospheric CO2 enrichment will 

determine the actual outcome of these trends for early oak establishment. 

For oaks that establish, however, decreased plant diversity may prove beneficial.  

We found that surviving oaks grew twice as much in one-species plots than they did in 

sixteen-species plots.  Oak growth was only modestly counteracted by a CO2 doubling 

(17% growth reduction in lower diversity plots).  Further, the actual conversion of these 

grasslands into closed canopy forests will depend heavily on oak growth: past research 

has shown that woody encroachment rates are strongly controlled by the ability of oaks to 

grow into larger size classes and eventually escape from under the herbaceous canopy 

(Bond and Midgley 2000).  The strong growth advantage of oaks growing in lower 

diversity plots, regardless of CO2 concentrations, suggests that loss of species richness 
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may have an overall positive effect on woody encroachment in lower diversity grassland 

patches.  

In a broader theoretical context, our findings support the idea that both 

competition and facilitation are operating in these plant communities. Young plants are 

particularly sensitive to severe environmental conditions, and thus benefit from the 

facilitative effects of higher total community biomass (which is positively related to both 

herbaceous richness and CO2 concentrations), which can ameliorate harsh environmental 

conditions.  As plants grow and become less susceptible to environmental stress in terms 

of survival, however, the positive effects of facilitation diminish and resource 

competition becomes a stronger determinant of plant growth, and hence longer-term plant 

performance.  Thus, overall community composition in these grasslands may be 

structured by a balance that promotes establishment of colonizers in areas of high plant 

diversity through facilitation, but this higher diversity later limits overall growth through 

increased interspecific competition. 
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Table 1.1 The effects of species richness, CO2 addition, and nitrogen addition, as well as 
first and second order interactions on oak survival through time.  This generalized linear 
mixed model was fit with a multinomial error distribution.  All significant results are bold 
and marked with an asterisk. 
 

 
Effect d.f.† F P  

 
Species Richness 3, 342 3.04   0.0293  
CO2 1, 4 5.43   0.0803  
Nitrogen 1, 342 0.19   0.6623  
Species Richness × CO2 3, 342 1.18   0.3192  
Species Richness × Nitrogen 3, 342 2.45   0.0637  
CO2 ×Nitrogen 3, 342 0.12   0.7330  
Richness × CO2 × Nitrogen 3, 342 0.49   0.6877  
Time 2, 342 73.69 <0.0001  
Time × Species Richness 6, 342 0.23   0.9681  
Time × CO2 2, 342 8.56   0.0002  
Time × Nitrogen 6, 342 0.14   0.8703  

 
† Denominator d.f. = 4 for the main effect of CO2 and reflects the inclusion of CO2 × ring 
as a random effect. 
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Table 1.2. The base model (without covariates) and the best-fit model (with covariates)  
examining the effects of species richness, CO2 addition, and nitrogen addition on oak 
growth through time.  All significant results are bold and marked with an asterisk. 

 
      Without Covariates With Covariates 
 
Effect d.f.† F P F  P 

 
Species Richness 3, 205 8.60 <0.0001* 1.85   0.1401 
CO2 1, 4 2.15   0.2168 0.28   0.6226 
Nitrogen 1, 205 0.35   0.5559 0.25   0.6169 
Species Richness × CO2 3, 205 2.83   0.0395* 2.57   0.0556  
Species Richness × Nitrogen 3, 205 0.77   0.5118 1.25   0.2913 
CO2 ×Nitrogen 1, 205 0.10   0.7478 0.51   0.4755 
Richness × CO2 × Nitrogen 3, 205 0.90   0.4433 2.09   0.1032 
Time 2, 205 39.9 <0.0001* 40.59 <0.0001* 
Time × Species Richness 6, 205 8.28 <0.0001* 7.98 <0.0001* 
Time × CO2 2, 205 3.24   0.0412* 2.82   0.0617 
Time × Nitrogen 2, 205 0.52   0.5961 0.54   0.5808 
Nitrate 1, 205              --               -- 69.45 <0.0001* 
Moisture 1, 205              --               -- 1.35   0.2468  

 
† Denominator degrees of freedom are shown for the model including covariates.  For the 
model not including covariates, denominator degrees of freedom for all effects other than  
CO2 = 207.  In both models, denominator d.f. = 4 for the main effect of CO2 and reflects 
the inclusion of CO2 × ring as a random effect.  
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Figure 1.1. Proportion of oaks surviving in 1-, 4-, 9-, and 16-species plots. Bars are 
means ± SE of the raw proportion survival measurement.  Displayed results are averaged 
across sampling dates.  Tukey tests for multiple comparisons between diversity levels 
were not possible using the GLMM with a multinomial distribution in SAS, for this 
reason letters indicating significance between groups are not displayed 
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Figure 1.2. Final aboveground biomass of oak seedlings in relation to planted species 
richness at two CO2 levels.  Decreased oak growth due to herbaceous diversity was 
determined using Tukey-Kramer multiple comparisons and is denoted using letters (a vs. 
b).  Due to significant interactions between CO2 enrichment and species richness, 
differences in oak growth at different levels of CO2 enrichment were also determined 
using Tukey-Kramer multiple comparisons and are denoted using stars (** vs. *) 
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Figure 1.3. Oak survival at two CO2 levels, averaged over the three sampling dates. Bars 
show mean ± SE of the raw proportion survival measurement.  Tukey tests for multiple 
comparisons between different levels of CO2 and time were not possible using the 
GLMM with a multinomial distribution in SAS, for this reason letters indicating 
significance between groups are not displayed 
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CHAPTER 2 

 

Living close to your neighbors – the importance of both positive (facilitative) and 

negative (competitive) plant interactions 

 

To be submitted with co-authors S.A. Schnitzer and P.B. Reich 

 

Abstract 

Competition has long been recognized as a fundamental process structuring plant 

communities.  In contrast, positive interactions in plant communities (facilitation) have been 

largely overlooked until recent years.  Facilitation may be particularly important in stressful 

environments, such as deserts, tundra, and salt marshes.  Further, facilitation may be more 

important for colonizing seedlings when they are small, when mortality rates are higher, and 

when they are particularly susceptible to fluctuations in the environment.  Indeed, both 

competition and facilitation may be operating simultaneously in many ecosystems, although 

it is difficult to determine the relative strength of both processes in experimental 

manipulations.  When competition is the dominant mechanism, we conclude that the net 

effect of neighbor interactions is competitive, and miss any underlying variation in 

facilitation.  To better understand the complexities of biotic interactions in plant 

communities, we manipulated seedling size in a biodiversity gradient in central Minnesota 

and measured seedling responses to co-occurring competition and facilitation.  In 

experimental manipulations, higher diversity plant communities are more productive, and 

this may drive increased competition for resources – this may be particularly important 
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for larger seedlings.  Conversely, increased aboveground biomass may drive increased 

facilitation due to microclimate amelioration.  Microclimate amelioration may have strong 

effects on smaller seedling performance.  We measured pine height and basal diameter every 

two weeks for two growing seasons.  We compared biweekly relative growth rates to annual 

relative growth rates to assess the short-term effects of competition and facilitation, and how 

they both contribute to net long-term effects.  We found strong evidence that competition is 

the dominant mechanism structuring these plant communities (over an annual period), but 

both competition and facilitation operate at shorter time scales (biweekly).  Further, we found 

that net competition appeared to increase as plants grew in size, but this was primarily due to 

decreasing facilitation, not increasing competition. 
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Introduction 

Over fifty years of ecological research has demonstrated that organisms compete for 

limiting resources in nearly every ecosystem (Hardin 1960, Connell 1961, Ricklefs 1977, 

Tilman 1977, Brokaw and Busing 2000, Coomes and Grubb 2000). In plant communities, 

neighboring plants utilize resources from a common pool (Casper et al. 2003).  Increased 

competition for limiting resources results in reduced resource availability (Tilman et al. 

1996), and ultimately leads to decreased performance at the individual plant level.  When 

competition is strong, experimental removals of neighbor biomass result in increased growth 

and survival of intact individuals (Casper and Jackson 1997).  In temperate grasslands, 

competition for nitrogen and soil water can help explain local successional trajectories 

(Tilman 1985), the positive relationship between biodiversity and productivity (Isbell et al. 

2011), and woody encroachment patterns (Archer et al. 1995).  Competition may occur in 

nearly every ecosystem (Tilman 1982), but overwhelming interest in competition 

experiments over the past fifty years may have obscured the co-occurring importance of 

positive interactions in plant communities (Bertness and Callaway 1994). 

Positive interactions (facilitation) may sometimes promote increased growth and 

survival of plants growing near neighbors.  Facilitation may be particularly relevant in severe 

environments where plants experience high levels of physiological stress that can be 

ameliorated by the microclimate of neighboring plants (Bertness and Callaway 1994).  

Specifically, plants can increase shade, reduce direct irradiance, reduce surface soil drying, 

reduce air and soil temperatures, increase relative humidity, and decrease vapor pressure 

deficit in their local microclimate (Holmgren et al. 1997, Classen et al. 2010, Montgomery 

et al. 2010).  These direct effects of plants on the local microclimate (microclimate 
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amelioration) can translate to increased performance of neighbors (facilitation).  Facilitation 

is more common in severe environments where plants experience high levels of physiological 

stress and therefore benefit more from the microclimate amelioration effect (Callaway and 

Pennings 2000, Van Auken 2000, Brooker et al. 2008, Valladares et al. 2008).  In fact, 

experimental removals of plant biomass in severe environments can result in decreased 

germination success, survival, and physiological performance  – the exact opposite of what is 

predicted by competition. 

The relative strengths of competition and facilitation may also change with plant 

ontogeny (Miriti 2006).  During early ontogenetic stages, seedlings may be more vulnerable 

to abiotic stress and therefore facilitation may be particularly important (Miriti 2006).  

Smaller seedlings have relatively less access to deep soil water reserves, and less carbon 

available in storage organs, than larger plants (Niinemets 2010).  They are consequently 

more vulnerable during environmentally stressful events (Cavender-Bares and Bazzaz 

2000).  Conversely, larger plants have deeper root systems and more carbon available in 

storage organs, and are thus more capable of surviving periods of environmental stress or low 

photosynthetic rates.  Larger plants, however, also need increasingly greater quantities of 

resources to maintain basal metabolism, which may lead to increased resource limitation as 

they grow larger.  Thus, the relative impact of facilitation may decrease with plant ontogeny, 

while competition intensity increases. 

While empirical studies on facilitation are often focused on severe environments 

(tundra, deserts, salt marshes), more recent work indicates that facilitation may be more 

common than originally suggested by the stress gradient hypothesis (Dickie et al. 2005, 

Montgomery et al. 2010, Wright et al. 2012).  Both competition and facilitation may be 
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operating in all plant communities, but each may obscure the relative strength of the other.  

Thus, the outcome of plant interactions may be the sum of both competition for limiting 

resources and facilitation due to microclimate amelioration (Bruno et al. 2003). If one of the 

processes is stronger than the other over the course of a single study, the weaker processes 

will be overlooked and tacitly assumed to be absent.  This assumption may be a serious 

oversight in the interpretation of plant-plant interaction experiments.  For example, a positive 

effect of a neighbor removal on individual plant performance may be due to competitive 

release. However, neighbor removal may also increase physiological stress, due to the loss of 

protection from environmental extremes provided by the neighboring canopy.  If release 

from competition has the strongest effect on overall growth (relative to growth lost during 

periods of physiological strain following neighbor removal), then competitive release will 

obscure the effect of facilitation, even if the facilitative effect is strong.   

Here we test the overarching hypothesis that both competition and facilitation are 

important in plant communities.  We planted three sizes of pine seedlings into an 

experimental herbaceous plant diversity gradient in central MN.  We measured pine growth, 

nitrate availability, and microclimate conditions at two-week time scales over the course of 

two growing seasons.  We tested three specific hypotheses:  

1. Competition is most important when environmental conditions are mild, but biotic 

effects transition to facilitation when environmental conditions are severe 

2. Competition increases with seedling size 

3. Facilitation decreases with seedling size 

Methods 

Study Site and Experimental Design 
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We conducted this study at the Cedar Creek Ecosystem Science Reserve in central 

Minnesota, USA.  Soils at this site consist of nutrient-poor glacial outwash sand plain 

with low water- and nutrient-holding capacity (Tilman 1982). 

 We utilized ambient treatment plots in the plant diversity gradient in the ongoing 

BioCON experiment at Cedar Creek (Reich et al. 2012).  While several metrics have been 

proposed to measure the importance of plant diversity in the ecological literature, we use 

species richness as a proxy of plant diversity at this site.  Hereafter, plant diversity and 

species richness are used interchangeably.  The BioCON plots were established in 1997 

by tilling and fumigating existing vegetation in six experimental blocks in an old-field.  

Plots were then seeded with herbaceous species that were selected randomly from a pool 

of 16 total species from four functional groups (four C3 grasses, four C4 grasses, four 

legumes, and four non-nitrogen fixing herbaceous plants).  Seeds were divided equally 

among the species assigned to each plot and applied at a rate of 12 g m-2 of seed.  Since 

1997, species mixes were maintained using hand weeding to remove any species that 

migrated into the plot that were not planted in the original seed mix.  Overall there were 

three plots maintained with no vascular plants, wherein all colonizing species were 

removed (hereafter bareground plots).  In total, there were 32 plots with 1 species (with 

every monoculture represented twice), 32 plots with 4 species, 9 plots with 9 species, and 

12 plots with 16 species (3+32+32+9+12=88 plots total). 

In experimental manipulations of plant diversity, there is often a positive relationship 

between diversity and biomass production – higher diversity plots are more productive 

(Tilman et al. 2001, Reich et al. 2001, Van Ruijven and Berendse 2003, Roscher et al. 

2005, Isbell et al. 2011, Reich et al 2012, Zhang et al. 2012).  All else being equal, 
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competition intensity usually scales with increasing neighbor density (Casper et al. 2003) and 

thus experimental manipulations of plant diversity may directly affect competition intensity 

(Kennedy et al. 2002).  Conversely, biomass manipulations in severe environments 

demonstrate the importance of plant cover for amelioration of environmental conditions 

(irradiance, shallow soil moisture, air temperature, relative humidity) and consequent benefits 

conferred on seedling performance (Bertness and Callaway 1994). Increased biomass 

production in higher diversity communities may then also provide increased amelioration of 

environmental conditions for seedlings, and a positive relationship between experimental 

manipulations of plant diversity and facilitation (Wright et al. 2012).  

 In June and August of 2010 and 2011 we measured available soil nitrogen (in the 

form of nitrate) in each plot by collecting four soil cores at 0-20 cm depth, extracting 

nitrogen using 1 M KCl, and analyzing the nitrogen content using a Costech 4050 

Element Analyzer.  In each of the 88 plots we also sampled aboveground herbaceous 

biomass each June and August 2010-2011.  Aboveground biomass was clipped in 10 x 

100 cm strips at the soil surface and never sampled less than 15 cm. from plot boundaries 

(to avoid edge effects).  Biomass sampling was conducted in different areas of plots for 

every sampling date of this study.  From May- October in 2011 we measured air 

temperature and relative humidity (and calculated vapor pressure deficit, VPD) 

continuously at 5-minute intervals using Maxim iButton dataloggers (Maxim Integrated, 

San Jose CA).  The iButton dataloggers were installed on wooden tent stakes 

approximately 20 cm above the ground surface and covered with plastic Dixie cups.  The 

covers were painted white to reflect direct sunlight and guard from direct saturation by 

rainwater.  The dataloggers were installed in a stratified subset of 55 plots, which 
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included all monocultures represented once and at least 3 plots from each of the other 

species richness levels (assigned randomly within species richness level).  Dataloggers 

were moved every month to capture microclimate conditions across a broader range of 

species combinations.  We measured shallow soil moisture (0-6 cm) using an HH2 soil 

moisture meter (Dynamax Inc, Houston TX) every two weeks from May 2010- October 

2010 and May 2011- October 2011. 

Seedling growth 

In June 2010 we planted 11 white pine (Pinus strobus) seedlings into each of the 

88 plots described above.  Plants were grown initially by Vans Pines Nursery (West 

Olive, MI) from locally sourced pine seed.  In each plot we planted 3 large sized 

seedlings (>15cm), 3 medium sized seedlings (10-15cm), and 5 small sized seedlings 

(<5cm), as we predicted that survival rates of the smallest size class would be the lowest 

(Wright et al. 2012). We measured pine basal diameter and height every two weeks from 

June 16, 2010 to October 19, 2010 and again from May 10, 2011 to September 22, 2011, 

at which point all pines were harvested.  For the pine harvest, we took care to preserve all 

aboveground biomass (AGB), but belowground biomass (BGB) was sacrificed for the 

sake of the long-term integrity of the experimental plots. 

To estimate the relationship between measurements taken in the field (basal 

diameter and height) and plant biomass, we planted 10 large, 10 medium, and 20 small 

pine seedlings in a garden near the BioCON experiment.  We harvested these seedlings 

throughout the first growing season and took care to preserve all aboveground and 

belowground biomass of all individuals.  We pooled all samples (from the harvest garden 

and the BioCON final harvest) to calculate aboveground biomass from field 
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measurements, and used the harvest garden data to estimate belowground biomass (as 

belowground biomass could not be harvested in the BioCON experiment, Table 2.1).  

Based on differences in seedling size and age, we fit a separate allometric relationship for 

the small size class, and one combined allometric relationship for the large and medium 

size classes, which formed a more continuous distribution (Table 2.1).  We calculated 

relative growth rate (RGR) using the following equation: (ln(total final biomass)-ln(total 

initial biomass))/time interval. 

Analysis 

To address hypotheses one and two we analyzed the effects of herbaceous 

diversity on microclimate factors (shallow soil moisture, air temperature, relative 

humidity, and vapor pressure deficit) and soil nitrogen using a mixed-effects ANCOVA 

for repeated measures.  Within the mixed-effects framework, the BioCON experimental 

block (“ring”) was included as a random effect.  Species richness was considered a 

continuous fixed effect, and the environmental factors were included as continuous 

response variables.  Time (year or biweekly interval) was included as a random effect to 

account for repeated measurements taken on the same plots over time. 

 We analyzed the effects of species richness and seedling size on pine RGR using 

a mixed-effects ANCOVA as described above (“ring” is a random effect).  For these 

analyses, multiple pine seedlings were planted within each plot, so plot number was 

nested within “ring” to account for lack of independence among seedlings within a single 

plot (ring/plot). To examine the difference between net effects over the course of our 

study vs. underlying variation in competition and facilitation at bi-weekly time scales, we 
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analyzed our dataset at two different time scales.  Similar analyses were conducted for 

pine survival (Appendices B and C). 

1. Coarse temporal scale: To test for the net effect of diversity on plant performance 

and size-specific differences in competition and facilitation, we calculated RGR 

over each individual year (June 4, 2010 – October 10, 2010 and June 1, 2011 – 

September 26, 2011). Sampling interval (year one and year two) was included in 

the model as a random effect to account for autocorrelation of measurements 

taken on the same plant over time, and to reduce error associated with between 

year differences. 

2. Fine temporal scale: To determine the underlying variation in competition and 

facilitation over short time intervals, we used bi-weekly measurements of all 

individuals over the course of two years. For this analysis, bi-weekly census 

interval was included in the statistical model as a fixed effect.  The inclusion of 

census interval allowed us to directly analyze whether the effects of diversity and 

size class changed over the course of the growing season (facilitation may change 

depending on environmental severity). To account for autocorrelation of 

measurements taken on the same plant over time, plant identity was nested in the 

random effects term described above (ring/plot/plantID).   

 

Mechanisms - We conducted separate analyses to explore how soil nitrate and 

microclimate affect seedling growth, and how these mechanisms for competition and 

facilitation change with seedling size.  Because soil nitrate was measured at the annual 

time scale, we assessed the effects of nitrate, size class, and interactions using a mixed-
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effects ANCOVA at the coarse temporal scale (number one above). We assessed the 

effects of VPD, soil moisture, size class, and interactions, using a mixed-effects 

ANCOVA at the fine temporal scale (number two above). 

 We also analyzed the effects of herbaceous aboveground biomass in a mixed-

effects ANCOVA at the coarse temporal scale.  We conducted this analysis to understand 

how pine growth was affected by between-plot variation in biomass production within 

species richness levels. 

 

Results 

Net effects and size structured effects 

After two years, pines growing in higher diversity plots grew less than pines 

growing in lower diversity plots (Figure 2.2).  In other words, the net effect of diversity 

on pine growth was competitive (Table 2.3).  Smaller seedlings also grew relatively 

slower overall (in RGR terms) than larger seedlings (Table 2.3), but larger seedling 

growth was more negatively affected by diversity (Table 2.3).  Specifically, small 

seedlings grew equally well across diversity treatments (Figure 2.3a), medium seedlings 

were slightly negatively affected by diversity (Figure 2.3b), and large seedling growth 

was strongly limited by diversity (Figure 2.3c).  Herbaceous aboveground biomass 

explained only a small proportion of the above patterns in pine seedling growth (Table 

2.3). 

Soil nitrate and microclimate 

Higher diversity plant communities (16-sp) had an average of 50% less soil nitrate 

than lower diversity communities (F1,86=6.27, P=0.01).  Increasing herbaceous species 
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richness increased shallow soil moisture availability by 1% over the course of the 

growing season (Figure 2.1a) and reduced mean air temperature by 2°C (Figure 2.1b).  

Average relative humidity (for every 24 hr period over the course of the growing season) 

was 10% higher in high diversity plots (Figure 2.1c), and average vapor pressure deficit 

decreased to almost ¼ the bareground level in higher diversity plots (Figure 2.1d). 

Competition and facilitation change with seedling size  

When pine RGR was measured at bi-weekly temporal scales, to assess how 

competition and facilitation changed over shorter time periods, seedling growth was still 

most strongly affected by competition.  However, seedling growth and biotic effects also 

changed significantly from one census to the next.  The effect of diversity was sometimes 

positive (facilitative) and sometimes negative (competitive); within a single census 

interval the effects of diversity could be strongly competitive for large individuals and 

neutral for small individuals (similar to net effects above), or facilitative for small 

individuals and neutral for larger individuals (Figure 2.4).  

There was an overall positive effect of nitrate availability on seedling RGR (F1,71 

= 7.66, P=0.007); this effect did not change with seedling size (F2,363 = 1.66, P=0.19).  All 

seedlings were equally limited by access to soil nitrate (Figure 2.5a).  There was no 

overall effect of shallow soil moisture (F1,276 = 0.49, P=0.48) or vapor pressure deficit 

(F1,262 = 0.07, P=0.80) on seedling RGR (Table 2.5b).  However, there was an interaction 

between seedling size and the effect of VPD on growth – small seedlings grew faster in 

plots where they didn’t experience a large vapor pressure deficit, but larger seedlings 

were not affected by differences in VPD (F2,1326 = 5.27, P=0.005, Figure 2.5b). 

Discussion 
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We found that both competition and facilitation influence growth rates of pine 

seedlings in this experimental grassland community.  Competition for resources is intense 

in this community, and thus the importance of facilitation can be easily missed.  By 

explicitly manipulating plant size, we found that growth of pines was limited in higher 

diversity plots, and this growth limitation increased with seedling size (Figure 2.6a).  The 

most common interpretation of increasing growth limitation with increasing size may be 

increasing competition intensity (Figure 2.6b).  However, competition for soil nitrate was 

not more intense for larger seedlings, meaning that larger seedlings may not have been 

more limited by competition (Figure 2.5a).  An alternative explanation for increasing 

growth limitation with increasing seedling size is a decrease in facilitation intensity as 

seedlings grow larger (Figure 2.6c).  Indeed, smaller seedlings experienced stronger 

facilitation in high diversity plots via microclimate amelioration and this effect decreased 

with seedling size (Figure 2.5b). While the net effect of plant interactions in this system 

may be competitive, both competition and facilitation help explain observed patterns. 

Cedar Creek has a continental climate (warm summer and cold winters) and 

receives approximately 32.4 cm of precipitation during summer months (Davis et al. 

2005, Peel et al. 2007). This is sufficient rainfall to be classified as a humid continental 

climate as opposed to arid or semiarid (Peel et al. 2007).  In terms of plant desiccation 

stress, this system may not be particularly stressful in comparison to deserts and artic 

habitat.  Past research at this site has demonstrated the importance of competition for 

community composition, succession, and overall plant diversity in both experimental 

(Tilman et al. 2001) and observational settings (Tilman et al. 1996).  Annual pine RGR 

measurements in our experiment reflect similar patterns: when measured at coarse time 
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scales, the only detectable pattern was decreased pine growth in higher diversity plots 

that became stronger with seedling size.  Increased herbaceous plant diversity decreases 

resource availability and thus increases competition for limiting resources (Tilman et al. 

1996).  However, while competition may be stronger than facilitation in our experiment, 

the weaker effects of facilitation still help structure neighbor interactions.  Further, 

because facilitation appears to be associated with environmental severity, we may expect 

it to change in the future as a result of climate change (He et al. 2013).  

Facilitation is important for small seedlings because they are particularly sensitive 

to harsh environmental conditions.  Small seedlings have reduced access to deep soil 

water reserves during periodic droughts, and have fewer non-structural carbohydrates 

available for maintaining plant metabolic activity during brief periods of stress 

(Niinemets 2010, Cavender-Bares and Bazzaz 2000).  These physiological and physical 

constraints make smaller seedlings more vulnerable to environmental stressors, and 

therefore more dependent on facilitative microhabitat amelioration provided by 

neighbors. We found that the microclimate under the canopy of a high diversity 

community is cooler, more humid, and has higher soil water content at the soil surface 

than a lower diversity community.  Our results demonstrate that small seedlings have 

increased vulnerability to environmental stress (Figure 2.5b), and that they benefit in 

higher diversity communities where there is increased amelioration of this environmental 

stress (Figure 2.1).  

Facilitation at the seedling establishment phase may also help explain species 

coexistence.  If the first filter for plant community composition relies heavily on 

protection from environmental severity, there may be a positive feedback for increased 
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species diversity at the seedling establishment phase – high diversity may beget high 

diversity, particularly when environmental conditions are severe (Bertness and Callaway 

1994, Brooker 2006).  Overall community composition may be the result of strong 

facilitation at the establishment phase, leading to the highest diversity in the smallest 

seedling layer.  Facilitation during initial plant establishment turns into competition for 

resources as plants grow (Wright et al. 2012), and thus larger plants may become limited 

by competition for resources. 

Our data support the hypothesis that competition and facilitation are both 

operating between neighboring plants in plant communities (Bruno et al. 2003, Brooker 

2006).  When competition is the strongest type of interaction, positive interactions are 

overlooked, and assumed to be absent.  In our study system, if the net effect of diversity 

were merely the result of competition, we may have observed little growth and 

establishment of the smallest pines and even stronger competition intensity for the largest 

pines.  Instead we observed patterns that appear to reflect a combination of competitive 

effects and counteracting facilitative effects.  If the observed neighbor interactions are the 

result of competition drivers (resource supply and demand) as well as facilitation drivers 

(environmental severity, temperature, drought) our expectations for community 

composition and diversity in the future may be very different from our current predictions 

(Brooker 2006).    
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Table 2.1. Allometric relationships between pine seedling height and diameter for both 
aboveground biomass and belowground biomass.  Different equations were used for 
small seedlings and medium/large seedlings. 
 

Size Class log(AGB) r2 log(BGB) r2 Total  

 
Sml -4.06 + 0.23*H + 10.20*D 0.79 -5.45 + (0.29*H) + (13.75*D) 0.78 AGB+BGB 
Med/Lrg -1.03 + 0.04*H + 3.07*D 0.82 -1.07 + (0.04*H) + (2.22*D) 0.74 AGB+BGB 
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Table 2.2. The effect of herbaceous species richness on four commonly described metrics 
of microclimate: air temperature, relative humidity, vapor pressure deficit, and shallow 
soil moisture. 
 

Response Variable d.f.†  F P  

Air Temperature 1, 50  24.67 <0.0001*  
Relative Humidity 1, 52  47.11 <0.0001*  
Vapor Pressure Deficit 1, 52  55.88 <0.0001*  
Shallow Soil Moisture 1, 84  11.30   0.0012*  

 
† This analysis took into account spatial variation associated with the blocked design 
(“Ring” in the BioCON framework).  In the linear mixed effects model framework, 
denominator degrees of freedom “float” based on the degree of spatial variation attributed 
to block differences, this is why denominator degrees of freedom are different depending 
on the metric described in this table. 
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Table 2.3. The effects of herbaceous species richness and seedling size class on seedling 
RGR. We conducted this analysis with and without herbaceous AGB.  Results from both 
analyses are shown below as without herbaceous biomass (wo) and with herbaceous 
biomass (w). 
 

Fixed Effect d.f.† F P  
 wo/w wo/w wo/w 

Species Richness 1, 100/1, 99 30.0/24.9 <0.0001*/<0.0001* 
Size Class 2, 597/2, 595 40.0/39.5 <0.0001*/<0.0001* 
Sp Richness x Size Class 2, 603/2, 602  7.7/7.7   0.0005*/0.0005* 
Herbaceous AG Biomass     1, 98.1    0.65            0.42 

 
† This analysis took into account spatial variation associated with the blocked design 
(“Ring” in the BioCON framework) as well as variation associated with taking 
measurements on multiple seedlings within plot (“plot”), and measurements on the same 
individuals over time.  In the linear mixed effects model framework, denominator degrees 
of freedom “float” based on the degree of spatial variation attributed to random effects 
(year and ring), this is why denominator degrees of freedom are different depending on 
the metric described in this table. 
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Table 2.4. The effects of herbaceous species richness and seedling size class on seedling 
RGR for each individual 2-week census interval.  In order to avoid pseudo-replication of 
measurements taken on the same individuals over time, seedling ID was included as a 
random effect in the statistical model. 
 
 

Fixed Effect d.f.†  F P  

 
Species Richness   1, 465 48.2 <0.0001*  
Size Class    2, 386 59.8 <0.0001*  
Census 15, 5967 69.7 <0.0001* 
Sp Rich x Size   2, 456 0.99   0.37 
Sp Rich x Census 15, 6015 2.53   0.001* 
Size x Census 30, 5969 25.0 <0.0001* 
Sp Rich x Size x Census 30, 6022 3.97 <0.0001* 

 
† This analysis took into account spatial variation associated with the blocked design 
(“Ring” in the BioCON framework) as well as variation associated with taking 
measurements on multiple seedlings within one plot (“plot”) and on the same individuals 
over time (seedling ID).  In the linear mixed effects model framework, denominator 
degrees of freedom “float” based on the degree of spatial variation attributed to random 
effects (year and ring), this is why denominator degrees of freedom are different 
depending on the metric described in this table. 
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Table 2.5a.  Mixed effects ANCOVA analyzing the effects of seedling size and available 
soil nitrate on seedling RGR.  Interactions between seedling size and soil nitrate were 
used to test size structured competition. 
 

Fixed Effect d.f.† F P  

Soil Nitrate 1, 71 7.66   0.007* 
Size Class 2, 359 24.78 <0.0001* 
Size Class x Nitrate 2, 363 1.66   0.19 

 
† This analysis took into account spatial variation associated with the blocked design 
(“Ring” in the BioCON framework, and plot, based on the fact that many individuals were 
planted into each plot – plot was nested within ring), as well as variation associated with 
taking measurements on the same plot over time.  Soil nitrate was measured twice per 
year and averaged on a per year basis.  This analysis used the course time-scale 
measurement of pine RGR, based on year one and year two measurements, with year 
included in the analysis as a random effect.  In the linear mixed effects model framework, 
denominator degrees of freedom “float” based on the degree of spatial variation attributed 
to random effects (year and ring), this is why denominator degrees of freedom differ for 
different factors above. 
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Table 2.5b.  Mixed effects ANCOVA analyzing the effects of seedling size, shallow soil 
moisture, and VPD on seedling RGR.  Interactions between seedling size and soil 
moisture or VPD were used to test size structured facilitation. 
 

Fixed Effect d.f.† F P  

Vapor Pressure Deficit (VPD) 1, 263 0.07 0.80  
Shallow Soil Moisture 1, 276 0.49 0.48  
Size Class 2, 861 1.19 0.30 
Size x VPD 2, 1326 5.27 0.005* 
Size x Shallow Moisture 2, 1426 1.14 0.32 

 
† This analysis took into account spatial variation associated with the blocked design 
(“Ring” in the BioCON framework, and plot, based on the fact that many individuals were 
planted into each plot – plot was nested within ring), as well as variation associated with 
taking measurements on the same plots over time.  All of these measurements were taken 
continuously or at least once per two weeks and averaged per two-week period.  This 
analysis was done using the two-week pine RGR measurements.  In the linear mixed 
effects model framework, denominator degrees of freedom “float” based on the degree of 
spatial variation attributed to random effects (year and ring), this is why denominator 
degrees of freedom are different depending on the metric described in this table. 
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Figure 2.1. Effects of herbaceous community diversity on microclimate conditions 
averaged for all 24-hour periods from May – Sept 2011 for air temperature, relative 
humidity, and VPD.  And average per plot for 2010-2011 (May – Sept) for soil moisture.  
The four panels represent four commonly described micro-climate variables and how 
they relate to herbaceous species richness.  Panel (a) demonstrates the relationship with 
shallow soil moisture, (b) temperature, (c) relative humidity, and (d) vapor pressure 
deficit. See Table 2 for statistics. 
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Figure 2.2.  Course measurements of pine RGR (measured twice from May 2010 to 
October 2011) demonstrate that RGR declines with increasing herbaceous species 
richness. 
 

2010 
2011 
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Figure 2.3.  Course resolution measurements of pine RGR for both years.  This 
demonstrates an interaction between species richness and pine size class, where larger 
pines are more strongly limited by herbaceous species richness. 
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Figure 2.4. Finest scale measurements demonstrate that the effect of species richness on 
pine RGR depends on size class – and the magnitude and direction of this effect changes 
depending on census interval (there is a significant size x species richness x census 
interval interaction). 
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Figure 2.5. (a) RGR of all seedlings is equally limited by access to available soil nitrogen 
in the form of nitrate.  Conversely, (b) there is a significant interaction between vapor 
pressure deficit and seedling size.  Small individuals are strongly negatively affected by 
high vapor pressure deficit, whereas large and medium individuals are not significantly 
affected. 
 
 
 
 

(a) (b) 

Soil Nitrate Vapor Pressure 
Deficit 
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Figure 2.6.  Conceptual diagram of net effects showing that observed effects of diversity 
on pine RGR may indicate increasing competition with increasing seedling size (a).  
However, underlying competition and facilitation may help explain these observation in 
several different ways.  Competition intensity may increase with increasing seedling size 
(b).  Or facilitation intensity may decrease with increasing seedling size (c).   
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CHAPTER 3 

 

We need our neighbors when times are tough: seasonal weather patterns can drive 

the competition – facilitation balance 

 

To be submitted with co-authors S.A. Schnitzer and P.B. Reich 

 

Abstract 

Plants compete for limiting resources.  Resource limitation can decrease stomatal 

conductance, photosynthesis, growth, and survival.  Conversely, positive interactions 

between neighboring plants (facilitation) can increase these same physiological 

processes.  Facilitation is often mediated through abiotic conditions (temperature, wind, 

shade), and is therefore often related to environmental severity gradients.  When 

environmental conditions are severe, the importance of facilitation often increases.  The 

co-occurrence of both competition and facilitation among neighboring plants has made it 

difficult to tease them apart in plant communities. Here we tested the hypothesis that 

neighbor interactions can flip day-to-day from net negative to net positive depending on 

the conditions experienced by plants in a single growing season.  We planted bur oak 

(Quercus macrocarpa) acorns into an experimental grassland diversity gradient in central 

MN.  Plant diversity drives increased competition for resources, and may drive increased 

facilitation due to microclimate amelioration.  We measured temperature, humidity, and 

soil moisture in these plots for two growing seasons.  We also measured oak leaf water 

potential over a range of daily conditions.  We found that that on cool days, competition 
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for soil water determines the net effect of plants on their neighbors.  Conversely, on 

hot/dry days, facilitation of the microclimate near neighbors determines the net effect of 

plants on their neighbors.  We posit that increased occurrence of extremely hot and dry 

days, one of the predictions of global change, will drive the increased importance of 

facilitation in the future. 
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Introduction 

Plants compete for limiting resources and the outcome of competitive plant 

interactions can help explain community composition, global plant distributions (Bond et 

al. 2005) and species coexistence (Hardin 1960).  At the individual plant level, neighbors 

competing for similar limiting resources can decrease interspecific and intraspecific 

growth rates (Ehleringer 1984, Gordon et al. 1989), and increase plant mortality (Davis et 

al. 1999).  A key limiting resource in many ecosystems is soil water.  Competition for 

soil water can result in a cascade of physiological changes for a plant, including increased 

water stress, decreased stomatal conductance, and decreased rates of photosynthesis and 

carbon gain (Bazzaz 1979, Gordon et al. 1989, Davis et al. 1999, Danner and Knapp 

2003).  When plants are water limited due to competition for soil water, they may close 

stomates to reduce water loss at the leaf surface.  Stomatal closure due to limited soil 

water availability can lead to decreased plant growth and survival (Gordon et al. 1989). 

Plants may also facilitate each other via amelioration of the local microclimate 

(Brooker et al. 2008).  In fact, facilitation may underlie many plant interactions but it may 

be less common or often obscured by competitive interactions (Stachowicz 2001, Bruno 

et al. 2003).  Plants can modify their local microclimate via shading, interception of 

direct irradiation, and evaporative cooling.  The direct effect that plants have on their 

microclimate is called environmental amelioration.  Environmental amelioration is a 

physical process, and may only result in facilitative effects for neighboring individuals 

when neighboring individuals are physiologically stressed, and therefore benefit from a 

cooler more humid environment.  Thus, in severe environments, microclimate 

amelioration provided by neighboring plants is particularly important (the stress gradient 
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hypothesis, Bertness and Callaway 1994).  For example, plants growing in hot arid 

ecosystems are often clumped, due to an inability to germinate, grow, or survive in the 

harsh microclimate found away from other plants (Cuesta et al. 2010, Landero and 

Valiente-Banuet 2010, Jia et al. 2010, Armas et al. 2011).  In arid systems, physiological 

constraints, related to water status, may be more important than competitive interactions.  

Plants may be limited by high rates of water loss at the leaf surface, due to high vapor 

pressure deficit in the microclimate, or directly, due to photoinhibition at high light levels 

(Valladares and Pearcy 1997).  Facilitation may be dominant in these stressful abiotic 

conditions, but weaken and become subordinate to competition as environmental stress 

lessens (Callaway et al. 2002).   

In the past decade, theoretical work has suggested that both competition and 

facilitation occur simultaneously in all plant communities (Bruno et al. 2003).  We posit 

that, in terms of water status, the importance of facilitation relative to competition may be 

a function of daily differences in physiological stress (as measured by daily temperature 

and humidity), and therefore change on a daily basis.  On days when environmental stress 

is low (cool humid days), facilitation may be weak and competition for soil water may 

dominate plant interactions.  Conversely, on days when environmental stress is severe 

(hot/dry days), facilitation may be strong relative to competition and the positive effects 

of facilitation may dominate.  The sum total of competitive and facilitative interactions 

may determine individual plant performance. 

In 2012, we planted oaks into an experimental species richness gradient in central 

MN.  We measured leaf water potential of oaks across a range of daily conditions at this 

site.  We explored the relative importance of co-occurring competition and facilitation for 
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plant water status, and how the balance of these two processes may change dynamically 

over the course of a growing season. We tested the hypothesis that both processes are 

operating, but that they tradeoff over short time periods depending on the relative severity 

of daily conditions.  Specifically:   

(1) On cool days, competition for soil water is the dominant process driving plant 

water status 

(2) On hot days, facilitation due to amelioration of the microclimate is the 

dominant process driving plant water status  

Methods 

We conducted this study in 2011-2012 in the ambient treatment plots in the 

BioCON plant diversity experiment at the Cedar Creek Ecosystem Science Reserve in 

central Minnesota, USA.  Cedar Creek has a continental climate, with cold winters and 

warm summers and an average of 660 mm of rainfall per year (Reich et al. 2001b).  Daily 

24-hour average temperatures during the growing season range from ~15°C - 30°C.  

Soils at this site are nutrient-poor glacial outwash sand plain with low water-holding 

capacity. The BioCON plots were established in 1997 by tilling and fumigating existing 

vegetation in six experimental blocks in an old-field grassland at the site.  Plots were then 

seeded with randomly assigned herbaceous species (all native or naturalized) from a pool 

of 16 total species from four functional groups - four C3 grasses, four C4 grasses, four 

legumes, and four non-nitrogen fixing herbaceous plants (Achillea millefolium, 

Agropyron repens, Amorpha canescens, Andropogon gerardi, Anemone cylindrica, 

Asclepias tuberosa, Bouteloua gracilis, Bromus inermis, Koeleria cristata, Lespedeza 

capitata, Lupinus perennis, Petalostemum villosum, Poa pratensis, Schizachyrium 
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scoparium, Solidago rigida, and Sorghastrum nutans,). There are 32 plots with 1 species 

(with every monoculture represented twice), 32 plots with 4 species, 9 plots with 9 

species, and 12 plots with 16 species.  Since 1997, species mixes have been maintained 

by hand weeding to remove any species that migrated into the plot that were not planted 

in the original seed mix.   

We used species richness as a proxy for both competition and facilitation intensity 

(Wright et al. in process).  Higher diversity plant communities have reduced resource 

availability and increased intensity of competition for colonizing plants (Tilman et al. 

1996, Fargione and Tilman 2005).  Increased biomass production in higher diversity 

communities (Naeem et al. 1995), may also be associated with increased protection from 

environmental conditions.  Consequently, diversity may drive increased facilitation 

between plants due to amelioration of environmental extremes (Wright et al. 2012).  In 

June and August 2012, we measured aboveground biomass production in all 85 ploys.  

Aboveground biomass was clipped in 10 x 100 cm strips at the soil surface at least 15 cm. 

from plot boundaries (to avoid edge effects).  

We planted six bur oak (Quercus macrocarpa) acorns in all 85 plots described 

above in May 2010 and again in May 2012.  Due to lack of emergence in the May 2012 

crop, and consequently low sample size, age was not used as an independently 

manipulated variable in this study.  Instead, seedlings used for leaf water potential 

measurements were selected randomly from the pooled group of all seedlings and 

seedling age was included in the analysis as a random factor.  All seedlings were 

censused at the beginning of the growing season (May 28, 2012) and at the end of the 

growing season (Aug 27, 2012) to assess 2012 relative growth rates (RGR).  We 
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measured leaf number, seedling height, and seedling diameter of each seedling at each 

census date.  We also censused seedling emergence at the beginning of the first growing 

season (July 1, 2010) and at the beginning of the 2012 growing season (May 28, 2012).  

We recorded survival of all seedlings that had emerged by August 27, 2012. 

We simultaneously planted 37 oak seedlings in a nearby harvest garden and 

harvested them periodically between July 2010 and August 2011, to derive allometric 

equations for biomass.  We used these measurements to derive equations for both 

aboveground biomass (AGB = 0.76 x diameter - 0.02 x height + 0.11 x leaves, r2= 0.80) 

and belowground biomass (BGB = 6.5 x diameter - 0.12 x height + 0.14 x leaves, r2= 

0.35), though due to low r2 values for BGB, we use AGB values to calculate RGR.  We 

calculated aboveground RGR by taking ln(final AGB) – ln(initial AGB)/122 days.  

We measured pre-dawn and mid-day leaf water potential in a stratified subset of 27-37 

oak seedlings (depending on seedling availability as outlined below) across the diversity 

gradient, on six different sampling days (June 21, June 22, July 11, August 1, and August 

14, and August 24).  We chose sampling days based on forecast data of maximum daily 

temperatures at the site and an attempt to sample evenly across the range of previously 

observed temperatures (20-30°C).  Oak leaves began to change color the week of Sept 10 

so no further leaf water potential measurements were taken after August 24, 2012.  We 

measured leaf water potential using a Scholander pressure chamber (Soil Moisture 

Equipment Corp., Santa Barbara, CA, USA).  Pre-dawn water potential (ψpd) was taken 2 

hours before dawn each day (3:30-5:30), and mid-day leaf water potential (ψmd) was 

taken at solar noon (12:00-2pm).  All measurements were taken by wrapping leaves in 

Ziploc bags, excising leaves using a razor blade, and immediately transferring to the 



62 

 

pressure chamber. Plants were chosen based on having at least 3 oaks per herbaceous 

species richness level on each day, each oak having at least 3 leaves fully exposed at the 

time of sampling, and not sampling from the same plant two sampling dates in a row.  

When more than one plot, or more than one plant within plot, met the above requirements, 

the plant was chosen randomly from the subset of available plants.  Mid-day 

measurements were taken on the same plants as pre-dawn measurements to assess daily 

changes in plant water stress at the individual plant level.  We used a comparison 

between predawn (ψpd) and midday (ψmd) leaf water potential (ψmd- ψpd) to detect daily 

change in plant water status at the individual plant level.   

From May- October 2011-2012 we measured plot-level air temperature and 

relative humidity (RH), and calculated vapor pressure deficit (VPD), continuously using 

Maxim iButton dataloggers logging every 5 minutes (Maxim Integrated, San Jose CA).  

Dataloggers were installed on wooden tent stakes at approximately 20 cm above the 

ground surface and covered with plastic Dixie cups.  The covers were painted white to 

reflect direct sunlight and guard from direct saturation by rainwater.  These dataloggers 

were installed in a stratified subset of 55 out of the 85 plots (maintaining at least 3 

loggers per diversity level but assigning plot location within diversity treatment 

randomly).  We collected site-level temperature, humidity, and vapor pressure deficit 

measurements from the Cedar Creek Ecosystem Science Reserve weather station.  Finally, 

at 11am on the day of leaf water potential measurements (immediately prior to taking 

mid-day measurements) we measured shallow soil moisture within these plots 

approximately 0-6 cm below the soil surface using an HH2 soil moisture meter with theta 

probe (Delta-T Devices Ltd, Cambridge UK).  
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Analysis 

 We analyzed the effects of herbaceous diversity on microclimate (air temperature, 

relative humidity, and vapor pressure deficit) and whether the magnitude of these effects 

changed depending on daily environmental conditions.  We calculated plot-level averages 

for all microclimate factors for each day of the study (“plot-level”).  We also calculated 

daily averages for air temperature, relative humidity, and vapor pressure deficit data 

collected from the Cedar Creek weather station (“site-level”).  We conducted three 

separate mixed effects ANCOVA’s to assess the effects of weather (temperature, relative 

humidity, and vapor pressure deficit) on microclimate.  These analyses included random 

effects for spatial variation associated with the BioCON block design, as well as plot 

variation associated with taking measurements on the same plots over time.  These three 

ANCOVA’s assessed: (1) fixed effects of daily average temperature at the site (taken 

from Cedar Creek weather station data), species richness, and their first order interaction 

effects on plot-level daily temperatures, (2) the same as above for site-level relative 

humidity effects on plot-level RH, and (3) the same as above for site-level VPD effects 

on plot-level VPD.  We then included herbaceous aboveground biomass in these analyses 

to understand if variation in microclimate was mainly due to increased biomass 

production in higher diversity plots. 

To assess the effects of daily and seasonal changes in weather, and species 

richness, on soil moisture, we conducted a mixed-effects ANCOVA as above, but with 

site-level temperature and day of year as fixed effects (to account for a correlation 

between soil moisture and day of year).  We included ring and plot as random effects. We 

measured soil moisture in a 30-plot subset of the total plots used for this study, based on 
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where leaf water potential measurements were taken on a given day. Consequently, 

statistical power was too low among species diversity levels on any single day to include 

random effects for ring and plot in the BioCON design.  The models that included 

random effects failed to converge. 

We analyzed the effects of species richness on aboveground oak seedling RGR 

and proportion survival (arcsine transformed) using a mixed-effects ANCOVA with plot 

nested in block, and seedling size included as random effects.  Our sampling design was 

based specifically on forecast temperature conditions.  We selected days based on equal 

representation across the range of 20-30°C.  While relative humidity and vapor pressure 

deficit are both correlated with temperature, we focused on the effects of air temperature, 

as air temperature was the metric used to select days in our sampling design (our “fixed 

effect”).  We conducted a mixed-effects ANCOVA (with block [plot], and seedling size 

included as random effects) to assess the daily effects of species richness, average daily 

temperature, and their interaction, on all measures of oak leaf water potential (ψpd, ψmd, 

ψmd- ψpd,).  After testing for the main effects of our models using ANCOVA, we 

performed a second set of ANCOVA’s to assess the explanatory role of herbaceous 

aboveground biomass.  Increased diversity plots have increased aboveground biomass.  

However, depending on species identity, some monocultures also have high biomass 

production (though none as high as 16-species mixtures).  We assessed the effects of 

aboveground biomass to better understand the mechanisms for competition and 

facilitation in this system.  

We conducted separate analyses to explore the mechanisms for competition and 

facilitation on three measures of oak leaf water status (ψpd, ψmd, ψmd- ψpd,).  We assessed 
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the effects of soil water, and plot-level vapor pressure deficit on predawn, midday, and 

daily differences in oak water potential using a mixed-effects ANCOVA.  We treated 

daily soil moisture and plot VPD as continuous fixed effects, and spatial variation 

associated with experimental block and seedling identity as random effects (we never 

measured more than one seedling within a plot on a single day, so plot was not included 

as a random effect). 

Results 

Environmental Conditions 

Annual temperatures in 2012 were the warmest on record in the United States 

(NCDC 2013).  Mean air temperature at Cedar Creek was 8.1+/- 1.3°C (mean +/- 95% 

confidence intervals), which was statistically consistent with the 24-year average (6.9 +/- 

1.2°C, Cedar Creek Ecosystem Science Reserve hourly climate data). Although July 

2012 was the warmest month on record in the 24-year dataset at the Cedar Creek weather 

station (23.9°C, Figure 3.1).  Annual precipitation was 495 mm, which was below the 

long-term average of 660 mm yr -1 (Reich et al. 2001b), Figure 3.1). 

 Over the course of our six leaf water potential measurements, daily temperature 

was the highest on July 11 and August 24 and lowest on June 21 and August 14.  Relative 

humidity was highest in early June and lowest in early July (Figure 3.2).  There was no 

correlation between sampling date and temperature (Pearson product moment correlation 

coefficient, r=0.26, N=194) and no correlation between sampling date and relative 

humidity (r=0.08, N=194) – in other words, we didn’t sample all cool/humid days in the 

spring and all hot/dry days in the late summer (Figure 3.2). 

Microclimate and soil moisture 
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Higher diversity grassland plots were cooler, more humid, and had lower vapor 

pressure deficit than low diversity plots (Table 3.1a).  The magnitude of the microclimate 

amelioration effect was stronger as daily weather conditions become hotter and drier 

(significant interaction term, Table 3.1a, Figure 3.3).  There was a strong relationship 

between daily temperature conditions, species richness, and plot-level temperature 

(r2=0.98, Figure 3.4).  Conversely, both relative humidity and vapor pressure deficit 

appear to be controlled by additional factors (Figure 3.4).  The microclimate amelioration 

effect was partially due to differences in herbaceous aboveground biomass (Table 3.1b), 

though even after accounting for differences in herbaceous aboveground biomass, the 

diversity – microclimate effect was significant (Table 3.1b).   Soil moisture was lower in 

higher diversity plots, lower over the course of the season, and lowest in high diversity 

plots at the end of the season (Table 3.2, Figure 3.5). 

Water stress, growth, and survival 

 Predawn leaf water potential values became more negative with increasing daily 

temperatures (Table 3.3a), indicating that the plants became more water stressed as 

temperature increased.  Herbaceous species richness had an overall negative competitive 

effect on predawn leaf water potential (Table 3.3a) and an increasingly negative effect as 

daily temperatures increased (Figure 3.7).  Overall predawn leaf water potential values 

were driven mostly by access to soil water, which experiences a seasonal dry down, 

where predawn leaf water potential was lowest when soil moisture was low (Table 3.4, 

Figure 3.9).  

Midday leaf water potential values were more negative on hot days, but they did 

not vary with species richness (Table 3.3a, Figure 3.7).  Species richness did not have a 
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significant effect on midday leaf water potential values on any of the days we measured. 

Midday leaf water potential was more negative when soil moisture was low and when 

plot VPD was high (Table 3.4, Figure 3.9). 

The difference between predawn leaf water potential (ψpd) and midday leaf water 

potential (ψmd) should reflect the change in water status of each oak experienced in a 

given day.  By subtracting the predawn leaf water potential from the leaf water potential 

that is experienced during the time with the highest evaporative demand, we can partially 

remove the baseline water status that may be a legacy from the day before (or soil 

moisture differences), and focus on daily responses (although plant-level changes to 

stomatal conductance will still be affected by predawn values).  There were no main 

effects of species richness or daily average temperatures on the daily change in leaf water 

potential (ψmd- ψpd).  There was, however, a significant interaction between species 

richness and daily environmental conditions. Plants growing in high diversity plots on 

cool days experienced net competitive effects (more negative values of ψmd- ψpd in 

higher diversity plots).  In contrast, plants growing in the same plots, on hot days, 

experienced net facilitation from neighbors (less negative values of ψmd- ψpd in higher 

diversity plots, Table 3.3a, Figure 3.8).  The daily change in plant water status was driven 

by plot-level differences in vapor pressure deficit (Table 3.6, Figure 3.9).   

All oaks grew less in higher diversity plots (N=430, F1,60=16.46, P=0.0001), 

suggesting that, integrated across the entire growing season, competition was a stronger 

force on plant growth than facilitation.  To isolate the ecological effects of diversity on 

oak growth (and exclude the effects of destructive leaf harvest) we excluded oaks that 

were destructively sampled for leaf water potential and found that the remaining oaks 
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grew less in higher diversity plots (N=283, F1,58=10.35, P=0.002, Figure 3.6). Growth 

rates of oaks that had leaves destructively sampled grew significantly less than oaks that 

weren’t sampled (presumably due to artificial reduction in leaf number, F1,409=54.48, 

P<0.001).  However, there was no difference in the effect of species richness on oak RGR 

for harvested and unharvested oaks (interaction term, F1,405=0.12, P=0.73) indicating that 

harvest did not have a unique effect on oak RGR depending on diversity level. Oak 

emergence was higher in higher diversity plots (F1,82=15.75, P=0.0002), but survival of 

emerged seedlings was equal across the diversity gradient (F1,82=2.02, P=0.16). 

Discussion 

 Our data demonstrate that microclimate was ameliorated in higher diversity 

grassland plots, and this microclimate effect became more important for seedling water 

status when daily conditions were more severe, and plants were likely to be more 

physiologically stressed. This amelioration translated to a dynamic balance between 

competitive effects of neighbors on mild days, and facilitative effects of neighbors on 

stressful days.  Daily changes in plant water status (ψmd- ψpd) depended heavily on 

species richness as well as daily average temperatures.  There were a threshold set of 

environmental conditions associated with soil moisture availability, weather conditions, 

and the microclimate amelioration found in higher diversity plots that determined plant 

water status on any given day.  The sum total of these interactions resulted in a dynamic 

balance between competition and facilitation (Figure 3.8).  When environmental 

conditions were mild, plot-level VPD was low, and equal across diversity treatments.  

Consequently, midday water loss was also low, and changes in plant water status were 

mostly a reflection of competition for soil water.  Conversely, on the hottest days, VPD 
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was high and was strongly ameliorated in higher diversity plots.  Consequently, while 

competition for soil water was also occurring, it may not have been as important as 

reduced water loss at the leaf surface (Figure 3.9). 

Microclimate amelioration and diversity 

The relationship between diversity and microclimate amelioration has only been 

explored briefly in the past (Wright et al. 2012) and is still poorly understood.  We found 

that lower diversity plant communities were up to 6°C hotter, and 20% drier (in terms of 

relative humidity), resulting in nearly 3-times higher plot-level VPD on particularly hot 

and dry days.  Conversely, on cool rainy days, temperature and humidity varied little 

across the diversity gradient (Figure 3.3).  The stress gradient hypothesis predicts that 

facilitation is more important for plants in environmentally severe conditions (Bertness 

and Callaway 1994).  When environmental severity is strong, plants experience increased 

physiological stress, and this translates to stronger benefits of growing near neighbors.  

The stress gradient hypothesis also predicts that when environmental conditions are mild, 

there may still be microclimate amelioration, but it may not translate to strong 

facilitation.  We show that as the stress gradient hypothesis predicts, environmental 

amelioration may be most important for seedlings on hot and dry days.  However, we 

also show that the magnitude of the actual microclimate amelioration that is occurring is 

greater (Figure 3.3). 

The amelioration of the microclimate that we observed was due partially to 

increased biomass production in higher diversity plots.  However, biomass did not fully 

explain the effect of plant diversity on habitat amelioration.  One explanation for this 

finding is that higher diversity plots may be more likely to include particularly productive 
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drought-resistant species that are capable of high photosynthetic rates, even on 

particularly hot/dry days (Tilman & Downing 1994).  Increased photosynthesis, water 

loss, and evaporative cooling at the herbaceous leaf surface may help explain the cooling 

and humidifying effects of herbaceous diversity, apart from biomass effects on their own. 

A second potential explanation is that complementarity in leaf shape and plant 

architecture may lead to increased light interception in higher diversity plots that cannot 

be explained by biomass alone (Loreau and Hector 2001).  Both explanations are non-

mutually exclusive and may help explain the relationship between diversity and 

microclimate amelioration.  It seems that plants are modifying their local microclimate 

via shading, interception of direct radiation, and evaporative cooling, and this is 

happening more in higher diversity plots.  However, environmental amelioration is a 

physical process, and may only result in facilitative effects for neighboring individuals 

when neighboring individuals would otherwise by physiologically stressed and therefore 

benefit from a cooler more humid environment. 

The competition – facilitation balance 

Plant water status in most ecosystems is the result of a dynamic balance between 

competition for soil water (inputs) and facilitation in a moderated microclimate (outputs).  

The balance between the relative importance of each factor may be driven by daily 

changes in environmental conditions.  Here we show that the balance between 

competition and facilitation can be teased out using three components of plant water 

status, and measuring these components across a range of daily conditions.  Predawn leaf 

water potential reflected competition for soil water, midday leaf water potential reflected 

the counteracting effects of competition for soil water and facilitation in an ameliorated 
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microclimate, and the daily change in plant water potential reflected the facilitative 

effects of reduced water loss at the leaf surface. 

Predawn leaf water potential is often considered a close proxy for predawn soil 

water potential (Cavender-Bares et al. 2007).  We found that soil moisture was lower in 

higher diversity plots, apparently due to competition for soil water.  Seasonally, soil 

moisture appeared to be most strongly driven by a temporal dry down that occurred 

between early spring and fall.  This underlying decrease in soil moisture over the course 

of the season drove decreasing predawn leaf water potential values.  This relationship 

reflected the strong competitive components of living close to your neighbors in high 

diversity plots. 

In general, midday leaf water potential is controlled by baseline values from the 

night before (predawn measurements), water loss at the leaf surface, access to soil water 

reserves, and plant-level physiological adjustments.  We saw no net effect of diversity on 

midday leaf water potential, or interactions with daily conditions. The effects of 

competition for soil water may have counteracted the effects of amelioration of water loss 

at the leaf surface over the days we studied.  In our experiment, plot-level VPD was 

lower in higher diversity plots (microclimate amelioration) even though soil moisture was 

also lower (resource competition).  This decrease in plot-level VPD was related to less 

negative leaf water potential at midday (Figure 3.9).  Furthermore, the decrease in soil 

moisture was also related to a decrease in midday leaf water potential (Figure 3.9).  

While both competitive mechanisms and facilitative mechanisms seem to drive midday 

leaf water potential values, the counteracting effects of competition and facilitation with 
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increasing diversity may have driven the net neutral effects of diversity observed over the 

course of our study. 

We treated the difference between predawn leaf water potential (ψpd) and midday 

leaf water potential (ψmd) as a reflection of the change in plant water status attributable 

to a specific day.  We therefore predicted that daily changes in environmental conditions, 

and a shifting daily balance between competition and facilitation, would be reflected 

most strongly in daily changes in leaf water potential (ψmd - ψpd).  Our data supported 

our hypotheses that daily changes in oak water status seemed to reflect competition on 

the coolest days – daily water potential values were more negative in higher diversity 

plots.  Conversely, we found that daily changes in oak water status reflected facilitation 

on the hottest days – daily water potential values were less negative in higher diversity 

plots.   

Less negative midday leaf water potential values in higher diversity plots on the 

hottest days may also be the result of reduced stomatal conductance in response to less 

soil water, which results from intense competition (Cavender-Bares and Bazzaz 2000).  

Oaks growing in higher diversity plots have less access to soil water.  They may respond 

by closing their stomates earlier and consequently having less negative midday leaf water 

potential values.  Stomatal conductance varies greatly among species (Davies and 

Kozlowski 1977, Johnson et al. 2009), and ontogenetic stages (Cavender-Bares and 

Bazzaz 2000), but can be comparatively consistent within a single species.  Oaks are 

desiccation tolerant (Abrams 1990, Fotelli et al. 2000) compared to co-occurring species 

in our experiment, and past work has shown that threshold values for midday leaf water 

potentials that result in reduced stomatal conductance, are often lower than -2 MPa 
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(Abrams 1990, Johnson et al. 2009). Some oaks maintain over 50% of stomatal 

conductance at values as low as -3 MPa (Johnson et al. 2009).  Our data indicate that soil 

moisture did not relate to midday leaf water potential as strongly as vapor pressure 

deficit, and daily differences (ψmd- ψpd) were not directly affected by soil moisture 

availability at all, but strongly controlled by plot-level VPD.  If the pattern were driven 

by less access to soil water, and the closing of stomates in response to this soil water 

effect, we might expect daily changes in plant water status to be closely related to soil 

moisture.  However, both stomatal conductance and VPD are likely important, and 

reduced stomatal conductance in higher diversity plots on the hottest days cannot be ruled 

out as a mechanism that helps explain midday water status. 

Scaling up to seasonal oak growth and survival 

We found that overall survival of oaks was equal across diversity treatments – 

stress related to plant water status may never be so high as to increase mortality rates in 

this species.  However, water relations may be affecting growth rates.  We found that oak 

growth rates were limited in higher diversity plots, but this may simply have been due to 

the balance between competition and facilitation, and net competitive effects experienced 

by oaks over the course of a growing season at this site. 

 Specifically, in terms of oak water status, competition between oak seedlings and 

the herbaceous plant community was strong below daily temperatures of ~24°C (Figure 

3.8).  Above 24°C; however, competition was outweighed by the facilitative effects of 

microclimate amelioration. During the 2012 growing season (May 15- Sept 31) there 

were only 15 days with average daily temperatures greater than 24°C.  Based on our 

current dataset, this implies that oaks may experience predominant facilitative effects of 
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diversity for 11% of the growing season, whereas competition will dominate for the 

remaining 89% of the time.  This estimate does not account for competition for other 

limiting resources, such as nitrogen, which may further tip the competition/facilitation 

balance towards net competition.  However, the potential for facilitation to drive 

increased photosynthetic rates in high diversity plots on the hottest days, means that an 

increased number of days with average daily temperatures greater than 24°C could 

potentially shift this balance in the future.  A shift in this balance could mean increasing 

oak growth rates in higher diversity communities due to facilitation. 

The future 

 As local and seasonal environmental conditions change in the future (IPCC 2007), 

it is increasingly important to tease out the relative roles of competition and facilitation 

and how we expect both processes to operate in an altered environmental (He et al. 

2013).  Intensity of competition is driven by supply and demand of limiting resources, 

whereas facilitation may be driven by the occurrence and persistence of environmental 

severity, which will likely increase with increasing drought and temperature (He et al. 

2013). Furthermore, because both competition and facilitation are likely operating in 

nearly all plant communities, tests of competition may be missing underlying facilitation 

(11% of days in our experiment) due to stronger overall competitive effects (89% of 

days).  Conversely, in more severe environments, the role of competition may be 

overshadowed by facilitation, possibly leading to the flawed conclusion that competition 

is not important in severe environments (Bruno et al. 2003).  By determining the 

contribution of both competition and facilitation and how these processes change over 
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gradients of plant diversity and plant ontogeny, we can begin to predict more accurate 

plant community responses to global environmental changes. 
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Table 3.1a.  Separate ANOVA’s for the effects of daily temperature on microclimate 
temperature, daily RH on microclimate RH, and daily VPD on microclimate VPD. 

 Plot Temp Plot RH Plot VPD 
 
 
Fixed Effect d.f.† R2 F P F P F P 

Species Richness 1, 74 0.98 46.76 <0.0001*   
Daily Temp 1, 13451  577337 <0.0001*       
Sp Rich x Daily Temp 1, 13461  795.7 <0.0001*   

Species Richness 1, 74 0.92   75.72 <0.0001*  
Daily RH 1, 13029    120658 <0.0001*  
Sp Rich x Daily RH 1, 13031    468.9 <0.0001*  

Species Richness 1, 74 0.88     46.76 <0.0001* 
Daily VPD 1, 13045      78302 <0.0001* 
Sp Rich x Daily VPD 1, 13051      1508 <0.0001* 

 
† This analysis took into account spatial variation associated with the blocked design 
(“Block” in the BioCON framework).  In the linear mixed effects model framework, 
denominator degrees of freedom “float” based on the degree of variation attributed to 
random effects. 
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Table 3.1b.  Separate ANCOVA’s for the effects of daily temperatures on microclimate 
temperature, daily RH on microclimate RH, and daily VPD on microclimate VPD after 
accounting for aboveground biomass production.  

 Plot Temp Plot RH Plot VPD 
 
 
Fixed Effect d.f.† R2 F P F P F P 

Species Richness 1, 75 0.98 43.9 <0.0001*   
Daily Temp 1, 13451  577702 <0.0001*       
Sp Rich x Daily Temp 1, 13461  792.3 <0.0001*   
Herbaceous AGB 1, 12836  13.3   0.0003*   

Species Richness 1, 75 0.92   19.01 <0.0001*  
Daily RH 1, 13028    120633 <0.0001*  
Sp Rich x Daily RH 1, 13030    468.1 <0.0001*  
Herbaceous AGB 1, 12661    0.09   0.77 

Species Richness 1, 74 0.88     48.6    0.004*   
Daily VPD 1, 13044      78356  <0.0001* 
Sp Rich x Daily VPD 1, 13050      1517  <0.0001* 
Herbaceous AGB 1, 12367      11.6    0.0007* 

 
 
† This analysis took into account spatial variation associated with the blocked design 
(“Block” in the BioCON framework).  In the linear mixed effects model framework, 
denominator degrees of freedom “float” based on the degree of variation attributed to 
random effects. 
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Table 3.2.  The effects of daily temperatures, day of year, and interactions with species 
richness, on plot soil moisture. 
 
 

Fixed effect d.f.† F P  

 
Date 1, 194  136 <0.0001*  
Species Richness 1, 194  9.21   0.003*  
Daily Temp 1, 194  33.9 <0.0001*  
Species Richness x Date 1, 194  3.14   0.08  
Daily Temp x Date 1, 194  51.5 <0.0001*  
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Table 3.3a.  The relationship between daily average temperature, and species richness on 
oak leaf water potential.  We conducted separate analyses for predawn, midday and daily 
changes (diff). 

 Predawn  (r2=0.18) Midday (r2=0.09) Diff (r2=0.03)  
 
Fixed Effect d.f.† F P d.f.† F P d.f.† F P 

Species Richness 1, 29.5 10.01   0.004* 1, 33.7 0.008 0.93 1, 29.4 1.94 0.17  
Daily Temp 1, 185.5 3.96 <0.05* 1, 182.6 5.19 0.02* 1, 187.7 2.68 0.11 
Sp Rich x Daily Temp 1,180.1 11.48 <0.001* 1, 184.4 0.92 0.34 1, 181.1 5.58 0.02* 

 
Table 3.3b.  Effects of daily temperature differences after accounting for aboveground 
biomass production. 

 Predawn (r2=0.21) Midday (r2=0.1) Diff (r2=0.04) 

 
Fixed Effect d.f.† F P d.f.† F P d.f.† F P 

Species Richness 1, 22 8.62   0.008* 1, 27 0.08 0.77 1, 20 2.64 0.12  
Daily Temp 1, 189 3.91 <0.05* 1, 182 4.98 0.03* 1, 183 2.31 0.13 
Sp Rich x Daily Temp 1, 184 12.1   0.0006* 1, 180 0.82 0.37 1, 180 5.62 0.02* 
Herbaceous AGB 1, 18 0.99   0.33 1, 20 2.98 0.10 1, 46 3.24 0.09 

   
† These analyses took into account spatial variation associated with the blocked design 
(“Block” in the BioCON framework) and measurements taken on individuals in the same 
plots over time.  In the linear mixed effects model framework, denominator degrees of 
freedom “float” based on the degree of variation attributed to block differences, this is 
why denominator degrees of freedom are different depending on the metric described in 
this table. 
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Table 3.4. The relationship between soil moisture and vapor pressure deficit and 
predawn, midday, and daily change in leaf water potential 

 Predawn  Midday Diff 

 
Fixed Effect d.f. F P d.f. F P d.f. F P 

Soil Moisture 1, 170 46.9 <0.0001* 1, 176 4.96 0.03* 1, 172 0.02 0.89  
Plot-level VPD 1, 108 1.32   0.25 1, 123 7.76 0.006* 1, 110 8.92 0.004* 
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Figure 3.1. Mean monthly temperature and precipitation data for Cedar Creek Ecosystem 
Science Reserve from May 2012 – September 2012.  Dotted line shows precipitation and 
solid line show temperature. 
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Figure 3.2. Relative humidity, daily average temperatures, calculated vapor pressure 
deficit and soil moisture conditions in plots where leaf water potential was measured 
during 2012 growing season. 
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Figure 3.3. Daily average temperatures at Cedar Creek determine the magnitude of the 
effect of diversity on microclimate.  Here we show the effects of temperature (RH and 
VPD are in the supplemental materials).  (a) On cool days, the effect of diversity on air 
temperature is neutral, (b) on warmer days, higher diversity plots are slightly cooler than 
lower diversity plots, and (c) on hot days diversity has a strongly cooling effect on air 
temperature.  When all days for the two years of measurement were analyzed, the effect 
of average daily temperature had a significant effect on how strongly diversity 
ameliorates the micro-climate (d). 
 

 
 

 

(a) (b) (c) 

(d) 
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Figure 3.4. The predictive relationship between weather station data and species richness 
on plot-level (a) temperature, (b) relative humidity, and (c) vapor pressure deficit.  These 
figures demonstrate the strength of the predictive relationship (actual vs. predicted). 
 

(a) (b) (c) 
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Figure 3.5.  Soil moisture is lower in high diversity plots and increasingly limiting over 
the course of the season. 
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Figure 3.6. Oak growth was lower in higher diversity plots over the course of the 2012 
growing season (May 28, 2012 – Aug 28, 2012). 
 

 



87 

 

  
Figure 3.7. Predawn, midday, and daily difference in leaf water potential with increasing 
daily average temperatures.  Lightest colored bars are 1-species plots, medium grey bars 
are 4-species plots, and for ease of visualization darkest grey bars are > 9 species (binned 
9- and 16-species).  The date is also displayed at the bottom for reference. 

 
8/14/13 6/21/13 6/22/13 8/24/13 8/1/13 7/11/13 
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Figure 3.8. The effect of species richness on the daily difference in leaf water potential 
(ψmd- ψpd) depends on daily changes in average temperature. 
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Figure 3.9.  The relationship between soil water, vapor pressure deficit, and leaf water 
potential.  Predawn leaf water potential is most strongly controlled by soil moisture, but 
daily change in leaf water potential is most strongly controlled by vapor pressure deficit.  
Lines indicate a significant relationship. 
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CHAPTER 4 
 
 

An integrated Lotka-Volterra model for competition and facilitation: the importance of 

alpha 

 

To be submitted with co-authors S. A. Schnitzer and G. Pinter 

 

Abstract 

Both competition and facilitation are important and co-occurring processes in plant 

communities.  Competition intensity may increase with increasing productivity, whereas 

facilitation likely increases with increasing environmental severity.  Ecologists have 

struggled to tease out the relative importance of competition and facilitation using 

experimental manipulations.  Recent theoretical work predicts that there is underlying 

competition and facilitation in all plant communities, but whichever process is stronger may 

obscure the underlying contribution of the other.  Here we modify a Lotka-Volterra model by 

manipulating the interaction term between two species (alpha) to represent varying levels of 

competition and facilitation.  We use this model to show that well-established plant 

communities can facilitate colonizer growth in severe environments, but limit growth in mild 

environments.  Further, we demonstrate that decreasing facilitation and increasing 

competition as plants grow, can explain long-term competitive effects observed in the vast 

majority of plant interaction experiments.   
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Introduction 

Competition is one of the most well studied mechanisms in plant community ecology 

(Hardin 1960, Connell 1961, Tilman 1982, Goldberg and Barton 1992, Dybzinski et al. 

2011).  Plants compete for limiting resources and competition can be used to explain the 

maintenance of species diversity (Chesson 2000), competitive exclusion (Connell 1961), 

and biological invasions (Kennedy et al. 2002).  One of the first mathematical 

representations of population and community level species interactions was based on 

competition for limiting resources (Lotka 1925), and this work has been tested extensively 

since its introduction.  While species compete intensely for limiting resources, species 

coexistence can arise when unique species compete more intensely with themselves than with 

other species (Levine and Hille Ris Lambers 2009).   

Competition intensity may vary among ecosystems and communities, but 

understanding the ecological drivers of competition has proven difficult. Competition may 

increase as a function of productivity (Grime 1977) and as a function of diversity (Fargione 

and Tilman 2005). Further, the relationship between diversity and productivity is complex, 

and may be bidirectional: productivity gradients may drive changes in species diversity 

(Adler et al. 2011) and increasing plant diversity may lead to increasing primary productivity 

(Tilman et al. 1996).  While it is difficult to identify causal relationships between productivity 

and diversity in natural communities (Wardle et al. 2000, Jonsson and Wardle 2010, Adler 

et al. 2011), recent experimental manipulations have provided insight.  Experimental work 

has consistently shown that when diversity is manipulated, primary productivity of the 

community increases, and this leads to increased competition intensity for plants invading 

higher diversity communities (Reich et al. 2001c, Tilman et al. 2001, Van Ruijven and 
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Berendse 2003, Roscher et al. 2005, Fargione and Tilman 2005, Isbell et al. 2011, Zhang 

et al. 2012).  Here, we rely on theory, and data from several prominent ecological models, 

to develop a theoretical framework that assumes a causal relationship between 

productivity and competition intensity (Grime 1977, Grace 1991, Bruno et al. 2003, but 

see Tilman 1982) and between diversity and productivity (Tilman et al. 2001, Roscher et 

al. 2005, Isbell et al. 2011). 

Positive interactions in plant communities (facilitation) may also help explain plant 

performance and community dynamics.  Facilitation may occur in many systems, but be 

particularly important in severe environments, where plant physiological stress is strong 

(Bertness and Callaway 1994).  In severe environments, protection from environmental 

stress, provided by the cool shaded microclimate of neighbors, outweighs the negative effects 

of competition for resources (Cuesta et al. 2010, Landero and Valiente-Banuet 2010, Jia et 

al. 2010, Armas et al. 2011).  The stress gradient hypothesis has been tested conceptually 

using experimental plant removals and seed/seedling additions near neighbors across a range 

of environmental severity gradients (Callaway 1992, Bertness and Callaway 1994, 

Greenlee and Callaway 1996, Montgomery et al. 2010).  However, the relationship 

between environmental severity, facilitation, plant performance, and community dynamics 

has been explored only briefly using mathematical models (Bruno et al. 2003, Bulleri et al. 

2008, Chu et al. 2008). 

The relative strengths of facilitation and competition may also vary as plants age and 

grow larger (Brooker et al. 2008).  Facilitation may be a critical factor for the colonization of 

small plants in many environments, even those not considered to be particularly severe 

(Tielborger and Kadmon 2000, Miriti 2006, Cuesta et al. 2010, Farrer and Goldberg 2010, 
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Bustamente-Sanchez et al. 2010).  When colonizers are small, they are more vulnerable to 

water stress due to shallower root systems and relatively less carbon available in storage 

organs (Cavender-Bares and Bazzaz 2000, Niinemets 2010).  Germination rates and early 

survival rates are higher in communities with greater vegetation cover when environmental 

conditions are severe (Cuesta et al. 2010, Farrer and Goldberg 2010, Bustamente-Sanchez 

et al. 2010).  As colonizers grow deeper roots, they become less vulnerable to fluctuations in 

environmental conditions and consequently the relative importance of facilitative interactions 

decreases with plant size (Schiffers and Tielborger 2006).  Conversely, larger plants 

consume greater quantities of resources per individual, and thus the relative role of 

competition likely increases as plants grow larger.  Although demographic shifts are common 

in biology, and important for understanding species coexistence (Moll and Brown 2008), the 

shifting importance of competition and facilitation with plant ontogeny has not been explored 

in a modeling context.  

Both facilitation and competition occur in nearly all ecosystems; however, because 

competition is slightly stronger in all but the harshest ecosystems, facilitation may often be 

overlooked (Bruno et al. 2003).  Ecologists have largely ignored and otherwise struggled to 

tease out the relative contribution of each of these processes in experimental manipulations.  

Theoretical models that incorporate both competition and facilitation may provide insight 

into how these two processes fluctuate in natural ecosystems and contribute to individual 

plant performance. 

Here we examine theoretical relationships between competition, productivity, 

facilitation, and environmental severity using a modification of a Lotka – Volterra (LV) 

model (Lotka 1925, Volterra 1930).  Traditional implementation of LV models has been 
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mostly restricted to understanding the importance of intra- vs. inter-specific competition over 

time.  Intraspecific competition is represented using simple logistic growth models, where 

population growth rates (r) slow as they reach carrying capacity (K) due to intraspecific 

competition for a finite pool of resources (defined by K).  Interspecific competition is 

represented by using a competition coefficient (𝛼) to represent resource competition.  A 

second species (N2) has a unique growth rate (r2), population size (N2), and carrying capacity 

(K2) and can negatively affect population growth of the first species (N1) through positive 

values of 𝛼: 

𝑑𝑁!
𝑑𝑡 = 𝑟!𝑁! 𝑡 1−

𝑁! 𝑡 + 𝛼!"𝑁! 𝑡
𝐾!

 

𝑑𝑁!
𝑑𝑡 = 𝑟!𝑁!(𝑡) 1−

𝑁! 𝑡 + 𝛼!"𝑁! 𝑡
𝐾!

 

 Here, we modify the alpha term to represent a range of plant – plant interactions, 

specifically the case where 𝛼 < 0.  When 𝛼 is negative, the presence of a second species 

(N2,) can increase the carrying capacity of the original species (N1), so that N1 can grow larger 

than its original carrying capacity (Figure 4.1).  This is a mathematical representation of 

facilitation – a mechanism that allows a species to grow more, or in previously inaccessible 

areas, due to the presence of a second species (Bruno et al. 2003).  We use this theoretical 

framework to demonstrate two cases: 

1. Productivity and diversity can facilitate plant performance when environmental 

conditions are severe, but limit performance when environmental conditions are mild. 

2. Facilitation decreases and competition increases as plants grow in size.  This leads to 

the increasing importance of net competition with increasing size. 

Modified Lotka-Volterra interaction model 
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The model parameters 

Traditional LV models calculate the change in population size over time between two 

species.  For our model, we modified this conceptual framework, by considering an 

interaction between a single species (N1, the colonizer) and the sum total of interactions of a 

community (N2, the community).  We considered the dynamics of plant biomass, as opposed 

to number of individuals, as plants can grow several orders of magnitude before reproductive 

maturity, and consequent changes in population numbers (Dybzinski and Tilman 2009).  

Therefore, r1 was a species-specific intrinsic growth rate (growth – loss, instead of birth - 

death), N1 was colonizer biomass, N2 was community biomass, α12 represented the relative 

influence of the community on the colonizer, and α21 represented the relative influence of the 

colonizer on the community. 

Alpha as competition/facilitation term 

In traditional LV models, a positive alpha term for the effect of N1 on N2 (𝛼12) 

decreases the carrying capacity of N2, thereby driving that group closer to carrying capacity at 

lower population numbers (fewer individuals can co-exist – effectively representing 

competition).  In contrast, a negative alpha term for the effect of N1 on N2 allows N2, to have 

a larger effective carrying capacity (more individuals can co-exist, effectively representing 

facilitation, Figure 4.1).  

Alpha 

To simplify the complex relationships that underlie plant – plant interactions we 

separated alpha into the sum of a series of simple and easily tractable relationships.  The 

model treated alpha as a function of facilitative parts (αf) and competitive parts (αc) where 
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α=αc+ αf.   The model treated the facilitative parts of alpha as a function of environmental 

severity and the competitive parts of alpha as a function of productivity.  

Facilitation and severity (αf) 

We defined a relationship between facilitation (αf) and environmental severity (s) 

where the absolute value of facilitation increased to a point, beyond which it decreased 

due to physiological constraints in the most severe environments (Figure 4.2): 𝑏 𝑠 −

max ! − 𝑟𝑎𝑛𝑔𝑒 (Holmgren and Scheffer 2010).  Here, b was a scalar for the overall 

breadth of the curve, s was severity on the x-axis, max was the level of severity at which 

facilitation was maximized, and range was a measure of the depth of the curve between 0 

and max (Figure 4.2).  

Competition and productivity (αc) 

We represented competition with a simple increasing relationship between the 

intensity of competition (αc) and productivity (Tilman et al. 1996), Figure 4.3).  

Productivity was scaled to 0-100% of total possible biomass.  The relationship between 

competition and normalized biomass production (productivity) was a line with a y-

intercept at 0, which increases with a slope of m: 𝛼! = 0+𝑚 ∗ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠. 

Community Biomass (N2)    

To model the specific scenario where an individual was colonizing a community that 

was at equilibrium, we incorporated community plant diversity into the model and used it to 

calculate potential standing biomass in an equilibrium community.  Community biomass (N2) 

was then treated as a static function of plant diversity (as was biomass in the competition – 

productivity relationship above).  The traditional LV model considers two interacting 

populations that are changing over time (  and  from equations 1a and 1b in 

€ 

dN1 dt

€ 

dN2 dt
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Table 4.1). We substituted equation 1a (Table 4.1) with an equation that calculated 

equilibrium community biomass for each diversity level between 0 and 20 species:  𝑁! =

!"#!"#×!
!!!

.  In this equation, N2 was the biomass of the community, maxbio was the 

maximum biomass attained by any community in this system, d was the diversity of the 

community, and theta was the level of diversity at which half of the biomass has been 

produced (half saturation constant).  Experimental manipulations of plant diversity have 

consistently demonstrated saturating relationships between diversity and productivity (Reich 

et al. 2001c, Tilman et al. 2001, Van Ruijven and Berendse 2003, Roscher et al. 2005), 

though recent analyses have demonstrated that this relationship may not saturate at such 

low levels over time (Reich et al. 2012).  We used parameter values that were realistic for 

herbaceous biomass production, and a high half-saturation constant (theta), for a 

community that did not saturate over the range of diversity levels used in our simulation 

(Table 4.2).  We then substituted Equation 1a (Table 4.1) for N2 in the original LV model 

to reduce our system of equations to a single equation: 

𝑑𝑁!
𝑑𝑡 = 𝑟!𝑁! 𝑡 1−

𝑁! 𝑡 + 𝛼!" ∗
max
!"#

×𝑑
𝜃 + 𝑑

𝐾!
 

Colonizer age 

We incorporated colonizer age as the third driver of plant interactions.  We 

manipulated the alpha parameters above to represent decreasing facilitation and increasing 

competition with seedling age (Figure 4.4). 

Model Parameterization 

To address our first case, that productivity and diversity can facilitate plant 

performance when environmental conditions are severe, but limit performance when 
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environmental conditions are mild, we parameterized our model using values for strong 

facilitation (𝛼! = -2 at 60% severity) and weak competition (𝛼! =1 at the highest level of 

productivity, Table 4.2).  We ran a simulation for colonizers growing across a diversity 

gradient from 0 to 20 species, with a growth rate of r1=0.1, a carrying capacity of 500 g/m2, 

and an initial biomass of 0.01 g/m2.  We ran this simulation for 100 years to predict colonizer 

success across a range of diversity and severity conditions.   

To address our second case, that competition increases and facilitation decreases over 

time (Tielborger and Kadmon 2000, Miriti 2006, Cuesta et al. 2010, Bustamente-Sanchez 

et al. 2010), we ran a 3-step simulation that involved:   

(1) Alpha values representing the highest strength of facilitation/lowest competition 

(Figure 4.4a) for a colonizer planted at 0.01 g/m2 (as above) for one-year, to 

simulate expected relationships with plant growth when seedlings are young.   

(2) The biomass of the most facilitated individual (60% severity in high diversity 

plots) at the end of the first year, was 0.014 g/m.2 We used this biomass to start 

the simulations for years 1-3 following a model of increasing competition and 

decreasing facilitation with seedlings size (Figure 4.4b).  We started the second 

simulation with an initial biomass of the most facilitated individual (0.014 g/m.2), 

but this was only used as a comparison value to detect loss of biomass and 

mortality as described above.  Again, when biomass after 3 years fell below the 

initial value (0.014), we interpreted the outcome of the simulation to be 

competitive exclusion.   

(3) The biomass of the most facilitated individual was again used to start the 

simulation for the next 25 years of growth (0.0155 g/m2). 



99 

 

Results and Discussion 

Diversity can facilitate growth of colonizers in severe environmental conditions/ limit growth 

in mild environmental conditions 

Using a modified version of a simple LV model, we can show how diversity can 

facilitate colonizer success under some conditions, but limit colonizer success under other 

conditions.  Our model demonstrates that in conditions where competition outweighs 

facilitation (in mild environment, Figure 4.5a), diversity limits the success of colonizers, so 

that colonizers are excluded from communities.  Colonizers can establish, with low growth 

rates, in communities of up to ~5 species (Figure 4.5).  However, at all points where 

facilitation outweighs competition (severity > 10%), diversity facilitates colonizer growth and 

colonizers grow more in higher diversity communities.  Further, at any single severity level, 

as diversity increases beyond a certain point, the competitive parts of alpha again outweigh 

the facilitative parts, and competition starts to limit colonizer growth (Figure 4.5).  These 

relationships emerge from simple models of the relationship between facilitation, 

environmental severity, competition, productivity, and diversity. 

Competition dominates as colonizers grow older 

At the initial most facilitative stage of growth, we found that all colonizers, under all 

conditions, survived, except for seeds colonizing communities with >12 species in mild 

environmental conditions.  These colonizers were competitively excluded from plots. 

We found that following years one through three, colonizers in mild environments 

were competitively excluded from communities with >10 species, and even colonizers in 

moderate severity environments (20%) were excluded from higher diversity plots (>16 

species).  All colonizers in high severity environments persisted, but only experienced 
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facilitation at intermediate levels of diversity.  After that point, the competitive parts of 

diversity again outweighed the facilitative parts of the severe environment and we saw a 

humpbacked curve between increasing species diversity and colonizer growth. 

We found that at the most competitive point in plant ontogeny (Figure 4.4c), which is 

likely the majority of the plant life cycle, all colonizers were excluded from all plots with > 8-

10 species, regardless of environmental severity.   

This three-step simulation shows that long-term trends may be controlled strongly by 

competition (Tilman et al. 1996) even if initial seedling establishment is facilitated by 

diversity in higher severity environments.  However, it also indicates that at any given point 

in time, diversity/abundance of small seedlings could be higher than diversity/abundance of 

adults due to size-structured competition and facilitation.  A decrease in abundance of stems 

with increasing age of the stand is consistent with successional patterns that predict a 

reduction in stem number with increasing stem basal area.  This simulation introduces a 

potentially new fingerprint to detect interspecific facilitation in natural plant communities.  If 

there is a pattern of decreasing diversity with increasing plant age, this may be due to high 

interspecific facilitation at the seedling stage that decreases over time.  There is little evidence 

that this pattern would emerge based on current models of plant coexistence.  While density 

dependent mortality predicts high diversity in the seedling layer of plant communities, due to 

immediate and strong susceptibility to species-specific pathogens at the smallest size classes 

(Hille Ris Lambers et al. 2002), there shouldn’t necessarily be a reduction in diversity 

beyond that stage.; although there may also be ecological drift driving the loss of rare species 

over time (Hubbell 2001).  Further exploration of the unique role that strong facilitation in 
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the youngest age class plays in age-structured diversity/abundance patterns, as well as overall 

diversity patterns, may prove a useful exploration of facilitation in the future. 

From models to data: challenges with validation 

We used these models as a first step in representing the underlying importance 

and variation in competition and facilitation along diversity and severity gradients.  

Experimental work has shown increased colonization success and growth near neighbors 

in severe environments, highlighting the importance of facilitation when environmental 

conditions are severe (Cuesta et al. 2010, Jia et al. 2010, Landero and Valient-Banuet 

2010, Armas et al. 2011).  We show here that a modified Lotka-Volterra model for 

competition and facilitation may be able to describe these patterns using our current 

knowledge of competition and facilitation in different types of environments. 

 The parameters that we chose for these simulations were rough estimates.  For 

some values we based parameters on available data from long-term biodiversity 

experiments at Cedar Creek Ecosystem Science Reserve (Reich et al. 2012).  However to 

make predictions using this model based on ecologically relevant values we would need 

access to data that is either impossible to obtain or could only be obtained using multi-

decadal experiments that don’t exist.  Specifically: 

Long-term intrinsic growth rates (r) and carrying capacities (K) are species-

specific and unknown for most species.  Further, we would need the focal species to 

reach its carrying capacity to run robust maximum likelihood analyses to fit K and r to 

each species.  For some herbaceous species this may be a few years, though recent data 

from biodiversity manipulations in grasslands indicate that carrying capacity may change 

over time due to nutrient concentrations in the soil that change as a function of species 
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diversity (Tilman et al. 2012, Reich et al. 2012).  For woody species it could be hundreds 

of years. 

Parameterization of the facilitation and competition parts of alpha requires the 

isolation of the two parts using experimental manipulations that manipulate biodiversity 

and environmental severity independently in a full factorial design.  In this way we could 

estimate how α changes as a function of diversity and environmental severity and infer 

underlying relationships with αf, and αc.  But actual parameterization of αf, and αc would 

require the experimental isolation of the facilitative parts of alpha from competitive parts.  

An experiment of that sort does not currently exist.  Finally, the carrying capacity of each 

colonizer likely changes as a function of environmental severity as well.  Thus, long-term 

experiments measuring K of a single species across a range of environmental conditions 

for long periods of time may also be necessary. 

Summary 

Teasing apart the relative role of competition and facilitation in plant 

communities is exceedingly difficult.  Both processes are likely operating in many 

communities, though measurement techniques make it difficult to tease apart the separate 

contributions of each, when one type of interaction likely dominates and overshadows the 

presence of the other (Bruno et al. 2003).  This model demonstrates that diversity may 

limit invasion of individuals at later life history stages, but even where competition 

dominates, colonizer growth rates may be a reflection of both competition and 

facilitation.  If the underlying processes that drive facilitation increase in occurrence or 

importance (drought, temperature events, other extreme weather events) we may expect a 

shift toward facilitation in future climates (Brooker 2006, He et al. 2013).  The strength 
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and importance of facilitative interactions may eventually outweigh and overshadow the 

importance of competition.  Furthermore, we show that in scenarios where facilitation is 

outweighing the effects of competition, diversity can drive net increases in overall 

colonizer growth (Bruno et al. 2003).  In scenarios where strong facilitation/weak 

competition persists over time, colonizer success would increase in higher diversity 

communities and there may be potential for a positive feedback between diversity and 

seedling recruitment in severe conditions (Eccles et al. 1999).  As future climate change 

scenarios predict increasing drought, temperatures, and occurrence of extreme events 

(IPCC 2007), it may be important to consider these positive feedbacks between diversity 

and seedling establishment in the future. 
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Table 4.1.  Equations used in modified LV model 
 

Name  Equation  

 
1. Lotka-Volterra competition a. !!!

!"
= 𝑟!𝑁! 𝑡 1− 𝑵𝟏 𝒕 !𝜶𝟐𝟏𝑵𝟐 𝒕

!!
 

 b. !!!
!"

= 𝑟!𝑁!(𝑡) 1− !! ! !!!"!! !
!!

 
 
2. αf 𝑏 𝑠 −max ! − 𝑟𝑎𝑛𝑔𝑒 
 
3. αc 0+𝑚 ∗ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 
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Table 4.2. Parameter values for modified LV model 
 

Parameter Description Value  

b scalar for αf 0-1 yr = 0.00055 
  1-3 yr = 0.0003 
  >3 yr = 0.0001 
 
max % severity at which facilitation is maximized 0-1 yr = 60 
  1-3 yr = 70 
  >3 yr = 70 
  
range range of variation in facilitation term 0-1 yr = 2 
  1-3 yr = 1.5 
  >3 yr = 0.5 
 
m rate at which competition increases with productivity 0-1 yr = 0.001 
  1-3 yr = 0.0015 
  >3 yr = 0.0017 
 
maxbio maximum biomass of the plant community 2000 
 
theta (θ) half saturation of diversity – productivity curve 20 sp 
 
r1 intrinsic growth rate of colonizer 0.1 
 
K1 carrying capacity of colonizer 500 
 
w0 initial size of colonizer in model runs 0.01 
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Figure 4.1. As in Figure 1, r1 and r2 are 0.3, K1 and K2 are 50, and the effect that species 
2 has on species 1 (α21) is 0.01.  Here, to represent facilitation, the effect that species 1 
has on species 2 is -0.5. A negative value of alpha causes the other species to grow 
beyond its original carrying capacity (50).  Coexistence occurs for all negative/ 
facilitative values of alpha. 
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Figure 4.2.  A quantitative representation of the relationship between facilitation (αf ) 
and environmental severity (s) where the absolute value of facilitation increases to a 
point, beyond which it decreases due to physiological constraints in the most severe 
environments.  Severity is expressed as a percentage.  This function is a potential 
representation, where b is a scalar for the overall breadth of the curve, s is severity on the 
x-axis, max is the level of severity at which facilitation is maximized, and range is a 
measure of the depth of the curve between 0 and max.  
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Figure 4.3.  We started with a simple increasing relationship between the intensity of 
competition (αc) and productivity.  Productivity is scaled to 0-100% of total possible 
biomass (N2).  Biomass is itself a saturating function of diversity (d), defined by 
maximum biomass production (maxbio) and the level of diversity where biomass 
production is halfway to the maximum (theta).  The relationship between competition 
and normalized biomass production (productivity) is a line with a y-intercept of 0 at 0 
productivity, which increases at a rate (m). 
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Figure 4.4. For the purposes of demonstration, we scaled the x-axis to be increasing 
environmental severity from low to high, but decreasing productivity from high to low.  
While the exact relationship between productivity and environmental severity is 
unknown, we follow models from Bruno et al. (2003) for purposes of demonstration only. 
(a) represents strong facilitation and weak competition, (b) represents a growing 
colonizer with decreasing facilitation and increasing facilitation, and (c) represents the 
largest size class with the strongest competition and the weakest facilitation.  The dotted 
line at 0 represents no interaction.  Everything above 0 represents net competition, and 
everything below 0 represents net facilitation.  
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Figure 4.5.  Colonizer growth increases in higher diversity plots in severe environments 
(up to 60%), but is limited by diversity in mild environments. 
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Figure 4.6.  The importance of facilitation decreases and competition increases as 
seedlings grow in size for seedlings in their first year (a), in years 1-3 (b) and up to 25 
years (c).  We considered loss of biomass an indication of net loss in competition, and 
therefore considered those seedlings excluded.  The line at which biomass was lost is 
indicated in all panels using a dashed line.  Below that line colonizers were considered 
excluded. 

 
 
 
 
  

0 2 4 6 8 10 12 14 16 18 200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Herbaceous Species Richness

C
ol

on
iz

er
 B

io
m

as
s 

(a
fte

r 2
5 

ye
ar

s)

 

 

s=1%
s=20%
s=40%
s=60%
s=100%

Student Version of MATLAB

(c) 
 

0 2 4 6 8 10 12 14 16 18 20
0.009

0.01

0.011

0.012

0.013

0.014

0.015

Herbaceous Species Richness

C
ol

on
iz

er
 B

io
m

as
s 

(a
fte

r 1
st

 y
ea

r)

 

 

s=1%
s=20%
s=40%
s=60%
s=100%

Student Version of MATLAB

(a) 
 

0 2 4 6 8 10 12 14 16 18 200.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

Herbaceous Species Richness

C
ol

on
iz

er
 B

io
m

as
s 

(1
−3

 y
ea

rs
)

 

 

s=1%
s=20%
s=40%
s=60%
s=100%

Student Version of MATLAB

(b) 
 



112 

 

LITERATURE CITED 

Abrams, M. D. 1990. Adaptations and responses to drought in Quercus species of North 

America. Tree Physiology 7:227–238. 

Abrams, P. A. 1995. Monotonic or unimodal diversity-productivity gradients: what does 

competition theory predict? Ecology 76:2019–2027. 

Adair, E. C., P. B. Reich, J. J. Trost, and S. E. Hobbie. 2011. Elevated CO2 stimulates 

grassland soil respiration by increasing carbon inputs rather than by enhancing soil 

moisture. Global Change Biology 17:3546–3563. 

Adair, E. C., P. B. Reich, S. E. Hobbie, and J. M. H. Knops. 2009. Interactive Effects of 

Time, CO2, N, and Diversity on Total Belowground Carbon Allocation and 

Ecosystem Carbon Storage in a Grassland Community. Ecosystems 12:1037–1052. 

Adler, P. B., E. W. Seabloom, E. T. Borer, H. Hillebrand, Y. Hautier, A. Hector, W. S. 

Harpole, L. R. O'halloran, J. B. Grace, T. M. Anderson, J. D. Bakker, L. A. 

Biederman, C. S. Brown, Y. M. Buckley, L. B. Calabrese, C.-J. Chu, E. E. Cleland, S. 

L. Collins, K. L. Cottingham, M. J. Crawley, E. I. Damschen, K. F. Davies, N. M. 

Decrappeo, P. A. Fay, J. Firn, P. Frater, E. I. Gasarch, D. S. Gruner, N. Hagenah, J. 

Hille Ris Lambers, H. Humphries, V. L. Jin, A. D. Kay, K. P. Kirkman, J. A. Klein, J. 

M. H. Knops, K. J. La Pierre, J. G. Lambrinos, W. Li, A. S. Macdougall, R. L. 

Mcculley, B. A. Melbourne, C. E. Mitchell, J. L. Moore, J. W. Morgan, B. Mortensen, 

J. L. Orrock, S. M. Prober, D. A. Pyke, A. C. Risch, M. Schuetz, M. D. Smith, C. J. 

Stevens, L. L. Sullivan, G. Wang, P. D. Wragg, J. P. Wright, and L. H. Yang. 2011. 

Productivity Is a Poor Predictor of Plant Species Richness. Science 333:1750–1753. 

Archer, S. 1989. Have southern Texas savannas been converted to woodlands in recent 



113 

 

history? American Naturalist:545–561. 

Archer, S., D. Schimel, and E. Holland. 1995. Mechanisms of shrubland expansion: land 

use, climate or CO2? Climatic Change 29:91–99. 

Armas, C., S. Rodríguez-Echeverría, and F. I. Pugnaire. 2011. A field test of the stress-

gradient hypothesis along an aridity gradient. Journal of Vegetation Science 22:818–

827. 

Barger, N. N., S. R. Archer, J. L. Campbell, C.-Y. Huang, J. A. Morton, and A. K. Knapp. 

2011. Woody plant proliferation in North American drylands: A synthesis of impacts 

on ecosystem carbon balance. Journal of Geophysical Research 116. 

Bazzaz, F. A. 1979. The physiological ecology of plant succession. Annual Review of 

Ecology and Systematics 10:351–371. 

Bertness, M., and R. Callaway. 1994. Positive interactions in communities. Trends in 

Ecology & Evolution 9:191–193. 

Bolker, B., M. Brooks, C. Clark, S. Geange, J. Poulsen, M. Stevens, and J. White. 2009. 

Generalized linear mixed models: a practical guide for ecology and evolution. Trends 

in Ecology & Evolution 24:127–135. 

Bond, W. J., and G. F. Midgley. 2000. A proposed CO2‐controlled mechanism of woody 

plant invasion in grasslands and savannas. Global Change Biology 6:865–869. 

Bond, W. J., F. I. Woodward, and G. F. Midgley. 2005. The global distribution of 

ecosystems in a world without fire. The New phytologist 165:525–537. 

Brokaw, N., and R. Busing. 2000. Niche versus chance and tree diversity in forest gaps. 

Trends in Ecology & Evolution 15:183–188. 

Brooker, R. 2006. Plant-Plant Interactions and Environmental Change. New Phytologist 



114 

 

171:271–284. 

Brooker, R. W., F. T. Maestre, R. M. Callaway, C. L. Lortie, L. A. Cavieres, G. Kunstler, 

P. Liancourt, K. Tielbörger, J. M. J. Travis, F. Anthelme, C. Armas, L. Coll, E. 

Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F. Pugnaire, C. L. Quiroz, P. 

Saccone, K. Schiffers, M. Seifan, B. Touzard, and R. Michalet. 2008. Facilitation in 

plant communities: the past, the present, and the future. Journal of Ecology 96:18–34. 

Brown, J., and S. Archer. 1989. Woody plant invasion of grasslands: establishment of 

honey mesquite (Prosopis glandulosa var. glandulosa) on sites differing in 

herbaceous biomass and grazing history. Oecologia 80:19–26. 

Brown, J., and S. Archer. 1999. Shrub invasion of grassland: recruitment is continuous 

and not regulated by herbaceous biomass or density. Ecology 80:2385–2396. 

Bruno, J., J. Stachowicz, and M. Bertness. 2003. Inclusion of facilitation into ecological 

theory. Trends in Ecology & Evolution 18:119–125. 

Bulleri, F., J. Bruno, and L. Benedetti-Cecchi. 2008. Beyond competition: incorporating 

positive interactions between species to predict ecosystem invasibility. PLoS Biol 

6:e162. 

Bustamente-Sanchez, M. A., J. J. Armesto, and C. B. Halpern. 2010. Biotic and abiotic 

controls on tree colonization in three early successional communities of Chiloe ́ 

Island, Chile. Journal of Ecology 99:288–299. 

Callaway, R. 1992. Effect of shrubs on recruitment of Quercus douglasii and Quercus 

lobata in California. Ecology:2118–2128. 

Callaway, R. 1995. Positive interactions among plants. The Botanical Review 61:306–

349. 



115 

 

Callaway, R. M., and S. C. Pennings. 2000. Facilitation may buffer competitive effects: 

indirect and diffuse interactions among salt marsh plants. The American Naturalist 

156:416–424. 

Callaway, R. M., R. W. Brooker, P. Choler, Z. Kikvidze, C. J. Lortie, R. Michalet, L. 

Paolini, F. I. Pugnaire, B. Newingham, and E. T. Aschehoug. 2002. Positive 

interactions among alpine plants increase with stress. Nature 417:844–848. 

Callaway, R., and L. Walker. 1997. Competition and facilitation: a synthetic approach to 

interactions in plant communities. Ecology 78:1958–1965. 

Casper, B. B., and R. B. Jackson. 1997. Plant competition underground. Annual Review 

of Ecology and Systematics:545–570. 

Casper, B. B., H. J. Schenk, and R. B. Jackson. 2003. Defining a plant's belowground 

zone of influence. Ecology 84:2313–2321. 

Cavender-Bares, J., and F. A. Bazzaz. 2000. Changes in drought response strategies with 

ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. 

Oecologia 124:8–18. 

Cavender-Bares, J., L. Sack, and J. Savage. 2007. Atmospheric and soil drought reduce 

nocturnal conductance in live oaks. Tree Physiology 27:611. 

Chase, J. M., and W. A. Ryberg. 2004. Connectivity, scale-dependence, and the 

productivity-diversity relationship. Ecology Letters 7:676–683. 

Chesson, P. 2000. Mechanisms of Maintenance of Species Diversity. Annual Review of 

Ecology and Systematics 31:343–366. 

Chu, C.-J., F. T. Maestre, S. Xiao, J. Weiner, Y.-S. Wang, Z.-H. Duan, and G. Wang. 

2008. Balance between facilitation and resource competition determines biomass–



116 

 

density relationships in plant populations. Ecology Letters 11:1189–1197. 

Classen, A., R. Norby, C. Campany, and K. Sides. 2010. Climate Change Alters Seedling 

Emergence and Establishment in an Old-Field Ecosystem. PLoS ONE 5:e13476. 

Connell, J. 1961. The influence of interspecific competition and other factors on the 

distribution of the barnacle Chthamalus Stellatus. Ecology 42:710–723. 

Coomes, D. A., and P. J. Grubb. 2000. Impacts of root competition in forests and 

woodlands: a theoretical framework and review of experiments. Ecological 

Monographs 70:171–207. 

Cuesta, B., P. Villar-Salvador, J. Puértolas, J. M. Rey Benayas, and R. Michalet. 2010. 

Facilitation ofQuercus ilexin Mediterranean shrubland is explained by both direct and 

indirect interactions mediated by herbs. Journal of Ecology 98:687–696. 

Danner, B. T., and A. K. Knapp. 2003. Abiotic constraints on the establishment of 

Quercus seedlings in grassland. Global Change Biology 9:266–275. 

Davies, W. J., and T. T. Kozlowski. 1977. Variations among woody plants in stomatal 

conductance and photosynthesis during and after drought. Plant and Soil 46:435–444. 

Davis, M. A., P. B. Reich, M. J. B. Knoll, L. Dooley, M. Hundtoft, and I. Attleson. 2007. 

Elevated atmospheric CO 2: a nurse plant substitute for oak seedlings establishing in 

old fields. Global Change Biology 13:2308–2316. 

Davis, M., K. Wrage, and P. Reich. 1998. Competition between tree seedlings and 

herbaceous vegetation: support for a theory of resource supply and demand. Journal 

of Ecology:652–661. 

Davis, M., K. Wrage, P. Reich, M. Tjoelker, T. Schaeffer, and C. Muermann. 1999. 

Survival, growth, and photosynthesis of tree seedlings competing with herbaceous 



117 

 

vegetation along a water-light-nitrogen gradient. Plant Ecology 145:341–350. 

Dickie, I. A., S. A. Schnitzer, P. B. Reich, and S. E. Hobbie. 2005. Spatially disjunct 

effects of co-occurring competition and facilitation. Ecology Letters 8:1191–1200. 

Dickie, I. A., S. A. Schnitzer, P. B. Reich, and S. E. Hobbie. 2007. Is oak establishment 

in old-fields and savanna openings context dependent? Journal of Ecology 95:309–

320. 

Dijkstra, F., S. Hobbie, P. Reich, and J. Knops. 2005. Divergent effects of elevated CO2, 

N fertilization, and plant diversity on soil C and N dynamics in a grassland field 

experiment. Plant and Soil 272:41–52. 

Dybzinski, R., and D. Tilman. 2009. Competition and Coexistence in Plant Communities. 

in The Princeton Guide to Ecology. Princeton University Press. 

Dybzinski, R., C. Farrior, A. Wolf, P. B. Reich, and S. W. Pacala. 2011. Evolutionarily 

Stable Strategy Carbon Allocation to Foliage, Wood, and Fine Roots in Trees 

Competing for Light and Nitrogen: An Analytically Tractable, Individual-Based 

Model and Quantitative Comparisons to Data. The American Naturalist 177:153–166. 

Ehleringer, J. R. 1984. Intraspecific competitive effects on water relations, growth and 

reproduction in Encelia farinosa. Oecologia 63:153–158. 

Fargione, J. E., and D. Tilman. 2005. Diversity decreases invasion via both sampling and 

complementarity effects. Ecology Letters 8:604–611. 

Farrer, E. C., and D. E. Goldberg. 2010. Patterns and mechanisms of conspecific and 

heterospecific interactions in a dry perennial grassland. Journal of Ecology 99:265–

276. 

Fotelli, M., K. Radoglou, and H. Constantinidou. 2000. Water stress responses of 



118 

 

seedlings of four Mediterranean oak species. Tree Physiology 20:1065. 

Goldberg, D., and A. Barton. 1992. Patterns and consequences of interspecific 

competition in natural communities: a review of field experiments with plants. 

American Naturalist 139:771. 

Gordon, D. R., J. M. Menke, and K. J. Rice. 1989. Competition for soil water between 

annual plants and blue oak (Quercus douglasii) seedlings. Oecologia 79:533–541. 

Grace, J. 1991. A clarification of the debate between Grime and Tilman. Functional 

Ecology 5:583–587. 

Greenlee, J., and R. Callaway. 1996. Abiotic stress and the relative importance of 

interference and facilitation in montane bunchgrass communities in western Montana. 

American Naturalist:386–396. 

Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its 

relevance to ecological and evolutionary theory. American Naturalist:1169–1194. 

Hardin, G. 1960. The competitive exclusion principle. Science 131:1292–1297. 

He, Q., M. D. Bertness, and A. H. Altieri. 2013. Global shifts towards positive species 

interactions with increasing environmental stress. Ecology Letters 16:695–706. 

Hille Ris Lambers, J., J. Clark, and B. Beckage. 2002. Density-dependent mortality and 

the latitudinal gradient in species diversity. Nature 417:732–735. 

Hoekstra, J. M., T. M. Boucher, T. H. Ricketts, and C. Roberts. 2004. Confronting a 

biome crisis: global disparities of habitat loss and protection. Ecology Letters 8:23–

29. 

Holmgren, M., and M. Scheffer. 2010. Strong facilitation in mild environments: the stress 

gradient hypothesis revisited. Journal of Ecology 98:1269–1275. 



119 

 

Holmgren, M., M. Scheffer, and M. Huston. 1997. The interplay of facilitation and 

competition in plant communities. Ecology 78:1966–1975. 

Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. 

Princeton University Press. 

IPCC. 2007. Climate change 2007. Synthesis report. Contribution of Working Groups I, 

II and III to the fourth assessment report. 

Isbell, F., V. Calcagno, A. Hector, J. Connolly, W. S. Harpole, P. B. Reich, M. Scherer-

Lorenzen, B. Schmid, D. Tilman, J. Van Ruijven, A. Weigelt, B. J. Wilsey, E. S. 

Zavaleta, and M. Loreau. 2011. High plant diversity is needed to maintain ecosystem 

services. Nature 477:199–202. 

Jackson, R., J. Banner, E. Jobbágy, W. Pockman, and D. Wall. 2002. Ecosystem carbon 

loss with woody plant invasion of grasslands. Nature 418:623–626. 

Jia, X., X.-F. Dai, Z.-X. Shen, J.-Y. Zhang, and G.-X. Wang. 2010. Facilitation can 

maintain clustered spatial pattern of plant populations during density-dependent 

mortality: insights from a zone-of-influence model. Oikos:472–480. 

Johnson, D. M., D. R. Woodruff, K. A. McCulloh, and F. C. Meinzer. 2009. Leaf 

hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, 

water potential and stomatal conductance in four temperate and three tropical tree 

species. Tree Physiology 29:879–887. 

Jonsson, M., and D. A. Wardle. 2010. Structural equation modelling reveals plant-

community drivers of carbon storage in boreal forest ecosystems. Biology Letters 

6:116–119. 

Kennedy, T., S. Naeem, K. Howe, J. Knops, D. Tilman, and P. Reich. 2002. Biodiversity 



120 

 

as a barrier to ecological invasion. Nature 417:636–638. 

Kgope, B. S., W. J. Bond, and G. F. Midgley. 2009. Growth responses of African 

savanna trees implicate atmospheric [CO2] as a driver of past and current changes in 

savanna tree cover. Austral Ecology 35:451–463. 

Knapp, A. K., J. M. Briggs, S. L. Collins, S. R. Archer, M. S. Bret-Harte, B. E. Ewers, D. 

P. Peters, D. R. Young, G. R. Shaver, E. Pendall, and M. B. Cleary. 2008. Shrub 

encroachment in North American grasslands: shifts in growth form dominance 

rapidly alters control of ecosystem carbon inputs. Global Change Biology 14:615–

623. 

Knops, J. M. H. 2006. Fire does not alter vegetation in infertile prairie. Oecologia 

150:477–483. 

Landero, J. P. C., and A. Valiente-Banuet. 2010. Species-specificity of nurse plants for 

the establishment, survivorship, and growth of a columnar cactus. American Journal 

of Botany 97:1289–1295. 

Levine, J. M., and J. Hille Ris Lambers. 2009. The importance of niches for the 

maintenance of species diversity. Nature 461:254–257. 

Loreau, M., and A. Hector. 2001. Partitioning selection and complementarity in 

biodiversity experiments. Nature 412:72–76. 

Lotka, A. J. 1925. Elements of Mathematical Biology. Pages 1–495. Williams & Wilkins 

Company. 

McCulley, R., S. Archer, T. Boutton, F. Hons, and D. Zuberer. 2004. Soil respiration and 

nutrient cycling in wooded communities developing in grassland. Ecology 85:2804–

2817. 



121 

 

Miriti, M. N. 2006. Ontogenetic shift from facilitation to competition in a desert shrub. 

Journal of Ecology 94:973–979. 

Moll, J. D., and J. S. Brown. 2008. Competition and Coexistence with Multiple Life‐

History Stages. The American Naturalist 171:839–843. 

Montgomery, R. A., P. B. Reich, and B. J. Palik. 2010. Untangling positive and negative 

biotic interactions: views from above and below ground in a forest ecosystem. 

Ecology 91:3641–3655. 

Naeem, S. 2002. Disentangling the impacts of diversity on ecosystem functioning in 

combinatorial experiments. Ecology 83:2925–2935. 

Naeem, S., J. Knops, D. Tilman, K. Howe, T. Kennedy, and S. Gale. 2000. Plant 

diversity increases resistance to invasion in the absence of covarying extrinsic factors. 

Oikos:97–108. 

Naeem, S., L. J. Thompson, S. P. Lawler, J. H. Lawton, R. M. Woodfin, S. Naeem, L. J. 

Thompson, S. P. Lawler, J. H. Lawton, and R. M. Woodfin. 1995. Empirical 

evidence that declining species diversity may alter the performance of terrestrial 

ecosystems. Philosophical transactions of the Royal Society of London. Series B, 

Biological sciences 347:249–262. 

Niinemets, Ã. 2010. Responses of forest trees to single and multiple environmental 

stresses from seedlings to mature plants: Past stress history, stress interactions, 

tolerance and acclimation. Forest Ecology and Management 260:1623–1639. 

NOAA National Climatic Data Center. 2012. State of the Climate: National Overview for 

Annual 2012, published online December 2012, retrieved on April 23, 2013 

from http://www.ncdc.noaa.gov/sotc/national/2012/13. 



122 

 

 

Ovington, J., and C. MacRae. 1960. The growth of seedlings of Quercus petraea. The 

Journal of Ecology 48:549–555. 

Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the 

Köppen-Geiger climate classification. Hydrology and Earth System Sciences 

Discussions Discussions 4:439–473. 

Polley, H., H. Johnson, and C. Tischler. 2003. Woody invasion of grasslands: evidence 

that CO2 enrichment indirectly promotes establishment of Prosopis glandulosa. Plant 

Ecology 164:85–94. 

Post, W., W. Emanuel, P. Zinke, and A. Stangenberger. 1982. Soil carbon pools and 

world life zones. Nature 298:156–159. 

Reich, P. B. 2009. Elevated CO2 Reduces Losses of Plant Diversity Caused by Nitrogen 

Deposition. Science 326:1399–1402. 

Reich, P. B., D. Tilman, F. Isbell, K. Mueller, S. E. Hobbie, D. F. B. Flynn, and N. 

Eisenhauer. 2012. Impacts of biodiversity loss escalate through time as redundancy 

fades. Science 336:589–592. 

Reich, P., D. Peterson, D. Wedin, and K. Wrage. 2001a. Fire and vegetation effects on 

productivity and nitrogen cycling across a forest–grassland continuum. Ecology 

82:1703–1719. 

Reich, P., D. Tilman, J. Craine, D. Ellsworth, M. Tjoelker, J. Knops, D. Wedin, S. Naeem, 

D. Bahauddin, and J. Goth. 2001b. Do species and functional groups differ in 

acquisition and use of C, N and water under varying atmospheric CO 2 and N 

availability regimes? A field test with 16 grassland species. New Phytologist:435–



123 

 

448. 

Reich, P., J. Knops, D. Tilman, J. Craine, D. Ellsworth, M. Tjoelker, T. Lee, D. Wedin, S. 

Naeem, and D. Bahauddin. 2001c. Plant diversity enhances ecosystem responses to 

elevated CO2 and nitrogen deposition. Nature 410:809–810. 

Ricklefs, R. E. 1977. Environmental Heterogeneity and Plant Species Diversity: A 

Hypothesis. The American Naturalist 111:376–381. 

Roques, K., T. O'connor, and A. Watkinson. 2001. Dynamics of shrub encroachment in 

an African savanna: relative influences of fire, herbivory, rainfall and density 

dependence. Journal of Applied Ecology 38:268–280. 

Roscher, C., V. M. Temperton, M. Scherer-Lorenzen, M. Schmitz, J. Schumacher, B. 

Schmid, N. Buchmann, W. W. Weisser, and E.-D. Schulze. 2005. Overyielding in 

experimental grassland communities - irrespective of species pool or spatial scale. 

Ecology Letters 8:419–429. 

Schiffers, K., and K. Tielborger. 2006. Ontogenetic shifts in interactions among annual 

plants. Journal of Ecology 94:336–341. 

Schnitzer, S., J. Klironomos, J. HilleRisLambers, L. Kinkel, P. Reich, K. Xiao, M. Rillig, 

B. Sikes, R. Callaway, and S. Mangan. 2011. Soil microbes drive the classic plant 

diversity-productivity pattern. Ecology 92:296–303. 

Silva, J., A. Zambrano, and M. Fariñas. 2001. Increase in the woody component of 

seasonal savannas under different fire regimes in Calabozo, Venezuela. Journal of 

Biogeography 28:977–983. 

Stachowicz, J. J. 2001. Mutualism, Facilitation, and the Structure of Ecological 

Communities: Positive interactions play a critical, but underappreciated, role in 



124 

 

ecological communities by reducing physical or biotic stresses in existing habitats 

and by creating new habitats on which many species depend. BioScience 51:235–246. 

Staver, A. C., S. Archibald, and S. A. Levin. 2011. The Global Extent and Determinants 

of Savanna and Forest as Alternative Biome States. Science 334:230–232. 

Tielborger, K., and R. Kadmon. 2000. Temporal environmental variation tips the balance 

between facilitation and interference in desert plants. Ecology 81:1544–1553. 

Tilman, D. 1977. Resource competition between plankton algae: An experimental and 

theoretical approach. Ecology 58:338–348. 

Tilman, D. 1982. Resource competition and community structure. Princeton University 

Press. 

Tilman, D. 1985. The resource-ratio hypothesis of plant succession. The American 

Naturalist 125:827–852. 

Tilman, D. 1987. Secondary succession and the pattern of plant dominance along 

experimental nitrogen gradients. Ecological Monographs 57:189–214. 

Tilman, D., and D. Wedin. 1991. Plant traits and resource reduction for five grasses 

growing on a nitrogen gradient. Ecology:685–700. 

Tilman, D., and P. Reich. 2012. Biodiversity impacts ecosystem productivity as much as 

resources, disturbance, or herbivory. Pages 10394–10397 in. 

Tilman, D., C. Lehman, and K. Thomson. 1997a. Plant diversity and ecosystem 

productivity: theoretical considerations. Proceedings of the National Academy of 

Sciences 94:1857–1861. 

Tilman, D., D. Wedin, and J. Knops. 1996. Productivity and sustainability influenced by 

biodiversity in grassland ecosystems. Nature 379:718–720. 



125 

 

Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997b. The 

influence of functional diversity and composition on ecosystem processes. Science 

277:1300. 

Tilman, D., P. Reich, J. Knops, D. Wedin, T. Mielke, and C. Lehman. 2001. Diversity 

and productivity in a long-term grassland experiment. Science 294:843–845. 

Valladares, F., and R. Pearcy. 1997. Interactions between water stress, sun-shade 

acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles 

arbutifolia. Plant Cell and Environment 20:25–36. 

Valladares, F., J. Zaragoza-Castells, D. Sanchez-Gomez, S. Matesanz, B. Alonso, A. 

Portsmuth, A. Delgado, and O. K. Atkin. 2008. Is Shade Beneficial for 

Mediterranean Shrubs Experiencing Periods of Extreme Drought and Late-winter 

Frosts? Annals of Botany 102:923–933. 

Van Auken, O. 2000. Shrub Invasions of North American Semiarid Grasslands. Annual 

Review of Ecology and Systematics 31:197–215. 

Van Auken, O., and J. Bush. 1997. Growth of Prosopis glandulosa in response to changes 

in aboveground and belowground interference. Ecology 78:1222–1229. 

Van Ruijven, J., and F. Berendse. 2003. Positive effects of plant species diversity on 

productivity in the absence of legumes. Ecology Letters 6:170–175. 

Vitousek, P., H. Mooney, J. Lubchenco, and J. Melillo. 1997. Human domination of 

Earth's ecosystems. Science 277:494. 

Volterra, V. 1930. Theory of functionals and of integral and integro-differential equations. 

Dover Publications. 

Wardle, D. A., M. A. Huston, J. P. Grime, F. Berendse, E. Garnier, W. K. Lauenroth, H. 



126 

 

Setälä, and S. D. Wilson. 2000. Biodiversity and ecosystem function: an issue in 

ecology. Bulletin of the Ecological Society of America 81:235–239. 

Wright, A., S. A. Schnitzer, I. A. Dickie, A. R. Gunderson, G. A. Pinter, S. A. Mangan, 

and P. B. Reich. 2012. Complex facilitation and competition in a temperate 

grassland: loss of plant diversity and elevated CO2 have divergent and opposite 

effects on oak establishment. Oecologia 171:449–458. 

Zhang, Y., H. Y. H. Chen, and P. B. Reich. 2012. Forest productivity increases with 

evenness, species richness and trait variation: a global meta-analysis. Journal of 

Ecology 100:742–749. 

  

 

  



127 

 

Appendix A.  AIC scores for the base model that includes all of the main effects and 
interactions compared with all of the covariate submodels.  The lowest AIC score 
represents the best-fit model.  Survival AIC scores are on the left and growth AIC scores 
are on the right.  The best-fit model is indicated with an asterisk and bold text. 
 
Model Akaike Information Criteria 

Survival Growth 
Base Model 18723.08* -688.9 
Base model + total herbaceous biomass 18766.87 -681.9 
Base model + BGB 18764.1 -693.1 
Base model + AGB 18762.83 -680.7 
Base model + percent light transmission 18753.95 -689.7 
Base model + soil moisture 18753.84 -690.2 
Base model + soil nitrate 18760.36 -741.6 
Base model + soil ammonium 18760.31 -686.6 
BM + total herbaceous + light 18795.48 -687.8 
BM + total herbaceous + soil nitrate 18800.27 -722.3 
BM + total herbaceous + soil ammonium 18802.98 -677.9 
BM + total herbaceous + soil moisture 18796.67 -682.4 
BM + BGB + light 18795.85 -692.6 
BM + BGB + soil nitrate 18797.09 -724.4 
BM + BGB + soil ammonium 18800.21 -688.2 
BM + BGB + soil moisture 18793.94 -693.2 
BM + AGB + light 18794.13 -676.4 
BM + AGB + soil nitrate 18802.22 -728 
BM + AGB + soil ammonium 18800.88 -677.4 
BM + AGB + soil moisture 18794.27 -681.5 
BM + light + soil nitrate 18797.62 -736.4 
BM + light + soil ammonium 18793.88 -686.2 
BM + light + soil moisture 18786.97 -690.1 
BM + soil nitrate + soil ammonium 18794.58 -735.6 
BM + soil nitrate + soil moisture 18787.44 -742.6* 
BM + soil ammonium + soil moisture 18790.33 -687.7 
BM + total herb + light + nitrate 18835.12 -717.4 
BM + total herb + light + ammonium 18834.07 -682.5 
BM + total herb + light + moisture 18827.68 -687.6 
BM + total herb + nitrate + ammonium 18834.46 -716.2 
BM + total herb + nitrate + moisture 18827.17 -723.2 
BM + total herb + ammonium + moisture 18832.36 -678.3 
BM + BGB + light + nitrate 18833.95 -719.2 
BM + BGB + light + ammonium 18834.36 -687.1 
BM + BGB + light + moisture 18827.85 -692.4 
BM + BGB + nitrate + ammonium 18831.41 -718.2 
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BM + BGB + nitrate + moisture 18823.66 -725.3 
BM + BGB + ammonium + moisture 18829.83 -688.2 
BM + AGB + light + nitrate 18838.28 -726.4 
BM + AGB + light + ammonium 18834.75 -673 
BM + AGB + light + moisture 18827.39 -677.2 
BM + AGB + nitrate + ammonium 18836.92 -721.9 
BM + AGB + nitrate + moisture 18829.48 -729.2 
BM + AGB + ammonium + moisture 18831.63 -678 
BM + light + nitrate + ammonium 18833.77 -730.3 
BM + light + nitrate + moisture 18825.8 -737.5 
BM + light + ammonium + moisture 18826.49 -686.5 
BM + nitrate + ammonium + moisture 18821.84 -736.6 
BM + total herb + light + nitrate + ammonium 18871.66 -711.3 
BM + total herb + light + nitrate + moisture 18863.15 -718.6 
BM + total herb + light + ammonium + moisture 18866.45 -682.3 
BM + total herb + nitrate + ammonium + moisture 18861.5 -717.1 
BM + BGB + light + nitrate + ammonium 18870.36 -713 
BM + BGB + light + nitrate + moisture 18861.75 -720.3 
BM + BGB + light + ammonium + moisture 18866.5 -686.9 
BM + BGB + nitrate + ammonium + moisture 18858.16 -719.1 
BM + AGB + light + nitrate + ammonium 18875.03 -720.4 
BM + AGB + light + nitrate + moisture 18866.56 -727 
BM + AGB + light + ammonium + moisture 18867.76 -673.7 
BM + AGB + nitrate + ammonium + moisture 18864.38 -723 
BM + light + nitrate + ammonium + moisture 18862.35 -731.4 
BM + total + light + nitrate + ammonium + moisture 18900.11 -712.5 
BM + BGB + light + nitrate + ammonium + moisture 18898.56 -714.1 
BM + AGB + light + nitrate + ammonium + moisture 18903.86 -720.9 
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Appendix B. The effects of herbaceous species richness and seedling size class on pine 
seedling survival, when individual year measurements were taken into account.  Survival 
was measured separately for year one and year two, where those that died in the first year 
were not included in analyses from the second year; year was then included as a random 
effect in the statistical model to account for correlations among measurements on the 
same plot at different points in time.  Seedlings survived less in higher diversity plots and 
small seedling survival was lower than large seedling survival. 
 

 
Fixed Effect d.f.† F P  

 
Species Richness 1, 156.1 12.87   0.0004*  
Size Class 2, 284.1 30.28 <0.0001*  
Sp Richness x Size Class 2, 282.2 0.07   0.93 

 
† This analysis took into account spatial variation associated with the blocked design 
(“Ring” in the BioCON framework) as well as variation associated with taking 
measurements on the same individuals in a single plot over time.  In the linear mixed 
effects model framework, denominator degrees of freedom “float” based on the degree of 
spatial variation attributed to random effects (year and ring), this is why denominator 
degrees of freedom are different depending on the metric described in this table. 
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Appendix C. The effects of herbaceous species richness and seedling size class on 
seedling survival for each individual 2-week census interval.  In order to avoid pseudo-
replication of measurements taken on the same individuals over time, seedling ID was 
included as a random effect in the statistical model.  There was 76% overall mortality by 
the final census interval; thus, sample size was too small by the end of the study to do a 
full analysis with the three-way interaction including census.  This is the generalized 
linear mixed effects model equivalent of a repeated measures model.  Species richness 
had no overall effect on seedling survival, but changed across two-week intervals, and the 
effect of species richness on pine survival varied from neutral to strongly competitive 
depending on time interval.  Pine mortality was estimated based on greenness of tissue 
and growth in the subsequent measurements.  We don’t think that mortality can be 
reliability attributed to a particular date and therefore take little from this time-structured 
analysis. 
 
 

Fixed Effect d.f.† Chi-Sq P  

Species Richness 1 1.11     0.29  
Size Class 2 188.83 <<0.0001*  
Census Interval 18 957.71 <<0.0001* 
Sp Richness x Size Class 2 2.16     0.34 
Sp Richness x Census Interval 18 58.84   <0.0001* 
Size Class x Census Interval 36 245.75 <<0.0001* 

 
† This analysis took into account spatial variation associated with the blocked design 
(“Ring” in the BioCON framework) as well as variation associated with taking 
measurements on the same individuals over time.  In the linear mixed effects model 
framework, denominator degrees of freedom “float” based on the degree of spatial 
variation attributed to random effects (year and ring), this is why denominator degrees of 
freedom are different depending on the metric described in this table.  Analyses reflect 
likelihood ratio tests (https://stat.ethz.ch/pipermail/r-help/2011-January/265876.html) 
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Appendix C.  Daily average relative humidity drives less negative midday and daily 
difference in plant water status (ψmd- ψpd). 

 Predawn (r2=0.19)  Midday (r2=0.24) Diff (r2=0.13) 
 
 
Fixed Effect d.f.† F P d.f.† F P d.f.† F P 

Species Richness 1, 19.8 7.95 0.01* 1, 36.6 0.12   0.73 1, 33.5 2.62   0.12  
RH 1, 188 7.15 0.008* 1, 186.7 29.01 <0.0001* 1, 189.7 17.2 <0.0001* 
Sp Rich x RH 1, 185 2.12 0.15 1, 184.9 0.0003   0.99 1, 187.9 0.35   0.56 

 
Appendix D.  Effects of all daily RH differences with aboveground biomass production 
included. 

 Predawn (r2=0.21) Midday (r2=0.25) Diff (r2=0.14) 
 
 
Fixed Effect d.f.† F P d.f.† F P d.f.† F P 

Species Richness 1, 19 6.79 0.02* 1, 30 0.32   0.58 1, 25 3.58   0.07  
RH 1, 187 7.25 0.008* 1, 187 28.1 <0.0001* 1, 189 16.6 <0.0001* 
Sp Rich x RH 1, 184 2.18 0.14 1, 185 0.007   0.93 1, 188 0.28   0.60 
Herbaceous AGB 1, 15 0.56 0.47 1, 24 2.43   0.13 1, 19 2.76   0.11 

 
† These analyses took into account spatial variation associated with the blocked design 
(“Block” in the BioCON framework).  In the linear mixed effects model framework, 
denominator degrees of freedom “float” based on the degree of variation attributed to 
block differences, this is why denominator degrees of freedom are different depending on 
the metric described in this table. 
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Appendix E.  Daily average vapor pressure deficit, species richness, and interactions 
drive predawn leaf water potential.  Midday and diff in plant water status (ψmd- ψpd) 
become more negative with increasing VPD. 

 Predawn (r2=0.23) Midday (r2=0.23) Diff (r2=0.12) 
 
 
Fixed Effect d.f.† F P d.f.† F P  d.f.† F P 

Species Richness 1, 22.5 8.85 0.007* 1, 35.9 0.05   0.81 1, 32.3 2.32 0.14  
VPD 1, 190.1 11.1 0.001* 1, 188.2 27.8 <0.0001* 1, 189.9 14.53 0.0002* 
Sp Rich x VPD 1, 189.3 10.3 0.002* 1, 184.9 0.14   0.71 1, 189 2.97 0.09 

 
 
 
Appendix F.  Effects of all daily VPD differences with aboveground biomass production 
included. 

 Predawn (r2=0.25) Midday (r2=0.24) Diff (r2=0.13) 
 
 
Fixed Effect d.f.† F P d.f.† F P  d.f.† F P 

Species Richness 1, 21 7.63 0.01* 1, 30 0.20   0.66 1, 24 3.15 0.09  
VPD 1, 189 11.0 0.001* 1, 188 26.9 <0.0001* 1, 188 13.87 0.0003* 
Sp Rich x VPD 1, 188 10.7 0.001* 1, 188 0.09   0.77 1, 188 2.81 0.10 
Herbaceous AGB 1, 17.3 0.86 0.37 1, 23.5 2.37   0.14 1, 17 2.58 0.13 

† These analyses took into account spatial variation associated with the blocked design 
(“Block” in the BioCON framework).  In the linear mixed effects model framework, 
denominator degrees of freedom “float” based on the degree of variation attributed to 
block differences, this is why denominator degrees of freedom are different depending on 
the metric described in this table. 
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Appendix G. Daily effects of species richness and site-level RH on plot-level RH. 
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Appendix H.  Daily effects of species richness and site-level VPD on plot-level VPD. 
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