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ABSTRACT

ZEBRAFISH AS A MODEL FOR DETERMINING THE MECHANISMS CAUSING 
DEAFNESS IN MYH9-RELATED DISEASE

by

Luke Spychalla

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Dr. Jennifer Gutzman, Ph.D.

Approximately 1 in 500 infants are diagnosed with hearing loss, and about 

half of these cases can be traced to genetic defects. Several hundred genes 

have been implicated in deafness, including MYH9, which codes for the 

conventional motor protein non-muscle myosin IIA (NMIIA). Mutations  in MYH9 

lead to syndromic MYH9-related diseases, which include deafness as a variable 

symptom, as well as non-syndromic autosomal deafness  DFNA17. Despite its 

identification as a deafness gene, the functions of MYH9 in ear development and 

hearing remain unknown. To study this role, we will use zebrafish as a model. 

Zebrafish offer significant advantages including established genetic tools, large 

clutch sizes, and transparent embryos that develop externally. In addition, non-

muscle myosin genes, including MYH9, are highly conserved from zebrafish to 

human, and the development and function of the vertebrate ear is also highly 

conserved. Zebrafish share many inner ear structures with humans including the 

sensory hair cells  and cilia that make vestibular and auditory function possible.  

We hypothesize that myh9 plays a significant role in the developing zebrafish ear 

as suggested by myh9 knockdown experiments, which resulted in the phenotype 
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of an abnormal number of otoliths. Because otoliths nucleate from precursor 

particles distributed in the fluid of the otic vesicle by motile cilia, we further 

hypothesize that the otolith phenotype is  caused by a cilia defect. Our work has 

demonstrated that NMIIA colocalizes with ciliary basal bodies in the otic vesicle, 

suggesting a possible role in establishing basal body orientation.
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Chapter 1: Introduction

A. General Introduction

 In humans, mutations in the MYH9 gene encoding the well-conserved 

actin motor protein non-muscle myosin IIA (NMIIA) result in a host of disorders, 

collectively known as MYH9-related diseases. These consist of May-Hegglin 

anomaly, Fechtner Syndrome, Sebastian Syndrome, and Epstein Syndrome, with 

symptoms including platelet abnormalities, nephritis, visual defects, and 

sensorineural deafness (Heath et al., 2001). There are five known mutations in 

MYH9 that are associated with syndromic deafness, and there is a single point 

mutation in MYH9 which causes nonsyndromic deafness DFNA17 (Lalwani et al., 

2000; Seri et al., 2000).   

 We are using the zebrafish as  a model system to determine the role of 

MYH9 in the formation and function of the ear as an initial step to determine the 

mechanisms leading to deafness in human MYH9-related diseases. One specific 

advantage of using zebrafish is the conservation of anatomy and physiology of 

the vertebrate inner ear structures (Thomas et al., 2013). In addition, zebrafish 

have easily-accessible hair cells  in their ear during development as well as in the 

lateral line, a sensory system consisting of clusters of hair cells  called 

neuromasts used to sense displacement of water outside the body (Ghysen & 

Dambly-Chaudiere, 2007). There is  high sequence identity between human and 

zebrafish MYH9 genes (table 1), and there are ample tools  available to 

manipulate myh9 genetically in zebrafish, such as short antisense 

oligonucleotides for gene knockdown (Schartl, 2014). Zebrafish embryos are 
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transparent in early development, mature externally, and are born in large 

clutches, making them ideal for studying the development and function of the ear 

and potentially useful as a drug screening tool in the future. 

B. Myosin II Structure and Function. 

 The MYH9 gene mutated in MYH9-related diseases encodes for non-

muscle myosin IIA. Non-muscle myosins make up just one portion of the class II 

myosins. The myosin proteins in general are a superfamily of 35 classes of motor 

proteins that share the property of force transduction through ATP hydrolysis in 

order to move along actin filaments (Odronitz & Kollmar, 2007). Myosins are 

classified into two categories. The first is conventional class II myosins and the 

second is unconventional myosins, which includes all other myosin classes. 

These large families of proteins have diverse and highly conserved roles across 

the kingdoms, ranging from trafficking of cargo (Odronitz & Kollmar, 2007), to 

cytokinesis  (Scholey, Brust-Mascher, & Mogilner, 2003), to maintenance of cell 

shape (Yumura & Uyeda, 2003). Conventional myosin II is  divided into two 

groups of proteins  based on function. The first is muscle myosin II proteins which 

serve as contractile elements of the sarcomere in fibers of cardiac, smooth and 

skeletal muscle and the second is non-muscle myosin II (NMII) proteins which 

carry out a variety of intracellular functions including cell migration, cell division, 

and cell shape changes through interaction with the actin cytoskeleton (Lo et al., 

2004; Saitoh et al., 2001; Svitkina et al., 1997). NMII exists in three isoforms: 

non-muscle myosin II A, B, and C, encoded by the genes MYH9, MYH10 and 
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MYH14, respectively; however, only mutations  in MYH9 lead to MYH9-related 

diseases. 

Several specific functions for NMIIA have been characterized. Related to 

its ability to bind actin are several roles pertaining to cytoskeleton binding, 

including maintenance of cellular shape and organization, cell migration, and 

cytokinesis  (Heath et al., 2001). Combining this cytoskeletal binding function of 

NMIIA with the ability to interact with cargo at its tailpiece also allows it to move 

organelles and vesicles within the cytosol and for endo- and exocytosis 

(Ricketson, Johnston, & Prehoda, 2010).

  The NMII isoforms share the structural configuration of being hexameric 

two-headed proteins composed of a heavy chain dimer and two pairs of light 

chains to yield a bipolar structure (Fig. 1) (reviewed by Eddinger & Meer, 2007). 

The N-terminus contains two globular heads that serve as the domains 

responsible for actin binding and ATP hydrolysis to generate motion. Adjacent to 

the head domain is the neck domain, a linking region of the protein that acts  as a 

lever arm to transduce the force generated at the motor heads to the power 

stroke that moves the entire protein along actin. The neck domain is  also the site 

of association for a pair of regulatory light chains, which regulate NMII activity, 

and a pair of essential light chains, which stabilize the heavy chain structure 

(Conti & Adelstein, 2008; Vicente-Manzanares et al., 2009). At the C-terminal end 

of the dimer is a single rod domain composed of alpha helices. These are 

arranged in a coiled-coil motif which allows for the myosin monomers to 

polymerize into bipolar filaments. At the end of the rod domain is  a short non-
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helical tailpiece that is  able to bind cargo molecules and potentially interact with 

other myosin molecules (Sanborn et al., 2011). Of these regions, mutations in the 

head domain result in the most deleterious deafness phenotypes, specifically in a 

subdomain called the SH1 helix which composes a joint connecting other head 

subdomains (Iwai, Hanamoto, & Chaen, 2006; Murayama et al., 2013).

  Studies in mouse have found myh9 expression throughout auditory hair 

cells, including the apical membrane, cytosol, stereocilia and mitochondria 

(Mhatre et al., 2006). In zebrafish we have demonstrated that NMIIA is expressed 

throughout the embryo from the onset of ear development (Gutzman et al., in 

review). Although myh9 expression has been found in the ear in multiple model 

systems, the role for myh9 in development and function of the ear is unknown. 

  

C. MYH9-Related Disease and the Mutations that Cause Deafness

 Disease associated with mutations in MYH9 can be categorized as 

syndromic or nonsyndromic. Currently, there is only one disorder associated with 

MYH9 that is  nonsyndromic: autosomal dominant nonsyndromic deafness 17 

(DFNA17). DFNA17 is known to result in sensorineural hearing loss with an 

onset of high frequency hearing loss at ten years of age that degenerates to 

severe deafness at all frequencies  near age thirty (Lalwani et al., 1999), and 

does not have the hematological symptoms common in MYH9 syndromic 

diseases (Lalwani et al., 2000). MYH9 syndromic disease includes four similar 

disorders that are collectively called MYH9-related disease, and which share the 

properties of being rare and heritable in an autosomal dominant fashion (Heath 
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et al., 2001). The names of these diseases are May-Hegglin anomaly, Fechtner 

Syndrome, Sebastian Syndrome, and Epstein Syndrome. 

 Symptoms of MYH9-related diseases typically include the hematological 

conditions of macrothrombocytopenia and leukocyte inclusion bodies (Mhatre et 

al., 2007). There are also a set of variable symptoms associated with MYH9-

related disease which include glomerulonephritis, sensorineural deafness, and 

presenile cataracts (Heath et al., 2001). The reason for the relative invariability of 

hematological symptoms over these variable ones is that hematopoietic cells 

express MYH9 only, and not the isoforms of MYH10 or MYH14. NMIIB and 

NMIIC may compensate for reduced or ineffective NMIIA in tissues susceptible to 

variable symptoms such as the kidney, inner ear, and eye (Heath et al., 2001). 

Additionally, it is believed that unknown genetic, epigenetic and environmental 

factors may play a role in MYH9-related disease phenotypes (Heath et al., 2001).

 To date, 45 mutations in MYH9 have been identified in the human 

population, 80% of which are clustered in 6 of the 40 MYH9 exons (Iwai et al., 

2006). The most frequent specific mutations  are R702C, D1424N, E1841K, and 

R1933X (Fig. 1) (Heath et al., 2001). Of these known mutations, several have 

been associated with definite or variable risk of syndromic or non-syndromic 

hearing loss (Heath et al., 2001). Generally, mutations in the NMIIA head 

domains result in the most severe hearing phenotypes. It is  hypothesized that 

these mutations are more severe because they destabilize the SH1 helix that 

acts as a joint between other head domains (Iwai et al., 2006). These include the 

mutations Arg702 (R702C and R702H) which results in hearing impairment in 
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early infancy that degenerates to full deafness in adolescence (Kunishima & 

Saito, 2010), and R705H, which causes autosomal dominant nonsyndromic 

deafness DFNA17 (Fig. 1) (Kunishima & Saito, 2010). While these MYH9 

mutations are known to be associated with deafness, the role for MYH9 in the 

development and function of the ear is completely unknown.

D. Conservation and Development of the Vertebrate Ear

i. Anatomy and Physiology of the Vertebrate Inner Ear

 Vestibular and auditory sensation are carried out by similar structures in 

humans and zebrafish with some notable alterations, as reviewed by Riley & 

Phillips (2003) (Fig. 2). In both species, vestibular sensation occurs in the utricle 

for detection of linear horizontal acceleration, and the semicircular canals which 

detect angular acceleration in different planes. In humans, another vestibular 

organ called the saccule is  used for detection of vertical acceleration. The 

saccule is also present in zebrafish; however, in zebrafish the saccule is  used for 

detection of vertical acceleration and for auditory sensation (Fig. 2). It works in 

combination with the swim bladder and a specialized sensory organ called the 

lagena. The swim bladder links to the saccule through three small bones called 

the Weberian ossicles (Bang, Sewell, & Malicki, 2001). The utricle, saccule and 

lagena possess luminal bodies composed of calcium carbonate and protein 

called otoliths which assist in sensation by increasing sensory cell activity 

through inertial and gravitational movement. Humans do not possess  a lagena, 

but have a single organ for hearing called the cochlea (Fig. 2). Although fish do 
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not have a cochlea, the physiology underlying sensory cell function is  highly 

conserved. 

 In both species, the vestibular and auditory organs described above rely 

upon sensory hair cells  (Fig. 3) as receptors to sense vibrations created by 

acceleration or sound. Hair cells are found in sensory patches called cristae at 

the base of the semicircular canals, in the organ of Corti in the cochlea, and in 

maculae present in the utricle, saccule and lagena (Fig. 2), and are bathed in a 

high potassium fluid called endolymph. Hair cells possess  a polarized apical 

surface with rows of stereocilia, which are actin-based, microvilli-like, and 

connected to one another by tip, horizontal, and ankle links (Fig. 3) (Nicolson, 

2005). Rows of stereocilia increase in height in a staircase-like organization, and 

the tallest are connected by a kinocilial link to a single kinocilium, a true cilium 

with a microtubule-based core (Fig. 3) (Nicolson, 2005). Kinocilia are used to 

couple stereociliary bundles to an overlying gelatinous extracellular matrix that 

assists  in the deflection of hair cells in sensory patches  (Nicolson, 2005). In the 

semicircular canals  this matrix is the cupula, in the cochlea it is the tectorial 

membrane, and in the utricle, saccule and lagena it is the otolithic membranes, 

which bind kinocilia to otoliths so that they can serve as additional inertial 

masses for stereociliary bundle deflection.  

When the linked stereocilia are deflected in one direction by a vibrational 

disturbance to their overlying cupula, tectorial membrane, or otoliths, 

mechanically-gated potassium ion channels at the tips of the stereocilia are 

pulled open and potassium ions from the endolymph enter (Fig. 3). This 
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depolarizes the hair cell membrane and opens electrically-gated ion channels to 

allow calcium to enter the hair cell, which in turn succeeds in signaling for the 

release of neurotransmitter at the basal membrane (Fettiplace & Kim, 2014). At 

an associated synapse, the released neurotransmitter is responsible for starting 

an action potential that propagates along the vestibulocochlear nerve to the brain 

for processing. 

 Mechanotransduction of hair cell bundles relies on the structural integrity 

of its  parts (Nicolson, 2005). In addition to stereocilial and kinocilial links, 

stereocilia bundles are stabilized by a dense actin meshwork known as the 

cuticular plate (Nicolson, 2005). The cuticular plate is  located just below the 

apical surface of hair cells and connects with the actin-based cores of the 

stereocilia (Nicolson, 2005). Maintenance of the cuticular plate and its associated 

stereocilia is dependent on tip-link protein cadherin 23, myosin 6 (Kernan & 

Zuker, 1995; Seiler et al., 2004), and myosin 7a (Ernest et al., 2000; Sollner et 

al., 2004). 

 The hair cells of the zebrafish lateral line system are anatomically and 

physiologically similar to those of the inner ear, and can be used as  a proxy in 

research because they are easier to access than inner ear hair cells (Mirkovic, 

Pylawka, & Hudspeth, 2012). Like the inner ear described above, the zebrafish 

lateral line consists of mechanosensory hair cells  for sensation. These are 

grouped with support cells  into organs called neuromasts which function to detect 

external vibrations close to the body for behaviors such as schooling, prey 

detection, and predator and obstacle avoidance (Coombs, Fay, & Janssen, 
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1989). Each neuromast of the lateral line consists  of two equal-sized populations 

of hair cells  oriented 180º relative to each other in order to respond to stimuli in 

either direction along the neuromast axis  of sensitivity (Ghysen & Dambly-

Chaudiere, 2007; Lopez-Schier et al., 2004). Mirkovic et al. (2012) demonstrated 

that neuromast hair cells and their centrosomes (during immature stages) 

undergo rotational rearrangement, and that this can occur twice as the 

neuromast develops to maturity.

ii. Development of the Zebrafish Ear

 The development of the inner ear is highly conserved in all vertebrates, 

although the timings of proliferation and differentiation events  vary somewhat 

between species  (Haddon & Lewis, 1996). The result of these events are the 

three main cell types of the inner ear occurring together in a conserved 

relationship, those being hair cells, support cells and neurons (Riley & Phillips, 

2003). 

 Development of the inner ear is well characterized in the zebrafish and is 

described in detail below (Fig. 4) (Haddon & Lewis, 1996; Whitfield et al., 2002). 

The ear is first initiated as a placode that forms on either side of the hindbrain 

from the posterior end of rhombomere 4 through rhombomere 6, which becomes 

visible by 16 hpf as the neural ectoderm thickens  (Fig. 4) (Haddon & Lewis, 

1996). Development begins with the specification of the tissue from the lateral 

edges of the hindbrain (Groves & Bronner-Fraser, 2000) and subjacent 

mesendoderm (Riley & Phillips, 2003). Otic placode induction is regulated 
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primarily by Fgf3 and Fgf8 signaling pathways, which in turn regulate other genes 

such as sox9a, pax2a, pax2b, and pax8, all of which are required for proper 

placode induction (Hans, Liu, & Westerfield, 2004; Liu et al., 2003). Patterning of 

the placode is  believed to be controlled by signals from pharyngeal endoderm 

(Jacobson, 1963) and is hypothesized to be controlled by Fgf3 and Shh (Riley & 

Phillips, 2003).

At approximately 18 hpf, the placode cavitates to form a lumen (Fig. 4). 

The structure is termed the otic vesicle at this  point (Haddon & Lewis, 1996), and 

consists of an epithelial sac containing hair cells (Sprague et al., 2006). Genesis 

of the otic vesicle requires  interactions with adjacent tissues and incorporation of 

additional cells from the neural crest and mesoderm (Couly et al., 1993; Fritzsch 

et al., 1997; Noden, 1986). Patterning of the otic vesicle relies on Hedgehog 

signaling from underlying midline structures (Hammond et al., 2003). Of note is 

that mammals do not form the otic vesicle by cavitation, but by invagination to 

create a cup-like shape that later seals shut (Riley & Phillips, 2003); however, 

genes regulating the formation of the vesicle are highly conserved (Riley & 

Phillips, 2003).  

 The initial expansion of the otic vesicle lumen is  closely followed in time by 

the appearance of a pair of hair cells at the anterior and posterior poles of the 

otic vesicle (Haddon & Lewis, 1996). These hair cells do not function in sensation 

until 23 hpf (Tanimoto, Ota, Inoue, & Oda, 2011); rather, their initial role is to bind 

otolith precursor particles at the tips of their kinocilia as nucleation sites for the 
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developing otoliths  of the utricle and saccule (Fig. 4). Due to this specialized role, 

these kinocilia are referred to as tether cilia (green lines in Fig. 5). 

 Genesis of hair cells is  regulated by hair cell fate determination factor 

Atoh1b, one role of which is  to modify the action of the ciliogenic gene foxj1b to 

result in kinocilia differentiation (Yu et al., 2011). By 48 hpf there are 

approximately 10 - 20 hair cells per macula, and after 72 hpf the number of hair 

cells grows in each macula by about 15 cells  per day until a final number of 50 to 

60 hair cells is reached at maturity (Haddon & Lewis, 1996). The cristae are 

formed from 60 hpf to 72 hpf, and each contains about 20 hair cells at maturity 

(Haddon & Lewis, 1996). 

  Cilia are hair-like organelles that project from the apical surface of most 

vertebrate cell types (Fliegauf et al., 2007). They are composed of a microtubule 

core known as the axoneme, which is covered with plasma membrane 

continuous with that of the cell body (Fig. 6) (Satir & Christensen, 2007). Basal 

bodies, a pair of specialized centrioles, are required to position the axoneme and 

anchor it into the apical surface of its supporting cell (Ainsworth, 2007). Cilia exist 

in both immotile and motile forms (Fliegauf et al., 2007). Immotile cilia function in 

sensation of physical and biochemical extracellular signals (Satir & Christensen, 

2007). Motile cilia use the motor protein dynein to bend along their length in order 

to move substances across epithelia, such as mucus in the respiratory tract and 

cerebrospinal fluid in the brain (Satir & Christensen, 2007). Cilia are assembled 

in quiescent cells after a mature centriole migrates and docks beneath the cell 

membrane (Ishikawa & Marshall, 2011). If a ciliated cell becomes mitotically 
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active, the cilium is reabsorbed by the cell preceding division (Quarmby & Parker, 

2005).

 Immotile and motile forms of monocilia extend from every epithelial cell of 

the otic vesicle upon the opening of its  lumen (Fig. 7) (Stooke-Vaughan et al., 

2012). The number of ciliated cells at this stage is  approximately 100, and 

increases to approximately 225 by 24 hpf (Riley et al., 1997). Two cilia types 

which are critical for proper ear development include kinocilia, which were 

discussed above, and motile cilia. Large numbers of short motile cilia are initially 

present throughout the otic vesicle, but they decrease in length and disappear by 

24 hpf (Yu et al., 2011). There are also motile cilia present on epithelial cells 

immediately surrounding the hair cells at the poles of the otic vesicle which 

persist past 24 hpf and are intermediate in length between the short cilia and the 

tether cilia of the otic vesicle. 

 By 19.5 hpf two otoliths appear at the poles and become attached to 

tether cilia by 20 hpf (Riley & Phillips, 2003), a process which is critically 

dependent on motile cilia to circulate fluid which transports otolith precursor 

particles within the otic vesicle lumen (Riley et al., 1997). Additionally, throughout 

these time points, neuroblasts delaminate from the otic vesicle and differentiate 

into neurons that will comprise the 8th cranial nerve (Haddon & Lewis, 1996). 

 At 45 hpf, epithelial projections grow into the lumen and there fuse at 55 

hpf to form the hubs around which three semicircular canals will develop (Riley & 

Phillips, 2003) (Fig. 2). This  process of morphological formation requires the 

gene ugdh which produces one of the subunit building blocks  of hyaluronic acid 
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(Walsh & Stainier, 2001), and its putative regulator gene dfna5, a known human 

deafness gene (Busch-Nentwich et al., 2004; Gregan et al., 2003). These are 

members of a collection of genes shown to be necessary for semicircular canal 

formation, which also includes dlx5, hmx2, hmx3 and fgf10 (as reviewed by 

Chang et al., 2004). Multiple bmp genes cooperate to regulate development of 

the semicircular canals and sensory cristae as well (Riley & Phillips, 2003).

 The ear is  functional by 96 hpf in zebrafish larvae, when the acoustic 

startle response, and an ability to orientate relative to gravity can be observed 

(Kimmel, Patterson, & Kimmel, 1974). Later in larval development, the main 

chamber of the otic vesicle subdivides into the utricle, saccule and lagena, a third 

otolith forms in the lagena, and the anterior and posterior macula mature into four 

distinct macula (Platt, 1993). These are the utricular, saccular, and lagenar 

macula discussed above, and the macula neglecta (Fig. 2), which senses low 

frequency vibration (Corwin, 1983). Genes found to be responsible for otic 

vesicle maturation and compartmentalization include pax2, gata3, dlx3, and 

bmp4 (Fekete & Wu, 2002; Fritzsch & Beisel, 2001; Torres & Giraldez, 1998). 

Also, it should be noted that myh9 is included in the category of genes already 

identified here that are known to be expressed in or adjacent to the otic vesicle 

(Mhatre et al., 2006).

iii. Otoliths

 Otoliths, also known as otoconia or ear stones, are masses of minerals 

and proteins that act as inertial loads in the mature ear to assist with the 
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deflection of hair cell stereocilia (Fig. 2). During development in zebrafish, otoliths 

are crystalized from precursor particles that are emitted by epithelial cells into the 

otic vesicle lumen beginning at 18.5 hpf and continuing to 24 hpf (Riley et al., 

1997) in what is thought to be an apocrine process (Pisam et al., 2002). These 

precursor particles attach to tether cilia around 20 hpf and continue 

agglomeration at the ends of these cilia until ovoid masses are formed at the 

anterior and posterior poles of the otic vesicle (Figs. 4 and 5) (Riley & Phillips, 

2003). 

 Otoliths grow from particles in a characteristic manner. As reviewed by 

Pisam et al. (2002), particles  are initially arranged in parallel arrays  which are 

then combined into pseudocrystalloid structures. These are then joined in 

concentric arrays called spherules, which aggregate into globules, and then 

combine into a roughly spherical otolith by 30 hpf. The otolith grows further in 

size and changes in shape by 50 hpf to have a flattened epithelium-facing 

hemisphere and a rounded hemisphere, and consists of an internal nucleus 

structure surrounded by two concentric layers of matrix (Pisam et al., 2002). This 

matrix includes glycoproteins, proteoglycans, and collagens, as well as  calcium 

carbonate in aragonite form which comprises 90–95% of the otolith (Pisam et al., 

2002). Several genes have been shown to be necessary for the process of otolith 

formation, including otopetrin 1 and starmaker (Sollner et al., 2003). An otolith 

precursor-binding factor was hypothesized by Riley et al. (1997) that is 

responsible for localizing and adhering otolith particles to tether cilia, and other 
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research has supported a role for such a factor, although it has never been 

discovered (Stooke-Vaughan et al., 2012). 

 Otolith formation is also dependent on motile cilia in the otic vesicle to 

circulate fluid which transports otolith precursor particles (Riley et al., 1997) and 

keeps the otolith in a constant state of motion at the end of its tethers (Wu et al., 

2011) (Fig. 7). Specifically, motile cilia are implicated in transporting precursor 

particles toward tether cilia to account for otolith number, position, and size 

(Colantonio et al., 2009), and in stirring the fluid at the otolith formation region of 

the otic vesicle to account for the flat base of the otolith (Wu et al., 2011).

 The shape and size of otoliths is  believed to be crucial for sensory function 

(Nicolson, 2005; Sollner et al., 2003). The two originally pseudo-spherical otoliths 

differ in shape and size once fully developed (Haddon & Lewis, 1996). The 

posterior otolith retains a somewhat spherical shape and measures 55 µm in 

diameter. The anterior otolith is smaller and discoid in shape, and measures 

about 25 µm in dorso-ventral thickness and 45 µm in diameter. It has been found 

that otolith size plays a critical role in acoustic sensory transduction, and growth 

of the otolith is  tightly regulated during development so that it assumes an 

appropriate size for acoustic sensory transduction (Inoue, Tanimoto, & Oda, 

2013). Shape may also be important for otolith function. In the zebrafish, this 

shape is aspherical, with a flat bottom and mushroom-shaped top (Wu et al., 

2011). Wu et al. (2011) hypothesize that the flat-bottomed shape of the otolith 

allows orthogonal cilia implantation, allowing maximal sensitivity of stereocilia 

bundles to linear fluid displacements (Karavitaki & Corey, 2010; Wu et al., 2011). 
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iv. Cilia

 Several genes have been identified that are necessary for ciliary motility. 

Foxj1b is a regulator of ciliary motility that is first expressed at 10 hpf in the 

nascent otic placode (Yu et al., 2011). Once the otic placode is formed at 16 hpf, 

until the time point of 22 hpf, its  expression gradually becomes spatially restricted 

to the poles of the otic vesicle (Yu et al., 2011). This expression pattern is  thought 

to mirror the locations of motile cilia through these time points (Riley et al., 1997; 

Yu et al., 2011). Other genes required for ciliary motility are the dynein regulatory 

complex genes  gas8 (Colantonio et al., 2009) and dnaaf1 (Stooke-Vaughan et 

al., 2012).

 The proportion of otic vesicle cilia that are motile throughout development 

is disputed in current literature.  According to Stooke-Vaughan et al. (2012), the 

number of cells having motile cilia remains constant over these developmental 

stages with a number of approximately 5 for wild-type AB zebrafish, and these 

cilia are to be found at an anterior and a posterior pole as well as along the 

medial wall of the otic vesicle. Additionally, Stooke-Vaughan and colleagues 

found that tether cilia are immotile. Colantonio et al. (2009) argued that tether 

cilia are the only motile cilia present in the otic vesicle. Riley et al. (1997) 

predicted that large numbers of short cilia in the otic vesicle would be motile and 

hair cell kinocilia would be immotile, and this view was substantiated by the 

experimental evidence of Yu et al. (2011).
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 In polarized epithelia, the correct orientation of the cilia and their basal 

bodies is determined by translational and rotational polarity. As described by 

Mirzadeh et al. (2010), translational polarity refers to the position of basal bodies 

near the apical surface of the cell, and rotational polarity describes the angle of 

individual basal bodies  with respect to their long axis (Fig. 6). Either of these two 

polarities can affect the orientation and tilt of the long axis of a cilium (Mirzadeh 

et al., 2010). This positional information is critical for the correct orientation of 

motile cilia and their basal bodies in order to produce ciliary movement 

necessary to achieve normal fluid flow within the otic vesicle (Marshall & Kintner, 

2008); however, the cellular mechanisms responsible for setting up and 

maintaining correct ciliary polarity in the otic vesicle are not completely 

understood.

 Movement of the motile cilia in the otic vesicle is rotary (Stooke-Vaughan 

et al., 2012). If the long axis  of a cilium were positioned perpendicularly to the cell 

membrane, the resultant fluid flow produced by the cilium would be a vortex. The 

effect of multiple cilia beating in this manner, in a consistent direction, within a 

fluid-filled vesicle, would be a circular flow around the epithelium (Nonaka et al., 

2005). This is  contrary to what is found in the zebrafish otic and Kupffer’s 

vesicles, where a linear flow exists instead (Essner et al., 2005; Wu et al., 2011). 

Linear flow is achieved by tilting the cilium so that its tip passes close to the 

apical membrane in one part of its elliptical path, or drags along it to produce a 

D-shaped path if the tilt angle is sufficiently obtuse (Nonaka et al., 2005). 

Because fluid near a solid surface does not move as readily as fluid far from a 
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surface (this phenomenon is termed the no-slip boundary condition), the cilium 

produces less fluid flow in the direction of its path directed away from the surface 

and more force in the opposing direction (Brokaw, 2005). The result of many 

motile cilia moving in the same direction with the same direction of tilt is 

continuous fluid flow in one direction (Brokaw, 2005). 

The Role of Myh9 in the Ear

 We conducted myh9 knockdown experiments in zebrafish and found 

abnormal number of otoliths at 36 hpf. Based on this finding, we hypothesize that 

there is a defect in the development or function of cilia in the developing ear of 

zebrafish with myh9 knockdown. We further hypothesize that myh9 is required for 

ciliary orientation or motility, which may impact sensory processes, hair cell 

structural integrity, cell signaling in the ear, or mechanical ciliary function to 

account for deafness symptoms when the gene is mutated. Using the zebrafish 

as a model, we investigated the role of myh9 in ear development and function as 

a first step toward understanding the mechanisms involved in MYH9-related 

disease, which is the purpose of this thesis.
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DNA Protein

myh9 79.3% 83.3%

myh9a 77% 77%

Table 1: Zebrafish homology with human MYH9. Data indicates the 
percentage of matching sequence identity between the DNA of the zebrafish 
genes myh9 or myh9a and the human gene MYH9, as well as the percentage of 
matching sequence identity in the protein products of these genes. myh9a is an 
ohnolog to myh9, and is not present in humans. (Flicek et al., 2014).
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Fig. 1: The myh9 gene and its protein product, non-muscle myosin IIA. (A) 
The myh9 gene is comprised of 40 exons; those coding for the head domain are 
shown in purple, and those coding for the rod and tailpiece domains are shown in 
blue. Mutations causing deafness are present at amino acids 702, 705, 1424, 
1841 and 1933. (B) The NMIIA protein consists of a dimer made up of a head, 
neck, rod, and nonhelical tailpiece domain. The myosin regulatory and essential 
light chains are bound to the neck domain, shown in yellow and orange, 
respectively.
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Fig. 2: Inner ear structure is highly conserved between humans and 
zebrafish. (A) Human inner ear. (B) Adult zebrafish inner ear. Locations of hair 
cells are indicated in red; locations of otoliths are indicated in blue. Auditory 
sensation is carried out by the cochlea in humans and the saccule and lagena in 
zebrafish. Humans and zebrafish use the macular organs of the utricle and 
saccule to detect linear acceleration as part of their vestibular systems.

21



Fig. 3: Structure of a hair cell. Hair cells are sensory cells of the auditory and 
vestibular systems in humans and zebrafish, as well as the lateral line system in 
zebrafish. The cells possess  a staircase-like arrangement of actin-based 
microvilli on their apical surface as well as a microtubule-based kinocilium used 
to detect motion in extracellular fluid. Hair cells  are positioned in close proximity 
to support cells that assist their function.
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Fig. 4: Zebrafish ear development between 16 and 24 hpf. Black arrowheads 
indicate the location of the developing ear; inset boxes show a higher 
magnification image of the developing ear. Otoliths are visible by brightfield 
imaging at otic vesicle poles by 22 hpf. Anterior is to the left in all images.
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Fig. 5: Structures of the zebrafish otic vesicle. (A) Diagram of the embryonic 
zebrafish otic vesicle at 24 hpf. (B) Magnification of the boxed region of A 
showing detailed anatomy of one pole of the otic vesicle indicating hair cells, hair 
cell cilia, and otolith location.
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Fig. 6: Cilia structure and polarity. Cilia anatomy is labeled as indicated. Six 
values describe the orientation of a cilium. The x, y, and z Cartesian coordinates 
describe translational polarity (shown in red), and three angles describe 
rotational polarity (shown in green). The blue asterisks indicate the polarity 
values that affect ciliary tilt. The blue cross indicates perpendicular rotation.
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Fig. 7: Structures of the zebrafish otic vesicle. (A) Diagram of the embryonic 
zebrafish otic vesicle at 24 hpf. (B) Magnification of the boxed region of A 
showing detailed anatomy of one pole of the otic vesicle, including epithelial cell 
motile and immotile cilia.
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Chapter 2: Characterization of a Non-Muscle Myosin IIA-Dependent Otolith 
Phenotype 

Introduction

 MYH9 has been identified as a gene that can lead to human deafness 

when mutated. This symptom is found in two categories of disease. The first is a 

condition named autosomal dominant nonsyndromic deafness 17 (DFNA17), 

which results in an onset of high frequency sensorineural hearing loss beginning 

near ten years of age that degenerates to severe deafness at all frequencies 

near age thirty (Lalwani et al., 1999). The other category of disease consists of 

four similar disorders collectively labeled MYH9-related diseases, which share 

the hematological symptoms of abnormal platelets and leukocytes, and include 

deafness as a variably-occurring symptom (Mhatre et al., 2007). 

 MYH9 codes for the protein non-muscle myosin IIA (NMIIA), which is one 

isoform of the more general class of myosins called non-muscle myosin II (NMII). 

This class also includes the isoforms non-muscle myosin IIB (NMIIB) and non-

muscle myosin IIC (NMIIC). The human MYH9 gene consists of 40 exons 

(Kunishima & Saito, 2010) and the mutations that most consistently lead to the 

deafness phenotype occur in exons coding for the catalytic head domain of the 

NMIIA protein, where ATP is hydrolyzed to create a conformational change in the 

protein that allows it to move along actin (Huang et al., 2013). 

 Myh9 is expressed in both the apical and basal membranes of mouse otic 

vesicle epithelial cells from the beginning of the vesicle formation at embryonic 

day 10.5 (Mhatre et al., 2004). Continued expression is present throughout 

mouse development to maturity within several tissues of the cochlea, including 
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the cochlear duct and hair cells (Mhatre et al., 2006).  Also, Gutzman et al. (in 

review) demonstrated in the zebrafish that myh9 is expressed throughout the 

embryo during the 16 - 24 hpf developmental period that is critical for ear 

formation (Haddon & Lewis, 1996). 

 We hypothesized that NMIIA is required for vertebrate ear development 

and function. In order to test this hypothesis we used the zebrafish as a model 

system. Zebrafish provide a useful model for examining the molecular basis for 

how myh9 mutations cause deafness for several reasons. There is a high degree 

of conservation between the anatomy and physiology of human and zebrafish 

inner ear structures (Fig. 2) (Thomas et al., 2013). There is also high sequence 

homology between the human and zebrafish MYH9 genes (Table 1). Lastly, 

zebrafish embryos are transparent in early development, mature externally, and 

are born in large clutches, making them ideal for studying the development and 

function of the ear.

 We conducted our studies during the ages of 16 hpf to 24 hpf in the 

zebrafish. During this time frame, the otic placode is formed and cavitates, the 

lumen of the otic vesicle expands, hair cell pairs develop at anterior and posterior 

poles of the lumen with specialized tether cilia, motile cilia are generated, and 

two otoliths are formed (Fig. 4) (Haddon & Lewis, 1996; Riley et al., 1997). 

Otoliths are of keen importance to hearing in zebrafish due to their roles as 

inertial masses for deflection of stereociliary bundles  in auditory sensory cells 

(Nicolson, 2005). Within the indicated eight hour period of ear development, the 

stages of 19 to 24 hpf are especially critical for otolith formation (Riley et al., 
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1997). The rate of growth of otoliths is most rapid during these stages, and its 

normal progression is reliant on a biological flow in the otic vesicle lumen 

perpetuated by beating cilia that disappear by 24 hpf (Colantonio et al., 2009; 

Riley et al., 1997).

 We tested the role of myh9 in the development and function of the 

zebrafish ear through a series of loss-of-function experiments. These were 

directed against the more general class of NMII proteins, as well as NMIIA. We 

found that NMII, and specifically NMIIA, loss-of-function resulted in the 

development of an abnormal number of otoliths in the zebrafish otic vesicle. 

These experiments indicate the importance of NMIIA in development of the ear 

and suggest that the zebrafish will be a useful model to uncover how myh9 

mutations lead to deafness in MYH9-related diseases.

Materials and Methods

Animals

For all studies, we used wild-type AB zebrafish. Embryonic stages are given as 

hours post fertilization (hpf). Standard procedures were used for zebrafish 

maintenance, husbandry and staging (Kimmel et al., 1995). 

Morpholino (MO) injections

Splice-site blocking morpholinos (Gene Tools) were dissolved in water and 

injected into one- to two-cell stage embryos in combination with membrane 
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targeting GFP (mGFP). Morpholinos and their sequences, targeted splice sites, 

and concentrations used are as follows:

• myh9 MO: 5’- ATGTCTGAAACAGTCGTTTACAAGC-3’; targets the zebrafish 

myh9 gene at EXON6-intron6 boundary. It was used at 3 ng/µl for all 

experiments. The myh9 sequence information is based on zebrafish Ensembl 

transcript ENSDART00000137105.

• myh9a MO: 5’-AGCAAGAGAGACTTACAAATCGAGA-3’; targets the zebrafish 

myh9a gene at intron1-EXON2 boundary. It was used at 4 ng/µl for all 

experiments. The myh9a sequence information is based on zebrafish Ensembl 

transcript ENSDART00000149823.

• standard control MO: 5′-CCTCTTACCTCAGTTACAATTTATA-3′; has no target. 

It was used at a concentration matching that of each experimental MO (myh9 MO 

or myh9a MO).

•p53 MO: GCGCCATTGCTTTTGCAAGAATTG-3’; targets the zebrafish p53 

gene. It was only used in conjunction with myh9 knock down experiments (myh9 

MO and control MO) at an equal concentration to the test morpholino (Robu et 

al., 2007).

Blebbistatin treatment

16 hpf embryos were treated with 50 mM blebbistatin in 0.1% DMSO (Sigma-

Aldrich, B0560) or 0.1% DMSO (Fisher Scientific, BP231-100) as control in E3 

medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO6) for three 

hours, then washed 3X in E3 medium. Embryos were then allowed to develop 
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until 36 hpf for analysis of otolith phenotypes. For embryo rotation experiments, 

incubated embryos were placed in a six-well plate with 3 mL of 50 mM 

blebbistatin or 0.1% DMSO E3 medium, and the plate was placed on a rotator 

(Barnstead) at 28ºC for three hours  and gently rotated to slightly move the 

embryos during the incubation.

Immunohistochemistry

Blebbistatin- or DMSO-treated embryos were raised to 24 hpf in E3 medium at 

28ºC, then were fixed in 4% paraformaldehyde for 2 h at room temperature or 

overnight at 4°C. Embryos were blocked in 10% goat serum and 0.1% BSA in 

PBT overnight, incubated overnight in primary antibody (anti-phosphorylated 

histone H3, Millipore, 06-570, 1:800), then incubated overnight in secondary 

antibody (goat anti-rabbit IgG conjugated with Alexa Fluor 488, Invitrogen, 

A11008, 1:500), in combination with propidium iodide (Invitrogen, P3566, 

1:1000). Embryos were mounted in glycerol and imaged using a Nikon CS2 

laser-scanning confocal microscope. Images were analyzed with Nikon Elements 

software and Photoshop (Adobe).

PH3 Analysis

Confocal stacks of the otic vesicle from embryos immunostained for 

phosphorylated histone H3 to label nuclei of proliferative cells and stained with 

propidium iodide to label all nuclei were merged into a maximum intensity 
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projection using Nikon Elements software. Proliferative cells were counted, 

averaged, and compared between control and myh9 morphant embryos. 

Otolith Phenotype Analysis

Embryos were placed in a 90 mm petri dish containing E3 medium and 

anesthetized using tricaine mesylate (Sigma-Aldrich, E10521, 4%). Embryos 

were positioned laterally and otoliths were counted in both developing ears  using 

oblique illumination on an Olympus SZX12 stereomicroscope. Embryos were 

tilted to ensure superficial otoliths were not obscuring deeper otoliths within the 

lumen of the otic vesicle. Only otoliths  completely free from contact with other 

otoliths were counted; otoliths contacting one another were counted as a single 

otolith.

Imaging

All live confocal imaging was conducted as previously described (Graeden & 

Sive, 2009) using a Nikon CS2 scanning confocal and Nikon Elements software. 

Brightfield imaging was conducted using an Olympus SZX12 stereomicroscope 

with an Olympus DP72 camera. All images were processed using Nikon 

Elements software or Photoshop (Adobe).

Statistical Analysis

Significance testing of differences  in numbers of proliferative cells between 

control and morphant embryos was conducted using the Mann-Whitney U test at 
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a significance level of 0.05. Significance testing of differences in numbers of 

otoliths between the ears of control and morphant embryos  was conducted using 

Fisher’s exact test of independence for 2 x 2 tables at a significance level of 

0.0001.

Results

Myosin II is required for normal otolith formation in the developing 

ear. 

 To begin our investigation into the role of myh9 in deafness, we focused 

our experiments on the entire class of NMII proteins by employing a myosin II 

inhibitor. NMII carries out a variety of intracellular functions including cell 

migration, cell division, and cell shape changes through interaction with the actin 

cytoskeleton (Lo et al., 2004; Saitoh et al., 2001; Svitkina et al., 1997). The 

rationale for beginning experiments with the broader category of NMII as 

opposed to NMIIA is that the alternate NMII isoforms, NMIIB and NMIIC, may 

compensate for reduced or ineffective NMIIA in tissues susceptible to variable 

disease symptoms in MYH9-related disease, such as the kidney, eye and inner 

ear (Heath et al., 2001). By inhibiting all isoforms, we were able to observe the 

full effect of any ear-related phenotype resulting from a loss-of-function of NMII. 

  To conduct loss-of-function experiments on NMII, we used the myosin II 

inhibitor blebbistatin. Myosin II proteins are actin contractile motors that function 

by first binding ATP at the head domain of the myosin protein, which causes its 

dissociation from actin (Xiao et al., 2003). Next, the bound ATP is hydrolyzed, 
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leading to extension of the myosin head domain as a conformational change to 

the protein. The head domain then binds actin once more, which causes release 

of a free phosphate. ADP is released next, which initiates another conformational 

change in the myosin head. This second change moves myosin relative to actin, 

and provides the force responsible for myosin’s contraction. Blebbistatin inhibits 

this contraction by preferentially binding to the ATPase intermediate with ADP 

and phosphate bound at the active site, where it slows down the release of the 

free phosphate (Kovacs et al., 2004).

 To test the hypothesis that myosin II is  required for normal development of 

the zebrafish ear, wild type embryos were raised to 16 hpf in E3 medium, then 

exposed to 50 mM blebbistatin, or 0.1% DMSO as a control. After incubation for 

three hours in blebbistatin or DMSO, the embryos were washed in E3 medium 

and allowed to develop to 36 hpf. During this 19 to 36 hpf time period, the ears  of 

embryos were frequently analyzed for any defects by oblique microscopy. We 

discovered that embryos  treated with blebbistatin developed an abnormal 

number of otoliths  as compared with DMSO-treated control embryos (Fig. 8A - 

B’). Observed abnormal numbers of otoliths included one, three or four otoliths, 

with three otoliths being the most common. Otolith numbers were then quantified 

at 36 hpf (Fig. 8C). To accurately count the otoliths, embryos were anesthetized 

and positioned laterally along the bottom of a petri dish. The otoliths counted 

were observed as single entities in the otic vesicle lumen and were free from any 

contact with other otoliths. By varying oblique illumination on the microscope and 

slightly rocking the embryo, we were able to ensure that all otoliths were counted, 
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avoiding the possibility of otoliths being hidden from view either due to the 

positioning of the embryo, or due to a more superficial otolith preventing 

detection of a deeper one. Both ears were counted in this  way and treated as 

independent data points. We demonstrated that the inhibition of NMII resulted in 

the appearance of an abnormal number of otoliths in 28.2% of the ears analyzed, 

with no abnormalities found in controls (Fig. 8C).

  Stooke-Vaughan et al. (2012) tested the hypothesis that otolith defects 

were exacerbated by diminished muscular activity in zebrafish embryos 

possessing mutations resulting in a motility defect. Stooke-Vaughan and 

colleagues were able to partially rescue the otolith defects in these mutants  by 

mechanically rolling immobile embryos during development (Stooke-Vaughan et 

al., 2012). 

 Since blebbistatin is a myosin II inhibitor, it is  known to also inhibit muscle 

activity (Kovacs et al., 2004); therefore, we performed additional experiments in 

which embryos were gently rotated during the period of blebbistatin treatment to 

determine whether mobility of the embryo was a contributing factor to the otolith 

phenotype (Fig. 8C). We found that rotation did not rescue the otolith phenotype. 

Approximately 36 percent of ears counted had an abnormal otolith number, 

consistent with our non-rotational results (Fig. 8C). Together our data suggests 

that NMII is necessary for proper otolith development in the otic vesicle.
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Myosin II and cell division in the developing ear.

 Since we determined that NMII loss-of-function results in abnormal otolith 

number, we wanted to determine if the otolith phenotype was the result of 

abnormal cell division following blebbistatin treatment.  To test this, we employed 

immunohistochemistry and confocal microscopy to quantify nuclei of proliferative 

cells during zebrafish otic vesicle development. Developing embryos were 

treated with DMSO or blebbistatin, as described above, and fixed at 24 hpf. We 

stained embryos with propidium iodide to label all nuclei and immunostained with 

anti-phosphorylated histone H3, an antibody raised against phosphorylated 

serine 10 present during the S phase of cell division, which marks diving nuclei 

(Figs. 9A - F). We counted only proliferative cells in each otic vesicle and 

compared between treatments. We found that the blebbistatin treatment used for 

inhibition of NMII, which resulted in abnormal otolith number, did not alter normal 

cell proliferation (Fig. 9G). These data suggest that the role of NMII in regulating 

otolith number is not dependent on its function in cell division.

NMIIA is required for normal otolith formation in the developing ear. 

   While there are three genes coding for isoforms of NMII, only mutations 

in the MYH9 gene leads to onset of MYH9-related diseases. Therefore, after 

studying the phenotypic effects of NMII inhibition using blebbistatin, we focused 

our studies on the specific loss-of-function of NMIIA. In order to specifically knock 

down NMIIA we used injection of antisense morpholino oligonucleotides. We 

designed splice site-blocking morpholinos targeting myh9 as well as myh9a, an 
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ohnolog to myh9 found in zebrafish, but not present in humans. Following 

morpholino injection at the one- to two-cell stage, embryos were raised to 36 hpf 

and assayed for otolith number. Phenotypes of myh9 and myh9a morphants 

were compared to embryos injected with a control morpholino at an equal 

concentration (Fig. 10). We found that approximately 45 percent of myh9 

knockdown embryos had an abnormal number of otoliths, versus approximately 3 

percent of controls (Fig. 10C).  Knockdown of myh9a did not affect otolith 

number, indicating that myh9a is not required for correct otolith formation (Fig. 

10D). Effectiveness of each morpholino was confirmed by RT-PCR (Gutzman et 

al., in review). Together these results indicate that myh9, but not myh9a, is 

required for normal otolith formation in the developing zebrafish.

Discussion

NMIIA is required for normal otolith formation in the developing ear.  

 We have demonstrated that NMII is required for normal development of 

otoliths by inhibiting its function with blebbistatin (Fig. 8). We have further 

demonstrated that an isoform of NMII, and the product of the myh9 gene, NMIIA, 

is  specifically required for normal otolith development using a second loss-of-

function tool, a splice-blocking morpholino (Fig. 10). Together these two 

experiments support our main hypothesis that myh9 is required for zebrafish ear 

development. Furthermore, these results support the use of the zebrafish as a 

model system to understand how mutations  found in the human MYH9 gene can 

result in deafness as a variable symptom of MYH9-related disease.    
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 The mechanism for how myh9 influences otolith formation is unknown. We 

hypothesize that a defect exists in the motility of cilia in the developing zebrafish 

ear with myh9 loss-of-function because normal otolith development is  affected by 

fluid currents generated in the otic vesicle by beating cilia (Stooke-Vaughan et 

al., 2012). Experiments have shown that defects in motile cilia can cause 

abnormal otolith number, size, and position (Colantonio et al., 2009).  

Myosin II and cell division in the developing ear.

 The number of ciliated cells  increases in the zebrafish otic vesicle 

epithelium from approximately 100 at 19 hpf to approximately 250 by 24 hpf 

(Riley et al., 1997). As previously stated, NMII has a role in genesis of new cells 

by providing a contractile force necessary to separate dividing daughter cells 

during cytokinesis  (Barua et al., 2014). Therefore, we inhibited NMII to determine 

whether or not, at this concentration of blebbistatin, cell proliferation was 

disrupted and therefore might have some effect on otolith number. 

 Our data did not demonstrate any significant difference in the number of 

proliferative cells  at 24 hpf with NMII inhibition (Fig. 9), suggesting that the role 

for NMII in otolith formation is not dependent on regulation of cell proliferation. 

There are still several questions that might be answered by further experiments 

centered on cell proliferation in the otic vesicle. Is  there a change in proliferation 

in the developing ear earlier or later in development that might affect otolith 

formation? Are the total number of cells  consistent between the control-treated 

embryos and those treated with the myosin inhibitor? Finally, does the cell 
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division rate vary between the different cell types of the otic vesicle? Such a 

change may imply a requirement for NMII in specific cell populations within the 

otic vesicle. 

Hypothesized role for myh9 and otolith formation.

 We conclude that NMIIA is required for proper ear development, based on 

the phenotype we discovered of an abnormal otolith number in myh9 loss-of-

function embryos. We also conclude that this otolith phenotype is  not due to 

abnormal cell proliferation in the otic vesicle. These findings led us to 

hypothesize that the role for myh9 in otolith formation is through regulation of 

motile cilia of the otic vesicle. Motile cilia are responsible for generating fluid 

forces that distribute otolith precursor particles within the lumen. For example, 

Stooke-Vaughan et al. (2012) showed that in zebrafish embryos with mutations in 

the axoneme assembly gene lrrc50 which is  required for ciliary motility, 

approximately 25% of ears  counted had an abnormal number of otoliths. 

Similarly, Colantonio et al. (2009) found that knockdown of another gene required 

for normal ciliary motility, the dynein regulatory gene gas8, had the result of 

approximately 70% of ears with an abnormal number of otoliths  (Colantonio et 

al., 2009). Finally, Yu et al. (2011) demonstrated irregularities in otolith formation 

due to the knockdown of foxj1b, a gene coding for a transcription factor 

regulating motile cilia which is expressed in the otic vesicle (Aamar & Dawid, 

2010; Tian et al., 2009; Yu et al., 2008). Further work must be undertaken to 
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study the form and function of these motile cilia of the otic vesicle, and this is  the 

focus of Chapter 3. 
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Fig. 8: Myosin II is required for normal otolith formation in the developing 
ear. 16 hpf embryos  were treated with 50 mM blebbistatin or DMSO control for 
three hours. Embryos were then washed and otoliths  were analyzed at 36 hpf.  
(A - B) Black arrowheads indicate the developing ear. (A) 36 hpf DMSO-treated 
embryo displaying normal otolith number. (A’) Higher magnification of the ear 
from image A. (B) 36 hpf blebbistatin-treated embryo. (B’) Higher magnification of 
the ear from image B. White arrowhead shows the third otolith. (C) Embryos 
were imaged and otoliths were counted at 36 hpf. Graph is  of the percentage of 
normal and abnormal numbers of otoliths per ear when embryos were stationary 
or gently rotated during drug treatment. Asterisks indicate significance as tested 
using Fisher’s exact test of independence for 2 x 2 tables at a significance level 
of 0.0001. DMSO stationary: n=286; blebbistatin stationary: n=266; DMSO 
rotated: n=144; blebbistatin rotated: n=149.
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Fig. 9: Myosin II is not required for normal cell proliferation in the 
developing ear. (A - F) 16 hpf embryos were treated with 50 mM blebbistatin or 
DMSO control for three hours. Embryos were then washed, fixed at 24 hpf, and 
immunostained for phosphorylated histone H3 to label nuclei of proliferative cells  
(green) and counterstained with propidium iodide to label all nuclei (red). Anterior 
is  to the left in all images. (A - C) Representative confocal images of DMSO-
treated embryos. (A) The dotted line surrounds the outside border of the otic 
vesicle (OV) epithelium. (D - F) Representative confocal images of blebbistatin-
treated embryos. (G) Graph of the average number of proliferative cells in the ear 
of embryos treated with DMSO or blebbistatin. DMSO: n=12; blebbistatin: n=7. 
Error bars indicate standard deviation. Statistical analysis  showed no significant 
difference between DMSO and blebbistatin treatments.
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Fig. 10: NMIIA is required for normal otolith formation in the developing ear. 
Embryos were injected with control, myh9, or myh9a morpholino at the one- to 
two-cell stage, then raised to 36 hpf. (A - B) Black arrowheads indicate the 
developing ear. (A) 36 hpf control embryo displaying normal otolith number. (A’) 
Magnification of the ear from image A. (B) 36 hpf myh9 morphant embryo 
displaying an abnormal third otolith. (B’) Magnification of the ear from image B. 
White arrowhead shows the third otolith. (C) Graph of the percentages of normal 
and abnormal numbers of otoliths per ear at 36 hpf when embryos were injected 
with control or myh9 morpholino. Control morpholino: n=272; myh9 morpholino: 
n=219. Asterisks indicate significance as tested using Fisher’s exact test of 
independence for 2 x 2 tables at a significance level of 0.0001. (D) Graph of the 
percentage of normal and abnormal numbers of otoliths per ear at 36 hpf when 
embryos were injected with control or myh9a morpholino at the one to two cell 
stage. Control morpholino: n=146; myh9a morpholino: n=224. Significance 
testing showed no significant difference between control-injected and myh9a-
injected embryos.
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Chapter 3: Analysis of the Roles of Non-Muscle Myosin IIA in the Development 
and Function of Cilia in the Ear 

Introduction

 The mechanisms for how MYH9 mutations lead to deafness in humans as 

a symptom of MYH9-related diseases is unknown. We have demonstrated that 

knockdown of the myh9 gene, which encodes for non-muscle myosin IIA (NMIIA), 

in zebrafish results in the phenotype of an abnormal otolith number in 

approximately 40% of ears analyzed compared to control ears (Chapter 2). It has  

also been shown that otolith development is critically dependent on fluid currents 

in the otic vesicle generated by the force of beating cilia (Wu et al., 2011), and 

that loss of function of genes involved in ciliary motility results in mutant 

phenotypes affecting otolith number, size, and position (Colantonio et al., 2009; 

Stooke-Vaughan et al., 2012; Wu et al., 2011; Yu et al., 2011). Therefore, we 

hypothesized that the mechanism underlying the myh9 loss-of-function abnormal 

otolith phenotype is a defect in the development or function of otic vesicle cilia, 

and we are testing this hypothesis using the zebrafish as a model system.  

 Cilia are composed of a microtubule core known as the axoneme, which is 

covered with plasma membrane continuous with that of the cell body (Fig. 6). The 

axoneme is anchored to the apical cell membrane by basal bodies, which are a 

pair of specialized centrioles (Ainsworth, 2007). In polarized epithelia, the correct 

orientation of the cilia and their basal bodies is determined by translational and 

rotational polarity. As described by Mirzadeh et al. (2010), translational polarity 

refers to the position of basal bodies near the apical surface of the cell, and 

rotational polarity describes the angle of individual basal bodies with respect to 
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their long axis (Fig. 6). Either of these two polarities can affect the tilt of the long 

axis of a cilium (Mirzadeh et al., 2010). Here we also use the term perpendicular 

rotation as described by Mirkovic et al. (2012) to refer to the rotational movement 

of cells within the apical surface of a tissue. While it is known that correct 

orientation of cilia and their basal bodies is necessary to achieve normal fluid 

flow (Marshall & Kintner, 2008), the cellular mechanisms responsible are not 

completely understood.

 Several experiments have linked NMII to ciliary polarity. Hirota et al. 

(2010) found that NMII is required for an anterior translational polarity of ciliary 

basal bodies in mouse ependymal cells, and that this polarity results in a 

posterior tilt in the associated cilium. NMII has also been implicated in the 

movement of centrosomes into the leading process of migrating neurons (Solecki 

et al., 2009). Finally, it has been shown during establishment of basal body 

orientation in the quail oviduct that non-muscle myosin localizes to basal feet, 

which are projections of the ciliary basal bodies that anchor the axoneme into the 

apical cytoskeleton and point in the direction of ciliary beating (Fig. 6) (Lemullois 

et al., 1987; Mirkovic et al., 2012).

 To test whether NMIIA contributes to the development and function of the 

cilia of the otic vesicle, as a potential mechanism causing the myh9 loss-of-

function phenotype, we performed experiments to assess the role of myh9 in 

ciliogenesis, ciliary motility, and ciliary polarity.
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Materials and Methods

Animals

All experiments were conducted using wild-type AB zebrafish. Embryonic stages 

are given as hours post fertilization (hpf) or days post post fertilization (dpf). 

Standard procedures were used for zebrafish maintenance, husbandry and 

staging (Kimmel et al., 1995). 

Morpholino (MO) injections

Splice-site blocking morpholinos (Gene Tools) were dissolved in water and 

injected into one- to two-cell stage embryos in combination with membrane 

targeting GFP (mGFP). Morpholinos and their sequences, targeted splice sites, 

and concentrations used are as follows:

• myh9 MO: 5’- ATGTCTGAAACAGTCGTTTACAAGC-3’; targets the zebrafish 

myh9 gene at EXON6-intron6 boundary. It was used at 3 ng/µl for all 

experiments. The myh9 sequence information is based on zebrafish Ensembl 

transcript ENSDART00000137105.

• myh9a MO: 5’-AGCAAGAGAGACTTACAAATCGAGA-3’; targets the zebrafish 

myh9a gene at intron1-EXON2 boundary. It was used at 4 ng/µl for all 

experiments. The myh9a sequence information is based on zebrafish Ensembl 

transcript ENSDART00000149823.

• standard control MO: 5′-CCTCTTACCTCAGTTACAATTTATA-3′; has no target. 

It was used at a concentration matching that of any experimental MO (myh9 MO 

or myh9a MO).
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• p53 MO: GCGCCATTGCTTTTGCAAGAATTG-3’; targets the zebrafish p53 

gene. It was only used in conjunction with myh9 knock down experiments (myh9 

MO and control MO) at an equal concentration to the test morpholino (Robu et 

al., 2007).

Immunohistochemistry

Embryos were fixed in Dents solution (80% methanol, 20% DMSO, used with 

anti-NMIIA) or in 4% paraformaldehyde (used with anti-acetylated tubulin and 

anti-gamma tubulin) for two hours at room temperature or overnight at 4ºC, 

blocked in 10% goat serum and 0.1% BSA in PBT overnight, incubated overnight 

in primary antibody (anti-NMIIA, M8064, Sigma-Aldrich, 1:500; or anti-acetylated 

tubulin, T6793, Sigma-Aldrich, 1:1000; or anti-gamma tubulin, T6557, Sigma-

Aldrich, 1:1000), then incubated overnight in secondary antibody (goat anti-rabbit 

IgG conjugated with Alexa Fluor 488, Invitrogen, A11008, 1:500, used with anti-

NMIIA; or goat anti-mouse IgG conjugated with Alexa Fluor 555, Invitrogen, 

A21422, 1:500, used with anti-acetylated tubulin and anti-gamma tubulin), some 

in combination with Alexa Fluor 488 phalloidin (Invitrogen, A12379, 1:1000). 

Embryos were mounted in glycerol and imaged using a Nikon CS2 laser-

scanning confocal microscope. Images were analyzed with Nikon Elements 

software and Photoshop (Adobe).
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Colocalization analysis

Whole confocal stacks of the zebrafish otic vesicle were cropped in three 

dimensions into sub-stacks of planar apical membrane of the otic vesicle 

epithelium. All included cells were exposed to the lumen of the otic vesicle. Sub-

stacks ranged in depth for these cells from the apical membrane through the 

basal body. Sub-stacks were imported into ImageJ, and the “objects based 

methods” setting of the JACoP 2.0 plugin was used to determine Pearson’s 

coefficient, the overlap coefficient, and the total colocalization between 3D 

objects between two channels.

Three-dimensional (3D) tissue reconstruction for assessment of 

translational polarity of ciliary basal bodies

Confocal images of the otic vesicle were imported into ImageJ, and the “3D 

Viewer” plugin was used to create and export surface models to Maya (Autodesk) 

for 3D analysis of translational polarity.  A line was drawn in 3D space in Maya 

between the two pairs of hair cells to establish a consistent direction for 

measurement of distances. This line was duplicated and translated in 3D space 

to intersect the center of the basal body of a cell to be analyzed and projected 

onto the apical surface of the cell. Two measurements were made along the line: 

the distance across the cell, and the distance from the basal body to the apical 

membrane edge. The value of the distance of the basal body to the apical 

membrane edge was divided by the distance across the entire cell to yield a 

percentage of distance of the basal body along the line. The line was then 
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rotated 90º about the basal body and this procedure was repeated to generate a 

second position of the basal body in another direction. The standard deviation 

was taken of five cells analyzed in this way from the same region of the otic 

vesicle to determine the consistency of the location of the basal bodies in that 

region. Standard deviations from control and myh9 morphant groups were 

averaged and compared. 

Scanning electron microscopy (SEM)

4 dpf zebrafish larvae were fixed in modified Karnovsky’s fixative (2% 

paraformaldehyde and 2.5% glutaraldehyde in 0.1M cacodylate buffer, pH 7.4) 

for four days at room temperature, rinsed in cacodylate buffer, then post-fixed in 

1% osmium tetroxide dissolved in PBS for 2 hours at room temperature.  The 

larvae were dehydrated in a graded series of ethanol, during which time they 

were placed in an ultrasonic bath for 2 minutes to remove neuromast cupulas, 

and then critical point dried in carbon dioxide (Leica Microsystems, Balzers CPD 

020). Embryos were each mounted on a 15 mm aluminum stub using double-

sided tape, sputter coated with 4 nm of iridium (Emitech, K575X sputter coater), 

and imaged with a scanning electron microscope at 1.0 - 3.0 kV (Hitachi, S-4800 

FE-SEM). 

Imaging

All live confocal imaging was conducted as previously described (Graeden & 

Sive, 2009) using a Nikon CS2 scanning confocal and Nikon Elements software. 
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Live differential interference contrast (DIC) imaging was conducted on an 

AxioObserver Z1 microscope (Zeiss) and recorded by ORCA-Flash 4.0 camera 

(Hamamatsu) at ~300 frames per second using Zen 2012 software (Zeiss). All 

images were processed using Nikon Elements software or Photoshop (Adobe); 

all videos were processed using After Effects (Adobe). 

Motility Analysis

Embryos were mounted laterally on a glass slide in a drop of tricaine mesylate 

(Sigma-Aldrich, E10521, 4%) between two 22 mm square coverslips, and a 25 x 

60 mm coverslip was placed on top of the square coverslips to bridge the space 

and contact the embryo. Analysis of ciliary movement was performed on DIC 

microscopy videos in After Effects (Adobe) by using the brush tool to mark the 

position of the tip of a motile cilium at its greatest distances from the base of the 

cilium across five cycles of movement. These marks were merged into the last 

frame of the video, and the frame was exported as an image to Photoshop 

(Adobe) and the distance between the furthest pair of marks was measured 

using the measure tool. Time was recorded by subtracting the time in seconds of 

the video timecode at the first frame of analysis from the time of the last frame of 

analysis. Speed was determined by dividing the average distance transversed in 

one cycle of ciliary movement by the average time for one cycle of ciliary 

movement. 
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Statistical Analysis

Significance testing of differences between control and morphant embryos in cilia 

number, cilia length, translational polarity, distance of ciliary movement, time for 

one ciliary beat cycle and ciliary beat frequency was conducted using the Mann-

Whitney U test at a significance level of 0.05. Colocalization of NMIIA protein and 

ciliary basal bodies was analyzed using Pearson’s  coefficient and the overlap 

coefficient as described below (Bolte and Cordelieres, 2006):

Given that channel A and channel B grey values of voxel i will be noted Ai & Bi 

respectively and the corresponding average intensities over the full image noted 

a & b, 

Pearson's coefficient = (Si ((Ai-a)x(Bi-b)))/…(Si (Ai-a)²x Si (Bi-b)²) 

Overlap coefficient = (Si (AixBi))/…(Si (Ai-a)²x Si (Bi-b)²)

Results

NMIIA colocalizes with ciliary basal bodies. 

 We initiated these studies by asking where NMIIA was localized in the 

developing otic vesicle. Based on the role for NMII in basal body translational 

polarity in ependymal cells, we hypothesized that NMIIA would be found in close 

proximity to ciliary basal bodies.

 Wild type embryos were fixed at 24 hpf and then immunostained with 

NMIIA antibody and gamma tubulin antibody to visualize ciliary basal bodies. 

Whole confocal stacks of the zebrafish otic vesicle were cropped in three 

dimensions into sub-stacks to visualize planar apical membrane of the otic 
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vesicle epithelium (Fig. 11A - C’). NMIIA exhibited a punctate localization near the 

apical membrane which appeared to overlap the signal of basal bodies in many 

of the epithelial cells. Co-localization analysis of NMIIA with basal bodies was 

then performed using the JACoP 2.0 plugin for ImageJ to determine Pearson’s 

coefficient, the overlap coefficient, and the total colocalization between 3D 

objects between two channels (Fig. 11D). 

 Pearson’s coefficient indicates the correlation of intensity distribution 

between confocal channels; values range from -1 to 1; values indicating 

colocalization range from 0.5 to 1 (Zinchuk & Zinchuk, 2008). Our analysis of 

Pearson’s coefficient resulted in a value of 0.64, which indicated moderate 

colocalization of NMIIA and gamma tubulin staining. The overlap coefficient 

indicates the actual overlap of signals; values range from 0 to 1, and values 

indicating colocalization range from 0.6 to 1.0  (Zinchuk & Zinchuk, 2008). The 

overlap coefficient in our analysis yielded a value of 0.9, which demonstrated a 

moderate to high degree of colocalization. The last analysis of localization 

separated the signal in both confocal channels into the categories of 

“background” and “objects”, where background is defined as the 3D volume 

lacking significant signal and which contains objects, and objects are defined as 

self-contained regions of adjacent voxels with significant signal. Locations of 

objects were compared between the centers of their volumes, and these centers 

were considered to be colocalized if within a reference 3D distance calculated as 

previously described (Bolte & Cordelieres, 2006). Results of the analysis to 

determine the percentage of NMIIA objects colocalizing with basal body objects 
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was approximately 31%. Based on the results of these three analyses, we 

conclude that NMIIA and basal bodies colocalize in approximately one-third of 

the epithelial cells of the zebrafish otic vesicle at 24 hpf.

NMIIA is not required for ciliogenesis. 

 To test our hypothesis that defects exists in the development and function 

of cilia in the developing zebrafish ear with myh9 loss-of-function, we began by 

asking if NMIIA plays a role in otic vesicle ciliogenesis. We hypothesized that 

NMIIA may be required for ciliogenesis by having a role in clearing actin from the 

site of new cilia formation, organizing a peripheral actin scaffold to help secure 

basal bodies and the axoneme, or by assisting in extension of the cell membrane 

to serve as ciliary membrane. Therefore, we examined cilia formation and 

number in the otic vesicle in myh9 loss-of-function embryos. 

 Embryos were injected with control or myh9 morpholino at the one- to two-

cell stage and fixed at 24 hpf. Embryos were then immunostained for acetylated 

tubulin to label cilia and stained with fluorescent phalloidin to label actin. Whole 

otic vesicles were imaged using confocal microscopy (Figs. 12A - B’). We first 

analyzed the number of cilia by counting all cilia of the otic vesicle and averages 

were compared between control and morphant embryos (Fig. 12C). Next, we 

analyzed cilia length by taking 3D measurements of two cilia populations within 

the vesicle. We measured the tether cilia found on the developing hair cells and 

we measured cilia on cells surrounding the tether cilium hair cells, within two cell 

distances away. We found that both control and morphant embryos had 
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approximately 225 cilia per ear (Fig. 12C). We found that tether cilia were 

approximately 7 µm in length (Fig. 12D), and cilia on the cells neighboring the 

tether cilia hair cells were approximately 4 µm in length (Fig. 12D). We did not 

find any differences between control and myh9 morphant cilia lengths in either 

population. These results indicate that NMIIA is not required for cilia formation, 

normal cilia number, nor for normal cilia length in the zebrafish otic vesicle.

NMIIA is not required for normal ciliary beat amplitude nor frequency. 

 After demonstrating that NMIIA is not required for ciliogenesis, we next 

wanted to determine if myh9 had a role in the movement of cilia. The movement 

of cilia in the otic vesicle has been shown to be responsible for propagating 

currents that move otolith precursor particles toward the anterior and posterior 

poles of the otic vesicle (Wu et al., 2011). At the poles the precursor particles 

attach to the tether kinocilia of the hair cells and agglomerate, giving rise to two 

otoliths (Riley & Phillips, 2003). 

 In order to test ciliary motility in our myh9 loss-of-function embryos, we 

recorded high-speed videos (~300 frames/sec) of cilia in the zebrafish otic 

vesicle at 24 hpf using differential interference contrast (DIC) microscopic 

imaging (Figs. 13A - D). By using this time point, we were able to exclude short 

motile cilia from our analysis, since they disappear from the otic vesicle at 24 hpf 

(Riley et al., 1997). These videos were used to analyze motile cilia detected at 

any position within the otic vesicle epithelium; in some instances more than one 

cilium was analyzed per ear and treated as a separate data point. We compared 
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control and morphant embryo ciliary motility by quantifying the average distance 

of movement of cilia tips, the average time for one 360 degree rotation of a 

cilium, and the average ciliary beat speed. Results  indicated that both control and 

myh9 morphant embryos had an approximate average distance of ciliary 

movement of 4 µm (Fig. 13E), an average ciliary beat cycle timing of 0.03 s (Fig. 

13F), and an average speed of 140 µm/s  (Fig. 13G). While our measurement of 

distance is within the published range (Wu et al., 2011), our finding of ciliary 

speed is approximately 4 times greater than published reports. Based on these 

experiments, our results suggest that NMIIA is not required to establish normal 

ciliary beat amplitude, time, or speed in the otic vesicle.  

NMIIA is not required for translational polarity of ciliary basal bodies.

 The polarity of the ciliary basal body pair determines the direction in which 

a motile cilium beats (Mirkovic et al., 2012; Nonaka et al., 2005). This in turn 

affects the direction of fluid movement caused by the motile cilium (Nonaka et al., 

2005). In the mammalian embryonic patterning organ called the node, it has 

been found that basal bodies of motile cilia are initially positioned centrally but 

later move to the posterior side of the cell, resulting in a posterior tilt which has 

been shown to be required for normal leftward fluid flow (Hashimoto et al., 2010). 

Since we found that NMIIA is localized at the basal body, but the motility of the 

cilia appears normal, we hypothesized that NMIIA may play a similar role in 

ciliary translational polarity in the otic vesicle.  
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 To test this hypothesis, control and myh9 morpholino injected embryos 

were fixed at 24 hpf and immunostained for gamma tubulin to label ciliary basal 

bodies and stained with fluorescent phalloidin to label actin (Figs. 14A - B’). 

Embryos were imaged using confocal microscopy, and resultant z-stacks were 

reconstructed in three dimensions for analysis. To analyze translational polarity, 

we determined the position of ciliary basal bodies within the apical membrane of 

the otic vesicle epithelium. In order to determine position, a line was drawn 

between the two pairs of hair cells in 3D space to establish one consistent 

direction for measurement of distances (Fig. 14C). This line was  duplicated and 

translated in 3D space to intersect the center of the basal body of each cell to be 

analyzed and was projected onto the apical surface of the cell (Fig. 14C’, blue 

lines). Two measurements were made along the line: the distance across the cell 

(apical cell surface diameter), and the distance from the basal body to the edge 

of the apical membrane. The value of the distance of the basal body to the apical 

membrane edge was divided by the apical cell surface diameter to yield a 

percentage of distance of the basal body along the line (Fig. 14C’’, blue line). The 

line was then rotated 90º about the basal body and this  procedure was repeated 

to generate a second position of the basal body in a second direction (Figs. 14C’ 

- C’’, purple lines). Measuring along two sets of parallel lines drawn through the 

basal bodies of different cells in the same region allowed for a directionally 

consistent measurement of distance of the basal body from the apical membrane 

edge in two directions perpendicular to one another. 
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 The standard deviation was determined for five cells  analyzed in this  way, 

from the region surrounding the same hair cell pair of the otic vesicle, to 

determine the consistency of the location of the basal bodies in that region. 

Standard deviations from control and myh9 morphant groups were averaged and 

compared. Our results indicated that both control and morphant embryos showed 

variability in the apical position of their ciliary basal bodies of approximately 0.15 

(Fig. 14D). Graphing of data with a box plot revealed no additional details of the 

data distribution. As a result of this  finding, we concluded NMIIA is not required 

for translational polarity of ciliary basal bodies as tested by this method. 

NMIIA is not required for perpendicular rotation in hair cells. 

  Having found that NMIIA is not involved in translational polarity of ciliary 

basal bodies, we aimed to increase our understanding of the role of NMIIA in 

establishing PCP more generally. To accomplish this, we tested the role of NMIIA 

in establishing the perpendicular rotation of hair cells in the zebrafish inner ear 

and lateral line. While these experiments do not address our main focus  of 

polarity in ciliary basal bodies, they do test alternate roles  of NMIIA in 

establishing polarity of ciliated cells in the inner ear. We hypothesized that if 

NMIIA is  necessary for perpendicular rotation of hair cells, it is possible that it 

also has a role in the perpendicular rotation of otic vesicle epithelial cells, and 

could therefore affect the beat direction of cells bearing a tilted motile cilium. 

 We performed three sets  of experiments to test the role of NMIIA in the 

perpendicular rotation of hair cells. We used confocal microscopy to analyze hair 
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cells of the otic vesicle at 24 hpf, confocal microscopy to analyze hair cells of the 

lateral line at 4 dpf, and scanning electron microscopy (SEM) to analyze hair 

cells of the lateral line at 4 dpf. The hair cells of the lateral line were used 

because they are morphologically and functionally similar to the hair cells  of the 

inner ear, and are easy to access in imaging experiments (Mirkovic et al., 2012).

 Control and myh9 morphant embryos were fixed at 24 hpf and stained 

with fluorescent phalloidin to label actin. The rotational polarity of the otic vesicle 

hair cells was assessed by first drawing a line across the approximate center of 

the otic vesicle along the long axis of the lumen to be used as a reference for hair 

cell orientation (Fig. 15A). Next, a line was projected from the center of the 

stereociliary base through the center of the kinocilium base and the orientation 

angle of this line was observed from the blue reference line (Figs. 15B - C). We 

found in both control and myh9 morphants that 83% of hair cell pairs had cells of 

a matching perpendicular rotation, but that this polarity did not match that of hair 

cell pairs in other otic vesicles. 

 Next, we analyzed the perpendicular rotation of hair cells in the lateral line. 

Each neuromast of the lateral line consists of two equally-sized populations of 

hair cells  with perpendicular rotation oriented 180º relative to each other (Ghysen 

& Dambly-Chaudiere, 2007; Lopez-Schier et al., 2004). We hypothesized that 

this  pattern of consistent perpendicular rotation would be disrupted in myh9 hair 

cells, so that some of the hair cells would have perpendicular rotation out of a 

single axis of polarity. To test this hypothesis, hair cells of lateral line neuromasts 

were analyzed by confocal microscopy after fixing control and myh9 morphant 
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embryos at 4 dpf and staining them with fluorescent phalloidin to label actin. 

Infraorbital neuromasts were then imaged (Figs. 15D - E’). We also analyzed hair 

cells of lateral line infraorbital neuromasts by SEM after fixing control and myh9 

morphant embryos at 4 dpf (Figs. 15F - I). In both experiments, the perpendicular 

rotation of hair cells was assessed by projecting a line from the center of the 

stereociliary base through the center of the kinocilium base. Orientation angles of 

these lines were compared between cells of a given neuromast to determine if 

any were polarized out of a single axis of perpendicular rotation. In both the 

confocal and SEM imaging experiments, controls and myh9 morphants had 

normal perpendicular rotation, oriented 180º relative to each other (Figs. 15D - I’).

 Together these results  led us to conclude that NMIIA is not required for 

perpendicular rotation in the hair cells of the zebrafish otic vesicle nor of the 

lateral line infraorbital neuromasts. Additional experiments  will be necessary to 

demonstrate the role of NMIIA in the translational and rotational polarity of otic 

vesicle cilia. 

Discussion

NMIIA colocalizes with ciliary basal bodies.

 We demonstrate for the first time that NMIIA colocalizes with ciliary basal 

bodies in the otic vesicle epithelium. This finding led to the hypothesis that 

NMIIA may have a role in transporting basal bodies as a means to achieve 

normal translational and rotational polarity of cilia within the otic vesicle (Marshall 

& Kintner, 2008). Rotational and translational polarity determines the normal tilt 
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on a cilium to allow for linear propagation of fluid in the otic vesicle, as well as a 

normal beat direction. To discover whether NMIIA and basal bodies are directly 

associated or only located in close proximity, future work could include 

coimmunoprecipation experiments. Also, to discover whether NMIIA colocalizes 

with all ciliary basal bodies of the otic vesicle or only with those of motile cilia, 

immunostaining of a molecule for ciliary motility could be performed (see Future 

Directions, Chapter 4).

NMIIA is not required for ciliogenesis in the otic vesicle.

  Our results showed no significant difference between control and myh9 

morphant embryos in the generation of normal cilia, suggesting that NMIIA is not 

required for ciliogenesis. The numbers and lengths of tether cilia and tether-

neighboring cilia in control and loss-of-function embryos were consistent with 

previously published times, numbers, and lengths (Stooke-Vaughan et al., 2012; 

Yu et al., 2011). However, it is possible that ciliogenesis was disrupted in our 

experiments early in otic vesicle formation which was able to recover by the 

developmental time point we analyzed. If this is true, then our current results 

would have missed an earlier phenotype. It is also possible that NMIIA is only 

required for ciliogenesis of motile cilia. For the experiments presented here, we 

were not able to differentiate between motile and immotile cilia, potentially 

overlooking a subtle phenotype. Further investigation into the role for NMIIA in 

motile versus immotile cilia could provide additional clues for the role of NMIIA in 

ear development. 
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NMIIA is not required for normal ciliary beat amplitude nor speed. 

 The speed of beating cilia, and the distance of their stroke, are two 

parameters affecting hydrodynamics of the developing inner ear which account 

for otolith formation (Wu et al., 2011). For example, higher velocities in fluid 

currents nearer to the base of an otolith result in an asymmetric shape to a 

growing otolith (Wu et al., 2011), which may be necessary in later developmental 

stages for macular kinocilia to connect to the otolith (Karavitaki & Corey, 2010). 

Our data did not support a role for NMIIA in establishing normal ciliary beat 

amplitude nor frequency (Fig. 13). We found that the distance of travel of the 

cilium tip was approximately 4 µm in control and myh9 morphant embryos, and 

this value is within the range published by Wu et al. (2011) of 3 - 5 µm. 

The value we calculated for speed varied considerably from the findings of 

Wu and colleagues (2011). Our measure of speed was approximately 140 µm 

per second in control and myh9 morphant embryos, compared with only 33 µm 

per second measured by Wu et al. There are at least three possible explanations 

for this discrepancy. First, Wu et al. used a different method to measure speed 

that employs the blinking optical trap technique. This technique relies on 

mathematical modeling, and is prone to errors from distortion caused by nearby 

walls in a fluid-filled vesicle (Svoboda & Block, 1994) and has difficulty 

accounting for the heterogeneity of biological data such as the texture of the 

surface of the epithelium, the spacing of cilia, and variations in ciliary beat pattern 

and direction (Smith et al., 2011). Wu and colleagues did not account for the true 

61



ovoid morphology of the otic vesicle (Riley & Phillips, 2003); their measurements 

were approximated by an equation that admits analytical solutions inside a 

sphere, which is the shape they used to model the otic vesicle. Secondly, the 

data published did not indicate which population of motile cilia was analyzed: the 

short cilia that disappear at 24 hpf, or the polar cilia that are approximately 4 µm 

long and endure beyond 24 hpf, or both. Because our data were collected at 24 

hpf, we excluded short motile cilia from our analysis. Lastly, Wu et al. analyzed 

embryos throughout the 18 - 24 hpf stages and considered all data to be 

equivalent, despite the dramatic changes occurring in the otic vesicle over these 

times, including the shortening of motile cilia, which could conceivably affect their 

speed.  Also, as described above, Wu and colleagues did not account for the 

changing morphology of the otic vesicle epithelium over these times, and instead 

modeled the otic vesicle as a sphere. 

 An additional aspect of analysis differing in our experiments from those of 

Wu et al. concerns the location of motile cilia in the otic vesicle. Wu and 

colleagues found that the otolith is always located within a few microns of the 

motile cilia. However, we studied motile cilia located throughout the otic vesicle. 

For example, Fig. 13A shows a motile cilium belonging to control embryo located 

farther than 10 µm from an otolith. The hydrodynamic model of otic vesicle flow 

proposed by Wu et al. relies on the assumption that motile cilia are present only 

directly adjacent to otolith tether cilia to set up currents that attract particles and 

then stir them. This understanding of the location of motile cilia is based on the 

findings of Colantonio et al. (2009), which has been contradicted by other 
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research (Yu et al., 2011). A finding of motile cilia that are nonadjacent to tether 

hair cells may contradict the otic vesicle fluid-flow model of Wu and colleagues. 

  It is possible that our imaging techniques were not sensitive enough to 

detect more subtle changes or abnormalities in motile cilia movement; therefore, 

future studies are needed to examine ciliary movements at a higher frame rate. 

NMIIA is not required for polarity of ciliary basal bodies or hair cells.

 Translational polarity is known to be necessary to achieve tilt in motile 

cilia, which is in turn required for generating normal vesicle fluid flow (Mirzadeh et 

al., 2010; Wu et al., 2011). We hypothesized that NMIIA is required for 

translational polarity of otic vesicle basal bodies; however, our results did not 

demonstrate any significant difference in the translational polarity of ciliary basal 

bodies between control and morphant embryos as analyzed here (Fig. 14). 

Based on our results at the 24 hpf time point in cilia near the hair cell pairs, basal 

bodies are not translationally polarized, which suggests that translational polarity 

may not be responsible for tilt in these cilia. An alternate possibility is that these 

cilia instead achieve tilt through rotational polarization. An analysis of the role of 

NMIIA in rotational polarity of ciliary basal bodies, and the tilting of ciliary 

axonemes in the otic vesicle, are future directions that must yet be addressed. 

 To further study the role of NMIIA in PCP, we tested the perpendicular 

rotation of hair cells in the zebrafish otic vesicle and lateral line. Mirkovic et al. 

(2012) demonstrated that neuromast hair cells and their centrosomes (fated to 

later become ciliary basal bodies) can each undergo the form of rotational 

rearrangement we term perpendicular rotation. Only after these rotations are 
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complete do formation and asymmetric positioning of the hair cell kinocilia occur. 

We hypothesized that NMIIA is required for normal perpendicular rotation of hair 

cells in the zebrafish otic vesicle and lateral line neuromasts, and that 

perpendicular rotation might also be important in otic vesicle cells bearing motile 

cilia to control the direction of ciliary beating. Our results did not support this 

hypothesis: control and myh9 morphant embryos showed no difference in 

perpendicular rotation in hair cells of both the otic vesicle and lateral line. 

 We also found that most control and myh9 morphants had matching 

perpendicular rotation in the cells of a given hair cell pair, but that this polarity did 

not match that of hair cell pairs in other otic vesicles. This finding may seem 

aberrant, since it is known that a defined hair cell polarity within given sensory 

patches is critical to normal sensation (Faucherre et al., 2009). However, it has 

been demonstrated in the mouse vestibular system as well as the cochleas of 

mouse and chick that stereociliary bundles develop with an initial, non-random 

polarity that is biased towards the final orientation of each cell, and that later in 

development of these organs, individual stereociliary bundles gradually reorient 

to obtain their final orientation (Cotanche & Corwin 1991, Denman-Johnson & 

Forge 1999, Dabdoub et al., 2003). This is similar to what was found in zebrafish 

neuromast hair cells by Mirkovic et al. (2012). Our findings suggest that a similar 

process of reorientation may occur in hair cells of the zebrafish otic vesicle, 

although further testing is required to confirm this. It is known that zebrafish 

tether hair cells are precocious sensory hair cells that begin to function in 

sensation at 23 hpf (Tanimoto et al., 2011), and our analysis of polarity was 
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conducted at 24 hpf. It is possible that the small amount of time between 

attainment of sensory maturity of these hair cells and our analysis did not offer 

sufficient time for the cells to reorient for proper function. 

 Alternate methods of examination may offer additional understanding of 

the role of NMIIA in ciliary polarity. It is possible that the aspects of polarity we 

studied may be important only in alternate time points. For example, hair cells of 

the otic vesicle increase in number from two pairs at 24 hpf to 20 - 40 hair cells 

by 42 hpf (Haddon & Lewis, 1996); analysis of a large field of hair cells may lend 

additional insight into the perpendicular rotation of otic vesicle cells. It may also 

be that the 4 dpf time point at which we studied perpendicular rotation was too 

late to see a phenotype from myh9 morpholino knockdown, or that embryos had 

recovered from an earlier aberrant phenotype by this time. Additionally, polarity 

may be important only in certain populations of otic vesicle cilia. For example, we 

were unable to distinguish ciliary basal bodies belonging to motile cilia from those 

of immotile cilia in our analysis of translational polarity. 

  

Hypothesized role for NMIIA in cilia development and MYH9-related 

disease.

 We previously concluded that NMIIA is required for proper ear 

development based on the phenotype we discovered of an abnormal otolith 

number in myh9 loss-of-function embryos (Chapter 2). These findings led us to 

hypothesize that the role for myh9 in otolith formation is through regulation of 

motile cilia of the otic vesicle. Here we have demonstrated that NMIIA colocalizes 
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with ciliary basal bodies in approximately one-third of otic vesicle epithelial cells, 

but that NMIIA is not responsible for ciliogenesis  nor for ciliary motility in terms of 

speed or amplitude of ciliary beating (Fig. 11). These findings led us to 

hypothesize that NMIIA is necessary for establishing ciliary polarity. In motile cilia, 

translational or rotational polarity of the basal bodies  is required to tilt cilia in 

order for the cilium to generate linear fluid flow within a vesicle (Mirzadeh et al., 

2010; Wu et al., 2011), while perpendicular rotation may refine the direction of 

this  linear fluid flow by turning the tilted cilium within the luminal surface of the 

vesicle. Here we have demonstrated that translational polarity is not dependent 

on NMIIA. Therefore, future experiments should be directed at discovering the 

role of NMIIA in establishing the rotational polarity of ciliary basal bodies. 

 Although we did not uncover a role for myh9 in defining ciliary polarity in 

these studies, further experiments to investigate and identify a role for myh9 in 

establishing ciliary polarity in zebrafish will serve as an important step toward 

understanding the causes of human MYH9-related disease. Polarity defects, as a 

result of MYH9 mutations, may explain the disease symptoms that are found not 

only in the ear, but also in other ciliated organs affected by MYH9-related 

diseases including the kidney and the eye (Heath et al., 2001). During 

development of these organs, ciliary polarity may be necessary for the ability of 

motile cilia to distribute biological products akin to the distribution of otolith 

precursor particles  in the developing ear, such as signaling molecules, as has 

been demonstrated in the brain (Sawamoto et al., 2006) and node (Okada et al., 

2005). Additional work will be necessary to further characterize the role of myh9 
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in the polarity of cilia using the zebrafish as a model. This is discussed further in 

Chapter 4.

67



Fig. 11: NMIIA colocalizes with ciliary basal bodies. Embryos were 
immunostained with NMIIA antibody (green) and gamma tubulin antibody (red) to 
visualize ciliary basal bodies. (A - C) View of a region of the apical membrane of 
the developing otic vesicle at 24 hpf. Boxed regions identify the apical surface of 
one cell that has been magnified in A’ - C’. (A, A’) NMIIA staining. (B, B’) Gamma 
tubulin staining. (C, C’) Merged NMIIA and gamma tubulin staining signals 
showing colocalization. (D) NMIIA and ciliary basal body colocalization 
quantification analysis. Apical surface regions from the epithelium of otic vesicles 
from 11 embryos were analyzed using the “objects based methods” setting of the 
JACoP 2.0 plugin for ImageJ to determine Pearson’s coefficient, the overlap 
coefficient, and the total colocalization between 3D objects in the two channels. 
Pearson’s coefficient indicates the correlation of intensity distribution between 
confocal channels; values range from -1 to 1; values indicating colocalization 
range from 0.5 to 1. The overlap coefficient indicates the actual overlap of 
signals; values range from 0 to 1; values indicating colocalization range from 0.6 
to 1.0. (Zinchuk V and Zinchuk O, 2008.) Average measures of Pearson’s 
coefficient and the overlap coefficient indicate colocalization between the NMIIA 
and gamma tubulin signals.
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Fig. 12: NMIIA is not required for cilia formation nor proper cilia length. (A - 
B’) Embryos were fixed at 24 hpf and immunostained for acetylated tubulin to 
label cilia (red) and stained with phalloidin to label actin (green). Images show a 
maximum intensity projection of slices of a confocal stack displaying measurable 
cilia. (A) Control morpholino-injected embryo. (A’) Magnification of the boxed 
region in A. (B) myh9 morphant embryo. (B’) Magnification of the boxed region in 
B. (C) Graph of the average number of cilia throughout the otic vesicle at 24 hpf 
when embryos were injected with control or myh9 morpholino. (D) Graph of the 
average length of tether cilia and cilia of cells within a distance of two cells  from a 
tether cilium cell at 24 hpf when embryos were injected with control or myh9 
morpholino. (C - D) Error bars indicate standard deviation. Control: n=9; 
morphant: n=9. Significance testing showed no significant differences between 
control embryos and morphants.
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Fig. 13: NMIIA is not required for normal ciliary beat amplitude nor 
frequency. (A - D) DIC images of an otic vesicle from 24 hpf embryos injected 
with control (A-B) or myh9 (C-D) morpholino. (B,D) Timelapse images showing 
magnification of the cilium from the boxed region in A and C, respectively. The tip 
of the cilium is indicated by asterisks in the first six frames. The last frame shows 
merged tracings in yellow of the cilium in the first six frames. (E) Graph 
comparing the average distance of ciliary movement between control and 
morphant embryos at 24 hpf. (F) Graph comparing the average time for one 360 
degree rotation of a cilium between control and morphant embryos at 24 hpf. (G) 
Graph comparing the average ciliary beat speed between control and morphant 
embryos at 24 hpf. (E - G) Error bars indicate standard deviation. Significance 
testing showed no significant differences between control embryos and 
morphants. Control embryos: n = 7; cilia analyzed: n = 9. Morphant embryos: 
n=5; cilia analyzed: n = 7. (A,C) Scale bar = 10 µm. (B,D) Yellow scale bar = 5 
µm.
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Fig. 14: NMIIA is not required for translational polarity of ciliary basal 
bodies. Control morpholino (A) and myh9 morpholino (B) injected embryos were  
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fixed at 24 hpf and immunostained for gamma tubulin to label ciliary basal bodies 
(red) and stained with fluorescent phalloidin to label actin (green). (A’, B’) 
Magnification of the boxed region in A and B, respectively. Asterisks indicate hair 
cells. (C - C’’) Diagram of the method for confocal data analysis. Z-stacks  were 
reconstructed in three dimensions using the “3D Viewer” plugin in ImageJ to 
ensure accurate distance measurement. Green represents actin; red represents 
ciliary basal body pairs. (C) The otic vesicle with two regions  of cells surrounding 
a hair cell pair (shaded cells) is shown. A line was  drawn between the two pairs 
of hair cells (blue) to establish a consistent direction for measuring basal body 
location relative to the apical cell membrane. (C’) Magnification of the boxed 
region in (C). Only those epithelial cells  within two cell diameters  of a hair cell 
pair were used for analysis, shown in yellow. Five cells were chosen for analysis 
in each hair cell region. (C’’) Magnification of one cell from the boxed region in C’. 
Lines parallel to the reference line were drawn through the center of the basal 
body pair in each cell (thin blue lines) and lines perpendicular to the reference 
line were drawn through the basal body pair as well (dotted purple lines).  
Measuring along two sets of parallel lines drawn through the basal bodies of 
different cells allowed for a directionally consistent measurement of distance of 
the basal body from the lateral cell membrane in two directions (offset by 90º). 
Translational polarity values were calculated by dividing the distance a’ by the 
distance a, and b’ by b (shown in C’’). The standard deviations of the distances 
from the cells of all analyzed regions  were averaged and compared between 
control and morphant groups. (D) Graph of the translational polarity of ciliary 
basal bodies at 24 hpf when embryos were injected with control or myh9 
morpholino. Control embryos: n=8; morphant embryos: n=6. Error bars indicate 
standard error of the mean. Significance testing showed no significant 
differences between control embryos and morphants. Graphing of data with a 
box plot revealed no additional details of the data distribution.
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Fig. 15: NMIIA is not required for perpendicular rotation in hair cells. (A) 
Diagram of the otic vesicle at 24 hpf with two regions  of cells  surrounding a hair 
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cell pair (shaded cells). Green represents  actin. A blue line is  drawn across the 
approximate center of the otic vesicle along the long axis  of the lumen to be used 
as a reference for hair cell orientation. (B - C) Embryos were fixed at 24 hpf and 
stained with fluorescent phalloidin to label actin (green). Micrographs display a 
region of the otic vesicle as indicated by the boxed region in A, and include a 
blue reference line as in A. The perpendicular rotation of hair cells  was assessed 
by projecting a line from the center of the stereociliary base through the center of 
the kinocilium base. Orientation angles of these lines were observed from the 
blue reference line. (B) Control morpholino-injected embryo. Black arrowhead 
indicates the position of a hair cell stereociliary base; white arrowhead indicates 
the position of a hair cell kinocilium base. (C) myh9 morphant embryo. (D - E’) 
Embryos were fixed at 4 dpf and stained with fluorescent phalloidin to label actin. 
Infraorbital neuromasts were then imaged using confocal microscopy (>5 per 
embryo). The perpendicular rotation of hair cells was assessed by projecting a 
line from the center of the stereociliary base through the center of the kinocilium 
base. Orientation angles of these lines were compared between cells of a given 
neuromast. (D) Control morpholino-injected embryo. Black arrowhead indicates 
the position of a stereociliary base; white arrowhead indicates the position of a 
kinocilium base. (D’) Green and magenta dots indicate the location of hair cell 
kinocilia of differing polarities in D. (E) myh9 morphant embryo. (E’) Green and 
magenta dots indicate the location of hair cell kinocilia of differing polarities in E. 
(F - I) Embryos were fixed at 4 dpf and infraorbital neuromasts were imaged 
using scanning electron microscopy. The perpendicular rotation of hair cells  was 
assessed by projecting a line from the center of the stereociliary base through 
the center of the kinocilium base. Orientation angles  of these lines were 
compared between cells of a given neuromast. (F - G) Control morpholino-
injected embryos. (F) Arrowhead indicates a kinocilium; bracket indicates a 
stereociliary bundle. (H - I) myh9 morphant embryos. (B - C) Control embryos: 
n=16; morphant embryos: n=15. (D - E) Control embryos: n=6; morphant 
embryos: n=6. (F - I) Control embryos: n=6; morphant embryos: n=4.
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Chapter 4: General Conclusions and Future Directions

General Conclusions

 The primary goal of this thesis was to examine the role of non-muscle 

myosin IIA (NMIIA) in zebrafish ear development and function as a means to 

study the molecular mechanisms of deafness associated with MYH9-related 

diseases. We found via loss-of-function experiments that NMIIA is required for 

formation of normal otolith numbers in the developing otic vesicle (Fig. 10). 

Based on abundant current studies, we hypothesized that this abnormal otolith 

phenotype with myh9 loss-of-function was due to a defect in the motility of cilia in 

the developing zebrafish ear. To test this hypothesis, we first performed 

experiments to assess localization of NMIIA in the otic vesicle (Fig. 11). Next, we 

analyzed the role of NMIIA in ciliogenesis (Fig. 12) and the role for NMIIA in 

regulating motile cilia speed and distance of beating (Fig. 13). Results of these 

experiments demonstrated that NMIIA colocalizes with ciliary basal bodies, but is 

not required for ciliogenesis nor for normal cilia movement. 

 This finding led us to hypothesize that NMIIA is involved in establishing the 

polarity of ciliary basal bodies. It has been established that basal body 

translational polarity is necessary to establish ciliary tilt (Nonaka et al., 2005). 

Furthermore, ciliary tilt is necessary for linear fluid flow in a vesicle (Hashimoto et 

al., 2010), and proper fluid flow is necessary for normal otolith formation (Wu et 

al., 2011).  Therefore, we hypothesized that our documented otolith phenotype 

was the result of defective basal body polarity in myh9 loss-of-function embryos. 

Although the results of our experiments addressing polarity did not directly 
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support this hypothesis, we believe future experiments are necessary before a 

definitive conclusion can be drawn. 

Future Directions

 Additional experiments are required to determine the mechanism by which 

NMIIA regulates otolith formation in the developing ear.  It has been established 

that otolith formation depends on cilia-induced fluid flow within the otic vesicle. 

Therefore, future experiments are set to address the hypothesis that myh9 loss-

of-function results in abnormal fluid flow within the otic vesicle. Additionally, 

abnormal fluid flow is hypothesized to be caused by abnormal movement of cilia, 

which in turn, could result from abnormal ciliary polarity that was not thoroughly 

investigated in this thesis (Fig. 16). Four areas of experimental methodology may 

be used to address this hypothesis. 1. High-speed differential interference 

contrast (DIC) imaging of cilia movement. 2. Tracking of otolith precursor 

particles within the otic vesicle using confocal microscopy. 3. Transmission 

electron microscopy (TEM) for analyzing basal body polarities combined with 

immunohistochemistry to detect proteins of interest to ciliary structure and 

function. 4. Scanning electron microscopy (SEM) to analyze ciliary tilt and hair 

cell organization in the otic vesicle. Each of these proposed experiments are 

discussed further below. 

 Experiments employing live DIC imaging would be used to compare 

several characteristics of motile cilia in the otic vesicle between control and myh9 

morphant embryos. All experiments would be done with consideration given to 
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the following categories: motile versus immotile cilia, motile polar cilia versus 

motile short cilia, cilia in an otolith-forming region versus those far from one, and 

the various developmental stages of embryos from 18 to 24 hpf. Of these, we 

believe distance from an otolith forming region to be the most important. Two 

parameters to be further studied with these distinctions in mind include the speed 

of cilia and the distance of travel during one ciliary beat cycle according to the 

methods already described in this thesis. An additional characteristic to explore is 

the direction of cilia movement, which could be accomplished by imaging ciliated 

cells at an angle perpendicular to their apical membrane in order to see the path 

traced by the tips of cilia. Also, the shape of the beat stroke could be analyzed by 

imaging beating cilia along their long axis. Finally, by changing the plane of focus 

and moving through the otic vesicle, it may be possible to count the total number 

of motile cilia. We note that it may be necessary to perform these experiments 

with equipment capable of higher resolution and frame capture rates to ensure 

that minute differences in motility are detected between control and morphant 

embryos. 

 Experiments tracking particles in the otic vesicle could be used to study 

the fluid flow generated by motile cilia to compare control and myh9 morphant 

embryos. This could be accomplished through injection of fluorescent beads into 

the otic vesicle, or by labeling the otolith precursor particles by injecting FM1-43 

dye (Tanimoto et al., 2011) and then imaging the vesicle using confocal 

microscopy. Confocal data could then be analyzed using manual tracking 
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methods, or through automatic tracking using computer software, in order to map 

the directions and speeds of the currents of the otic vesicle.

  TEM analysis could be used for an assessment of ciliary polarity accurate 

to nanometer-scale resolution, as well as for immunohistochemical localization of 

proteins important for ciliary function. In terms of translational polarity, planar cell 

polarity measurements of distance from the edges of the apical membrane could 

be made in serial sections along directionally-consistent anteroposterior or 

ventrodorsal axes of the otic vesicle, as well as an apico-basal measurement of 

distance of the basal body from the apical membrane. Regarding rotational 

polarity, the angle of the basal body pairs relative to the apical surface could be 

measured. Lastly, transverse sections through cilia could demonstrate useful 

differences for distinguishing the types of cilia of the otic vesicle (for example, 

presence or absence of a central microtubule pair might differentiate immotile 

and motile cilia (Yu et al., 2011).  

 TEM combined with immunocytochemistry in sections cut through the 

epithelial cells of the otic vesicle on an apico-basal axis would be useful in 

identifying the localization of NMIIA and actin in or near cilia and ciliary basal 

bodies in order to study differences between control and myh9 morphants. It 

could also be used to detect localization of ciliary motility proteins such as 

dynein, or the protein products of genes gas8 or dnaaf1, both of which are 

components of the dynein regulatory complex and are required for ciliary motility 

(Colantonio et al., 2009; Stooke-Vaughan et al., 2012). A tangential benefit of 

immunocytochemistry using these dynein regulatory complex proteins is that if 
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they were found to localize to motile cilia but not immotile cilia, they could serve 

as markers in confocal immunostaining as well to differentiate classes of cilia. 

 A final mode of analysis employs SEM to detect differences in ciliary tilt 

and hair cell apical morphology between control and myh9 morphant embryos by 

sectioning into the embryo to expose the otic vesicle lumen. First, SEM could be 

used to study the tilt of cilia throughout the otic vesicle, since ciliary axoneme tilt 

has been linked to normal otic vesicle fluid flow (Hashimoto et al., 2010). This 

can be accomplished by capturing electron micrographs of the same region of 

the otic vesicle epithelium at various angles by tilting the microscope stage, then 

combining all images using computer software to render a 3D reconstruction of 

the tissue for tilt angle measurement (Nonaka et al., 2005). One micrograph 

capturing the whole embryo can be used to measure the direction of the antero-

posterior axis (Nonaka et al., 2005). Secondly, because myh9 expression has 

been found in the stereocilia of mouse cochlear hair cells (Mhatre et al., 2006), 

SEM could be used to analyze hair cell integrity in terms of organization of 

stereocilia and kinocilia to address larger questions about the role of myh9 in 

auditory sensation.  

 To increase the specificity and transferability of our myh9 loss-of-function 

research in the zebrafish model to human MYH9-disease in future experiments, 

we intend to create a mutant line of zebrafish with mutations that mimic the 

human MYH9 mutations that most frequently result in deafness. This could be 

accomplished through genomic engineering methods employing ZFN, CRISPR/

Cas or TALEN nucleases (Gaj et al., 2013). Zebrafish mutants would also allow 
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us to screen for deafness in larval, juvenile, and adult fish, and if it is present, 

compare the deafness pathology of the mutant fish to that of the human. Genesis 

of myh9 mutant zebrafish lines that replicate human MYH9 mutations and the 

resulting hearing loss phenotype would serve as a useful tool for the experiments 

described above, as well as for screening potential drug therapies for MYH9-

related disease.

 Of the deafness-causing MYH9 human mutations, we are especially 

interested in creating a zebrafish mutant with the amino acid substitution R705H, 

which causes autosomal dominant nonsyndromic deafness DFNA17 in humans 

(Kunishima & Saito, 2010). There are several reasons for this choice. First, 

approximately 70% of genetic deafness diseases are known to be nonsyndromic 

in nature (Nance, 2003). Secondly, this mutation is in the head domain of the 

NMIIA protein, a location that results in the most severe hearing phenotypes (Iwai 

et al., 2006). Also, unlike other deafness-causing MYH9 mutations in humans, 

this mutation produces deafness invariably without complication by other disease 

symptoms. Finally, its effects have been traced to degeneration of the organ of 

Corti (Lalwani et al., 1997), which suggests that DNFA17 hearing loss may be the 

result of a defect in the formation and/or maintenance of organ of Corti hair cells 

(Mhatre et al., 2006).  

 The experimental results we have presented here are first steps toward 

determining the molecular mechanisms for how MYH9 mutations cause disease 

in ciliated systems, specifically in the development of the inner ear. The activities 

of cilia, and the many varied biological processes they affect during development, 
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and in mature organisms, is a complex topic requiring additional research. Using 

the zebrafish otic vesicle as a model for ear development provides the tools 

necessary to analyze the development and function of the vertebrate ear and to 

address the symptom of deafness in MYH9-related diseases resulting from 

MYH9 mutations. Although it is presently not known whether ciliary motility has a 

role in development of the mammalian otic vesicle, the work begun here may 

potentially be extended to the development and function of the human ear to 

enable understanding of the roles of non-muscle myosins in human deafness as 

a step toward its treatment. Overall these findings increase our understanding of 

the roles of NMIIA in the vertebrate ear and suggest that the regulation of ciliary 

motility should be further investigated.
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Fig. 16: Possible defects in motile cilia of the otic vesicle. Blue cones depict 
the 360º movement path of one motile cilium; red objects depict ciliary basal 
bodies. Motility defects may arise from an incorrect number of motile cilia, basal 
body polarity defects  (translational or rotational), or defects in movement 
(direction, speed, or distance traveled). Yellow and magenta arrowheads indicate 
opposing directions of movement; nested green arrows indicate variance in 
speed. Results provide evidence that myh9 is not responsible for translational or 
rotational polarity in the ear, nor for the movement of cilia in terms of speed or 
distance traveled in embryos aged between 22 - 24 hpf. Future experiments  are 
needed to assess the role of myh9 in determining the number of motile cilia, the 
direction of ciliary movement, and distinguishing the properties of motile cilia near 
an otolith from those of motile cilia distanced from an otolith. Repetition of 
existing motility experiments is also needed, using an imaging system capable of 
capturing data at a higher resolution and frame rate.
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